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Session IV

THEORETICAL PHYSICS
Chairman: M. L. Goldberger

SCHWINGER: Structure of Green's functions

I shall make some general comments on a comparatively
simple approach to the problem of finding the structure of Green's
functions for the quantized field.

The Green's functions are a mathematical technique for des-
cribing all the properties of the quantized field system, the energy
values of systems, the scattering properties and so cn. In partic-
ular, therefore, the problem of finding the general structure of
Green's functions also includes the question of finding the general
structure of scattering amplitudes and a special application of such
an approach is that particular question of structure which is discussed
under the heading of dispersion relations. This approach tc the
problem of deriving or understanding dispersion relations is used
with the full understanding that it stays within the framework of
present field theory. To that extent it is to be somewhat distinguished
from the approach making use of the idea of causality. But I think it
has now begun to be realized that, by the time it is through, the deri-
vation of dispersion relations from the point of view of causality is,
in a sense, fully equivalent to conventional field theory. So to this
extent we are not really doing anything very different.

The first question we want to discuss is what are the Green's
functions, how are they to be constructed in a formal way, and what
can one say in a general manner about their structure. We want to
use only those properties which, althcugh they may depend upon
dynamics in a specific way, are obtainable at the state where one
is not yet actually making specific calculations about the numerical
quantities that enter into the structure of the formalism. To do this,
let me remind you that what one means by a Green's function is a
function of n space-time points which is defined to be a vacuum expec-
tation value of the time ordered product of field operators:

Gz, xa) = £ (X)X (), )
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X (x) is a general field; it may be a Bose field or it may be a Fermi
field. Correspondingly there are various kinds of Green's functions.
The subscript " 4" means positive time ordering in the sense that
the operators are to be written out in a sequence of increasing times
read from right to left. In addition, the Green's functions, as con-
ventionally defined, contain various plus or minus signs in order to
compensate the anti-commutative nature of the Fermi fields, and
there are various factors of ‘i'in order to simplify the structure of
the differential equations, and so on.

From the specific set of field equations, the Green's functions
will obey an infinite set of interlocking differential equations. The
principal point I want to direct attention to, however, is the boundary
conditions that accompany those differential equations, which have to
do with the fact that these are vacuum expectation values of operators
written in a certain sequence of time ordering. To see that boundary
condition, we may consider what happens, for example, if the time
coordinates are in a definite sequence. Suppose x© is the time coor-
dinate which is greater than all of the other time coordinates. Cor-
responding to the definition in terms of positive time ordering, that
means that the Green's function will contain the field at x° entirely
to the left of all the other fields, which will then in turn occupy a
sequence depending upon their particular time ordering. Let me
remind you that this is an expectation value for the vacuum states
of the fully interacting system of fields.

Now the space-time variation of the field x is, of course,
symbolically expressed by a unitary operator in terms of the energy
momentum operator that would produce the field at the point x from
the field at some conventional point, say the origin:

-1 + P
X(x) = e ¥ FT% X (o) ' '

Since this acts on a vacuum state, for which the energy and momen-
tum values have conventionally the value zero, the exponential on the
left simply disappears, and the dependence upon the space-time point
referring to the latest of all times is described by the eigenvalues of
the exponential operator on the right. This means, of course, that
what we will have here will be a spectrum of eigenvalues, and the
Green's function will be represented by a sum or integral of Fourier
terms, in which the various frequencies which occur are the energy-
momentum eigenvalues of those states that are produced by the
action of this particular field component acting upon the vacuum state.
This will be a certain selection of the possibie states of the whole
system. It is, in fact, the point of the description in terms of the
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Green's functions, or propagation functions, that it represents a
certain selection out of the totality of states, of those that can be
conveniently studied as being produced by the action of one or more
field operators acting in a certain sequence. The point, of course,
is that all that appears are the energy values of the system that are
produced in this way.

Since the vacuum energy is the lowest of all physically
acceptable energies, the spectrum of values that you have here will
be equal to, possibly, but in general greater than the vacuum energy.
That is, there will be a spectrum of positive frequencies only. There-
fore, the Green's function of any number of points is characterized
by the fact that its dependence upon that time coordinate which is
greater than all the rest of them, is such that only positive frequen-
cies are contained in it. That, of course, is true, no matter which
particular field component we are dealing with, although, depending
upon the nature of the field you will have various choices of the
energy-momentum spectrum, characteristic of whatever particular
field we're talking about.

In the same way, if we consider the space-time point x to be
not the latest of all the points, but the earliest, then the field operator
‘x (x) will appear not entirely on the left but rather entirely onthe

right. The space-time variation is represented as before, but the
right-hand exponential now acts on the vacuum state and has the value
one, In the representation of the space-time variation we will again
have a sequence of eigenvalues, harmonic terms with various fre-
quencies characteristic of the energy states that can be produced in
this way, and corresponding to the sign change in the exponential,

the frequencies will be entirely negative.

We have, therefore, the boundary condition that the Green's
function, in its dependence upon the latest of all times, contains
only positive frequencies, and in its dependence upon the earliest
of all times, contains only negative frequencies. In effect we have
a description in terms of waves which can be considered as moving
in the space-time region in such a way that if we have a number of
such points in space-time, the waves are moving always out of the.
region in question. When we are on the boundary of the region in
the sense of considering the time coordinate that is later than all
the others, the frequencies are positive and the waves move out; if
it is the earliest of all times, the frequencies are negative, and the
waves move again out. In short, we are dealing with a generali-
zation of the Green's function originally introduced by Feynman
which corresponds precisely to the boundary condition of outgoing
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waves. The waves are, in a time sense, running out of the region
in question.

This is the basic boundary condition,then, that characterizes
the general Green's functions, and the boundary condition that I want
to exploit as a general physical requirement will have to be taken
into account in examining the structure of the Green's functions.
Incidentally, of course, while I considered this as referring to a
single field component, the same thing would hold equally well if we
had a group of points held together. In other words, suppose we
consider two space-time points x; and xg, and these together are
later than any other of the field components. If we then considered
a common translation of these two fields, rigidly maintaining afixed
space-time interval between them, then the same argument would
apply to the translation of both together. As long as these two points
are later than any of the others, you would have only positive frequen-
cies. Those frequencies, of course, would refer to yet another sub-
group of the energy mass spectrum, namely, those states that canbe
produced by the action of two fields. In a certain sense, the positive
frequencies you get by having the single field act, pick out one spec-
trum of single particle states, if you like, another spectrum of two
particle states and so on. Again, the indication of how the Green's
functions selectively pick out states from the totality of states, can
be described in terms of energy values or equally well in terms of
scattering.

Now the problem is, for the purpose of selecting solutions of
the differential equations that govern the Green's functions, to re-
place the boundary condition of outgoing waves by a regularity require-
ment; in other words, to look for the solutions of the differential
equations that are regular in a certain complex variable domain, as
being equivalent to this choice of boundary conditions. This is all
familiar, and the result will perhaps be clear if I say that the selec-
tion of outgoing wave boundary conditions is equivalent to the require-
ment that the Green's function, defined as a function of the space-time
coordinates, should remain a regular function when you make the time
coordinate complex in a specific way, and that you never find an
exponential that becomes unlimitedly large. This regularity require-
ment is equivalent to a selection of positive or negative frequencies
in the two situations. The regularity requirement is that when I take
all time coordinates and multiply them by a complex number,

(2)
X’ —s xo(ln}e)} e>0
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in which g is an arbitrary fundamentally positive quantity, which
can be considered to be infinitesimal for our present purposes, the
Green's function, as a function of the time coordinate, remains
regular, That is fully equivalent to the particular choice of boundary
conditions of outgoing waves. I think that you will see that, if I
consider just a simple example of two points:

0O o0 -iP%(x° - x9°) -iPO(x:° -x.%) (1 - ie
X], X9; Xy > X9 ; © 1 2__)9 1 2)( )

You recognize that this substitution, which multiplies equally well
the time interval by 1 - i€, forces me, if I am to deal with a quantity
that remains bounded no matter how great this positive time differ-
ence is, to choose these numbers to be positive only, so that the real
part is negative. In short, with this sequence of timedifferences,the
substitution above forces me to pick positive frequencies. On the
other hand, it is clear that if the time interval were negative, then I
should have to take negative frequencies. So the distinction between
positive frequencies and negative frequencies, in accordance with the
sign of the time difference, is equally well expressed by the require-
ment of regularity of these Green's functions under the substitution
x0 — x0(1-1ie).

In effect, our problem now is to examine the most general
structure of Green's functions depending upon n coordinates which
remain finite under this extension of the time coordinate into the
complex plane. This appears now simply as an equivalent and
simpler way of presenting the fundamental boundary condition that
accompanies the Green's function definition. To see how this goes,
let's consider the simple case again of 2 points. Just to take the
simplest example, suppose we thought of the Green's function of the
spin zero field. The complications produced by spin are not essential.
They simply mean that any Green's function describing a Dirac field,
for example, would be produced from a kind of equivalent spin zero
Green's function by multiplication by an invariant produced out of
Dirac gammas and differentiations., The basic structure is spin
zero. Any finite spin is generated from that in a perfectly straight-
forward way.

From its definition, the Green's function is supposed to be
invariant under translation, invariant under arbitrary Lorentz
rotations. It is a function defined without restriction on the points
x and x'. The only invariant function that you can produce is con-
structed from the fundamental invariant, the space-time distance
between the points. In other words, it must be a function of



(x - x')2 (where I define this to mean the spacial distance minus the
time distance).

G(x,x') = Gl (x-X')z), (3)

Now what we have to do, of course, is to pick that particular function
of the space-time interval which remains regular under the trans-
formation xX°—» x° (1 -ie ), x°' — x°' (1 -ie ). Under this
extension into the complex plane the square of the time interval
becomes

k-xf = (X-X2 -6 -2 3 x-x)P 4 ie. (@)
(Of course, a positive numerical factor on € doesn't matter, just the
sign, or in which half of the complex plane you demand regularity).
So the statement is that G is to be a function of the invariant distance
which remains regular when the argument is extended into the upper
half plane. That's the boundary condition that accompanies the
physical choice of outgoing waves.

We now say that any such function can be written, at least in
a formal way, as

Gle,x) = jl,\ . $00) | (5)

The statement that this function is regular in the upper half plane,
where (x - x') acquires a positive imaginary part, is equivalent to
the familiar statement that the parameter A ranges over positive
values only. So the integral runs from zero to infinity. In coor-
dinate space this represents the determination of the structure of
the Green's function going with the boundary condition of outgoing
waves.

{,A(x-x')l

It is more convenient to make use of this in the momentum
representation:

Glx, x') j-—-—?— 1,?(bx‘)ﬁv‘.s e F}(S)) (®)

(am)*

where S = \/4/\ and ?(S):%(\/QS).

The regularity requirement in the upper half plane for the square

of the coordinate difference becomes transformed into a regularity
requirement in the lower half plane for the square of the invariant
momentum. This is a straightforward mathematical transformation.
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No physics has been added beyond the boundary condition that accom-
panies the structure of the Green's function. Then we can, if we
wish, write g(s) as a formal Fourier integral,

' 2
g(S) = fo(,x} (/-1153(, ?/(X-), (7)

We call the variable of integration X in anticipation of the physical
identification, For the moment, x* ranges from minus to plus
infinity. It is intended just as a formal integration.

