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Abstract. We study noncommutative deformation of manifolds by constructing star products.
We start from a noncommutative Rd and discuss more genaral noncommutative manifolds. In
general, star products can not be described in concrete expressions without some exceptions. In
this article we introduce new examples of noncommutative manifolds with explicit star products.
Karabegov’s deformation quantization of CPN and CHN with separation of variables gives
explicit calulable star products represented by gamma functions. Using the results of star
products between inhomogeneous coordinates, we find creation and anihilation operators and
obtain the Fock representation of the noncommutative CPN and CHN .

1. Introduction
Phyisical theories in noncommutative spaces are realized in several situations. For example,
in string theories, low energy effective theories on D-branes in a constant background NS-
NS B fields are given as noncommutative gauge theories. In the theories, B field plays a
role of an inverse of a noncommutative parameter matrix that represents noncommutativity
of space coordinates. Another example in string theories is a series of matrix models which
are constructed so that all dynamical variables are given by matricies. Spacetime coordinates
themselves are also described as matrices, and then the spacetime becomes a noncommutative
space.

By the way, how can we obtain the noncommutative space? Let us consider a simple example,
the noncommutative Rd using the Moyal product. The Moyal product in Rd is defined as

(f ∗ g)(x) = e
i
2
θij∂xi ∂

y
j f(x)g(y)

∣∣∣
y=x

.

Here θij is an element of a skew symmetric constant matrix θ and is called a noncommutative

parameter. The right hand side is denoted by f(x)e
i
2
θij
←−
∂ i
−→
∂ jg(x), for simplicity. Note that the

commutation relation of the coordinates are given by

[xi, xj ]∗ = xi ∗ xj − xj ∗ xi = iθij .

In the usual commutative case, the ordinary commutative product is employed to define a ring
of functions. If we chose the Moyal product to define a ring of functions, then the considering
space become noncommutative because all products between arbitrary functions are replaced
by the Moyal product. This is known as noncommutative Rd.

In the following, we move to more general spaces. To make a notion of noncommutative
deformation of space be mathematically rigor, we introduce a definition of deformation
quantization.
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Definition 1. Deformation Quantization (strong sense)
Deformation Quantization is defined as follows. F is defined as a set of formal power series of
~:

F :=
{
f
∣∣∣ f =

∑
k

fk~k
}
.

A star product of functions f and g is defined as

f ∗ g =
∑

Ck(f, g)~k

such that the product satisfies the following conditions.

(i) ∗ is associative product.

(ii) Ck is a bidifferential operator.

(iii) C0 and C1 are defined as

C0(f, g) = fg, C1(f, g) =
i

2
{f, g},

where {f, g} is the Poisson bracket.

(iv) f ∗ 1 = 1 ∗ f .

Deformation quantization of manifolds are given by this star product in a form of a formal
power series in a deformation parameter ~. The power series is obtained as solutions of an infinite
system of differential equations in general. The existence of the solution is proved for a wide
class of manifolds, however explicit expressions of deformation quantizations are constructed for
few kinds of manifolds. For example, Euclidean spaces are deformed by using the Moyal product
as we saw above, and on manifolds with spherically symmetric metrics explicit star products
are given as concrete calcurable forms in the context of the Fedosov’s deformation quantization
[1]. The Fedosov’s Deformation Quantization is constructed as the Moyal product on the Weyl
algebra bundle in essentials.

As mentioned above, there are few noncommutative manifolds that have explicit expression of
star products, for example 2 dimensional manifolds with circular symmetric metrics. Following
three examples are given by the methods of Fedosov’s Deformation Quantization.

(1). R2

f(r, ϕ) ∗ g(r, ϕ) = f(
√
r2 + 2y1r, ϕ+

y2

r
) exp

(
− i~

2

←−−
∂

∂yi
ωij
−−→
∂

∂yj

)
g(
√
r2 + 2y1r, ϕ+

y2

r
)
∣∣∣
y=0

,

where (r, ϕ) is a polar coordinate and ω12 = −ω21 = 1, ω11 = ω22 = 0.
(2). CP 1

f(r, ϕ) ∗ g(r, ϕ) = f(

√
2y1r(1 + r2) + r2

−2y1r(1 + r2) + 1
, ϕ+

y2

r
)

exp
(
− i~

2

←−−
∂

∂yi
ωij
−−→
∂

∂yj

)
g(

√
2y1r(1 + r2) + r2

−2y1r(1 + r2) + 1
, ϕ+

y2

r
)
∣∣∣
y=0

.
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(3). CH1

f(r, ϕ) ∗ g(r, ϕ)

