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Abstract

Understanding strongly coupled systems is an important area of theoretical physics,

and has wide ranging applications from quantum chromodynamics to condensed mat-

ter physics. This thesis uses holographic methods to understand two particular aspects

of strongly coupled systems - linear response and phase transitions.

Firstly, we consider a general class of electrical black holes in Einstein-Maxwell-scalar

theory, that are holographically dual to conformal field theories at finite charge density

and explicitly break translational invariance. By considering the linearised perturbations

of these background black holes, we show that the DC thermoelectric conductivity of

these systems can be determined by solving a set of linearised Navier-Stokes equations on

the event horizon of the dual black hole. We demonstrate how to apply this framework

in practice with several examples.

Next, we consider this framework in the hydrodynamic limit, for the simpler case of

Einstein gravity. We show that the full stress-energy response, rather than just the

thermal conductivity, can be determined in this limit, and compare the results with

the fluid/gravity correspondence. We then consider more general hydrodynamics, and

demonstrate that periodically deformed field theories exhibit thermal backflow when a

DC thermal source is applied

Finally, we study black hole solutions of type IIB supergravity that describe N=4 su-

persymmetric Yang-Mills plasma with an anisotropic spatial deformation. We show that,

by preserving additional scalar modes from the consistent truncation of IIB supergravity

on the five-sphere, these black holes have low temperature instabilities. We construct new

thermodynamically preferred black hole solutions, and show that the phase transition be-

tween these black hole solution has unusual critical exponents that is not captured by

the normal Landau-Ginzburg exponents. We consider various extensions to this, such as

introducing a chemical potential, and construct a more complete phase diagram for the

theory.
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Chapter 1

Introduction and thesis outline

Strongly coupled systems describe some of the most interesting and important physical

phenomena, with examples ranging from quantum chromodynamics (QCD) and the theory

of quarks, to topics in condensed matter physics such as high temperature superconductors

and in questions about the early stages of the universe and the big bang. At the same time,

the lack of mathematical techniques and a well understood framework to describe these

systems, in particular a lack of a perturbative expansion, make strongly coupled systems

some of the most poorly understood and difficult problems to tackle. The purpose of this

thesis is to present novel techniques and findings to further our understanding of strongly

coupled systems, especially with regards to their phase transitions and linear response.

Since its introduction in 1997 by Maldacena, the AdS/CFT correspondence1 has pro-

vided one possible framework to understand strongly coupled systems [6]. The correspon-

dence establishes a relationship between a certain class of quantum field theories - namely

conformal field theories (CFTs) that have a conformal symmetry, and gravitational the-

ories in an anti-de Sitter (“AdS”) spacetime. More precisely, the correspondence states

that a d dimensional CFT lives on the boundary of a dual string theory or M-theory re-

alised on AdSd+1. The power of the correspondence lies in the fact that it is a strong/weak

duality - a strongly coupled CFT is dual to a weakly coupled gravitational theory and

vice-versa. Specifically, there is a one to one map between strongly coupled CFTs in the

large N limit (when we only consider planar Feynman diagrams) in d dimensions, and

weakly curved classical supergravity in d + 1 dimensions. The supergravity problem is

often substantially easier to solve, and has led to numerous studies focused on condensed

matter and QCD applications (see for example, [7–9], and references therein).

In this thesis, we will utilise the AdS/CFT correspondence to demonstrate a number of

results, ultimately motivated by condensed matter physics. The rest of this introduction

will therefore be devoted to explaining the important background physics required, and

some of the previous work that has been done in the field. We will first present the

1We will use holography, AdS/CFT and gauge/gravity duality interchangeably throughout the thesis,
and we will be referring to the more general correspondence between gauge fields and gravitational theories
than in Maldacena’s original work.
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CHAPTER 1. INTRODUCTION 11

framework and physics behind holography, before describing the holographic dictionary.

Then we will present some applications of the correspondence, and discuss linear response,

phase transitions and the fluid/gravity correspondence. Finally, we will give a brief outline

of the rest of the thesis.

1 Gauge/gravity duality

We will now present a brief introduction to the underlying physics of the AdS/CFT

correspondence. For a complete review on the correspondence, please refer to [10].

1.1 Conformal field theories

The principle of symmetry is one of major importance across all areas of physics. Impor-

tant examples in relativistic quantum field theories are the Lorentz and Poincaré symme-

tries, which describe the symmetries due to rotations and boosts (as well as translations in

the case of Poincaré) in Minkowski space. The conformal group is a natural extension to

the Poincaré group, and describes relativistic systems that also possess scale invariance2,

meaning that the physics looks the same at all length scales. Under conformal trans-

formations, lengths can change, but angles are locally invariant and the casual structure

remains.

To be more precise, under conformal transformations the metric scales by gµν(x) →
Ω2(x)gµν(x), where Ω is a positive arbitrary scale factor. It is possible to show that the set

of conformal transformations contains Poincaré transformations, as well as the dilatation

and special conformal transformations, defined by (in Minkowski spacetime)

xµ → λxµ ,

xµ → xµ + aµx2

1 + 2xνaν + a2x2
, (1.1)

respectively.

Let us now turn to the infinitesimal conformal transformation. The algebra generat-

ing these transformations contains the generators of the Lorentz transformations, Mµν ,

spacetime translations, Pµ, the dilatations, D, and special conformal transformations, Kµ,

with the generators obeying the following commutation relations

[Mµν , Pρ] = −i(ηµρPν − ηνρPµ) , [Mµν , Kρ] = −i(ηµρKν − ηνρKµ) ,

[Mνµ,Mρσ] = −iηµρMνσ ± permutations , [Mµν , D] = 0 , [D,Kµ] = iKµ ,

[D,Pµ] = −iPµ , [Pµ, Kν ] = 2iMµν − 2iηµνD , (1.2)

2Note that a theory can be scale invariant but not conformal, as discussed in [11].
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It is easy to see that this algebra is isomorphic to SO(2, d), by making the following

redefinitions [12]

Jµν = Lµν ,

J−1µ =
1

2
(Pµ −Kµ) ,

J0µ =
1

2
(Pµ +Kµ) ,

J−10 = D , (1.3)

which leads to the algebra

[Jmn, Jpq] = i(ηmqJnp + ηnpJmq − ηmpJnq − ηnqJmp) , (1.4)

where η is the metric diag(-1,-1,1,....,1).

Since mass can be rescaled under a conformal transformations, they are no longer

good quantum numbers to describe the observables in our CFT. Instead, CFTs have a

different set of quantum numbers. Any field, φ(x) that transforms covariantly under the

irreducible representations of the conformal algebra has a fixed scaling dimension, ∆, that

is defined by the transformation under x→ λx

φ(x)→ φ′(x′) = λ−∆φ(x) . (1.5)

This ∆ captures the transformation property of φ of dilatations with [D,φ] = i(xµ∂
µ +

∆)φ. Along with the quantum numbers from the Lorentz representation, these quantum

numbers can label the observables in a CFT.

It is interesting to note that the condition of unitarity on the fields imposes a lower

bound on the allowed value of ∆ for any field in a CFT. For example, in d dimensions,

the scaling dimension of a scalar field must satisfy

∆ ≥ d− 2

2
. (1.6)

For a discussion of this result in detail, we refer the reader to [13, 14]. We will return to

the unitary bound in the context of AdS/CFT later.

It is important to stress that conformal invariance at the level of a classical theory

does not necessarily imply conformal invariance of a quantum theory. Indeed, there is a

natural component of quantum theories that in general will break conformal invariance -

renormalisation. In general a quantum theory will have a renormalisation scale, µ, which

mean that the dimensionless couplings, g, run

µ
∂

∂µ
g = β(g) . (1.7)
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Therefore in general, quantum theories will only be conformal at certain points where

β(g) = 0, such as UV or IR fixed points. In addition, some theories, such as N = 4 super

Yang-Mills have β(g) = 0 for all values of g, and hence are conformal everywhere [15].

1.2 AdS spacetimes

On the other side of the AdS/CFT correspondence, we have AdS space. Whilst AdS

spacetimes were first studied in the 1970s, it was only with the advent of AdS/CFT

[6,16,17] that their full usefulness became apparent. AdSd+1 spacetime is the maximally

symmetric solution of the Einstein equations with a negative cosmological constant, Λ,

Rµν =
2Λ

d− 1
gµν . (1.8)

AdSd+1 space is a Minkowskian generalisation of a hyperboloid, defined in d+2 dimensions

by a solution to the equation

y2
0 + y2

d+1 −
d∑
i=1

y2
i = L2 , (1.9)

with line element ds2 = −dy2
0 − dy2

d+1 +
∑d

i=1 dy
2
i . Here, L is the AdS radius, which will

often be set to one for convenience. There is a clear SO(2, d) isometry in the spacetime,

the same as the conformal group in d+ 1 dimensions.

An alternative parameterisation of the hyperboloid, labelled by (t, r, ~x) is given by

y0 =
1

2r
(1 + r2(L2 + ~x2 − t2)) (1.10)

yd+1 = Lrt (1.11)

y1,...,d−1 = Lrx1,...,d−1 (1.12)

yd =
1

2r
(1− r2(L2 − ~x2 + t2)) . (1.13)

This is the Poincaré patch, with metric

ds2 =
L2

r2

(
−dt2 +

dr2

r2
+ r2

d−1∑
i

dx2
i

)
. (1.14)

As we shall discuss later, this particular geometry is very important in the context of

holography. In this coordinate system, the constant r slices are isomorphic to d dimen-

sional Minkowski spacetime, scaled by a factor of r, hence the name. The boundaries of

the spacetime are the conformal boundary at r = ∞ and a Poincaré killing horizon at

r = 0. This coordinate system covers half of the AdS hyperboloid, as shown in figure 1.

Often, calculations on the Poincaré patch can be made easier by defining z = L2/r as
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Figure 1: Cartoon showing Poincaré patch in global AdS space. The past horizon of the patch
is shown in blue, the future horizon in green and the AdS boundary is in red. The patch covers
half of the global AdS space. Figure taken from [18].

a rescaled coordinate. Now the conformal boundary is located at z = 0, whilst the killing

horizon is at z =∞. In this coordinate system, the metric is given by

ds2 =
L2

z2

(
dz2 − dt2 +

∑
i

dx2
i

)
=
L2

z2

(
dz2 + ηµνdx

µdxν
)
. (1.15)

One remarkable fact is that AdS spacetimes are stable in the presence of scalar fields

with tachyonic masses, provided that the absolute value of the mass is sufficiently small.

This is known as the Breitenlohner-Freedman (BF) bound [19], and in d + 1 dimensions

is given by

m2 ≥ −d
2

4
. (1.16)

As we shall see later, this result has many consequences for holographic superconductors.

1.3 AdS/CFT and the holographic principle

Having laid the groundwork, we are now in a position to discuss AdS/CFT. Whilst there

are many examples [10], here we will discuss the original and most prominent example,

which relates N = 4 super Yang-Mills (SYM) theories to IIB superstring theory on

AdS5 × S5. The exact form of the correspondence is as follows:

N = 4 super Yang-Mills theory with gauge group SU(N) and coupling constant gYM is

dual to type IIB string theory with string length ls and coupling constant gs on AdS5×S5,

with radius of curvature L.
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The free parameters in the two theories are related to each other by

g2
YM = 2πgs , (L/ls)

4 = 2Ng2
YM . (1.17)

What is the meaning of the word dual in the above description? The statement of the cor-

respondence is that the two theories are identical, and describe exactly the same physics.

If this conjecture holds, then all of the physics on one side of the duality will exactly

map to the physics on the other side. This is incredibly powerful - on the one hand, we

have a theory of quantum gravity, whilst on the other we have a gauge theory in flat

space, without any hint of gravity. The correspondence states that these two theories are

describing the same underlying physics.

From our previous discussion, we can see the isometry group of AdS space is exactly

the same as the conformal group of the SYM theory, SO(2,4) in both. The correspondence

goes much deeper than that, and actually says that the theories are the same at the level

of partition functions. We will discuss this idea further in the next section.

A useful picture to geometrically visualise AdS/CFT is with the Poincaré patch. We

start with the CFT, which is in Minkowski space on the conformal boundary of our bulk

theory. As we move along the radial coordinate, we are still on Minkowski space since we

are in the Poincaré patch. However, our metric is rescaled by a factor of r. The different

radial slice corresponds to the boundary theory at a different wavelengths or energies, and

so the radial coordinate has a very particular meaning - it is the geometrical realisation

of the renormalisation group (RG) flow of the CFT.

String theory is currently best understood in the perturbative regime, so it is helpful to

analyse the correspondence in the limit of weak coupling, so taking gs � 1, whilst keeping

L/ls constant. At leading order, this string theory then reduces to classical string theory,

meaning that we only include tree level diagrams in string perturbation theory, rather

than the full perturbative expansion that would include higher genus diagrams. In the

dual description, the equivalent statement is that we are taking gYM � 1 whilst keeping

g2
YMN fixed. This is known as the ’t Hooft limit, and is the planar limit of the gauge

theory (when only Feynman diagrams that can be constructed on a plane survive) [20].

For what follows we will be interested in strongly coupled theories. In that case, we

can set the ’t Hooft parameter, g2
YMN →∞. From the duality above, that corresponds to

taking ls/L→ 0. Here, the string length is much smaller than the radius of curvature, and

so we are in the point particle limit of string theory - supergravity. Our strongly coupled

field theory in the large N limit is dual to a weakly coupled classical supergravity theory. It

is this form of the correspondence that we will be concerned with in this thesis. Following

our earlier discussion, we are interested in theories that are CFTs at fixed points (having



CHAPTER 1. INTRODUCTION 16

say, a UV fixed point), rather than everywhere in the RG flow. This corresponds to

geometries in the bulk gravitational theory that are asymptotically AdS, rather than AdS

everywhere. We have therefore reduced our strongly coupled QFT problem to something

that is much simpler, solving a weakly coupled supergravity problem in a geometry that

is asymptotically AdS.

The original AdS/CFT correspondence of Maldacena related two particular theories

- N = 4 SYM in four dimensions with gauge group SU(N), and type IIB superstring

theory defined on AdS5×S5. Since then, many examples in holography have been found,

although a general proof of AdS/CFT is an outstanding problem. For example, ABJM

theory is holographically dual to AdS4 × S7 in M theory [21], whilst it is possible to

construct conformal field theories that are dual to AdS5 ×X, where X is some suitably

chosen manifold rather than being restricted to S5 (see, for example [10]). In addition, the

constraint that the field theory is conformal can be relaxed. For example, non relativistic

spacetimes are dual to Liftshitz spacetimes (geometries where space and time scale dif-

ferently) [22], whilst relevant or marginal operators can break conformal invariance away

from a particular UV fixed point of our theory. We will return to this later.

1.4 The holographic dictionary

Now that we have established the connection between quantum field theories (QFTs) and

their dual gravitational description, we will make precise the map between two theories -

this is the so-called “holographic dictionary”.

The single most important quantity in any quantum field theory is the partition func-

tion. It tells you everything you could possibly want to know about a system - obtaining

a partition function means that you have completely solved the theory. Schematically, for

theories with a Lagrangian description, the partition function of a QFT can be represented

as

ZQFT [φ0] =

∫
DA exp

(
i(SQFT +

∫
φ0O(A))

)
, (1.18)

which is a path integral over the fields, A. O(A) is an operator of theory, expressed as a

function of A, with a corresponding source, φ0.

In high energy physics, φ0 is often simply used as a mathematical trick allowing us to

calculate the correlation functions of the corresponding operator. However, in condensed

matter physics, φ0 has a physical meaning as some source, such as an electric source or

thermal gradient. The idea of holography is to turn the source in the boundary theory

into a dynamical field in the bulk gravitational theory that satisfies its own equations of

motion, and can couple to the other fields in the gravitational theory.

We now explain the precise definition of duality in holography. First, we introduce a

field in the bulk that is dual to our particular observable, and impose suitable boundary

conditions at the conformal boundary. The two theories are then dual if the partition
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function of the QFT is equivalent to a partition function on the bulk. We will discuss

what we mean by suitable boundary conditions later in this section, but roughly speaking,

we can take φ(r, ~x) → φ0(~x) as r → ∞. Mathematically, this idea is expressed in the

GKPW formula3 [16, 17]

ZQFT [φ0] = Zstring[φ(r, ~x)|r→∞ = φ0(~x)] . (1.19)

At this point we impose the conditions that we have a strongly coupled CFT and are

in the perturbative regime of string theory. From the argument in the previous section, we

now have a weakly coupled classical supergravity, and we can approximate its partition

function by its dominant saddle point. We now have

ZQFT [φ0] ≈ eiSbulk |φ→φ0 , (1.20)

where the right hand side is the on-shell bulk action, and φ → φ0 is understood to be

at the boundary. The right hand side is something that modern physics has a good

handle of - our difficult, strongly coupled field theory has been reduced to something

more manageable.

A toy example: scalar fields

Whilst string theory has an infinite spectrum of different fields (in towers of increasing

mass states), we are typically only interested in the lowest mass states in the dual field

theory. The most important fields are the metric and U(1) gauge field. As we shall

discuss later, these are dual to the stress energy tensor and an operator with a global

U(1) symmetry. Physically, sources of these dual operators correspond to deforming our

CFT through matter deformations (such as putting the system on a lattice) and allowing

an electric current source in our system.

Another important field, which serves as an excellent model to demonstrate the dic-

tionary in practice, is the scalar field, which is dual to a scalar operator in the field theory.

To see the dictionary in action, let’s consider a simple toy model of a massive bulk scalar

field, described by the action

S =
1

16πGN

∫
dd+1x

√
−g
(
R +

d(d− 1)

L2
− 1

2
(∂φ)2 − m2

2
φ2

)
. (1.21)

Solutions of φ with non trivial radial dependence will, in general, deform the bulk

geometry away from AdS spacetime. This corresponds to deforming our QFT away from

a CFT by some operator in our dual field theory. However, for theories of interest, we

3Note that, in general, the field theory and bulk theory will both have divergences that have to be
appropriately renormalised - we will return to this later.
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want our field theory to approach some fixed point in the UV, and so we impose that our

boundary condition is asymptotically AdS (which we will chose to be z = 0). Near the

conformal boundary, the scalar equation of motion is therefore given by

z2∂2
zφ− (d− 1)z∂zφ = m2L2φ , (1.22)

where we have assumed that φ only has radial dependence.

One can show that the asymptotic expansion of φ is given by

φ = zd−∆φ(0) + z∆φ(1) + ... as z → 0 . (1.23)

We see that our scalar field is fixed by two boundary conditions (as expected for a second

order differential equation), as well as another parameter ∆, which satisfies

∆(∆− d) = (Lm)2 . (1.24)

It can be shown [16] that this ∆ corresponds to the scaling dimension of the operator in

the CFT, as discussed in section 1.1. The CFT unitary bound (1.6) implies the condition

that ∆ ≥ (d− 2)/2, whilst demanding that ∆ is real (a unitary bound in the bulk) gives

us the condition that

m2 ≥ −d
2

4
. (1.25)

This is exactly the BF bound from (1.16) that was discussed earlier.

When d/2 < ∆ ≤ d, φ(0) and φ(1) correspond to the source and expectation value

(VEV) of the scalar operator in the dual CFT. Simlarly, when (d−2)/2 ≤ ∆ < d/2, there

is an alternative quantisation in which φ(0) and φ(1) correspond to the VEV and source

of the field instead. Whilst both theories have the same bulk behaviour, the CFTs they

correspond to are fundamentally different. Depending on the value of ∆, we impose one

of these two conditions on the asymptotic fall off of the dual bulk field. We now have a

complete prescription to start using the holographic dictionary. For a given source and

VEV, we fix the asymptotic fall off of the scalar fields through (1.23), solve in the bulk,

and use (1.20) to construct the partition function of the CFT.

The scalar operator will be a relevant or marginal deformation of the theory if ∆ ≤ d.

In this case, this implies that the leading term in (1.23) is either constant or zero on the

boundary - this is the exact requirement that we need to have an asymptotically AdS

spacetime. We therefore see that relevant operators can be turned on in the field theory

without destroying the UV fixed point, as one would expect. On the other hand, if ∆ > d,

we have an irrelevant deformation which will blow up on the conformal boundary, and

take us outside the understood realm of AdS/CFT.

Note that if ∆ = d/2, then the expansion (1.23) no longer holds. Instead, have an
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asymptotic expansion of the form

φ = zd/2φ(0) + zd/2 log(z)φ(1) + ... as z → 0 . (1.26)

In this case there is only one possible quantisation [23], with the source corresponding to

φ(0) and φ(1) is the VEV.

Finite temperature and charge density

So far we have been concerned with theories at zero temperature, in which our bulk theory

is AdS. In the previous section, we introduced relevant operators to deform our theory

away from AdS in the bulk, which allowed us to have some RG flow away from a fixed

point in the UV in the dual field theory. An obvious question is therefore if there is

some deformation that we can make to introduce some form a temperature scale into our

system.

More precisely, we want to introduce some sort of scale into our theory, whilst preserv-

ing translational and rotational symmetries. If we take the simplest case of pure Einstein

gravity action with negative cosmological constant Λ = −d(d−1)
2

, we find the following

solution to the equations of motion that preserves the appropriate symmetries

ds2 =
L2

z2

(
−f(z)dt2 +

dz2

f(z)
+
∑
i

dx2
i

)
, (1.27)

where

f(z) = 1−
(
z

zh

)d
. (1.28)

This is the AdS-Schwarschild black hole, and there is now a scale in the theory, the radius

of the black hole, zh. The presence of temperature in our theory therefore leads to a

planar black hole, with Hawking temperature [24]

T =
d

4πzh
. (1.29)

To calculate the temperature of the dual field theory, it is helpful to recall the calculation

of the Hawking temperature by analytic continuation. In that calculation, we analytically

continue the metric to a Euclidean signature, and demand regularity of the spacetime at

the horizon. This changes our time coordinate, t, to a Euclidean coordinate, τ , which is

periodic with period θ. The temperature of the black hole is then given by T = 1/θ.

Returning to AdS/CFT, we can determine the background metric of the boundary

theory by reading off the asymptotic expansion of the metric

gµν =
L2

z2
g0
µν + ... as z → 0 , (1.30)
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and we can identify g0
µν as the non-dynamical boundary metric. At this point, notice that

the τ coordinate will be the same in both the bulk metric and the boundary metric, and

will therefore have the same periodicity. Thus, in the Weyl frame of 1.30, we conclude

that the temperature of our boundary theory is given by the Hawking temperature of the

black hole.

This is a remarkable conclusion. Information about the temperature of the CFT

(which lives on the boundary of our black hole), is stored on the event horizon4. In

fact, it turns out other important physical observables of the dual CFT, such as shear

viscosity [25] can also be determined solely by information stored on the event horizon in

particular cases. This idea will form an important part of our later work when we discuss

the DC thermoelectric conductivity of holographic systems. Specifically, we will show

that, for a general class of holographic systems, the DC thermoelectric conductivity of a

class of holographic systems can be determined by solving the Navier-Stokes equations

for an auxiliary fluid on the event horizon of the dual black hole.

In the AdS-Schwarschild solution, the only scale in our theory is temperature. There-

fore we can always rescale our temperature so that non zero temperatures are equivalent.

For the systems we are interested in, we require additional scales. A popular choice of a

second scale is a chemical potential, since many physically relevant condensed matter sys-

tems are charged. We can introduce this through a global U(1) symmetry in our quantum

theory, with a corresponding U(1) gauge field in the bulk.

Our action is

S =

∫
dd+1x

(
R +

d(d− 1)

L2
− 1

4
F 2

)
, (1.31)

where F = dA is the field strength of the U(1) gauge field, A. A solution to this is the

AdS-Reissner-Nördstron (“AdS-RN”) black hole,

ds2 =
L2

z2

(
−f(z)dt2 +

dz2

f(z)
+
∑
i

dx2
i

)

A = µ

(
1−

(
z

zh

)d−2
)
dt , (1.32)

where

f(z) = 1− (1 +
µ2z2

h

γ2
)

(
z

zh

)d
+
µ2z2

h

γ2

(
z

zh

)2(d−1)

γ =
(d− 1)L2

d− 2
. (1.33)

4Note that this is up to a normalisation of a Killing vector, that we must fix using boundary data.
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In this case the temperature is given by

T =
1

4πzh

(
d− (d− 2)z2

hµ
2

γ2

)
, (1.34)

while µ corresponds to the chemical potential. We see that the temperature depends on

both zh and µ. Unlike with (1.29), if we try to rescale our theory to remove zh dependence,

we are left with a scale set by µ. Thus non-zero temperature are no longer equivalent,

and the dimensionless ratio T/µ can be continuously taken to zero. It is this ratio that is

the physically measured observable quantity.

There are some particularly interesting properties of our theory that emerge at low

temperatures. First, let us consider the extremal black hole. This occurs when the theory

is at zero temperature, and implies that z2
hµ

2/γ2 = d/(d − 2). Near the event horizon,

the geometry of the AdS-RN in d + 1 dimensions approaches AdS2 × Rd−1, with metric

of the form

ds2 =
1

z2
(−dt2 + dz2) + dΩd−1 , (1.35)

where Ωd−1 is a metric on Rd−1. But we know that an AdS2 geometry must be holograph-

ically dual to a one dimensional conformal field theory. The IR dynamics of the dual field

theory are therefore governed by a one-dimensional CFT. Thus, a d dimensional CFT in

the UV is broken by finite chemical potential, an example of emergent quantum criticality,

emerging in the IR [26]. At finite temperatures, in the limit where temperature tends to

zero, the near horizon geometry of an AdS-RN black hole also approaches AdS2 × Rd−1,

and we will later see that the emergence of this AdS2 geometry can lead to holographic

phase transitions.

It is also possible to show that extremal AdS-RN black holes have finite entropy

density, violating the third law of black hole thermodynamics. This suggests that the

geometry is unstable, and it is possible that this finite entropy means that AdS-RN are

never true zero temperature ground states of gravitational theories (see e.g the discussion

in [7]), or it could indicate new physics. In particular, there are holographic black hole

solutions that have an AdS2 geometry that are supersymmetric [27], although there is

evidence that extremal black holes can be unstable [28–31].

1.5 Holographic renormalisation

In field theory calculations, we are often interested in determining the partition function

of a particular theory. If we know the partition function, then we can calculate all possible

correlation functions and have in effect solved our theory. In any QFT, however, there

is a problem. The action will have divergences, and one must renormalise the theory by

adding suitable counterterms in order to render the action finite. There is an analogous

procedure in holography - holographic renormalisation. For a detailed introduction, a
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good review is [32].

One therefore needs to add appropriate counterterms to the bulk action in order to

render it finite. In addition, the standard Gibbons-Hawking term is needed to make the

variational problem well defined since we have a boundary in our gravitational theory.

To determine the necessary counterterms, we first determine the asymptotic expansion

of the action, and add minimal numbers of counterterms to the action to ensure the

action is finite. Alternatively, one can use the Hamilton-Jacobi formalism to determine

the appropriate counterterms [33].

Once the action has been regularised, the partition function can be calculated through

Z = e−IOS , where IOS is the regularised Euclidean continuation of the action, evaluated

on-shell. From the partition function, important thermodynamic quantities can be de-

termined. For example, the free energy is given by W = −T log(Z), whilst the other

thermodynamic quantities such as entropy can be calculated in the standard way.

In addition to thermodynamic quantities, holographic renormalisation allows correla-

tion functions to be determined. For example, the stress energy tensor can be calculated

by the functional derivative of the partition function with respect to the induced metric

on the boundary.

2 Applications of holography

The previous section focused on holography in a general context, free from any particular

application beyond understanding strongly coupled QFTs. In this section we present some

of the more recent advances in applied holography, especially relating to condensed matter

(dubbed “AdS/CMT”). We will focus on the three broad themes, which later chapters

will then extend; linear response and DC conductivity, holographic superconductivity and

quantum phase transitions, and the fluid/gravity correspondence and the hydrodynamic

regime.

Before we discuss some recent research in these themes, we will briefly mention the

two alternative approaches to modeling systems using holography. In the “top-down”

approach, one starts with a particular consistent truncation of some string theory reduced

down to an appropriate number of dimensions. A consistent truncation means that the

solution to the lower dimensional theory is also a solution to the higher dimensional theory.

More precisely, if we split the fields from our full theory into “light” and “heavy fields”,

then a theory is consistent if it is consistent to set all heavy fields to zero in the equations

of motion.

Whilst top down models have the advantage that the holographic dictionary is well

defined and understood, guaranteeing the existence of a dual field theory, there are several

challenges that make them computationally difficult. Firstly, in general there is not a

sharp separation of energy scales in supergravity, meaning that it is unclear a-priori which
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fields to truncate. This means that whilst you may have a model based on some consistent

truncation, it is unclear how the results will change when fewer fields are truncated.

Secondly, realising consistent truncations in practice is very difficult (see, for example

[34]). An alternative approach is to therefore perform a “bottom-up” calculation, where

one starts with a minimal phenomenological theory of gravity to describe a particular

phenomenon of interest. Whilst this is mathematically much simpler, there are questions

as to whether a particular model has a string theory embedding, and thus a well defined

holographic dual. This thesis will present results using both methods.

2.1 Linear response of holographic systems

The subject of linear response is a hugely important one in theoretical and experimental

physics. Many interesting and novel phases exhibit characteristic responses to thermal and

electrical perturbations, some of which are poorly understood. An interesting example is

the AC electrical conductivity as a function of frequency for different phases, as shown

in figure 2. A conventional metal exhibits a sharp Drude peak as ω → 0, indicating a

small amount of momentum relaxation5, whilst insulating phases have a vanishing DC

(ω = 0) conductivity. In addition to these characteristic DC conductivities, we can place

bounds can be placed on certain transport quantities, such as the Mott-Ioffe-Regel (MIR)

resistivity bound [35,36], which states that the resistivity of a material is bounded above

by a value linearly proportional to the temperature, provided that these materials have

suitably weak coupling and hence a quasi-particle description.

Whilst the above classes of material are well understood, there are several novel phases

of matter that are poorly understood and appear to be strongly coupled. For example,

“bad metals” that appear in certain superconducting phases [38] violate the MIR bound

and have no Drude peak. Similarly, the phase diagram of cuprate superconductors include

the so-called “strange-metals”, which have unusual scaling laws with respect to temper-

ature and conductivity, such as linear in temperature resistivity. There is evidence that

cuprates are not described by quasi-particles, as they violate the MIR bound [39] and

have broad optical conductivity peaks at the order of temperature (see e.g [36, 39–42]),

implying strong coupling. Holography is therefore a potential tool to understand the

linear response of these systems.

To understand the linear response of a system, we want to calculate the retarded

Green’s function, which linearly relates a source to a corresponding expectation value

δ〈OA〉(ω, k) = GR
OAOB(ω, k)δφB(ω, k) . (1.36)

We know that the VEV6 and the source of the particular operator can be read off by

5Historically this is understood in terms of quasi-particle scattering off electrons or impurities.
6Note that although we refer to VEVs, our theories are normally not in the vacuum, and so our VEV
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Figure 2: Cartoon showing AC conductivity for different condensed matter phases that have
been experimentally realised. Convential metals (red line) show a characteristic Drude peak,
indicating some momentum relaxation. Incoherent metals (blue line), including bad and strange
metals have no sharp Drude peak, whilst insulators (green line) have no conductivity as ω → 0.
Figure taken from [37].

considering the asymptotic fall off of the dual bulk field. Thus, to determine the linear

response in holography, we apply the following prescription:

• Introduce a linearised source term to perturb the background black hole (e.g a

gauge field term At = δAeiωt for the electric response, where ω is the frequency of

the perturbation).

• Impose appropriate boundary conditions at the horizon. For dissipation we require

ingoing boundary conditions on the event horizon.

• Solve the resulting linear equations of motion, and read off the resulting VEV. From

this calculate the Green’s function.

The earliest AC conductivity calculations found a delta function response in the DC

limit [43]. This was unsurprising. The simplest background system one can consider is the

Reissner-Nördstrom-AdS black hole. This system is transitionally invariant and therefore

has no mechanism to dissipate momentum - it is describes a perfect metal. Therefore, the

lack of momentum dissipation will naturally lead to an infinite response. To model real

systems, we need to add some form of momentum dissipation.

A natural framework to study such dissipation is given by holographic lattices7. These

are black holes with asymptotic behaviour that corresponds to the introduction of spatially

is really just an expectation value.
7Another approach is to use massive gravity and various interesting results have been obtained e.g.

[44–49]. However, massive gravity is currently not well defined in a holographic setting, so at best the
equations of motion should be treated as some approximation to an underlying theory.
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dependent sources to the dual field theory. In general, this will involve solving PDEs

[50–56], which is computationally very intense. However, there are several examples of

sources that, whilst still breaking translational invariance, are homogeneous, leading to

ODEs. Such examples include Q-lattices [57, 58] which exploit a global symmetry in the

bulk leading to a problem involving ODEs, and massless “axions” to obtain sources linear

in the spatial coordinates [4, 5, 59–65]

In what follows, we will be particularly interested in the DC conductivity (both thermal

and electrical) of strongly coupled systems. The DC conductivity can be calculated by

utilising the fact that the conductivities are related to retarded Greens functions via

iωσ = GR
OO, and taking appropriate limits as ω → 0 (This is the Kubo formula).

It is a natural question to ask if there are ways to directly determine the DC conductiv-

ity of holographic systems, rather than as an AC limit. It was shown in [55,66], building

on the earlier work of [67], that the DC conductivity of certain classes of black holes can

be determined directly from information on the black hole horizon, rather than the above

prescription, by including a source term that is linearly, rather than exponentially, time

dependent. This is another example where the event horizon of the black hole captures

dissipation, reminiscent of the membrane paradigm [68], and the holographic bound on

the shear viscosity of a strongly coupled system [25, 69]. As we shall discuss in the sub-

sequent chapters, there is in fact a general prescription to calculate the DC conductivity

of holographic systems directly, without turning to any sort of AC limit, and it is deeply

related to the idea that physical properties of a CFT are stored on the event horizon of

the dual black hole.

2.2 Holographic superconductors

Much of the richness of condensed matter physics lies in the dynamics involved in the onset

of an ordered phase below some critical temperature. One of the main aims of AdS/CMT

has been to shed light on high temperature (high-Tc) superconductivity. Superconductors

are a class of materials that exhibit infinite DC conductivity and expel a magnetic field at

temperatures below some critical temperature, Tc. An explanation for this phenomenon

was first provided by Bardeen, Cooper and Scheiffer in 1957, with the introduction of BCS

theory [70]. In this theory, pairs of nearly free electrons can interact with phonons and bind

into pairs of bosons (Cooper pairs). At the critical temperature, these bosons condense,

and the system undergoes a second order phase transition to the new superconducting

phase.

It was once believed that the highest temperature for Tc was around 30K [71]. Re-

cently, high-Tc superconductors, with Tc up to 160K have been discovered [72]. Although

these materials do seem to form Cooper pairs, the mechanism for their formation is poorly

understood. In particular, the coupling mechanism is strongly, rather than weakly cou-
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pling. Gauge/gravity duality therefore provides a potential tool to better understand this

phenomena.

The first steps in using holography is to therefore produce a toy model that can

explain a simple superconductor in terms of a phase transition. Let us consider a minimal

theory that includes a U(1) gauge field, the graviton and a complex scalar field in d + 1

dimensions, with a Lagrangian given by

L = (R + d(d− 1))− 1

4
F 2 − |∇φ− iqAφ|2 −m2φ2 , (1.37)

where φ is the complex scalar field, A is the U(1) gauge field, dual to a global U(1)

operator in the field theory, with field strength F and R is the Ricci scalar. We have set

various scalings such as the AdS radius and string length to unity for simplicity, whilst

m and q are parameters that we can tune for our particular theory.

When φ = 0, we can choose our background solution to be the Reissner-Nördstron-

AdS, with a scale set by the chemical potential, µ. This is the normal phase of the

solution.

Next, we want to know whether this phase is unstable to perturbations of the charged

scalar field. We therefore look for a zero-mode of the black hole solution. We introduce

a perturbation δφ, and consider the linearised equations of motion for δφ. At the onset

of instability, there will be a solution to this equation (combined with the background

equations of motion) that satisfies ingoing boundary conditions on the horizon, with no

source term but a non zero expectation value for φ. Physically, we are saying that the

system undergoes spontaneous symmetry breaking at this point, and the temperature of

this solution corresponds to the critical temperature, Tc, of the phase transition.

To understand the mechanism for the presence of a zero mode, let’s work momentarily

in the specific case of d = 3. As we go to low temperatures, the horizon geometry

approaches AdS2, as opposed to AdS4 on the boundary. Thus, recalling from (1.16), a

tachyonic mass that is stable on the boundary may be unstable as we move into the bulk

geometry, and can drive the instability. We will return to this idea later on in part III.

As well as this mechanism, there is another way to see how the instability arises. For the

case of a complex scalar field, the covariant derivative gives an additional contribution to

the effective negative mass squared of the scalar. Again, this can cause the scalar field to

violate the BF bound, rendering the geometry unstable.

Now that we have our critical point for our phase transition, the next question is

what does our theory look like below this point. As we cool down below Tc, the previous

background solution is unstable. We therefore look for hairy black hole solutions, which

have non vanishing φ, with the metric ansatz

ds2 =
1

z2

(
−f(z)e−χ(z)dt2 +

dz2

f(z)
+ dxidxi

)
(1.38)
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Figure 3: The condensate as a function of the temperature for the case when scalar scaling
dimension ∆ = 1 (left) and ∆ = 2 (right). In curve (a), from bottom to top, q = 1, 3, 6, 12.
In curve (b), from top to bottom, q = 3, 6, 12. A characteristic (T − Tc)1/2 scaling is seen near
the critical point, consistent with Ginzburg-Landau mean field theory with quadratic exponents.
Figure taken from [43].

and matter content

A = At(z)dt , φ = φ(z) . (1.39)

These black holes are then constructed by solving the resulting equations of motion.

To determine if this new branch of solution is actually realised in nature, the free energy

between the two solutions for a given temperature must be compared, and the branch

of solution with a lower free energy is the thermodynamically preferred solution. The

numerical calculations were first performed in [43], and the new hairy black hole was

found to be the stable phase.

The behaviour of physical quantities near continuous phase transitions is described

by critical exponents, which classify phase transitions into universality classes. The holo-

graphic phase transition we have just discussed is the simplest and most common phase

transition that is seen in holographic calculations. That is, a second order phase transi-

tion with critical exponents that are found in the standard Ginzburg-Landau mean field

theory with quadratic exponents [73]. In particular, the plot of 〈O〉 versus temperature

has a characteristic form of (T − Tc)1/2 as shown in 3.

Whilst this particular universality class is the most widely seen, in general, different

critical exponents (and hence different universality classes of phase transitions) have been

constructed in holographic settings [4,74,75]. Note that different critical exponents do not

mean that the theory is a not mean-field theory, but simply means that the theory belongs

to a different universality class, with a different Ginburg-Landau expansion. Indeed,

there are many examples in the literature that have non standard critical exponents but

are completely homogeneous, with only radial dependence in the bulk. These examples

must be mean field theories, but simply with phase transitions that belong to different

universality classes.

The above example describes the earliest example of a bottom-up holographic su-
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perconductor, where the order parameter is a scalar field. This is known as an s wave

superconductor. Since then, there has been considerable progress in describing p-wave su-

perconductors (where the order parameter is a vector field [76–78], or a two-form [79–81]),

and d-wave superconductors (where the order parameter is tensor field [82]). In addition,

examples of phase transitions in top-down settings have been constructed (see, for exam-

ple [83–86]). In a top-down setting, a neutral, rather than charged, scalar field is often

a natural field to drive instabilities. Top-down models pose many additional challenges,

especially in determining the true ground states of a particular theory, as to determine

with any certainty the true ground state would require solving high dimensional equations

with a large matter content.

In part III of this thesis, we will explore some new findings regarding holographic

phase transitions for a particular holographic lattice model, and demonstrate some of the

subtleties described above.

2.3 The hydrodynamic approximation and fluid/gravity corre-

spondence

When considering problems in holography, many calculations can be made simpler by

taking a hydrodynamic approximation (see e.g [87]). Before discussing hydrodynamics in

the context of holography, we will quickly highlight some of the key concepts of general

hydrodynamics. The idea of hydrodynamics is to take small fluctuations about thermal

equilibrium when the wavelength, λwave, is much larger than the mean free path, lmfp.

The hydrodynamic limit can therefore be viewed as an effective field theory, where the

high frequency and large wavenumber degrees of freedom have been integrated out.

Perturbations vary slowly on the scale of λwave, so the system is locally in equilibrium,

and described by thermodynamic variables that are functions of spacetime coordinates.

The behaviour of hydrodynamics is determined by the conservation of currents, such as

the stress energy tensor and gauge current, and their constitutive relations, which express

conserved quantities in terms of fluid variables. In what follows, we will be interested in

the relativistic hydrodynamic limit, and the conservation of the stress tensor is expressed

as

∇aT
ab = 0 , (1.40)

where T is the stress-energy tensor, and ∇a is the covariant derivative for the background

metric of the fluid. In the case of charged fluids, the associated charged currents will be

similarly conserved.

Since we are considering fluctuations away from some global equilibrium state, we

need to start with the thermal equilibrium state itself. The idea is to move away from

this equilibrium state so that we have local, rather than global, equilibrium in a con-

trolled manner. Since we are in the long wavelength limit, we can achieve this by making
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the appropriate fields functions of the boundary coordinates, and consider a derivative

expansion of the system. The coefficients in this expansion are the transport coefficients

of our theory.

More precisely, let’s start with an ideal and isotropic fluid in d+ 1 dimensions, which

has no mechanism for energy dissipation and is invariant under the rotations of the d

spatial dimensions. The stress-energy tensor takes the form

T µν = εuµuν + pP µν , (1.41)

where ε is the energy density of the fluid, p is the pressure, u is the fluid velocity that

satisfies uµu
µ = −1, and P is the projection operator onto the spatial coordinates, given

by

P µν = gµν + uµuν . (1.42)

Now consider the derivative expansion. We write the stress-energy tensor as

T µν = εuµuν + pP µν − σµν +O(∂2) , (1.43)

where σ is first order in the derivatives of T and u. There is an arbitrariness is choosing

u, so we have to make a choice for our fluid velocity (a choice of frame). One choice is

the Landau frame

uµσ
µν = 0 . (1.44)

Once a particular frame has been chosen, we impose (1.40) and one further condition,

namely that entropy current, sµ = suµ, increases locally over time

∇µs
µ ≥ 0 . (1.45)

These two constraints then fix our derivative expansion. This procedure can be generalised

to include charges in a straightforward manner.

Now let’s turn to AdS/CFT. (1.40) is a dynamical equation solely involving the stress

tensor. But AdS/CFT asserts that the behaviour of any field theory can be solely de-

scribed by the Einstein equations in the dual bulk theory. Thus there should be a corre-

spondence between gravitational theories in d+1 dimensions and d dimensional hydrody-

namics in an appropriate high temperature and long distance limit (the long wavelength

limit). A mechanism to realise this correspondence order by order in an appropriate

derivative expansion was first demonstrated in [88], and is the fluid/gravity correspon-

dence. For a good review of topic, we refer the reader to [89,90].

Here we will briefly sketch the main arguments for this result. We start with our

equilibrium solution, the AdS-Schwarschild black hole in d + 1 dimensions. This is a

one-parameter family of solutions (the parameter corresponding to the temperature of
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the black hole). However, by boosting the solution along the spatial directions, we can

find a d parameter family of solutions. These parameters are exactly the parameters in

d dimensional relativistic hydrodynamics, namely the temperature and fluid velocity. In

order to make regularity at horizon manifest, it is helpful to write the metric in ingoing

Eddington-Finkelstein coordinates. We therefore have

ds2 = −2uµdx
µdz − r2f(bz)uµuνdx

µdxν + z2Pµνdx
µdxν (1.46)

where b is related to the Hawking temperature, T , by

b =
d

4πT
, (1.47)

and the velocities, β are related to field, u, with corresponding projector, P , by

ut =
1√

1− β2
, ui =

βi√
1− β2

. (1.48)

Now we perturb this away from global equilibrium in order to introduce dissipation.

We can achieve local equilibrium by making b and β slow varying functions of the boundary

coordinates, and construct a derivative expansion of our metric, by adding additional

perturbative terms to the metric (1.46) and solving the Einstein equations order by order

in the derivatives. The choice of Eddington-Finkelstein coordinates ensures that the

black hole remains regular, and gives a good visualisation of the approximation process.

As shown in figure 4, the boundary domains that are in local equilibrium extend in tubes

along radial null geodesics into the bulk spacetime. These tubes are then patched together,

giving a solution to Einstein’s equations order by order in the derivative expansion.

The original fluid/gravity correspondence has been extended to include charged fluids

[92,93], whilst [94] introduced a scalar field. In [95,96], fluid/gravity was used to determine

DC conductivity of systems with momentum relaxation.

3 Outline of thesis

The first part of this thesis is concerned with the linear response of holographic systems.

