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Summary

The topic of this thesis is the computation of correlation functions in defect

conformal field theories (dCFTs) that holographically dual to certain probe

brane configurations. The defect field theories discussed are all domain walls of

N = 4 super Yang-Mills theory that interface between a U(N −k) gauge group

and a U(N) gauge group. dCFTs may have non-trivial one-point functions

and for the SO(3)× SO(3) symmetric probe D7 defect we compute one-point

functions at tree-level using integrability of the N = 4 spectrum. The one-point

functions are computed for SU(2)-sector operators with a small M = 0, 2, 4, 6
number of excitations and a general form for large operators is conjectured.

The explicit expressions for the one-point functions shows that the matrix

product state for the SO(3) × SO(3) symmetric probe D7 defect is not an

integrable spin chain state. In a related setup, the probe D5 defect, we present

a new solution of the boundary Yang-Baxter equation that reduces to the

SO(6)-sector matrix product state for zero rapidity.

Last, we consider the computation of two-point functions in the probe D5

defect for simple operators including the BMN vacuum of different lengths. In

dCFTs the two-point functions can be expanded in conformal blocks providing

a relation between the one-, two- and three-point functions.
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Resumé

Emnet for denne afhandling er udregninger af korrelations funktioner i defekte

konforme feltteorier, der er holografiske duale teorier for bestemte konfigura-

tioner af braner. De defekte konforme feltteorier vi skal betragte er ’domain

wall’ løsninger af N = 4 super Yang-Mills, der interpolerer mellem gauge

grupperne U(N − k) og U(N). Defekte konforme feltteorier kan have ikke-

trivielle et-punkt funktioner, og specielt udregner vi et-punkts funktionerne til

ledende orden for den SO(3)× SO(3) symmetriske D7 defekt ved at anvende,

at N = 4 spektret er integrabelt. Et-punkts funktionerne er udregnet for

SU(2) operatorer med for lave eksitationer M = 0, 2, 4, 6, og et generalt udryk

for store operatorer foresl̊aes.

Et-punkts funktioner viser at matrixprodukttilstanden svarerende til den

SO(3)× SO(3) symmetriske D7 defekt, ikke udgør en integrabel spinkædetil-

stand. Et relateret setup er D5 defekten, her bestemmer vi en ny løsning til

reflektionsligningen, der har den egenskab, at den reducerer til SO(6) matrix-

produkttilstanden for ingen rapiditet.

Tilsidst betragter vi udregningerne af to-punkts funktioner i D5 defekten

for simple operatorer heriblandt BMN vacua af forskellig længde. I defekte

konforme feltteorier kan to-punkts funktionen ekspanderes i konforme blokke.

Dette giver relationer mellem et-, to- og tre-punkts funktionerne.
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1 Introduction

“So in writing this, I have to separate the subjects

for clarity, but sometimes the right separation is not

clear.”
— J. G. Polchinski, Memories of a Theoretical

Physicist

Quantum field theory is the framework in which modern theories of physics are

formulated. The gauge theories – more precisely – Yang-Mills type theories,

describes the interactions of matter through the exchange of spin 1 bosonic

fields excitations. Yang-Mills theories are generalisations of electromagnetism

obtained by enlarging the possible local symmetries of the theory to include

non-Abelian continuous symmetries. A Yang-Mills theory is then classified by

a Lie group, henceforth the gauge group and the possible matter in various

representations of the local symmetry. The Standard Model of particle physics

is precisely such a Yang-Mills theory with the gauge group U(1)×SU(2)×SU(3)
and various fundamental matter fields, i.e. the leptons and quarks.

The maximally supersymmetric Yang-Mills theory in four dimensions, N =
4 super Yang-Mills (SYM)1, distinguishes itself amongst the four-dimensional

field theories for its particular simplicity. As it is maximally supersymmetric

all the fields of N = 4 SYM are related by supersymmetry to the vector field,

i.e. it is the unique theory of a four-dimensional N = 4 vector multiplet [1].

