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The Huttner-Barnett-Loudon theory is adapted to yield the Van der Waals (nonretarded) 
energy shifts and frictional forces experienced by an ion or molecule near an absorptive mir­
ror. 
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For atoms near nonabsorptive mirrors (having no or at most strictly 
zero-width absorption lines), the most elementary way to deal with prox­
imity effects (i) determines the normal modes of the electromagnetic field; 
(ii) quantizes them so that the energy of field plus mirror becomes the 
usual sum of oscillator Hamiltonians; (iii) couples the atom to the field; 
and (iv) uses leading-order perturbation theory to evaluate the effects of 
this coupling. But if the mirrors are absorptive, then the familiar normal 
modes are damped, and it is not immediately obvious how to incorporate 
the random statistical mechanisms responsible for the damping into a con­
venient Hermitean Hamiltonian. 

Here, the topic in the title serves largely as an occasion to adapt the 
approach due to Huttner, Barnett, Loudon, and others [1], so that an 
absorptive (complex) dielectric mirror response 

w2 + w2 - w2 - iwI' 
c(w) = T 2 P 2 . I' 

Wy -W - ZW 
(I) 

can be dealt with by essentially the same elementary method as was out­
lined above for use without absorption. What is crucial is their way of 

* Slightly revised summary of talk given to the !TAMP Topical Group on Casimir Forces, 
Harvard-Smithsonian Center for Astrophysics, March 1998. 
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introducing a heat bath responsible for the damping (i.e. for r * 0). New 
here are (i) an extension of their method to media that are both 
three-dimensional and bounded, and (ii) the determination of the exact 
normal modes of bath plus mirror through appropriate and highly conven­
ient Lippmann-Schwinger equations. The model for the mirror is restricted 
to the nonretarded regime (atom-mirror distance Z far below all absorption 
wavelengths), where Coulomb forces dominate, and where one can work 
in the limit c ----? 00 from the outset. (Then there are no photons, and nearby 
atoms can decay only by transferring energy to the mirror. The generaliza­
tion to Maxwell's equations is straightforward in principle, though labori­
ous in practice.) Our motivation is chiefly methodological, with the atom 
largely a focus for questions about the mirror (for realistic detail see [2]). 

The mirror occupies the half-space z < 0, and is modelled as jellium, i.e. 
by a charged fluid, charge and mass densities ne and nm, plus an over­
all-neutralizing immobile background (squared plasma frequency 
w; = 4Jrne2 / m), and harmonic restoring forces that in a neutral fluid 
would produce frequencies Wy. The displacement of the fluid from equi­
librium and the electric field are ~ = -\7'11 and E = -\7 <I>, so that P = -ne \7'11 
and Ppol = ne\72'¥. Regardless of the equations of motion, it follows from 
Gauss' law alone that <P outside stems wholly from surface modes, with 
charge densities Ppol proprtional to b(z), and with 

<I> = - 2Irne \]i (for surface modes, at z < 0). (2) 

Only surface modes will be retained from here on. 

In the absence of a heat bath the equation of motion for the normal-mode 
amplitudes (lower case) reads (-w2 + w:} )</> = e'lj; /m, which jointly with 
(2) eventually reproduces (1) with r = 0, and entails a sharp surface-mode 
frequency 

2 2 2 w5 = wy + wp/2. 

Define also (with r not necessarily zero) the image-strength factor 

_ c - 1 w;/2 
a(w) = -- = 2 2 ' c + 1 w5 - w - iwf 

On quantization* via nmlii::::: II and (see [3]) 

[\72 w(R), II(R')] = io(R R') 

* We use natural units, such that h = I. 
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one eventually gets 

I 2 + I ) Hfield = ws d k(akak + 1 2, (3) 

<I>(z > 0) = -~ J d2k{f!: exp(ik · r - kz)ak +He, (4) 

where He stands for Hermitean conjugate and k, r are two-component vec­
tors parallel to the surface. 

Damping (r > 0) is ascribed to a heat bath consisting of a continuum of 
otherwise unspecified localized oscillators labelled by their frequecies v, 
with displacements ~v= -\7~ v' canonical conjugate ITv = nm \fl v, and 
commutators* [v2~v(R), I1v'CR')] = io(v - v' )o(R - R'). One starts with 
an as yet unrenormalized Hamiltonian density 

nrn { ·2 2 2 1 
Nu = - 2 ~ +Wu~ + -Ppol<f> 

nrn 

rv(max) lv(max) } 

+lo dv(~~ + v2~~) - 2C lo dvgv~v . 

The precise form of the mirror-bath interaction (the last term) is largely 
irrelevant; the coupling function gv will be chosen presently. Remarkably, 
no further generality would be gained by augmenting the first integrand by 
another adjustable factor dnyldv , say. 

The equations of motion now read 

{v(max) 

.(-w2 + w~)~ = (e/m)E +lo dvgv~v, 2 2) (-w + V ~1/ = gv~· 

They reproduce the response£ in (1) if 

w; - fu(w) = w~- - 'iwf, 

This is achieved by choosing 

g~ = 2v2 f (rr, 

. _ j•//(max) g~ 
.fu(w) = dv 2 2 .0 . 