In chapter 2, we consider a general class of electrical black holes of Einstein-Maxwell-scalar

theory that are holographically dual to conformal field theories at finite charge density

and which break translation invariance explicitly. By considering linearised perturbations

of these background black holes, we show that the DC thermoelectric conductivity for

current fluxes of a holographic lattice can be determined by solving a set of linearised

Navier-Stokes equations on the event horizon of the dual black hole. We then demonstrate

how to apply this framework in practice, with several specific examples, including one-
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Figure 4: Penrose diagram of the uniform black brane (left) and the causal structure of the
spacetimes dual to fluid mechanics, illustrating the tube structure (right). The dashed line in
the second figure denotes the future event horizon, while the shaded tube indicates the region of
spacetime where the solution is well approximated by a tube of the uniform black brane. These
tubes are then patched together to give an approximate solution to Einstein’s equations. Figure
taken from [91].

dimensional and perturbative lattices.

Having introduced a robust and general framework, chapter 3 considers more general

forms of DC linear response for a specific class of holographic lattices that contains a

gauge field and three scalar fields. Specifically, we determine the full DC linear response

matrix due to perturbations of one of the scalar fields.

Next, we consider the hydrodynamic limit of the results from chapter 2. We show

that, in the hydrodynamic limit, local thermoelectric currents, rather than current fluxes,

can be determined by solving the Navier-Stokes equations on the bulk horizon. We then

show that the full stress energy response due to the DC source can be obtained in this

limit, and compare our results with previous fluid/gravity calculations.

Finally, we utilise some of the results in chapter 4 in chapter 5 when we discuss

hydrodynamic backflow. We study CFTs in flat spacetime in the hydrodynamic limit,

that have been deformed by spatially dependent and periodic local temperature variations

or strains, and show that specific deformations lead to thermal backflow. In particular,

we show that when a DC thermal source is applied, in certain setups, the periodic strains

can lead to thermal currents that locally flow in the opposite direction to the source.

In the second part of the thesis we turn to phase transitions, and study black hole

solutions of type IIB supergravity that describe the N=4 supersymmetric Yang-Mills

plasma with an anisotropic spatial deformation, which were constructed in [60, 61]. The

zero temperature limit of these black holes approach a Lifshitz-like scaling solution in the

infrared. In chapter 6, we show that these black holes become unstable at low temperature

and construct a new class of black hole solutions which are thermodynamically preferred.
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The phase transition is third order, and has unusual critical exponents for the phase

transition, which differ from the regular quadratic Ginzburg-Landau exponents.

In chapter 7, we extend our analysis to include a U(1) gauge field in the bulk, and

also consider more scalar fields in our top-down model. We show that the results of the

previous chapter generalise in the presence of a chemical potential, and construct new

black hole solutions. We then demonstrate that the model of the previous chapter may in

fact be unstable at low temperatures, whilst the charged case appears to be stable. This

highlights some of the challenges in top-down holographic constructions.

Finally, we will discuss our conclusions in part IV of the thesis, followed by a bibliog-

raphy and appendix.
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Chapter 2

Thermoelectric DC conductivities
and Stokes flows on black hole
horizons

1 Introduction

The holographic correspondence provides a powerful framework for obtaining precise re-

sults about strongly coupled systems using weakly coupled gravitational descriptions. A

key cornerstone is that the dual description of the field theory at finite temperature is

provided by a gravitational spacetime, and is often a black hole. It is a remarkable fact

that various properties of the thermal system are captured by the properties of the grav-

itational solutions at the black hole horizon. For example, the entropy of the thermal

system at equilibrium is given by the Bekenstein-Hawking forumla, S = A/4G, where

A is the area of the black hole event horizon. Another well-known example is provided

by the shear viscosity, η, which, for certain classes of black hole solutions, is given by

η = 4πs, where s is the entropy density [25,69]. In this chapter, which expands upon and

generalises the results presented in [97], we explain how the DC thermoelectric conduc-

tivity can be obtained by solving equations for a non-relativistic fluid on the black hole

horizon. Moreover, we will see that, unlike η, our result for the DC conductivity holds in

a very general context, being applicable to arbitrary static black holes for which the DC

conductivity is finite. The extension to stationary black holes is presented in [98].

We first recall that the DC thermal conductivity, κ, is a very natural observable to

study in holography. Indeed, in the regime of linear response it determines the heat

current, or momentum flow, that is produced after applying a constant external thermal

gradient. Although this naively appears to be a low-energy quantity it is in fact sensitive

to the UV physics. For example, if the system is translationally invariant, and hence

conserves momentum, then κ is infinite. More precisely, there is a delta function in the

AC conductivity at ω = 0. To obtain a finite κ it is necessary to introduce a mechanism

for momentum to dissipate.

34
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For systems with a U(1) symmetry, another natural observable to consider is the DC

electric conductivity. Momentum dissipation is also required in order to obtain a finite

result when the charge density is non-vanishing. More generally, for these systems there is

a mixing of electric and heat currents and one should consider the matrix of thermoelectric

conductivities (
J̄

Q̄

)
=

(
σ αT

ᾱT κ̄T

)(
E

−(∇T )/T

)
, (2.1)

where J̄ and Q̄ are the total electric and heat current flux densities (which we define

precisely later) and E and ∇T are constant applied electric field and thermal gradients,

respectively.

As we discussed in the introduction, holographic lattices provide a natural framework1

for studying momentum dissipation. These are black hole solutions whose asymptotic

behaviour at the holographic boundary corresponds to the addition of spatially dependent

sources to the dual field theory. Various holographic lattices with sources that depend

periodically on just one of the non-compact spatial directions have been constructed by

solving PDEs in two variables [50–56]. Constructing lattices that depend periodically on

additional spatial dimensions generically requires solving PDEs in more variables, which

becomes increasingly challenging at the technical level. An important class of exceptions

are provided by Q-lattices [57,58] which exploit a global symmetry in the bulk leading to

a problem involving ODEs. Other constructions involving ODEs use massless “axions” to

obtain sources linear in the spatial coordinates [59–64], or use the metric or matter fields

to obtain helical sources when D ≥ 5 [37,101–103]. A particularly interesting application

of holographic lattices is that they can lead to novel incoherent metal ground states

[37, 58, 104], insulating ground states [37, 57, 58] and transitions between them [37, 58].

Connections between holographic lattices and superconductivity have also been explored

in [103,105,106].

For the special case of translationally invariant black holes at zero chemical poten-

tial, while the thermal conductivity is infinite the electric conductivity is finite and can

be expressed in closed form in terms of the behaviour of the solution at the black hole

horizon [67]. For the above holographic lattices involving ODEs, formulae for the thermo-

electric DC conductivity, also expressed in terms of the black hole solutions at the black

hole horizon, were obtained in [58, 66, 101, 102]. These results were then extended to a

class of one-dimensional holographic lattices in [55], although the details were more in-

volved. Given these results it is natural to anticipate that similar results can be obtained

1Another approach is to use massive gravity and various interesting results have been obtained e.g.
[44–49]. The DC conductivity has also been examined in the context of translationally invariant probe
branes e.g. [99,100]. In these constructions a finite DC conductivity can arise because the delta function
is suppressed by 1/N , where N is the number of branes providing the background geometry.
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for all holographic lattices. Here we show that for a broad class of holographic lattices,

depending on all spatial directions, in general one cannot obtain such explicit formulae for

the DC conductivity. However, it is possible to obtain the DC conductivity after solving

a set of fluid equations on the black hole horizon. These equations are a generalisation

of the forced Stokes equations for a charged fluid on the curved black hole horizon, with

additional viscous terms arising from bulk scalar fields. Recall that the Stokes equations

are a time-independent and linearised limit of the Navier-Stokes equations for an incom-

pressible fluid arising at low Reynolds numbers (see, for example [107]). We will show that

the previous results on the DC conductivity can all be obtained as special cases where

the Stokes equations can be solved explicitly in closed form.

The fact that the fluid equations which arise are linear and time-independent is not too

surprising since we are calculating in the regime of linear response and we are calculating

the DC conductivity. Similarly, the forcing terms are very natural since they arise from

the applied sources for the electric and heat currents. On the other hand only a subset of

the linearised perturbation appears in the equations on the horizon and it is remarkable

that the equations form a closed system.

We emphasise that unlike in the relativistic fluid-gravity correspondence [88], and

the associated non-relativistic limit [108,109], we do not take any hydrodynamic limit in

obtaining our fluid equations. In the presence of spatially dependent sources a natural

hydrodynamic limit would arise for temperatures much bigger than all other scales, in-

cluding those of the lattice. By contrast our results are valid for all temperatures. Our

results differ but are also reminiscent of the “membrane paradigm” [68] and the more

recent work2 which relates solutions of the non-linear Navier-Stokes equations on hy-

persurfaces in Minkowski space to obtain black hole solutions [110] (see also [111–113]).

We expect that the time-dependent and non-linear versions of our equations will play a

role in studying momentum dissipation for holographic lattices, possibly after taking a

hydrodynamic limit and this will be reported on elsewhere. Discussions of momentum

dissipation, conductivities and hydrodynamics can be found in [95, 114–116] and some

recent low-frequency conductivity results are presented in [117].

The plan of the rest of the chapter is as follows. In section 2 we introduce the holo-

graphic model and the class of electrically charged black hole solutions that we shall be

considering. In section 3 we analyse the linearised perturbations, containing sources for

the electric and heat currents, which are associated with the DC conductivity. We will

show how the Stokes equations can be obtained by expanding the Hamiltonian, momen-

tum and Gauss law constraints, associated with a radial Hamiltonian decomposition, at

the black hole horizon. The fluid equations determine electric and heat currents at the

horizon in terms of sources for the electric and heat currents. In turn these can be used to

2Ref. [110] also contains a discussion and references to some of the earlier work on fluids and black
hole horizons.



CHAPTER 2. DC CONDUCTIVITIES ON BLACK HOLE HORIZONS 37

obtain suitably defined constant electric and heat current fluxes which are independent of

the radial direction and hence give rise to the DC conductivity. If the deformed CFT is

living on Σd then the DC conductivity is a b1(Σd)×b1(Σd) matrix, where b1(Σd) is the first

Betti number of Σd. We emphasise that we provide a precise procedure for calculating

the DC conductivity of the boundary theory (the spectral weight of a two-point function)

by solving an auxiliary set of fluid equations on the black hole horizon.

In section 4 we analyse some examples. We first generalise our results to an arbitrary

number of scalar fields which allows us to reconsider Q-lattices. For the Q-lattices and

also for general one-dimensional lattices, we show that the fluid equations can be explicitly

solved and we can obtain formulae for the DC conductivity explicitly in terms of the black

hole solution at the horizon. We also examine holographic lattices that can be obtained

as perturbative expansions about translationally invariant solutions, including the AdS-

RN black brane. We show that the leading order DC conductivity can also be found in

closed form. We briefly conclude in section 5 where we put some of the main results in

a more general setting of general static black hole spacetimes. The chapter contains four

appendices, including a discussion of the Hamiltonian decomposition of the equations of

motion with respect to the radial coordinate in appendix A.1.

2 The background black holes

We will consider theories in D spacetime dimensions which couple the metric to a gauge-

field, A, and a single scalar field, φ. The extension of our analysis to additional scalar

fields is straightforward as we will discuss later. We focus on D ≥ 4. The action is given

by

S =
1

16πGN

∫
dDx
√
−g

(
R− V (φ)− Z(φ)

4
F 2 − 1

2
(∂φ)2

)
. (2.2)

The equations of motion are given by

Rµν −
V

D − 2
gµν −

1

2
∂µφ∂νφ−

1

2
Z(φ)

(
FµρFν

ρ − 1

2(D − 2)
gµν F

2

)
= 0 ,

∇µ [Z(φ)F µν ] = 0 ,

∇2φ− V ′(φ)− 1

4
Z ′(φ)F 2 = 0 . (2.3)

The only restrictions that we will make on the functions V (φ), Z(φ) is that V (0) =

−(D − 1)(D − 2), V ′(0) = 0 and Z(0) > 0. This ensures that a unit radius AdSD solves

the equations of motion with φ = 0 and this is dual to a CFT with a stress tensor, dual

to the metric, a global U(1) current, dual to A, and an additional operator dual to φ.

When Z ′(0) = 0, the D-dimensional electrically charged AdS-Reissner-Nordström black
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hole also solves the equations of motion and describes the CFT at constant charge density.

Note that we have set the AdS radius to unity, for convenience.

We will focus on a general class of electrically charged static black holes with metric

and gauge-field given by

ds2 = −UGdt2 +
F

U
dr2 + ds2(Σd) ,

A = at dt , (2.4)

where ds2(Σd) ≡ gij(r, x)dxidxj is a metric on a (d ≡ D − 2)-dimensional manifold, Σd,

at fixed r. In addition, U = U(r), while G,F, at and φ are all functions of (r, xi)3. In

section 5 we will discuss our main results in the context of a more general class of static

black hole solutions.

Asymptotically, as r →∞, the solutions are taken to approach AdSD with

U → r2, F → 1, G→ Ḡ(x), gij(r, x)→ r2ḡij(x),

at(r, x)→ µ(x), φ(r, x)→ r∆−d−1φ̄(x) . (2.5)

The spatial dependence of the boundary metric given by Ḡ(x), ḡij(x) corresponds to

providing a source for the stress tensor in the dual CFT living on R×Σd. Similarly, µ(x)

is a spatially dependent chemical potential for the global abelian symmetry and φ̄(x)

gives rise to a spatially dependent source for the associated dual operator, which we have

assumed has scaling dimension ∆.

A particularly interesting class of black holes is associated with adding sources to

CFTs in flat Minkowski space, R1,d. In this case Σd is topologically Rd. Periodic lattices,

which have been a focus of study, are obtained by taking the functions Ḡ(x), ḡij(x), µ(x)

and φ̄(x) to be periodic functions on Rd. If we denote the period in each of the spatial

directions be Li then for this class of black holes we can, in effect, take Σd to parametrise

a torus with periods xi ∼ xi + Li.

The black hole horizon, which has topology Σd, is assumed to be located at r = 0.

By considering the Kruskal coordinate v = t+ ln r
4πT

+ . . . we deduce that the near horizon

3Note we could set G = 1 through a change of coordinate. However, this approach was chosen to be
useful for numerical calculation. In addition, we could also include rxi terms in our metric through a
coordinate redefintion. Again, we choose this approach for the simplicity of presentation.
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expansions are given by

U (r) = r
(
4π T + U (1) r + . . .

)
,

at(r, x) = r
(
a

(0)
t G(0) (x) + a

(1)
t (x) r + . . .

)
,

G(r, x) = G(0) (x) +G(1) (x) r + . . . ,

F (r, x) = F (0) (x) + F (1) (x) r + . . . ,

gij = g
(0)
ij + g

(1)
ij r + . . . ,

φ = φ(0)(x) + rφ(1)(x) + . . . , (2.6)

with

G(0) (x) = F (0) (x) . (2.7)

We have added the extra factor of G(0) in the leading expression for at for convenience.

For later use, we observe that boundary electric charge density at the horizon is simply

ρH =
1

16πGN

√
−gZ(φ)F tr|H =

1

16πGN

√
−g0a

(0)
t Z(0) , (2.8)

where Z(0) ≡ Z(φ(0)). For the averaged holographic charge density, ρ, we have

ρ ≡ 1

vold16πGN

∫
ddx(
√
−gZ(φ)F tr)|∞ =

1

vold

∫
ddxρH , (2.9)

where vold ≡
∫
ddx
√
−ḡ is the volume of the spatial metric at the AdS boundary. This

result follows from the fact that the gauge-equations of motion implies ∂r(
√
−gZF tr) +

∂i(
√
−gZF ti) = 0 and for the case of non-compact Σd we have assumed any boundary

terms vanish.

This class of black holes includes almost all of the holographic lattices that have

been constructed to date as special cases. For example, periodic lattices with modulated

chemical potential with non-vanishing zero mode were studied in [50, 53, 55], while the

case of vanishing zero mode was studied in [52]. Periodic lattices with a single real scalar

field have been studied in [51,56]. These examples have spatially inhomogeneous sources

in one direction only. By contrast, the Q-lattice construction using two (or more) scalar

fields [57, 58, 66, 104, 118] the non-periodic “axionic” lattices studied in [59–64, 66, 119]

are homogeneous and the sources can be in any number of the spatial directions. Other

homogeneous constructions using D = 5 helical lattices have been studied in [101, 102]

(an additional gauge field is needed to be included to cover the examples of [37]). Metric

deformations in one spatial dimension were studied in [54]. Holographic lattices in the

presence of magnetic fields have been studied in [120]; the generalisation of these results

to include magnetic fields is discussed in [98].
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3 Perturbing the black holes

We want to study the holographic, linear response of the black holes after applying suitable

one-form sources (E, ζ) on Σd for the electric and heat currents, respectively. Generalising

[55, 58, 66] we incorporate the sources by the addition of terms that are linear in time.

Specifically, we consider the following linear perturbation4

δ
(
ds2
)

= δgµνdx
µdxν − 2tMζidtdx

i ,

δA = δaµdx
µ − tEidxi + tNζidx

i ,

δφ . (2.10)

Here, δgµν ,δaµ, δφ are all functions of (r, xi), while Ei = Ei(x), ζi = ζi(x). We demand

that E, ζ are closed one-forms on Σd:

d(Eidx
i) = d(ζidx

i) = 0 . (2.11)

This means that the one forms E, ζ can uniquely be written as the sum of a harmonic

form plus an exact form on Σd. Later we will see later that the harmonic piece is the

important part of the source. In the case that Σd is Rd or a torus, for example, we could

take an independent basis of sources to be the d one-forms Eidx
i (no sum on i) and the

d one-forms ζidx
i (no sum on i) with constant Ei, ζi.

The functions M,N in (2.10) depend on (r, xi) and we will fix them in terms of the

background black hole solution via

M = GU , N = at . (2.12)

This is assumed, in addition to (2.11), in order to solve the time dependence of the

equations of motion at linear order. In general, this ansatz for the perturbation contains

some residual gauge symmetry, which, for our purposes, will not need to be fixed.

At the AdSD boundary, as r →∞, we will demand that the fall-off of δgµν ,δaµ, δφ is

such that the only applied sources are parametrised by (E, ζ). The asymptotic fall-offs of

δgµν ,δaµ, δφ are associated with currents and other expectation values that are produced

by the sources. The resulting currents will be our primary interest here.

4Throughout this chapter, we will only be concerned with linear perturbations of this metric, and will
not consider backreaction. While one may be tempted to think that we could make the time coordinate
arbitrarily large, and therefore induce non-linear effects, we will later see that the time dependence will
completely drop out of the linear equations of motion without imposing any condition on t, and so at the
level of linear response there is no backreaction provided that the source terms, ζ and E, are sufficiently
small. Furthermore, as we will later show in the discussion in section 4, the time dependence can be
locally removed from the metric through a coordinate transformation.
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At the black hole horizon, as r → 0, regularity implies that we must have

δgtt = U (r)
(
δg

(0)
tt (x) +O(r)

)
, δgrr =

1

U

(
δg(0)

rr (x) +O(r)
)
,

δgij = δg
(0)
ij (x) +O(r), δgtr = δg

(0)
tr (x) +O(r) ,

δgti = δg
(0)
ti (x)−M ζi

ln r

4πT
+O(r), δgri =

1

U

(
δg

(0)
ri (x) +O(r)

)
,

δat = δa
(0)
t (x) +O(r), δar =

1

U

(
δa(0)

r (x) +O(r)
)
,

δai =
ln r

4πT
(−Ei +Nζi) +O(r0) , (2.13)

with the following constraints on the leading functions of x:

δg
(0)
tt + δg(0)

rr − 2 δg
(0)
rt = 0, δg

(0)
ri = δg

(0)
ti , δa(0)

r = δa
(0)
t . (2.14)

It is worth emphasising that the logarithm terms that appear in (2.13) are a direct con-

sequence of the applied sources (E, ζ). For the scalar field we have δφ = δφ(0)(x) +O(r).

In the Kruskal coordinates, at leading order in the expansion in r we have

δ(ds2) ∼ 4πTrδg
(0)
tt dv

2 + 2dvdr(−δg(0)
tt + δg

(0)
tr ) + 2δg

(0)
ti dvdx

i + δg
(0)
ij dx

idxj ,

+ 2(vG(0)ζi − δg(1)
ti + δg

(1)
ri )drdxi +

1

4πT

(
δg

(1)
tt + δg(1)

rr − 2 δg
(1)
rt

)
dr2 ,

δA ∼ δa
(0)
t dv +

(
δa

(0)
i − vEi

)
dxi +

1

4πT
(δa(1)

r − δa
(1)
t )dr . (2.15)

Note that to obtain the leading order pieces in the perturbed field strength one should

calculate the field strength first and then take the limit r → 0.

3.1 Electric current

We define the bulk electric current density via

J i =
1

16πGN

√
−gZ(φ)F ir . (2.16)

When evaluated at the AdSD boundary we obtain J i|∞ which is the electric current

density of the dual field theory as explained in appendix A.3.

In the background geometry we have J i = 0. At linearised order for the perturbed

black holes we have

J i =
1

16πGN

√
gdg

ij
d

(FG)1/2
GUZ(φ)

(
∂jat

δgrt
GU
− ∂rat(

δgjt
GU
− tMζj

GU
) + ∂jδar − (∂rδaj + t∂rNζj)

)
,

(2.17)
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and we see that the time-dependence drops out because of (2.12).

The gauge equations of motion given in (2.3) can be written in the form

∂iJ
i = 0 ,

∂rJ
i =

1

16πGN

∂j
(√
−gZ(φ)F ji

)
, (2.18)

as well as

∂r
(√
−gZ(φ)F rt

)
= −∂i

(√
−gZ(φ)F it

)
. (2.19)

For later use we also note that the perturbation satisfies, at linearised order, the

condition

d(ik ∗ Z(φ)F ) = 0 , (2.20)

where k = ∂t. Indeed, this easily follows by writing the components of the d− 1 form as

ik ∗ Z(φ)F =(−1)d−2

[
1

(d−1)!
ε(ii . . . id−1j)J

jdxi1 ∧ · · · ∧ dxid−1

+ 1
2(d−2)!

ε(i1 . . . id−2jk)
√
−gZ(φ)F jkdxi1 ∧ . . . dxid−2 ∧ dr

]
, (2.21)

where ε is the alternating symbol with ε(1 . . . d) = 1 and then using (2.18). Note that in

the special case when ζ = 0 we have that k = ∂t is a Killing vector with LkF = Lkφ = 0.

It is then very easy to establish (2.20). When ζ 6= 0, k is no longer a Killing vector and

furthermore LkF 6= 0. Nevertheless, at linearised order, we still have (2.20) as we have

just shown.

3.2 Heat current

We now define the bulk heat current. To do so we want to identify equations of motion

involving the metric perturbation that have a similar structure to the gauge equations

of motion. We do this using5 the vector k ≡ ∂t. The procedure is slightly subtle when

ζ 6= 0 since in this case ∂t is no longer a Killing vector. We proceed as follows. Consider

a general vector k which satisfies

∇µk
µ = 0, ∇µ∇(µkν) = αkν , (2.22)

5Heuristically, one can view this as a Kaluza-Klein reduction on the time direction. Alternatively, the
analysis is inspired by derivations of the first law of black hole mechanics e.g. [121].
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for some function α. Note, in particular that a Killing vector satisfies these conditions

with α = 0. The conditions (2.22) imply that

∇µ

(
∇[µkν]

)
= (−Rν

σ + αδνσ)kσ . (2.23)

We next write ϕ = ikA and ikF = dθ + ψ, with ψ a one-form and θ a globally defined

function. In the special case that LkF = 0 we have dψ = 0. We now define6 the two-form

G:

Gµν = −2∇[µkν] − 2Z(φ)

D − 2
k[µF ν]σAσ −

1

(D − 2)
[(3−D) θ + ϕ]Z(φ)F µν . (2.24)

If we assume that Lkφ = 0, using the equations of motion (2.3), we can deduce that

∇µG
µν =

(
α +

2V

D − 2

)
kν − 3−D

D − 2
Z(φ)F νρψρ −

1

D − 2
Z(φ)AρLk(F

νρ) . (2.25)

For our setup, with k = ∂t and working at linearised order, we can choose θ = −ϕ and

we have

α = −∇(d)
i (gij(d)ζj)−

1

2
∂i log(G3F )gij(d)ζj ,

ϕ = −θ = at + δat , ψ = −Ei dxi + at ζi dx
i . (2.26)

We now define the bulk heat current density via

Qi =
1

16πGN

√
−gGir . (2.27)

When evaluated at the AdSD boundary, we show in appendix A.3 that Qi|∞ is the time-

independent part of the heat current density of the dual CFT:

Ḡ1/2√ḡd(Ḡtti − µji) = Qi|∞ − tḠ3/2√ḡdtijζj . (2.28)

Here tti, ji are the expectation values of the holographic stress tensor and current vector,

with e.g. J i|∞ = Ḡ1/2√ḡdji The precise combination that appears on the left hand side

in (2.28) is the operator that is sourced by −tζi and is, by definition, what we call the

heat current density. Notice that in the case when the holographic lattice has no spatially

dependent sources for the metric this reduces to the standard expression tti − µji. The

time dependent piece on the right hand side is associated with the static susceptibility

for the heat current two point function (see appendix C of [66]).

In the background geometry we have Qi = 0. At linearised order for the perturbed

6This definition slightly differs from the definition used in [55, 66]. The expression here has the
advantage that it is globally defined.
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black holes we have

Qi =
1

16πGN

G3/2U2

F 1/2

√
gdg

ij
d

(
∂r

(
δgjt
GU

)
− ∂j

(
δgrt
GU

))
− atJ i . (2.29)

∂iQ
i = 0 ,

∂rQ
i =

1

16πGN

∂j
(√
−gGji

)
, (2.30)

as well as

∂r
(√
−gGrt

)
+ ∂i

(√
−gGit

)
=
√
−g
((

α +
2V

D − 2

)
− 3−D
D − 2

Z(φ)F tjψj

)
. (2.31)

Note that (2.31) includes an equation for the background as well as the linearised pertur-

bation. We also record here that

√
−gGij = −(GF )1/2√gdgikd g

jl
d

(
(UG)∂k

(
δglt
GU

)
+Z(φ)at

(
∂kat

(
δglt
GU

)
+ ∂kδal

)
−k ↔ l

)
,

(2.32)

and we note that the time dependence drops out because of the conditions (2.11) and

(2.12).

Finally, following the discussion for the electric currents, with k = ∂t we conclude that

(2.30) implies

d(ik ∗G) = 0 . (2.33)

3.3 Currents at the horizon

We now obtain expressions for the electric and the heat current densities by expanding

at the black hole horizon. We find:

J i(0) ≡ J i
∣∣
H

=
1

16πGN

Z(φ(0))
√
g(0)g

ij
(0)

((
∂jδa

(0)
t + Ej

)
− a(0)

t δg
(0)
jt

)
,

Qi
(0) ≡ Qi

∣∣
H

= − 1

4GN

T
√
g(0)g

ij
(0)δg

(0)
jt . (2.34)

From the first equations in (2.18) and (2.30) we immediately obtain

∂iJ
i
(0) = 0 , ∂iQ

i
(0) = 0 , (2.35)

which give two equations for a subset of the perturbations at the horizon. We can obtain

a closed system of equations, which are the generalised Stokes equations, by considering
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the second equation of (2.30). We explain how this can be achieved in appendix A.4.

The same system of equations can also be obtained, in a more illuminating manner, by

evaluating the Hamiltonian, momentum and Gauss law constraints on the black hole

horizon, as we now discuss.

3.4 Constraints at the horizon

We carry out a Hamiltonian decomposition of the equations of motion using a radial de-

composition in appendix A.1. The momentum constraints and the Gauss-law constraints,

can be written in the form Hν = C = 0 where

Hν =− 2
√
−hDµ

(
(−h)−1/2πµν

)
+ hνσfσρπ

ρ − hνσaσ∂ρπρ + hνσ∂σφπφ ,

C =∂µπ
µ , (2.36)

with

πµν = −
√
−h (Kµν −K hµν) ,

πµ =
√
−hZF µρnρ ,

πφ = −
√
−hnν∂νφ . (2.37)

Here n is the unit norm normal vector, hµν = gµν − nµnν is the induced metric, Kµν =
1
2
Lnhµν is the extrinsic curvature and K = gµνKµν . In addition Dµ is the Levi-Civita

connection with respect to hµν , bµ = hµ
νAν and fµν = ∂µbν − ∂νbµ.

We want to analyse these constraints for the perturbed metric on a surface of constant

r, near the horizon, and then take the limit r → 0. In local coordinates we have n = Ndr

where N is the lapse function. We immediately notice that

πµ =
√
−hZF µrnr = 16πGNJ

µ , (2.38)

and hence the Gauss-Law constraint C = 0 is simply ∂µJ
µ = 0. Evaluated at the horizon

we obtain ∂iJ
i
(0) = 0 as in (2.35). Turning to the momentum constraint, which we discuss

further in appendix A.2, we find that evaluating Ht = 0 as an expansion at the horizon

gives ∂iQ
i
(0) = 0 as in (2.35). Next, Hi = 0 evaluated at the horizon gives the extra

equation mentioned above which, combined with ∂iJ
i
(0) = ∂iQ

i
(0) = 0 gives the Stokes

system of equations which we summarise in the next subsection. Finally, we note that

the leading order term of the Hamiltonian constraint, which is explicitly given in (A.9),

also gives the condition ∂iQ
i
(0) = 0.
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3.5 Generalised Stokes equations at the horizon

We can now summarise the closed system of equations that we have shown a subset of the

linearised perturbations must satisfy at the black hole horizon. The black hole horizon is

as in (2.4), (2.6) and (2.7). The perturbation at the horizon is given as in (2.13),(2.14)

and it is illuminating to now introduce the following notation:

vi ≡ −δg(0)
it , w ≡ δa

(0)
t , p ≡ −4πT

δg
(0)
rt

G(0)
− δg(0)

it g
ij
(0)∇j lnG(0) . (2.39)

These d + 2 unknowns satisfy the following d + 2 linear system of partial differential

equations:

∇iv
i = 0 , (2.40)

∇i(Z
(0)∇iw) + vi∇i

(
Z(0)a

(0)
t

)
= −∇i(Z

(0)Ei) , (2.41)

−2∇i∇(iv j) − Z(0)a
(0)
t ∇jw +∇jφ

(0)∇iφ
(0)vi +∇j p = 4πT ζj + Z(0)a

(0)
t Ej , (2.42)

where the covariant derivatives ∇ in this subsection are with respect to the metric, g
(0)
ij ,

on the black hole horizon Σd, and all indices are being raised and lowered with this metric.

The first two equations are simply ∂iQ
i
(0) = ∂iJ

i
(0) = 0, where Qi

(0), J
i
(0) are the heat current

and electric current densities at the horizon, respectively:

Qi
(0) =

1

4GN

T
√
g(0)v

j ,

J i(0) =
1

16πGN

√
g(0)g

ij
(0)Z

(0)
(
∂jw + a

(0)
t vj + Ej

)
. (2.43)

It is helpful to note that in the third equation we can also write

2∇i∇(iv j) = ∇2vj +Rjiv
i . (2.44)

We emphasise that by evaluating the constraints at the horizon we obtain a system

of equations for a subset of the linear perturbation, namely, δg
(0)
it , δa

(0)
t , δg

(0)
rt , and we

obtain a closed system for this set. Furthermore, the equations we have obtained are

a generalisation of the forced Stokes equations for a charged fluid on the curved black

hole horizon. Indeed in the special case of electrically neutral black hole horizons with

a
(0)
t = w = E = 0 and in addition constant φ(0), the equations are simply the Stokes

equations with fluid velocity vi, pressure p and forcing term given by the closed one-form

4πTζ. The curvature of the horizon gives rise to an extra viscosity term as in (2.44). In

the general case we have a charged fluid with scalar potential w and an additional forcing

term given by the closed one-form E. It is also interesting to note that the scalar field

is giving viscosity terms of the form ∇jφ(0)∇iφ(0)vi. We will see in section 4 how these
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extra terms play a direct role in determining the DC conductivity. We emphasise that we

have not taken any hydrodynamical limit in obtaining these equations.

We now establish a number of interesting properties of this set of equations. Firstly,

by taking the divergence of (2.42) and using (2.40), (2.41) we obtain the “pressure Poisson

equation”

∇2p = ∇j

(
2Rj

kv
k + Z(0)a(0)(∇jw + Ej) + 4πTζj −

(
∇jφ(0)∇kφ(0)

)
vk

)
. (2.45)

For a compact horizon and given background data, the pressure term is uniquely specified

by vj, w, Ej, ζj.

Second, we multiply (2.42) by vj from the left, and then integrate over the horizon,

and use (2.40),(2.41) to obtain∫
ddx
√
g0

[
2∇(iv j)∇(iv j) + Z(0) (∇w + E)2 + vi

(
∇iφ(0)∇jφ(0)

)
vj
]

=

∫
ddx

(
Qi

(0)ζi + J i(0)Ei
)

(2.46)

In the case of non-compact horizons, we have assumed that possible boundary terms

vanish. Observe that the left hand side is a manifestly positive quantity and this is

related to the positivity of the thermoelectric conductivities, which we discuss later.

Third, we consider the issue of uniqueness of the equations (2.40)-(2.42). If we have

two solutions then the difference of the functions, which we again write as (vi, w, p), will

satisfy the same equations but with vanishing forcing terms, ζj = Ej = 0. From (2.46)

we immediately conclude that

∇(iv j) = 0, ∇iw = 0, vi∇iφ
(0) = 0 . (2.47)

We also have Lva(0)
t = 0 from (2.41) and ∇ip = 0 from (2.42). We conclude that the

solution space of equation (2.42) is unique up to Killing vectors of the horizon metric,

with p, w constant. We then have δgrt = (4πT )−1 LvG(0) plus a constant. This result

agrees with the intuition that one should be able to boost along the orbits of Killing

vectors to obtain a solution with momentum at the horizon.

Fourth, we observe that when (E, ζ) are exact forms, (E, ζ) = (de, dz) with e, z globally

defined functions on Σd, we can solve the equations (2.40)-(2.42) by taking w = −e and

p = 4πTz, plus possible constants, and vi = 0. We observe that this solution gives no

contribution to the current densities (2.43) at the horizon. We will see later that this

solution gives no contribution to suitably averaged currents at the AdS boundary and

hence no contribution to the DC thermoelectric conductivity i.e. the DC conductivity is

determined by the harmonic part of E and ζ. A basis for the non-trivial part of these
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sources is thus given by a basis for the first cohomology group of Σd.

Fifth, we point out that the fluid equations that we have obtained can be obtained by

varying the following functional:

L =

∫
ddx
√
g0

[
−∇(iv j)∇(iv j) −

1

2
(vi∇iφ)2 + p(∇iv

i) +
1

2
Z(0)

(
a(0)v +∇w

)2

− 1

2
Z(0)a(0)2v2 + 4πTζiv

i + Z(0)Ei
(
a(0)vi +∇iw

)
+

1

2
Z(0)EiE

i

]
, (2.48)

and we remind the reader that the covariant derivative ∇ in this subsection is with

respect to the metric g0
ij. Varying with respect to the pressure, which is a Lagrange

multiplier, gives the incompressibility condition. Varying with respect v and w then gives

the remaining Stokes equations. It is also interesting to note that if we vary with respect

to Ei and ζi then we get the currents at the horizon J i(0) and Qi
(0), respectively. On shell

we therefore can deduce, for example, that

δJ i(0)

δζj
=
δQj

(0)

δEj
. (2.49)

This is a kind of Onsager reciprocal relation for the currents at the horizon. After con-

sidering the current fluxes, to be described in the next subsection, we obtain Onsager

relations for the DC conductivities.

Finally, we comment on the fact that, locally, the sources can be eliminated from the

Stokes equations (2.40)-(2.42). Indeed since the sources E, ζ are closed, locally we can

write E = de, ζ = dz and after defining w̃ = w + e, p̃ = p− 4πTz we have

∇iv
i = 0 , (2.50)

∇i(Z
(0)∇iw̃) + vi∇i

(
Z(0)a

(0)
t

)
= 0 , (2.51)

−2∇i∇(iv j) − Z(0)a
(0)
t ∇jw̃ +∇jφ

(0)∇iφ
(0)vi +∇j p̃ = 0 . (2.52)

It is important to emphasise that now w̃ and p̃ are not globally defined functions on

the black hole horizon. For example, if the horizon was a torus with xi = xi + Li, and

the source E = cdx1 for some constant c, then w̃ would satisfy the twisted boundary

condition w̃(x1 +L1) = w̃+ cL1. Note that this would give extra contributions to (2.46).

It is therefore most natural to work with the formulation with sources, as in [98].

It is worth noting, however, that the sources can also be removed, locally, from the

full linearised perturbation. Indeed, suppose we carry out the gauge transformation A→
A = d(te) + B and in addition change the time coordinate via t = t̃(1 − z) + C, where

B,C are functions independent of the time coordinate. We then find that at linearised
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order we obtain the same perturbed ansatz with vanishing sources and

δgt̃t̃ = δgtt + 2UGz, δgt̃r = δgtt − UG∂rC δgt̃i = δgtt − UG∂iC

δat̃ = δat + e− atz, δar = δar + ∂rB, δai = δai + ∂iB (2.53)

We choose B,C to vanish suitably fast at the AdS boundary and at the horizon we

choose B = ln r/(4πT )e + . . . and C = − ln r/(4πT )z + . . . . Evaluating at the horizon

we see that in the new coordinates and gauge we have induced w → w̃, p → p̃ and

δg
(0)
tt → δg

(0)
tt + 2G(0)z.

3.6 The DC thermoelectric conductivity

For a given set of sources (E, ζ) we can solve the Stokes equations (2.40)-(2.42) at the black

hole horizon and hence obtain expressions for the electric and heat current densities at the

black hole horizon. From this data we would like to deduce something about the current

densities at the holographic boundary as a function of (E, ζ). The radial dependence of

the current densities are given by (2.18) and (2.30). For some simple special classes of

black hole solutions the current densities J i, Qi are independent of the radial coordinate.

This occurs for the Q-lattices and the holographic lattices that depend on just one of the

spatial dimensions, for example. However, for general classes of black holes J i, Qi will

depend on the radial direction.

On the other hand, remarkably, we can always define “current flux densities” J̄ i, Q̄i

which are independent of r and hence we can obtain the associated DC conductivity. To

consider a concrete example, we assume that we are in D = 4 with a periodic holographic

lattice and Σd = R2 or a two-torus. In particular, the lattice deformations Ḡ(x), ḡij(x),

µ(x) and φ̄(x) in (2.5) are all periodic functions of the spatial coordinates xi with period

Li. We define the following current flux densities

J̄1 ≡ 1

L2

∫
J1dx2 , J̄2 ≡ 1

L1

∫
J2dx1 . (2.54)

where J̄1 and J̄2 is the current flux density through the x2 and x1 planes, respectively.

We define Q̄i in a similar way. We can then immediately deduce from (2.18), (2.30) that

∂rJ̄
i = ∂rQ̄

i = 0, which is simply Stokes theorem in the bulk. Notice that J̄ i, Q̄i are

also independent of the xi coordinates and hence they are just constants. Similarly in

D = 5 with a periodic lattice on R1,3 we would define the following constant current flux

densities

J̄1 ≡ 1

L2L3

∫
dx2dx3J1 , J̄2 ≡ − 1

L3L1

∫
dx1dx3J2 , J̄3 ≡ 1

L1L2

∫
dx1dx2J3 , (2.55)

The current flux densities of the boundary theory are, by definition, J̄ i, Q̄i evaluated
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at the AdS boundary. In order to evaluate the DC conductivity matrix we want to relate

these to constant sources Ēi, ζ̄i at the AdS boundary via(
J̄ i

Q̄i

)
=

(
σij Tαij

T ᾱij T κ̄ij

)(
Ēj

ζ̄j

)
. (2.56)

We have just shown that J̄ i, Q̄i are constant and so their value at the AdS boundary is

the same as at the black hole horizon, and that in turn these are fixed by the closed forms

E, ζ evaluated at the horizon by solving the Stokes equations (2.40)-(2.42). Continuing

with the case that Σd = Rd or a torus, we can take an independent basis of sources to

be the d one-forms Ēidx
i (no sum on i) and the d one-forms ζ̄idx

i (no sum on i) with

constant Ēi, ζ̄i and this defines the DC conductivity matrix (2.56).

Note that an equivalent way to characterise the constant sources Ēi, ζ̄i at the AdS

boundary is to write a general closed form source on Σd = Rd or a torus, as E = Ēidx
i+de,

where e is a periodic function and then extract Ēi by integrating E over an appropriate

basis of one-cycles. It is worth emphasising that in the paragraph following (2.47) we

noted that it is only the harmonic part of the sources that contribute to the currents at

the horizon and hence this procedure gives the same DC conductivity.

After substituting (2.56) in (2.46), we can now explicitly see that the positivity of

the left hand side of equation (2.46) implies that the thermoelectric DC conductivity is

a positive definite matrix. Continuing on from the discussion following (2.48) we can

deduce that the thermoelectric matrix is symmetric.

We will discuss the DC conductivity matrix when Σd is not Rd or a d-dimensional

torus in the next subsection.

We have presented a procedure for calculating the DC conductivity of the boundary

theory in terms of a calculation at the black hole horizon. One might wonder if the

calculation could also be done at any constant radial hypersurface. In fact this cannot be

done since evaluating the constraint equations on a constant r hypersurface with r 6→ 0

will not lead to a closed system of equations for a subset of the linear perturbation and

hence we cannot obtain the current fluxes.

3.7 Perspective using forms

We have focussed on a particular class of black holes given in (2.4), with a single black

hole horizon, and with perturbation given in (2.10) with (2.11), (2.12). We have also

focussed on black holes for which Σd is topologically either Rd or a d-dimensional torus.

In this section we briefly discuss the DC conductivity calculation using the language of

forms, which illuminates some global issues as well as revealing generalisations for Σd with

other topologies.

One key point is that the two-forms F and G for the perturbed metric satisfy, at



CHAPTER 2. DC CONDUCTIVITIES ON BLACK HOLE HORIZONS 51

linearised order, the following closure conditions (see (2.20), (2.33)):

d(ik ∗ Z(φ)F ) = 0 , d(ik ∗G) = 0 , (2.57)

where k = ∂t. These conditions are valid without k being a Killing vector, but instead

satisfying the weaker conditions in (2.22).

We now observe that for any two-forms satisfying (2.57) we can define a natural set

of current fluxes. Specifically, at the deformed AdSD boundary and at fixed t, we let Ca,

a = 1, . . . , bd−1(Σd), be a basis of d− 1 closed cycles on Σd, where bd−1(Σd) is the (d− 1)

Betti number of Σd. We can then define the current fluxes through these cycles via

J̄a ≡ −
∫
Ca

ik ∗ Z(φ)F , Q̄a ≡ −
∫
Ca

ik ∗G . (2.58)

We now consider a d-dimensional surface S in the bulk spacetime which has boundary

Ca at the AdS boundary and possibly another boundary at a black hole horizon. Then

since the integrand in (2.58) is closed, we deduce that these current fluxes are also equal

to their values at the black hole horizon. If the cycle Ca is contractible in the bulk, then

the current flux would necessarily have to be zero.

For the special cases of periodic lattices in D = 4 and 5 spacetime dimensions, for

which Σd is topologically R2 and R3, respectively, using (2.21) we immediately see that

the definition (2.58) agrees with the definitions7 given in (2.54), (2.55) after choosing an

obvious basis of one and two cycles, respectively. For these cases, the number of current

fluxes is the same as the dimension of Σd. However, this is not the case for more general

Σd. In D = 4, for example, we can envisage black holes in which Σ2 is a Riemann surface

with genus g > 1, and it is possible to define 2g current fluxes. There are many more

possibilities for solutions in D = 5. We also note that when Σd is a sphere, which is

relevant for solutions associated with deformations of global AdS, these current fluxes are

all trivial since bd−1(Sd) = 0.

The above comments were based on general two-forms satisfying (2.57). A second key

point in our derivation of the DC conductivity is that the two-forms were constructed with

specific source terms parametrised by the one-forms E, ζ. For the class of solutions that

we considered we assumed there was a single black hole horizon with the same topology

Σd as the spatial boundary of the deformed AdS space. In order to satisfy (2.57) it was

necessary to take the one forms E, ζ to be closed one-forms on Σd and independent of the

radial coordinate. Corresponding to the basis of (d−1)-cycles, Ca, we can define a basis of

harmonic one-forms, φa, on Σd by Poincaré duality. We can then write E = Ēaφ
a+de and

ζ = ζ̄aφ
a + dz with constant Ēa, ζ̄a. Recalling the discussion in the paragraph following

(2.47), in solving the Stokes equations at the horizon in order to obtain the currents at the

7Note that in (2.54), (2.55) we have divided by suitable Li in order to obtain current flux densities.



CHAPTER 2. DC CONDUCTIVITIES ON BLACK HOLE HORIZONS 52

horizon only the harmonic part of the sources, Ēaφ
a, ζ̄aφ

a are important. We therefore

can relate the bd−1(Σd) independent constant source terms to the bd−1(Σd) current fluxes

at the horizon, after solving the Stokes equations, and hence to the bd−1(Σd) current fluxes

at the AdSD boundary. This procedure gives rise to thermoelectric conductivity matrices

σab, αab, ᾱab and κ̄ab, all of which are b1(Σd) × b1(Σd) matrices, where we used the fact

that bd−1(Σd) = b1(Σd).

One can ask if this aspect of the formalism can be adopted to more general classes of

black holes in which there are multiple black hole horizons (an example of such a solution,

but without spatially dependent sources, is given in [122]). This would require identifying

suitable source terms E, ζ that depend on the radial direction while still maintaining the

condition (2.57). We return to this point in section 5.