=f(

√
2y1r(1− r2) + r2

2y1r(1− r2) + 1
, ϕ+

y2

r
) exp

(
− i~

2

←−−
∂

∂yi
ωij
−−→
∂

∂yj

)
g(

√
2y1r(1− r2) + r2

2y1r(1− r2) + 1
, ϕ+

y2

r
)
∣∣∣
y=0

.

The purpose of this article is to introduce another way to have explicit expressions of star
products, in particular for Kähler manifolds, and to construct star products for CPN and CHN

by using special functions.

2. Deformation quantization of Kähler manifolds
In this article, noncommutative space is constructed by using deformation quantization. In the
following, we employ slight differenct deformation quantization from the one in the previous
section. The deformation quantization is defined as follows.

Definition 2. Let F be a set of formal power series of ~:

F :=
{
f
∣∣∣ f =

∑
k

fk~k
}
.

A star product of f, g ∈ F is defined as

f ∗ g =
∑

Ck(f, g)~k,

such that the product satisfies the following conditions.

(i) ∗ is associative product.

(ii) Ck is a bidifferential operator.

(iii) C0 and C1 is defined as

C0(f, g) = fg, C1(f, g)− C1(g, f) = i{f, g}.

where {f, g} is the Poisson bracket.

(iv) f ∗ 1 = 1 ∗ f .

The difference from the definition of the deformation quantization in the previous section is
in the condition for C1.

There is a star product called star product with separation of variables, which is defined on
Kähler manifolds. A Kähler manifold have a Kähler potential Φ and a Kähler 2-form ω

ω = igij̄dz
i ∧ dz̄j , gij̄ =

∂2Φ

∂zi∂z̄j
.

∗ is called a star product with separation of variables when

a ∗ f = af
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for holomorphic function a and

f ∗ b = fb

for anti-holomorphic function b. Karabegov showed that for arbitrary ω, there exists a star
product with separation variables ∗ [2] (see also [3, 4]). In this method of deformation
qunatization, a star product is constructed as a formal power series of differential operators.
Let Lf be a differential operator corresponding to a left ∗ multiplication by f :

Lfg := f ∗ g.

Then Lf has the following form:

Lf =

∞∑
n=0

~nAn,

, where formal power series of differential operators

An = an,α(f)
∏
i

(
Dī
)αi

, (Dī = gīj∂j).

It is required that Lf satisfies

Lf1 = f ∗ 1 = f,

Lf (Lgh) = f ∗ (g ∗ h) = (f ∗ g) ∗ h = LLfgh.

Lf which has the properties described above is determined by the following condition.

[Lf , ∂īΦ + ~∂ī] = 0,

and A0 = f . This condition is equivalent to the recursion relations

[An, ∂īΦ] = [∂ī, An−1] .

If one obtains the operator Lz̄i (Lz̄lf = z̄l ∗ f), Lf is given by

Lf =
∑
α

1

α

(
∂

∂z̄

)α
f (Lz̄ − z̄)α .

Here, α is a multi-index, α = (α1, · · · , αm). It is not easy to derive explicit expressions of star
products in all order of ~ by solving the recursion relation. In the next section, this recursion
relation is solved by using gamma functions for the case of CPN .

3. Noncommutative deformation of CPN
From this section to the end of this article, we studied noncommutative CPN and CHN . The
detail derivations of the following results are found in [5].

Let zi (i = 1, 2, · · · , N) be inhomogeneous coordinates of CPN . Then, the Kähler potential
of CPN is given by

Φ = ln
(
1 + |z|2

)
, (|z|2 =

∑
i

ziz̄i).

DICE2012 IOP Publishing
Journal of Physics: Conference Series 442 (2013) 012052 doi:10.1088/1742-6596/442/1/012052

4



The complex metric (gij̄) is derived from the Kähler potential as

ds2 = 2gij̄dz
idz̄j ,

gij̄ = ∂i∂j̄Φ =
(1 + |z|2)δij − zj z̄i

(1 + |z|2)2

Its inverse metric (gīj) is

gīj = (1 + |z|2)
(
δij + zj z̄i

)
.