Having written it in this way, I can now carry out the s inte-
gration to get the final and familiar form

: 1

G(p) = f(d(x - x'))Glx - x") " P{¥ °X )=-1'Jv(xf-2——-(x) o

F}"‘&z"ié . (O)
At this stage, of course, we are on familiar ground. We know that,
on performing the momentum integrations, you would get back the
various frequencies with the appropriate sense of outgoing waves
that represent the proper choice of boundary conditions. The
number X then become interpreted as the spectrum of mass values
that describe invariantly the energy momentum relations. In other
words, in order that a particle with a given momentum have a real
energy, the numbers X" have to be positive. In short, we must
not only satisfy the boundary conditions with outgoing waves, butthe
outgoing waves have to carry real frequencies, not complex fre-
quencies. That means, therefore, that »" is identified mathe-
matically as a measure of the invariant energy-momentum that a
particular solution carries and therefore becomes represented as
a positive number,

The result, then, is, so to speak, the general functional
form that one obtains. One can, incidentally, add the statement:
the amplitudes g(X ) are entirely real. In a certain standard way
of representing the field equations, nothing but hermitian operators
and real numbers appear. The only way in which complex numbers
enter is in the deliberate choice of boundary conditions, which the
i€ is designed to represent; i.e., a selection of waves traveling
in one sense rather than in the other. In a domain, for example,
outside the light cone, where no real propagation can occur, every-
thing is real and the amplitudes g( % ) are real numbers. The ig
represents completely the complex nature of the Green's function.

The real problem begins when we now wish to go on to a
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Green's function that depends upon several coordinates, All the
major problems, of course, occur as soon as we think of the Green's
function, let's say, still for the spin zero field, from which every-
thing else can be constructed.

We are now looking for a Green's function depending upon
three space-time coordinates. It is to be invariant under trans-
lations and invariant under Lorentz transformations without restric-
tion upon the location of the point. Again the most general invariant
is a function of the three invariant space-time intervals that one can
construct from these coordinates:

G ( X1, X2, XS) = G[(Xl 'X2 )2, (Xl "X3)2, (X2 "X3)2]. (9)

Until we come to a number of points equal to five, the invariant
space-time intervals between the points represent a full counting of
the independent invariants. When the number of points goes beyond
five, however, there are then relations among the space-time differ-
ences. The number of invariants essentially grows linearly with

the number of points, the number of intervals grows quadratically.
You eventually reach a point where there are relations among them.
But if we stick to the simpler cases of three and four, which are

the most interesting physically, we need not worry about that,

We are now to find that function of these invariants which
remains regular when all of them are simultaneously extended into
the complex plane in the sense of adding +i € . Epsilons, of
course, can vary, but the point is that they are all positive. In a
purely formal, mathematical way we can write the dependence upon
each one of these variables in a sequence of Fourier transformations.
This would be designed to recast this in terms of the mass spectrum.
If such a transformation were permissible, then

G (%, %, %;) =J«L/\,o(klob\3 X

(10)
xp {‘1', [,\‘ (x,_~x3)z+/\z(x3~X,\)l+)\3 (x,-xl)zji ‘g(A.,/\,) As) .

Strictly speaking, of course, each A runs from minus infinity to
plus infinity. We could imagine breaking each A -integration up
into three parts. A part which is discontinuously associated with
XA = 0 would be necessary to represent the possibility that the
Green's function does not depend upon this particular variable at
all. If you want to write it as a Fourier integral, of course, you
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have to move aside that exceptional possibility. So there would be
a Delta function for A= 0 if you like, in the amplitude, The range
of integration over positive A exhibits that part of the function
that is regular in the upper half plane, and the range over negative
values of A represents that part of the function which is regular in
the lower half plane. This is a decomposition of the general function
into three parts. Treating the simple possibility of no dependence
on one coordinate difference at all separately, you can imagine each
)\ -integral as a sum of two, one referringto A > ¢ exactly
analogous to the case we were considering and one referring to
A < O . For each of these you can go over to the equivalent
Fourier integral representation:

E(T:B; s, F‘lz) =J‘0LS,5(5*0(,53 i;(s'r:3+s*ﬁ:+53 ?;)?(S,,S,) 53)(1.1)

When M\ >0, s runs over positive values, and when A<, s runs
over negative values. In other words, depending upon these two
possibilities, you have a function of p2 that is regular in the lower
half plane or regular in the upper half plane.

The weight factor g(sy, s,, s ) in turn is represented in a
Fourier integral form, which is just "a conventional way of writing it:

RS RS R e vy
?(S‘Js‘v 53) :'J;LX‘: vt)(:sxxn% ( ? 3'* ’ zg(xu, X;.) xu) . (12)

X! is merely a mathematical parameter that at this stage runs from
minus to plus infinity. The performance of the integration with
respect to s brings you to the stage of writing it

13)x'll)x|2
G(T:s’?u,]‘u Jo(«)c o{z o’.x 9(3( ) (13)

(},,-Ht,,twé)(&'ﬂcu tae (r“fx“ + té)

the plus or minus i€ , or regularity domain, depending upon which
part of the function of x2 you began with. That is only to say that I
can isolate the dependence upon each variable and write it in thisway
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by a sequence of Fourier transformations, replacing it by an
amplitude that depends upon a mathematical parameter x". Since
I can do this for all three variables, the whole thing is a composite
Fourier integral, and, depending upon which part of the spacial
dependence I began with, the regularity domain is in the upper or
lower half plane. I leave the question open, because I want to im-
pose the boundary condition finally upon the whole Green's function.

I know nothing, at this stage, about the analyticity of the
function and its dependence upon each one of the space-time coor-
dinates. There are three relative momenta here of which one is
redundant in the sense that the absolute momentum that is associated
with the space-time point x; is in fact given by p;= pj9+ P13, and
similarly, py = -Pjgp + P93, Pg = -Pj3 “Pgg3- The sum of these
three momenta is zero, That just expresses the translational sym-
metry that we built into the theory, and it indicates, for example,
that if you specify p; and py, then there is one relative momentum
that is left free which we have to integrate over in order to get the
final structure of the actual Green's function in its dependence upon
the physical momentum. That, of course, is a straightforward inte-
gration which can be performed by the usual parametrization. Let
me write the results in the following way:

G(x.)x;, 3(3) = const. x Jl(r,o(-rlv(aa,ﬁlx;lx;, ﬂ{a(,ll (14)

lad

j JOLLJI23 ~(71X T *fs"z)ﬁz()(n,xu,Xn J(T‘+r1+?3)l(2.+2,+23~()

14 °

0 ?’ 2 +}‘}'23+l’522"+x‘32+x“2 +XRZB"‘/6

That's the general structure you get,

At this point one imposes the physical requirement of regu-
larity, which is that if you extend the time coordinates into the
complex plane in the indicated way, you must have a regular function.
In terms of the momentum transform,that appears in the form of the
requirement that if the invariant squares of the momenta are moved
into the lower half plane, the function must be regular. That there-
fore means, in a sense, that we must have a regularity domain that
remains consistent, which is not crossed, when every p2 is replaced
by p” - i€ , which is just the Fourier transformation of replacing
every x2 by x2+ ie. All the ¢ being positive, this means that the
whole domain of regularity is expressed by adding -i€ to the whole
denominator.
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'‘Ne have, then, the general form of the Green's function
meeting all of the requirements, and in which again the complex
nature of the Green's function is entirely expressed in the usual
formal way by the addition of the -i¢ . The amplitudes in terms
of the parameters ® are real numbers again. You recognize, of
course, that the three invariant squares of the momenta appear
combined together in a single denominator. The result shows, so
to speak, the general content of the information fed in. Translation
and Lorentz invariance, the reality properties and the boundary
conditions imply that the Green's function is simply transformed
into a function of certain invariant mass parameters. The physics

is all concealed in g,(xn’ X, )(u) .

So we have the general structure for the case of three points.
You recognize it as following a general pattern that could be applied,
with more and more algebraic complications of course, to larger
numbers. Particularly, the whole thing goes through in exactly the
same way for four points, which is what you need in order to have a
physical application, say, to scattering; meson nucleon scattering,
for example. We are dealing with very complicated structures, and
when we finally apply this to a simple problem like the derivation of
the dispersion relations for forward scattering, the apparatus is
much too ponderous for that particular application. But that is only
because we are describing the full content of the field theory, and
inevitably we deal with many more complications ktecause much more
is in principle contained in this formulation.

The physical problem then becomes transferred to the question
of finding the amplitudes g and their dependence upon the parameters
% , and, in particular, in finding for any particular physical appli-

cation what the range of values of the quantities ¥ is. That comes
down to the question of what you are going to apply this structure
formula to, that is, what particular Green's function will one use it
for. In any actual application one would apply it not to the Green's
function itself, but to quantities derived from it which characterize,
not the full propagation characteristics of the particles in interaction
together with their subsequent free propagation without interaction,
but rather the really fundamental aspects of the interaction of several
particles. That means replacing the Green's function, if you like,

by another one, depending upon the same number of space-time points
but limited to the space-time behavior in the region where the particles
are all fully interacting with each other. It means to isolate the rela-
tively trivial aspect that refers to the self-interaction properties. So
in actual application, this structure would be applied to Green's
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functions derived from the ones written down, referring to all points
associated with fields, or the corresponding particles, in full inter-
action, spacially and temporally limited to the space-time points
where they approach each other. Let me try to illustrate this in the
simple case again of two points, where all the ideas are present.

Suppose again we had a Green's function of two points refer-
ring to a spin zero field. Let's make it very explicitly now a Bose
field:

o) = 1 (g a(x)), ).

We have to make use very explicitly of the field equations that this
field obeys. These will be equations, say,

(15)

(Kpi)e =7

One begins with the field equations in the absence of interaction, and
j will be the coupling. If you think of ¢ as the meson field, this will
be the coupling with the nucleon system. j will be some effective
current, an operator referring to the second field that ¢ is coupled
with, Now we will want to make use of the field equation in the
following way.

Suppose we write this so as to bring in the propagation equation
that the meson field obeys in its lowest mass state. That is, among
the effects of the interaction is that of replacing the mass parameter
Mo to begin with by the mass parameter M that refers to the actual
propagation of the particle in full interaction. The point of this forma-
lism is to refer the interaction properties of the particles to the propa-
gation characteristics as they would actually be observed in terms of
fully interacting particles, not the mathematical idealization of the
adiabatic decoupling which is so often employed. We want to represent
the scattering interactions and the scattering characteristics of particles,
identifying them by their spatial separation rather than by their time
separation. So we deal in this formalism always with fully interacting
particles and attempt to separate the fully interacting free propagation
characteristics from the scattering interactions, for example.

In this case we are not talking about scattering, but these same



IV - 13

ideas apply. You would therefore write

e p)Be L+ (()g+f)0), >,

What we have applied is the operator referring to the actual observed
mass u , not the original mass m,. The difference will then appear
on the right. This is the first stage in the process I referred to; to
replace the Green's function referring to the actual field by a Green's
function referring to those combinations that describe the interaction
properties of the field, the change in mass and the effects of the
coupling with the second Fermi-Dirac field, or whatever it may be.
In other words, we replace the original fields by a new set of fields,
all referring, of course, to a single space-time point:

B = (Fop)e ey

You would then repeat this derivation; you would apply the differential
operator again in order to replace the original field by a modified
field that really describes the local interaction properties rather than
the free propagation characteristics. So you would apply the differ-
ential operator &+ ,u," on the right, and there would appear
finally this structure of the Green's function (skipping the intermediate
steps):

(18)

G- *&*/“ e K@)+ )] e

In short, the original Green's function has been replaced by some-
thing having the same general structure, but with an altered meaning
of the field. The point is that from this Green's function all refer-
ence to the lowest mass state has been removed. We have separated
that part of the information in the Green's function for two points that
simply says that in there is contained the propagation of a particle of
mass 4 . From that we have separated the part referring to all of
the local disturbances that are occasioned by the creation of aparticle,
the disturbances that do not propagate to a very great distance, the
disturbances that are not particularly physically meaningful as far as
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the single particle Green's function is concerned. We have their ana-
logue in the local disturbance that produces the physical scattering.