Finally, recalling (2.46) we note that we can write∫
ddx

(
Qi

(0)ζi + J i(0)Ei
)

= −
∫

Σd

(ik ∗ Z(φ)F ) ∧ E + (ik ∗G) ∧ ζ ,

= −
∫
C(E)

(ik ∗ Z(φ)F )−
∫
C(ζ)

(ik ∗G) , (2.59)

where in the first line we are integrating over any surface at constant r and t. In the second

line C(E) and C(ζ) are (d − 1) cycles, unique up to homology, that are Poincaré dual to

the closed one-forms E and ζ. By definition the right hand side is thus the sum of the

current fluxes J̄ (E) + Q̄(ζ), through the cycles C(E) and C(ζ), repsectively. The positivity

of the left hand-side, which we obtain from (2.46), is associated with the positivity of the

thermoelectric DC conductivity.

4 Examples

In this section we examine some special examples of holographic lattices for which we

can solve the fluid equations on the horizon and hence obtain expressions for the DC

conductivity in terms of the behaviour of the black hole solutions at the horizon. We first

discuss how extra scalar fields manifest themselves in extra terms in the fluid equations

at the horizon and then use this to study a general class of Q-lattices. We next analyse

general holographic lattices that depend on just one spatial dimension. Finally we examine

holographic lattices that can be obtained as a perturbative expansion about the AdS-RN

black brane.

4.1 Extra scalars and Q-lattices

For simplicity we derived the Stokes equations for the model given in (2.42) which in-

volved a single scalar field. However, the generalisation to extra scalar fields, which can
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parametrise a non-trivial target space manifold, is straightforward. Specifically, if we re-

place (2.2) with several scalars, φI , with the functions V, Z depending on all of the scalars

and the kinetic-energy terms generalised via

−1

2
∂φ2 → −1

2
GIJ(φ)∂φI∂φJ , (2.60)

then this leads to the Stokes equations as before, with the only change in (2.42) given by

−∇jφ
(0)∇iφ

(0)vi → −GIJ(φ(0))∇jφ
I(0)∇iφ

J(0)vi . (2.61)

With this result in hand we can now obtain previous results for the DC conductivities

for Q-lattices [58, 66]. They key feature of the Q-lattice is that it exploits a global sym-

metry in the bulk to construct the black hole solutions. In the present context we assume

that the model admits n global shift symmetries of the scalars:

φIα → φIα + εIα , (2.62)

with α = 1, . . . , n. For example, if we had a single complex scalar field with a global U(1)

symmetry, then the associated shift symmetry of this type is obtained by parametrising

the scalar manifold locally with the modulus and phase of the complex scalar field. This

gives rise to a periodic lattice. Another example, is a massless “axion” field with only

derivative couplings.

The spatial coordinates xi are taken to parametrise Rd or possibly a torus. The black

hole solutions are then constructed based on an ansatz in which the scalars associated

with these shift symmetries take the form

φIα = CIαj xj , (2.63)

everywhere in bulk with C a constant n by d matrix. For simplicity of presentation we

assume that all spatial coordinates are involved and hence the DC conductivity in all

spatial directions is finite. The metric, the gauge-field and the remaining scalar fields will

depend on the radial direction but will be independent of the spatial coordinates xi. The

metric on the black hole horizon is flat and in addition, Z(0), G(0) and a
(0)
t are all constant.

After these remarks, the fluid equations (2.40)-(2.42) are solved with vi, p and w all

constant on the horizon. The fluid velocity is given by

vi = 4πT
(
D−1

)ij (
ζj +

ρ

Ts
Ej

)
, (2.64)
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with constant Ei, ζi and we have defined the d× d matrix:

Dij = GIα1Iα2
CIα1 i CIα2 j . (2.65)

Furthermore, the averaged charge density, ρ, defined in (2.9), and the entropy density, s,

are given by

ρ = ρH =
1

16πGN

√
g(0)Z

(0)a
(0)
t , s =

1

4GN

√
g(0) . (2.66)

The current densities J i, Qi are independent of the radius and are given by their horizon

values:

J i =

(
sZ(0)

4π
gij(0) +

4πρ2

s

(
D−1

)ij)
Ej + 4πTρ

(
D−1

)ij
ζj ,

Qi =4πTs
(
D−1

)ij (
ζj +

ρ

Ts
Ej

)
. (2.67)

The DC conductivities are thus given by

σij =
sZ(0)

4π
gij(0) +

4πρ2

s

(
D−1

)ij
,

αij =ᾱij = 4πρ
(
D−1

)ij
,

κ̄ij =4πTs
(
D−1

)ij
. (2.68)

Note that the conductivity when Q = 0, σQ=0 ≡ σ − Tακ̄−1ᾱ, is given by

σijQ=0 =
sZ(0)

4π
gij(0) . (2.69)

A final point worth emphasising is that the origin of the matrix D appearing in the

final expressions arises from the extra terms involving the scalars in the Stokes equations,

underscoring the significance of the latter.

4.2 One-dimensional lattices

We now consider a class of black hole solutions with metrics on the horizon that break

translations in just one of the spatial directions. As special sub-cases we will recover the

results for the inhomogeneous lattices with varying chemical potential studied in [55] as

well as the helical lattices studied in [101]. Recently formulae for the DC conductivity for

a scalar lattice were obtained in [56] in terms the behaviour of the solution at the black

hole horizon as well as sub-leading terms. We improve upon those results by providing a

new formula that depends just on the solution at the horizon.

We assume that the horizon geometry depends on the spatial coordinate x and is
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independent of the remaining d−1 spatial coordinates which, for definiteness and without

loss of generality, we take to parametrise a torus. The moduli of this torus can depend

on x. For simplicity we restrict our considerations to metrics on the black hole horizon of

the form

ds2
d = g

(0)
ij dx

idxj = γ(x) dx2 + ds2
d−1 (x) , (2.70)

where ds2
d−1 = gabdx

adxb is a flat metric on the torus. We now solve the relevant system

of equations (2.40)-(2.42). The incompressibility condition (2.40) is solved by taking the

non-vanishing components of vi to be

vx = (γ gd−1)−1/2 v0 , (2.71)

with gd−1 the determinant of the d−1 dimensional metric on the torus and v0 a constant.

The non-trivial component of the current density is Jx(0), which must be a constant, and

we have

16πGN
γ1/2

g
1/2
d−1Z

(0)
Jx(0) = ∂xw +

γ1/2a
(0)
t

g
1/2
d−1

v0 + Ex . (2.72)

With a little effort we can now write the Stokes equation (2.42) in the form

2 v0 ∂x

(
γ−1/2 ∂xg

−1/2
d−1

)
− Y v0 + 16πGN

γ1/2a
(0)
t

g
1/2
d−1

Jx(0) − ∂xp = −4πT ζx , (2.73)

where we have defined

Y ≡ 1

2(γgd−1)1/2

[
(∂x ln gd−1)2 + ∂xgab ∂xgcd g

ac gbd
]

+
1

(γ gd−1)1/2

(
∂xφ

(0)
)2

+
γ1/2Z(0)a

(0)
t

2

g
1/2
d−1

, (2.74)

with gab(x) the metric components for ds2
d−1. Equations (2.72) and (2.73) may now be

used to fix the functions w and p. Since these are periodic functions, we must have that the

expressions for ∂xw and ∂xp have no zero modes on the torus and this imposes constraints

on Jx(0) and v0. A simple way to establish these constraints is take an average of the two

equations. In fact doing this completely fixes Jx(0) and v0 in terms of the sources. Indeed,

if we define ∫
↔ 1

L1

∫
dx1 , (2.75)
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where L1 is the period of the lattice, we obtain

Jx(0) =
1

16πGNX

(
Ex

∫
Y + 4πT ζx

∫
γ1/2a

(0)
t

g
1/2
d−1

)
,

v0 =
1

X

(
4πT ζx

∫
γ1/2

g
1/2
d−1Z

(0)
+ Ex

∫
γ1/2a

(0)
t

g
1/2
d−1

)
, (2.76)

where

X ≡

(∫
γ1/2

g
1/2
d−1Z

(0)

)(∫
Y

)
−

(∫
γ1/2a

(0)
t

g
1/2
d−1

)2

. (2.77)

The expression for the heat current at the horizon is simply Qx
(0) = T v0/4GN . Now for

these one-dimensional lattices the electric current and heat current densities are indepen-

dent of the radial direction and so we have deduced their values at the AdS boundary.

Thus we can immediately extract the thermoelectric conductivities in the x direction and

we find

σ =
1

X16πGN

∫
Y, α = ᾱ =

1

4XGN

∫
γ1/2a

(0)
t

g
1/2
d−1

, κ̄ =
πT

XGN

∫
γ1/2

g
1/2
d−1Z

(0)
. (2.78)

Observe that the final result for the conductivity is invariant under reparametrisations

of the x coordinate, as it should be.

We can also write the electrical conductivity in the form

σ = σQ=0 +
1

16πGNX

(∫
γ1/2a

(0)
t

g
1/2
d−1

)2(∫
γ1/2

g
1/2
d−1Z

(0)

)−1

(2.79)

where σQ=0 ≡ σ − Tακ̄−1ᾱ is the conductivity when Q = 0 (as opposed to ζ = 0) and is

given by

σQ=0 =
1

16πGN

(∫
γ1/2

g
1/2
d−1Z

(0)

)−1

. (2.80)

Notice that the second term in (2.79) vanishes if a
(0)
t = 0.

We finish by indicating how to obtain some previous results. For the one-dimensional

lattice of D = 4 Einstein-Maxwell theory given in [55] we simply need to use the transla-

tion given by

γ = Σ(x) eB(x), ds2
1 = Σ(x) e−B(x) dy2, G(0) = H

(0)
tt (x) , (2.81)

in order to obtain the expressions for σ, α, ᾱ, κ̄ given in [55]. Similarly for the helical
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lattice of pure D = 5 gravity studied in [101] we should use

γ = h2
+, ds2

2 = r2
+

(
e2α+ ω2

2 + e−2α+ ω2
3

)
, (2.82)

where two of the three left-invariant one-forms for Bianchi VII0 are given by

ω2 = cos kx dy − sin kx dz, ω3 = sin kx dy + cos kx dz . (2.83)

It is straightforward to show that Y = 4k2 sinh2 2α+/(r
2
+h+) and hence recover the formula

for κ in the x direction given in [101]. Finally charged helical lattices in D=5 gravity with

two gauge-fields coupled to a scalar were studied in [102]. Setting the second gauge-field

to zero, we can compare our results by setting

γ = C1, ds2
2 = C2ω

2
2 + C3ω

2
3 . (2.84)

A short calculation shows that in the x direction we have

σ =
1

16πGN

C
1/2
2 C

1/2
3 Z0

C
1/2
1

+
C2C3

k2(C2 − C3)2

4πρ2

s
,

α = ᾱ =
C2C3

k2(C2 − C3)2
4πρ , κ̄ =

C2C3

k2(C2 − C3)2
4πsT , (2.85)

where s = (C1C2C3)1/2/(4GN) and ρ = (C1C2C3)1/2a
(0)
t Z(0)/(16πGN) (see (2.9)). The

expression for σ agrees with [102] and the expressions for α, ᾱ and κ̄ are new.

4.3 Perturbative lattices

We now consider the case of a periodic lattice that is constructed as a perturbative

expansion about the electrically charged AdS-RN black brane solution with a flat horizon.

As we have noted before since everything is periodic in the spatial directions, in effect,

we can take Σd to be a torus. If λ is the perturbative parameter, then at the black hole

horizon we will assume that we can write

g(0)ij = g δij + λh
(1)
ij + · · · , G(0) = f(0) + λ f(1) + · · · ,

Z(0)a
(0)
t = a+ λ a(1) + · · · , φ(0) = ψ(0) + λψ(1) + · · · ,

Z(0) = z(0) + λ z(1) + · · · , (2.86)

with a, z(0), ψ(0), f(0) and g being constant and the sub-leading terms are periodic functions

of, generically, all of the spatial coordinates xi. Note that the entropy density and the
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electric current density on the horizon are given by

s =
gd/2

4GN

, ρH =
1

16πGN

agd/2 . (2.87)

For the Ricci tensor and Christoffel symbols we have the expansions

R(0)ij = λR
(1)
ij + λ2R

(2)
ij + · · · ,

Γijk = λΓ
(1)i
jk + λ2Γ

(2)i
jk + · · · . (2.88)

It turns out that we can solve equations (2.40)-(2.42) perturbatively in λ using the

following expansion:

vi =
1

λ2
vi(0) +

1

λ
vi(1) + vi(2) + · · · , w =

1

λ
w(1) + w(2) + · · · ,

p =
1

λ
p(1) + p(2) + · · · . (2.89)

Expanding (2.40)-(2.42) in λ, we find at leading order that

∂i v
i
(0) = 0 , � vi(0) = 0 , (2.90)

where � = δij∂i∂j and we deduce that vi(0) are just constant on the torus. We proved

earlier that for the full non-linear problem, in the absence of horizon Killing vectors, there

is a unique solution to the Stokes equations. Therefore, it must be the case that these

integration constants are fixed at higher orders in the perturbative expansion, and this

will be confirmed shortly.

At next order in the expansion we find

∂iv
i
(1) +

g−1

2
∂jh

(1) vj(0) = 0 ,

g−1z(0) �w(1) + vi(0) ∂i a
(1) = 0 ,

�vi(1) + ∂k(Γ(1))iksv
s
(0) +R(1)i

j v
j
(0) + a ∂iw(1) − ∂ip(1) = 0 , (2.91)

where

h(1) = h(1)k
k , (Γ(1))iks =

g−1

2

(
∂sh

(1)i
k + ∂kh

(1)i
s − ∂ih(1)

ks

)
, (2.92)

and all indices are raised and lowered with δ. By considering the pressure Poisson equation

(2.45) and using ∇jR
j
i = 1

2
∇iR, we deduce that

−aw(1) + p(1) = (�−1∂jR
(1)) vj(0) , (2.93)

with w(1) = −gz−1
(0) (�−1∂ja

(1)) vj(0) from (2.91). Combining these results we can obtain an
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expression for vi(1) in terms of vi(0):

vi(1) = N i
(1)j v

j
(0) , (2.94)

with

N i
(1)j = −�−1

(
∂k(Γ(1))ikj +R(1)i

j − ∂i
(
�−1∂jR

(1)
))
. (2.95)

The function �−1f is defined up to a constant on a torus. The associated constant for

vi(1) will be fixed at third order in the perturbative expansion and it does not affect the

leading order DC result.

We now integrate equation (2.42) to find∫
g

1/2
(0) ∇

(kvl)∂jg(0)kl−
∫

g
1/2
(0) Z

(0)a
(0)
t ∂jw +

∫
g

1/2
(0) ∂jp+

∫
g

1/2
(0) ∂iφ

(0)∂jφ
(0)vj

=

(∫
g

1/2
(0)

)
4πT ζj +

(∫
g

1/2
(0) Z

(0)a
(0)
t

)
Ej , (2.96)

where we have taken Ei, ζi to be constants and
∫

is defined to be the average over a

period: ∫
↔ 1

L1 . . . Ld

∫
dx1 . . . dxd . (2.97)

We next expand equation (2.96) with respect to λ and keep the λ0 pieces. Using (2.93),

(2.94), after some work we find that the left hand side can be expressed in terms of vi(0).

Indeed we deduce that

λ−2Ljiv
i
0 = 4πT ζj + aEj , (2.98)

where L is a matrix that only depends on the background data given by

Lji =λ2g−1

∫ (
g−1

2
∂jh

(1)
kl ∂ih

(1)kl + ∂jh
(1)
kl ∂

kN l
i +

1

2
h(1) ∂j(�

−1∂iR
(1))

)
+ λ2 gz−1

(0)

∫
a(1) ∂j

(
�−1∂ia(1)

)
+ λ2

∫
∂iψ(0)∂jψ(0) , (2.99)

with N as given by (2.95). Notice, in particular, that the integration constants associated

with �−1 drop out since the relevant terms are all covered by an extra spatial derivative.

Thus at leading order we have

vi ≈ (L−1)ij (4πT ζj + aEj) , (2.100)
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and

J i|H ≈ ρHv
i , Qi|H ≈ Tsvi . (2.101)

Recalling the definition of the radially independent current flux densities given in

(2.54),(2.55), we finally obtain the holographic current flux densities in terms of E, ζ:

J̄ i ≈ ρvi , Q̄i ≈ Tsvi , (2.102)

where we used (2.9). Thus we can determine the leading order behaviour of the conduc-

tivities:

κ̄ = L−14πsT , α = ᾱ = L−14πρ , σ = L−1 4πρ2

s
. (2.103)

We observe that κ̄(σT )−1 = s2/ρ2, which corresponds to a kind of Wiedemann-Franz law.

In addition we note that the thermal conductivity at zero current flow, κ ≡ κ̄− T ᾱσ−1α,

appears at a higher order in the expansion: κ ∼ λ0. It is interesting to compare these

results to the discussion in [123]. We similarly find that σQ=0 also appears at a higher

order in the expansion.

Perturbative one-dimensional lattices

We conclude this subsection by discussing the special case of one-dimensional perturbative

lattices and hence make contact with the results of section 4.2. We first notice that for

an arbitrary periodic function of a single coordinate x we have

�−1∂xF = c+

∫ x

0

dxF (x)− x
∫

F , (2.104)

where c is an arbitrary constant and in the last term
∫

refers to the average integral over

a period in the x direction, as given in (2.75). Hence∫
F ∂x

(
�−1∂xF

)
=

∫
F 2 −

(∫
F

)2

. (2.105)

Recalling (2.70) we next assume that

h
(1)
ij dx

idxj = δγ dx2 + δgab dx
adxb , (2.106)
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where δγ and δgab only depend on x. The only non-zero matrix element of the matrix L

is given by

λ−2 Lxx =g−2

∫ (
1

2
∂xδgab ∂xδg

ab +
1

2
∂xδg

a
a ∂xδg

b
b

)
+

∫
(∂xψ)2

+ gz−1
(0)

(∫
a2

(1) −
(∫

a(1)

)2
)
, (2.107)

where indices are raised with δab. In obtaining the above result we used that

Rxx = − 1

2g
∂2
x δg

a
a, Rab = − 1

2g
∂2
x δgab . (2.108)

In the notation of section 4.2 we have

γ = g + λ δγ, gab = g δab + λ δgab , (2.109)

and the rest of the functions are expanded exactly as in (2.86). After this identification

we find that X as defined in (2.77) takes the form

X =
1

gd z(0)

g Lxx . (2.110)

It is then straightforward to see that the leading order expansion in the lattice strength of

the DC conductivities give in (2.78) agree with the perturbative results given in (2.103)

when restricted to lattices that depend on one spatial coordinate only.

5 Discussion

The main results that we have obtained in previous sections apply in a more general

setting as we now discuss. Specifically, we consider the following ansatz for a general class

of static solutions

ds2 = gttdt
2 + ds2(MD−1), A = atdt, (2.111)

where gtt, at, φ and the metric ds2(MD−1) are all independent of time and are just functions

of the coordinates xa on M(D−1).

The spacetime may have various types of asymptotic boundaries, but our primary

interest is when there is an AdS boundary8. In this case we can introduce a local radial

coordinate and then impose the same boundary conditions as in (2.4),(2.5), corresponding

to the CFT living on Σd deformed with various spatially dependent sources. The spacetime

8We can also consider other holographic boundary conditions, for example, asymptotically Lifshitz,
or even asymptotically flat boundary conditions.
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may have one or possibly more black hole horizons (examples have been discussed in [122]).

Near each black hole horizon we can again introduce a local radial coordinate and then

demand that the metric has the behaviour that we gave in (2.6). Note that we do not

assume that the topology of the black hole horizons are all the same, nor do we assume

that that have the same topology as Σd.

We now consider the following linear perturbation

δ
(
ds2
)

= δgµνdx
µdxν + 2tgttζadtdx

a ,

δA = δaµdx
µ − tEadxa + tatζadx

a ,

δφ , (2.112)

where the one-forms E, ζ are now defined on MD−1 (not just on Σd as before) and are

still taken to be closed. In addition δgµν , δaµ and δφ are all independent of t. It is

an interesting fact that at linearised order in the perturbation (and independent of any

boundary conditions) we still have the key results

dik ∗ Z(φ)F = 0, dik ∗G = 0 , (2.113)

where k = ∂t. Note that k still satisfies the conditions (2.22), and we have defined G as

before in (2.24).

We now consider the boundary conditions on the perturbation. At the holographic

boundary E, ζ approach closed one-forms E0, ζ0 on Σd and we impose that these are the

only sources deforming the CFT. Similarly, for each black hole horizon the perturbation

behaves in local coordinates as in (2.13), with E, ζ again approaching closed one-forms

on each horizon. Using the local coordinates at each horizon we can now impose the

Hamiltonian, momentum and Gauss-law constraints exactly as described in section 3.4 and

obtain a set of generalised Stokes equations on each horizon. By solving these equations

we can thus obtain currents on each horizon. Note that the precise source terms that

appear in the Stokes equations on each horizon follows after imposing that E, ζ are closed

one-forms in the bulk and that they approach E0, ζ0 at the AdS boundary.

At the AdS boundary we can define the current fluxes through each d − 1 cycle Ca
on Σd as in (2.58). Now consider any orientable d-dimensional manifold in the bulk with

boundary Ca at the AdS boundary and a d − 1 cycle at the black hole horizon (which

might be disconnected). Then using (2.113) and Stokes’s theorem, we deduce that the

current fluxes are equal to the fluxes on the black hole horizon. In turn these fluxes can

be obtained by solving the Stokes fluid equations on the black hole horizon, which only

depend on the cohomology class of the sources at the horizon, which in turn only depend

on the cohomology class of E0, ζ0 on Σd at the AdS boundary. Thus by expanding the

fluxes E0, ζ0 in a basis of harmonic one-forms that are Poincaré dual to the Ca we have
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a procedure for obtaining the DC conductivities. Note that in all these cases, one still

needs to know the behaviour of the background black hole on the horizon, which may be

a non-trivial task. However, with this method, the problem of subsequently calculating

the DC response has been significantly simplified.

There are a number of interesting directions to pursue. In our analysis we assumed

that the black holes have vanishing magnetic field. Following the original work that this

chapter was based on, this condition was relaxed in [98], generalising the results obtained

in [120,124] for Q-lattices.

More generally, we have shown the DC conductivity of the boundary theory can be

obtained by solving the generalised Stokes equations at the black hole horizon. In a

narrow sense the fluid equations are simply an auxiliary set of equations to solve this

holographic problem. However, the innate physical character of the equations (with their

novel viscous terms) suggest that their may be a deeper significance. As a first step, it

would be interesting to determine whether the full time-dependent and non-linear gener-

alised Navier-Stokes equations at the black hole horizon can also be used to obtain exact

holographic information for the dual CFT. It is natural to expect that the time-dependent

equations will be useful in extracting the small frequency behaviour of the AC conductiv-

ity. A related point is to use our results to develop a systematic hydrodynamic framework

in the presence of holographic lattices. Finally it would also be very interesting to obtain

some explicit lattice black hole solutions that depend on more than one of the spatial

dimensions and analyse the fluid equations.



Chapter 3

Generalised DC linear response of
scalar fields

1 Introduction

In the previous chapter, we introduced a general framework to calculate DC thermo-

electric conductivities for a class of black holes that have broken translational invariance

- holographic lattices. We showed that, universally, the DC thermoelectric conductivity

matrix can be obtained for holographic lattices by solving a set of linearised Navier-Stokes

equations on the black hole horizon. However, whilst there is now a framework in place

to determine DC thermoelectric conductivities directly, in general we are left with the

difficult problem of solving the Stokes equations. It is a remarkable fact that in many in-

teresting and non-trivial holographic lattice systems, the associated Stokes equations can

be analytically solved, and so the associated DC thermoelectric conductivity can obtained

directly.

Historically, the thermoelectric DC conductivity for Q-lattices and one-dimensional

lattices were found before the general framework was discovered [55,66]. In both of these

cases, the Navier-Stokes equations can be solved directly, leading to exact solutions. In

the case of the Q-lattices and one-dimensional homogeneous lattices, the current itself,

rather than the current flux, is radially conserved, so the DC conductivity can simply be

read off in terms of horizon quantities.

In addition to a metric and gauge field, the general holographic lattices we considered

in the last chapter contain scalar fields. A natural extension is to therefore ask what is

the response to linear in time perturbations of these scalar fields. In this case, our DC

response matrix is of the form: J

Q

〈Oψ〉

 =

 σ αT β

ᾱT κ̄T γ

β̄ γ̄ ρ̄


 E

−(∇T )/T

ψc

 , (3.1)
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where ψ is a scalar field dual to some operator in the CFT with vacuum expectation 〈Oψ〉,
and ψc is the source of this operator.

It is the aim of this chapter to build on this idea, and determine the response of the

class of CFTs studied in [66] to linear in time perturbations of scalar fields. The models

considered in [66] contain both Q-lattices and linear axion models, and it is the linear

axionic field, χ1, that we will perturb. In the background black hole χ1 = k1x1, where k1

is a constant and x1 is a spatial direction, and is dual to a marginal operator with zero

expectation value.

The rest of the chapter proceeds as follows. In the next section, we describe the

background black hole solutions that we will study. In section 3, we determine the response

of χ1 to a heat and electric current. We will then turn on perturbations of χ1, and show

that that the DC response can be written in terms of horizon data. In the case of

holographic Q-lattices, we will discuss the physical interpretation of these perturbations.

Next, we turn to a more general case, and show that perturbations of the scalar field lead

to a more general Stokes equations, provided the scalar field does not couple to the gauge

field and has no potential. Finally we will discuss our findings in more detail in section 5.

2 Holographic models

We will focus on holographic models in D = 4 spacetime dimensions which are dual to

d = 3 CFTs with a global U(1) symmetry. The D = 4 fields include a metric and a gauge

field, which are dual to the stress tensor and the U(1) current of the CFT, respectively.

We will also include a real scalar field, φ, and two real “axion” fields, χi, which are dual

to additional scalar operators in the CFT. The action is given by

S =
1

16πGN

∫
d4x
√
−g
[
R− 1

2

[
(∂φ)2 + Φ1(φ)(∂χ1)2 + Φ2(φ)(∂χ2)2

]
− V (φ)− Z(φ)

4
F 2

]
,

(3.2)

which involves four functions, Φi, V and Z, of the real scalar field φ where demand Φi, Z ≥
0, and we have set 16πG = 1. We assume the model admits a unit radius AdS4 vacuum

with φ = 0 (in particular V (0) = −6) and for convenience we set Z(0) = 1 . The action

is invariant under the global symmetries corresponding to shifts of the axion fields.

This model captures two types of black hole solution we are interested in. It firstly

includes holographic Q-lattices, where the fields χi are periodic. These models arise when

Φi ∼ φ2 near φ = 0. For example, for a single axion (i.e. setting χ2 = 0), we could consider

Φ1 = φ2 and then φ, χ1 are the norm and phase of a complex scalar field. Furthermore

we would choose the mass of this complex field, by choosing V , so that the complex field

is dual to a relevant operator with dimension ∆ < 3. A deformation of the CFT by

this complex operator with χ1 linear in a spatial direction would necessarily comprise a
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periodic deformation and hence what we call a holographic lattice. Indeed decomposing

the complex field into two real fields, reveals that the construction has two real periodic

lattices in the same spatial direction with a phase shift of π/2. This was precisely the

construction of the anisotropic Q-lattices in [57]. Similarly the models with two χi can

arise from two complex scalar fields with a Z2 symmetry that equates their norms; these

constructions lead to isotropic Q-lattices as considered in [58].

Our model also includes other types of black hole solutions where the χi are, instead,

massless fields, and are dual to marginal operators with ∆ = 3. These models arise when

Φi(0) 6= 0. For example, the case when Φi = 1 has been considered in [62]. Another

case is for a single axion (i.e. setting χ2 = 0) and Φ1 = e2φ, corresponding to the

axion and dilaton of string theory after performing a dimensional reduction of type IIB

supergravity on a five-dimensional Einstein space, and anisotropic black holes have been

studied in [60,61,63]. In these cases, the linear axions do not give a periodic deformation

of the CFT. Nevertheless, like the Q-lattices, they do incorporate momentum dissipation

and have finite DC conductivities.

2.1 The black hole backgrounds

Rather than consider the general ansatz (2.2), the solutions that we shall consider here

all lie within the ansatz

ds2 = −U dt2 + U−1 dr2 + e2V1dx2
1 + e2V2dx2

2,

A = a dt, χ1 = k1 x1, χ2 = k2 x2 , (3.3)

where U, Vi, a and φ are only functions of r. In general the black hole solutions are

anisotropic, with V1 6= V2, but isotropic solutions with V1 = V2 are possible when we can

choose k2
1Φ1(φ) = k2

2Φ2(φ).

We will assume that there is a single, regular event horizon at r = r+ and the functions

have the following expansions

U ∼ 4πT (r − r+) + . . . , Vi ∼ Vi+ + . . . ,

a ∼ a+(r − r+) + . . . , φ ∼ φ+ + . . . , (3.4)

where T is the temperature of the black hole. In what follows, we will use ingoing

Eddington-Finklestein coordinates (v, r) where v = t+ 1
4πT

ln(r − r+).

As r →∞, the location of the AdS4 boundary, we assume that there is an asymptotic
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expansion of the form

U ∼ r2 + . . . , e2Vi ∼ r2 + . . . ,

a ∼ µ− qr−1 + ..., φ ∼ λr∆−3 + . . . . (3.5)

For the case of the Q-lattice, as discussed above, we would demand that ∆ < 3 and λ

denotes the strength of the Q-lattice deformation (assuming a standard quantisation for

the scalar). For the Q-lattice black holes the axions are periodic, χi = χi + 2π, and these

UV boundary conditions explicitly break the translation symmetry in a periodic manner.

The UV data specifying these black holes is given by T/µ, k1/µ, k2/µ and λ/µ3−∆. For

the case of massless linear axions, as discussed above, φ can also be massless or absent

and the axions are not periodic.

Our starting point is once again to obtain a general expression for the electric charge

of the black holes in terms of horizon data. The current density Ja = (J t, Jx, Jy) in the

dual field theory has the form

Ja =
1

16πGN

√
−gZ(φ)F ar , (3.6)

where the right hand side is evaluated at the AdS boundary r → ∞. We find that the

only non-zero component of the equation of motion for the gauge-field is in the t-direction

and can be written
√
−g∇µ(Z(φ)F µt) = ∂r(

√
−gZ(φ)F rt) = 0. Thus we can write

q ≡ J t =
1

16πGN

eV1+V2Z(φ)a′ , (3.7)

where q is the charge of the black hole and the right hand side can be evaluated on any

radial slice, including at the event horizon, r = r+. In general, this charge q depends on

the UV data of the Q-lattices including the temperature of the dual field theory.

3 Scalar field DC response

We want to find the response of the axion fields to the heat and electric currents in our

model. As we discussed in the previous section, there are two different types of black hole

solution which the model supports, solutions where the axions are massless fields dual to

marginal operators with conformal dimension ∆ = 3, and Q lattices, where the axion and

scalar fields can be considered as a combination of complex fields. We will consider both

of these cases.

To start, let’s consider perturbations which have a source for the scalar, χ1. Since in

general the source of a field will give a response, we can represent this linear response
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through a 3x3 matrix that represents a generalised DC response matrix J

Q

〈Oχ1〉

 =

 σ αT β

ᾱT κ̄T γ

β̄ γ̄ ρ̄


 E

−(∇T )/T

χc

 . (3.8)

To calculate this matrix, consider the following linearised perturbation about the black

hole background

Ax1 = (−E + ζa)t+ δax1(r) ,

gtx1 = −ζUt+ δgtx1(r) ,

grx1 = δgrx1(r) ,

χ1 = k1x1 + χct+ δχ1(r) . (3.9)

In addition to sources for the heat and electric current, E and ζ, here we have also

introduced a linear in time source for the scalar field χ1, in an analogous way to the

previous chapter where we turned on linear in time sources for the gauge field and metric.

The top left 2x2 matrix can be determined using the results of the previous chapter, so

here we will focus on the final row and column, and determine their entries for the model

that we are considering.

3.1 Determining β and γ

First, consider the equation of motion for χ1. At linearised order, we find

∂r
(
Φ1(φ)eV1+V2U(δχ′1 − k1e

−2V1δgrx1)
)

= 0 . (3.10)

We see that the quantity Oχ, defined by

Oχ =
1

16πGN

Φ1(φ)eV1+V2U(δχ′1 − k1e
−2V1δgrx1) , (3.11)

is radially conserved. We will see that this quantity corresponds to the current for χ1,

〈Oχ1〉, when evaluated on the boundary.

Similarly, the gauge equation of motion implies that ∂rJ = 0 with

J = − 1

16πGN

eV2−V1Z(φ)Uδa′x1 − qe
−2V1δgtx1 , (3.12)

where the right-hand side can be evaluated at any value of r, including at the black hole

horizon at r = r+.
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Finally, consider the linearised Einstein equations. If we define

Q ≡ 1

16πGN

e−V1+V2U2
(
U−1δgtx

)′ − aJ , (3.13)

we find, remarkably, that ∂rQ = 0. We identify Q is the heat current, using similar

analysis to that found in appendix A.3.

We also find we can algebraically solve for δgrx1 giving

δgrx1 = −(E − ζa)qeV1−V2

k2
1Φ1(φ)U

− e4V1(e−2V1ζU)′

k2
1UΦ1

+
e2V1δχ′1
k1

. (3.14)

Suppose that the only non zero source is χc. Then regularity at the black hole event

horizon implies that

δχ1(r) ∼ χc
4πT

ln(r − r+) + . . . , (3.15)

which implies that δgrx1 will be diverging at the horizon. This can be remedied by

demanding

δgtx1 ∼
e2V1χc
k1

∣∣∣∣
r=r+

+ . . . . (3.16)

We now want to calculate our conserved currents. Evaluating J at the black hole

horizon using (3.12), we now deduce that

J = −qχc
k1

. (3.17)

Similarly, evaluating Q at the black hole horizon we deduce that

Q = −sT
k1

χc . (3.18)

We are now able to fully calculate the first two rows of our DC response matrix. We

see that

β =
∂

∂χc
J = − q

k1

,

γ =
∂

∂χc
Q = −sT

k1

.

3.2 Determining β̄, γ̄ and ρ̄

Now we have determined the response of the heat and electric current to the scalar source,

we wish to determine the response of the scalar current to all three sources. To do this, we

first demonstrate that the conserved quantity, (3.11), is equivalent to the scalar current
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of the dual field theory.

For any holographic theory, in order to render the action finite, suitable boundary

terms must be added to the action, in a process known as holographic renormalization.

For our background theories, for ∆ < 3, we must add the following counterterms to the

action
1

16πGN

∫
d3x
√
−γ
(

2K − 4− 3−∆

2
φ2 + ...

)
, (3.19)

where the ... indicates additional counterterms which are not needed in this analysis.

Similarly, the counterterms when ∆ = 3 are

1

16πGN

∫
d3x
√
−γ
(

2K − 4 +
1

2
Φ1(φ)∂iχ1∂

iχ1 +
1

2
Φ2(φ)∂iχ2∂

iχ2 + ...

)
, (3.20)

which comes from the fact that we no longer have the restriction that Φ1 and its derivatives

vanish asymptotically.

Let us consider the expectation of χ1. In general, we have on-shell that

δS =

∫
d3x
√
−γ Ōχδχ . (3.21)

It will be convenient to define r3Ōχ = 〈Oχ〉, where 〈Oχ〉 is the VEV of the scalar field,

since Ōχ ∼ r−3 as r → ∞. Varying the on-shell action and the counterterms, we find

that, for ∆ < 3, we have

〈Oχ1〉 = − 1

16πGN

r3Φ̄1U
1/2
(
δχ′ − k1e

−2V1δgrx1
)
, (3.22)

where Φ̄1 is the leading order term in the expansion of Φ1 on the boundary, which is equal

to 1/2Φ′′1(0)λ2r2∆−6.

Expanding (3.11) near the AdS boundary, we find that

Oχ =
1

16πGN

r4Φ̄1

(
δχ̄′ − k1e

−2V1δgrx1
)
, (3.23)

and we see that Oχ = −〈Oχ1〉. Thus, we are able to identify the conserved current with

the scalar current. A similar calculation is needed in the case that ∆ = 3. In this case,

an additional piece from the counterterm is used, which cancels a diverging term in the

expansion of δχ.

Now we evaluate the conserved current on the horizon. Substituting (3.14) into (3.11),

we have

Oχ = E
q

k1

+
ζ

k1

(
e3V1+V2(e−2V1U)′ − aq

)
. (3.24)
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Evaluating this quantity on the horizon, we have

Oχ = E
q

k1

+ ζ
sT

k1

. (3.25)

We therefore conclude that

β̄ =
∂

∂E
〈Oχ〉 = − q

k1

γ̄ =
∂

∂ζ
〈Oχ〉 = −sT

k1

ρ̄ =
∂

∂χc
〈Oχ〉 = 0. (3.26)

As expected, this implies a symmetric response matrix. We have now fully calculated

the DC response matrix (3.8). Note that this result can also be determined in this case

directly from the Ward identity, as highlighted in appendix B.1.

In summary, we see that perturbations of the scalar field will induce thermoelectric

currents in our theory, but will not alter the scalar field current. To understand this,

consider the equations of motion for our theory. In many ways, the new perturbation

that we have introduced is similar to a linear axion of the form kx, with the difference

being that the axion is in the time direction, rather than a spatial direction. In particular,

it is easy to see that a scalar field of the form χct will in fact solve the equations of motion

of our theory in the absence of boundary conditions. However, when we apply regularity

of the event horizon, we see that we now need perturbations of the tx component of

the metric and the scalar field in order to ensure the scalar field is well behaved on the

horizon. It is these perturbations that sources the thermoelectric currents. However,

these perturbations do not source the scalar current due to a cancellation between the

metric and scalar perturbations at linear order.

3.3 Physical interpretation for holographic Q-lattices

While it is simple to physically interpret the source term for χ as a linear in time source

for a massless scalar field in the case when ∆ = 3, the situation where ∆ < 3 is less clear.

In this section we will try to shed some light on the physical interpretation of the above

results for Q-lattices

For simplicity, in this section we will consider the case of the simplest Q-lattice, where

χ2 = 0 and Φ1 = φ2. In this case, we can treat the φ and χ = χ1 as the norm and phase

of a single complex scalar field, Ψ. However, we can also write the single complex field

as two real scalar fields, φ1 and φ2, corresponding to the real and imaginary parts of Ψ
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respectively.

φ1 = φ(r) cos(χ) ,

φ2 = φ(r) sin(χ). (3.27)

Consider the perturbations from the previous sections. We can write this as

φ1 = φ(r) cos(k1x1)− φ(r)δχ(r, t) sin(k1x1) ,

φ2 = φ(r) sin(k1x1) + φ(r)δχ(r, t) cos(k1x1) . (3.28)

The perturbation has therefore introduced an extra mode for each of the scalar fields, in

an orthogonal direction. If we now look at the asymptotic expansion of the two fields, we

find that the scalar field expectation values are given by:

〈Oφ1〉 = (2∆− 3)

(
φc cos(k1x1) +

(
Eq + ζsT

(2∆− 3)λk1

− φcχct
)

sin(k1x1)

)
,

〈Oφ2〉 = (2∆− 3)

(
φc sin(k1x1)−

(
Eq + ζsT

(2∆− 3)λk1

− φcχct
)

cos(k1x1)

)
, (3.29)

where φc is the expectation value of the background scalar field φ(r), and ∆ is the con-

formal dimension of the field.

We see that each of the real scalar fields has acquired an additional constant term in

its vacuum expectation, at a phase difference of π/2 to the initial VEV. There is also a

contribution to the expectation that is time dependent. Recall that, in general, a time

dependent source will give rise to a time dependent and time independent part of the

VEV - these lead to the susceptibility and conductivity respectively. We therefore find

the susceptibility due to switching on a time dependent source for the phase is given by

G̃χφ1 = −(2∆− 3)φcχc sin(k1x1) ,

G̃χφ2 = (2∆− 3)φcχc cos(k1x1) . (3.30)

Note that if we convert back to our previous case of one real scalar, and two axion

fields, we find this time dependent part of the scalar expectation vanishes at the linear

level, and so is consistent with our previous results. We therefore see that for Q-lattices,

the perturbation of the axion field leads to a time dependent response from two real scalar

fields, at a phase difference of π/2 to each of the scalar fields.
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4 Generalised DC response

Motivated by the results from the previous section, we now turn a more general setup. We

will consider the theory from the previous chapter, with a scalar field with no potential,

and no coupling between the gauge field and the scalar field. The action is given by

S =
1

16πGN

∫
dDx
√
−g

(
R− Z

4
F 2 − 1

2
(∂φ)2

)
, (3.31)

where the constant Z is independent of φ.

We will consider the same static black hole ansatz as given in (2.4), and will use the

same notation throughout. It will be helpful to write the scalar field as

φ(r, x) = kix
i + φ̄(r, x) , (3.32)

where ki are constants, whilst φ̄(r, x) is periodic in xi.

We now proceed in a very similar manner to the method outlined in section 3 of

chapter 2. The perturbations in the metric and the gauge field are the same as before.

However, we consider a linear in time perturbation of the scalar field, giving a scalar field

perturbation

δφ = χct+ δφ(r, x) . (3.33)

By changing to ingoing Eddington-Finkelstein coordinates, we can see that regularity

of the solution implies the behaviour of the scalar perturbation on the horizon is given by

δφ(r, x) = χc
ln r

4πT
+ δφ0(x) +O(r) , (3.34)

where the near horizon behaviour of φ̄(r, x) is φ̄0(x) +O(r).

Now recall that in the radial Hamiltonian decomposition (see Appendix A.1), the

momentum conjugate to φ is given by

πφ = −
√
−hnµ∂µφ , (3.35)

where n is the normal vector and h is the metric induced on the radial slice. On the

horizon, this momentum evaluates to

−√g(vi(ki + ∂iφ̄
0) + χc). (3.36)

which gives an additional contribution to the momentum constraint from the previous
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chapter. Thus, we have the modified Navier-Stokes equations

∇iv
i = 0 , (3.37)

∇i(Z
(0)∇iw) + vi∇i

(
Z(0)a

(0)
t

)
= −∇i(Z

(0)Ei) , (3.38)

−2∇i∇(iv j) − Z(0)a
(0)
t ∇jw +∇j p+ Z(0)a

(0)
t Ej = 4πT ζj

+(kj +∇jφ
(0))((∇iφ

(0) + ki)v
i + χc) . (3.39)

If the one point function of the scalar field, 〈Oφ〉, is taken as πφ/(16πGN), then the

equation of motion for the massless scalar field, ∇2φ = 0, implies that 〈Oφ〉 is radially

conserved. We therefore find that we have the conserved current

δ〈Oφ〉 =

∫
H

δπφ = −kiQ̄
i

4πT
− s

4π
χc , (3.40)

where Q̄i is the heat current flux density, with the heat current density given by (2.43).

Setting χc = 0, we can immediately calculate the final row of the generalised flux

response matrix, given by (3.1). We find that

β̄i = − 1

4π
kjᾱ

ji ,

γ̄ = − 1

4π
kjκ̄

ji , (3.41)

where we are interested in conserved fluxes here, rather than the conserved currents

themselves. In order to determine the final row of the DC matrix, we set E = ζ = 0. If

we look at the Stokes equations, we see that we can absorb the term ∇jφ
(0)χc into the

pressure, p, leaving the term kjχc as the only term that depends on χc. But this is simply

equivalent to solving the Stokes equations with E = χc = 0 and 4πTζi = −kiχc. Hence,

we deduce that

βi = − 1

4π
αijkj ,

γ = − 1

4π
κ̄ijkj ,

ρ̄ = − kiκ̄
ijkj

(4π)2T
− s

4π
. (3.42)

In the case of the Q-lattice, we have κ̄ = 4πTs/k2, and it is then easy to verify that

these results are consistent with the previous section. We now see that the fact that the

scalar perturbations do not induce a response in the scalar field is a result of the exact

cancellation between two terms.
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5 Discussion

We have extended the previous work of [66], by finding the full 3x3 DC conductivity

matrix for a class of CFTs dual to a black hole containing a gauge field, two axion fields

and a scalar field, in the case when we turn on time dependent sources for electric current

and heat current in the x1 direction, and an axionic field that is linearly dependent on

the x1 coordinate, χ1. The DC conductivity was first determined directly, rather than as

a solution to the Stokes equations. In addition, we also determined the general response

for scalar fields in the case that the scalar field is massless and does not couple to gauge

field.

Interestingly, we see that for the Q lattice, the axionic perturbations source a thermo-

electric current, but do not induce a current in the scalar field itself, leading to a term

that is zero in the DC response matrix. In the case of Q-lattices, since the axion can be

thought of as a phase of two scalar fields, the perturbation is essentially a perturbation in

the phase of the field. This perturbation induces a susceptibility term in the fields which

is time dependent, but results in no time independent conductivity piece. In particular,

for the scalar fields the susceptibility is at a phase difference of π/2 to the original scalar

fields.

After initially determining the DC conductivity for a Q-lattice, we then showed that

for a general system, then provided the scalar field has no potential and does not couple

to the gauge field, there is an additional contribution to the Navier-Stokes equations.