As a consequence of the large amount of supersymmetry N = 4 SYM is also

quantum conformal invariant [2, 3]. The conformal invariance enhances to the

exact superconformal symmetry of N = 4 SYM, for which the global symmetry

is described by the supergroup PSU(2, 2|4). Yang-Mills theories simplifies for

large gauge groups, e.g. SU(N) for N →∞, in the limit where the ’t Hooft

coupling, λ = g2
YMN , is held fixed. The perturbation series then arranges

1N denotes the number of supersymmetries.
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1. Introduction

itself as an expansion in 1
N with the leading contribution being the planar

diagrams [4]. Planar N = 4 is amongst the simplest and most symmetric

four-dimensional field theories, and hence provide a neat toy model in the

space of Yang-Mills theories [5].

In string theory, the effective field world-volume theories of D-branes are

Yang-Mills theories. In particular, the world-volume theory of a stack of N

D3-branes is U(N) N = 4 SYM. This enables us to think geometrically about,

conjecture various properties of, and relations amongst the gauge theories (see

e.g. [6]). A remarkable example of this is provided by the AdS/CFT correspon-

dence2 [7–9] (see also the review [10]). The correspondence conjectures the

equivalence between type IIB superstring theory on an AdS5×S5 background

and U(N) N = 4 SYM under the identification of parameters

λ

N
∼ gs ,

L4

l4s
∼ λ .

Here N is the rank of the gauge group / the five-form flux, gYM is the gauge

theory coupling, gs is the string coupling, and L/ls is the curvature of the

background AdS5×S5 in string length ls. The conjecture passes many non-

trivial checks and is widely believed to be true. In the planar limit N →∞, the

string coupling goes to zero. This equates classical strings, i.e. only tree-level

diagrams, with planar N = 4 SYM. The ’t Hooft coupling λ then interpolates

between planar N = 4 SYM at weak coupling λ� 0 and supergravity at strong

coupling λ � 0. The AdS/CFT correspondence provides ’explanations’ for

many phenomena: It gives a precise large N dual string theory [4], it provides

a holographic description of gravity [11,12], and it connects N = 4 SYM to the

integrable 2-dimensional world-sheet theory of the AdS5×S5 superstring [13].

The AdS/CFT correspondence provides a weak/strong duality between

gravity and gauge theory. Two ways – understand gravity from field theory or

field theory from gravity.

1.1 AdS/CFT Integrability

In the planar limit, N = 4 SYM exhibits integrability for many observables in-

cluding anomalous dimensions and amplitudes [14]. In particular, the dilatation

2Many conjectured equivalences between a conformal gauge theory and some quantum
gravity theory on AdS exists. In this thesis we will only consider AdS5/CFT4.

2



1.2. Holography of defect CFTs

operator

D(g) =
∞∑
n=0

g2nD(n) = D(0) + Γ (g)

defines, order by order in g2 := λ
16π2 , an integrable local spin Hamiltonian

of range 2n that describes the mixing of single trace operators [15–18]. A

closed sector is The SU(2)-subsector, consisting of two complex scalars. The

anomalous dilatation operator at one-loop in the SU(2) sector is described by the

Heisenberg XXX1/2. The Heisenberg spin chain was first solved by H. Bethe [19]

using, what is now known as, the coordinate Bethe ansatz. The Bethe ansatz

determines the energies and eigenstates from solutions to polynomial equations.

To go beyond the asymptotic Bethe ansatz for large spin chains one needs to

account of wrapping corrections, i.e. the planar diagrams where contractions

encircles the operator [20]. The quantum spectral curve [21–23] is believed

to provide a unified description of the scaling dimensions for the AdS/CFT

integrable system that interpolates between weak and strong coupling.

When available the Bethe eigenstates gives the conformal operators. Based

on integrability it has been possible to device techniques to compute higher

point correlation functions, specifically three- and four-point functions at

leading order [24,25] and asymptotically [26,27]. A recent approach is based

on the quantum spectral curve [28]. It seem possible to systematically compute
1
N corrections by integrability techniques [29] or conformal bootstrap [30].

The list of other observables where integrability of N = 4 SYM have been

useful includes amplitudes [31], the Hagedorn temperature [32], Wilson loops

[33]. The unifying algebraic structure is the Yangian algebra Y [psu(2, 2|4)] [34].

The equations of motion of planar N = 4 have been shown to exhibit Yangian

invariance [35].