You recognize that if the vacuum expectation value in [3
remains constant when k? is replaced by —/uf you would have not
only a single pole, which is the mark of a state of energy-momentum
connected by the mass m , but you would have a double pole. Such
double poles, of course, cannot exist. In fact, if the Green's function

A(EE): D had a singularity at that point, it would correspond
to a triple pole. All reference to the lowest mass state, however, has
been removed from this Green's function. It therefore describes only
the more complicated local excitations. The free propagation of the
particle is isolated in the term (-C:-#»/Wl )~| . For this new Green's
function you would use a general representation of the kind we dis-
cussed !

(8E),) = " e B () (19)

£+ xt

The mass spectrum would not begir. with mass s , but would begin
higher, with all of the additional states that could be created accom-
panying the operation of the field operator once. If you were talking
about the pseudo-scalar field, for example, this mass spectrum would
begin at 3 s , which would be the smallest mass that would be
coupled with the mass M- . This means that you have a physical
condition derived from the meaning of the Green's function as a com-
pact expression of all the energy~-momentum states. We say, for
example, that ¢ ( ff)+ > does not have a pole at - . That is
expressed by the range of the mass spectrum. More than that; the
double pole does not exist, which is to say that when you evaluate
(FENY, & =-p, the coefficient of the double pole in /3 has
to vanish. That gives you a formula for the mass ateo in the absence
of interaction in terms of the actual mass /w and all the local inter-
action properties.

From the result of all of this, one gets the actual Green's
function. The facts that there is a renormalization, and that the
single mass is present only a fraction of the time, then come out in
the re-expression of the entire Green's function.

Of course, we would want to go through the same kind of re-
arrangement in the Green's functions referring to several points, four
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points in particular, to describe scattering. If you are interested

in meson-nucleon scattering, for example, you are concerned with
the Green's function referring to two Boson points and two Fermion
points: '

G, = *i{(99YY), .

This Green's function, referring basically to one nucleon and one
meson, would then be separated into the product of the Green's
functions referring to one nucleon, one meson non-interacting but
containing all physical properties, and the rest describing the
additional scattering owing to the interaction that is produced only
when these particles physically overlap. If they do not, you have
the free propagation of each without interaction with each other,
but each interacting locally, giving them their actual physical
properties. Then, following a calculation, you will have

- l __l s ‘ ‘
E” B 5'9{’ * )"J»-i-wv fr:'-r/u?[ ]X-Jurvw &:"l’/"‘*1 .

The whole structure of the theory is now transferred to what appears
in the bracket. And what appears there contains a number of differ-
ent parts, of which the most complicated one is again a four point
Green's function referring to the fields as they are modified by the
effective interaction:

{(ERYY), )

This term exists only by virtue of the fact that the physical
meson and nucleon are overlapping in space and time and are
physically interacting. It is to this quantity that the general structure
of the Green's function referring to four space-time points is to be
applied. It is this quantity also that gives you the nature of the
scattering amplitude and its complex structure, from which in par-
ticular the dispersion relations will follow, Of course, in principle,
it contains very much more because you now have an expression for
the scattering amplitude in terms of field operators from which equa-
tions of motion can be derived, and so on. It may enable you, in
principle, to obtain not only the most general consequences, such as
dispersion relations, but the most specific connections between the
physical properties that are involved in scattering and the physical
properties involved in other phenomena in which the same kind of
field operator combination might occur.
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DISCUSSION

VAN KAMPEN: The irregularity condition on functions of
the square of the time differences does not seem to me to be equiv-
alent to the original boundary condition,

SCHWINGER: Well, I simply said that if the Green's functions
are functions only of the invariant space-time distances, then the
regularity requirement on the time intervals becomes transformed
into a regularity requirement on the squares of the time differences
in the lower half-plane. The latter follows directly from the former,
since only these invariant combinations occur because of Lorentz
invariance.

VAN KAMPEN: The function you write down is regular as
a function of (x - x')4, but not necessarily as a function of (x - x').

SCHWINGER: The implication is that it will be. I satisfied
all of my requirements. I may then, if I wish, go back and recog-
nize explicitly that when I construct the function it is true. We can
certainly do this explicitly in the simplest cases, and it is true. For
three and four points it is, of course, algebraically complicated.
Let me say, incidentally, that I have actually carried this work only
to the point of recognizing the general forms. I have never gone
through the labor of reducing the algebraic expressions down to the
point where they are usefully applicable to scattering.

LEHMANN: Are these forms you wrote down for three or
four points conjectured, or have they been derived by actual proofs?

SCHWINGER: I have told you the basis of the proof.

LEHMANN: Well, yes, but....

SCHWINGER: I contend that the structures can be nothing
more than what can be obtained by direct application of the regu-
larity requirements which, I say, are equivalent to the boundary
conditions. They are correct insofar as the formal manipulations
with Fourier integrals are justified. You can certainly point out
generally mathematical functions that will not meet these require-
ments; that I cannot possibly prevent. But the statement would be
that a physical theory ought to fall into this general framework.

LEHMANN: Unless you know what the ranges of your
parameters are, these formulas are not very useful. It is very
essential to know these.
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\ SCHWINGER: I meant to say at the end that the range of the
¥ s depends upon which particular function you apply this structure
formula to. The range of the parameters would always be such as
to begin at the first excited groups of particles, whose energyspectra
could be added to the lowest physical state; that is, the lowest physical
states are always removed.

- FEYNMAN: If you have three points, isn't there some kind of
triangle inequality? That is, if among three points two are separated
by one space, and two by another, then the third pair cannot be sepa-
rated by more space than the sum of the other two. There is, there-
fore, a limitation on the range of the three coordinate differences.
Does that have any effect on your results?

SCHWINGER: I don't think so. This is a physical limitation
on the range in which you can freely assign numbers, but it does not
change the counting of independent variables. Certainly every
invariant is reducible to the three invariant coordinate differences
squared. There is no algebraic restriction on these three. That is
particularly true, of course, if you make the extension into the
complex plane, where the reality restrictions no longer hold. That
doesn't effect anything locally, which is all we really make use of,
In a local region, these invariants are freely assignable.

o0 Id
KALLEN: Structure of the vacuum expectation value of three field
operators

The previous speaker has most eloquently told us why it is
so interesting to look at the vacuum expectation values of products
of field operators. I should like to discuss the same problem from
a slightly different point of view. Thereby, I should like to con-
centrate on the analytic properties of the functions involved. In
particular, I should like to emphasize that we really have to deal
with two analytic functions, one in x-space and one in p-space. Let
me now get down to details.

We have two scalar field operators (I agree with the previous

speaker that spin, etc., are entirely irrelevant) and take the expecta-
tion value for the physical vacuum:

<o‘ A(ﬂB(x‘)lo) =J”Lf‘ 6«'«31(7:-76)9(?) E(Tz) _ F(x-x') )
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where

j Fo>0

6(¢) =

This is an ordinary product, not time ordered. That's why you have
the § (p) in the Fourier transform. The function F in x space isthe
boundary value of a certain analytic function F(z), where z = -x2,

(I use the minus sign here for convenience). We all know, as was
so beautifully explained before, that this function is regular in the
plane cut along the real positive axis, and therefore we can write it
in terms of these dispersion-like relations:

)= [ Al

This is one function we have to do with, and for convenience I will
in the future refer to it as the analytic function in x-space. The
mathematical reason for its analytic properties is, of course, the
appearance of only positive time-like vectors in the Fourier trans-
form.

3’0(0 .

There is another analytic function which one gets by taking

o ‘[A(x), B(x')]l o> Q(x-x’) = J‘AT o;' a‘(x-x‘) H(T)

Here, H(z) is again the houndary value of a certain analytic function
This z, of course, is - p~. This analytic function in p-space, as I
shall refer to it in the future, is also analytical in the cut plane. So
much for the two-vacuum expectation values and the appearance of
the two different analytic functions, one in x-space and the other one
in p-space.

Now let us take a three-fold vacuum expectation value. This
we write in a similar way .

ColaIBEC (o = [ Ly PO TR
»0(2) 0F)E($ 3" pt')

= FABC(Z.) 2, ?3) )

2( = - (’X-‘ X')t
22 - ~_<x|_~xu)l

- (e-x")"
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FABC is again the boundary value of a certain analytic function of

Z1, 29, 2g. It is the generalization of F(z), and I will refer to it
as the analytic function in x-space.

In quite a similar way, you can generalize the commutator
times the @~ function, which, for all practical purposes, is
the same as the time ordered product. Just to bring out the mathe-
matics, I will show you what it is:

0(x-x') 0 (x-x")<o|[C, [B,AT) |0} + 6Ce-x") 6l x) | (8, (A ] o)
= [dpdy W (g T T

H is now the analytic function in p-space . If you take the time
ordered product, you have exactly the same analytic function in
p-space, only different branches of it, (I mean, on different sides
of the cut).

The point I would like to emphasize is that, for the three-
fold vacuum expectation value that we have here, also, the domains
of regularity of these two analytic functions, the analytic function
in x~space and the analytic function in p-space, must be identically
the same. I should also like to emphasize that the domain of ana-
Iyticity for these new functions, F and H, in the three-fold vacuum
expectation values, is not just the product of the 3 cut planes. So
I completely agree with the discussion remarks made by Feynman,
that the restrictions on the vectors are extremely important, and
that they mean very severe restrictions on the domain of analyticity
of these functions.

The proof that those two functions, F and H, must have
exactly the same domain of analyticity is not quite trivial. I will
skip it here, but I will be glad to give all of the details afterwards
to anyone interested. It involves some calculations. I will now
try to discuss the domain of analyticity that we have for both these
functions.

The property of these functions to be analytic, is the direct
consequence of the structure of the Fourier transform, namely,
that the function G is different from zero only for positive time-like
vectors. I should like to emphasize that a very, very important
property, for these domains of analyticity, is the commutation prop-
erty of the scalar field. The domains of analyticity for these
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functions are quite different for a theory where the field operators
commute for space-like distances and for a theory where they do
not. To see this, we remark that if we take a theory where the
operators commute and take instead of the original vacuum expec-
tation value, this one:

BAC
{o|Baclo) =F™

we are led to another function, which in this notation will be F
From the property that A and B commute for space-like distances
we can conclude that FABC ang FBAC e really the same function
in a certain restricted domain of the variables zy, z,, and z3. But
then there is the well-known property of analytic functions that if
they are equal on a rather small domain, say, along a finite piece of
a line, however small that piece is, they are really the same function.
It is one of the most powerful properties of analytic functions in
general. This allows us to say that everywhere where FABC g
analytic, there the same is true for FBAC you sit down and in-
vestigate the domains of analyticity that really follow from the
vector properties, you find that t}]%&gomain for the function F

and the domain for the function F are not exactly the same. In
a very rough general picture, things look like this:

There is acertain
piece where the
three domains
overlap and that
contains the
space-like sep-
arations. There-
fore we know

that the functions
are equal there,
and hence we

can continue

the function
FABC from

the domain Fig. 1

where it is, so

to speak, trivially defined to the larger domain which is the union
of the original domain and the two permuted domains. The local
commutativity is therefore a very, very powerful method for de-
fining the domain of analyticity of these functions.

As far as these domains are concerned, I now have to do
the discussion in two steps. I have to discuss the original domain
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that is sketched on page 20 for FABC, then I have to commute z
and z, to get the permuted domain, and then finally I have to take
the union of the three domains and I can claim that the function
must be analytic in the whole of these domains. Although this
discussion requires quite a lot of formal manipulation, the algebra
is perfectly straightforward. I will skip all the practical details
here. I shall mention only that all the calculations have been done
in close collaboration with A. Wightman, now at Copenhagen.