Interestingly, these extra terms can be absorbed into the definition of the pressure when

calculating the DC response, and it would be interesting to understand exactly the phys-

ical relevance of this absorption.

Whilst our results for the scalar field are somewhat general, they do require the scalar

field to have no potential term and no coupling to the gauge field. To understand why

this is necessary, it is helpful to consider the equations of motion for the scalar field in

the previous chapter, given by (2.3). If there is a V (φ) or Z(φ) term, then at linear order

the equations of motion are no longer time independent, and so the analysis breaks down.

It would be interesting to understand if there are any cases when this is not the case, in

which case a more general Navier-Stokes equations could be constructed.

In the calculations in the first part of this chapter, the Stokes equations could be

solved exactly. We have already seen several examples when the Stokes equations can be

solved, including perturbative lattices and homogeneous and inhomogeneous lattices. In

general, however, one has to solve the Stokes equations, which will result in PDEs. One

topic of further study would be to attempt to understand why the above results can be

solved exactly, and if there are more classes of black hole solution that have exact DC

response.



Chapter 4

Holographic thermal DC response in
the hydrodynamic limit

1 Introduction

In this chapter, we continue using holographic techniques to study the response of a

strongly coupled system to an applied DC thermal or electric source. As we have pre-

viously discussed, in order to get finite results, one needs, in general, a mechanism to

dissipate momentum. Within holography, the most natural way to achieve this is via the

framework of holographic lattices [37, 50, 52, 57, 62, 125]. These are stationary black hole

geometries dual to CFTs in thermal equilibrium that have been deformed by marginal

or relevant operators that explicitly break the translation invariance of the CFT. Sev-

eral different kinds of holographic lattices have now been studied and they give rise to a

wide variety of interesting phenomena including Drude physics [50,55,125], novel metallic

ground states [58, 104], metal-insulator transitions [37, 57] and anomalous temperature

scaling of the Hall angle [124].

In chapter 2, we showed that the DC thermoelectric conductivity matrix can be ob-

tained for holographic lattices, universally, by solving a system of linearised Navier-Stokes

equations for an auxiliary incompressible fluid on the black hole horizon. In a nutshell,

this works as follows. By solving the fluid equations, which we also refer to as Stokes

equations, one obtains local thermal and electric currents on the black hole horizon, at

the level of linear response, as functions of the applied DC sources. Furthermore, the total

thermal and electric current fluxes at the horizon are conserved in the radial direction

and hence one also obtains the total thermal current fluxes of the dual field theory and

thus the DC conductivity matrix. The results of this, and [1, 97, 98], have recently been

used to obtain interesting bounds on DC conductivities [126,127].

We now elaborate a little further on several important aspects of the results of the

earlier chapter and the papers [1, 97, 98]. Firstly, although not essential, it is helpful to

introduce the DC sources via perturbations that are linear in time. This enables one to

directly parametrise the thermal and electric DC sources using globally defined one-forms,

76



CHAPTER 4. DC RESPONSE IN THE HYDRODYNAMIC LIMIT 77

rather than locally defined functions. This is helpful in constructing a globally defined

bulk perturbation, and hence extracting the DC response. Such linear in time sources for

a DC electric field and thermal gradient were first discussed in [58] and [66], respectively.

The second aspect we want to highlight is the result of [97] that the total thermal

and electric current fluxes at the horizon are equal to the current fluxes at infinity. This

was first observed for the special case of electric currents in the early paper [67], extend-

ing [128], but in a very simplified setting. In particular, the black holes of [67] did not

incorporate momentum dissipation and the finite electric DC conductivity arose because

the background black holes were electrically neutral, giving rise to constant electric cur-

rents. In fact, the thermal DC conductivity, which was not discussed in [67], is infinite for

these black holes. For general holographic lattices, both the electric and thermal currents

have non-trivial spatial dependence and it is only the total current fluxes that are con-

served in moving from the horizon to the AdS boundary. This general result, articulated

in [97], came in a series of stages, starting with studies of electric currents [58] and then

for the more subtle case of thermal currents [66], both for Q-lattice examples, followed

by electric and thermal currents for inhomogeneous holographic lattices, with momentum

dissipation in one spatial dimension [55].

The non-renormalisation of the total current fluxes is widely referred to as a kind of

membrane paradigm, following [67, 128]. However, this is somewhat of a misnomer. A

membrane paradigm, in this context, should determine the currents, or perhaps just the

current fluxes, on the black hole horizon and hence the conductivity of the black hole

horizon. However, for a general holographic lattice, a priori, it could have been the case

that in order to obtain the current fluxes on the horizon, one would need to solve the full

bulk equations of motion for the perturbation. If this was the case then one would not

have been able to obtain the current fluxes of the dual field theory just from the horizon

data and the notion of any kind of local membrane would be irrelevant. Happily this

turns out not to be the case.

Indeed the third aspect we want to highlight, and logically distinct from the previous

one, is that one can determine the currents at the horizon by solving a closed set of fluid

equations, the Stokes equations, on the horizon [97]. The Stokes equations, which only

involve a subset of the perturbation, can be obtained by considering a radial Hamilto-

nian decomposition of the bulk equations of motion and then imposing the constraint

equations on a surface of constant radial coordinate, in the limit as one approaches the

horizon. The fact that one has a closed set of equations on the horizon and that they

arise from a set of constraint equations makes the result of [97] a version of the membrane

paradigm, if one finds that terminology helpful. We also emphasise that this membrane

paradigm is universal and makes no assumption about taking any hydrodynamic limit. As

we demonstrated in the previous chapter, solving the hydrostatic problem on the event

horizon gives rise to exact statements about correlation functions in relativistic CFTs
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with momentum dissipation, without taking any hydrodynamic limit.

The two key stepping stones that led to the general result about Stokes equations were

the results obtained for Q-lattice examples [58, 66] followed by the results for the more

involved example of an inhomogeneous holographic lattice with momentum dissipation

in just one spatial direction [55]. In hindsight, the results of [55, 58, 66], which were

originally obtained by brute force, were possible because they are two cases in which the

Stokes equations can be solved analytically. The Stokes equations also emphasise the

fundamental role that is played by thermal currents in studying DC response. Indeed,

even if one wants to obtain just a purely electric DC response in the field theory, in general

one still must solve for both the thermal and electric currents at the horizon, in order to

extract this information.

For the special classes of one-dimensional holographic lattices (i.e. there is only mo-

mentum dissipation in one spatial direction) and also for Q-lattices [57], the DC conduc-

tivity can be explicitly solved in terms of the horizon data [1, 97, 98]. For more general

classes of lattices, there are two limiting situations where we can make some universal

statements. The first limiting situation is associated with what have been called “pertur-

bative lattices” and was discussed in section 4.3 of chapter 2, as well as in [1, 97]. The

second, and in general distinct, limiting situation occurs in a long-wavelength, hydrody-

namic limit and will be the main focus of this chapter.

We first briefly discuss the perturbative lattices, which are associated with weak mo-

mentum dissipation, in order to contrast with the hydrodynamic limit. By definition,

perturbative lattices can be constructed perturbatively about a translationally invariant

black hole solution using a small amplitude deformation. For example, imagine starting

with the AdS-Schwarzschild black brane solution or, if one wants to be at finite charge

density, the AdS-Reissner-Nordström solution. These solutions are dual to translation-

ally invariant CFTs with no momentum dissipation and hence have infinite DC thermal

conductivity. We then deform the dual field theory by marginal or relevant operators

that depend on the spatial coordinates of the CFT. It is assumed that the strength or

amplitude of the deformation is fixed by a small dimensionless UV parameter λ. On the

other hand we make no restriction on how the UV deformation depends on the spatial

coordinates, and so we allow deformations with arbitrary wave numbers k. Generically,

for small λ, the UV deformation will not change the leading order IR of the black hole

geometry. As such the horizon geometry can be expanded perturbatively in λ about the

flat horizon.

As we have seen, one can then solve the Stokes equations on the horizon perturbatively

in λ to obtain expressions for the currents and hence the DC conductivity. At leading order

in the perturbative expansion the currents at the horizon are of order λ−2, which shows

the DC response is parametrically large as expected for weak momentum dissipation.

The leading order currents at the horizon are constant and by considering the full bulk
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perturbation one can further show that at leading order in λ the local currents of the dual

CFT are also constant.

The final expressions for the currents depend on the corrections to the horizon data

at order λ1 . While these are not explicitly known in terms of the UV data, one can

still obtain some additional general results for the DC conductivity. For example, for the

case of perturbative lattices which have non-vanishing charge density at leading order1 one

should expand about the AdS-Reissner-Nordström (AdS-RN) solution. The conductivities

are then all proportional to the same matrix, of order λ−2, and as shown in [1, 97],

extending [66], this leads to a generalised Wiedemann-Franz law2, κ̄/(σT ) = s2/ρ2, as

well as a simple expression for the Seeback coefficient (thermopower) equal to α/σ = s/ρ.

We now turn to the hydrodynamic limit of holographic lattices. We will study this in

the context of holographic lattices in Einstein gravity without matter fields in arbitrary

spacetime dimensions D ≥ 4. As such our analysis is applicable to all CFTs in D − 1

spacetime dimensions which have a classical gravity dual. The deformed CFTs can either

be viewed as arising from deformations associated with the stress-energy tensor operator

or, equivalently, by placing the CFT on a curved geometry.

If we let k be the largest wave number associated with the spatial deformations in

the holographic lattice then we consider the hydrodynamic limit3 ε = k/T << 1. In

general this is distinct from the perturbative lattice. This can be seen from the following

very explicit example. Consider a CFT at finite T on a conformally flat spatial metric

hij = Φ(x)δij with Φ(x) = λ cos kx. The perturbative lattice takes λ << 1 whereas the

hydrodynamic limit takes k/T << 1. Note, however, that in both limits λ→ 0 and ε→ 0

we end up with the AdS-Schwarzschild black brane.

A key simplification which we show occurs in the hydrodynamic limit is that the black

hole horizon geometry can be simply expressed explicitly in terms of the UV data. Thus,

to obtain the DC linear response we solve the Stokes equations on a geometry that is

explicitly known. Furthermore, we will show that at leading order in the perturbative

expansion in ε, the local thermal currents at the horizon are conserved in moving to the

boundary. In other words, by solving the Stokes equations on the horizon one obtains

the leading order local currents that are produced by the DC source, at the level of

linear response. The fact that there can be non-trivial local currents in the hydrodynamic

limit at leading order should be contrasted with the constant currents in the perturbative

lattices. Conversely, similar to the perturbative lattices, the thermal conductivity diverges

like ε−2 at fixed T as ε → 0 and we will see that the limit is again associated with weak

momentum dissipation.

1If the charge density vanishes at leading order then one should expand about the AdS-Schwarzschild
solution. In this case the conductivity σ will be of order λ0.

2This result was also be obtained via memory matrix techniques in [123], building on [125].
3In the bulk we will take the limit k/rH << 1, where rH is the radial location of the black hole. We

can thus also consider the hydrodynamic limit as k/s1/(D−2) << 1 where s is the entropy density.
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It is also interesting to develop the perturbative hydrodynamic expansion in more

detail, and we do this to determine the corrections of the thermal currents to the DC

linear response that are sub-leading in ε. In addition we will also show that it is possible

to solve for the full radial dependence of the leading order bulk, linearised perturbations

after applying a DC thermal source. This allows us to extract expressions not only for the

local thermal currents but also for the full linearised stress tensor of the boundary theory as

a function of the applied DC thermal source. As one might expect, the stress tensor takes

the form of constitutive relations for a forced fluid and after imposing the Ward identities

one obtains, at leading order in the ε perturbative expansion, the non-relativistic Stokes

equations. The calculation also indicates how the sub-leading corrections to the stress

tensor, perturbative in ε, can be obtained in terms of solutions to the Stokes equations

on the horizon geometry, which is also expanded in ε. As we shall see, our results also

reveal a subtle interplay between sub-leading corrections in the perturbative expansion,

solutions of the Stokes equations and regularity of the bulk perturbation at the horizon.

It is natural to ask how our results relate to work on fluid-gravity [88] which relates

perturbative solutions of gravity equations to hydrodynamic equations. In particular,

CFTs on curved manifolds have been studied in the context of theories of pure gravity from

a fluid-gravity perspective in [129]. Using a Weyl covariant formalism a hydrodynamic

expansion ansatz for the bulk metric was presented. The ansatz gives rise to a boundary

stress tensor which, when the Ward identities are imposed, leads to perturbative solutions

of the bulk Einstein equations. One might expect our perturbative expansion in ε, driven

by the linearised DC source is a special case of the expansion in [88]. Happily, this is

found to be the case.

Before concluding this introduction we note that there have been various other studies

of hydrodynamics in the context of momentum dissipation in holography, including [46,54,

95,96,115,117,130]. We highlight that a fluid gravity expansion was developed in [95,96]

for the special sub-class of holographic lattices with spatial translations broken by bulk

massless axion fields that depend linearly on the spatial coordinates. We also note that

general results on hydrodynamic transport for quantum critical points have been presented

in, for example, [114, 116, 131, 132]. In contrast to the approach of [116] we will see that

within holography in the hydrodynamic limit we need to solve covariantised Navier-Stokes

equations with constant viscosity.

2 Holographic lattices in the hydrodynamic limit

We will consider a much simpler gravitational theory than what was studied in the pre-

vious chapters, and focus theories of pure gravity in D bulk spacetime dimensions, with
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action given by

S =
1

16πGN

∫
dDx
√
−g [R + (D − 1)(D − 2)] . (4.1)

We have set 16πG = 1 for simplicity. We have also chosen the cosmological constant

so that a unit radius AdSD spacetime solves the equations of motion. The holographic

lattice solutions which we study are static black holes that lie within the ansatz:

ds2 = −U Gdt2 +
F

U
dr2 + gijdx

idxj . (4.2)

Here G,F and the d = (D − 2)-dimensional spatial metric, gij, can depend on both the

radial coordinate r and the spatial coordinates of the dual field theory, xi. The function

U is a function of r only, and is also included for convenience. Thus,

G = G(r, x), F = F (r, x), gij = gij(r, x), U = U(r) . (4.3)

We assume that the solutions have a single black hole Killing horizon located at r = rH .

It will be helpful to introduce another radial coordinate ρ = r/rH , so that the horizon is

located at ρ = 1, and choose

U = r2
H ρ

2 u(ρ) , u(ρ) = 1− ρ1−D . (4.4)

The temperature of the black hole is given by 4πT = (D − 1) rH and we note that

regularity of the metric at the horizon imposes the condition F |ρ=1 = G|ρ=1.

The AdS boundary is located at r →∞, where we demand that

G→ htt(x) , gij → r2
H ρ

2hij(x) , (4.5)

corresponding to studying the dual CFT on the curved background with metric ds2 =

−httdt2 + hijdx
idxj. Equivalently, we are considering the CFT with deformations of the

stress tensor with sources parametrised by htt and hij. We will focus on cases in which the

spatial sections, parametrised by the xi are non-compact with planar topology. Further-

more, we assume the deformations are periodically modulated in the spatial directions,

with associated wave numbers in the xi direction to be an integer multiple of a mini-

mum 2π/Li. Effectively, this means that we can take the xi to parametrise a torus with

xi ∼ xi + Li.

To obtain these holographic lattice solutions one needs to solve non-linear PDEs sub-

ject to these boundary conditions. Some explicit examples have appeared in [54,101] with

the construction in [101] exploiting a residual symmetry leading to solving a system of

ODEs. In this chapter we will be interested in studying the hydrodynamic limit of these
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solutions. More precisely if we suppose k is the largest wave number associated with the

spatial deformations then we are interested in studying the limit ε ≡ k/T � 1. Equiv-

alently, for these black holes we can consider the limits k/rH � 1 or k/s1/(D−2) where s

is the entropy density. In fact, when solving the bulk equations of motion the latter are

more natural.

By directly solving Einstein equations we find that the leading order solution is given

by

ds2 =
(1 + ρ∂ρ lnw)2

ρ2 u(wρ)
dρ2 + r2

Hρ
2 w2

htt(x)

[
−u(wρ)htt(x)dt2 + hij(x)dxidxj

]
, (4.6)

with w(ρ, x) an arbitrary function satisfying

w(ρ, x)→ 1, ρ→ 1 ,

w(ρ, x)→ [htt(x)]1/2, ρ→∞ . (4.7)

This solution solves the Einstein equations in the limit of ignoring spatial derivatives.

It should be viewed as the leading term in an asymptotic expansion in ε, where have

neglected corrections of order ε2 as well as corrections that are non-perturbative in ε.

For the remainder of the chapter we will focus on the case with w = 1 and hence

consider the leading order solution given by

ds2 =
dρ2

ρ2 u(ρ)
+ r2

Hρ
2
[
−u(ρ)dt2 + hij(x)dxidxj

]
. (4.8)

This corresponds to setting htt = 1 and hence studying the dual CFT on the metric

ds2 = −dt2 +hij(x)dxidxj. In fact this is almost without loss of any generality. Indeed we

can incorporate a non-vanishing htt by simply performing a Weyl transformation of this

boundary metric. Since we are considering CFTs the physics will be the same with the

exception that in the case of odd D, i.e. when the CFT is in even spacetime dimensions,

for certain metrics we will need to take into account the conformal anomaly, which will,

in any case, be a sub-leading effect in ε.

Notice that the leading order solution (4.8) is just the standard AdSD black brane

solution but with the flat metric on spatial sections, δij, replaced with the metric hij, which

parametrises the UV deformations of the dual CFT. A corollary, which will be important

in the following, is that the metric on the black hole horizon is given by r2
Hhij(x

i)dxidxj, at

leading order in the ε expansion. This accords with the intuition that at high temperatures

the black hole horizon is approaching the AdS boundary.

It is straightforward to show that (4.8) solves the Einstein equations, to leading order,

after using the radial coordinate ρ and taking the limit k/rH → 0. A simple way to

derive (4.6) from (4.8) is to simply rescale the radial coordinate, ρ → wρ. If w was a
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constant this would give a constant rescaling of the boundary metric. Taking w to be a

function of (ρ, x) satisfying (4.7) leads to a Weyl transformation of the boundary metric

at leading order in the hydrodynamic limit. In particular this transformation introduces

a dρdxi cross term of order ε, but after suitably shifting the xi coordinates one obtains the

solution (4.6) dropping just ε2 corrections (or the corrections that are polynomial in ε). In

general, from (4.6) we see that the metric on the black hole horizon in the hydrodynamic

limit is given by

ds2
H = r2

H

hij
htt
dxidxj . (4.9)

In particular, we emphasise that it is invariant under Weyl transformations of the bound-

ary metric hµν → eγhµν .

3 Thermal currents from a DC source

The linear response that arises from the application of a DC thermal gradient can be

calculated within holography by studying a suitable linearised perturbation of the gravi-

tational background. Having gone through the technical details in chapter 2, here we will

summarise the key ideas, applicable to all holographic lattices, before turning to the long

wavelength limit. In particular, we show how the local thermal currents can be obtained

at leading order in the hydrodynamic limit.

3.1 Review of general DC response via Stokes equations

As first discussed in [66] it is convenient to introduce the DC source by considering

the following linearised perturbation about the general background holographic lattice

geometry given in (4.2) via:

δds2 = −2UGtζidtdx
i + δgµνdx

µdxν , (4.10)

where xµ = (t, r, xi). The key piece here is the linear in time source that is parametrised

by the one-form ζ ≡ ζi(x)dxi, which just depends on the spatial coordinates4 and is

closed dζ = 0. It is important to emphasise that ζ is a globally defined one-form on the

boundary spacetime and can easily be shown to parametrise a thermal gradient. Indeed

if we write ζ = dφ(x), for some locally defined function φ(x), after making the coordinate

transformation t→ t(1− φ) the linear perturbation appears in the perturbed metric as

ds2 + δds2 = −(1− φ)2UGdt2 +
F

U
dr2 + gijdx

idxj + δgµνdx
µdxν , (4.11)

4Note that if we write (x) the argument will always refer to the spatial field theory coordinates.
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and locally, we identify φ(x) = − lnT (x) so that ζ = −T−1dT . One might consider, for

example, φ(x) = ζ̄ix
i, with ζ̄i constant, and then we have T−1∂iT = −ζ̄i.

The remaining part of the perturbation, δgµν(r, x), is whatever is required in order

to get a consistent set of equations. The perturbation components δgµν are taken to be

globally defined functions of the spatial coordinates5. They are chosen to suitably fall

off fast enough at the AdS boundary to ensure that the only source being applied is

parametrised by ζ. The boundary conditions of δgµν at the black hole horizon are chosen

so that the full perturbation given in (4.10) is regular. It is worth commenting that a

helpful aspect of working with the globally defined one-form and time coordinate as in

(4.10) is that it makes it clear that δgµν(r, x) should be globally defined functions. Indeed,

a priori, it is not clear what conditions one should impose on the spatial dependence of

the perturbations δgµν in (4.11) given the presence of the locally defined function φ.

We now introduce the bulk thermal current density, Qi(r, x), depending on both the

radial direction and the spatial directions of the field theory, defined by

Qi(r, x) ≡ 1

16πGN

G3/2U2

F 1/2

√
gdg

ij

(
∂r

(
δgjt
GU

)
− ∂j

(
δgrt
GU

))
, (4.12)

where
√
gd refers to the volume element of the d-dimensional spatial metric gij(r, x) in

(4.2). By evaluating this at the AdS boundary we obtain

Qi
QFT (x) ≡ lim

r→∞
Qi(r, x) , (4.13)

where Qi
QFT (x) is the local thermal current density of the dual quantum field theory

given by the stress-tensor, Qi
QFT (x) = −

√
hT it(x), which is induced by the DC thermal

gradient. We also define the local currents at the black hole horizon via

Qi
BH(x) ≡ lim

r→rH
Qi(r, x) . (4.14)

In chapter 2, we demonstrated that the bulk thermal currents satisfy a differential equation

which can be integrated in the radial direction leading to the following important relation:

Qi
QFT = Qi

BH −
1

16πGN

∂j

∫ ∞
rH

dr

(
(GF )1/2√gdgikd g

jl
d

(
(UG)∂k

(
δglt
GU

)
− k ↔ l

))
.

(4.15)

Notice that the second term on the right hand-side of this expression is a magnetisation

current6 and is trivially conserved.

5Note that in this paper we are considering solutions in which there is a single black hole horizon and
in which the spatial coordinates continue from the boundary to the horizon. More general solutions are
discussed in [1, 97,98].

6A magnetisation current is a current that can be expressed in the form J i = ∂jM
ij , where M ij is an
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Next, in a radial Hamiltonian formulation of the equations of motion, by evaluating

the constraints at the black hole horizon, one can show that a subset of the perturbation

is governed by a system of forced linearised Navier-Stokes equations, also called Stokes

equations, on the horizon:

−2∇Hi∇H
(iv j) = 4πTζj − ∂jp , ∇H

i v
i = 0 , (4.16)

where

vi = −δgit|H , p = −
(
δgrt

4πT

G
+ δgitg

ij∇j lnG
)
|H , (4.17)

and here ∇H is the Levi-Civita connection associated with spatial metric on the horizon

gij|H . Furthermore, the local thermal currents on the horizon are given by

Qi
BH =

T

4GN

√
gd|HgijHvj . (4.18)

It should be emphasised that, in general, the fluid on the horizon is an auxiliary fluid

and only indirectly related to observables in the boundary CFT. If we solve the Stokes

equations on the horizon geometry, we obtain the local thermal currents Qi
BH(x) from

(4.18). We can then obtain the physical local thermal currents Qi
QFT (x) from (4.15), but

only if we have solved the full radial dependence of the perturbation in the bulk.

However, still quite generally, if we have solved the Stokes equations we can easily

obtain the total current flux Q̄i
QFT and hence the DC thermal conductivity matrix defined

via Q̄i
QFT = Tκij ζ̄j. To see this we define the total current flux, or equivalently, the zero

mode of the current, via

Q̄i
QFT ≡

∫
Qi
QFT , (4.19)

where7
∫
≡ (ΠiLi)

−1
∫

Πidx
i refers to an average integral over a period in the spatial

directions. Defining Q̄i
BH in a similar way, we can immediately deduce from (4.15) that

Q̄i
QFT = Q̄i

BH .

3.2 DC thermal current response for k/T � 1

We now consider the universal results for holographic lattices that we just summarised

in the context of the hydrodynamic limit. We will consider a boundary metric given by

antisymmetric magnetisation density. Black holes with magnetisation currents arise at finite charge den-
sity in the context of phases in which translations and time reversal invariance are broken spontaneously
- for an example see [133].

7This way of defining the zero modes is widely used. One could also define them by averaging with∫
Πidx

i
√
h.
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ds2 = −dt2 + hij(x)dxidxj. There are two key simplifications.

The first is that when ε = k/T � 1 the black hole horizon metric can be expressed

explicitly in terms of the physical UV deformation of the dual CFT. Indeed, from the

leading order form of the solution given in (4.8) we deduce that the black hole horizon

metric is given by r2
Hhijdx

idxj, where hij(x) is the UV deformation of the dual CFT.

Thus, we know the explicit geometry for which we need to solve the Stokes equations

(4.16) in order to obtain the local currents on the black hole horizon Qi
BH(x).

The second simplification is that the second term on the right hand side of (4.15) will

be suppressed by order ε2 and hence, at leading order, we deduce that the local currents

at the horizon are the same as those in the dual field theory:

Qi
QFT (x) = Qi

BH(x) +O(ε2) . (4.20)

Putting these two facts together we draw the following important conclusion. Consider

a holographic lattice describing a CFT on a curved manifold with arbitrary spatial metric

hij(x). After applying a DC thermal source, parametrised by the closed one-form ζ, at

leading order in ε we can obtain the local thermal currents Qi
QFT (x) of the dual field

theory by solving the Stokes equations (4.16) using the metric r2
Hhijdx

idxj where rH =

4πT/(D− 1). In the next section we will show how to obtain the full stress tensor of the

fluid at leading order in ε.

It is worth highlighting that in the hydrodynamic limit we are therefore solving the

covariantised Navier-Stokes equations with metric r2
Hhijdx

idxj and with constant viscosity

given by η = rD−2
H . This should be contrasted with the speculation in section 4 of [116] that

within holography one should consider spatially dependent viscosity and a conformally

rescaled metric on the horizon. In fact it is also worth recalling here a point made earlier

that a Weyl transformation of the boundary metric hµν leads to the same black hole

horizon metric, as we see from (4.9).

We conclude this section by deriving the scaling behaviour of the thermal conductivity

in the hydrodynamic limit. We can remove all dimensionful quantities from the Stokes

equations by scaling x̂ = kx, p̂ = kp, ζ̂ = Tζ and v̂i = k2hijvj. Indeed the Stokes

equations (4.16) can then be written in terms of the hatted variables as well as the UV

metric deformation hij. We thus deduce that v̂i is related to ζ̂i via a dimensionless matrix.

From (4.18), and recalling that the metric on the horizon is r2
Hhijdx

idxj, we deduce that

the heat current scales as scaling Qi
QFT ∝ TD−1/k2

√
hv̂i and thus we deduce that in the

hydrodynamic limit we have

κ ∝ s

Tε2
, (4.21)

where s ∝ TD−2 is the entropy density. Clearly at fixed T , this is parametrically large as

ε→ 0 as one expects for weak momentum dissipation.
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4 The full perturbation for the thermal DC source

In this section we examine the full perturbation that is induced by the thermal DC source

for a holographic lattice in the hydrodynamic limit ε = k/T � 1. This will allow us to

obtain not only the local heat currents that are produced but also the full local stress

tensor of the dual field theory. In addition, this analysis will display in more detail the

structure of the perturbative expansion in ε.

The strategy is to first solve the full radial dependence of the linearised perturbation

about the background geometry that is associated with a DC thermal source parametrised

by the closed one-form ζ. At leading order in ε we obtain a local stress tensor that takes

the form of constitutive relations for a fluid. Imposing the boundary Ward identities, or

equivalently the constraint equations with respect to a radial Hamiltonian decomposition,

then implies that the stress tensor satisfies the Stokes equations given in (4.16). The

details of how the perturbation scales with ε is somewhat subtle as we shall see.

4.1 The thermal gradient source on the boundary

We begin by considering a static boundary metric of the form ds2 = −dt2 + hij(x)dxidxj,

where the spatial metric hij(x), which depends periodically on the spatial coordinates xi,

parametrises the holographic lattice. As above, the thermal gradient source can be intro-

duced by writing ζ = dφ(x), for some locally defined function φ(x), and then considering

the perturbed boundary metric:

ds2 = −(1− φ)2dt2 + hijdx
idxj . (4.22)

We identify φ(x) = − lnT (x) so that ζ = −T−1dT . If we make the coordinate transfor-

mation t→ t+ tφ(x) we obtain

ds2 = −dt2 + hijdx
idxj − 2tζidx

idt , (4.23)

and we see the ‘linear in time source’. Note that the perturbed metric is now expressed

in terms of the globally defined one-form ζ and not the locally defined function, φ(x).

In carrying out the calculations presented below, we found it convenient to work with

a Weyl transformed version of this metric, with Weyl factor given by (1+p/(4πT ))2 where

p(x) is a globally defined (periodic) function. At linearised order, we therefore consider

ds2 = (1 +
2p

4πT
)
[
−dt2 + hijdx

idxj
]
− 2tζidx

idt . (4.24)
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If we now employ the additional coordinate transformation t→ t(1− p/(4πT )) we obtain

ds2 = −dt2 + (1 +
2p

4πT
)hijdx

idxj − 2t[ζi − (4πT )−1∂ip]dx
idt . (4.25)

An appealing feature of using these coordinates is that the thermal gradient source is now

appearing in the combination ζi − (4πT )−1∂ip, as in the Stokes equations (4.16).

We will employ one further coordinate change by taking xi → xi − thijξj, where

ξj = ξj(x), to finally write the perturbed metric in the form

ds2 = −dt2 + hijdx
idxj − 2t

(
ζi − (4πT )−1∂ip

)
dxidt

− 2
(
ξj dt+ t∇(iξj) dx

i
)
dxj +

2p

4πT
hijdx

idxj . (4.26)

Despite obscuring the fact that the perturbation corresponds to a simple thermal gradient,

we found this way of writing things helpful in extending the perturbation into the bulk

as we discuss next.

4.2 The linearised perturbation: solving the radial equations

Writing the source on the boundary in the form given in (4.26) is rather non-intuitive.

However, it has two virtues when we extend it into the bulk. The first is that it allows

us to work in a radial gauge with δgrt = δgri = 0. The second is that it helps to obtain a

perturbation that is regular at the black hole horizon.

Recall from section 2 that the bulk background solution, at leading order in ε, with

boundary metric ds2 = dt2 + hijdx
idxj, is given by

ds2 =
dρ2

ρ2 u(ρ)
+ r2

Hρ
2
[
−u(ρ)dt2 + hij(x

i)dxidxj
]
. (4.27)

Furthermore, this has corrections at order ε2. We begin by considering the following bulk

linearised perturbation that is induced by the applied source ζi(x)dxi:

δds2 = −2 r2
Hρ

2 u t [ζi − (4πT )−1∂ip] dx
i dt (4.28)

− 2r2
Hρ

2 (ξj dt+ t∇(iξj) dx
i) dxj (4.29)

+ r2
Hρ

22
p

4πT
hijdx

idxj (4.30)

− 2(ρ3−DVj + . . . ) dxj dt (4.31)

+ ρ2 lnu

4πT
sij dx

i dxj . (4.32)

Here p, ξi, Vi, and sij are all periodic functions of the boundary spatial coordinates xi.

In this section we will raise and lower indices using the UV boundary metric hij and ∇ is

the associated Levi-Civita connection. We also assume that hijsij = 0.
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We claim that each of the five lines separately solves the radial equations of motion

arising in the Einstein equations at leading order in ε, with corrections to each line of order

ε2. However, an important subtlety, which we will carefully discuss in more detail, is that

to ensure the perturbation is well defined at the black hole horizon when we consider

these perturbations altogether, we will have to determine the order in the ε expansion at

which the various terms in (4.28)-(4.32) first appear.

We now discuss the various terms in more detail. The first three lines (4.28)-(4.30)

are the radial extensions of the boundary source terms that we discussed in (4.26). The

first line (4.28) is almost the standard linear in time perturbation of the metric that we

saw in (4.10). By shifting the time coordinate one can then easily show that this solves

the Einstein equations, with corrections of order ε2. Notice that ζi − (4πT )−1∂ip appears

rather than just ζi as in (4.10). This change, which is associated with our source terms

given in (4.26), allows us to work in a radial gauge.

The second line (4.29) can locally be generated from the background solution (4.27)

via the coordinate transformation

xi → xi − t hijξj , (4.33)

and it therefore satisfies, trivially, the equations of motion, with corrections of order ε2.

The third line (4.30) can also be generated from the background solution (4.27). Indeed

the spatial metric in (4.27) was arbitrary and so the perturbation (4.30) is simply obtained

by taking hij → (1 + 2 p
4πT

)hij.

Having explained how the source terms given in (4.26) extend into the bulk, we now

discuss the last two lines (4.31), (4.32), which are needed in order to obtain a consistent

perturbed metric. Neither of these lines are associated with source terms in the boundary

theory; instead they are associated with the response to the DC thermal gradient. Both

(4.31) and (4.32) are solutions of Einstein’s equations at leading order in ε. We will discuss

(4.31) in detail in appendix C.1 since, as we discuss below, sub-leading corrections to this

perturbation will play an important role when we analyse regularity of the perturbation

at the black hole event horizon. We have explicitly added the dots in (4.31) to emphasise

this point.

For the line (4.32) one requires the condition hijsij = 0 and, ignoring spatial derivatives

of sij, one finds the given radial dependence after solving the ij component of the Einstein

equations. Indeed if we consider the ansatz δds2 = A(ρ)sij(x) then we find that the

function A(ρ) satisfies

∂ρ[ρ
Du∂ρ(ρ

−2A)] = 0 , (4.34)

and we have chosen the solution A ∝ ρ2 lnu in order that it has no source at infinity.

Corrections are again of order ε2.
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Let us now examine the behaviour of the perturbed metric at at the AdS boundary

and at the black hole horizon. It is clear by construction that as we approach the AdS

boundary at ρ→∞, the perturbation (4.28)-(4.32) gives rise to precisely the source terms

in (4.26), associated with a thermal gradient parametrised by the closed one-form ζ.

To examine the issue of regularity on the horizon, located at ρ = 1, we employ the

Eddington-Finklestein ingoing coordinate v ∼ rH(t+lnu/(4πT )). We find that we should

impose

ξj = −r−2
H Vj, sij = 2∇(iVj) , (4.35)

and, after recalling that we imposed hijsij = 0, the latter implies the incompressibility

condition ∇iV
i = 0. After making these identifications we see that the metric is almost

regular at the horizon, but there is a remaining singular term of the form

−2rH
lnu

4πT
(ζi − (4πT )−1∂ip) dx

idρ , (4.36)

as ρ→ 1.

Before returning to this crucial issue we see that writing the boundary metric in

the form (4.26), which arose from a boundary coordinate transformation, implies that

additional modes had to be activated in the bulk, namely (4.31) and (4.32) with (4.35),

in order to get a regular perturbation at the horizon. A closely related fact is that the

boundary coordinate transformation leading to (4.26) can be extended smoothly into the

bulk. Specifically, consider the bulk coordinate transformations

t→ t (1 + (4πT )−1p) + g(ρ, xi) ,

xi → xi + t hijξj + gi(ρ, xi) . (4.37)

acting on the perturbed metric (4.27) combined with (4.28)-(4.32) If g and gi vanish fast

enough as ρ→∞ the conformal boundary will be given in the form (4.24). Furthermore,

the coordinate transformations are smooth as we approach the horizon, provided that we

choose g(ρ, xi)→ p lnu
(4πT )2

and gi(ρ, xi)→ hijξj
lnu
4πT

as ρ→ 1.

We now return to the remaining divergence (4.36) at the horizon. To cancel this it is

necessary to consider sub-leading terms in the expansion in ε, both for the background

and for the perturbation. As we discuss in more detail in appendix C.1, there is a delicate

cancelation between the sub-leading terms in the ε expansion of (4.31) (denoted by dots)

and (4.36). We find that regularity of the perturbation at the horizon implies that the
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leading order pieces of the perturbation have a dependence on ε given by

Vi(x) = ε−2v
(0)
i (x) ,

p(x) = ε−1p(0)(x) , (4.38)

with v
(0)
i and p(0) the same order as 4πTζi. We emphasise that this behaviour is fixed by

regularity at the horizon.

Furthermore, the first line (4.28) and the fourth line (4.31) of the perturbation read

δds2 =− 2 r2
Hρ

2 u t (ζi − (4πT )−1ε−1∂ip
(0)) dxi dt ,

− 2ε−2ρ3−D(v
(0)
i (x) + ε2V

(2)
i (ρ, x)) dxj dt , (4.39)

where an explicit expressions for V
(2)
i (ρ, x)is given in appendix C.1 (see (C.27)). Note

that we have only explicitly written the one sub-leading term, V
(2)
i , which is relevant to

the discussion here. As we approach the horizon the sub-leading term behaves as

V
(2)
i (ρ, x)→ r2

H

(4πT )2
u log(ρ− 1)

(
− 2

(εrH)2
∇i∇(iv

(0)
j)

)
, ρ→ 1 . (4.40)

We now see that the singular term (4.36) in the combined perturbation, arising from

the first line in (4.39), is cancelled by the sub-leading term in the second line of (4.39)

providing that v
(0)
i satisfies the Stokes equations,

− 2

(εrH)2
∇i∇(iv

(0)
j) = 4πTζj − ε−1∂jp

(0) . (4.41)

It is satisfying to see that these equations are none other than the leading order expansion

in ε of (4.16), where we should recall that the black hole horizon metric is given, at leading

order in ε, by (rH)2hijdx
idxj. We thus conclude that there is a subtle interplay between

sub-leading terms in the expansion, regularity of the perturbation at the horizon and the

Stokes equations.

4.3 The boundary stress tensor

We now calculate the holographic stress tensor for the dual field theory at leading order in

the ε expansion. We also present the sub-leading contributions to the local heat current,

based on the calculations carried out in appendix C.1.

We will express the result for the stress tensor in the coordinates and Weyl frame for

the boundary metric given by

ds2 = −dt2 + hijdx
idxj − 2tζidx

idt . (4.42)
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To achieve this we first carry out the coordinate transformations8

t→ t (1 + (4πT )−1p) ,

xi → xi + t hijξj . (4.43)

This leads to a perturbed metric which asymptotes to the boundary metric in (4.24)

with an overall Weyl factor given by (1 + 2p
4πT

). We can move to Fefferman-Graham type

coordinates, which are a slight modification of those for AdS-Schwarzschild, and also

eliminate the boundary Weyl factor, via

ρ =
(1 + 1

4
[rHz(1 + (4πT )−1p)]D−1)

2
D−1

rHz(1 + (4πT )−1p)
,

≈ 1

rHz(1 + (4πT )−1p)

(
1 +

1

2(D − 1)
[rHz(1 + (4πT )−1p)]D−1

)
, ρ→∞ . (4.44)

In these coordinates we have gzz = 1/z2 and the AdS boundary is now located at z = 0.

Note that to the order in ε we are working with, we can drop spatial derivatives of p.

The boundary conformal metric is now given by (4.42) and by determining the terms

with factors zD−3/(D− 1) a consideration of [134] then implies that the stress tensor has

components,

16πGNTtt = (D − 2)rD−1
H + (D − 2)rD−2

H p ,

16πGNTij = rD−1
H hij + rD−2

H

(
−r−2

H 2∇(iVj) + phij
)
,

16πGNTit = rD−1
H

[
(D − 2)ζit− (D − 1)r−2

H Vi
]
. (4.45)

Recall from our discussion above that Vi = ε−2v
(0)
i (x), p = ε−1p(0)(x) and we recall that

rH = 4πT/(D − 1). Clearly the perturbed stress tensor takes the form of constitutive

relations for a fluid with source parametrised by ζi. We should also note that we have

already imposed the incompressibility condition ∇iV
i = 0.

When the constraint equations, in a radial Hamiltonian decomposition of Einstein

equations, are imposed at the AdS boundary they imply that the stress tensor is trace-

less, T µµ = 0, and also satisfies the Ward identity ∇µT
µν = 0, both with respect to

the deformed boundary metric (4.42). The first of these is already satisfied due to the

incompressibility condition

∇iV
i = 0 , (4.46)

8Note that since we are only interested in the boundary expansion here we don’t need to consider the
g and gi terms in (4.37).
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and the second gives rise to the linearised Navier-Stokes equations:

− 2

(rH)2
∇i∇(iV j) = 4πTζj − ∂jp . (4.47)

exactly as in (4.41).

To summarise, at leading order in the ε expansion, after applying a DC thermal

gradient source parametrised by the closed one-form ζ, we can obtain the full, local stress

tensor response, given in (4.45), after solving the Stokes equations (4.47) on the curved

manifold with metric hij. Notice, in particular, from the expression for the stress tensor

given in (4.45) we find that the local heat current of the dual field theory is given by

Qi
QFT = −

√
hT it ,

=
1

4GN

TrD−4
H

√
hhijVj ,

=
1

4GN

TrD−4
H ε−2

√
hhijv

(0)
j , (4.48)

where the index was raised using the inverse of the perturbed metric (4.42). This is just

the local heat current on the horizon given in (4.18) and hence we have demonstrated

that to leading order Qi
QFT (x) = Qi

BH(x) as stated in (4.20).

In the previous sub-section we discussed how certain sub-leading terms in the ε ex-

pansion are required to cancel divergences at the horizon. In appendix C.1 we show that

these lead to the following sub-leading contribution to the heat currents:

Qi
QFT = Qi

BH +
1

16πGN

rD−3
H (ε rH)−2

√
h∇k∇[kv

i]
(0) . (4.49)

Observe that the right hand side is order ε0 because of the two spatial derivatives and

hence is lower order. Also notice that the right hand side of (4.49) is a total derivative

(a magnetisation current, in fact) and hence this result is clearly consistent with the

universal result of [97] that the total heat current flux of the field theory is always the

same as the total heat current flux on the boundary, Q̄i
BH = Q̄i

QFT .

5 Comparison with fluid-gravity approach

In this section we would like to compare our linearised expansion of the response to a DC

source with the fluid-gravity approach discussed in [129].
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We begin by recalling that our regular solution is given by

ds2 = r2
H ρ

2
(
−u dt2 + hij dx

idxj
)

+
dρ2

ρ2u
− 2r2

Hρ
2u t

(
ζi − (4πT )−1 ∂ip

)
dxidt

− 2ρ3−D
(
Vj + V

(2)
j

)
dxjdt+ 2 ρ2 lnu

4πT
∇(iVj) dx

idxj

+ 2ρ2
(
Vjdt+ t∇(iVj) dx

i
)
dxj , (4.50)

where we have explicitly added the one sub-leading term V
(2)
j (ρ, x) which we have seen

is required to obtain a regular solution at the black hole horizon at leading order in the

expansion. Recall that we have imposed ∇iV
i = 0.

We next carry out the coordinate transformations

t→ v − R, R = −
∫ ∞
ρ

dρ

rHρ2u
,

xi → xi − r−2
H v V i , (4.51)

to obtain the metric

ds2 =r2
Hρ

2
(
−dv2 − 2v

(
ζj − (4πT )−1 ∂jp

)
dxjdv + hij dx

idxj
)

− 2rHdρ
[
−dv +

(
r−2
H Vj − v

(
ζj − (4πT )−1 ∂jp

))
dxj
]

+ ρ−D+3 r2
Hdv

[
dv − 2

(
r−2
H Vj − v

(
ζj − (4πT )−1 ∂jp

))
dxj
]

+ 2rHρ
2F (ρ)

(
r−2
H ∇(iVj)

)
dxidxj

+ 2r2
Hρ

2uR

[(
ζj − (4πT )−1 ∂jp

)
− ρ1−D

r2
HuR

V
(2)
j

]
dxj

(
dv − dρ

rHρ2u

)
, (4.52)

where

F (ρ) ≡ rH

(
lnu

4πT
−R

)
. (4.53)

We note that this function F is the same function defined below equation (4.1) of [129].

We now perform another coordinate transformation

xi → xi − hij
∫ ∞
ρ

dρ

[
R

rHρ2

(
ζj − (4πT )−1 ∂jp

)
− ρ−1−D

r3
Hu

V
(2)
j

]
, (4.54)
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to finally write our metric in the form

ds2 =r2
Hρ

2
(
−dv2 − 2v

(
ζj − (4πT )−1 ∂jp

)
dxjdv + hij dx

idxj
)

− 2rH dρ
[
−dv +

(
r−2
H Vj − v

(
ζj − (4πT )−1 ∂jp

))
dxj
]

+ ρ−D+3 r2
Hdv

[
dv − 2

(
r−2
H Vj − v

(
ζj − (4πT )−1 ∂jp

))
dxj
]

+ 2rHρ
2F (ρ)

(
r−2
H ∇(iVj)

)
dxidxj

+ 2r2
Hρ

2uR

[(
ζj − (4πT )−1 ∂jp

)
− ρ1−D

r2
HuR

V
(2)
j

]
dxjdv , (4.55)

where here we have dropped covariant derivatives of ζ, V (2) and second derivatives of p

as these would be even higher order corrections. Notice that as we approach the horizon

at ρ = 1 there is a cancellation in the last line after using (4.40) as well as going on-shell

by imposing the Stokes equations (4.41).