1.2 Holography of defect CFTs

In the AdS/CFT setup, conformal field theories involving defects can be

engineered from D-brane intersections. Consider a stack of N D3-branes

intersected by a stack of Np Dp-branes that share three of the four directions

with the D3-branes. The near-horizon limit of N D3-branes is AdS5×S5. In the

probe brane limit where Np � N3 the near-horizon geometry is not modified

by the bisecting branes. Therefore, the Dp occupy an AdS4 submanifold times

a compact submanifold of the five-sphere [36,37].

3



1. Introduction

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 • • • •
D5 • • • • • •
D7 • • • • • • • •

Table 1.1 – The embedding of flat Dp-branes giving rise to defect conformal
field theories in the decoupling limit near the D3 branes.

The dual field theory is a defect conformal theory where the open 3 − p
strings provides fundamental matter confined to co-dimension one defect in

N = 4 SYM. These configurations also allows a number n of D3-branes to

end on the Dp-branes. This provides a holographic dual of domain walls in

N = 4 SYM separating a U(N) gauge group for x⊥ > 0 and U(N − n) for

x⊥ < 0 [37,38].

Defect conformal field theories are relevant for critical phenomena with

boundaries or co-dimensional one sheets of matter, e.g. graphene. The probe-

brane configurations have been extensively studied as top-down holographic

models for such phenomena providing access to strong coupling results [39–41].

1.3 Outline of the thesis

This thesis is about field theory computations for the defect conformal theories

dual, through AdS/dCFT correspondence, to the probe brane configurations

mentioned in the introduction. Chapter 2 gives a brief review of the defect

conformal field theories that will be discussed in the later chapters. The

chapter also contains a discussion of the boundary fields for the probe D5-

brane defect. In chapter 3 I review how to compute one-point functions by

mapping the problem, using the integrability of N = 4 SYM to an overlap

between a matrix product state and a Bethe eigenstate. The chapter then

details the computation of one-point functions in D3⊥D7k1,k2 for the SU(2)-
sector explicitly demonstrating that the D3⊥D7k1,k2 matrix product state is

not integrable. Chapter 4 discusses the integrability of the one-point functions.

In particular, I review how to find open integrable spin chains and how the

SU(2) one-point functions in D3⊥D52 was proven using the six-vertex model.

I then discuss the recent definition of an integrable spin chain boundary state

and describe a new solution of the boundary Yang-Baxter equation for an open

SO(6) integrable spin chain. Chapter 5 recounts the computation of two-point

4



1.3. Outline of the thesis

functions of BPS operators at leading order and the possibility of mining the

expressions for conformal data. The final chapter 6 contains some concluding

remarks.
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2 The defect theories

In this chapter, we shall review the various defect conformal field theories

obtained as probe D-brane intersections and describes fuzzy funnel solutions

of N = 4 SYM. We shall define three different domain walls: D3⊥D5k,

D3⊥D7k1,k2 , D3⊥D7n. Our primary motivation to study these field theories is

to compute one-point correlation functions using integrability techniques. The

one-point functions in these backgrounds are non-trivial already at tree-level

and therefore provide a wonderful playground for integrability techniques.

In chapter 5 we shall discuss the the leading contribution to the two-point

functions in D3⊥D5k and for this we need the spectrum and propagators. I

will therefore, briefly review the perturbative theory around the fuzzy funnel

solutions. Last, I will recount the intricacies of determining the of the boundary

fields of bulk operators in D3⊥D5k which was published in [42].

2.1 Domain wall solutions of N = 4 SYM

In this section, we shall review the different defect theories based on N = 4
SYM that are dual to the probe brane configurations discussed above. The

action of N = 4 SYM is [1, 43]

SN=4 = 2
g2
YM

∫
d4x Tr

(
−1

4FµνF
µν − 1

2DµφiD
µφi + i

2 Ψ̄Γ
µDµΨ

+1
2 Ψ̄ Γ̃

i[φi, Ψ ] + 1
4[φi, φj ][φi, φj ]

)
. (2.1)

Here φi are the 6 real scalars in the 6 representation of the SO(6) R-symmetry

group, Ψ is a ten-dimensional Majorana-Weyl fermion and {Γµ, Γ̃ i} are the

corresponding ten-dimensional gamma matrices. The indices ranges as µ, ν =
0, 1, 2, 3 and i, j = 1, . . . , 6. All the fields are in the adjoint representation of

the gauge group hence, Dµφi = ∂µφi − i[Aµ, φi].