In giving a detailed picture of these domains, I will meet
with some practical difficulties. We have three complex variables,
which means a six dimensional real space. So I have to make
drawings in that six dimensional space, and everybody who ever

tried to draw a
three dimensional
space, and every-
body who ever
tried to draw a
three dimensional
picture on a two
dimensional
blackboard will
perhaps appreciate
the difficulty. One
way I can do it is
by fixing four of
the degrees of
freedom once and
for all, givingthe
corresponding
coordinate num-
bers, and draw a
curve for the
remaining two Fig. 2

variables. For argzq+ argzg L

each pair of points

z1 and z9, I have to draw a new curve. I have to apologize for the
quality of the following sketches but I hope that they will be good
enough to see something at least. These pictures are to be under-
stood in the following way: you give two complex points, Zy and Zg»
and then you show the complex plane for the third point, where you
have a shaded domain where the function might have singularities
and an unshaded, white domain where the function must be regular,
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Figure 2 shows the situation when the two points z; and z,
are both in the first quadrant. Actually, the important point is
that they are both in the same half plane, e.g. the upper, and that
the sum of the two arguments is smaller than T . Then the
white domain, as you see, consists of two large disconnected
pieces. The boundary of the domain is made up of several pieces
of different curves. F)9, for instance, the curve in the upper right-
hand corner, is a hyperbola centered at the point Zy ¥ 2o, with one
asymptote horizontal, and with the other asymptote in t%e direction
defined by the sum of the arguments of z; and Zg- The equation for
that curve is:

23 = 2;+ZI+K+E'_2‘_*, 0L K< oo,
K

For each real value K you get a certain complex number Zg, and
when K is varied, Zg describes the hyperbola F12’

I should like to mention that if you do not have local commu-
tativity and therefore the permutation symmetry, then the domain
of analyticity for z4 is just the one white region in the upper right-
hand corner. However, by virtue of local commutativity the domain
is very much extended and you get also the piece in the lower left,
which is bounded by two curves, Fgg and S. F23, the lower bound-
ary in the upper half plane, might look like a hyperbola, but actually
it is not. It is obtained from Fj9 by an interchange of zy and z4.
In the lower half plane, the boundary is an entirely different curve,
S, which again happens to be a hyperbola with its center in the same
point z1 + z9, but with different asymptotes. Its equation is

2, = 2,(|~K)+Zz<|--}-'<~)) ~o0 <« K< o,
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Fig. 3 shows a
similar picture
The curve Fy3
starts at the
origin, goes
around in this
absolutely crazy
way and then off
to the left. The
intersection of
the S curve with
F1 is no longer
the origin, but
the point P: to
the right of it.
The region of
singularities is
now the shaded
domain, with
the further
addition of a _
prong on the Fig. 3

real axis from argz) +argzg < M

the intersection

point P to the origin. So the allowed domain is now the white
domain, with the exception of that part with the real axis that §0€s
out like a prong from the shaded domain to the origin.

As I said before, the direction of the second asymptote of
F1g is given by the argument of the product of the two complex
numbers z; and z, . As long as the sum of the two arguments is
less than T , this asymptote goes up, and we have two dis -
connected domains. However, if we vary, say, z9 it will sooner
or later happen that the sum of the two arguments becomes larger
than 9 . Then this asymptote points downward. That situation
is illustrated in Fig, 4.
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You see that the
white domain
has become
connected, = T = N
because the F23

curve and the _he e

Fyo curve inter- =7 1@\ -
sect. This is S 4 L P
the case when /g / -
the sum of the 4 // /
two arguments 4 /Fg’
is larger than ;s

T . You see /!
this is arather
complicated
domain, and
there is nothing Fig. 4

at all as simple '

as just the TR ST
product of the
three cut planes.
There is also a
prong of the real
axis from P to
the origin that
has to be added
to the shaded
area.

As the
point z9 ap-
proaches the
negative axis,
the point P
and the horn
H both run to
plus infinity.
When z9 emerges
in the lower half
plane, we have

the situation Fig. 5
illustrated in z, and z, in opposite half
Fig. 5. You planes. argzq - argz,< M

see that the
whole plane is
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allowed, except the cut. Since it now never happens that zy, z9 and
zg are all in the same half plane, it is always the S curve that is
relevant. In Fig, 5 the S curve is the upper hyperbola, where K
runs from minus infinity to zero, for some reason which I don't care
to explain. Actually what happens is that without using the local
commutativity everything on the left side of the S curve is allowed.
If you do the permutation, it so happens that the S curve goes over
into itself, essentially, plus pieces of the other branch. That is why
I call it the symmetric curve or the S curve. After the permutation,
then, one sees that everything to the right of S is allowed, and the
only exception is the cut.

This happy situ-
ation prevails until the
two branches of the
hyperbola cross, and
that happens when
the two points z; and
z9 are on the same
line through the origin.
Fig. 6 shows what
happens after that.
The area between
the two branches
of S is now the ex-
cluded domain, and
in addition there is
a cut from P to
plus infinity.

Fig. 6
These pictures z, and z, in opposite half planes.
. 1 2
together, I hope, give
you some idea, per- argzq - argz; > T

haps not exactly of

how the domain of

regularity looks, but about how complicated it is. The next mathe-
matical problem is to find the most general function which is regular
in the white domain, but which has a singularity anywhere in the
shaded domain.

Actually, this problem has a very simple mathematical
answer. There is no such function whatsoever. In other words,
every function that is regular in the white domain can be continued
a bit into the shaded domain, The mathematical reason for this is
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a well-known (to mathematicians) theorem. I didn't know it until
about a year ago when I first started investigating these things.
Roughly speaking, the situation is that an arbitrary region in a

2 n-dimensional space like this can in general not be the domain of
regularity for an analytic function.

If we take a very
simple example,
Fig. 7 shows one
z-plane, say, and
the slanting line
might represent
all the other
dimensions.
Then you want

to find a function
that is singular
only in a domain
A around the
origin but regular
everywhere else.
You can put a
path C around
the vertical

axis and parallel Fig. 1
to the zq plane

and look at the integral

1 FCS2,,0)
LAS : |

17!‘1, - 2z,

C being entirely inside the domain of regularity of the analytic
function, the ordinary Cauchy formula tells us that this integral
is equal to the analytic function F. Then you can start moving the
path of integration downward, and if you are moving it inside the
domain of analyticity, it still represents the same function. You
can start pulling it over the region A, and with this technique you
can continue the function also into a small isolated domain like A.
So, roughly speaking, one point in this 2n-dimensional space can
never be a manifold of singularity for the analytic function.

It is clear, I think, that if you have something like a horn
sticking out, you can use the same technique, and you can chip
the horn off the domain of singularity. Now, in our pictures we
saw lots of horns of the domain of singularity. Therefore you
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know that you can continue the function analytically over those
horns.

Actually I do not know how far you can do this continuation.
There is quite a lot of algebra involved in getting the final answer.
We do not have it yet and I apologize for speaking of this uncom-
pleted work. It seems to be complete enough, however, to tell
about a few things that we must not do. One conclusion that can
be drawn from it is the statement that our domain of analyticity
is not just the product of the three cut planes. Historically, this
was first shown by a counterexample by Jost and Lehmann, but we
can immediately see it here from the representation (14) of the
previous talk. If you take this representation and compute the ana-
Iytic function F in x space you find that it is simply a product of
three A(*) functions. (The sign"+' here means positive frequencies
and not time ordering!) Therefore, the function F is analytic in
the product of the three cut planes and the representation is certainly
a possible one. However, the corresponding function H can also be
computed and is rather directly given by the kernel of the represen-
tation (14). It turns out that the domain of analyticity for this function
is the product of the cut planes except for the situation illustrated
in Fig. 6. In that case, the H function has singularities in a domain
around the positive real axis between the origin and the point P.
The fact that it has singularities anywhere except on the cuts makes
the statement that it is the most general representation of the three
fold vacuum expectation value into a self contradiction. Neverthe-
less it is certainly a possible form for this quantity but does not
follow from the very general arguments used here today.

DISCUSSION

(Editors' note: Part of this discussion was lost)

GOLDBERGER: You said that the naive formula which
Schwinger wrote down was, in fact, a possible representation of
the three-fold vacuum expectation value. To the extent that it
represents, for example, what comes out of lowest order pertur-
bation theory, it is indeed a possible formula. Nonetheless, you
made a number of cryptic remarks that the formula was in itself
self-contradictory. How can it be both possible and self-contra-
dictory?

" 4
KALLEN: What is self-contradictory is the statement that
the formula is the most general representation with the required
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regularity. The particular formula you are referring to is sup-
posed to represent the analytic function in x-space, regular in the
cut plane, The corresponding function in p-space has a more
complicated domain of regularity. I thinkI said it twice, maybe
three times, even if I didn't prove it, that it follows from very
general arguments that the domain of analyticity for the function
in x-space and the function in p-space must be exactly the same,
Therefore, as the domains here are different, it simply can't be
the most general function. Is that clear?

GOLDBERGER: Yes. Thank you.

(Editors' note: The following supplementary remarks were
not presented at the conference but were submitted by Schwinger
after the conference.)

SCHWINGER: What I wanted to emphasize was the impor-
tance of the outgoing wave boundary condition characteristic of the
Green's function, and its (at least partial) restatement by a regu-
larity requirement. The latter, however, was used rather imper-
fectly in my talk, and the following is an improvement.

For a Green's function of three points, invariant under the
inhomogeneous Lorentz group, i.e., Eq. (9), the outgoing wave
boundary condition is to be imposed in the form of the requirement
of regularity under the complex extension Eq. (2). We then write
it in the form Eq. (10) and observe that the complex substitution
Eq. (4) produces the additional factor

BXF{-G[)\, (x:‘ x; )1+ Az (7“:"‘7)1*‘)\3(":0"‘: )l H

in the integrand. We must therefore require that the bracket above
be positive for all x°, which implies

AMHA>0, M+A, >0, A +X >0,
A+ N +r LA >0

(20)
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Alternatively, we may go into momentum space and write

G Gex)= [y d kg, B Pt 1)
X 0(\<T,+F1+ T3) E(V!)?;,?B) )

(21)

B(’j‘n]’, ?3) Jals o@u‘% ?@) 5, 53)€xr{~£[1:’s‘sg+ ﬁsas,-t-?;s,h]}

(545, 455)* TN )

where s; = 1/4 Ai. The equivalent of the extension Eq. (2) in
coordinate space is

p’—> p° (l+ie)
in momentum space. This implies the requirement

2

0 % 2
F[ 5;53-{-?: SJS|+’W; S,Sg

O (22)
Si¥S,+ S, >

in addition to

? + Ta fa >0.
We then regain the conditions Eq. (20) on the /\ s .
We now include a factor

_fa(s Cf(.f"S,‘Sa‘S;)

in the integrand of Eq. (21), and introduce the new variables

2‘,':-5(/5 ) 22251/5) 23=S3/5.
Then

G(py s ja( A2 cLzloLz3 f(z Y242y~ ‘)

(23)

X 9,(5 2,52,52) exfi- ish,‘zla, PRBE 3*:2‘21]}

)
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where s and the z, are to be integrated over freely, subject only to
the regularity requirement Eq. (22), which now reads

5 2 (l‘?.)>0, S 2‘2<\—23)>0, 523(\‘23) >0,
(24)
2,2,2,>0,

In this form we recognize that there are the fundamentally
different domains:

a) s> (0 ; here z, <|—-2'.') > 0, and hence

o<z, <l

This is the normal domain,

b) s <& o; here every z; must be negative or greater
than unity. Not all the z; can be greater than unity,

since their sum must be unity. Furthermore, the number
of negative z;'s must be even, by Eq. (24). Hence two of
the z;'s are negative without restriction on their magni-
tude, and the third is then automatically positive and .
greater than one. This defines the abnormal or Kéllen
domain.