We now consider the formalism of [129]. The basic idea is construct an expansion

for the D-dimensional metric using a boundary (D− 1)-vector uµ combined with a radial

coordinate r. An expansion for the boundary stress tensor, T µν , is constructed in terms of

uµ and the boundary metric, hµν , and then it is shown that the Ward identity ∇µT
µν = 0

implies that the bulk Einstein equations are solved order by order in the expansion. An

elegant feature of the analysis in [129] is the use of a Weyl covariant formalism.

Prompted by (4.55), let us consider the boundary metric to be given by

hµνdx
µdxν = −dv2 − 2v

(
ζj − (4πT )−1 ∂jp

)
dxjdv + hij dx

idxj , (4.56)

and we note that we should identify hµν with gµν in the notation of [129]. With some

foresight we choose the (D−1)-dimensional boundary fluid vector uµ to have components

uv = −1 , uj = −v
(
ζj − (4πT )−1 ∂jp

)
+ δuj . (4.57)

It is now straightforward to calculate the components of the Weyl gauge-field Aµ, defined

in eq. (2.2) of [129], and we find, to the order we are working to,

Av =
1

D − 2
∇iδu

i , Aj = −
(
ζj − (4πT )−1 ∂jp

)
. (4.58)

We can calculate the Weyl covariant derivative of uµ, as defined in eq. (2.3) of [129] and

after writing Dµuν = σµν + ωµν , we obtain the the symmetric shear strain tensor σµν and

the antisymmetric vorticity tensor ωµν . The components of σµν are given by

σvv = 0, σvi = 0, σij = ∇(iδuj) −
hij

D − 2
∇kδu

k , (4.59)

where the covariant derivative on δu, here and below, is with respect to hij. The only
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non-vanishing component of the vorticity tensor is given by ωij = ∇[iδuj], but it does not

contribute to the hydrodynamics at the order we are working with.

We can now calculate the stress tensor as given eq. (4.6) of [129]. Again to the order

we are working with we have

Tµν =
1

16πGN

p(hµν + (D − 1)uµuν)− 2ησµν , (4.60)

where p = rD−1
H and constant9 shear viscosity η = rD−2

H . Explicitly we obtain the compo-

nents

16πGNTvv = rD−1
H (D − 2) ,

16πGNTvi = rD−1
H [(D − 2)v

(
ζj − (4πT )−1 ∂jp

)
− (D − 1)δui] ,

16πGNTij = rD−1
H hij − 2rD−2

H

(
∇(iδuj) −

hij
D − 2

∇kδu
k

)
. (4.61)

The Ward identity ∇µT
µν = 0 now gives, at leading order, both the incompressibility

condition and the linearised Navier-Stokes equations:

∇iδu
i = 0, −2∇i∇(i δu j) = 4πTζj − ∂jp . (4.62)

Given this data, we can now obtain the bulk ‘fluid-gravity’ metric given by eq. (4.1)

of [129]. To the order we are considering, and after writing

δui = r−2
H Vi , (4.63)

we find that it takes the form

ds2 =r2
Hρ

2
(
−dv2 − 2v

(
ζj − (4πT )−1 ∂jp

)
dxjdv + hij dx

idxj
)

− 2rH dρ
[
−dv +

(
r−2
H Vj − v

(
ζj − (4πT )−1 ∂jp

))
dxj
]

+ ρ−D+3r2
Hdv

[
dv − 2

(
r−2
H Vj − v

(
ζj − (4πT )−1 ∂jp

))
dxj
]

+ 2rHρ
2 F (ρ)r−2

H ∇(iVj) dx
idxj

− 2rHρ
(
ζj − (4πT )−1 ∂jp

)
dxjdv. (4.64)

By comparing (4.64) with (4.55) we find precise agreements in the first four lines. The

difference in the last line will be accounted for, on shell, by contributions coming from

9The formalism of [129] is Weyl covariant. In particular, we can make a Weyl transformation of the
boundary metric (4.56) to introduce a non-vanishing htt. Under this Weyl transformation the stress
tensor (4.61) transforms with a Weyl factor and it may seem that the shear viscosity becomes spatially
dependent. However, we will still be led to exactly the same Navier-Stokes equations with constant shear
viscosity. This is consistent with the earlier discussion of the Weyl invariance of the black hole horizon
metric given in (4.9).
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higher order terms10 in the expansion.

To close this section we present an equivalent way of describing the DC linear response

from the fluid-gravity perspective. Consider, carrying out the simple coordinate transfor-

mation on the boundary metric (4.56), v → (1 − ψ)v with ψ a locally defined function

satisfying

dψ =
(
ζi − (4πT )−1 ∂ip

)
dxi . (4.65)

In the new coordinates the boundary metric takes the form

hµνdx
µdxν = −(1− 2ψ)dv2 + hij dx

idxj , (4.66)

which is another way to introduce the DC thermal gradient. The fluid velocity is then

given by the more intuitive expressions

uv = −(1− ψ) , uj = δuj , (4.67)

while the stress tensor takes the form

16πGNTvv = rD−1
H (D − 2)(1− 2ψ),

16πGNTvi = −rD−1
H (D − 1)δui ,

16πGNTij = rD−1
H hij − 2rD−2

H

(
∇(i δu j) −

hij
D − 2

∇iδu
i

)
. (4.68)

Imposing the Ward identity ∇µT
µν = 0 again gives the incompressibility condition and

the linearised Navier-Stokes equations (4.62). This fluid can then be used to construct the

bulk metric, in the hydrodynamic limit, using the formulae in [129]. It should be noted,

however, that in these coordinates the bulk metric is constructed from the local function

ψ and the regularity of the solution is not immediately transparent.

It is interesting to point out that if we take the boundary metric (4.66), but allow ψ to

also depend on time, we can still take the fluid velocity as in (4.67) and the stress tensor

is still given as in (4.68). The Ward identities still imply the incompressibility condition

∇iδu
i = 0 but now we obtain the linearised Navier-Stokes equation

4πT ∂tδui − 2∇j∇(j δu i) + ∂ip = 4πTζi . (4.69)

By employing the scaling discussed at the end of section 3.2, we deduce that this equation

can be used to consider time-dependence that is associated with frequencies ω ∼ εk ∼ ε2T .

10For example, there will be contributions coming from the last term in the third line of eq. (4.1)
of [129], proportional to u(µP

λ
ν)Dασ

α
λ that are proportional to ∇k∇(kVi)dvdx

i and hence proportional

to
(
ζj − (4πT )−1 ∂jp

)
dxjdv on-shell.
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This indicates that the poles of the current-current correlator will be order ε2 for fixed T ,

on the negative imaginary axis in the complex ω plane and hence, combining with (4.21)

we infer that as ε → 0 we have weak momentum dissipation and an associated Drude

peak.

6 Discussion

In this chapter, we have discussed the DC response of holographic lattices in theories of

pure gravity, in a hydrodynamic limit. We have shown that by solving the linearised,

covariantised Navier-Stokes equations for an incompressible fluid one can extract out

the local heat currents of the dual field theory as well as determining the leading order

correction. In addition we also determined the full local stress tensor response at leading

order. For simplicity we only considered static holographic lattice black hole geometries.

However, our results can be extended to the stationary case, corresponding to having local

momentum current deformations in the dual CFT, using the results of [98]. In particular,

by solving the generalised Navier-Stokes equations of [98] with specific Coriolis terms,

one can extract the local transport heat currents. The effects of the Coriolis term could

give a sharp diagnostic to determine the presence of such magnetisation currents in real

systems.

We have focussed on holographic lattices that are periodic in non-compact spatial

dimensions. In particular, in the limit that ε→ 0 we obtain the AdS-Schwarzschild black

brane geometry. Our analysis can easily be adapted to lattices that are associated with the

AdS-Schwarzschild black holes with hyperbolic horizons. An interesting feature is that by

taking suitable quotients of the hyperbolic space one can study DC thermal conductivities

on higher genus Riemann surfaces. By contrast one cannot use AdS-Schwarzschild black

holes with spherical horizons in the same way because of the absence of one-cycles to set

up a DC source (recall that the DC source was parametrised by a closed one-form ζ).

For holographic lattices we have emphasised that the hydrodynamic limit is, in general,

distinct from the perturbative lattices analysed in chapter 2, and [1, 97]. The hydrody-

namic limit in this chapter corresponds to an expansion in k/T (or k/s1/(D−2)), where k

is the largest wave number of the UV deformation, while for the perturbative lattice one

expands in a dimensionless parameter λ associated with the amplitude of the UV defor-

mation. Despite the differences in the limits, there are some similarities. In this chapter,

by demanding regularity of the perturbation at the black hole horizon we saw that at

leading order Vi = ε−2v
(0)
i and p = ε−1p(0), while in [1, 97] there was an analogous expan-

sion with ε replaced with λ. In both cases the DC conductivity is parametrically large

and there is weak momentum dissipation. However, in the case of perturbative lattices

the leading order solution to the Stokes equations is spatially homogeneous (i.e. constant)

on the torus, while in the hydrodynamic limit, the leading order solution generically has
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a non-trivial local structure.

We have also discussed how our results are related to the fluid-gravity approach and

in particular the general results of [129] who examined CFTs on boundary manifolds with

arbitrary metrics. We find that the results are the same, as one would expect. This

therefore provides a good sanity check for the results of the previous chapters in the

hydrodynamic limit.

We saw that using the fluid-gravity formalism one can rather easily obtain the result

that the local heat current of the dual field theory can be obtained by solving Stokes

equations. However, it should be pointed out that this approach obscures the fact that

the boundary heat current is equal to the heat current at the horizon, as we have shown

to be the case in section 3. Moreover, we note that extracting the universal result for

holographic lattices of [1, 97, 98] concerning Navier-Stokes equations on the black hole

horizon, as an exact statement in holography, is highly non-trivial in the fluid-gravity

expansion. In essence this is because the Ward identities are imposed at the AdS boundary

in the fluid-gravity approach, while to get the Navier-Stokes equations the constraints

should be imposed on the black hole horizon. In effect, to obtain the result of [1, 97, 98],

one would need to sum up an infinite expansion from the fluid-gravity point of view.

We also note that there is not an existing general fluid-gravity formalism that can

be deployed for studying the hydrodynamic limit of holographic lattices in more general

theories of gravity coupled to various matter fields. By contrast it is rather clear how

some results of this paper can be generalised. For example, suppose we have a theory of

gravity coupled to a massless scalar field with no potential in the bulk. Such a scalar is

dual to an exactly marginal operator in the dual CFT. If we consider holographic lattices

with UV metric deformations, hij(x), as well as UV scalar deformations, φ(x), then the

metric on the horizon will be r2
Hhij(x), as we discussed in this paper, while the scalar field

on the horizon will be given by the UV function φ(x). We can now obtain the local heat

currents on the horizon, and hence for the dual field theory in the hydrodynamic limit,

by solving the generalised Navier-Stokes equations on the horizon with the scalar viscous

terms derived in [1]:

−2∇i∇(iv j) + (vi∇iφ)∇jφ = 4πTζj − ∂jp , ∇iv
i = 0 , (4.70)

and metric r2
Hhij.

Consider now a theory of gravity coupled to a scalar field that is dual to a relevant

operator with dimension ∆ < D− 1. At the AdS boundary the scalar field will behave as

φ ∼ φsφ̄(x)r∆−D+1 where φs is a dimensionful source amplitude and φ̄(x) is a dimensionless

function. By taking the hydrodynamic limit we again find a horizon metric r2
Hhij. By

analysing the radial behaviour of the scalar (as in section 3.3 of [66]), we can determine

that at the black hole horizon the scalar field will be given by cφsT
∆−D+1φ̄(x), where c is
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a numerical constant. We can then study the DC response using (4.70).

It is interesting to point out that if we consider the high temperature limit with

both ε � 1 and λ ≡ φsT
∆−D+1φ̄(x) � 1, then providing that there is also momentum

dissipation arising from a spatially dependent metric, it is clear from (4.70) that the

scalar field will not play a role at leading order. However, for holographic lattices in

which the UV boundary metric deformations are trivial, hij = δij, but the relevant scalar

field deformations are non-trivial, the origin of the momentum dissipation comes purely

from the scalar field and hence to obtain the leading order heat currents one will need to

solve the Navier-Stokes equations with the scalar viscous terms. In the high temperature

limit the scalar viscous terms are small, so we are now in the domain of perturbative

lattices associated with weak momentum dissipation, and we can obtain the leading DC

conductivity in terms of the scalar field on the horizon using the results of [1, 97].

Finally, we can also consider the addition of gauge fields. In this case we can take

the hydrodynamic limit of holographic lattices at finite charge density, by just demanding

k/s1/(D−2) � 1 while holding fixed µ/s1/(D−2). One should then study the charged Navier-

Stokes equations of [1, 97].



Chapter 5

Thermal backflow in CFTs

1 Introduction

A wide variety of strongly correlated states of matter are expected to display collective

behaviour described by viscous hydrodynamics. This occurs on time scales when the

momentum preserving self interactions of the strongly coupled matter dominate over

momentum dissipating processes such as the scattering with phonons. For some further

discussion, including some experimental realisations in graphene and other materials, we

refer to [131, 132, 135–145]. It is has recently been emphasised that, for matter at finite

charge density, a directly verifiable macroscopic signature of viscous flows is provided

by the phenomenon of electric current backflow [140, 141]. That is, for suitable set-ups

the application of an external electric field leads to a fluid flow that produces an electric

current which flows, locally, in the opposite direction to the applied field.

Here we want to discuss thermal backflow. In this case a local heat current flows in

the same direction to that of an applied external temperature gradient and in principle

can occur in the absence of charge carriers. While electric backflow can be caused both by

viscous effects and by spatially modulated regions of charge density (“charge puddles”),

thermal backflow would be caused purely by viscous effects of the fluid. For matter at finite

charge density, both are special cases of the more general phenomenon of thermoelectric

current backflow.

In this chapter we initiate a study of thermoelectric current backflow for relativistic

quantum field theories, focussing on conformal field theories (CFTs). More specifically,

we will investigate the possibility of thermal backflow by applying an external DC thermal

gradient to CFTs at finite temperature and vanishing charge density. We then calculate

the local currents that are produced at the level of linear response by solving leading

order viscous hydrodynamic equations. We are interested in studying this phenomenon

for infinite systems. Thus, in order to get a finite DC response, we will need a set-

up in which the total momentum is a not a conserved quantity, or phrased differently,

momentum dissipates in the bulk of the CFT. This should be contrasted with other

101
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setups where a finite DC response arises because one imposes no-slip or other momentum

dissipating boundary conditions on the electronic fluid in a finite volume, as in some of

the discussion in [140, 141], for example. A natural way to achieve this is to consider

CFTs in Minkowski spacetime that are then deformed by marginal or relevant operators

that explicitly break the translation invariance of the CFT. Interestingly, this is precisely

the set-up that has received much attention in the AdS/CFT correspondence via the

construction of black holes called “holographic lattices” [37,50,52,57,62,125].

Here we will focus on the universal class of deformations that arise from placing the

CFT on a curved geometry with spacetime metric gµν(x). We assume that the metric

is time independent, i.e. it has a timelike Killing vector ∂t, corresponding to a CFT

in local thermal equilibrium. The metric gµν(x) can also be viewed as parametrising

spatially dependent sources for the stress tensor of the CFT. These deformations include

applying strains, thermal gradients as well as sources for local rotations to a CFT in flat

spacetime, for example. In thinking of potential applications to real materials we can

envisage applying such deformations to a plasma that has arisen from some underlying

collective behaviour. For example, we note that there has been extensive work on studying

the behaviour of strained graphene, e.g. [146–148] and it is also worth highlighting the

exceptional thermal conductivity properties of graphene [149].

We will study the linear response of the deformed CFTs at vanishing charge density

after applying an external thermal gradient source, possibly time dependent, in the hy-

drodynamic limit, ε = k/T << 1, where k is the largest wavenumber associated with the

deformations. For the special case of CFTs with holographic duals, we showed in previ-

ous chapters that there is a universal connection between thermal DC conductivity and

Navier-Stokes equations on black hole horizons for holographic lattices. Furthermore, we

have just seen that in the hydrodynamic limit, the local heat current that is produced by

a thermal source can be obtained by solving a system of linearised, forced Navier-Stokes

equations on a curved manifold fixed by the metric gµν . In this chapter we will show

that this result is much more general, applying also to general CFTs without holographic

duals. We will also show how it also arises for non-conformally invariant relativistic field

theories.

To illustrate thermal backflow for a DC source we will study static metrics with spatial

sections that are conformally flat, with the conformal factor a periodic function of the

spatial coordinates. This corresponds to applying an isotropic periodic strain to the CFT.

After applying a Weyl transformation it also corresponds to deforming by a spatially

modulated energy distribution, or equivalently a spatially modulated local temperature

variation. For suitably chosen conformal factors, by solving the time-independent Navier-

Stokes equations numerically, we are able to find explicit examples that do indeed exhibit

thermal backflow for this setup. We emphasise that this thermal backflow arises at the

level of the linear response to the application of an external DC thermal gradient, and is
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thus associated with specific two point functions of the stress tensor in the strained CFT.

Moreover, the backflow is due to the spatial inhomogeneities of the metric on which the

CFT lives and this should be contrasted with fluid backflow in ordinary fluids at the level

of linear response, that is caused by momentum dissipating processes at boundaries. The

key point in this chapter is not that fluids exhibit backflow (which has been demonstrated

by considering no-slip or other momentum dissipating boundary conditions - see e.g [150]),

but rather that inhomogeneities in the spatial metric can lead to backflow at the level of

linear response.

We will focus on CFTs in the chapter because their hydrodynamic description depends

on fewer parameters. However, much of our analysis can be straightforwardly generalised

to arbitrary relativistic quantum field theories and we present some details in appendix

D.1. It is interesting that for static metric backgrounds with the time-like Killing vector

having constant norm, we also find that the response to a thermal source, possibly time

dependent, is again governed by linearised Navier-Stokes equations. For non-constant

norm, we obtain more general equations.

2 Thermal transport for CFTs in the hydrodynamic

limit

We consider general CFTs on curved manifolds in d ≥ 2 spacetime dimensions with metric

gµν . Using the general results of [151] (see also [152]), we will derive the leading order

viscous hydrodynamic equations relevant for studying thermal transport after applying an

external thermal gradient source, possibly time dependent, at the level of linear response.

For a general CFT we must impose the Ward identities

DµT
µν = 0 , T µµ = 0 . (5.1)

When d is even we have set the conformal anomaly to zero as it will be higher order

in the derivative expansion than we wish to consider. In order to obtain a closed set of

hydrodynamical equations we need constitutive relations for the stress tensor. We let T

denote the local temperature and introduce the fluid velocity uµ, satisfying uµuµ = −1.

Both T and uµ can depend on all of the spacetime coordinates, xµ. Including the leading

order viscous terms we have

Tµν = P (gµν + d uµuν)− 2ησµν , (5.2)

where the shear tensor is given by

σµν = D(µuν) + u(µu
ρDρuν) − (gµν + uµuν)

Dρu
ρ

d− 1
. (5.3)
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Conformal invariance fixes the equation of state to be P = c0 T
d and the viscosity to be

η = c1 T
d−1, where c0 and c1 are dimensionless numbers fixed by the CFT1.

Notice that the equations are covariant under Weyl transformations, in which the

metric and fluid velocity transform as gµν → e2ωgµν , uµ → eωuµ, where ω is an arbitrary

function of spacetime coordinates, while the scalars T , P , η transform as T → e−ωT ,

P → e−dω P and η → e(−d+1)ωη. We also notice that uµTµν = −(d − 1)Puν = −ε uν ,
where ε is the energy density and we also have ε+ P = sT .

Introducing a time coordinate via xµ = (t, xi), then the heat current density, or

equivalently, momentum current density, of the CFT is given by the components

Qi = −
√
−g T it . (5.4)

Notice that Qi is invariant under Weyl transformations. Also, in stationary spacetimes,

for which ∂t is a Killing vector, we deduce that this current is conserved ∂iQ
i = 0.

To simplify the presentation, we now consider the background metric to be static with

line element given by ds2 = −gttdt2 + gijdx
idxj, and ∂tgtt = ∂tgij = 0. This corresponds

to studying the CFT in thermal equilibrium, with gtt and gij parametrising sources for

the stress tensor components, T tt and T ij, respectively. It will be convenient to set gtt = 1

and consider the background metric

ds2 = −dt2 + gij(x
k)dxidxj , (5.5)

since a non-vanishing gtt can be reinstated by simply performing a Weyl transformation.

We next consider the spatial metric ds2 = gij(x
k)dxidxj as a harmonic expansion about

some fiducial metric. If k is the largest wave-number in this expansion, then the hydrody-

namic limit has ε = k/T << 1. A concrete example, and one we will focus on, is to take

the fiducial metric to be flat space and consider gij to be periodic in the spatial directions.

In this case, focussing on a fundamental domain, gij also defines a curved metric on a

torus.

We now consider perturbing the CFT by an external thermal gradient source parametrised

by a closed one form, ζ = ζµdx
µ. To study the linear response of the CFT to this source,

similar to chapter 2, we consider the following linearised perturbation about the equilib-

rium configuration. For the metric we take2

ds2 = −(1− 2φ) dt2 + gij(x)dxidxj , (5.6)

where ζµ = ∂µφ. We now highlight an important aspect of the choice of ζ and φ. To

1In holography we have c0 = 4π
d c1.

2Employing the coordinate transformation t = (1 + φ)t̄ implies that the linearised perturbed metric
is given by ds2 = −dt̄2 + gij(x)dxidxj − 2t̄ζµdx

µdt̄, which has been used in related contexts [97].
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illustrate, we focus on the planar case with gij(x) periodic in the spatial directions. In

this case we can write ζ = ζ̄i(t)dx
i + dz(t, x), or φ = ζ̄i(t)x

i + z(t, x), where z(t, x) are

periodic functions of the xi. The ζ̄i parametrise the thermal source of most interest. For

example, for the DC case, the choice φ(x) = z(x) would just correspond to considering

the CFT on a deformed metric still in thermal equilibrium (we return to this at the end

of the section). On the other hand φ = ζ̄ix
i, with constant ζ̄i corresponds to a constant

external thermal gradient source, of strength ζ̄i, in the xi direction3.

We consider the perturbed fluid velocity to be

ut = −(1− φ), uj = δuj . (5.7)

We vary the local temperature via T = T0 + δT , where T0 is the equilibrium temperature

of the CFT. Note that φ, δui and δT all depend on (t, xi); in the planar case they are

taken to be periodic functions of the xi. If ω is a characteristic frequency then we should

demand that ω/T0 << 1 in addition to k/T0 << 1, in order to stay in the hydrodynamic

limit.

After substituting into (5.2) we find that the stress tensor takes the form

Ttt = c0 (d− 1)T d0 (1− 2φ) + c0d (d− 1)T d−1
0 δT,

Tti = −c0d T
d
0 δui ,

Tij = c0T
d
0 gij + c0 d T

d−1
0 δT gij − 2c1T

d−1
0

(
∇(i δu j) −

gij
d− 1

∇kδu
k

)
, (5.8)

where here, and below, the covariant derivative ∇ is now with respect to gij. The Ward

identities (5.1) then give the following linearised, forced Navier-Stokes equations for δui

and δT :

T0 ∂tδui − 2
c1

d c0

(
∇j∇(j δu i) −

1

d− 1
∇i∇jδu

j

)
+∇iδT = T0ζi ,

(d− 1)T−1
0 ∂tδT +∇iδu

i = 0 . (5.9)

Furthermore, the heat current (5.4) now reads

Qi = c0dT
d
0

√
g δui = T0s0

√
g δui . (5.10)

The system of equations (5.9) is the key result of this section. Observe that they only

depend on the one-parameter of the CFT, c1/(dc0), which is just η0/s0. We also note

that ζt does not enter these equations. When we set all time derivatives to zero, which is

3 Note that φ(x) = z(x) is globally defined and bounded both on the plane and on the torus (i.e.
associated with a fundamental domain of the background). On the other hand φ = ζ̄ix

i is globally
defined on the plane, but not bounded, and is not a well defined function on the torus. Furthermore, the
one-forms dz(x) and ζ̄idx

i are cohomologically trivial and non-trivial on the torus, respectively.
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appropriate for studying thermal DC response, we have an incompressible fluid∇iδu
i = 0.

We will refer to the time-independent equations as Stokes equations.

We conclude this section with a few general comments. We first make some observa-

tions about conserved currents for general relativistic field theories satisfying the Ward

identity DµT
µν = 0 on curved manifolds, setting to zero the thermal sources (i.e. φ = 0).

Contracting with an arbitrary vector kµ, we obtain

Dµ (T µνk
ν) = 1

2
LkgµνT µν , (5.11)

where L is the Lie derivative. We immediately see that if k is a Killing vector then T µνk
ν is

a conserved current. For a CFT this is also true if k is a conformal Killing vector, satisfying

Lkgµν ∝ gµν . Thus, in order to have momentum dissipation in the spatial directions, we

should only consider background metrics without (conformal) Killing vectors, apart from

∂t. Equivalently, for a CFT, the metric should not be related by a Weyl transformation

to a metric with additional Killing vectors. If we let k = ∂i and assume that it is not a

(conformal) Killing vector, then there is no conserved momentum in the xi direction. In

this case, if we consider perturbing around thermal equilibrium, (5.11) might be viewed

as saying that momentum is being dissipated by the non-vanishing of ∂igµνδT
µν . This can

be contrasted with the work of [114] who, instead, modify the Ward identities in order to

achieve momentum dissipation.

We now consider a stationary metric gµν and assume that kµ is a Killing vector (or

conformal Killing vector if we have a CFT), in addition to ∂t. After considering a DC

perturbation (5.6), with all time derivatives vanishing, from the Ward identity we deduce

that

1
√
g
∂i
(√

gT iµk
µ
)

= −(kiζi)T
t
t . (5.12)

After integrating over the spatial directions, the left hand side vanishes4 and hence so does

the right hand side. Thus, we have deduced, just from the Ward identity (i.e. independent

of the constitutive relations), that if there are any (conformal) Killing vectors over and

above ∂t, then the DC response is not well defined in the direction kiζi. More physically,

there will be a delta function at zero frequency in the AC response.

In studying DC response for background metrics as in (5.5), we are thus only interested

in spatial metrics gijdx
idxj without Killing vectors. The solutions to the Stokes equations

(i.e. (5.9) with ∂t = 0) are then unique [1,97] up to an undetermined constant, the zero-

mode of δT . Physically, this zero mode can be fixed by demanding that when ζi = δui = 0

the full stress tensor of the CFT is not modified. In any event, this zero mode does not

affect the local heat current response given in (5.10).

4With appropriate boundary conditions imposed for non-compact spaces.
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The final comment relates to the closed one form source ζ in the DC context. For

the periodic, planar case we again write ζ = ζ̄idx
i + dz(x), where ζ̄idx

i, with constant

ζ̄i, parametrise the DC thermal source of most interest, and z(x) is an arbitrary periodic

function which can be dealt with exactly. Indeed as noted in [97], and section 3.5 in

chapter 2, if ζ = dz(x), associated with φ = z(x), we can solve the Stokes equations with

δui = 0 and δT = T0z, giving rise to a simple response to the full stress tensor with no

heat flow. Note that we cannot take the solution δui = 0 and δT = T0φ when φ(x) = ζ̄ix
i

since we have demanded that δui and δT are periodic functions5.

3 Thermal backflow

We now consider specific background static metric deformations of the form (5.5), parametrised

by gij(x
k), that lead to thermal backflows driven by external DC thermal gradients, in

the hydrodynamic limit. We will assume that we have a planar spatial topology with gij a

periodic function of the spatial coordinates. For a given gij we want to numerically solve

the Stokes equations (i.e. (5.9) with ∂t = 0), effectively on a torus, and then obtain the

local heat current density, Qi(x), at leading order in k/T , using (5.10).

For simplicity we will assume that the deformation is periodic in each of the spatial

directions with the same period, L ≡ 2π/k, with ε = k/T << 1. For the numerics we

eliminate the dimensionful quantity L by defining new coordinates via xi = Lx̂i with the

x̂i having unit period. It is convenient to introduce dimensionless variables via6

vi = δui, p =
d c0

c1

LδT, ζ̂i =
d c0

c1

L2T0 ζi . (5.13)

Then in the hatted coordinates the linear Stokes equations coming from (5.9) take the

dimensionless form

−2∇i∇(iv j) = ζ̂j − ∂jp , ∇iv
i = 0 , (5.14)

where here we are raising indices with respect to the metric gij and ∇ is the associated

covariant derivative. In the new variables it is natural to define the heat current density

Q̂i ≡ √ggijvj =
1

c0dT d0
Qi . (5.15)

Writing Qi = T0κ
ijζj, where κ is the thermal conductivity matrix, then we have Q̂i =

(c1/c0d)(T0κ
ij/s0)ε2ζj, where s0 is the entropy density. This displays the fact that (T0κ

ij/s0)

5Note that an alternative approach would have been to allow non-periodic perturbations δT instead
of non-periodic functions φ(x).

6 Note that p, here should not be confused with the pressure, P , of the background CFT appearing
in (5.2).
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is of order ε−2 as we pointed out in the last chapter.

To illustrate examples of backflow, we now restrict to CFTs with metric deformations

given by7

gij = Φδij, Φ > 0 . (5.16)

By solving the Stokes equations (5.14) numerically, we find that various choices of Φ lead

to thermal backflow. To be specific we discuss the special case of CFTs in two spatial

dimensions and set d = 3. We present some results for the specific choice

Φ = α +
β

N

N∑
a,b=−N

ei 2π (a (x̂−1/2)+b (ŷ−1/2)) . (5.17)

Moreover, we restrict to the specific case of N = 2 and consider varying α and β. We

have plotted Φ for the specific case of α = 0.98 and β = 0.3 in figure 5. We apply a

Figure 5: A plot of the function Φ which determines the static metric deformation of the CFT
with gtt = 1 and gij = Φδij . Note that we have plotted twice the period in both spatial directions.
This specific choice of Φ is as in (5.17) with α = 0.98 and β = 0.3 and gives rise to thermal
backflow as shown in figure 7.

constant DC thermal gradient just in the x̂ direction with ζ̂ = dx̂. For various choices of

α, β we then numerically solve the Stokes equations (5.14), as described in appendix D.2,

to extract Q̂i(x̂) and p(x̂).

For small values of 1 − α and β, we are not only in the hydrodynamic limit, we are

also in the perturbative limit that is associated with small amplitudes that we considered

in section 4.3 in chapter 2. In this limit, at leading order in a perturbative expansion

in the amplitude of the metric deformation around flat spacetime, the solutions to the

Stokes equations are homogenous, i.e. constant [1, 97]. In figure 6 we have plotted the

7Note that for this choice of metric, (5.11) with k = ∂i gives ∇µδTµi = − 1
2 (∂i ln Φ)δT tt, revealing the

origin of momentum non-conservation in this setting.
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solutions to the Stokes equations for α = 1 and β = 6.6×10−4. As expected we find nearly

homogeneous flows. There are various ways of quantifying this: for example the approxi-

mate range of components of the current are Q̂1 ∈ (4565, 4595) and Q̂2 ∈ (−8.498, 8.498).

The background colour in figure 6 depicts the norm of the vector field. The maximum

value of the norm (red) has components (4595, < 10−6) while the minimum (purple) has

components8 (4565, < 10−6). To compare with the perturbative lattice analysis of [1, 97]

we let the perturbative parameter, λ, be equal to the difference between the maximum

and the minimum values of Φ within one period and we find λ = 0.01. From the above

data we see that, roughly, Q̂1 scales like λ−2/2 while p scales like 2λ−1. In any event,

there is no thermal backflow for these lattices.

Figure 6: Plot of Q̂i and p corresponding to the metric deformation Φ as in (5.17) with α = 1
and β = 6.6× 10−4 and thermal gradient just in the x̂ direction given by ζ̂ = dx̂. The left plot
displays the vector heat current density Q̂i, for twice the period in both spatial directions. The
background colour depicts the norm of the vector, (Q̂iQ̂jδij)

1/2, and we note that it is nearly
uniform with the maximum and minimum varying by about 1%. The right plot shows p for a
single period in the spatial directions. The variation in p is uniform enough to lead to a roughly
homogenous response.

By increasing the overall amplitude, by varying α, β, we find that solving the Stokes

equations gives rise to sharper peaks in p, which are associated with larger internal fluid

forces. We find that for amplitude fixed by α = 0.98 and β = 0.3, that thermal backflow

does indeed occur as shown in figure 7. In particular, we see that there is a distinct region

of thermal backflow with ŷ ∼ 0.5 and 0.8 < x̂ < 1.2

Finally, it is worth revisiting the original assumptions concerning our hydrodynamic

expansion with ε << 1. Recall that throughout this paper we have been assuming the

constitutive relation given in (5.2). This will receive corrections at higher order in ε and

8The second component, in both cases, converges to zero within our numerical accuracy.
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Figure 7: Thermal backflow corresponding to the metric deformation in figure 5, with Φ as in
(5.17) with α = 0.98, β = 0.3, and thermal gradient just in the x̂ direction given by ζ̂ = dx̂. The
upper plots display the vector heat current density Q̂i, with the background colour emphasising
the norm of the vector (Q̂iQ̂jδij)

1/2. The upper left plot shows Q̂i for twice the period in both
spatial directions. Thermal backflow occurs in the elongated purple regions: the upper right
plot is an enlargement of the green dashed rectangle. The bottom plot displays p for a single
period in the spatial directions.

will include terms involving the curvature of the background metric. For the specific

example with α = 0.98 and β = 0.3 we can estimate that the next order curvature

contributions will be of the order ε2 times Φ−1∇2 ln Φ. Since the latter has spikes of the

order 105, in order to ensure that these terms are indeed sub-leading we should impose

not just ε << 1 but the stricter bound ε << 10−3. It would be interesting to determine

by how much this can be weakened for other examples exhibiting backflow.

4 Discussion

By solving a system of Stokes equations we have shown that thermal backflow driven by

an applied external DC thermal source is possible for CFTs in the leading order viscous
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hydrodynamic limit. We explicitly demonstrated this for CFTs defined on static space-

time metrics with a conformally flat spatial metric, with the conformal factor depending

periodically on the spatial coordinates. We did not have to make any assumption con-

cerning the strength of the viscosity η in (5.2); we only demanded that it is non-zero. The

thermal backflow occurs at the level of linear response, and is associated with specific

two point functions of the stress tensor in the CFT. The thermal backflow solutions are

steady state solutions to the linearised equations. If one was interested in going beyond

linear response, then one would have to take into account Joule heating and there would

not be such steady state solutions. It would be interesting to understand the time scale

for when the linearised approximation breaks down.

We have discussed in section 2 how thermal transport properties of CFTs are invariant

under Weyl transformations. This means, for example, that since backflow occurs if

suitable isotropic strains are applied to a CFT, associated with a conformally flat metric

Φdxidxi, then we should also see exactly the same backflow by applying a periodic local

temperature profile parametrised by Φ−1 with a flat spatial metric dxidxi. Thus, if one

were able to experimentally engineer such isotropic strains and local temperature profiles

for some strongly coupled matter and one found the same thermal response, this would

provide a sharp diagnostic that the matter was described by a conformal field theory in

the hydrodynamic limit. Perhaps it is possible to investigate this with graphene, which

is known to be described as a relativistic fluid at the Dirac point.

For general CFTs it is straightforward to generalise our analysis from static to sta-

tionary metrics. This corresponds to allowing for deformations of the CFT which have

sources for local rotations in thermal equilibrium as discussed in [98]. The linear response

to applying a thermal source can then be examined in the leading order viscous hydro-

dynamic limit by studying Navier-Stokes equations that contain Coriolis terms which

are determined by the non-vanishing vorticity tensor of the background fluid in thermal

equilibrium. In the case of DC thermal sources the relevant time independent Stokes

equations were given in [98]. In general it is necessary to focus on the transport currents,

which are obtained by subtracting off certain magnetisation currents that depend on the

applied thermal source [98,114,120,153].

In this chapter we have discussed the DC response of general CFTs in the leading order

viscous hydrodynamic limit, by solving a system of Stokes equations. For the special class

of CFTs that have holographic duals we can also study DC response for deformed CFTs

far from the hydrodynamic limit, by analysing suitable black hole solutions. Over the

course of this thesis, we have seen that, somewhat remarkably, the total thermoelectric

current fluxes, and hence the thermoelectric DC conductivities, can be obtained by solving

the same system of Stokes equations for an auxiliary fluid on the horizon of the black holes

[1, 97, 98]. We also explained the connection between this result and the hydrodynamic

limit. Another interesting direction would be to use holography to examine what happens
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to the backflow as a function of ε = k/T .

We can also generalise the analysis in this paper to CFTs that have additional con-

served currents. From the work on our previous holographic calculations in chapter 4 we

can conclude that we will need to solve the Stokes equations presented in chapter 2. There

is a range of possibilities to examine, including the role of charge puddles and magnetic

fields, and we aim to report on some of this soon.

We have also presented the equations needed to be solved to examine the thermal

response for a general relativistic quantum field theory in appendix D.1. For the special

case of DC response, for background spacetimes in which the norm of the timelike Killing

vector is constant, the relevant equations are, up to constants, the same Stokes equations

that need to be solved for the case of CFTs. In particular, the examples of thermal

backflow that we showed in section 3 are applicable to a much more general class of

quantum field theories. When the norm of the Killing vector is not constant, the equations

that need to be solved are given in (D.9),(D.10) and it would be interesting to explore

them in more detail.
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Chapter 6

A new phase for the anisotropic
N=4 super Yang-Mills plasma

1 Introduction

Having studied linear response in some detail, we now turn our attentions to a different

topic, the phase transitions of strongly coupled systems that have been deformed by

spatially dependent sources. Such systems can be studied by constructing novel black

hole solutions using the AdS/CFT correspondence (e.g. [37,50–55,57–64,66,101,102,104,

106, 115, 118, 120, 125, 154]). These studies are interesting for a number of reasons - as

well as finite DC response, the spatially dependent sources provide a useful tool to search

for novel holographic ground states which can appear in the far IR; insulators, coherent

metals and incoherent metals have been realised in this way, as well as transitions between

them [37, 57, 58, 104, 118]. A more specific motivation derives from the properties of the

quark gluon plasma observed in heavy ion collisions. In particular, the plasma appears

to have regimes where it is described by a strongly coupled and spatially anisotropic

fluid [155,156].

An interesting framework for analysing spatial anisotropy in N=4 super Yang-Mills

(SYM) theory was initiated in [59] and then further developed in [60, 61]. Specifically,

black hole solutions of type IIB supergravity were constructed in [60, 61] that asymp-

totically approach AdS5 at the UV boundary with the type IIB axion having a linear

dependence on one of the three spatial coordinates. The linear axion source is associated

with a distribution of D7-branes that intersect D3-branes in two of the spatial directions

and is smeared in the third. At low temperatures these black holes approach a T = 0

solution, constructed in [59], which becomes a Lifshitz-like scaling solution in the far IR.

It is natural to interpret this scaling solution as the T = 0 ground state of the

anisotropically deformed N=4 SYM theory. Here, however, we will show that the black

holes of [60, 61] are unstable at low temperatures and there is a phase transition which

spontaneously breaks the global SO(6) symmetry down to SO(4)×SO(2). The origin of

this instability was already noticed in [59]. In particular, by analysing the Kaluza-Klein

114
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spectrum of the five-sphere it was found that there are scalar modes, transforming in the

20′ of SO(6), which saturate the BF bound in AdS5 background but violate an analogous

bound in the Lifshitz-like background. This suggests that the Lifshitz-like scaling solution

is unstable. It is natural to suspect that such an instability is also present for the T = 0

solution that interpolates between AdS5 in the UV and the Lifshitz-like solution in the

IR. By continuity one then expects that the finite temperature black hole solutions should

become unstable at some finite temperature.

Here we will show that these expectations are realised. We find that the black holes

become unstable at some critical temperature Tc with a new branch of black hole solutions

appearing. Above the critical temperature, these solutions seem to be a non-physical

branch of “exotic hairy black holes” [86,157]. Specifically, it seems that the black holes at

temperatures T ≥ Tc and are never thermodynamically preferred. At temperatures T ≤
Tc the new solution is thermodynamically preferred. The phase transition is continuous

and, somewhat surprisingly, third order. Furthermore, we calculate the critical exponents

of the phase transition finding (α, β, γ, δ) = (−1, 1, 1, 2) rather than the standard mean-

field values (α, β, γ, δ) = (0, 1/2, 1, 3) associated with most holographic phase transitions.

The critical exponents we find have been previously realised in bottom-up models of

holographic superconductors with a Lagrangian containing cubic terms in the modulus

of the complex scalar field [74, 75, 158, 159]. While such terms are a bit unnatural for a

complex scalar field they are natural for a neutral scalar field, provided the potential does

not have any discrete symmetry. The critical exponents that we find can, in a certain

sense, be realised by a Landau-Ginzburg (LG) model with a scalar order parameter and

cubic term in the free energy. While such cubic terms in LG models are associated with

first order phase transitions, our holographic transition appears to be continuous and

third order.

We construct our new solutions using a consistent KK truncation of type IIB super-

gravity on S5 that keeps the D = 5 metric coupled to the axion and dilaton, as in [60,61],

and in addition keeps an extra single neutral scalar field. Any solution of the D = 5

theory gives rise to an exact solution of type IIB supergravity. The potential for the

neutral scalar field in the D = 5 theory does not have any discrete symmetry and this is

associated with the non-standard values of the critical exponents that we just discussed.

The fact that the phase transition spontaneously breaks SO(6) to SO(4)×SO(2) is only

apparent after uplifting to type IIB.

We construct the new branch of black hole solutions down to low temperatures and

elucidate the T = 0 behaviour. Similar to [37] and unlike many holographic studies, the

IR part of the geometry at T = 0 does not approach a scaling solution of the equations

of motion, but instead approaches the leading terms of an expansion, which eventually

approaches AdS5 in the UV. The leading terms of this IR expansion are similar to the

hyperscaling violation solutions [160–162] but with anisotropic scaling in the spatial di-
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rection rather than the time direction. We calculate the thermal conductivity of the black

holes, essentially importing the results of [66]. We show that the scaling behaviour implies

that at low temperatures the system is a thermal insulator with κ ∼ T 10/3.

The remainder of the chapter is organised as follows. In section 2, we present the

D = 5 top-down model and show how it is arises from a KK reduction of type IIB

supergravity on S5. The construction of the black holes and a study of their properties is

contained in section 3. We conclude in section 4 and we have two appendices. Appendix E

contains some technical results concerning a Smarr formula, and discusses how the critical

exponents that we find can be extracted, in a certain sense, from a Landau-Ginzburg type

analysis.

2 The top-down model

We will consider a D = 5 gravity theory coupled to three scalar fields, the axion and

dilaton, φ and χ, as in [60,61], and an additional scalar X. The bulk action is given by:

S =
1

16πGN

∫
d5x
√
−g
(
R− 3X−2(∂X)2 + 4(X2 + 2X−1)− 1

2
(∂φ)2 − 1

2
e2φ(∂χ)2

)
,

(6.1)

where for simplicity of presentation we have set the AdS radius to unity. The correspond-

ing equations of motion are given by:

∇2φ = e2φ(∂χ)2 ,

∇µ

(
e2φ∇µχ

)
= 0 ,

∇µ

(
X−1∇µX

)
= −4

3
(X2 −X−1) ,

Rµν = 3X−2∂µX∂νX −
4

3
(X2 + 2X−1)gµν +

1

2
∂µφ∂νφ+

1

2
e2φ∂µχ∂νχ . (6.2)

This top-down model arises as a consistent truncation of the Kaluza-Klein (KK) re-

duction of type IIB supergravity on a five-sphere. That is, any solution to the equations

of motion (6.2) gives rise to an exact solution of type IIB supergravity with D = 10 metric

and self-dual five-form given by:

ds2
10 = ∆̄1/2ds2

5 +X∆̄1/2dξ2 +X2∆̄−1/2 sin2 ξdτ 2 + ∆̄−1/2X−1 cos2 ξdΩ3 ,

F(5) = 2Uvol5 + 3 sin ξ cos ξX−1 ∗5 dX ∧ dξ

+ ∆̄−2 sin ξ cos3 ξ(2Udξ − 3 sin ξ cos ξX−2dX) ∧ dτ ∧ vol3 , (6.3)

where ds2
5 and vol5 are the D = 5 metric and volume form, respectively, dΩ3 and vol3 are
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the metric and volume form on a round three-sphere, respectively, and

∆̄ = X−2 sin2 ξ +X cos2 ξ, U = X2 cos2 ξ +X−1 sin2 ξ +X−1 . (6.4)

The D = 10 dilaton and axion are the same as the D = 5 scalar fields φ and χ, respectively,

and the D = 10 three-forms are both zero. When X 6= 0 this class of D = 10 metric and

five-form has the SO(6) symmetry of the round five-sphere reduced to SO(4)×SO(2), with

the first factor acting on the round S3 and the second acting on the circle parametrised

by τ .