7



2. The defect theories

The solutions of the scalar equations of motion provides backgrounds around

which we may perturbatively quantize. The equations of motion for the scalars

of N = 4 SYM (i.e. setting the gauge field and fermions to zero) is [38]

∇2φi −
6∑
j=1

[φj , [φj , φi]] = 0 .

Where ∇2 =
∑

i ∂
2
i is the spatial Laplacian. This should further be supple-

mented by the condition that the colour current vanishes

6∑
i=1

[φi,∇φi] = 0

If we restrict to co-dimension one, flat defects, and have to preserve transla-

tional and rotational invariance along the directions parallel with the defect, the

scalar VEVs can only depend on the distance to the defect x⊥. Furthermore,

there is no length scale if we demand conformal invariance. Therefore, the

form of scalar solutions that preserve defect conformal invariance is

φi(x⊥) = Ti
x⊥

,

where Ti for i = 1, . . . , 6 are N ×N matrices that satisfy

Ti = 1
2
∑
j

[Tj , [Tj , Ti]] .

In the following we will discuss three different non-trivial vacua for N=4 SYM.

Before discussing solutions let us quickly remark on the possibility of pre-

serving a subset of the supersymmetries. Boundary conditions that preserve a

subset of the supersymmetries of N = 4 SYM are possible. The supersymmetry

algebra implies schematically that {Q,Q} ∼ P where Q is the supersymmetry

and P the translation generator. Therefore, it is impossible to preserve the full

supersymmetry of N = 4 SYM when breaking translational invariance. Bound-

ary conditions that preserve the maximal possible subset, i.e. 1
2 -BPS boundary

conditions, have been classified [44,45]. In particular, the R-symmetry must

be broken down to SO(3)× SO(3) and the full symmetry group PSU(2, 2|4)
is reduced to a subgroup OSp(4|4) [44]. Under supersymmetry the fermions

transform into a combination of scalars and field strength. If the solutions with

Ψ = 0 is to preserve supersymmetry this puts restrictions on the scalars by

8



2.1. Domain wall solutions of N = 4 SYM

demanding that the supersymmetry variation vanishes. Therefore, the scalars

must satisfy the equation

dφi
dz

= i

2εijk[φj , φk] , (2.2)

known as the Nahm equation [44].

Figure 2.1 – The N = 4 SYM domain wall separating U(N) and U(N − k)
vacua.

D3⊥D5k

The probe D5-brane intersection (see table 1.1) is supersymmetric. Let k be

the difference in the number of D3-brane between x⊥ > 0 and x⊥ < 0. In the

following we shall refer to the field theory that is dual to this probe brane

configuration as the D3⊥D5k field theory. For k = 0, the dual field theory was

fixed using the supersymmetry [46] and shown to be conformal invariant [47].

For k D3-branes dissolved into the D5-brane the matrix structure of the φi

i = 1, 2, 3 defines a fuzzy funnel [48]. The solutions satisfying the Nahm

equation (2.2) takes the form of a Nahm pole

φcli (x⊥) = − 1
x⊥

t
(k)
i ⊕ (N−k)×(N−k) ,

where i = 1, 2, 3 and t
(k)
i is the k-dimensional irreducible representation of

su(2).

9



2. The defect theories

D3⊥D7k1,k2 & D3⊥D7n

The probe D7-brane has possible embeddings in the near-horizon geometry

of the D3-branes: AdS4×S2×S2 and AdS4×S4 [38]. Note that the D7-brane

configurations are not supersymmetric, and therefore the scalar VEVs in the

dual field theory do not satisfy the Nahm equation.