For the normal domain we write Eq. (12), and if we return
to coordinate space, Eq. (14), for the normal contribution to G. If
we use

S(prtpsr ?3>(s,+s;+s3)"exr{.;[ PiS, S;“rsfss:i.; Ps 452 J}

o [ b, sl g g, p)IC s ) (o tngs)

then we can write the normal contribution

1, (X Vb (x5-x,

Grorm, = [t g Gt £ 57 fup, 2 )
Livx/-ve Ha+Xy-VE

xj«tﬁs ) (25)

Ly+X,-ve

:Jlx,‘o(x:ix; 2(&,))(,,X,)A+(x,_.x3,x,‘)A,’(x,-x.,xf)AJx,-xz, 2),
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We recognize that this satisfies the outgoing wave boundary condition,
provided that each )(,Z > 0 to insure oscillatory rather than exponen-
tially damped time behavior. The energy-momentum spectra asso-
ciated with the various coordinates are characterized by masses m;
which for given X;;’s, obey w, 2 X, + X, etc. Hence,if m;
denotes the smallest mass in the xi spectrum, then the ¥; range
upward from the minimum values

_ L . i
ey (merme o), X memem), g ebfaemen) €0

This discussion assumed that 5 (x‘, X, x,) depends ex-
plicitly on all three of the invariant coordinate differences. Possible
terms that are functions of x,, X9, Xg but of only two of the distances,
e.g., BlOG-%5), (%5-21)*] are best dealt with separately.,
The same procedure as before leads to

# (?.,ﬂ =jd(s ol.z,v(zzf(z. +2,- ')?(szuszz) {,‘{ (o ® 2*)

and the regularity requirement

s(pla t pin) >0

or
$2, >0, s32,>0,

For s> 0 we have again the normal domain, 0< 2; < | . The
abnormal domain, however, is now excluded, since Z,< ¢ and 2,< 0

contradicts zl-j- z2 = 1. Consequently,

G(?U?:) =sz.JIzl f(z.n;l)\jix"ix: . Z(Xu £,)

PR APIRA LR N 2

or, in coordinate space, (with an altered meaning for g)

G (%)%, %,) = jix.‘o(xi ?(x., $) Dy (2%, X)) Dy (X350, 2, ).
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Such a structure certainly satisfies the outgoing wave boundary
condition if X—: > 0 . The minimal values are now

I

y =, X, W, My M dow,

L

In the abnormal region we write

. 1 2 >
o)< [harderds O] oy

and obtain

)

Gz, V’)aL.,, . giw( 2,2, d (3r22,0) dopAsr dx; g (% %, xs)

y b ¢
FERLRLL TR RN t X ey 7, - e

which is the sum of contributions from the three regions in whichtwo
of the z's are negative. On fixing two of the coordinates, which

leaves us with a function of a single variable, we find that the boundary
condition is explicitly satisfied, provided that

Xo2, + X2, +xi2,>0.

I
Unlike the normal case, we cannot conclude here, that each #; is
positive. If 2.40, 2,<0 , then we learn that ¥y >0, u§—¥.‘>0,

Xy~ ¥, > 0. The general form of the abnormal terms in coor-
dinate space is sufficiently intertwined, e.g. for z3 > 0,

jixf&x:«lxg 7(%.,*;,*:) IA“*.A’&& 4o,

{"e";(x'&"‘.!) ‘\'/'e‘.z (763""‘;) {,“;3()6,—;(,1)
* . . )
[h:~&:+x:. x‘i-«'e}[-&,;&; R AL e][- {,,:-t-y.;- ,e]
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that it is not clear at the moment whether or not the outgoing wave
boundary condition is satisfied in detail. Hence it is temporarily
undecided if abnormal terms can appear in the Green's function.

It is worth mentioning that multiplicative composition of
normal forms cannot produce an abnormal one. That is to say,
abnormal terms do not occur in a perturbation expansion.

(Editors' note: the following remark was added by Kallén
in response to Schwinger's addendum. )

'KALLEN: One idea that naturally suggest itself is to try to
generalize Eq. (14) by extending the domains of the mass parameters
and/or the "Feynman variables". It is, however, clear that any
extension involving negative values of the mass squares is not allowed.
This is intuitively clear from the following argument. The function
H in p-space from Eq. (14) has singularities at the points corresponding
to the "thresholds' e.g. -plz = ( x,+a¢3)2. For positive mass
squares these singularities are on the cuts. For negative mass
squares these thresholds are complex. However, it follows from
e.g. Fig. 5 that if our function has a singularity, the position of
which depends only on one coordinate, that singularity must be on
the cut. Therefore, negative mass squares are not allowed.

LEHMANN: Dispersion relations, general remarks

I wish to make some general remarks on dispersion relations
and their connection with microscopic causality. Let us consider the
forward amplitude for two particle scattering. So far this is the only
quantity for which a dispersion relation may be compared with experi-
ment. As is known, such a dispersion relation follows from a
causality condition for the field operators describing the interacting
particles. In a model of self-interacting scalar particles described
by a field A(x) this condition is

[ A (x)) A ( 3)} = ( if (x-y) spacelike,

What I want to point out is that relativistic field theories exist (with
finite S-matrix elements) which satisfy the two-particle dispersion
relations, even though they do not satisfy the above causality require-
ment .
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To illustrate this, consider a scalar field

A(x) = A;“(%) - ?fo(qy AR(m?)JO'oU o";’\‘] : A;B,\ (\1\] ; e{)‘v‘

where Ajp (x)is a free field,

h = ?:JAQZ:A?“('*’)‘ )

and g a coupling constant., This defines a field which is invariant
and finite but certainly does not satisfy the causality condition., It
yields the unitary scattering matrix

S ="
with the above n . (Such a matrix has been studied before; I

believe e.g. by Moshinski). The exact forward scattering amplitude
is (apart from a factor)

m(o) = (7 ) s s Y

It is analytic in the w -plane with a cut along the real axis, except
from-wm ¢ W < wm . There are no other singularities and there-
fore everything is satisfied.

It is possible to construct non-local field theories which satisfy
those dispersion relations which can be checked experimentally, I
do not know how one could detect the acausalities contained in such a
theory.

DISCUSSION

SYMANZIK: Your S matrix does not satisfy crossing sym-

metry.

LEHMANN: One can also give more complicated models
which have this symmetry.

KALLEEN: Out of pure ignorance, I have a question here
which has to do with the acausal properties of the theory. One way
the acausality could possibly show up is in the vacuum fluctuations
of the field. Physically you expect that the vacuum expectation value
of the square of the field, averaged over a space-time volume, should
be positive. Is that the case in this model?
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LEHMANN: Idon't know, but I don't know how the vacuum
fluctuations can be measured.

o /

KALLEN: I was thinking, of course, of electrodynamics
where the field is observable. That is the great swindle of field
theory, that everything is treated as though the field were really
observable,

LEHMANN: I just don't know, but perhaps I wasn't cautious
enough. I don't say that I can prove that you cannot detect the
acausality of the field.

VALLARTA: I just want to say that Moshinski's paper was
published in Revista Mexicana de Fisica about two years ago.

NAMBU: The size of the region in which the field compo-
nents fail to commute is of the order of magnitude of 1/m, it seems
to me.

LEHMANN: I don't really know. In order to find out, you
would have to calculate the more complicated matrix elements.
However, since the mass m is the only constant with a dimension
in this theory, I would guess that it is of that order.

OEHME: Dispersion relations in N-N scattering

I would like to report on some work on dispersion relations
for nucleon-nucleon scattering. This work has been done by Gold-
berger, Nambu and myself. It is still in progress and so I will
restrict my talk to a few remarks.

It is well-known that the scattering amplitudes for neutron-
proton and proton-proton scattering in the center of mass system
can be characterized by five scalar functions of energy and angle,
or of energy and momentum transfer. We have obtained the rela-
tivistic dispersion relations for these functions in terms of the
energy, for fixed restricted values of the momentum transfer.

I would like to talk at first about the relatively simple case
of forward scattering. In this case the scattering amplitudes in the
center of mass system can be written in terms of three parameters:
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where k is a unit vector in the direction of motion of the projectile.
I would like to consider o , not as a function of energy in the center
of mass sytem, but rather as a function of the variable A , where

(28*- M’)/M .

This is the energy in the laboratory system. The only reason is that
the dispersion relation is somewhat simpler in this variable.

Now let me write down the dispersion relation for « . I
will not write down those for 3 and € ; they are all of the same
structure. The dispersion relation for & is the most important one,
because « is the complete trace of the scattering amplitude, so that
the imaginary part of & is related to the total cross section by the
optical theorem. I introduce the notation ®p for the trace of the
neutron-proton scattering amplitude, and o 5 for the trace of the
neutron-anti-proton amplitude, I'll talk later about the proton-
proton amplitude. For op 5 we get the following dispersion rela-
tion for the forward scattering, assuming for convenience and because
of the size of the blackboard, that the total cross section goes tozero
as the energy goes to infinity. Then we get

g Py P AW Im d5 (X
‘*; 2 )\i/\ x,,,\ sm “* (A A ,\:,\) JM X LA
Ay
#
where
i b~ vy (3m-BY
R R e e

and B is the deuteron binding energy.

r.‘D can be calculated approximately by nonrelativistic methods
which should be sufficiently accurate:

i— B hvn
= 3 Y :
. Fetf
The constant *& is a well-known constant, named in this conference

the Yukawa constant. It is exactly the same constant which appears
in the pion~-nucleon dispersion relation. Unfortunately, there is also
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the last term, which is a continuous contribution from the unphysical
region. In the integrand of this term I wrote, to the horror of the
experts, Iw o P . I am aware that this function has to be
defined in a completely indirect way, and this has been done. But it
does have certain physical properties. What one actually has to do in
order to apply these dispersion relations is to introduce more powers
of A inthe denominators, for instance, by making two subtrac-
tions.

Let me now draw the spectrum (or the singularities) of
O(P(,\) in the complex A-plane,

(A)

[T 177]7

- YW -Ax -

,t.

2 2
Ap

\"y.-

There are cuts from m to infinity and from - m to minus infinity.

Due to the last integral, there is a cut in the unphysical region, from
-m to - Ay . ( ANaa is anegative quantity.) Furthermore,

There are poles at ‘)\,u and at )y . You get the physical ampli-

tude by taking an improper limit from above to the real axis for A >wm,

If you go to the real axis from above for A<-w, you get olp (- A% ).

By use of charge conjugation invariance you can show that this must

be equal to d;‘* (\) . which is commonly referred to as the

crossing theorem.,

One thing one can very easily see from these relations by
comparing A p and o 5 . The contribution from the one meson
intermediate state to the neutron-proton scattering amplitude is very
much enhanced compared to that in the neutron anti-proton scattering
amplitude. In the first case, the denominator of the first terms is
M~ + A, andif A isof the order of m at relatively low energy,
then this is of the order of m*/ 2w . In the case of neutron anti-
proton scattering, we have /\/.4, ~ A and you get a denominator of
the order of 2m. So there is a ratio of about 100. Furthermore, if
you look at the integral in the unphysical region you see that in the
neutron-proton case it is weighted toward the lower end because of
the sum in the denominator, whereas in the neutron anti-proton case
it is weighted toward the upper end. This means, in a sense, that in
the anti-particle scattering the intermediate states with more mesons
are more important compared to states with fewer mesons, whereas
it is opposite in the case of particle scattering. However, we know,
of course, nothing definite about Tw olp ()\‘) for | Nl < wm
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and so, a priori, we cannot say very much.

When you come to the corresponding equation for non-forward
scattering, take the nonrelativistic limit, and talk in the language of
potentials, you find that the first term corresponds to space exchange
potentials of range \//M, , whereas the last term describes theforces
of shorter range, shorter than 1/2s . In the case of neutron anti-
proton scattering the concept of a potential is much more involved,
and I do not want to go into that. From the present dispersion rela-
tion you do not get any information about the non-exchange forces,
but we know that we can also write down other dispersion relations
from which you can get some information about those. This work is
still in progress and I cannot report on it.