That this is a consistent truncation can be established using the results of [163]. Indeed

it was shown in [163] that there is a consistent KK truncation of type IIB supergravity on

a five-sphere to Romans D = 5 SU(2) × U(1) gauged supergravity, whose bosonic fields

consist of a D = 5 metric, a scalar X, SU(2)×U(1) gauge-fields and two two-forms. This

truncation can simply be extended to include the D = 10 axion and dilaton and we can

then truncate away the gauge-fields and the two-form to obtain our model.

Notice that the unit radius AdS5 vacuum solution to the equations of motion (6.2)

has χ = 0, X = 1 with constant φ, and uplifts to the standard AdS5×S5 solution of type

IIB. Around this vacuum solution, perturbations of the fields φ, χ are massless and are

associated with marginal operators in N = 4 SYM theory with scaling dimension ∆ = 4.

Perturbations of X have m2 = −4, which saturates the BF bound, and is associated with

an operator Oψ with dimension ∆ = 2. This operator is part of a multiplet, transforming

in the 20′ of SO(6) which is dual to operators in N=4 SYM constructed from the six

adjoint scalar fields φI of the form Tr(φIφJ)− trace. When Oψ acquires an expectation

value spontaneously, as it will in our solutions, it breaks the SO(6) global R-symmetry

down to SO(4)× SO(2).

Notice that setting X = 1, which is a further consistent truncation, we have ∆̄ = 1,

U = 2, from (6.4), and we recover the D = 5 model that was studied in [60, 61]. In

particular the metric on the five-sphere in (6.3) becomes the round metric. Thus, our

model extends the top-down model studied in [60, 61] to include one extra scalar field,

X, which saturates the BF bound. It is sometimes convenient to consider a canonically

normalised scalar field, ψ, instead of X, defined by

X ≡ e−ψ/
√

6 , (6.5)

in terms of which the action reads

S =
1

16πGN

∫
d5x
√
−g
(
R− 1

2
(∂ψ)2 + 4(e−2ψ/

√
6 + 2eψ/

√
6)− 1

2
(∂φ)2 − 1

2
e2φ(∂χ)2

)
.

(6.6)
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2.1 Brief review of previous work

The anisotropic solutions constructed in [59–61], with the axion linear in one of the spatial

coordinates, all lie within the ansatz

ds2 =
e−

1
2
φ

u2

(
−FBdt2 +

du2

F
+ dx2 + dy2 +Hdz2

)
,

χ = az, φ = φ(u), (6.7)

with trivial X-field, X = 1 (i.e. ψ = 0 in (6.5)). The functions F ,B are functions of the

radial coordinate u, and the function H is taken to be H = e−φ which, remarkably, can

be imposed consistent with the equations of motion.

The black hole solutions constructed numerically in [60,61] approach in the UV, located

at u → 0, a unit radius AdS5 with a linear axion deformation. As T → 0 the black hole

solutions approach a T = 0 domain wall solution whose IR limit approaches a fixed point

solution with

F =
49

36

(
12

11

) 6
5

u
2
7 , B = F−1, eφ =

(
11

12

) 2
5

u−
4
7 , (6.8)

which was first found in [59]. After switching to a new radial coordinate u = r−7/6, this

solution can be written in the form

ds2 = L2

(
dr2

r2
+ r2(−dt̄2 + dx̄2 + dȳ2) + r4/3dz̄2

)
,

χ = āz̄, eφ = L4/5r2/3, (6.9)

with X = 1, where the bars denote quantities that have been rescaled, and L2 =

11/12. This metric is manifestly invariant under the anisotropic Lifshitz-like scaling

(t̄, x̄, ȳ, z̄, r)→ (λt̄, λx̄, λȳ, λ2/3z̄, λ−1r).

Following [59] (and in an analagous way to the derivation of (1.16)), we can study

the properties of a massive scalar field, satisfying ∇2σ = m2σ, in the background (6.9).

By considering solutions of the form r∆± and demanding that ∆± are real, we deduce

that m2 ≥ −11/3. Since we would like to identify ∆± as scaling dimensions in a putative

field theory dual to these Lifshitz-like solutions, this suggests that the anisotropic solution

(6.9) will be unstable under perturbations by any massive field with m2 < −11/3. If the

Lifshitz solution is unstable we expect that the T = 0 domain wall solution itself will be

unstable and hence, by continuity, that the finite temperature black hole solutions will be

unstable up to some critical temperature Tc.

Thus, since the scalar field X in our model has m2 = −4, we anticipate that the black

hole solutions of [60, 61] will still describe the high temperature phase of the system but

will become unstable at Tc leading to a phase transition. The critical temperature can be
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found by establishing the existence of a suitable zero-mode in the linearised fluctuations

of the X-field about the numerically constructed black holes of [60, 61]. We carried out

this analysis but we will omit the details. Instead we will focus on the construction of the

new branch of fully back reacted black holes that emerge at T = Tc and examine some of

the physical properties of the new low-temperature phase.

3 Construction of new anisotropic black holes

3.1 Ansatz and equations of motion

We extend the ansatz of [59–61] by allowing for a non-trivial X-field and consider

ds2 =
e−

1
2
φ

u2

(
−FBdt2 + dx2 + dy2 +Hdz2 +

du2

F

)
,

χ = az, φ = φ(u), X = X(u), (6.10)

where F , B and H are functions of u. The function H is associated with the anisotropy

in the z direction that is sourced by the axion field. By combining the equation of motion

for the dilaton with the Einstein equations, as in [59–61], we find that it is possible to

choose the function H to be related to the dilaton via

H = e−φ , (6.11)

and we will do so in the sequel1.

We now discuss the resulting equations of motion for this ansatz, following the ap-

proach of [61]. The equation for the axion χ in (6.2) is trivially satisfied. The X equation

of motion implies that

12u2FXX ′′ + 3
(
− 5u2XFφ′ + 2u2XFB

′

B
+ 4u2XF ′ − 12uXF

)
X ′

− 12u2F (X ′)
2

+ 16e−φ/2X(X3 − 1) = 0 , (6.12)

while the φ equation of motion gives

4uFφ′′ + 2uFB
′

B
φ′ + 4uF ′φ′ − 5uF (φ′)

2 − 12Fφ′ − 4a2ue3φ = 0 . (6.13)

There are also four independent components of the Einstein equations arising from (6.2).

By taking a suitable combination of one of these equations with the φ equation of motion,

in order to eliminate B′ terms, we can arrive at an equation which can be algebraically

1Our preliminary investigations into relaxing this condition did not reveal any other solutions of
physical interest.
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solved for F :

F =
e−

1
2
φ

4(φ′ + uφ′′)

(
e

7
2
φa2(4u+ u2φ′) + 16φ′

)
+

4e−
1
2
φ(1−X)2(2 +X)φ′

3X(φ′ + uφ′′)
. (6.14)

Next, by taking a suitable combination of two of the remaining three Einstein equations,

in order to eliminate F ′′ terms, we arrive at an equation that we can solve for B′/B:

B′

B
=

(24φ′ − 9uφ′2 + 20uφ′′)

24 + 10uφ′
− 24uX ′2

X2 (12 + 5uφ′)
, (6.15)

and we observe that only the combination B′/B appears in (6.12) and (6.13). It is now

possible to show that (6.12), (6.13), (6.14) and (6.15) imply that all of the Einstein

equations are solved. To see this we can use (6.13) to solve for F ′ in terms of φ and X

and their derivatives, after using (6.14) and (6.15). Furthermore, comparing this equation

with the expression for F ′ that can be obtained by differentiating (6.14), we obtain a third

order equation for φ, which can be used instead of (6.13). One can then check that the

remaining Einstein equations are satisfied. Observe that if we set X = 1 we recover the

equations of motion given in [61].

In summary, the equations of motion are equivalent to (6.12)-(6.15) and are, effectively,

second order in X, third order in φ and first order in B, with F algebraically specified by

φ, X and their first and second derivatives. Thus, a solution is specified by six integration

constants.

We note that the ansatz and hence the equations of motion are invariant under the

following two scaling symmetries

u→ λu, (t, x, y, z)→ λ(t, x, y, z), a→ λ−1a;

t→ λt, B → λ−1/2B; (6.16)

where λ is a constant.
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3.2 The UV and IR expansions

We now discuss the boundary conditions that we will impose on (6.12)-(6.15). In the UV,

as u→ 0, we demand that the asymptotic behaviour is given by

φ = −a
2u2

4
+ u4 (121a4 + 1152B4 + 2304(X2)2)

4032
− u4 log u

a4

6
+ . . . ,

F = 1 +
11a2u2

24
+ u4F4 + u4 log u

7a4

12
+ . . . ,

B = 1− 11a2u2

24
+ u4B4 − u4 log u

7a4

12
+ . . . ,

X = 1 + u2X2 − u4 5a2X2

24
+ . . . . (6.17)

The solutions are asymptotically approaching AdS5 with an anisotropic deformation of

the axion field in the z-direction with strength a. This UV expansion is specified by four

parameters, F4,B4, X2, whose physical interpretation will be discussed below, and a. It

is important to observe that we have set a possible u2 log u term in the expansion of X to

zero, as this would correspond to sourcing the operator dual to X which we don’t want2.

We next note that the second scaling symmetry in (6.16) has been used to set the leading

term in B to unity. We also observe that associated with the first scaling symmetry in

(6.16) the UV expansion is preserved under the transformations u→ λu and

B4 → λ−4B4 +
7

12
a4λ−4 log λ ,

F4 → λ−4F4 −
7

12
a4λ−4 log λ ,

X2 → λ−2X2 . (6.18)

The presence of the log terms is associated with the fact that the linear axion deformation

gives rise to a non-vanishing conformal anomaly, as discussed in [60,61].

In the IR, we will assume that we have a regular black hole horizon located at u = uh.

2In section 3.5, when we calculate critical exponents of the phase transition, we will briefly consider
black holes with such a source for X.
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We therefore will demand that as u→ uh we have

φ = φh −
12uhXha

2e
7φh
2

32 + 3a2e
7φh
2 u2

hXh + 16X3
h

(u− uh) + . . . ,

F = Fh (u− uh) + . . . ,

B = Bh +
2Bh(45a4e7φhu4

hX
2
h − 256(X3

h − 1)2 − 96a2e
7φh
2 u2

hXh(2 +X3
h))

uh

(
32 + 3a2e

7φh
2 u2

hXh + 16X3
h

)2 (u− uh) + . . . ,

X = Xh +
16Xh(X

3
h − 1)

uh

(
32 + 3a2e

7φh
2 u2

hXh + 16X3
h

) (u− uh) + . . . . (6.19)

This IR expansion is specified by four parameters, φh,Bh, Xh and uh, with Fh fixed via

Fh ≡ F ′(uh) = −
e−

φh
2

(
32 + 3a2e

7φh
2 u2

hXh + 16X3
h

)
12uhXh

. (6.20)

We have noted that the equations of motion are specified by six integration constants.

We have eight parameters appearing in the asymptotic expansion minus one for the re-

maining scaling symmetry in (6.16). We thus expect to find a one-parameter family of

solutions which can be parametrised by the quantity T/a. We note that the presence of

the conformal anomaly introduces an additional dynamical scale which we hold fixed to

be unity throughout our discussion.

3.3 Stress tensor and thermodynamics

To calculate the free-energy and the stress tensor, we need to supplement the bulk action

with boundary counter terms (e.g. [32]). We write

Stotal = Sbulk + Sct , (6.21)

where Sbulk is the bulk action given in (6.1) (or (6.6)) and, for the configurations of

interest, we can take [164,165]

Sct =
1

16πGN

∫
d4x
√
−γ
(

2K − 6 +
1

4
e2φ∂iχ∂

iχ− ψ2

(
1 +

1

2 log u

))
+ log u

∫
d4x
√
−γA

(6.22)

where ∂i = γij∂j and A is the conformal anomaly in the axion-dilaton-gravity system

given by [165]

A =
1

96πGN

e4φ|∂χ|4 . (6.23)
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Note that here we have expressed the X scalar field in terms of the canonically normalised

scalar ψ defined by X = e
− ψ√

6 , which we will continue to use throughout this section. We

note that the 1/ log u term is only relevant for solutions where the X-field is sourced,

which are only briefly discussed in section 3.5.

The expectation value of the stress energy tensor is obtained by taking the functional

derivative of the total action with respect to the boundary metric [166,167]

16πGNT
ij = lim

u→0

(
− 2Kij + γij

(
2K − 6 +

1

4
e2φ∂iχ∂

iχ− ψ2(1 +
1

2 log u
)

)

− 1

2
e2φ∂iχ∂jχ+ log u

(
Aγij − 2

3
e4φ∂iχ∂jχ(∂χ)2

))
, (6.24)

where Kij is the extrinsic curvature of a u = constant hypersurface, and ∂i = γij∂j. Using

the boundary expansion of the fields in the previous section, we find the expectation value

of the stress-energy tensor has the following non-vanishing components:

T tt =
1

16πGN

(
−3F4 −

23

7
B4 +

2945

4032
a4 − 4

7
(X2)2

)
,

T xx = T yy =
1

16πGN

(
−F4 −

5

7
B4 +

443

4032
a4 +

4

7
(X2)2

)
,

T zz =
1

16πGN

(
−F4 −

13

7
B4 +

2731

4032
a4 − 12

7
(X2)2

)
. (6.25)

This result is consistent with [61] when X2 → 0.

Similarly, we can calculate the one-point functions of the theory in order to find the

vacuum expectation of the fields. For the scalar fields we find that expectation values and

sources are given by

〈Oχ〉 = 0, χ(0) = az ,

〈Oφ〉 =
1

16πGN

(
−143

252
a4 +

8

7
(B4 + 2X2

2 )

)
, φ(0) = 0 ,

〈Oψ〉 = −
√

6X2

16πGN

, ψ(0) = 0 . (6.26)

We can now easily check that the Ward identities for the theory are satisfied. Firstly,

diffeomorphism invariance gives us the conservation of the stress-energy tensor

∇iTij + 〈Oφ〉∇jφ(0) + 〈Oχ〉∇jχ(0) + 〈Oψ〉∇jψ(0) = 0 , (6.27)

which in our case is simply ∇iTij = 0, and is trivially satisfied. Similarly, the invariance



CHAPTER 6. A NEW PHASE OF ANISOTROPIC PLASMA 124

of the theory under Weyl transformations leads to the conformal Ward anomaly

T ii = −(4−∆ψ)ψ(0)〈Oψ〉+A , (6.28)

where A is the conformal anomaly. From (6.25) we have T ii = a4/6 and hence

A =
a4

96GN

, (6.29)

in agreement with a direct calculation of (6.23).

By analytically continuing the time coordinate via t = −iτ and demanding regularity

of the metric at u = uh, we find that the Hawking temperature of the black holes is given

by

T =
B1/2
h |Fh|

4π
. (6.30)

The entropy density of the black holes, s, can be obtained from the area of the black hole

horizon, giving

s =
e−

5
4
φh

4GNu3
h

. (6.31)

We can calculate the free-energy density, w, by calculating the total on-shell Euclidean

action via wvol3 = TItotal|os. In fact, using the results of [168] we can immediately obtain

w = E − Ts , (6.32)

where E = T tt as well as the Smarr formula

E − Ts = −T xx . (6.33)

As we explain in the appendix, these results can also be obtained by explicitly writing

the bulk action as a total derivative in two different ways.

Finally, we note that we can determine how various quantities transform under the

scaling given in (6.18). For example, the free-energy transforms as

w → λ−4w −Aλ−4 log λ . (6.34)

One can check that the Smarr formula is invariant under (6.18).

3.4 Numerical construction of the black hole solutions

We construct the black hole solutions by numerically solving the ODEs (6.12)-(6.15),

subject to the boundary conditions given in (6.17),(6.19). Recall that for a fixed dynamical
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Figure 8: Plot showing the expectation value of the operator Oψ dual to the scalar field ψ (recall

X = e−ψ/
√

6) for the black hole solutions. The blue line corresponds to the solution of [61], while
the red lines indicate the new branch of solution, that exists for T ≤ Tc and T ≥ Tc.
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Figure 9: Plot showing the free energy of the black hole solutions, relative to the free energy at
the critical temperature, wc. The red line is the new branch of solution, while the blue line is
the solution of [61]. The left panel shows that the branch of black holes that exist for T ≤ Tc has
lower free energy, and hence is thermodynamically preferred. The right panel shows the black
holes with T ≥ Tc that are not preferred.

scale the black hole solutions can be parametrised by T/a. In practise we set a = 1 and

use a numerical shooting method in which we shoot from both near the black hole horizon

and the holographic boundary and then match in the middle.

We find that a new branch of black hole solutions appears at the critical temperature

Tc/a ∼ 1.8 × 10−2, and there are black hole solutions that exist for both T ≤ Tc and

T ≥ Tc, as illustrated in figures 8 and 9.

The solutions with T ≤ Tc are the physically relevant solutions. In particular, we see

from figure 9 that for T ≤ Tc, where the black hole solutions of [60,61] are unstable, this

new branch of solutions has lower free energy. We thus conclude that there is a phase

transition which, moreover, is a continuous phase transition. We emphasise that these

hairy black holes are associated with a spontaneous phase transition since the boundary

conditions we imposed for the field X corresponded to the dual operator Oψ acquiring an

expectation value with no source. From the point of view of the D = 5 model this new

phase does not appear to break any more symmetries than the background black holes.

In particular, one can see from that potential in (6.6) does not have, for example, a Z2
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symmetry. However, after uplifting to type IIB, following an earlier discussion we know

that when the ψ-field acquires an expectation value then the SO(6) global symmetry is

spontaneously broken to SO(4)× SO(2).

The black hole solutions with T ≥ Tc appear to be “exotic hairy black holes”. In

particular, they only seem3 to exist for T ≥ Tc, in contrast to black holes associated

with a first order transition which start existing for T ≥ Tc and then turn around at

some maximum temperature before continuing down to lower temperatures. We also

observe from figure 9 that these black holes have higher free energy than the black holes

of [60,61] and hence are not thermodynamically preferred. We note that such exotic hairy

black holes have appeared in other holographic constructions, both bottom-up [157] and

top-down [86].

3.5 Critical Exponents

Having shown that there is a continuous phase transition at Tc, we now investigate the

critical exponents of the transition. Somewhat surprisingly, we find that the phase tran-

sition does not have the same critical exponents as the majority of holographic phase

transitions.

The simplest critical exponent to calculate is β, which is defined by

〈Oψ〉 ∼ (Tc − T )β . (6.35)

For our phase transition, from our numerics we find that β = 1, differing from the standard

value β = 1/2. There are several other important critical exponents for a phase transi-

tion4. For example, the behaviour of the specific heat for T < Tc defines the exponent α

via

C ∼ (Tc − T )−α . (6.36)

This can be read off from the behaviour of the difference between the free energies of the

two phases via ∆w ∼ (Tc − T )2−α. We find that in our transition α = −1 in contrast

to the standard value of α = 0. Since the free energy is continuous in both the first and

second derivatives, and has a discontinuity in the third derivative, we conclude that this

is a third order phase transition. The remaining critical exponents are fixed by α, β using

scaling relations. For example we have

γ = 2− α− 2β−1, δ = (2− α)β−1 − 1 , (6.37)

3We have checked that this is true up to T/a ∼ 3.
4For a discussion in the context of holography see [169].



CHAPTER 6. A NEW PHASE OF ANISOTROPIC PLASMA 127

where γ, δ are defined by

∂〈Oψ〉
∂ψ

∼ (Tc − T )γ, ψ ∼ 〈Oψ〉δ . (6.38)

These results can be established using the renormalization group, as discussed in chapter

13 of [170]. For our black holes we obtain γ = 1, δ = 2 in contrast to the standard results

of γ = 1, δ = 3.

As a check that the scaling relations are indeed satisfied, we carried out a direct

calculation of the exponent δ. To do this we constructed a more general class of black

hole solutions with a source for the operator dual to ψ. This required changing the

boundary conditions in (6.17) to allow for terms of the form u2 log u. Having done this

(which requires some effort), it is possible to see how the behaviour of 〈Oψ〉 needs to be

changed as one switches on the source, while keeping the temperature fixed to be at the

value T = Tc. Carrying out this procedure we found δ = 2 in agreement with above. To

summarise, the critical exponents for the new phase of black holes are5

(α, β, γ, δ) = (−1, 1, 1, 2) , (6.39)

in contrast to the standard values (α, β, γ, δ) = (0, 1/2, 1, 3). Recall that the standard

values arise from a Landau-Ginzburg model with quadratic and quartic terms in the free

energy. In appendix E, we discuss how the exponents (6.39) are associated with a free

energy for a scalar order parameter with quadratic and cubic terms.

Some bottom-up holographic superconducting phase transitions have been studied in

the probe approximation [74, 158, 159] and with back-reaction [75], which also exhibit

non-standard critical exponents. The specific critical exponents that we have found for

our new black holes have also been found in models with a potential which contained

terms that are cubic in the modulus of a complex scalar field. Although such couplings

are rather unnatural for a charged scalar field, and it is difficult to see how they would

arise from a top-down setting, we find that cubic terms in the potential for the neutral

scalar field ψ in our model are responsible for the non-mean field behaviour.

To see this we first note that if we expand our Lagrangian for the scalar field ψ around

ψ = 0 we have

Lψ = −1

2
(∂ψ)2 + 12 + 2ψ2 − 1

2

√
2

3
ψ3 +

1

12
ψ4 +O(ψ5), (6.40)

In particular, the absence of a Z2 symmetry ψ → −ψ allows for the cubic term. We can

5It is interesting to contrast the parameters that we have here to that of the standard Ising model [171].
In our model, T/a corresponds to the temperature of the Ising model, while 〈Oψ〉 corresponds to the
magnetisation, and ψ to the magnetic field.
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contrast this model with a bottom up model in which the cubic term is absent:

Lψ = −1

2
(∂ψ)2 + 12 + 2ψ2 +

1

12
ψ4 +O(ψ5), (6.41)

with the rest of the Lagrangian unchanged. We have constructed the back-reacted black

holes for this model and we find that the critical exponents for the phase transition now

take the standard values. Furthermore, we have checked that varying the quartic terms

does not change this result.

3.6 Zero temperature scaling solution

To investigate the low temperature behaviour of black hole solutions it is often illuminating

to examine the low temperature behaviour of Ts′/s, since if it approaches a constant it

indicates an emergent scaling behaviour which one can then try to identify. For the black

hole solutions constructed in [61] with X = 0 one finds that s scales as s ∼ T
8
3 and

this is exactly the scaling behaviour that is associated with the Lifshitz-like anisotropic

geometry found by [59] that appears at T = 0 in the far IR. In fact this scaling behaviour

is approximately present at the critical temperature phase transition as we see from figure

10.

For our new black hole solutions with X 6= 0 we also see from figure 10 that at very

low temperatures s ∼ T
11
3 . We therefore look for the existence of a scaling solution to the

equations of motion of the form

eφ(u) = eφ0uφc , F(u) = F0u
Fc , B(u) = B0u

Bc , X(u) = X0u
Xc . (6.42)

However, by analysing the resulting algebraic equations one concludes that when X 6= 0

such solutions do not exist. Instead, we have found that the equations of motion admit

the following expansion as u→∞:

eφ(u) =
φ0

(au)4/9
− 15232

10935(au)16/9φ
19/2
0

+ . . . ,

F(u) =
81

112
φ3

0(au)2/3 +
28

45φ
15/2
0 (au)2/3

+ . . . ,

B(u) =
B0

(au)2/3
− 3136B0

3645(au)2φ
21/2
0

+ . . . ,

X(u) =
4

3(au)4/9φ
7/2
0

− 28672

32805(au)16/9φ14
0

+ . . . , (6.43)

where B0, φ0 are constant. Furthermore, we have checked that the new black hole solutions

start to approach this behaviour at low temperatures. Moreover, we can also show that

this behaviour is associated with the observed scaling, s ∼ T
11
3 .
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Figure 10: Plots showing the temperature dependence of entropy, both along the high tempera-
ture branch of solution (right), and for the new low temperature branch of solution (left). The
dotted lines are 11/3 and 8/3 on the left plot, and 3 and 8/3 for the right plot. We see that
at very high temperatures s exhibits the standard scaling of the N = 4 SYM plasma, before
cooling towards a Lifshitz geometry. After the phase transition, the system moves away from
the Lifshitz geometry, and towards the new scaling solution.

To see this we first observe that the above expansion can be generalised to finite

temperatures, with the leading order expansion of F replaced with

F(u) =
81

112
φ3

0(au)2/3

(
1−

(
u

uh

)28/9
)

+ ... , (6.44)

where uh is the horizon radius. By combining (6.31) and the above finite temperature

solution, the entropy is given by

s =
1

4GN

a3φ
−5/4
0 (auh)

−22/9 + ... (6.45)

while the Hawking temperature is given by

T =
9a
√
B0φ

3
0

16π
(auh)

−2/3 + ... . (6.46)

Combining these two expressions we find, as claimed:

16πGNs =

(
4

3

)1/3
65536π14/3a3

2187φ
49/4
0 B11/6

0

(
T

a

)11/3

+ ... . (6.47)

It is interesting to point out that the leading behaviour of the T = 0 solution given

in (6.43) can be recast in the following form, after making the coordinate transformation
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u = cρ3/2, for some constant c:

ds2 ∼ ρ
−2(3−θ)

3

(
dρ2 − dt̄2 + dx̄2 + dȳ2 + ρ−2(z−1)dz̄2

)
,

eφ ∼ ρ−2/3, X ∼ ρ−2/3 , (6.48)

with θ = −1, z = 2/3 and the bars denote that we have rescaled the coordinates. This

is similar to the hyper-scaling solutions with Lifshitz exponent z and a hyper-scaling

violation exponent θ [160–162], but here the Lifshitz exponent is associated with a spatial

direction and not a time direction. Under the scaling (t̄, x̄, ȳ, z̄, ρ)→ (λt̄, λx̄, λȳ, λ2/3z̄, λρ)

we find that metric transforms as ds→ λ
θ
3ds. It is curious that the exponent z = 2/3 is

the same value as for the unstable Lifshitz-like ground state with X = 1 given in (6.9).

3.7 Thermal conductivity

Having established the low temperature behaviour of the black holes, it is of interest to

derive the DC thermal conductivity in the z-direction6, κ. Earlier, we demonstrated in

general that the DC conductivity can be calculated by solving the appropriate Stokes

equations on the black hole horizon. However, since our lattice is a one dimensional ho-

mogeneous lattice, the Stokes equations can be solved exactly. For simplicity, we therefore

follow the approach of [66], which showed how κ can be directly solved in terms of black

hole horizon data.

To make contact with [66] and our earlier chapters, it is convenient to write the black

hole solutions in a slightly different form

ds2 = −Udt2 +
dr2

U
+ eV1(dx2 + dy2) + eV3dz2 ,

χ = az, φ = φ(r), X = X(r) (6.49)

where U, V1 and V3 are functions of r. We assume that as r →∞, the functions have the

following asymptotic form

U ∼ r2 + ..., e2Vi ∼ r2 + ..., (6.50)

and φ → 0 + o(u2), X → 1 + o(u2). We now consider a small linearised perturbation

6Since the solutions are still translationally invariant in the x and y directions, the thermal conductivity
in these directions is infinite.
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about this class of black hole solutions that includes a piece that is linear in time:

gtz = tδf2(r) + δgtx1(r) ,

grz = e2Veδhrz(r) ,

χ1 = az + δχ1(r) . (6.51)

A key point is that this perturbation does not source the X-field. As a result the

calculation of κ is virtually unchanged from the derivation given in [66]. Rather than

repeat the steps, we just quote the final result:

16πGNκ =

[
4πsT

a2e2φ

]
r=rh

. (6.52)

We showed in the previous section that the black holes with X 6= 0 have s ∼ T 11/3

at low temperatures. From (6.43) we can also determine the low temperature scaling

behaviour of the dilaton to be (e2φ)r=rh ∼ T 4/3. Hence the low temperature scaling of the

thermal conductivity is given by κ ∼ T 10/3. We see that the the black hole solution is

dual to a ground state that is thermally insulating in the direction of the linear axion. It

is also interesting to contrast this result with the result for the (unstable) Lifshitz ground

state, where κ ∼ T 7/3 [66].

4 Discussion

We have shown that the anisotropically deformed N = 4 Yang-Mills plasma studied

in [60, 61] has low temperature instabilities. The plasma undergoes a third-order phase

transition, spontaneously breaking the global SO(6) symmetry down to SO(4)× SO(2).

We showed that critical exponents of the phase transition are given by (α, β, γ, δ) =

(−1, 1, 1, 2) in contrast to the standard mean field theory values usually seen in holography.

These critical values can be associated with a cubic Landau-Ginzburg free energy for

a scalar order parameter, as discussed in appendix E. However, such a free energy is

unstable. In addition, stabilising the free energy with higher powers of the order parameter

leads to a first order phase transition. By contrast, in our holographic model the transition

appears to be continuous, in fact third order, provided that the branch does not turn

around at some temperature T > Tc and then go down to lower energies. Thus, our

model underscores the difficulty in making a precise identification of the properties of the

phase transition just using a Landau-Ginzburg mean field approach. Perhaps a Landau-

Ginzburg model with more fields might give a better description. It would be interesting

to further clarify this point.

It would also be interesting to know which critical exponents can be realised in

string/M-theory constructions. In addition to the exponents that we found here, it was



CHAPTER 6. A NEW PHASE OF ANISOTROPIC PLASMA 132

shown that for a class of top-down R-charged black holes the critical exponents are given

by (α, β, γ, δ) = (1/2, 1/2, 1/2, 2) [172–174]. It is not clear if the bottom up constructions

discussed in [74,75,158,159], which had more general exponents, can be embedded into a

top-down setting. Following [169], it would also be of interest to explicitly calculate the

dynamic critical exponents for our transition as well as others.

We analysed the T = 0 limiting behaviour of the black holes describing the new

low temperature phase. We showed that in the far IR there is an emergent leading

order behaviour that is similar to the hyperscaling violation geometries but with spatial

anisotropic scaling. This scaling behaviour implies that the thermal conductivity scales

with temperature as κ ∼ T 10/3 at low temperatures, revealing that the ground state is a

thermal insulator.

It is not difficult to show that the D = 5 model with metric, axion and dilaton

(i.e. when X = 1) arises as a consistent truncation on an arbitrary five-dimensional

Sasaki-Einstein (SE) manifold, not just the five-sphere. Therefore, the original black hole

solutions of [59–61] also describe the high temperature phase of the whole class of dualN =

1 SCFT plasmas with an anisotropic deformation. For a given SE space, if there are no

BF saturating modes in the spectrum then the black holes will not suffer the instabilities

that we have described in this paper, and the Lifshitz ground state constructed in [59]

may be the true ground state of the system. On the other hand if there are BF saturating

modes then the black holes will become unstable at some critical temperature. For a

general SE manifold it is unlikely that there is a consistent truncation maintaining just

one extra scalar field as we have studied in this paper for the case of the five-sphere. This

would mean that the corresponding black hole solutions describing the low temperature

phase would need to be constructed directly in ten spacetime dimensions. Although this

is likely to be a challenging task, it may be tractable to study the solutions near the phase

transition and it would be particularly interesting to determine the critical exponents.

Finally, the black hole solutions were constructed using a consistent KK truncation

that keeps a single scalar field X with m2 = −4. This scalar field is part of a multiplet of

twenty scalars that transform in the 20′ of SO(6). All of these scalars become unstable

at the critical temperature Tc and it would be very interesting to investigate the full class

of black hole solutions that emerges at Tc, which will generically break all of the SO(6)

symmetry, and then follow them down to low temperatures. Although challenging, this

could be investigated using the consistent truncation of [175] that keeps twenty scalars

parametrised by a symmetric, unimodular six by six matrix Tij. As a first step one

could analyse the truncation that keeps five scalar fields, parametrised by the diagonal

subset [176], or even simpler, the truncations that keeps just two scalar fields [177]. We

will explore this further in the next chapter.



Chapter 7

Further phases of the anisotropic
N=4 super Yang-Mills plasma

1 Introduction

In this chapter, we continue our analysis of the top-down framework to study spatially

anisotropic systems in N = 4 super Yang-Mills (“SYM”) theory that was developed

in [59], and further analysed in various works [60, 61, 63]. In [60, 61], black hole solutions

of type IIB supergravity that approach AdS5 in the UV were constructed, with a linearly

dependent type IIB axion. The solutions were made anisotropic by making the axion a

function of only one of the three spatial coordinates. At low temperatures, these black

hole solutions approach a T = 0 solution from [59], which has a Liftshitz-like scaling in

the IR.

In the previous chapter, we showed that this Liftshitz-like scaling solution is actu-

ally unstable at sufficiently low temperatures, and below some critical temperature, the

black hole undergoes a phase transition, which spontaneously breaks the global SO(6)

symmtery down to SO(4) × SO(2). An explanation for this instability in the zero tem-

perature limit was first presented in [59]. There, it was shown that the Kaluza-Klein

(KK) spectrum of the five-sphere contains scalar modes, which transform in the 20′ of

SO(6), that saturate the BF bound in an AdS5 background, but violate a similar bound

in the Liftshitz scaling solution. In the last chapter, it was show that the presence of a

scalar field from the KK mode at finite temperatures leads to a phase transition, and a

new thermodynamically favoured branch of black hole solutions was constructed. These

black holes have interesting properties, such as unusual mean field critical exponents, and

undergo a third order phase transition. Whilst the instability we found was due to a

single scalar field, this scalar field is only one from the multiplet of twenty, all of which

become unstable at the same critical temperature, and it is an interesting question to ask

whether the other scalar fields will add to the phase diagram, and what is the true low

temperature ground state of the theory.

The work in [60, 61] was generalised in [63] to include a finite U(1) gauge field dual

133
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to a global U(1) electric field. Whilst most of the physics generalised as expected, it

was claimed that the theory has a further global phase transition with the addition of

the gauge field. The authors argued that there was an instability in the theory below

some critical point, as there are two black hole solutions at the same temperature with

different black hole radii, leading to a Hawking-Page transition. It is unclear how the

U(1) chemical potential would affect the results of the previous chapter and [4].

In this chapter, we will address both of these questions. We will consider various

consistent truncations from type IIB supergravity, first studied in [175], which preserve

multiple scalar fields from the 20′ multiplet, as well as U(1) gauge fields. The presence

of additional scalar fields leads to further branches of black hole solution. However, these

solutions form at temperatures above the critical temperature of the phase transition and

have a higher free energy - an example of “retrograde condensation”. Furthermore, by

constructing the static normalisable modes of the theory, we will demonstrate that below

some critical temperature the solution we constructed in chapter 5 is actually unstable.

The addition of a finite U(1) chemical potential generalises the results of the last

chapter, and has many of the same features. In particular, the properties of the phase

transition, such as the critical exponents and its order, remain unchanged when a chemical

potential is switched on. However, for a sufficiently large chemical potential, there is no

evidence of retrograde condensation, and the solution appears to be stable all the way

down to zero temperatures. It is important to note, however, that we do not observe the

Hawking-Page transition that was observed in [63].

We can then ask questions about the low temperature behaviour of the stable black

holes that we have constructed. In particular, by analysisng the DC thermoelectric con-

ductivity of the black holes, using the techniques from earlier in the thesis [1,97], we find

that at zero temperature, the DC thermoelectric conductivity matrix diverges. This is a

particular effect of the top-down model we have chosen. With the consistent truncation

that we have used, at T = 0 the gauge coupling in the Lagrangian diverges, and hence

the electrical conductivity is infinite.

The rest of the chapter proceeds as follows. In section 2, we present the model we

will use, discuss the previous work which will be the basis for this study, and introduce

our ansatz for the black holes. The black holes are numerically constructed in section 3,

and in this section we also dicuss the DC thermoelectric response of the U(1) charged

black holes. In the final section we present some conclusions and possible topics of further

study.

2 The model

Our starting point is type IIB supergravity. On the field theory side, we are interested

in field theories in 3 + 1 dimensions, and so we will Kaluza-Klein (KK) reduce the full
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supergravity theory to D = 5 using a consistent truncation. By this, we mean that any

solution to the equations of motion in the D = 5 theory must also be an exact solution to

the full ten dimensional theory. In general, obtaining a consistent KK reduction is highly

non-trivial in the case of fully backreacted supergravity theories.

A possible starting point is the reduction first obtained in [175]. This truncation

preserves 15 SO(6) gauge fields, the type IIB axion and dilaton, and 20 scalar fields

that transform in the 20′ of SO(6), which can be parameterised by a single unimodular

symmetric tensor, Tij. All twenty scalar fields have mass m2 = −41, which saturates the

BF bound in five dimensions, and are dual to operators Oψ that have dimension ∆ = 2.

It is possible to further truncate this theory to all the theories that have been previously

studied in [4, 60,61,63].

Given the computational difficulty in numerically solving the field equations containing

this many fields, it will be helpful to further truncate this theory to get something which

is more numerically manageable. There are two cases that we will consider - the “neutral”

case, where five of the twenty scalar fields are non zero in the consistent truncation with

all the gauge fields set to zero, and the “charged” case, which preserves three U(1) gauge

fields as well as two scalar fields.

We stress that our use of neutral and charged here simply refers to whether or not

the consistent truncation leads to non-zero gauge fields. Unlike in the case of holographic

superconductors (e.g [178]), the phase transitions here will be driven by neutral scalar

fields.

2.1 Neutral case

We will consider a D = 5 gravitational theory coupled to five scalar fields, the dilaton

and axion, with a Lagrangian given by

L =

√
−g

16πGN

(
R− 1

2
(∂~Ψ)2 − V − 1

2
(∂φ)2 − 1

2
e2φ(∂χ)2

)
, (7.1)

where the potential, V , is given by

V = −1

2

(
(

6∑
i=1

Xi)
2 − 2

6∑
i=1

X2
i

)
, (7.2)

Ψ = (ψ1, ψ2, ψ3, ψ4, ψ5) and

Xi = e−
1
2
~bi.~Ψ . (7.3)

1Throughout this chapter we have set the AdS radius, l = 1
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The ~bi satisfy

~bi.~bj = 8δij −
4

3
,

6∑
i=1

bi = 1 ,
6∑
i=1

(~u.~bi)~bi = 8~u , (7.4)

and one convinient choice is [179]

~b1 =

(
2,

2√
3
,

2√
6
,

2√
10
,

2√
15

)
, ~b2 =

(
−2,

2√
3
,

2√
6
,

2√
10
,

2√
15

)
,

~b3 =

(
0,− 4√

3
,

2√
6
,

2√
10
,

2√
15

)
, ~b4 =

(
0, 0,−

√
6,

2√
10
,

2√
15

)
,

~b5 =

(
0, 0, 0,− 8√

10
,

2√
15

)
, ~b6 =

(
0, 0, 0, 0, 0,− 10√

15

)
. (7.5)

This truncation can be obtained from the truncation discussed in the previous section

by setting the gauge fields to zero and diagonalising Tij [177,180],

Tij = diag(X1, X2, X3, X4, X5, X6) ,
6∏
i=1

Xi = 1 , (7.6)

and can be further truncated by setting pairs of the elements of (7.6) to be equal to each

other. For example, we can set the Xi to be pairwise equal, e.g

X1 = X2 ≡ Y1 , X3 = X4 ≡ Y2 , X5 = X6 ≡ Y3 , (7.7)

so that

Tij = diag (Y1, Y1, Y2, Y2, Y3, Y3) , (7.8)

which leaves us with two remaining scalar fields (since we still have the condition that

Tij has unit determinant). The constistency of this truncation was first deduced in [176].

One way to obtain this truncation is to set

~Ψ =

(
0,

√
2

3
ψ1,

√
1

3
ψ1,

√
3

5
ψ2,

√
2

5
ψ2

)
, (7.9)

which explicitly demonstrates that there are two scalar fields remaining.

Furthermore, if we set

~Ψ =

(
0, 0, 0,

√
3

5
ψ,

√
2

5
ψ

)
, (7.10)

our matrix is now

Tij = diag
(
X,X,X,X,X−2, X−2

)
, (7.11)
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where X = e−ψ/
√

6, and we have the consistent truncation considered from the last chapter

[4]. Finally, we can setX = 1 to recover the Einstein-dilaton-axion theory that was studied

by Mateos and Trancanelli [60, 61].

Note that in order to truncate the five scalar fields to two, we could have equally

chosen ~Ψ so that (7.8) was instead (X1, X2, X3, X1, X2, X3), with

~Ψ =

(
ψ1, ψ2,−

√
3

8
ψ1 −

√
1

8
ψ2,

√
5

8
ψ1 −

1

2

√
3

10
ψ2,

2√
5
ψ2

)
. (7.12)

In either case, if both scalar fields acquire a different expectation value, then on uplifting

to the full type IIB solution, the global R-symmetry will be broken from SO(6) to SO(2)3.

Whilst these two examples would appear to be two different solutions in D = 5, they are

simply part of the moduli space of D = 10 IIB solutions, and are physically equivalent.

2.2 Charged case

We now turn our attention to theories that include gauge fields. We will consider the

truncation that preserves two of the scalar fields, three U(1) gauge fields of the maximal

U(1)3 subgroup of SO(6), as well as the axion and dilaton, φ and χ, which was first

obtained in [177]. The Lagrangian for this theory is

√
−g

16πGN

L =R− 1

2
(∂ψ1)2 − 1

2
(∂ψ2)2 + 4

∑
i

Y −1
i − 1

2
(∂φ)2 − 1

2
e2φ(∂χ)2

− 1

4

∑
i

Y −2
i (F i)µν(F

i)µν +
1

4
εµνρσλF 1

µνF
2
ρσA

3
λ ,

(7.13)

where the Yi and ψi are the same as in the action described by (7.8), and can be param-

eterised by

Yi = e−
1
2
~ai. ~ψ (7.14)

with

~a1 = (
2√
6
,
√

2), ~a2 = (
2√
6
,−
√

2), ~a3 = (− 4√
6
, 0) . (7.15)

Although it is not possible to consistently set the gauge fields to zero in the truncation

that preserves twenty scalar fields, here we can consistently set the gauge fields to zero to

get the consistent truncation which is described by the neutral Lagrangian and (7.8).

If we turn the dilatonic fields, ψ1 and ψ2, into a single scalar field (the simplest way to

do this is to set ψ2 = 0 and let F 1 = F 2 = F/
√

2), our theory reduces to the truncation

studied previously [4] with two additional U(1) gauge fields2. Finally, we note that setting

2This is Romans D = 5 SU(1)× U(1) gauged supergravity [163] with an extra dilaton and axion.
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both ψ1 and ψ2 to zero and F 1 = F 2 = F 3 = F/
√

3, we now have Einstein-Maxwell-axion-

dilaton gravity, which is the model studied in [63].

2.3 Equations of motion

We now extend our earlier analysis and the work of [4,59–61,63], and consider an ansatz

of the form

ds2 =
e−

1
2
φ

u2

(
−FBdt2 +

du2

F
+ dx2 + dy2 +Hdz2

)
,

χ = az, φ = φ(u), ψi = ψi(u), Aj = bj(u)dt = bjdt , (7.16)

where i = 5 and j = 0 for the netural case, and i = 2 and j = 3 for the charged case.

The UV boundary of our theory is located at u→ 0, whilst there is a black hole horizon

at uh. The metric and axion ansatz are the same as in previous works, whilst all other

fields only depend on the radial coordinate, u, which ensures the ansatz takes the same

form as previous work.

The form of the ansatz ensures that the equations of motions will be ODEs, rather

than the more technically challenging PDEs. In addition, the form of the gauge potential

mean that the Chern-Simons term in (7.13) vanishes. The rest of this section proceeds in

a similar fashion to section 3 of the last chapter [4]. We therefore only highlight a few key

details here, and the refer the reader to the previous chapter for full details. Furthermore,

whilst this section will refer to the case where the gauge fields are non-zero, the results

translate in a straightforward manner if the gauge fields are truncated out.

Substituting this ansatz into the equations of motion, the equation of motion for

the axion is trivially satisfied, whilst there are second order equations of motion for the

dilaton, gauge and scalar fields in the consistent truncation. In addition, there are four

independent components of the Einstein equations, which can be written as equations

for F ′,F ′′,B′,B′′. Through appropriate linear combinations of these equations, combined

with the equations of motion for the scalar and gauge fields, these four equations reduce

to first order equations in F and B.

The equations of motion are therefore second order in the dilaton, scalar and gauge

fields, and first order in F and B. We can therefore specify the equation of motion by

4 + 2(ns +ng) integration constants, where ns and ng are the number of scalar and gauge

fields respectively in the consistent truncation.

At this stage, it is also helpful to note that the ansatz and hence the equations of

motion are invariant under the following two scaling symmetries

u→ λu, (t, x, y, z)→ λ(t, x, y, z), a→ λ−1a, bi → λ−1bi;

t→ λt, B → λ−1/2B, bi → λ−1bi; (7.17)
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where λ is a constant.

2.4 Boundary conditions

We will now discuss the boundary conditions for our theory, and hence derive the expan-

sions for the functions near the boundary u→ 0, the UV, and near the black hole horizon

at uh, the IR.

First, we consider the UV Expansion. We require that our solution asymptotically

approaches AdS5 with an axionic field that is deformed by strength a in the z direction.

In order to have the correct falloff, we require φ → 0, and ψi → 0. Furthermore, we

require that the three gauge fields tend to constant values at the boundary, corresponding

to switching on a chemical potential. In order to make a connection with [63], we will

take the three gauge fields to have the same chemical potential, µ.