The solutions corresponding to the AdS4×S2×S2 is the product of fuzzy

funnels providing a N = 4 SYM domain wall between U(N) for x⊥ > 0 and

U(N − k1k2) for x⊥ < 0 gauge groups [38]

φcli (x⊥) = − 1
x⊥

(tk1
i ⊗ 1k2×k2)⊕ (N−k1k2)×(N−k1k2), i = 1, 2, 3

φcli (x⊥) = − 1
x⊥

(1k1×k1 ⊗ t
k2
i )⊕ (N−k1k2)×(N−k1k2), i = 4, 5, 6 .

Here t
(ka)
i each satisfy a su(2) algebra [t(ka)

i , t
(ka)
i ] = iεijkt

(ka)
k . In the following

we shall refer to the field theory that is dual to this probe brane configuration

as the D3⊥D7k1,k2 field theory.

The AdS4×S4 embedding is SO(5)-symmetric and corresponds to funnel

solution with a fuzzy 4-sphere.

φcli (x⊥) = G
(n)
i√

8 x⊥

for i = 1, . . . , 5 and φ6 = 0. The matrices have dimension dG = 1
6(n+ 1)(n+

2)(n+ 3) and are given as [49]

G
(n)
i = [γi ⊗ 14x4 · · · ⊗ 14x4 + 14x4 ⊗ γi · · · ⊗ 14x4 + . . .]sym ⊕ (N−dG)×(N−dG) ,

where each term has a gamma matrix γi at the n’th position and we symmetrise

the resulting matrix. We shall do any computations in this theory, however we

shall reserve the name D3⊥D7n for comparisons.

2.2 Perturbation theory around fuzzy funnels

Let φcli be one of the classical solutions discussed above. Then, we can study

the perturbative quantisation around this vacuum by writing the scalars as

φi = φcli + φ̃i ,

and inserting into the action (2.1). As per usual, constant terms can be dropped

and linear terms vanish by the equations of motion. Expanding the kinetic

10



2.2. Perturbation theory around fuzzy funnels

term of the scalars gives

−1
2Dµφ̃iD

µφ̃i −
1
2Aµ[φcli , [φcli , Aµ]]− iAµ[∂µφcli , φ̃i]− i[Aµ, φcli ]∂µφ̃i + . . . ,

where the terms in . . . are higher order in fields, i.e. interactions. This is

nothing but the Higgs mechanism for N = 4, i.e. by assigning VEVs to scalar

fields the gauge field acquires a mass term. To do perturbation theory, there are

three questions related to quadratic term that must be dealt with. First, the

term [Aµ, φcli ]∂µφ̃ is problematic since it contains a single derivative. However,

the term can be cancelled by introducing a gauge-fixing term [50]. The mixing

in colour and flavour space, as exhibited by the other two terms, will require

diagonalisation of the mass matrix to determine the propagating states for a

particular φcli . Finally, the mass terms will be depend on x⊥ and we will need

to know how to deal with this.

In total, the bosonic mass terms are

Sm,b = 2
g2
YM

∫
d4x Tr

(
1
2[Aµ, φcli ][Aµ, φcli ] + 2i[Aµ, φ̃i]∂µφcli

+1
2[φcli , φclj ][φ̃i, φ̃j ] + 1

2[φcli , φ̃j ]2 + 1
2[φ̃i, φclj ][φcli , φ̃j ] + 1

2[φcli , φ̃i]2
)
.

Each term carries a factor 1/x2
⊥ and we may write it as

Sm,b = 2
g2
YM

∫
d4x

(
− 1

2x2
⊥
Φf ′,c′M(f ′,c′),(f,c)Φf,c

)

where f, f ′ are flavour indices and c, c′ are colour indices corresponding to

some particular matrix basis for the colour components.

The bosonic mass terms come with a factor 1/x2
⊥. This means that the

propagators K(x, y) have to satisfy(
−∂µ∂µ + m2

x2
⊥

)
K(x, y) = gYM

2 δ(x− y) .

This is equivalent to an AdS4 propagator with the distance to the defect x⊥

being the radial coordinate. That is, massive modes experience an effective

AdS4 with x⊥ being the boundary. The massive modes are therefore confined

to x⊥ > 0.