One would like to apply the forward dispersion relations to
the experimental data. This would, of course, have to be done for
the subtracted equations, where you have a sufficient number of
denominators for convergence. The integral which contains the
total cross section of the anti-particle scattering is not so well-
known, but it contains the denominator ) + A . This is no
principle value integral, and it is conceivable that it is relatively
small. Notice that it is positive definite.

Let me briefly talk about the proton-proton case. All you
have to change is to put the deuteron contribution ré, to zero,
replace the 1/2 in the first term by 1/4, and put into the first
integral the corresponding proton-proton, proton-anti-proton
cross sections, and you get the proton-proton dispersion relations.
These will probably be most effectively applied to experiments. In
the subtracted equations the last integral has three powers of )\' in
the denominator, and the only thing I can say is that it may perhaps
be worthwhile to put some numbers in and see what its order of
magnitude is. Then you may get a feeling whether one could make
sense by approximating it in one way or another, or even by neg-
lecting it. I would also like to say that if you take a specific model
of a field theory, you may be able to get some information about the
imaginary part of o in the unphysical region, and you may get
some kind of a theory of potentials which is perhaps better than the
Tamm -Dancoff approximation.

Finally, I would like to make a remark about non-forward
dispersion relations. As I said, we have dispersion relations also
for the other coefficients which appear only in the non-forward case.
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One quite interesting example is the case of a term of the form

Y(g+ @) »

~ )
where n is the unit vector normal to the plane of scattering. For
this ¥ we get, in the non-relativistic limit, a fairly simple dis-
persion relation, in Wh.lCh the one meson term is very small, down
by the factor of (1/m?2) compared to the corresponding term in other
dispersion relations. Now ¥ is very important for the polarization
of an unpolarized beam scattered by an unpolarized target. This
polarization is something like

P o Re [ep)y"]

and the smallness of the one-pion contribution may have some imp-
lications concerning the short range ( £ ‘/1/4,) of forces responsible
for polarization, but we have no details on that.

DISCUSSION

GOLDBERGER: I would like to take advantage of my position
as chairman and also as an interested co-worker in this, to make one
or two remarks myself,

From the standpoint of interpreting this in terms of potential,
you can be bold or not bold, as you like, If you take a bold approach,
you might be tempted to say something like this. The dispersion
relation contains the amplitude for neutron-proton scattering. Let's
put the one for anti-protons to sleep. There is the total cross section
for neutron-proton scattering, then the extraneous thing - the cross
section for neutron - anti-proton scattering, and this contribution
from a rather horrible unphysical region. There is a strong analogy
and a very strong temptation from the general structure of this equa-
tion and the corresponding relations which can be deduced in non-
relativistic quantum mechanics, to lump the integrals together, and
if you would push me hard I would even take out the inelastic processes
and call everything except the first two terms the Fourier component
of the potential corresponding to forward scattering. That is, it is

the matrix element { 4o IV\ * > .

Now this can't be quite complete at this stage, because of a
rather artifical way in which we have written this formula, Thefirst
term, for example, is the one meson charge exchange contribution.
There is certainly a one meson non-charge exchange contribution,
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which we can exhibit explicitly but have not done as yet. I think it is
quite feasible to make a fairly accurate estimate of the integral, as
Dr. Oehme mentioned, by committing yourself to what theory you're
talking about. We will talk about conventional pseudoscalar theory,
wherein the mesons which are scattered and responsible for the forces
are pi-mesons. Using suggestions made by Dr. Chew, it seems quite
possible to estimate the two-meson intermediate state contribution

to the integral, and I think this should provide a numerically very
sensible calculation of what you might term the two-nucleon potential.

I am fully aware of the fact that there is a great deal of arbi-
trariness in what you decide to call a potential. Also, needless to
say, one has to discuss the full non-forward scattering dispersion
relations in order to characterize the problem completely. These
are things that are in progress, and certainly by next year we will
know the answer,.

RUDERMAN: Do you have a dispersion relation for scattering
by a non-relativistic potential?

GOLDBERGER: Yes., This problem has recently been dis-
cusses in great detail in a very careful and rigorous fashion by Mr.
Khuri at Princeton University. Using the Fredholm technique of
Jost and Pais (Phys. Rev. 82, 840, 1951), he has been able to show
that if the potential decreases as rapidly as an exponential, then you
may deduce dispersion relations for the scattering amplitude re-
garded as a function of the wave number for a fixed value of the
momentum transfer, which value of the momentum transfer must not
exceed the exponential fall-off associated with this potential. If the
potential falls off faster than any exponential, say, like a Gaussian,
then you get a dispersion relation for arbitrary fixed momentum trans-
fer.

WENTZEL: Inthe proton-proton case, what role does the
Pauli principle play?

GOLDBERGER: An algebraic role. This is a problem which
disturbed us for a long time. It was a gigantic red herring; it is
simply trivial, a technical matter of substituting the correct thing
into the dispersion relation. There is no fundamental difficulty in
the identical particle problem.
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KLEIN: Dispersion relation for fixed source theories and theory
of the nucleon-nucleon interaction

I would like to take ten minutes to discuss two different
contributions. The first piece of work that I will describe was
done in collaboration with Mr. Richard E. Norton.

At the last Rochester Conference a great measure of opti-
mism was expressedconcerningthe future role of dispersion rela-
tions in field theory. By this I mean their role as a basis for
complete calculations, not their role in experimental physics. The
latter part of their role has been well established. In particular it
was suggested that they might serve as a complete scheme for cal-
culation. In order to test this idea on a tractable yet not completely
trivial model, we have studied the dispersion theoretic formulation
of a fixed source theory with the Hamiltonian:

H = Ho+H1 s

where HO describes the free meson Hamiltonian for neutral scalar
mesons, and the interaction H; has the following structure:

o, = /é' )\/b{jxg{o(lf‘)‘f’(f)}#.

In each one of these terms the meson field operator c?(,f) is
averaged over the spherically symmetrical source distribution which
represents the fixed source nucleon, and therefore this is a theory
which contains only S-waves, This is a great simplification. How-
ever, it describes vertices in which the fundamental interactions are
n-fold in nature, and we can have the simultaneous emission or
absorption of up to N mesons at a time. In particular, for N > 2,
this theory contains multiple meson production to all orders.

First of all, for a general fixed source Hamiltonian, not re-
stricted to the particular model shown above, we have extended the
Low -Wick formulation of scattering for fixed source theories and
obtained a formula for S matrix elements for the most generalpro-
cess in any such theories, that is, any number of mesons incident
and any number of mesons emerging from the source. In order to
have something to which the dispersion theoretic formulation can be
applied, one has to subtract from the general S matrix element all
contributions which describe the product of two or more independent
processes, that is, contributions in which one can have two or more
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separately energy conserving processes taking place. One then has
a suitable object to study:

(alp)- @) Gl o) o(hn))

= 2w w( ) .
L) L) <‘T\W‘)

The resulting quantity, from which all products of independent pro-
cesses have been removed, is called (V\l'\"\w») for m incident
and n emerging mesons. After removal of a convenient factor
which contains the product of the energies of each of the mesons
and the product of the Fourier transforms of the source functions,
one ends up with the quantity which we call G, which is a function
of all the m+ n energies.

We study G as a function of the total energy E of the system,
which is the sum of all the energies of the incident or emerging
mesons and for fixed values of the ratios

W (s (4
S = ?‘)) \)L:""a')'—E"—'))

a distribution of variables which was suggested by some work of
Polkinghorne. We then find that as a function of E for fixed m¢ and
V. , the matrix G can be continued suitably into the complex
plane and has suitable symmetry properties there, so that one can
ultimately write down an infinite number of dispersion relations, one
for every such matrix element. The form of the dispersion relations
is

Re Gpnl€) = 4 (Aew,0) Re G (E,)

E- E} )/~ A £ N oy R
+ ¢ Pf [(EENEEN ™ (ere)(ete) JIME:W(E)

E/I_ El E—(‘__EL
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where )\“M is the non-negative integer determined by
(20u=N £ n+wm é—.(z}\mw)/\/,

One sees that this involves an integral from the meson rest energy,
which is the beginning of the continuum in this theory, to infinity.
That means that for processes other than elastic scattering one has
a contribution from a non-physical region, that is, from M€ * up
to the threshold for that particular process. Now this is, of course,
a difficulty if one wants to compare such things with experiments,
but it is no objection from our present point of view, which is to con-
sider these relations as integral equations of the field theory when
amplified by a suitable unitarity condition. Such a condition can be
derived directly from the same general formulation which gives
rise to these relations. Then we can consider the set of coupled
integral equations defined by these relations plus the unitarity con-
dition. (They are much too complicated to exhibit. )

The conclusions are the following: first of all, one may ask
how many of those arbitrary constants Gnm(E_) are there? It turns
out that there are just N - 1, which is one fewer than the number of
terms in the Hamiltonian. In general, one might have expected N.
The special reason for N -1 in this case may be that the linearterm
in the Hamiltonian is the trivial neutral scalar term, which has no
dynamical consequences.

Next, one wants to examine the existence and the nature of a
solution to these equations. Now the first point to be made in this
connection is the following: if there exists a power series solution
which converges for some value of the coupling constant and con-
verges uniformly with respect tothe energy (the uniformity of
convergence being required by the fact that we have to carry out
an integration), then that solution is determined uniquely by this
set of equations. However, when one asks whether these relations
permit a unique solution aside from the power series solution, then
one can easily show that this is not the case. There are solutions
which are not uniquely determined by the N - 1 arbitrary parameters.
This can be proved directly using the mathematics of Castillejo,
Dalitz and Dyson (Phys. Rev. 101, 453, 1956). However, one can
see it more physically by Writiﬁ?g_down explicitly an infinite number
of Hamiltonians all of which give rise to the same dispersion rela-
tions. Rather than writing down any of these Hamiltonians, I will
describe the characteristics of the prototype of such a Hamiltonian.
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In the theory we have discussed, we have assumed that the source
has only one state, that the expression consists of the ground state
of the source plus the continuum of mc* and upward. One writes
down a Hamiltonian in which the undisturbed part, before one has
turned on the coupling to the meson field, permits the source to have
one or more excited states which lie above the continuum, and such
that when one turns on the coupling, these are not depressed below
the continuum and give rise to actual discreet states, that is, such
that these states then become,in the common terminology, decaying
states and in the mathematical sense do not form a part of the actual
spectrum of the full system. This is an example, and there are an
infinite number of them, which gives rise to the same dispersion
relations, but where the solution as a function of energy is not uni-
formly convergent. The Hamiltonian then contains more information
than the dispersion relations, in that there are additional parameters
associated with these extra energy levels which make no appearance
whatsoever in the dispersion relations.

The following work was done in collaboration with Bruce
McCormick and independently by Miyazawa.

The basic idea is the following: we stick to the idea of trying
to construct a static potential of a finite range of validity from the
meson theory, and we wish to obtain a formulation which represents,
in a mathematical form, the maximum information from the observed
pion-nucleon interactions. Now it turns out that one can obtain an
infinite expansion of a potential, 2::‘ V:w , in which the Nth
order term describes an exchange of N mesons. However, in this
definition we insist that the given order potential, say the fourth order
potential, is defined only by the exchange of mesons and that all virtual
interactions of each of the mesons be included, in principle, exactly.
Formally, Vg can be exhibited in principle exactly, within the appro-
imations made. For example, the second order potential is given to
a very good approximation in the adiabatic limit, by the usual second
order potential, the only replacemegt being that one has put in the re-
normalized coupling constant, the f” of which we heard so much yester-
day. One then turns to the fourth order potential. It turns out that this
can be exhibited completely in terms of £2 plus certain integrals over
the pion-nucleon cross section in given channels. Now I should also
add that when one finally tries to do something with this formalism,
one limits oneself to S gnd P-waves, The sixth order potential could
be written in terms of f~ and the pion-nucleon cross sections, if one
knew the cross section for single meson production, and so on.