By imposing these boundary conditions on the solutions, and solving the equations of

motion order by order, we see that the solution has an asymptotic expansion:

φ = −a
2u2

4
+ . . . ,

F = 1 +
11a2u2

24
+ u4F4 + u4 log u

7a4

12
+ . . . ,

B = 1− 11a2u2

24
+ u4B4 − u4 log u

7a4

12
+ . . . ,

ψi = 〈ψ〉iu2 + . . . ,

bi = µ+
1

2
ρiu

2 + . . . , (7.18)

where 〈ψ〉i corresponds to the VEV of the operator dual to ψi and ρi is the electric current

for the gauge field Ai
3. We have set terms proportional to u2 log u to zero in the expansions

of ψi, which mean that there is no source term for the operator dual to ψi, and we have

used the second scaling symmetry from (7.17) to set B to 1. We can see that the expansion

is determined by 4 + ns + ng terms. The log terms in the expansion indicate that there is

a conformal anomaly in our theory, which introduces an additional dynamical scale that

is part of the general freedom in the choice of renormalization scheme. However, for the

present purposes it will suffice to hold this scale to be fixed to unity throughout.

We now consider the IR expansion, and demand that the black hole has a regular

event horizon at uh, which requires the gauge fields and F vanish on the horizon. We find

that the leading order expansion about uh for the fields is given by

F = − 4πT√
Bh

(u− uh) + . . . , B = Bh + . . . , φ = φh + . . . ,

ψi = ψih + . . . , bi = aih(u− uh) + . . . , (7.19)

3This is up to a scaling by a factor og 16πG.
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where T is the Hawking temperature of the black hole, which can be expressed in terms

of uh and the other free parameters in the expanion. There are therefore 3 + ns + ng

parameters in the IR expansion of the fields.

Combining these two results, we see that our system is determined by 7 + ns + ng

constraints, which, after applying the remaining symmetry from (7.17) gives us 6+2(ns+

ng) constants of integration. Recalling that the order of our equations is 4 + 2(ns + ng),

the black holes are specified by a two parameter family of solutions. Throughout the

remainder of the paper, we will use the grand canonical ensemble to describe the system

and so these parameters will be T/a and µ/a. In the “neutral case” we have a one

parameter family of solutions specified by T/a.

3 Numerical construction of the black holes

We can now solve the equations of motion numerically in order to construct black hole

solutions. As discussed previously, there are two cases that we will consider - the “neutral”

case where we have set the chemical potential to zero, and “charged” case, where we

source all gauge fields with the same, constant chemical potential, µ. Since our boundary

conditions ensure that there is no source to the scalar fields, ψi, any new branch of solution

will correspond to a phase transition by spontaneous symmetry breaking, since the dual

operator to the field, Oψ, will have a finite expectation value but no source.

For both cases, our numerical method has been to set the anisotropic strength, a, to

1, and use a shooting method to solve the equations. This means that we numerically

integrate the solution from both the black hole horizon and the UV boundary, and match

at some midpoint between the two boundaries. The Smarr relation

E − Ts+
1

16πGN

∑
i

ρiµ = −T xx , (7.20)

where E = T tt, T µν is the stress energy tensor of our black hole and s is the entropy

density given by

s =
e−

5
4
φh

4GNu3
h

, (7.21)

provides a useful check of the numerics. This relation can be verified using the method

outlined in Appendix E.1.

Since there are several branches of black hole solution that have been numerically

constructed, in what follows we will refer to the black hole solutions from [60, 61] as the

“Mateos-Trancanelli” solution, the black hole from [63] as the “Cheng-Ge-Sin” (CGS)

solution, and the new branch of black hole solution constructed in the last chapter as the

“1 scalar” solution.
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Figure 11: Plot showing the free energy of the black hole solutions in the neutral case, scaled
in relation to the free energy at the critical temperature of the particular phase transition. The
dashed boxes in the top plot shows the region that has been magnified in the bottom left plot,
whilst the dashed box in the bottom left chart has been magnified in the bottom right plot.
The blue line is the Mateos-Trancanelli solution, the red line is the 1 scalar solution from [4],
whilst the green and purple lines indicate new branches of black hole solution, that only form
at a temperature above the critical temperature of the phase transition. Furthermore, these
solutions have a higher free energy than the 1 scalar solution and are not thermodynamically
preferred, but instead correspond to retrograde condensation.

3.1 Neutral case

Recall that it was previously shown that the Mateos-Trancanelli solution (denoted by

the blue line in figure 11) is unstable below a critical temperature, Tc1/a ∼ 1.8 × 10−2,

and a new branch of black hole solution is formed which is thermodynamically preferred

(denoted by the red line). This instability is driven by the condensation of a single scalar

field that transforms in the 20′ of SO(6) and has a mass m2 = −4. Here, we extend

this analysis by including five of the scalar fields from the multiplet, all of which all have

m2 = −4, and find further branches of black hole solution.

The additional scalar fields in the Lagrangian (7.1) lead to further branches of black

hole solution, which are show in figure 11. At a critical temperature Tc2/a ∼ 3.3×10−3, a

new branch of solution (the green line) appears from the 1 scalar solution, whilst further

along this branch there is another phase transition that occurs at Tc5/a and leads to

a further branch of solutions (the purple line). The green branch of solution has two

independent scalar fields (and so is also a solution to the consistent truncation described

by (7.8)), whilst the purple branch of solution has three independent scalar fields (and so

is a solution to equations of motion with two pairs of Xi in 7.6 set equal). On uplifting to
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Figure 12: Frequency of normalisable mode versus temperature, for the 1 scalar branch of
solution. Below the critical temperature, Tc2/a, any perturbation of the form e−iωt will grow
exponentially in time, and will cause an instability. The quasinormal mode frequency appears
to be purely imaginary and hence is a purely decaying mode.

the full D = 10 theory we see that the global R-symmetry of the solution is first broken

from SO(4)× SO(2) to U(1)3 and then to U(1)2 along the branches.

Although our Lagrangian contains five scalar fields, it appears that in our solutions

there are only a maximum of three fields that are actually independent. This can be seen

by analysing the linear perturbation of the five scalar fields around the green branch of

solutions. It is only possible to get consistent equations of motion when one of the scalar

fields is perturbed in this background, and so only one additional scalar field will condense

at Tc5/a.

Unlike in our earlier analysis [4], when the Mateos-Trancanelli solution undergoes a

phase transtiion to the 1 scalar solution, the branches of solution constructed here only

exist at temperature T ≥ Tc2/a, and are not thermodynamically perferred. Furthermore,

we find no evidence that the branch will turn back to lower temperatures (which would

indicate a first order transition). This is an example of retrograde condensation and has

been observed in top-down models for holographic superconductors [85,86].

In [86], black brane solutions were constructed that also displayed this retrograde

condensation. In this example, the black hole solution itself was unstable below the

critical point, with a nakedly singular solution at T = 0. It is an interesting question to

therefore ask if the geometry here is unstable below Tc2/a. To do this, we introduce a

perturbation of the form e−iωtδψ2 and impose infalling boundary condition. We then ask

what value of ω do we get a normalisable fall-off, ie at what value of ω can we get a VEV

for the scalar field without a source. A plot of iω for values of T/a is shown in figure 12.

We find that for T > Tc2, iω is positive, and so any perturbation of the scalar field will

decay over time. However, below Tc2, iω changes sign, which means that a perturbation of

the scalar field will grow exponentially with time. We therefore conclude that the theory
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becomes unstable below the critical point, Tc2/a.

3.2 Charged case

When we add a single, finite U(1) chemical potential, we observe interesting results which

highlight the competing effects that geometry and charge have on phase transitions in

top-down holographic models. Our starting point is the CGS solution from [63], which is

the charged analogue of the Mateos Trancanelli solution. In their paper, the authors found

that the CGS solution has some minimum temperature and the black hole undergoes a

Hawking-Page style phase transition below this point. Here, we do not find this, but

instead find that the black hole approaches an extremal black hole in the low temperature

limit, which we discuss in further detail in Appendix F.1. However, as we now explain,

the CGS solution is unstable below a critical temperature, Tc1/a

The phase transition observed in [4] is also present when the chemical potential is

turned on - in this case, the CGS solution becomes unstable below Tc1/a (which now

depends on µ/a), and the plasma undergoes a third order phase transition (with the

same critical exponents as [4]) to a new branch of thermodynamically preferred black

hole solutions. As before, there is also an unphysical branch of solutions that forms

above the critical temperature, with a higher free energy than the background solution,

corresponding to an exotic hairy black hole. The free energy for these solutions with

µ/a = 1 is shown in the left hand plot of figure 13, where the blue line is the CGS

solution and the red line is the new branch.

As one would expect from the discussion in (2.2), the multiple gauge fields in our

theory can now be explicitly seen in this new branch of solution, due to the breaking of

the symmetry in the D = 10 supergravity theory. In left plot of figure 13, we plot the

electric charge density of the solutions against temperature. The blue line is the charge

density for the CGS solution, whilst the two red lines are the two different charge densities

in this new branch of solution below the critical temperature.

We find that the critical temperature of this phase transition, Tc1/a, increases as we

increase the chemical potential, and so the phase transition found in [4] is at the lowest

critical temperature in our class of black holes. We have checked the relationship between

critical temperature and chemical potential up to µ/a ∼ 1.5, and have no reason to suspect

that this will change at higher chemical potentials. The chemical potential dependence

of the critical temperature for this phase transition is shown in the red plot of figure 14.

However, for the condensation of a second scalar field (analagous to the second plot in

figure 11), there is a different story. Although this phase transition is seen for small µ/a,

when µ/a ≥ µc/a ∼ 0.015, this lower temperature phase transition is no longer seen. The

green plot in figure 14 shows the effect of increasing µ/a has on this critical temperature

for the phase transition, Tc2/a. The critical temperature decreases until at µ = µc the
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Figure 13: Plot showing the charged branches of black hole solutions when µ/a = 1. The blue
line is the CGS soution from [63], whilst the red line is the branch of solution analagous to that
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lower temperature new solution is thermodynamically preferred. The right hand plot shows the
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the ease of presentation. Below the critical temperature, the new branch of solution has two
different electric charge densities due to the symmetry breaking.
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Figure 14: Plot showing critical temperatures, Tc1/a (left) and Tc2/a (right) as a function
of chemical potential, µ/a. The phase transition seen in [4] occurs for all values of chemical
potential. However, the instability that discussed in section 3.1 is only seen for µ/a < 0.015.
The symmetry of the gauge field ensures these results are symmetric if we take µ→ −µ.

critical temperature is zero, and the phase transition no longer occurs. Interestingly, this

means that although our black holes appear to be unstable to scalar field perturbations

at low temperatures in the neutral case, the solutions can be “saved” by turning on a

sufficiently large chemical potential.

3.3 Charged solution thermoelectric DC conductivity

We now change tack, and study some of the properties of the new charged branch of

solutions4. As the solution is cooled down to low temperatures, thermodynamic quantities

such as entropy begin to show temperature dependent scaling. This indicates that, unlike

4For all the calculations in this section, unless otherwise stated, we have set µ/a = 0.02, to ensure
that the solution is stable at low temperatures, as per the discussion in the previous section.
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in the CGS solution, the zero temperature black hole solution is not extremal and instead

the black hole reaches zero temperature as uh →∞.

Since the translational invariance of the theory has been broken in the z direction, it

is interesting to determine the DC transport coefficients of the phase in this direction.

Since there are two distinct gauge fields, we anticipate that there should be two different

electric conductivities. This leads to a 3 × 3 thermoelectric conductivity matrix in the

form  J1

J2

Q

 =

 σ11 σ12 α1T

σ21 σ22 α2T

ᾱ1T ᾱ2T κ


 E1

E2

−(∇T )/T

 , (7.22)

where the J ’s are the electric current densities from the two gauge fields, the Q is the heat

current density, while Ei and ∇T are the applied electric fields and thermal gradients.

The symmetries of our ansatz imply that σ12 = σ21, and ᾱi = αi.

In order to determine this DC thermoelectric conductivity matrix, we adopt the

method from chapter 2 [55,66] and consider a linearised perturbation of the form

Aaz = −δfa1 (u)t+ δaaz(u) ,

gtz = tδf2(r) + δgtz(u) ,

guz = δguz(u) ,

δφ = δφ(u) ,

δχ = δχ(u) , (7.23)

where a is a label for the gauge fields, and δf1 and δf2 are related to the sources for

the electric and heat current respectively. The matrix (7.22) can then be determined

by evaluating the heat and electric current on an appropriate radial hypersurface. The

details of this calculation in a general setting, which extends the earlier results [1,97], are

described in appendix F.2.

We have calculated the thermoelectric conductivity matrix for the low temperature

charged phase, as shown in figure 15. Determining the DC thermoelectric conductivities

allows us to compare the effects of adding a chemical potential to the thermal conductivity,

κ̄. For our theory, κ̄ is given by

16πGN κ̄ =
16π2

a2u3
he

13φh/4
T . (7.24)

Our numerical calculations reveal that the thermal conductivity scales with temperature

as κ ∼ T c, where c is a constant with value ∼ 2 in the case where µ = 1, as shown in figure

16. We therefore see that the ground state is a thermal insulator. We have checked for
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Figure 15: Plot of the DC thermoelectric conductivity for the low temperature charged phase,
with µ/a = 0.02. We see that both σ11 and α1 diverge as T → 0, as the coupling between the
U(1) gauge field, A1, and gravity becomes infinite in the bulk theory. Note that the conductivities
here have been rescaled by a factor of 16πGN for the ease of presentation.

various values of µ/a, and the low temperature scaling appears to give the same values.

It is interesting to compare these results to the results from the neutral case [4], where it

was shown that the neutral black holes have low temperature scaling of κ̄ ∼ T 10/3.

We also find that the electrical conductivities σ11 and α1 diverge as T → 0, despite

the fact that translational invariance has been explicitly broken in the z direction. To

understand this, we note that as T → 0, ψ1h →∞. Since the coupling of A1 in the action

is exp 2ψ/
√

6, as T → 0 this coupling will diverge on the black hole horizon. Therefore,

any perturbation of a electric field should lead to an infinite response from the system,

and hence an infinite conductivity. Diverging conductivity as T → 0 has been seen before

in the case of AdS-RN black holes, but here it is the coupling, rather than the geometry

which is driving the instability. A similar result to this was seen in [58].
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4 Discussion

We have extended the analysis of the last chapter, and constructed a more complete class

of black hole solutions that are consistent truncations of the Kaluza-Klein reduction of

type IIB supergravity on S5 [175], and dual to an anisotropically deformed N = 4 super

Yang-Mills plasma. We have shown that the low temperature phase that we previously

constructed is actually unstable below a critical temperature, corresponding to an unsta-

ble black hole . Whilst the phase transition we previous found is also present when a finite

U(1) chemical potential, µ, is switched on, at µ > µc ∼ 0.015, this instability vanishes,

and the plasma appears to be stable right down to zero temperature. This charged low

temperature plasma has interesting properties, including a divergent electrical conductiv-

ity despite the explicit breaking of translational invariance, similar to examples considered

in [58].

We first considered a consistent truncation that retained five, rather than one, of the

20 scalar fields that transform in the 20′ of SO(6). At low temperatures, the presence of

additional scalar fields in the truncation gives rise to further normalisable static modes in

the black hole solution constructed in [4], and hence new branches of black hole solutions

from a critical point Tc2. Rather than undergoing a phase transition to a thermodynami-

cally preferred phase below Tc2, however, these new branches of black hole solution only

exist at T > Tc2, and so is an example of retrograde condensation, which has been seen

in other top-down holographic models [85, 86]. By analysing perturbations of this scalar

mode, we can conclude that the solution is unstable below this critical temperature. It

would be interesting to understand more generally when retrograde condensation occurs

in a top-down setting.

Following this analysis, we turned on a finite chemical potential, µ, in the dual field

theory, using a consistent truncation that contains two scalar fields and three U(1) gauge

fields. The phase transition first seen in [4] is also present in the case with a finite

chemical potential, with the same order and critical exponents in both cases. In this case,

the black hole in [63] undergoes a phase transition to a new charged branch of solution.
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Interestingly, whilst the black hole in [63] reaches zero temperature at some finite radius -

an extremal black hole - the new branch of solution is not extremal at T = 0. Whilst the

phase transition from the black hole studied in [63] occurs at all values of the chemical

potential, once µ > µc ∼ 0.015, the lower temperature instability discussed above is no

longer seen - instead, the solution appears to be stable right down to zero temperature

solutions.

However, these two truncations are not the end of the story. As with any top-down

model, one is always free to include more of the scalar and gauge fields to analyse the

full theory. It would be particularly interesting to understand whether the supergravity

solutions of [60,61,63] are truly unstable at low temperatures, or if the full matter content

leads to a stable phase. It would also be interesting to understand why the presence of

a chemical potential removes this instability. To answer both of these questions would

require the full consistent truncation from [175], which preserves 20 scalar fields and

15 gauge fields. Whilst a technically challenging task, this would allow us to further

understand the phase diagram of the anisotropically deformed N = 4 super Yang-Mills

plasma. However, in order to fully understand the phase diagram, one would have to

construct all the solutions of the dual supergravity theory, not just those with a consistent

truncation, and so one would ultimately construct black hole solutions in the full D = 10

theory.

Furthermore, it can be shown that the D = 5 model preserving the metric, axion,

dilaton as well as a single U(1) gauge field can come from a consistent truncation on any

five-dimensional Sasaki-Einstein (SE) manifold, not just the five-sphere [181]. Therefore,

the CGS and Mateos-Trancanelli solutions describe the high temperature phase of a whole

class of dual N = 1 spatially anisotropic plasmas. For a consistent truncation on an

arbitrary SE manifold, the unstable scalar modes described here may not exist, and so

the plasma would have a different phase diagram. It would be interesting to understand

precisely how the results here change for different SE manifolds - since a truncation on

an arbitrary SE manifold will not have the same scalar field structure, one may have to

construct the black holes directly in ten dimensions.

We studied the thermoelectric response of the new branch of black hole solutions at

finite chemical potential. We numerically determined the thermal conductivity, κ̄, and

showed that the plasma is a thermal insulator. Furthermore, we determined that κ̄ scales

at low temperatures by T c, with c ∼ 2 in the case where µ/a = 1. In the last chapter,

were able to construct the IR behaviour of the zero temperature black hole solution, and

found it obeyed a scaling relation with a metric that was both Liftshitz and hyperscaling

violating. It would be an interesting avenue of further work to try to find a similar solution

in this case. This could possibly shed light on the reason for why a chemical potential

stabilises the low temperature theory.

At low temperatures, part of the DC thermoelectric conductivity matrix diverges, de-



CHAPTER 7. FURTHER PHASES OF ANISOTROPIC PLASMA 149

spite the explicit breaking of translational invariance in the model. This is because the

gauge field coupling in the theory diverges as T → 0, and so any perturbation of the

electric field will give an infinite response. This highlights a further challenge in modeling

physical systems in a top down setting. In order to introduce finite DC conductivity in a

holographic setting, one has to break translational invariance, such as through a spatially

dependent source term. However, many top down models contain non-linear couplings

between gauge and scalar fields, and so these couplings may well diverge at certain tem-

peratures. Therefore, even when there is a mechanism for momentum dissipation, top

down models can still have infinite DC thermoelectric conductivities.

All of the previous works have focused on the case of static black hole solutions,

which correspond to electrically charged field theories. However, it would be interesting

to understand how this system behaves when there is also a magnetic field present. In

this case, the black holes would no longer be static, but simply stationary, and the Chern-

Simons term from (7.13) would no longer be zero. Whilst this would be technically

challenging, a starting point could be to construct black hole solutions similar to [63] that

contains magnetic fields.
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Chapter 8

Discussion and final thoughts

Understanding the behaviour of strongly coupled systems remains one of the outstanding

challenges in modern theoretical physics, and developing new tools to solve these problems

could help us to explain high temperature superconductivity, model quark gluon plasmas

and perhaps even shed light on the earliest moments in our universe. In this thesis, we

have used gauge/gravity duality to develop novel tools to attack these problems, and

improved our understanding of holographic lattice models. In particular, we have focused

on two themes that are important in real physical systems - phase transitions and linear

response.

The central idea in the first part of this thesis was the DC linear response of a holo-

graphic material. Firstly, we considered a general class of electrically charged black holes

in Einstein-Maxwell-scalar theory. By analysing the linearised perturbations about the

background solutions, we demonstrated that the thermoelectric DC conductivity matrix

could be determined by solving the linearised Navier-Stokes equation for a charged, in-

compressible fluid on the event horizon. By solving the Navier-Stokes equations, one can

determine the relevant current and thermal fluxes as function of the applied source, which

can then be related to the current fluxes of the dual field theory. One can then determine

the appropriate two-point functions of the theory, and hence the DC conductivity matrix.

Much like black hole thermodynamics, we see that information about the dissipation of

the holographic system is actually encoded on the event horizon of the black hole.

Having developed a general formalism to determine the DC thermoelectric conductiv-

ity of holographic lattices, we showed that, quite incredibly, for a wide range of systems

the Navier-Stokes equations can be actually be solved explicitly. Firstly, we considered

Q-lattices [57], where the scalar fields are schematically of the form ψ = kjx
j, for some

constant k in the spatial xi directions. It turns out that in this case the Navier-Stokes

equations can be solved exactly, leading to exact results for these black holes. Similarly,

one-dimensional lattices, where translational invariance is only broken in one spatial di-

rection, have a DC thermoelectric conductivity that can be written as an integral of

background quantities on the event horizon, and so are also completely solved, once the

151



CHAPTER 8. DISCUSSION AND FINAL THOUGHTS 152

background black hole has been determined. Historically, both of these solutions were de-

termined earlier, using a brute force method to calculate conserved currents [55,66]. It is

therefore pleasing to see that these results fit into a general framework for all holographic

lattices.

We then considered a perturbative lattice, where the periodic spatial deformations are

constructed as a perturbative expansion about a background AdS-RN black hole. Physi-

cally, this corresponds to weak momentum dissipation of some perfect metal. It turns out

that the Navier-Stokes equations can be solved order by order in a perturbative expan-

sion, and we explicitly constructed the leading order terms. In particular, by analysing

the leading order behaviour of the thermoelectric conductivities, we were able to obtain

a Wiedemann-Franz law for strongly coupled holographic lattices.

Having developed a formalism to determine thermoelectric conductivities, we extended

these results to include scalar perturbations in a few special cases. We showed that for

holographic Q-lattices, a more general DC response matrix can be obtained by consider-

ing perturbations of the scalar operators, in addition to electric field and stress energy,

perturbations. In this case the DC response could be written exactly in terms of horizon

data. We then showed that, for certain theories, namely with a marginal massless scalar

operator that doesn’t couple to the gauge field, linear in time perturbations of the scalar

field lead to new terms in the Navier-Stokes equations.

The fact that black holes encode information about dissipation is not new. This has

origins in the membrane paradigm [68], and, more recently, was seen in the hydrodynamic

limit [67,128], and there has been suggestion that these results are linked [182]. Whilst in

many ways these earlier results are similar, there are subtle differences in exactly how the

two sets of fluid equations are built up. A natural question, and important area of further

work, is therefore to try and understand exactly how these results relate to each other. In

some ways, however, the fact that these results are related to a membrane paradigm is of

secondary importance. The key point here is not that a set of fluid equations exist, but that

this closed set of equations comes from a subset of metric and gauge field perturbations,

and that the solution to these equations allows one to calculate thermoelectric fluxes on

the horizon, and hence the thermoelectric response of the dual field theory. Fluid flow

on black hole horizons thus has a natural place in holography, and is intrinsically linked

with linear response of the dual field theory.

We then considered the DC response in the hydrodynamic limit, and showed that,

for the simpler case of Einstein gravity, the local currents, rather than current fluxes

could be determined in terms of boundary data. In addition, in the hydrodynamic regime

the entire stress energy tensor response could be determined. On comparing our results

to the fluid/gravity approach, we found that the results were the same. In addition,

we were able to see an analogous expansion for thermoelectric DC conductivities to the

perturbative lattices considered above. Note, however, that these two regimes are funda-
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mentally different. In particular, the perturbative lattice corresponds to weak momentum

dissipation, whereby the deformation itself is small but at any wavelength, whilst the

hydrodynamic regime corresponds to any momentum dissipation but at long wavelengths

(high temperature).

In summary, we know that, in general, at any order we can get DC response of a

holographic black hole via the Navier-Stokes equations on the horizon. If we take the

hydrodynamic limit, we can use fluid/gravity to get any linearised response (i.e AC or

DC), which we have shown, is consistent with the Navier-Stokes approach in the hydro-

dynamic limit. The final piece in the puzzle is therefore a generalised approach to AC

conductivity. Whilst this can clearly be solved in terms of the full bulk geometry, it is a

natural question to ask if we can determine AC conductivity in terms of horizon data in

a small ω limit, and build up some expansion order by order. This would effectively be a

derivative expansion in time, rather than the typical hydrodynamic derivative expansion.

Keeping with the theme of hydrodynamics, we then considered general conformal

field theories on curved spacetimes that have been deformed by spatially dependent and

periodic local temperature variations, at the level of first order hydrodynamics. We argued

that, when we considered linear response, thermal transport is governed by forced Navier-

Stokes equations in curved space. We were then able to demonstrate that, under certain

conditions, these systems exhibit thermal backflow when driven by a DC source - the

thermal currents can locally flow in the opposite direction to the applied source. Note that

while backflow in hydrodynamics isn’t something new, and can occur due to momentum

dissipating processes at boundaries, the key point here is that the CFT has been deformed

by local periodic stresses. As far as we can tell, this is a new result. Electric current

backflow has been observed experimentally [140, 141], so the next natural question is to

ask if can we find similar results with electrically charged systems, by solving the charged

Navier-Stokes equations.

The second major topic we studied was phase transitions. Specifically, we considered

black hole solutions that are dual to a N=4 super Yang-Mills plasma, with anisotropic

spatial deformations in four dimensions that were previously constructed in [60, 61], as

well as the solution with a finite chemical potential considered in [63]. By considering

additional scalar modes that are preserved in the consistent truncation of type IIB super-

gravity Kaluza-Klein reduced on a five-sphere, we showed that these black hole solutions

are unstable at low temperatures, leading to new branches of solution that are thermo-

dynamically preferred. We carried on this process further, truncating out fewer scalar

fields, and showed that, at low temperatures, this potentially leads to problems with the

theory. This is an important lesson in constructing top-down holographic models. Whilst

you may have constructed nice, well behaved solutions in your reduced spacetime, you

always have to be careful that modes from your full theory won’t lead to further states in

the phase diagram at low temperatures.
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In the phase transitions described above, the critical exponents are different to the

standard quadratic Ginzburg-Landau theory. This can be explained by the cubic term

that is in the Lagrangian. It would be interesting to see if this is observed here. Whilst

some work has gone into understanding critical exponents of phase transitions [74], there

are still some outstanding questions. In particular, we were unable to find an appropriate

Ginzburg-Landau expansion to characterise our phase transition. The lack of a Ginzburg-

Landau expansion would suggest that our system is not mean field. Shedding light on this

could give insights into the general nature of holographic phase transitions. In particular,

are holographic phase transition naturally mean field, or can one capture a wider range

of phase transitions.

The solutions considered in [60, 61, 63] are actually part of a wider class of solutions,

dubbed “τ -lattices” [65]. Many of the features from our earlier work that led to the

instabilities are present in the other solutions that can appear in this class, so a natural

piece of further work would be to ask if the instabilities described above are also seen

here. In particular, in the work of [65], black holes were constructed that approached

AdS in both the UV and IR, but had some intermediate scaling regime that approached

a Liftshitz scaling. This Liftshitz scaling was the cause of the phase transitions that were

observed in our results, so it would be interesting to see whether this scaling regime will

lead to holographic instabilities.

In conclusion, in this thesis we have demonstrated several new results relating to the

DC linear response of strongly coupled systems, by considering the holographic dual of the

field theory. In particular, we showed that the DC thermoelectric conductivity of a black

hole could be understood in terms of black hole horizon data. This has opened up new

questions on the relationship between fluid dynamics and gravity. We then considered

top-down holographic models, and showed that existing holographic models were unstable

at low temperatures. We were able to construct new black hole solutions, corresponding

to new phases of the strongly coupled theory. These results may go some way to help-

ing us answer one of physics biggest questions - in general, how can we mathematically

understand and model strongly coupled systems.
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Appendix A

Chapter 2 appendix

A.1 Radial Hamiltonian formalism

In this section we rewrite the equations of motion corresponding to the Lagrangian density:

L =
√
−g

(
R− V (φ)− Z(φ)

4
F 2 − 1

2
(∂φ)2

)
, (A.1)

using a Hamiltonian decomposition with respect to the radial variable. We will follow the

notation of [183], mutatis mutandi, generalising to include the gauge-field and the scalar

field. A useful reference is [184] and we note that closely related work independently

appeared recently in [185].

We consider a foliation by slices of constant r. We introduce the normal vector nµ, sat-

isfying nµnµ = 1. The D-dimensional metric gµν induces a (D−1)-dimensional Lorentzian

metric on the slices of constant r via hµν = gµν − nµnν . The lapse and shift vectors are

given by nµ = N(dr)µ and Nµ = hµνr
µ = rµ − Nnµ where rµ = (∂r)

µ. In a local

coordinate system we can write

ds2 = N2dr2 + γab(dx
a +Nadr)(dxb +N bdr) , (A.2)

where the shift vector has components Nµ = (0, Na) and hµν has components hrr =

NaN bγab, hra = γabN
b and hab = γab. Note also that Nµ = (N bN cγbc, γabN

a).

We will decompose the gauge-field components via

bµ = hµ
νAν , Φ = −NnµAµ , (A.3)

and hence Aµ = bµ−N−1 Φnµ. In the local coordinates we have br = NaAa, ba = Aa and

Φ = −Ar +NaAa.

The radial Hamiltonian formulation can be obtained by first rewriting the Lagrangian
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density as follows

L =N
√
−h

(
(D−1)R +K2 −KµνK

µν − V − 1

4
Zfµνfρσh

µρhνσ − 1

2
ZXµh

µνXν

− 1

2
hµν∂µφ∂ν −

1

2
(nµ∂µφ)(nν∂νφ)

)
, (A.4)

where we have neglected total divergences. Here Kµν = 1
2
Lnhµν = hµ

ρ∇ρnν is the extrinsic

curvature, K = gµνKµν and

fµν = ∂µbν − ∂νbµ ,

Xµ = fµνn
ν +

Φ

N
nν∇νnµ −Dµ

(
Φ

N

)
,

= fµνn
ν − 1

N
DµΦ , (A.5)

where the second expression utilises the fact that nµ∇µnν = − 1
N
DνN . This latter result

follows from writing nν = N∇νr and using ∇µνr = ∇νµr. We also recall that Dµ is the

Levi-Civita connection associated with the metric h and, for example, DµΦ = hµ
ν∇νΦ.

With ḣµν = Lrhµν , ḃµ = Lrbµ, φ̇ = Lrφ we can show that

ḣµν = 2NKµν +DµNν +DνNµ ,

ḃµ = rρfρµ +∇µ(bρN
ρ) ,

= Nnρfρµ +Nρfρµ +∇µ(bρN
ρ) ,

φ̇ = Nnµ∂µφ+Nµ∂µφ . (A.6)

The corresponding conjugate momenta are then given by

πµν =
δL
δḣµν

= −
√
−h (Kµν −K hµν) ,

πµ =
δL
δḃµ

=
√
−hhµρZXρ ,

=
√
−hZF µρnρ ,

πφ =
δL
δφ̇

= −
√
−h
N

(
φ̇−N ν∂νφ

)
,

= −
√
−hnν∂νφ , (A.7)

where the second expressions for πµ and πφ, which are not written in the canonical vari-

ables, are useful.

The Hamiltonian density, defined as H = πµν ḣµν + πµȧµ−L, can be written as a sum
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of constraints

H = N H +NµH
µ + ΦC , (A.8)

with

H = − (−h)−1/2

(
πµνπ

µν − 1

D − 2
π2

)
−
√
−h

(
(D−1)R− V

)
− 1

2
(−h)−1/2 Z−1hµν π

µ πν +
1

4

√
−hZfµν fρσ hµρ hνσ

− 1

2
(−h)−1/2π2

φ +
1

2

√
−hhρσ∂ρφ∂σφ , (A.9)

Hν =− 2
√
−hDµ

(
(−h)−1/2πµν

)
+ hνσfσρπ

ρ

− hνσaσ
√
−hDρ

(
(−h)−1/2 πρ

)
+ hνσ∂σφπφ , (A.10)

C =
√
−hDµ

(
(−h)−1/2 πµ

)
, (A.11)

where π = πµµ and we have ignored total divergences1.

The equations of motion are given by

ḣµν =− 2N(−h)−1/2

(
πµν −

1

d
π hµν

)
+ 2D(µNν) ,

π̇µν =−N
√
−h

(
(d+1)Rµν − 1

2
(d+1)Rhµν +

1

2
V hµν

)
− 1

2
N (−h)−1/2 hµν

(
πγδπ

γδ − 1

d
π2

)
+ 2N(−h)−1/2

(
πµγ πνγ −

1

d
π πµν

)
+
√
−h (DµDνN − hµν DγDγN)

+
1

2
N(−h)−1/2Z−1

(
πµπν − 1

2
hµν(hρσπ

ρπσ)

)
+

1

2
N
√
−hZ

(
hµλhνγhρσfλρfγσ −

1

4
hµν(hρσhγδfργfσδ)

)
− 1

4
N(−h)−1/2π2

φh
µν +

1

2
N
√
−h
(
hµρhνσ∂ρφ∂σφ−

1

2
(hρσ∂ρφ∂σφ)hµν

)
+
√
−hDγ

(
(−h)−1/2Nγπµν

)
− 2πγ (µDγN

ν) (A.12)

as well as

ḃµ =Dµ(N νbν)−N (−h)−1/2 πµ +N ν fνµ −DµΦ ,

π̇µ =
√
−hDσ

(
NZ hσρhµδfρδ

)
+ 2
√
−hDσ

(
(−h)−1/2N [σπ µ]

)
, (A.13)

where we have dropped pieces proportional to the constraints in π̇µν and π̇µ. We also

1In passing that we note that in the local coordinates (A.2) we have Φ −Nµaµ = −Ar and one sees
that using explicit coordinates one could uses Ar as a Lagrange multiplier instead of Φ.
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have

φ̇ =− (−h)−1/2Nπφ +N ν∂νφ ,

π̇φ =
√
−hDµ(

√
−hπφNµ) +

√
−hDµ(NhµνDνφ)

−N

(
√
−hV ′ + 1

2
(−h)−1/2 Z−2Z ′hµν π

µ πν +
1

4

√
−hZ ′fµν fρσ hµρ hνσ

)
. (A.14)

A.2 Generalised Stokes equations from the constraints

In this appendix we show how the Stokes equations (2.40)-(2.42) arise from the constraint

equations (A.9)-(A.11) in a radial decomposition. More precisely we will examine the

constraints for the perturbed metric, at linearised order, focussing on the leading terms

of an expansion at the black hole horizon. In other words, we evaluate the constraints on

a hypersurface of constant r and then take the limit r → 0.

We begin by noting that for the perturbed metric the unit normal vector has compo-

nents

ni = −U1/2F−1/2 gijd δgrj, nt = G−1 (FU)−1/2 δgtr,

nr = U1/2F−1/2

(
1− U

2F
δgrr

)
. (A.15)

Furthermore, the corresponding shift and lapse functions are given by

N j = gijd δgri, N t = − 1

GU
δgrt ,

N = F 1/2U−1/2

(
1 +

1

2

U

F
δgrr

)
, (A.16)

The components of the extrinsic curvature take the form

Ktt =
1

2
G−2U−3/2F−1/2

(
−∂r (GU) +

1

2

U

F
∂r (GU) δgrr

)
+

1

2
G−2U−3/2F−1/2

(
(GU)2 ∂r

(
δgtt

(GU)2

)
+ ∂j(GU)N j

)
,

Kti =
1

2
U1/2F−1/2

(
−∂r

(
1

GU
gijd (δgtj − tGUζj)

)
+ gijd ∂j

(
1

GU
δgrt

))
,

Kij =− U1/2F−1/2∇(iN j) +
1

2
U1/2F−1/2

(
U

2F
∂rg

ij
d δgrr − ∂rg

ij
d + gikd g

jl
d ∂rδgkl

)
− U1/2F−1/2 g

l(i
d g

j)m
d gknd δgmn ∂rgdkl . (A.17)

where here ∇ is the covariant derivative compatible with the d-dimensional metric gdij.
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Expanding the extrinsic curvature close to the horizon we find

Ktt → −1

2

1

(4πT )1/2

1

r3/2

1

G(0)3/2

(
1 +

δg
(0)
tt

G(0)
− 1

2

δg
(0)
rr

G(0)
+

1

4πT
vi ∂i lnG

(0)

)
,

Kti → −1

2

1

(4πT )1/2

1

r3/2

1

G(0)3/2
vi ,

Kij → 1

(4πT )1/2

1

r1/2

1

G(0)1/2
∇(ivj) ,

K → 1

2

(4πT )1/2

G(0)1/2r1/2

(
1− 1

2

δg
(0)
rr

G(0)
+

1

4πT
∇iv

i +
1

4πT
vi∇i lnG

(0)

)
, (A.18)

and we also note that

Kt
i →

1

2

(4πT )1/2

G(0)1/2r1/2
ζi t . (A.19)

We now consider the following quantity which appears in the momentum constraint (A.10)

Wν =Dµ

(
(−h)−1/2πµν

)
= −DµK

µ
ν +DνK

=− (−h)−1/2 ∂µ

(√
−hKµ

ν

)
+

1

2
∂νhκλK

κλ + ∂νK . (A.20)

Expanding at the horizon we find the following individual components

Wt → −
1

2

(4πT )1/2

G(0)1/2

1

r1/2
∇iv

i ,

Wi →
1

G(0)1/2

1

(4πT )1/2

1

r1/2

(
−∇j∇(jvi) − 2πT ζj +

1

2
∇ip

)
(A.21)

where

p = −2πT
1

G(0)

(
δg

(0)
tt + g(0)

rr

)
− δg(0)

it g
ij
(0)∇j lnG(0) . (A.22)

Notice that after imposing the boundary condition constraints (2.14) this definition of p

is identical to the definition of pressure given in (2.39). Another quantity that enters the

constraints is the momentum of the scalar field. At leading order in r we have

πφ → −
√
g(0) v

i∂iφ . (A.23)

We now turn to the gauge field. From the second expression in (A.7) we have

πµ =
√
−hZ F µλ nλ =

√
−g Z F µr = 16πGNJ

µ . (A.24)
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After expanding near the horizon we also find

ftµπ
µ =

1

16πGN

ftiJ
i → 0 ,

fiµπ
µ =

1

16πGN

(
fitJ

t + fijJ
j
)
→ 1

16πGN

(∂iw + Ei) J
t =

1

16πGN

g
1/2
(0) Z

(0) a
(0)
t (∂iw + Ei) .

(A.25)

We now now consider the constraint equations. Substituting (A.24) into the Gauss

constraint (A.11), ∂µπ
µ = 0, we obtain the current continuity equation ∂µJ

µ = 0. When

evaluated at the horizon this leads to ∂iJ
i
(0) = 0. We next consider the momentum con-

straints (A.10) with lowered indices. Using the above results we find that the t component

gives ∇iv
i = 0 while the i component gives the Stokes equation (2.42).

Finally, examining the Hamiltonian constraint (A.9), we find that the leading order

expansion at the horizon for the terms involving the linearised perturbation implies∇iv
i =

0, and hence gives no further conditions. To see this we consider H in (A.9) as a sum of

six terms and it is convenient to divide by
√
−h. Using (A.23) and (A.24) we immediately

see that the third and fifth terms vanish at linearised order. It turns out that the leading

order power of r that appears is r−1. We can show that the sixth term and, with a bit

more effort, the fourth terms are of order r0. Next we consider the second term. The

potential term is clearly of order r0. After examining the leading terms in the Christoffel

symbols we can also show that the Ricci scalar term is also of this order. Finally, we need

to examine the first term. To do so it is convenient to note that using (A.18) we have

(−h)−1/2πtt → −1

2

1

(4πT )3/2G(0)3/2

1

r3/2
∇iv

i ,

(−h)−1/2πij → 1

2

1

(4πT )1/2G(0)1/2

1

r1/2

(
− 2∇(ivj) − 4πTδg

(0)
kl g

ik
(0)g

jl
(0)

+ 4πTgij(0)(1−
1

2G(0)
δg(0)

rr +
1

4πT
∇iv

i +
1

4πT
vi∇i lnG

(0))
)
, (A.26)

Continuing to evaluate the first term we are eventually led to the result that the leading

term in the Hamiltonian constraint can be written

(−h)−1/2H → 1

2rG(0)
∇iv

i. (A.27)

A.3 Holographic currents

On-shell we have

δS =

∫
d3x
√
−h
[

1
2

(
r−(D+1)tµν

)
δhµν +

(
r1−Djµ

)
δAµ

]
. (A.28)



APPENDIX A. CHAPTER 2 APPENDIX 175

where tµν and jµ are the radially independent, holographic stress tensor and current,

respectively. After substituting the time dependent sources given in (F.11), (2.12) we find

δS =

∫
d3xḠ1/2√ḡd

[
(Ḡtti − µji)(−tζi) + ji(−tEi)

]
. (A.29)

We thus see that −tEi is a source for the operator density Ḡ1/2√ḡdji and −tζi is a source

for the operator density Ḡ1/2√ḡd(Ḡtti − µji).
It is possible to show that the expectation values of these holographic tensor densities

are given by

Ḡ1/2√ḡdji = J i|∞ ,

Ḡ1/2√ḡd(Ḡtti − µji) = Qi|∞ − tḠ3/2√ḡdtijζj . (A.30)

Thus J i|∞ and Qi|∞ are the time-independent parts of the expectation values of the

vector and tensor densities. To establish the first equation in (A.30) is straightforward.

The second is a little more involved. Firstly, from the expression for Qi given in (4.12)

and using (A.17) we can show that at linearised order we have

Qi =
1

16πGN

F (GU)3/2√gd
(
−2Kti + 2Kij 1

GU
(δgtj − tGUζj)

)
− atJ i . (A.31)

Recall that if we write

16πGN t̃
µν = −2Kµν +Xhµν + Y µν , (A.32)

where X = 2K + f(φ) + . . . and Y corresponds to additional terms arising from the

counterterms, then we obtain the stress tensor if we evaluate t̃µν at the AdS boundary.

Observing that at linearised order we have gtth
ti = hij (δgtj − tGUζj) we can therefore

write

Qi =
1

16πGN

(GU)3/2√gd
(

(t̃ti − Y ti)− (t̃ij − Y ij)
1

GU
(δgtj − tGUζj)

)
− atJ i . (A.33)

We next want to take a limit as r → ∞. If the combination of Y ti and Y ij that appear

make sub-leading contributions, then we have

Qi|∞ = lim
r→∞

[
rD+1Ḡ3/2√gd

(
t̃ti + t̃ijtζj

)
− atJ i

]
(A.34)

and we recover (A.30) after using that rD+1t̃µν = tµν . We have explicitly checked for

particular cases, eg D = 4 with Y µν ∼ R(3)µν that this does indeed occur. It would be

interesting to find a universal argument that this is always true.

The time dependent piece on the right hand side of (A.30) is associated with the
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static susceptibility for the heat current two point function, as explained in appendix

C of [66]. It can also be understood by noting that if we start with the background

black hole geometries, with in particular tti = ji = 0, then the time independent linear

perturbation that is generated by the coordinate transformation t→ t+ ζix
i, induces the

transformation tti → −ζitij. Promoting this perturbation to one that is linear in time

leads to the time dependence as in (A.30).

A.4 Alternative derivation of the Stokes equations

We discussed in section 3.3 how the generalised Stokes system of equations given in

(2.40)-(2.42) can also be obtained from the equations (2.18), (2.30) for J i and Qi. Indeed

evaluating the first of the two equations in each of (2.18), (2.30) at the black hole horizon

we immediately obtain ∂iJ
i
(0) = ∂iQ

i
(0) = 0. These comprise two of the three Stokes

equations, given in (2.40), (2.41). The third Stokes equation, given in (2.42), can be

obtained from the second equation of (2.30).

To obtain it we consider the pieces of Qi that are linear in r obtaining

√
g(0)

16πGN

[
−G(0)gij((0))∂j

(
4πT

δg
(0)
rt

G(0)

)
− δg(0)

jt M
ij − 4πTG(0)ζj

]
− a(0)

t J i(0) , (A.35)

where we have defined the matrix

M ij = gij(0)

[
4πT

(
3G(1)

2G(0)
− F (1)

2G(0)

)
+ 2U (1)

]
+ 4πT g

−1/2
(0)

(√
ggij

)(1)
. (A.36)

Notice that this matrix depends on next to leading order terms in the expansion at the

black hole horizon. Equation (2.30) then implies that (A.35) should equal

− 1

16πGN

∂j

[
G(0)2√g(0)g

jk
(0)g

il
(0)

(
∂k

(
δg

(0)
lt

G(0)

)
− k ↔ l

)]
. (A.37)

To obtain an equation at the black hole horizon, we need to be able to express the matrix

M in terms of leading order horizon data. After a long calculation, which we outline

below, using the equations of motion for the background black hole we can show the key

result

M ij =− 2G(0) (d)Rij + 4G(0)1/2∇i∇jG(0)1/2 − gij(0) �G
(0)

+ Z G(0)a
(0)
t

2 gij(0) +G(0)gik(0)g
jl
(0)∂kφ

(0)∂lφ
(0) , (A.38)

and this leads to the final Stokes equation in (2.42).