The following relations simplify our calculations of Lf in the case of CPN ,

∂ī1∂ī2 · · · ∂īnΦ = (−1)n−1(n− 1)! ∂ī1Φ∂ī2Φ · · · ∂īnΦ,

Riemann tensor: Rij̄kl̄ = −gij̄gkl̄ − gil̄gkj̄ .

Let us construct Lz̄l (Lz̄lf = z̄l ∗ f). Recall that Lz̄l is described as

Lz̄l = z̄l + ~Dl̄ +
∞∑
n=2

~nAn,

where An (n ≥ 2) is a formal series of Dk̄. Then we would like to have the concrete form of An.
We assume that An has the following form,

An =

n∑
m=2

a(n)
m ∂j̄1Φ · · · ∂j̄m−1

ΦDj̄1 · · ·Dj̄m−1Dl̄,

where the coefficients a
(n)
m do not depend on zi and z̄i. From [Lz̄l , ∂īΦ + ~∂ī] = 0, An are

recursively determined by

[An, ∂īΦ] = [∂ī, An−1] , (n ≥ 2)

where A1 = Dl̄. After some calculations, we found the following recursion relation

a(n)
m = a

(n−1)
m−1 + (m− 1)a(n−1)

m .

and a
(n)
2 = a

(n−1)
2 = · · · = a

(2)
2 = 1. To solve these equations, we introduce a generating function

αm(t) ≡
∞∑
n=m

tna(n)
m , (m ≥ 2).

From the recursion relation, αm(t) is determined as

α2(t) =

∞∑
n=2

tna
(n)
2 =

∞∑
n=2

tn =
t2

1− t
,

αm(t) = tm
m−1∏
n=1

1

1− nt
=

Γ(1−m+ 1
t )

Γ(1 + 1
t )

, (m ≥ 2).
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The coefficient a
(n)
m is related to the Stirling number of the second kind S(n, k),

a(n)
m = S(n− 1,m− 1).

Summarizing the above calculations, Lz̄l becomes

Lz̄l = z̄l + ~Dl̄ +
∞∑
n=2

~n
n∑

m=2

a(n)
m ∂j̄1Φ · · · ∂j̄m−1

ΦDj̄1 · · ·Dj̄m−1Dl̄

= z̄l +

∞∑
m=1

αm(~)∂j̄1Φ · · · ∂j̄m−1
ΦDj̄1 · · ·Dj̄m−1Dl̄.

Using these results, star products among zi and z̄i are obtained as

zi ∗ zj = zizj , zi ∗ z̄j = ziz̄j , z̄i ∗ z̄j = z̄iz̄j , (1)

z̄i ∗ zj = z̄izj + ~δij(1 + |z|2)2F1

(
1, 1; 1− 1/~;−|z|2

)
+

~
1− ~

z̄izj(1 + |z|2)2F1

(
1, 2; 2− 1/~;−|z|2

)
. (2)

Furthermore, we can derive an explicite formula for Lf for an arbitrary function f

Lf =
∞∑
n=0

αn(~)

n!
gj1k̄1 · · · gjnk̄n

(
Dj1 · · ·Djnf

)
Dk̄1 · · ·Dk̄n .

This satisfies [Lf , ∂īΦ + ~∂ī] = 0. This star product on CPN is characterized by a function of
~, αn(~).

4. Fock representation of CPN
We have considered noncommutative CPN in the formalism of deformation quantization until
the previous section. In the context of deformation quantization, all objects in noncommutative
CPN are described as formal power series. In physical theories, phyisical quantities schould be
expressed as convergent power seiries. Since much of finiteness or convergency in deformation
quantization are not known, we change our strategy here. To introduce a calcurable framework,
we consider a Fock representaion of CPN in this section.
{zi, ∂jΦ | i, j = 1, 2, · · · , N} and {z̄i, ∂j̄Φ | i, j = 1, 2, · · · , N} constitute 2N sets of the

creation-annihilation operators under the star product,[
∂iΦ, z

j
]
∗ = ~δij ,

[
zi, zj

]
∗ = 0, [∂iΦ, ∂jΦ]∗ = 0,[

z̄i, ∂j̄Φ
]
∗ = ~δij ,

[
z̄i, z̄j

]
∗ = 0,

[
∂īΦ, ∂j̄Φ

]
∗ = 0.