What we've done up to date is as follows. It can be shown
that the S-wave contributions, which have been evaluated fully by
Miyasawa and partially by us some time ago, are quite small. Let
us limit ourselves to P-wave interactions, basically the cut-off
formalism of Chew and Low. We evaluate the second and fourth
order potentials arising from P-wave interactions. One other small
point, if one makes an estimate of the radius of convergence of the
series for V (basically the same estimate that Chew made yesterday
except for a factor of 2) then one finds:

vV r t '
:w( ) _&_ 2 e..;c |
Vaway (7) b X

Hence x > 1/3 {or 0.5 % 10-13cm),
b
where % = M and /G/lﬂr =  0.080.
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conventional second
order potential is
plotted. The
Brueckner-Watson
contribution to the
fourth order poten-
tial is shown as

V4, and then what
Icall dV,is

the correction we
found in eachcase,
arising from the
observed pion-
nucleon cross
section compared
to Born's approx-
imation. That is,
V4 is basically

the potential which
one would obtain if
one said that pion-
nucleon scattering
was well described
by the Born approx-
imation. We know
that this is not the
case. We knowthat
the actual scattering,
say, in the three-
three state, is
greater than the
Born approximation
by a factor of two
or more,

The cor-
rection as computed
so far may be some-
what overestimated,

but not by very much.

They are quite sub-
stantial. One has
qualitatively the
same situation in
all the even states.
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As remarked on several occasions, even with the corrections, the
second order tensor force is still the predominant tensor force over
most of the range of interest. Nevertheless, the corrections are sub-
stantial compared to the fourth order of the perturbations results.

We still have, I think, considerable work to do to make sure
that the evaluation of the corrections is good. I think that we have a
good analytical method, but the question which remains, in integrating
over the pion-nucleon cross sections, is: how far shall we go? 1
went all the way up past the second resonance. Probably one should
stop after the first resonance, and we're going to do this.

Finally, I have a number. Mr. Younger is examining the
comparison with experiments at low energy. He fitted the singlet
even central force to the scattering length and found an effective
range in the singlet state which is 2.77 x 10713¢cm. , Which, if it is
correct, I think is a really promising start.

DISCUSSION

RUDERMAN: Gasiorowicz and I, in collaboration, found that
the dispersion relations for the scattering of a particle by a square
well potential also do not possess unique solutions.

VAN KAMPEN: The Hamiltonian is clearly not uniquely de-
fined by the dispersion relations. It is not even defined by the S-
matrix itself,

RUDERMAN: But if you restrict yourself to square well
potentials, or potentials of a finite range, then the S-matrix does
define the Hamiltonian uniquely. The dispersion relations, how-
ever, do not even have unique solutions if you restrict yourself to
square well potentials.

GOLDBERGER: I think it is probably correct to say that the
method for calculating potentials which Klein has just described is
rather closely related to the method which I suggested in connection
with the relativistic dispersion relations, except for the fact that I
believe, in the relativistic dispersion relations, one has a slight
advantage. One always deals with quantities on the mass shell in
contrast to the sort of computations which are involved in Klein's
approach. The actual evaluation, though, may require a very simi-
lar function.
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BREIT: In connection with the nucleon-nucleon problem, it
seems to me that the power of the dispersion relation approach is
limited on account of the computations pointed out by the chairman.
For that reason, it seems to me that we ought to consider a slightly
different viewpoint, namely that of classifying states of the same
total angular momentum and parity, and isolating them from the rest
of the system. For these states one can then consider the nuclear
reaction matrix. There is always the possibility that at very high
energies there are other particles created which, in some way,
participate in the formal aspects of the dispersion theory speculations.
Perhaps one might make progress with the nuclear reaction matrix
approach. Then one deals with rather simple things such as, let us
say, the logarithmic derivative of a certain function as a function of
energy. (That is not a quite rigorous thing, but for potentials it is
rigorous). In this method one would, therefore, bring in the produc-
tion of particles in the scattering matrix. Such a viewpoint can be
regarded as almost as general as the dispersion relations.

GOLDBERGER: I think that the difficulty that we face in
your suggestion is simply one of technical ignorance. The dis-
cussion of the dispersion approach in terms of the reaction matrix
as opposed to the S-matrix is something which does not seem to be
convenient in quantum field theory, as it is in nuclear reactiontheory.
If you have billions of channels effectively, which is the case here,
then the problem of going from the reaction matrix to the S-matrix
involves a matrix inversion problem of awesome proportions. I, at
least, don't know how to do it.

BREIT: Suppose you are interested in nucleon-nucleon scat-
tering in the energy range up to 400 Mev. If you take, say, angular
momentum 2, then, in that range, pions have only a limited impor-
tance. The higher energy scattering, as in nuclear reaction theories,
could be represented by a background term.

GOLDBERGER: I think it is simply a contrast in disciplines.
I don't know that approach, and consequently I think along these lines.
There is no reason to believe, however, that the two are necessarily
exclusive.
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POLKINGHORNE: Dispersion relations for many meson processes
(Some of this material appears in Nuovo Cimento
4, 216)

The causality condition is mainly applied to scattering where
you have a single particle and scatterer in the initial state and a
single particle and scatterer in the final state. I want to discuss a
formalism which extends this to an arbitrary situation where, say,
in the case of pions and nucleons, you have M pions in the initial
state and N pions in the final state. As far as the experiment goes,
the case M =1 is the only one that is really of interest with present
techniques. But if you want to use things like the unitarity condition,
you have to have matrix elements of this more general type appearing.
So I want to construct a formalism which will produce these dispersion
relations, exploiting the causality condition.

The work on dispersion relations really stems from a rather
remarkable observation first made by Gell-Mann, Goldberger, and
Thirring. You have the scattering amplitudes expressed essentially
as matrix elements of the time ordered product of two current oper-
ators. This is a rather complicated thing to think about. But it
turns out that for positive energy the Fourier transform of this is
the same as the matrix element of a much simpler thing, the retarded
commutator. Now going from one to the other:

L T(3) 7 ()] D=0 300, 0]

is called the comparison theorem. It's useful because the retarded
commutator is a very simple thing to think about, essentially a
classical object, and it satisfies a causality condition in a very simple
classical way. It vanishes unless x lies in the forward light cone of
the origin. So you can get a dispersion relation in a simple way.

There are, then, two steps: the comparison theorem and the
causality condition. Now I want to construct something which looks
like a classical causality condition (''the bell not ringing until the
button is pressed' sort of thing, generalized to more complicated
cases).

Consider first of all the case M=1 and N having general
values, or more particularly the case where N = 2. This was actu-

ally written down by Kallén earlier. The object you have is the time
ordered product
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T(5() §2) § (),

Now you can prove that this

B xnr) 00 ) [, [ 322), 3] |

plus a term with xy and xq interchanged, has the same Fourier trans-
form as the time ordered product. It's quite simple; you prove it in
the usual way by bringing in sums over intermediate states. It also

is very simple to see that it satisfies a simple causality condition
since it vanishes unless x; and xg are both in the forward light cone.
In this way you get a dispersion relation,

Another thing I think one learns from the single meson case
is that one has to be a little careful about one's description of the
kinematics. For example, you have to fix the momentum transfer
and not the scattering angle, although it would be much more con-
venient to fix the scattering angle. I just want to say something
about how one fixes the kinematics for this general case., Itis a
rather curious description, but it seems pretty much forced on one.
First of all one has to decide how to describe the nucleons and, of
course, one chooses the frame of reference in which both the incoming
and the outgoing nucleons have equal energy. Now let us consider the
number of mesons and their energy momentum vectors k;. Of course,
they satisfy -ﬁ /,,} . Let us write the fourth compon-
ents of these vectors -fq‘;" = wVi . This is what Klein used
in the particular case he solved. The \)i are going to be fixed;they
fix the ratios of the energies. w , of course, is the variable which
one is going to integrate over in the dispersion relation, NowZ£ Vv;=0,
since the energy transfer from nucleons to mesons is zero., The V¥ 's
are still arbitrary to the extent of an arbitrary factor. We'll fixthe
sign of the factor by requiring that the outgoing mesons should have
positive vy 's, the incoming mesons, negative <~ 's. And we'll fix,
if you like, the scale factor which remains by requiring £+ Vi = |
That fixes the energies. The reason for using these variables is
that it will produce exponents which have a pretty straightforward
dependence on w . Another important property is that when you
change the sign of w you get a crossing theorem more readily
because everything changes sign.

The thing that remains for us to do in fixing the kinematics
is to fix the orientation of the spatialpart. (The magnitude is deter-
mined since we are on the energy shell.) The way one does this is
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rather curious. For given fixed ¥ 's you can construct certain
vectors, d® , which have the property that as the V 's are fixed
and @ varies, they always have zero fourth component. A simple
example of this, of course, is the momentum transfer of the nucleon
to the meson system. Another example would be:

\Ji':-\
t—
42 v
‘ 13y 42,

You have one incident meson with V=-1 and two outgoing with Vv = 1/2,
The vector (1/2) k i+ ko always has zero fourth component for all
values of W . Now you construct a set of the % in spin and
space, and you fix the magnitudes of as many of them as are neces-
sary to complete the specifications of the kinematics. There aren't
as many as I said in my paper. I forgot about the dimensionality

of space. There are 2N - 4 that you have to fix. It then turns out in
a very straightforward way that those remaining vectors, 7,
which are not fixed in magnitude, are bounded in magnitude as w
varies. This is very important when you are trying to write dis-
persion relations because I shall do it simply by changing orders of
integration. For a particular experiment, one has an expression
with some direct dependence on w . For example, one has

exp { v [() W o+ Iwnk(a”)n

The coefficient of W turns out to be positive; that's what we want.
Then there is a lot of junk left over which depends upon the deltas
only. If these are bounded, then the behavior of the expression on
the sem-circle at infinity in the upper half plane is just what we want.
That's really the reason for using the deltas to complete the speci-
fications of the kinematics.

The final thing I would like to say is a little bit about the
causality condition in the case where M # 1. Suppose you have two
incident particles and two outgoing particles. Quite clearly, a pos-
sible condition would be that no particles should be emitted until
both particles have been absorbed. That would be a really rather
surprisingly strong condition and an unreasonable condition, because
the nucleon could absorb one meson and if it had sufficient energy it
could then produce one of the outgoing mesons before the second one
was absorbed. So if we're going to be just simple, naive and classi-
cal, which seems to be the right thing to do, we would expect the
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causality condition to depend on the energies involved. That means,
of course, that it is going to depend upon the ¥ 's. That's another

reason for having them in the first place. So let us just consider a

case of two incident mesons and two outgoing mesons:

t—
/7 \ 4 \
/ \ / \
/ \>/ \
- / N =
/ N==l, \N=4 \
\ \

If - 5 is absorbed first, then it's clearly possible for, say, 4 to be
emitted. But having emitted 4 there isn't enough energy to emit 2.
So 2 can't be emitted until -1 has been absorbed. So you see in this
sort of diagram one forms correlations between the outgoing particles
and the incoming particles. Here one correlates 4 with -5; everyone
would say that the meson 4 is created entirely by the meson -5,
Meson 2 is correlated both with -5 and with -1, because both of these,
in this particular ordering, have to play a part in creating 2. For
given values of the Y 's you have a great variety of possible corre-
lations that can be formed in this way, and to each correlation there
corresponds a natural ordering and so a natural causality condition.
The causality condition for the more general case will now become
simply this: given the N 's, you look at the expression and you write
down all the correlations energetically possible. Then, if for none
of these correlations the space-time points involved have the correct
ordering, that is, lie in the correct light cone, then the thing will
have to vanish. This is the causality condition, and it gives a dis-
persion relation.