We use the radial Hamiltonian presentation of the equations of motion for the back-
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ground black hole solutions (2.4). The unit normal vector is n = U1/2 F−1/2 ∂r. The

lapse function is given by N = U−1/2F 1/2 and the shift vector vanishes, Nµ = 0. The

non-vanishing components of the extrinsic curvature are given by

Ktt = −1

2
U1/2 F−1/2 ∂r (UG) ,

Kij =
1

2
U1/2 F−1/2 ∂rgij , (A.39)

and hence the non-vanishing components of the conjugate momentum are given by

πtt = − (FG)−1/2 ∂r g
1/2 ,

πij = −1

2
U (Gg)1/2 F−1/2 gik gjl ∂r gkl + U1/2 F−1/2 gij ∂r (UGg)1/2 ,

πt = (FG)−1/2 g1/2Z ∂rat ,

πφ = −G1/2F 1/2g1/2φ̇ . (A.40)

We also have

π = hµνπ
µν = dU1/2 F−1/2 ∂r (U Gg)1/2 . (A.41)

It is convenient to rewrite the equation of motion for πµν given in (A.12) in the form

π̇µν − 2N(−h)−1/2

(
πµγ πνγ −

1

d
π πµν

)
=

−N
√
−h

(
(d+1)Rµν − (d+1)Rhµν + V hµν

)
+
√
−h (DµDνN − hµν DγDγN)

+
1

2
NZ
√
−h
(
hµλhνγhρσfλρfγσ −

1

2
hµν(hρσhγδfργfσδ)

)
+

1

2
N(−h)−1/2Z−1πµπν

+
1

2
N
√
−h (hµρhνσ∂ρφ∂σφ− hρσ∂ρφ∂σφhµν) , (A.42)

where we used the fact that Nµ = 0 as well as the constraint H = 0 with H as in (A.9).

We now wish to plug in the background expansions (2.6) in the equations of motion

(A.42). Taking the r → 0 limit of the left hand side yields

π̇tt − 2N(−h)−1/2

(
πtγ πtγ −

1

d
π πtt

)
→ −1

r

1

G(0)
(
√
g)(1) ,

π̇ij − 2N(−h)−1/2

(
πiγ πjγ −

1

d
π πij

)
→
√
g(0)

2
M ij + 4πT gij(0) (

√
g)(1) , (A.43)

with M ij as defined in equation (A.36). For the right hand side of (A.42) we find the
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following leading order behaviour as r → 0:

(tt)→− 1

r

1

4πT
g

1/2
(0)

(
(d+1)Rtt

(0)G
(0) 4πTr + (d+1)R(0) − V(0)

)
+

1

r

1

4πT
g

1/2
(0) G

(0)1/2

(
−1

2

1

G(0)2
gij(0) ∂iG

(0) ∂jG
(0)1/2 +

1

G(0)
DγDγG

(0)1/2

)
+

1

r

1

4πT

1

2G(0)2
g

1/2
(0) Za

(0)
t

2 +
1

4πrT

1

2
g

1/2
(0) g

ij
(0)∂iφ

(0)∂jφ
(0) , (A.44)

(ij)→−G(0)g
1/2
(0)

(
d+1Rij

(0) −
d+1R(0) g

ij
(0) + V(0) g

ij
(0)

)
+
√
G(0) g(0)

(
DiDj G(0)1/2 − gij(0) DγD

γ G(0)1/2
)

+
1

2
G(0)g

1/2
(0)

(
gik(0)g

jl
(0)∂kφ

(0)∂lφ
(0) − gkl(0)∂kφ

(0)∂lφ
(0) gij(0)

)
. (A.45)

We now decompose the d+ 1 dimensional Ricci tensor scalar via:

(d+1)Rij =(d)Rij −
1

2
∇i

(
∇jG

G

)
− 1

4
G−2∇iG∇jG ,

(d+1)Rtt =

(
1

2
∇i

(
∇iG

G

)
+

1

4
G−2∇iG∇iG

)
GU ,

(d+1)R =(d)R−∇i

(
∇iG

G

)
− 1

2
G−2∇iG∇iG . (A.46)

We also have

DγDγG
(0)1/2 =

1

2
G(0)−1 gij(0) ∂iG

(0) ∂jG
(0)1/2 +∇i∇iG

(0)1/2 , (A.47)

where ∇ is the covariant derivative with respect to the d dimensional horizon metric.

Putting these ingredients together we finally obtain the expression for M ij given in (A.38).
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Chapter 3 appendix

B.1 Scalar expectation value from the Ward identity

We will now show how the scalar VEV from the thermoelectric perturbations can be

calculated directly from the Ward identities. Recall that the Ward identity is given by

∇µT̄
µν − J̄µF ν

µ −
∑
i

〈Ōχi〉∇νψi = 0 , (B.1)

where the i refer to the various scalar fields in the theory, and ψi is the source correspond-

ing to that field. If we take the x1 component of the identity, and note that the source of

χ1 is k1x1 we find

∇µT̄
µx1 − J̄µF x1

µ − 〈Ōχ1〉gx1x1k1 = 0 . (B.2)

First consider the term containing the stress energy tensor. This can be written as

∂tT̄
tx1 + ∂x1T̄

x1x1 + ΓtitT̄
ix1 + 2Γx1ix1T̄

ix1 + Γx1it T̄
it , (B.3)

as the term T̄ x1x2 is zero. Noting that T̄ tx1 = T̄ tx10 − ζtT̄ x1x1 , and that the only non zero

Christoffel symbols at leading order is Γx1tt = (e−2V 1δf2 − 1
2
δhrx1UU

′), only the first and

last terms will contribute.

Similarly, for the current piece of the Ward identity, we have

J̄µF x1
µ = J̄ tgx1x1Ftx1 + J̄x1Fx1tg

tx1 (B.4)

= U−1/2a′δf1e
−2V 1 (B.5)

to first order. Combining these terms and expanding asymptotically (demanding that

δhrx1 vanishes) we see that

− Eq + ζ(T x1x1 + T tt − µq)
r3

− 〈Ōχ1〉k1 = 0 . (B.6)
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If we now identify the VEV as the leading term in the expansion, we have 〈Oχ1〉 = r3〈Ōχ1〉,
and hence we obtain

〈Oχ1〉 = −Eq + ζ(T tt + T x1x1 − µq)
k1

. (B.7)

The Smarr relation

T tt + T x1x1 − µq = sT (B.8)

then gives equation (3.25).



Appendix C

Chapter 4 appendix

C.1 Sub-leading corrections of the linearised pertur-

bation

We consider a metric of the form

ds2 = −U G (dt+ δχ)2 +
F

U
dr2 + gijdx

idxj , (C.1)

as in (4.2), but now with an additional linear perturbation δχ(r, x). We would like to

understand the behaviour of δχ as a perturbative expansion about the high temperature

background solution (4.27) as well as the sub-leading perturbative corrections that are

polynomial in ε. Later, when we combine this with the DC thermal gradient source as

in (4.28), we will then see an elegant interplay between solutions of the Stokes equations

and regularity of the combined perturbation at the horizon.

Without loss of generality we work in a coordinate system where δχr = 0 (this can be

achieved via the coordinate transformation t → t + f(r, x)) and take δχ = δχi(r, x)dxi.

The equation of motion of δχ is then given by

∂r(U
2G3/2F−1/2√gd gij ∂rδχj) + ∂k[U G

3/2F 1/2√gd gklgij (∂lδχj − ∂jδχl)] = 0 , (C.2)

as well as

∂i(U
2G3/2F−1/2√gd gij ∂rδχj) = 0 , (C.3)

where
√
gd is the volume element associated with gij. One solution of these equations is

to take an arbitrary closed form given by δχ = χi(x)dxi. This solution gives rise to a

source in the dual field theory and is not what we are interested in here.

We now consider the background solution as a derivative expansion in the high-

181
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temperature limit:

U = r2
H ρ

2 u(ρ) = r2
H ρ

2 (1− ρ1−D) ,

G =
(
1 + ε2G(2)(ρ, x) + · · ·

)
,

F =
(
1 + ε2 F (2)(ρ, x) + · · ·

)
,

gij = r2
H ρ

2
(
hij(x) + ε2 h

(2)
ij (ρ, x) + · · ·

)
, (C.4)

where ε = k/T , with k the largest wavenumber of the background, and r = rHρ. We note

that, in general, there will also be corrections that are non-perturbative in ε which we

will ignore. As before hij(x) is the UV deformation of the metric and since we want this

to be the only deformation of the dual field theory, we demand that G(2), F (2) and h
(2)
ij

all vanish as ρ→∞. Note that regularity at the horizon imposes F (2)|ρ=1 = G(2)|ρ=1 and

that the metric on the horizon is r2
H(h

(0)
ij + ε2 h

(2)
ij |ρ=1 + · · · ).

We want to solve (C.2), (C.3) perturbatively in ε by postulating an expansion of the

form

δχi = εν (χ
(0)
i + ε2 χ

(2)
i + · · · ) , (C.5)

with ν an exponent that we will eventually have to fix. It is clear that the homogeneous,

linear equation (C.2) cannot fix this exponent. It must be fixed by an inhomogeneous

constraint involving the boundary and or the horizon. As we will see it is fixed by ensuring

the perturbation is regular at the horizon when it is combined with the perturbation

associated with the DC thermal gradient source as in (4.28).

To carry out the expansion in ε we note that any spatial derivative ∂i is of order ε.

Now the second term in (C.2) comes with two spatial derivatives so it is order ε2. Thus,

at leading order in ε we have the simple ODE

∂ρ(ρ
D u2 ∂ρχ

(0)
i ) = 0 , (C.6)

and solutions are given by

χ
(0)
i (ρ, x) = c

(0)
i (x) +

ρ1−D

r2
H u(ρ)

v
(0)
i (x) . (C.7)

To ensure that there are no additional sources at infinity we set

c
(0)
i = 0 . (C.8)

From equation (C.3) we also have

∇iv
i
(0) = 0 , (C.9)
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where ∇ is the Levi-Civita connection for the spatial metric hij and indices have been

raised with hij.

At second order in ε, equation (C.2) implies

rD−2
H

√
hhij∂ρ(ρ

Du2 ∂ρχ
(2)
j ) + rD−2

H ∂ρ(ρ
Du2
√
hN ij ∂ρχ

(0)
j ) ,

+ ε−2 rD−4
H ρD−4 ∂k(u

√
hhkl hij (∂lχ

(0)
j − ∂jχ

(0)
l )) = 0 , (C.10)

where we defined the matrix N ij(ρ, x):

N ij = hij
[

3

2
G(2) − 1

2
F (2)

]
+

1

2
hij hklh(2)kl(ρ, x

i)− hij(2) , (C.11)

and the indices on the last term have been raised with hij. After substituting the zeroth

order solution (C.7), (C.8) we can rewrite (C.10) as

hij∂ρ(ρ
Du2 ∂ρχ

(2)
j )− D − 1

r2
H

∂ρN
ij v

(0)
j +

2ρ−3

r2
H(εrH)2

∇k∇[kv
i]
(0) = 0 . (C.12)

The general solution to this equation is of the form

χ
(2)
i (ρ, x) = c

(2)
i (x) +

ρ1−D

r2
H u(ρ)

v
(2)
i (x) + q

(2)
i (ρ, x) . (C.13)

The first two terms are the solutions to the homogeneous equation (with vi(0) = 0) and

the third term is a particular solution of the inhomogeneous equation. The solution that

we are interested in, to ultimately ensure that we have non-singular behaviour near the

horizon, will be such that q
(2)
j has no (ρ − 1)−1 term close to the horizon, but instead a

log(ρ− 1) behaviour. The function c
(2)
j is fixed so that we don’t have a source at infinity

at the given order in the ε expansion; as we will see this implies that c
(2)
j = 0. We will

see that these requirements uniquely fix q
(2)
j . On the other hand, the new function of

integration v
(2)
i (x) will be fixed at the next order in the expansion, a point we will return

to later.

To proceed, we demand that in an expansion close to horizon the leading term of q
(2)
j

is given by

q
(2)
j (ρ, xi) = qj(x

i) log(ρ− 1) + · · · . (C.14)

From equation (C.12) we deduce

(4πT )2 hij qj = (D − 1) v
(0)
j ∂ρN

ij|ρ=1 − 2(ε rH)−2∇k∇[kv
i]
(0) . (C.15)

Now a key point is that the leading term in the expansion of the matrix N ij near the
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horizon is actually fixed by horizon data. This result can be extracted1 from calculations

presented in [1] and we have

∂ρN
ij|ρ=1 = − 2

(D − 1)

1

(ε rH)2
Rij , (C.16)

where Rij is the Ricci tensor of the d-dimensional UV metric hij, and again the indices

have been raised using hij. Using (C.9) we can then deduce

qj = − 2

(4πT )2

1

(ε rH)2
∇i∇(iv

(0)
j) . (C.17)

Having established how the expansion of the perturbation δχ works, at this point we

now recall that the full perturbation that we are interested in also has the time dependent

piece given in (4.28). By switching to the ingoing coordinate, v = rH(t+ lnu/(4πT )), we

see that the log(ρ − 1) factors will be eliminated in the full perturbation provided that

we choose the exponent in (C.5) to be

ν = −2 , (C.18)

and, in addition, demand that v
(0)
i satisfies the linearised Navier-Stokes equation:

− 2

(εrH)2
∇i∇(iv

(0)
j) = 4πTζj − ∂jp , (C.19)

Now a consideration of (C.1), (C.4), (C.5) and comparing with (4.31), reveals that the

combined perturbation given in (4.28)-(4.32) is regular at the horizon, to leading order,

provided that we have

Vi(x) = ε−2 v
(0)
i (x) , (C.20)

with v
(0)
i satisfying (C.19). Furthermore, since we know that, in general, the Stokes

equations are satisfied at the horizon we learn that we must have

p = ε−1p(0) + . . . . (C.21)

and that 4πTζ is the same order as p(0) and v
(0)
i .

Having established the behaviour at the horizon, we now give the full integrated ex-

1To compare we have rthere = rH(ρ − 1). Then in the notation of eq. (2.5) of [1] we have, with
objects on the left hand side in the notation of [1], U (1) = 4πT (4 − D)/(2rH), G(0) = F (0) = 1 + . . . ,
G(1) = (rH)−1ε2∂ρG

(2)|ρ=1 + . . . and F (1) = (rH)−1ε2∂ρF
(2)|ρ=1 + . . . . We then use (D.2) and (D.4)

of [1] to get (C.16).
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pression for q
(2)
j (ρ, x):

q
(2)
j =

D − 1

r2
H

hij v
(0)
l

∫ ρ

∞

N il(ρ′, x)

u2(ρ′)
ρ′−D dρ′ +

ρ1−D

r2
Hu(ρ)

hij v
(0)
l N il|ρ=1

+ (ε rH)−2

[(∫ ρ

∞

ρ′−D−2

u2(ρ′)
dρ′
)

+
1

(D − 1)

ρ1−D

u(ρ)

]
∇k∇[kv

(0)
j] . (C.22)

Note that the radial dependence in q
(2)
j can be made explicit provided that we can find

the back-reaction of the background at order ε2 that is packaged in N ij. Observe that the

last term in the first line and the last line of (C.22) are simply solutions of the homoge-

neous equation (their radial dependence is the same with the second term of (C.13)) with

the corresponding function of integration chosen such that we get the behaviour (C.14)

without a potential (ρ− 1)−1 term, as we mentioned earlier. Furthermore one can check

that the leading behaviour close to the horizon of the expression above is indeed given by

(C.14).

From this expression we can now extract the asymptotic behaviour at ρ = ∞. We

first note that N ij goes to zero close to the boundary since it is constructed from higher

order corrections to the background and by assumption these do not change the conformal

boundary metric. We find

χ
(2)
j =ρ1−D r−2

H v
(2)
j + ρ1−Dr−2

H hij v
(0)
l N il|ρ=1 +

ρ1−D

(D − 1)
(ε rH)−2 ∇k∇[kv

(0)
j] + · · · .

(C.23)

where we have set c
(2)
i = 0, which we now see does indeed correspond to having vanishing

source term for the perturbation.

At this point one might wonder how v
(2)
j is fixed. The next order in the expansion will

include a function q
(4)
j (ρ, x). Once again, near the horizon the (ρ − 1) behaviour will be

eliminated leaving log(ρ − 1) behaviour. Regularity at the horizon will imply that this

is in turn be fixed by the corrected Navier-Stokes equation at the horizon (note that the

perturbation (4.28) is also corrected because gtt will also receive corrections). While this

procedure can be carried out in detail, for the main results we want to present here, we

will not need to. An additional point is that that we also need to satisfy (C.3) at next

order. This condition reads

∂i

(√
hhij∂ρχ

(2)
j +

√
hN ij∂ρχ

(0)
j

)
= 0 . (C.24)

After substituting the expressions in and using the fact that ∇i∇j∇[iv
j]
(0) = 0, we find
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that we must impose

∂i

(√
hhijv

(2)
j +

√
hN ij|ρ=1v

(0)
j

)
= 0 . (C.25)

At this point we have established that this perturbation has an expansion which can

be written

δgti(ρ, x) = −UGδχi

= −ε−2ρ3−D
(
v

(0)
i (x) + ε2V

(2)
i (ρ, x) + . . .

)
, (C.26)

where

V
(2)
i (ρ, x) = G(2)v

(0)
i (x) + v

(2)
i (x) +

r2
Hu

ρ1−D q
(2)
i (ρ, x) , (C.27)

with q
(2)
i (ρ, x) given in (C.22) and an expression for v

(2)
i (x) can be explicitly obtained by

continuing to higher orders. We have also shown that as we approach the horizon we have

V
(2)
i (ρ, x)→ r2

H

(4πT )2
u log(ρ− 1)

(
− 2

(εrH)2
∇i∇(iv

(0)
j)

)
, ρ→ 1 . (C.28)

It is also worth noting that vi(x) that appears in the general Stokes equations on the

black hole horizon (see (4.16)) is given by vi(x) = −δgti|ρ=1.

An important objective is to obtain the local heat current density of the dual field

theory Qi
QFT . We conclude this appendix by showing how that at leading order in the ex-

pansion we have Qi
QFT (x) = Qi

BH(x), as well as indicating the structure of the sub-leading

corrections. We first return to (C.2) and observe that this equation can be rewritten as

∂ρQ
i =

1

16πGN

rH∂k[U G
3/2F 1/2√gd gklgij (∂lδχj − ∂jδχl)] , (C.29)

where Qi = − 1
16πGN

(rH)−1U2G3/2F−1/2√gd gij ∂ρδχj is the bulk thermal current, defined

in (3.20) of [1]. By integrating in the radial direction we deduce that

Qi
QFT −Qi

BH =
1

16πGN

rH

∫ ∞
ρ=1

dρ ∂k[U G
3/2F 1/2√gd gklgij (∂lδχj − ∂jδχl)] , (C.30)
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which for the current densities gives, up to second order in ε,

Qi
QFT −Qi

BH =
1

16πGN

rD−3
H ε−2

∫ ∞
ρ=1

dρ u ρD−4 ∂k(
√
hhklhij (∂lχ

(0)
j − ∂jχ

(0)
l )) ,

=
1

16πGN

2rD−3
H (ε rH)−2

√
h

∫ ∞
ρ=1

dρ ρ−3∇k∇[kv
i]
(0) ,

=
1

16πGN

rD−3
H (ε rH)−2

√
h∇k∇[kv

i]
(0) . (C.31)

Observe that because of the two spatial derivatives the term on the right hand side of

(C.31) is of order ε0. Thus, we conclude that at leading order the heat current at the

horizon is the same as at that of the dual field theory and moreover we also have obtained

the leading order correction in the ε expansion. We also note that the heat current at the

horizon is given by

Qi
BH =

1

16πGN

rd−3
H 4πT

√
h
[
ε−2hijv

(0)
j + hijv

(2)
j +N ij|ρ=1v

(0)
j

]
, (C.32)

where the sub-leading corrections involve corrections to the background via N ij|ρ=1 (see

(C.11) and (C.4)) as well as the sub-leading terms in the perturbation, v
(2)
j , which can be

obtained by the method discussed above.

Finally, we note that since the right hand side of (C.31) is a total derivative, this

result is clearly consistent with the universal result of [97] that the total heat current

flux of the field theory is always the same as the total heat current flux on the boundary,

Q̄i
BH = Q̄i

QFT .
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Chapter 5 appendix

D.1 General quantum field theories

We now consider a general relativistic quantum field theory, relaxing the constraint of

conformal invariance. The set-up is very similar to that in section 2 and we again use the

material in [151]. We now just impose the Ward identity DµT
µ
ν = 0. For the constitutive

relation we write

Tµν = Pgµν + (ε+ P )uµuν + τµν , (D.1)

where

τµν = −2ησµν − ζb(gµν + uµuν)Dρu
ρ , (D.2)

Here σµν is the same as in (5.3) and ζb is the bulk viscosity and should not be confused

with the external thermal source one-form ζ = ζµdx
µ = dφ. For CFTs we have ζb = 0.

We also have the local thermodynamic relation and first law, which take the form

ε+ P = Ts , dP = s dT . (D.3)

To simplify the presentation, we will again just consider static backgrounds with

Killing vector ∂t. As we will see, background metrics with ∂t having non-constant norm,

i.e. gtt ≡ −f 2 non-constant, will play an interesting role. In considering the perturbation

about the background we note that P, ε, S, η and ζb are all functions of the local tempera-

ture. They can depend on other dimensionful parameters, but these will all be held fixed

in the perturbations we are interested in. Thus, we can write ε0 ≡ ε(T0), δε ≡ (∂T ε)0δT
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etc. For the perturbed metric and fluid velocity we write

ds2 = −f 2(x)(1− 2φ) dt2 + gij(x)dxidxj ,

ut = −f(x)(1− φ), uj = δuj . (D.4)

where φ and δui are both functions of (t, x) as before. A calculation then gives the stress

tensor

Ttt = ε0 f
2 (1− 2φ) + δε f 2 ,

Tti = −f (ε0 + P0) δui ,

Tij = (P0 + δP ) gij − 2η0 f
−1∇(i

(
fδuj)

)
+

(
2η0

(d− 1)
− ζb0

)
gij f

−1∇k(f δu
k) . (D.5)

The heat current, defined in (4.18) is given by

Qi =
√
gf 2(ε0 + P0)δui =

√
gf 2T0s0δu

i . (D.6)

We next note that in order to ensure that the Ward identity is satisfied for the unper-

turbed background we must have

f−1∂if(ε0 + P0) +∇iP0 = 0 . (D.7)

Using the equation of state and the first law in (D.3) for the background we can then

integrate (D.7) to find

T0 = T̄0f
−1 , (D.8)

where T̄0 is a constant. In particular, we see that in general T0 depends on the spatial

coordinates.

Returning now to the perturbed stress tensor, for the time component of the Ward

identity we obtain

f∂tδε+∇i(f
2(ε0 + P0)δui) = 0 . (D.9)

For the spatial component, and using (D.7), we find

f−1(ε0 + P0) ∂tδui + f−1∂if(δε+ δP )− (ε0 + P0)ζi + ∂iδP

− 2f−1∇j
(
η0∇(j

(
fδui)

))
+ f−1∇i

((
2η0

d− 1
− ζb0

)
∇k(fδu

k)

)
= 0 . (D.10)

Notice that the time component of the four-vector ζt again does not appear. The perturba-

tions δε and δP can both be expressed in terms of δT since we are holding all other dimen-
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sionful parameters fixed. In fact, using (D.3) we have δP = s0δT and δε = T0(∂T s)0δT .

Thus these equations should again be solved for δT and δui.

When f = 1, from (D.8) we have that T0 is a constant. As a consequence P0, ε0, s0, η0

and ζb0 are then also constants. In this case the Ward identities simplify to the following

linearised Navier-Stokes equations

T−1
0 ∂tδT + c2

s∇iδu
i = 0 ,

T0s0 ∂tδui + s0∂iδT − 2η0∇j∇(jδui) +

(
2η0

d− 1
− ζb0

)
∇i∇kδu

k = T0s0ζi . (D.11)

In the first equation we have introduced the speed of sound squared, c2
s = (∂εP )0 =

s0/(T0(∂T s)0). For a CFT we have c2
s = 1/(d−1). Moreover, to study DC response we can

set the time derivatives to zero and we obtain the Stokes equations for an incompressible

fluid

∇iδu
i = 0 , ∂iδT − 2

η0

s0

∇j∇(jδui) = T0ζi . (D.12)

D.2 Numerical integration

We want to solve the system of equations (5.14) for the variables vi, p for a specified

constant ζ̂i on a torus with unit periods and metric gij. In order to numerically solve

this boundary value problem for a two dimensional horizon, we will discretise our domain

on Nx × Ny points. Given the periodicity of the problem and the fact that we expect

to find smooth solutions, we use Fourier pseudo-spectral methods to approximate the

derivatives of our functions on our computational grid. The problem then reduces to a

(3NxNy)× (3NxNy) inhomogeneous linear system which we can write in matrix form as

M ·v = s . (D.13)

The 3NxNy dimensional vector v is used to store the values of the functions p, vx and vy

on the grid. In more detail

vi =



p
i mod Nx,

[
i
Nx

], 1 ≤ i ≤ NxNy

(vx)
(i−NxNy) mod Nx,

[
i−NxNy
Nx

], NxNy < i ≤ 2NxNy

(vy)
(i−2NxNy) mod Nx,

[
i−2NxNy

Nx

], 2NxNy < i ≤ 3NxNy

(D.14)

where
[
a
b

]
denotes the integer part of the division between a and b. The vector s is

reserved for the inhomogeneous part of system (5.14) and it does depend on the direction
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of the temperature gradient. For example, when the temperature gradient is just along

the x direction, and unit valued, we have

(sx)i =

1, NxNy < i ≤ 2NxNy

0, otherwise
(D.15)

It is easy to see that we only have to do a single inversion of the matrix M and the solution

for sources in different directions can simply be found by a matrix multiplication of M−1

with the corresponding source vector sx or sy.

We have implemented the method outlined above in C++ taking advantage of the

language’s templates to write code which can be used with various data types. However,

we found that double precision was enough to obtain accurate solutions for our purposes.

We did find though that we had to use quite large resolutions of the order of Nx = Ny ∼
181. This need is becoming obvious from our plots since there is small scale features we

have to resolve. One example is the sharp peaks in the plots of p. The linear solver we

used was the version of PARDISO included with Intel’s MKL BLAS suite. The specific solver

can take advantage of OpenMP at several stages of the solution of the linear system which

proved useful when we ran our code on multicore systems.
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Chapter 6 appendix

E.1 Smarr relation

We explain how to obtain the Smarr relation (6.33) via a direct calculation of the on-shell

action. The bulk Euclidean bulk action is given by

Ibulk = − 1

16πGN

∆τvol3

∫ uh

0

duLbulk , (E.1)

where the Lagrangian density integrand is given by

Lbulk =
√
−g
(
R− 3X−2(∂X)2 + 4(X2 + 2X−1)− 1

2
(∂φ)2 − 1

2
e2φ(∂χ)2

)
. (E.2)

We would like to rewrite this as a total derivative in u after using the equations of

motion. To achieve this we found it helpful to use the fact that after contraction of

equation (6.2), we can write the integrand of the action as

Lbulk = −8
√
Be− 7φ

4

3u5

(
X2 + 2X−1

)
. (E.3)

After some work we find that after using the equations of motion (6.12)-(6.15) the

integrand can be written as

Lbulk =

(
2

√
BFe−5φ/4

u4
− Fe

−5φ/4B′

u3
√
B
−
√
Be−5φ/4F ′

u3
+

1

2

√
BFe−5φ/4φ′

u3

)′
, (E.4)

where the prime indicates differentiation with respect to the u coordinate. Using this

expression we will get contributions to the on-shell action both from the horizon and

the boundary. Using the near horizon and boundary expansions of the fields given in

(7.18),(7.19), and combining with the boundary counter terms we deduce that the free
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energy density can be expressed as

w = E − sT , (E.5)

as in (6.32).

On the other hand, using (6.12)-(6.15) we can also write the integrand in the form

Lbulk =

(
2

√
BFe−5φ/4

u4
+

√
BFe−5φ/4φ′

2u3

)′
. (E.6)

This only gives contributions from the boundary leading to

w = −T xx . (E.7)

Combining these gives these expressions gives the Smarr relation (6.33).

E.2 Critical exponents for a cubic free energy1

Suppose we have a Landau-Ginzburg free energy functional for a scalar order parameter,

m, of the form

f = f0 +
am2

2
+
bm3

3
, (E.8)

with f0 a constant, a = tn, with t = (T − Tc)/Tc, and b is a temperature dependent

constant which we take to be positive. We choose n so that a < 0 for T < Tc and we

will be especially interested in the case n = 1. For the moment let us ignore the global

instability for m < 0 and focus on the extrema at m = 0 and m = −a/b which exists

when a < 0 i.e for T < Tc. For the latter minimum we have m ∝ tn and hence we

conclude that β = n. To obtain α we want to differentiate the minimum value of the free

energy with respect to T . Below Tc we have f = f0 + a3/6b2 and hence we deduce that

T∂2f/∂T 2 ∝ t3n−2 and thus α = 2−3n. Note that above Tc the free energy is constant and

hence the specific heat vanishes. To determine δ we add −mh to the free energy where h

is a background source. We now have ∂f/∂m = am+bm2−h and at T = Tc, where a = 0,

we deduce that the equilibrium configuration has m ∝ h1/2 and hence δ = 2. Finally, we

consider the susceptibility χ = ∂m/∂h. At equilibrium we have am + bm2 − h = 0 and

differentiating we deduce that χ = 1/(a+ 2bm). For T > Tc we have m = 0 and χ = t−n,

while for T < Tc we have m = −a/b and hence χ = −t−n. We thus deduce that γ = n.

When n = 1 the critical exponents are thus given by (α, β, γ, δ) = (−1, 1, 1, 2), exactly as

we saw in our holographic phase transition.

1We would like to thank Makoto Natsuume for helpful discussions on this section.
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We now return to the issue of the global instability for m < 0. We first note that

the instability would be eliminated if we were restricted to configurations with m ≥ 0.

Interestingly, the critical exponents that we have obtained were discussed in the context of

a continuum generalisation of the Ashkin-Teller-Potts models associated with percolation

problems, by imposing such a restriction [186]. Note that we have no restrictions on the

sign of the expectation value 〈Oψ〉, so this perspective is not available for our holographic

phase transition.

It is also worth pointing out that if we try to stabilise the free energy with higher

powers of m, a quartic for example, then the model has a first order transition, again

unlike what we see in our holographic transition. More explicitly we can add a term

cm4/4 to the free energy in (E.8) with c > 0. Now for high temperatures, a > b2/(4c), the

free energy has a minimum at m = 0. For 2b2/(9c) < a < b2/(4c) there is an additional

minimum at m = m1 ≡ −b/(2c) − [b2 − 4ac]1/2/(2c), which, has higher free energy than

the minimum at m = 0. For 0 < a < 2b2/(9c) the minimum at m1 has lower free energy

than the minimum at m = 0 and there is a first order transition at a = 2b2/(9c). For

a < 0, m = 0 becomes a maximum of the free energy with a new minimum appearing at

m = m2 ≡ −b/(2c) + [b2− 4ac]1/2/(2c). This m2 minimum is the one associated with the

critical exponents for the cubic with c = 0 that we discussed above, but it is simple to

see that the m1 minimum is always preferred.

In summary, we see that while the cubic Landau-Ginzburg model for a single scalar

order parameter in a certain sense gives rise to the critical exponents we see in our

holographic phase transition it does not capture key features. Perhaps a model containing

more fields might be more effective.
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Chapter 7 appendix

F.1 Zero temperature charged black hole solutions

F.1.1 Extremal black hole

We will now discuss some low temperature features of the CGS solution from [63]. It is

interesting to note that we did not observe the Hawking-Page transition that the authors

claimed appeared in their work. There, it was argued that there are different black hole

radii corresponding to the same temperature, and hence there is a minimum black hole

temperature and the solution is unstable below this temperature. However, we have not

found this. Rather, for a fixed chemical potential, one can cool the solution down to

arbitrarily low temperatures, as shown in the left hand plot of figure 17. We note that

this is a different to the results of [187], where a model containg a linear axion, a dilaton

and U(1) gauge field was studied, and no extremal horizon was found. However, in that

case the gauge field coupled to the dilaton, whereas here there is no coupling between the

gauge field and dilaton.

Futhermore, the zero temperature limit of the CGS solution is at a finite black hole

radius, and so the black hole is an extremal black hole. As shown in the right plot of figure

17, the leading order scaling is s ∼ T 0, and hence the entropy of the black hole tends to

a constant value in the zero temperature limit. In addition, the functions F ,F ′,B,B′ all

vanish on the horizon, indicating a second order pole in the metric on the horizon and

an extermal black hole. Whilst this is worrying from a physical perspective, as discussed

in the main text, the black hole is unstable and therefore this extremal black hole would

never be realised in reality.

F.1.2 Weak anisotropic limit

We now wish to study this zero temperature extremal black hole in the limit where

µ/a >> 1, i.e the limit of weak anisotropy. At zero temperature and a = 0, our solution
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Figure 17: Plot showing charged CGS solution forming an extremal black hole, when µ/a = 1.
The right plot shows how T/a changes with uha. As we as we can tell, there is a one to one
mapping, and hence there is no Hawking-Page transition. The left plot shows the temperature
scaling of entropy. As T/a→ 0, the entropy tends to a constant value, and hence the black hole
is extremal.

is just the extremal AdS-Reissner-Nordstrom black hole, and we therefore look for an

expansion of the form

F =

(
1− (µu)4

12
+

(µu)6

108

)
+ a2F2(u) +O(a4) ,

B = 1 + a2B2(u) +O(a4) ,

φ = a2φ2(u) +O(a4) ,

b = µ

(
1− (µu)2

6

)
+ a2b2(u) +O(a4) , (F.1)

where µ from (7.18) has been rescalled by µ → µ/
√

3, as per the discussion in section

(2.2). Note that only even powers of a are allowed, due to the symmetry z → −z. In

addition, the location of the extremal horizon will also have an expansion, given by

uh =

√
6

µ
+ a2u

(2)
h +O(a4) . (F.2)

Now we substitute these expansions into the equations of motion, and solve order by

order in a. We impose the boundary conditions that all the terms of O(a2) and higher

vanish at the UV boundary, which ensures the solution approaches AdS5 in the UV. We

also require b and F to vanish on the horizon at each order in a. We fix the u
(i)
h by

setting the temperature of the black hole to be zero at each order of a. After solving the



APPENDIX F. CHAPTER 7 APPENDIX 197

0.00 0.01 0.02 0.03 0.04 0.05 0.06

4.0

4.5

5.0

5.5

6.0

6.5

T/μ

s/
μ
3

Figure 18: Plot showing charged entropy density versus temperature, when µ =
√

3 and a =
1/10. The blue line is the entropy density, whilst the red dashed line is the analytical expression
at zero temperature for s to O(a2), and the black line is the entropy of the extremal AdS-
Reissner-Nordstrom black hole. The result is in good agreement with the analytical expression.

equations of motion, we find analytical solutions at leading order

B2(u) =
90µ2u2 + (µ2u2 − 6) (µ2u2 + 3) log (6− µ2u2) + (3µ2u2 + 18− µ4u4) log (2µ2u2 + 6)

12µ2 (µ2u2 − 6) (µ2u2 + 3)
,

F2(u) =
u6µ4

(
20 + 24 tanh−1

(
1
9

(3− 2µ2u2)
)
− 2

(
5 log

(
5a2

9µ2

)
+ log 2

))
1296

+

+
u4µ2

(
60 log

(
5a2

µ2

)
− 126 tanh−1

(
1
9

(3− 2µ2u2)
)
− 192 + log 8− 120 log 3

)
1296

+
log
(

18+6µ2u2

18−3µ2u2

)
4µ2

+
u2

3
,

b2(u) =
5

72
µu2

(
log

(
5a2

µ2

)
+ log

(
µ2u2 + 3

54− 9µ2u2

)
− 2

)
,

φ2(u) =
1

2µ2
log

(
6− µ2u2

6 + 2µ2u2

)
, (F.3)

with u
(2)
h = −5/(2

√
6µ3). Using these expressions, we can then get an expansion for the

entropy density of the extremal black hole

16πGN
s

µ3
=

√
2

3

π

3
+

5
(

2− log
(

5a2

18µ2

))
48
√

6

(
a

µ

)2

+O
(
a

µ

)4

. (F.4)

This gives us the leading correction to the zero temperature entropy density, in the weak

anisotropic limit. In figure 18, we plot entropy against temperature, and see that for

a/µ << 1, the entropy in the zero temperature limit is consistent with the analytic

expansion. This is further evidence that the low temperature CGS solution is extremal

and does not undergo a Hawking-Page type transition.
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F.1.3 Fixed point solution

To understand zero temperature black holes, important physics can often come from

scaling solutions. To understand the extremal CGS solution for arbitrary a/µ, we will

therefore look for scaling solutions to the CGS equations of motion of the form

eφ = eφ0uφc , F = F0u
Fc , B = B0u

Bc , b = b0u
bc , (F.5)

where b is the single gauge field that we have in the CGS solution, and recall that there

are no additional scalar fields in the CGS solution.

Remarkably, we find that there is an exact solution to the equations of motion

eφ = φ0(au)12/5, F =
25

192
φ3

0(au)26/5, B =
32

75

(µ
a

)2

φ0(au)6, b = µ(au)16/5 , (F.6)

where µ and φ0 are constants. After writing u = cρ5/16 for some constant, c, this solution

can be written as

ds2 ∼ρ
−2(3−θ)

3

(
dρ2 − dt̄2 + ρ−2(z1−1)

(
dx̄2 + dȳ2

)
+ ρ−2(z2−1)dz̄2

)
,

eφ ∼ ρ3/16, a ∼ ρ , (F.7)

with θ = 3, z1 = 9/8, z2 = 3/4 and the bars indicate we have rescaled the coordinates.

This is reminiscent of hyper-scaling solutions with hyper-scaling violation exponent θ,

but here the spatial directions also scale with Liftshitz exponents z1 and z2. Under the

scaling (t̄, x̄, ȳ, z̄, ρ̄) → (λ t̄, λ9/8x̄, λ9/8ȳ, λ3/4z̄, ρ̄), we find that the metric transforms as

ds→ λθ/3ds.

Interestingly, the determinant of this metric does not depend on the radial coordinate.

Therefore, if this solution can be generalised to a finite temperature black hole, then the

area of this black hole would be the same at any radius and so the solution would have

constant entropy. This might suggest that this scaling solution is related to the extremal

black hole solution discussed above.

To see whether this solution can be heated to finite temperature, we consider static

perturbations about the fixed point solution

eφ = eφ0uφc(1 + c1u
δ), F = F0u

Fc(1 + c2u
δ),

B = B0u
Bc(1 + c3u

δ), b = b0u
bc(1 + c4u

δ) . (F.8)

Substituting this ansatz into the equations of motion, and keeping terms linear in ci, we

find three solutions. Two of these are marginal modes with δ = 0, and correpond to

the scaling symmetries (7.17), whilst the third corresponds to the gauge transformation

b → b + c, for some constant c. This suggests that there are insufficient parameters
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to develop an IR expansion, and hence create a solution that interpolates between this

scaling solution in the IR and AdS5 in the UV.

Therefore, it appears that this scaling solution is not the fixed point solution in the

extremal limit of the CGS black hole. It would be an interesting topic of futher work to

understand the extremal CGS black hole for arbitrary charge, as it may shed light on the

mechanism for the low temperature instability of the CGS black hole.

F.2 Thermoelectric DC conductivity with multiple

gauge fields

We will now derive the DC thermoelectric conductivity as outlined in section 3.3. To

start with, we will consider a more general theory, and derive its general conductivity

matrix. Specifically, we generalise [1] to the case where there are multiple U(1) gauge

fields, as well as additional scalars. Using the same notation as [1, 97], we generalise the

Lagrangian from [1] so that we consider a general Lagrangian

S =
1

16πGN

∫
dDx
√
−g

(
R− V (φ)−

∑
a

Za(φ)

4
(F a)2 − 1

2
GIJ∂φI∂φJ

)
. (F.9)

where a is a finite number of U(1) gauge fields, and the only restriction on each of the Za

is that Za(0) is constant. We consider black hole solutions of the form

ds2 = −UGdt2 +
F

U
dr2 + ds2(Σd) ,

Aa = aat dt , (F.10)

where ds2(Σd) ≡ gij(r, x)dxidxj is a metric on a (d ≡ D − 2)-dimensional manifold, Σd,

at fixed r. In addition, U = U(r), while G,F, at and φ are all functions of (r, xi).

The boundary conditions are chosen to ensure that the solution approaches AdSD as

r →∞. These are the same black hole solutions as in [1]. We now perturb this solution

with a linear perturbation

δ
(
ds2
)

= δgµνdx
µdxν − 2tMζidtdx

i ,

δAa = δaaµdx
µ − tEa

i dx
i + tNaζidx

i ,

δφI . (F.11)

The calculation of the DC conductivity now proceeds in very similar way to [1]. Rather

than repeat the entire calculation, we just quote the final important results, keeping the

same notation as in the original paper. The Hamiltonian constraints evaluated on the
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black hole horizon lead to the Stokes equations, which are now

∇iv
i = 0 , (F.12)

∇i(Z
(0)
a ∇iwa) + vi∇i

(
Z(0)
a aa

(0)
t

)
= −∇i(Z

(0)
a Eai) , (F.13)

−2∇i∇(iv j) −
∑
a

Z
(0)
a aa

(0)
t

G(0)
∇jw

a + GIJ(φ(0))∇jφ
I(0)∇iφ

J(0)vi

+∇j p = 4πT ζj +
∑
a

Z
(0)
a aa

(0)
t

G(0)
Ea
j , (F.14)

where the a indicies are only summed over explicity, and

vi ≡ −δg(0)
it , wa ≡ δaa

(0)
t , p ≡ −4πT

δg
(0)
rt

G(0)
− δg(0)

it g
ij
(0)∇j lnG(0) , (F.15)

where the (0) indicates the leading order term in the expansion of the field about the

horizon, and F (0) = G(0).

The heat current and electric currents are given by

16πGQi
(0) = 4πT

√
g(0)v

j ,

16πGJai(0) =
√
g(0)g

ij
(0)Z

(0)
a

(
∂jw

a +
aa

(0)
t

G(0)
vj + Ea

j

)
. (F.16)

We now explicitly consider black hole solutions where there are scalars associated with

a shift symmetry. In our explicit example that is the axion field. In general, these scalar

fields take the form

φIα = CIαj xj , (F.17)

everywhere in bulk with C a constant n by d matrix. For simplicity in this general case,

we assume that all spatial coordinates are involved and hence the DC conductivity in all

spatial directions is finite. The metric, the gauge fields and the remaining scalar fields

will depend on the radial direction but will be independent of the spatial coordinates xi.

The metric on the black hole horizon is flat and in addition, Z(0), G(0) and a
(0)
t are all

constant.

There is a solution to the fluid equations (F.12)-(F.14), with vi, p and w all constant

on the horizon. The fluid velocity is given by

vi = 4πT
(
D−1

)ij (
ζj +

1

Ts

∑
a

ρaE
a
j

)
, (F.18)
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with constant Ei, ζi and we have defined the d× d matrix:

Dij = GIα1Iα2
CIα1 i CIα2 j . (F.19)

Furthermore, the averaged charge density, ρ, and the entropy density, s, are given by

16πGNρa =
√
g(0)

Z
(0)
a aa

(0)
t

G(0)
, 16πGs =

√
g(0) . (F.20)

The current densities J i, Qi are independent of the radius and are given by their horizon

values:

Jai =
sZ

(0)
a

4π
gij(0)E

a
j +

4πρa
s

∑
b

ρb
(
D−1

)ij
Eb
j + 4πTρa

(
D−1

)ij
ζj ,

Qi =4πTs
(
D−1

)ij (
ζj +

∑
a

ρaE
a
j

)
. (F.21)

The DC conductivities are thus given by

σijab =
sZ

(0)
a

4π
gij(0)δab +

4πρaρb
s

(
D−1

)ij
,

αija =16πGᾱija = 4πρa
(
D−1

)ij
,

κ̄ij =4πTs
(
D−1

)ij
. (F.22)

We now return to the black hole solution in section (3.3), which preserves two gauge

fields and one scalar field ( in addition to the axion and the dilaton). In this case,

the only the z direction will have a finite conductivity matrix. In the notation of [1],

have G = F = e−φ/2

u2

√
B and U = F

√
B. We also have Z

(0)
1 = Z

(0)
2 = e2ψ1h/

√
6 and

Z
(0)
3 = e−4ψ1h/

√
6, which leads to the charge densities

ρ1 = ρ2 =
1

16πGN

a1he
2ψ1h/

√
6

uhe3φh/4
√
Bh
, ρ3 =

1

16πGN

a3he
−4ψ1h/

√
6

uhe3φh/4
√
Bh
, (F.23)

while the entropy density is given as in (7.21). Finally, the matrix D is given by

D33 = a2e2φ (F.24)

and so the conductivity matrix can now be determined.
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