So we can ascribe ∂iΦ, z̄j as annihilation operators, and zi, ∂j̄Φ as creation operators. Then,

e−Φ/~ = (1 + |z|2)−1/~ plays the role of the vacuume projection :

∂iΦ ∗ e−Φ/~ = z̄j ∗ e−Φ/~ = 0, e−Φ/~ ∗ zi = e−Φ/~ ∗ ∂j̄Φ = 0,

e−Φ/~ ∗ e−Φ/~ = e−Φ/~.

Let us introduce a class of functions which is constructed by acting the creation-operators on
the vacuume projection:

Mi1···im;j1···jn := cmnz
i1 ∗ · · · ∗ zim∗e−Φ/~∗z̄j1 ∗ · · · ∗ z̄jn

= cmnz
i1 · · · zim z̄j1 · · · z̄jne−Φ/~,
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where we choose cmn = 1/
√
m!n!αm(~)αn(~). These functions form a closed algebra:

Mi1···im;j1···jn ∗Mk1···kr;l1···ls= δnrδ
k1···kn
j1···jn Mi1···im;l1···ls ,

where δk1···knj1···jn is defined as

δk1···knj1···jn =
1

n!

[
δk1j1 · · · δ

kn
jn

+ permutations of (j1, · · · , jn)
]
.

We list the results of the operation of creation and anihilation operators to Mi1···im;j1···jn here.

zk ∗Mi1···im;j1···jn =

√
m+ 1

−m+ 1/~
Mki1···im;j1···jn ,

∂k̄Φ ∗Mi1···im;j1···jn = ~
√

(m+ 1)(−m+ 1/~)Mki1···im;j1···jn ,

∂kΦ ∗Mi1···im;j1···jn = ~
√
−m+ 1 + 1/~

m

m∑
l=1

δkilMi1···îl···im;j1···jn ,

z̄k ∗Mi1···im;j1···jn =
1√

m(−m+ 1 + 1/~)

m∑
l=1

δkilMi1···îl···im;j1···jn ,

Mi1···im;j1···jn ∗ zk =
1√

n(−n+ 1 + 1/~)

n∑
l=1

δkjlMi1···im;j1···ĵl···jn ,

Mi1···im;j1···jn ∗ ∂k̄Φ = ~
√
−n+ 1 + 1/~

n

n∑
l=1

δkjlMi1···im;j1···ĵl···jn

Mi1···im;j1···jn ∗ ∂kΦ = ~
√

(n+ 1)(−n+ 1/~)Mi1···im;j1···jnk,

Mi1···im;j1···jn ∗ z̄k =

√
n+ 1

−n+ 1/~
Mi1···im;j1···jnk.

Using this, we can construct field theories on noncommutative CPN by replacing all field
elements of usual commutative field theories in CPN by matrices valued on these Mi1···im;j1···jn .
For example, we can define scalar field theories in this noncommutative CPN , and it is possible
to construct scalar soliton solutions like GMS soliton in this formulation.

5. Noncommutative deformation of CHN

In this section, we consider the noncommutative defromation of CHN by using Karabegov’s
deformation quantization with separation of varaibles. Any explicit expression of
noncommutative CHN (N ≥ 2) is not given until now.

The Kähler potential of CHN is given by

Φ = − ln
(
1− |z|2

)
.

The metric gij̄ and the inverse metric gīj are defined by

gij̄ = ∂i∂j̄Φ =
(1− |z|2)δij + z̄izj

(1− |z|2)2
,

gīj = (1− |z|2)
(
δij − z̄izj

)
.
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These are similar to the ones of CPN . The way to construct the star product is also as same as
the one in section 3, so we skip the detail of the derivation. As similar to (1)-(2), star products
between inhomogeneous coordinates are given as

zi ∗ zj =zizj ,

zi ∗ z̄j =ziz̄j ,

z̄i ∗ z̄j =z̄iz̄j ,

z̄i ∗ zj =z̄izj + ~δij(1− |z|2)2F1

(
1, 1; 1 + 1/~; |z|2

)
− ~

1 + ~
z̄izj(1− |z|2)2F1

(
1, 2; 2 + 1/~; |z|2

)
.