I want to make two observations in closing. I said that these
dispersion relations were proved to the extent of exchanging inte-
grations. Mr. Kibble at Edinburgh has been investigating the case
of M=1and N=2 by the same sort of technique that Bogoliubov used
in his proof for the single meson case. It gets very involved, as you
might imagine. The sort of thing that turns up looks rather like what
Kallén showed. One has to use similar techniques of analytic contin-
uation, and functions of many complex variables. Kibble made quite
remarkable progress. And though it isn't completed, I think there's
quite a good chance he will succeed in constructing a proof, or at
least in exhibiting what theorems mathematicians should prove in
order to make these dispersion relations true,
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The second point I would like to make is: what use are these?
Well, that is always an embarrassing question with a complicated
formalism. So far the only use I know of was made by Corinaldesi
at Glasgow, who has used them to analyze the 4 decay. We have two
parameters in the 17 decay, one of which looks like an energy, and
you can write down a dispersion relation. Unfortunately the experi-
mental data don't seem to be sufficient to draw a very definite con-
clusion, but there doesn't seem to be any inconsistency.

EKSTEIN: Representationless formalism in field theory

I would like to mention that this work was done in cooperation
with Swihart and Tanaka. It is an attempt to do field theory by choosing
as objects of the theory matrix elements of operators between eigen-
states of the Hamiltonian. The ideg of course, is to avoid the tradi-
tional approach, where one tries to expand some physical state in
eigenfunctions of the unperturbed Hamiltonian. It has become clear
in recent years that this is not really a meaningful expansion. For
instance, in the simplest case of a static point nucleon, it can be
shown that all the physical states are orthogonal to the unperturbed
states. So this doesn't work except if one introduces an infinite wave
function normalization constant and this is an unnecessary compli-
cation. So, by considering matrix elements between physical states
of some operators, one can hope to avoid at least some of the problems.

Contrary to the covariant formulations about which Schwinger
and Kallen have talked, we have considered Schrddinger operators.
Also, as far as the physical states are concerned, we have not con-
sidered vacuum states as is now mostly done in the covariant calcu-
lations, but rather eigenstates of the Hamiltonian which represent
single particles, for instance of momenta p and p'. One loses, of
course, covariance in this manner, but one gains in tractability of
the equations because the fourth variable is definitely useless inthese
calculations. One conveniently chooses two physical states which
have different momenta but equal energies. This has the advantage
that the self-energy of the state does not occur in the equation and
one does not have to renormalize, to subtract an infinite self~energy.
By a Lorentz transformation one can then obtain matrix elements
between two general states, p and p'.

The cases which so far have been considered by this method
are the following: a static nucleon without cut-off interacting with
scalar charge-symmetric mesons; then a moving nonrelativistic nu-
cleon with the same interaction; then the static case where the inter-
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action is pseudo-vector with pseudo-scalar mesons (here, of course,
we need a cut-off); and finally, this is now in progress, the moving
but nonrelativistic case with pseudo-vector coupling and without cut-
off,

One starts with the Heisenberg equation of motion and one
takes matrix elements between eigenstates of the Hamiltonian. Since
we have chosen eigenstates with the same energy)the time derivative
term vanishes and we have the expectation value of the commutat or
between two states of the same energy:

(¥, [AH]T)=0,

where A is a product of Schrodinger creation and destruction oper-
ators, By putting in the Hamiltonian explicitly, one obtains a linear
equation which then has to be renormalized. That is, one has to
take out unobserved quantities. In particular, the Hamiltonian con-
tains the unrenormalized coupling constant f, which one wants to
replace explicitly by something observable. This can be done
arbitrarily by conveniently defining what one means by the observ-
able coupling constant in terms of physical matrix elements. So
one obtains an explicit expression for {; in terms of the renormal-
ized coupling constant and physical matrix elements.

In the case of the moving nonrelativistic nucleon there is
another unobservable quantity which must be eliminated: the mass
renormalization, Am , for which one must also give an explicit
expression in terms of observable finite quantities. Then all the
equations are written in terms of only observable quantities and
can presumably be treated by any number of approximation methods.
They can, for instance, be iterated and one can obtain an expansion
in terms of the renormalized coupling constant. But one is now con-
strained to do only perturbation theory.

Of course, the information containing such expectation
values does not give the complete answer. This is the price that
one has to pay for not using Heisenberg operators but Schrddinger
operators. The information is sufficient for such quantities as, for
instance, a magnetic moment, but it is not sufficient for scattering.
In order to obtain information for scattering one needs another
equation in which these quantities enter. This equation is of the
following type: if the S-matrix is written in the usual manner,
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then the equation for the R-matrix is:

R = (inhomog.) 4 RR (_/(' E’
(resonance den.) *

This equation looks somewhat similar to the Chew~Low equations,
but it is not the same because the inhomogeneity is not just a simple
observable number or something like that, but it is a rather com-
plicated quantity which must be obtained by solving the equations for
these elements. It is a two-stage process which is very reminiscent
of the manner in which one approaches, for instance, nonrelativistic
scattering problems of composite particles. Proceeding in this
manner, one obtains, at least so far, finite quantities. We have, in
particular, considered the perturbation expansion in terms of fwhich
seem to be, so far, in good agreement with anything that one might
expect.

DISCUSSION

Kallén: Could the speaker say in a few words what he feels
is the advantage of the Schrddinger representation compared to the
covariant Heisenberg representation?

EKSTEIN: I believe that the four variables are a real head-
ache in solving equations. It is certainly easier to work with three
variables.,

LUEDERS: Invariance under TCP

I want to talk about some considerations by Zumino and my-
self on invariance under the product TCP, where T stands for time
reversal, C for charge cqonjugation, and P not for Pauli, but for
parity or reflections in space. We put

® = Tcp

We assume the theorem on invariance under @ to be valid and study
which relations between properties of particles and anti-particles
follow from it.
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Application to decay properties are non-trivial in some sense,
since §) reverses the time order of a process and so transforms a
decay process for particles into a build-up process for the corres-
ponding anti-particles. We split the total Hamiltonian, H, in the
form

H = Hs+ HW

where Hg contains both strong (in the usual sense) and electromagnetic
interactions, and where H, represents the weak interactions.

First we assume that Hg has been taken into account correctly
and treat the decay to first order in Hy,. As initial state we have an
eigenstate lO) of H_; as final states we have to use particular
scattering eigenstates” {a| of Hg; it is important to pick the correct
"-" states. Transition probabilities are given essentially in terms of
the matrix element <~a | H,| 0D . To be more specific, let us
assume that the scattering states have been normalized with respect
to the continuous and discreet variables"a’so that

olb-d) = S (ad) .

As new variables we then introduce the total energy Ea, total momentum
P,, and further variables 3. We define a function g (a) by

Ao = 9(a) AE, obf”tx

and a reduced interaction matrix element by
EalHlod=[g@] T (R)dz|nal8)

The differential transition probability per unit time is then given by
the Golden Rule

oo = 2| ex )55 dit

Now we assume that ® and Hw commute. But when applying & to
Ja~) we obtain a "4+" scattering state for the anti-particles which
cannot be used directly to calculate transition probabilities. Since,
however, both types of scattering eigenstates are related to each other
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through the S-matrix of the strong interaction, one has

LOn|n108) < b s| B¢ (n.|8),

Here the reduced S-matrix on the energy momentum shell is defined
by

<+a,la@~> = [?(“)2/(*’!)]-%0%5550) Cf(?g»‘ E{r)<’~‘\ S\E’>

We can draw two conclusions: 1) To obtain the reciprocal lifetime we
have to integrate in the Golden Rule over all variables . From the
unitarity of { & | S| 4> it then follows that lifetimes of particles
and anti-particles are equal, as already shown by Lee, Oehme, and
Yang. The same is true for the lowest order correction to the mass
of the decaying particle. 2) Branching ratios into corresponding
channels are the same if the strong interaction does not lead to a
scattering between the various decay channels, This is especially
true if there is no strong interaction.

The equality of masses and lifetimes of particles and anti-
particles can be shown in a very simple way without any explicit use
of perturbation expansions. Mass andlifetimescan (for simple ex-
ponential decay) be read from the analytic behavior of the resolvent,
i.e. the following matrix element

Lol (h-H)"|o> .

Here IO) is the eigenstate of Hy giving the decaying particle at rest;
H is the total Hamiltonian and N\ a complex parameter. For H, =0
the above matrix element shows a pole at the rest energy of the stable
particle; for H, # 0 the pole moves into a region which can be reached
by analytic continuation. The position of the pole gives the rest mass
and reciprocal lifetime of the decaying particle. From the commu-
tativity of H and ® , the hermiticity of H, and the anti-linearity of
@ , it follows that

Lol (A-H)"1o> =<0 0| (x-H)"|®0),
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Consequently, both matrix elements have the same analytic prop-
erties, and mass and lifetime are the same for particle and anti-
particle. It is not claimed that the decaying particle is correctly
given by the eigenstate |0) of Hg; this particular state is rather
used to identify the relevant singularity of the operator (A- #) ™

Both in first order and in the general treatment it has not been
assumed that HS is invariant with respect to T, P, and C separately.

Then there are a few applications:
1. - M-decay. From the experimentally equal lifetimes
of r+ and mw = it cannot be concluded that HS is invariant under C.

2. p-& -decay. If electromagnetic interactions are neglected,
the decay spectra of m% and /w' are equal, as already pointed out
by Lee and Yang. Equality of the radiative corrections could not be
concluded if only TCP would hold. Incidentally, the S-matrix of
the strong interaction in this case is that for Compton scattering.

3. -decay of aligned nuclei, The Coulomb term in the asym-
metry changes sign if one goes. over from nuclei to anti-nuclei, as
can easily be checked from the explicit formula. This term is only
present if T is violated but TCP holds. |

4, K¥ and K™, T modes. a) Assume K has spin O and
Hg is invariant under P. Then the 2T and 3T states have opposite
parity and the strong interaction does not mix them. The branching
ratios into both channels are the same for K¥ and K~ . b) This is
approximately also true for spin greater than zero if Hg is also in-
variant under C and under rotations in isobaric spin space. Then a
generalized Furry theorem forbids transitions between states with
two and three T mesons; this selection rule is violated by the electro-
magnetic interactions. To check more than only TCP in the case of
charged K-particles one has to look into the *-7/ branching ratio or
into the spectrum of the T decay for K% and K~ .

DISCUSSION

SYMANZIK: If charge conjugation is not conserved even in the
strong interactions, I don't believe that it is a well-defined quantity.

LUEDERS: If the strong interaction does not lead to decay of
the particle, the operator () can be applied to a particle state and then
gives the antiparticle.
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LEE: The examination of possible consequences of non-in-
variance under T, C, and P separately of the strong interactions, I
think, is somewhat academic. There is good experimental evidence
that the strong interactions are, in fact, invariant under T, C, and
P separately.

I would also like to ask, how do you define the lifetime?

ZUMINO: In order to define the lifetime, the thing that counts
is that the imaginary part of the pole is small, not that the coupling
constant is small. Then the imaginary part is the lifetime.

LEE: Unfortunately, a lifetime implies a physical measure-
ment, and not just a mathematical definition.

ZUMINO: Yes, of course; it is a question of how the state
will develop in time. It is possible to see that the development will
not be rigorously exponential, but if the pole is very close to the
real axis, it will be exponential to a very good approximation for a
large region of time. This is true even if the interaction is large,
provided that the pole is not far from the real axis.

DYSON: Is there any reason to believe that there really is
a pole? I am of the contrary opinion.

ZUMINO: Well, I don't want to give a very sophisticated
answer to this. This is what generally happens if you have a bound
state that becomes embedded in the continuum. If you switch on a
perturbation, then a previous bound state will no longer be a bound
state. The pole, which corresponds to the energy level, shifts out-
side the real physical line. I'm talking about a perturbation and not
about perturbation theory, that is, not about a perturbation expansion.