0 v -w -z 

2 2 wu = Wy + 2fv(rnax)/7r, 

(5) 

* The conjugate momenta rrv and the commutators as given in eqs (6. l) and (6.2) in [2] are 
oversimplified and wrong, as shown by comparison with section 2.4 in [3]. Fortunately the 
wrong forms do not enter the actnal calculations, and the subsequent Hamiltonians and equa­
tions of motion are correct as they stand. 
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followed by v(max) -7 oo. Thereafter we proceed from the renormalized 
Hamiltonian density 

nm { ·2 2 2 1 
H = 2 ~ + Wy~ + nmPpozif> 

+ 100 dv(~~ + v2 ~~) - 2~ · 1= dvgv~v}, (6) 

with the prescription to ignore any further corrections to the restoring 
forces, and on every encounter to make the replacement 

f u(w) -7 f (w) :::= iwf. (7) 

Because the Hamiltonian contains no gradients of the bath variables ~v' 
their variation in configuration as in Fourier space is wholly enslaved by 
the variation of ~· And, crucially, because the bath has a continuous spec­
trum, so have the exact normal modes for any given wave-vector k parallel 
to the surface. 

For the normal-mode amplitudes, defined by 

(if>, \Ii, \liv) = J d2 k 1= dwexp(ik·r-kizi)(¢,?j;,?j;v)(w,k)akw +He, 

(8) 

the new equations of motion plus Gauss' law (2) eventually lead for each k 
(we suppress this label) to the coupled Lippmann-Schwinger equations 

(-w2 +w~)?j!(w)=1= dvgv?f!v(w), (-w2 + v2 )1/Jv(w) = 9v~b(w). 
(9) 

These are solved by 

Nw9w 
?j!(w) = ') ') . r' w5 - w~ - iw 

1/Jv(w) = Nw8(v - w) + 2 g~ .0 1/J(w), 
v -w -i 

(10) 

where (7) has been used. The norming constant N ro is chosen so that on 
substitution from (8) the Hamiltonian H = f d2r f dzJ{ reduces to 

H = J d2 k .1o= dww(atwakw + 1/2); (11) 

in practice this is by far the most tedious part of the work. At the same 
time one finds 
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i!>(z > 0) = (12) 

-~ fd2 kfodw [w~-~~ iwf ]J 4~}w exp(ik-r-kz)akw+Hc. 

Equations (11) and (12) are our central results. They show how the 
undamped structures (3), (4) are as it were dissolved in the bath, where for 
small rims their influence nevertheless persists through the resonance fac­
tor[ ... ] in (12). 

As promised, applications now follow through routine perturbation the-
ory. 

(i) Neutral atom in state lj >fixed at a distance Zfrom the mirror. The 
interaction reads D.V<l>, with D the dipole-moment operator of the 
atom. The energy shift is 

.) _ o:(O) °'"" { 2 2 } 6-(J - - 8Z3 L.., IDz,ijl + IDll,ijl /2 
i 

where the Ei are the atomic energy levels, and p prescribes the 
Cauchy principal value. This remains finite even when Ei - E1+<Ds = 0, 
a case where r = 0 entails a divergence. If £1 > Ei, the decay rate is 
given by replacing p /( ... ) ~ 7tb( ... ). In fact, though different in 
form, (13) agrees with the formula derived from the Lifshitz theory [4]. 
(ii) Point charge q moving parallel to the surface with velocity u. Here 
the interaction is H;nt(t) = q<l>(Z,r = ut); the problem is to determine the 
drag force F, given by the Feynmann-Hellmann theorem through F.u 
=< dH;nfcJt >, which must be evaluated with the first-order-perturbed 
states of the field. 
For simplicity we consider only an Ohm's-law mirror with conductiv­
ity* CT, so that 

E = 1+4Jrio-jw =? Wy = 0, f = w;/47ra, o:(O) = 1. (14) 

* The conductivity cr here must not be confused with the quite different quantity denoted 
by the same symbol in [2]. 
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The calculation is straightforward: 

(8Hint/8t) = 

2q2W2 Jd2ke-2kZ r= dw [ 2w2I'/7r ] (k·u)J(w-k·u) 
s }0 (w~ - w2)2 + w2r 2 4kw 

which for u/rosZ ~ 1 leads to 

F c::: -uq2 /167raZ3, (15) 

in agreement with earlier results5 found differently [5]. * 
(iii) Neutral ground-state atom moving parallel to the sulface witlf 
velocity u. Here Hint= D. \7<1>(Z, r = ut), but the second-order perturba­
tive expression for F is exponentially small, and the true leading term 
must be found either very laboriously by working to fourth order in 
Hint• or else to second order in an effective two-plasmon interaction 
HefF -(aatom/2)(\7<1>)2, where aatom is the electrostatic polarizability 
of the atom. The problem is instructive because F, though certainly 
very small, depends sensitively on the spectrum of the mirror at low 
frequencies. In the Ohmic model sketched above, one finds 

F,...., a~tomu3 /a2 Z 10 (Ohmic mirror). 

By contrast, a metallic mirror modelled so that its low-frequency exci­
tations are electron-hole pairs leads to the quite different estimate [6] 

F ,...., a 2 ue4/w2 Z 10 
atom S (electron gas). 

That these applications are technically trivial is precisely the point: the 
deep physical problems attending irreversibility (r -:I- 0) have been 
pre-empted by the determination of the exact normal modes by means of 
the Huttner-Barnett method, which yields a simple Hamiltonian ready for 
use without any further explicit references to statistical mechanics. 

Possible further applications include (iv) a straightforward calculation 
of the Van der Waals force between two mirrors described by (1), likely to 
agree with the Lifshitz result; (v) extension to mirrors in uniform relative 
motion, for comparison with the recent work of Pendry [7]; (vi) generali­
zation from Coulomb forces to the full Maxwell equations, so as to explore 
the effects of absorption on mirror-induced radiation, i.e. on the photon 
pairs radiated when a single mirror moves nonuniforrnly [8]. 

* I am grateful to Professor Widom for reminding one of these. 
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