The explicit representation of the star product with separation of variables on CHN is given by

Lz̄l = z̄l +
∞∑
m=1

(−1)m−1βm(~)∂j̄1Φ · · · ∂j̄m−1
ΦDj̄1 · · ·Dj̄m−1Dl̄,

with

βn(t) = (−1)nαn(−t) =
Γ(1/t)

Γ(n+ 1/t)
.

A Fock representation of CHN is also given, similary. As in the case of CPN , sets {zi, ∂jΦ}
and {z̄i, ∂j̄Φ} satisfy the commutation relations for the creation-annihilation operators. Also

e−Φ/~ is the vacuum projection operator,

∂iΦ ∗ e−Φ/~ = 0, (3)

z̄i ∗ e−Φ/~ = 0, (4)

e−Φ/~ ∗ ∂īΦ = 0, (5)

e−Φ/~ ∗ zi = 0, (6)

and

e−Φ/~ ∗ e−Φ/~ = e−Φ/~. (7)

As in the case of CPN , we consider a class of functions

Ni1···im;j1···jn =
zi1 · · · zim z̄j1 · · · z̄jn√
m!n!βm(~)βn(~)

e−Φ/~

Ni1···im;j1···jn is totally symmetric under permutations of i’s and j’s, respectively. Then we can
show that these functions form a closed algebra

Ni1···im;j1···jn ∗Nk1···kr;l1···ls = δnrδ
k1···kn
j1···jn Ni1···im;l1···ls . (8)
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Moreover, the star products between Ni1···im;j1···jn and one of zk, ∂kΦ, z̄
k and ∂k̄Φ are calculated

as follows,

zk ∗Ni1···im;j1···jn =

√
m+ 1

m+ 1/~
Nki1···im;j1···jn , (9)

∂kΦ ∗Ni1···im;j1···jn = ~
√
m− 1 + 1/~

m

m∑
l=1

δkilNi1···îl···im;j1···jn , (10)

z̄k ∗Ni1···im;j1···jn =
1√

m(m− 1 + 1/~)

m∑
l=1

δkilNi1···îl···im;j1···jn , (11)

∂k̄Φ ∗Ni1···im;j1···jn = ~
√

(m+ 1)(m+ 1/~)Nki1···im;j1···jn , (12)

Ni1···im;j1···jn ∗ zk =
1√

n(n− 1 + 1/~)

n∑
l=1

δkjlNi1···im;j1···ĵl···jn , (13)

Ni1···im;j1···jn ∗ ∂kΦ = ~
√

(n+ 1)(n+ 1/~)Ni1···im;j1···jnk, (14)

Ni1···im;j1···jn ∗ z̄k =

√
n+ 1

n+ 1/~
Ni1···im;j1···jnk, (15)

Ni1···im;j1···jn ∗ ∂k̄Φ = ~
√
n− 1 + 1/~

n

n∑
l=1

δkjlNi1···im;j1···ĵl···jn . (16)

6. Summary
In this article, we studied noncommutative deformation of several manifolds by using
deformation quantization. We started from a noncommutative Rd by using the Moyal product
and we moved into more genaral manifolds deformed with star products. For most manifolds,
star products can not be described in explicit expression, but they are determined recursively.
As exceptions, R2, CP 1 and CH1 cases were reviewd, and their star products are given by the
method of Fedosov’s deformation quantization. In this article we introduced new examples
of noncommutative manifolds with explicit star products, that is Karabegov’s deformation
quantization of CPN and CHN with separation of variables. Explicit calulable star products
were given by using gamma functions. Using the results of star products between the
inhomogeneous coordinates, we found the creation and anihilation operators and obtained the
Fock representations of the noncommutative CPN and CHN . Noncommutative CPN is also
studied in [6, 7, 8, 9, 10], and noncommutative CH1 is constructed in [11]. This is the first time
to construct an explicit noncommutative CHN for N ≥ 2.

How can we construct physical theories on the noncommutative CPN and CHN? There
are a lot of problems about finiteness, convergency and so on, in deformation quantization.
Fock representations discussed in this article provide one of good ways to make physical
field theories on the noncommutative manifolds. Indeed, few soliton solutions are given on
such noncommutative manifolds. It is important to construct frameworks of physics in the
noncommutative manifolds defined by deformation quantization.
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