The diagonalisation of D3⊥D5k was accomplished in [43] using fuzzy spher-

ical harmonics Ŷ m
` that diagonalise the adjoint action of the su(2) generators:

[ti, [ti, Ŷ m
` ] = `(` + 1)Ŷ m

` . We will need the spectrum of scalars and their

11



2. The defect theories

propagators in chapter 5 when we compute perturbative corrections to the

two-point functions. For the D3⊥D5k1,k2 the diagonalisation was accomplished

in [51].

2.3 The action on the defect for D3⊥D5k

The action of the D3⊥D5k theory has a bulk part, which is a Higgsed N = 4
SYM for k > 2, and a boundary part containing fundamental degrees of

freedom originating from the open 3 − 5 strings. For k = 0 the field theory

including boundary interactions is known and explicitly written down [46,47].

However, for k 6= 0 this is no longer the case. In this section I shall recount

what we have learned about the spectrum of boundary operators build from

bulk operators [42] and I will briefly describe an ongoing project to explicitly

obtain the defect action.

Consider a co-dimension one, flat defect located at x3 = 0. We can

think of the delta function as lifting the three-dimensional Lagrangian to four

dimensions.

S =
∫

d4x
(
L4 + δ(x3)L3

)
=
∫

d4xL4 +
∫

d3x L̃3 .

There are two types of fields in L̃3: Bulk fields evaluated at the defect Φ|x3=0

and fields that only have support on the defect Φ̂. In the following we shall see

how to obtain the spectrum of boundary operators.

Near the boundary the bulk-to-bulk propagator can be expanded as

Kν(x, y) = g2
YM

2π2
22ν(2ν+1
ν+ 1

2

) (x3y3)ν+ 1
2

(|x− y|2 + y2
3)ν+ 3

2
+O(xν+ 5

2
3 ) .

where ν =
√
m2 + 1

4 parametrises the mass matrix eigenvalues (see ta-

ble 5.1). Near the boundary the propagator behaves as Kν ∼ (x3)ν+ 1
2

hence it satisfy Dirichlet boundary conditions at the defect for ν = 1
2 , i.e.

K
1
2 (x, y)|x3=0 = 0. For ν = −1

2 the propagator satisfy Neumann boundary

conditions, i.e. ∂3K
− 1

2 (x, y)|x3=0 = 0. This follows, since the propagator for

ν = −1
2 should be thought as limν→− 1

2
Kν(x, y). With this prescription one

must use 2F1(−1, 0; 0;−ξ−1) = 1+ 1
2ξ
−1. Note that the 1

2ξ
−1 piece is important

for it to satisfy Neumann boundary conditions. The boundary behaviour of

the fields is consistent with D5-like 1/2-BPS boundary conditions [44].

12



2.3. The action on the defect for D3⊥D5k

Since the propagator scales as Kν ∼ xν+ 1
2

⊥ near the defect, we may define

finite operators at the defect by multiplying with a compensating factor x
−ν− 1

2
⊥ .

For (φ1)`m we have ν = `− 1
2 , therefore

(φ̂1)`,m(x) = lim
x3→0

(x⊥)−`(φ1)`m(x) ,

defines a boundary operator. A further subtlety is that this do not transform

in a simple way under the boundary gauge group U(N − k). We can find a

basis of operators that are either singlet or fundamental under the gauge group

U(N − k) by mixing the field with (Â3)`m [42].

Lastly, the R-charge is modified. The R-symmetry is broken to SO(3)C ×
SO(3)E ⊂ SO(6) by the defect. The scalar fields φi for i = 1, 2, 3 transform

as a vector under SO(3)C. We see that the classical solution is not directly

invariant under the naive transformation of φi → Rijφj . In the bulk, this can

simply be compensated by a gauge transformation U such that URijtjU
−1 = ti.

However, at the defect the gauge symmetry is reduced to U(N − k) and this

U becomes a global transformation. Hence, the transformation properties of

boundary operators under SO(3)C is determined by both their flavour i and

colour `. In particular,

(φi)`m = tr(φi(Ŷ m
` )†)→ tr(RijφjU−1(Ŷ m

` )†U) .

The fuzzy spherical harmonics transform in the spin-` representation. For

our example: (φ̂1)`,m(x) have scaling dimension ∆̂ = `+ 1, is a singlet under

U(N − k) and transforms under R-symmetry as (1⊗ `, 0) = (`− 1, 0) + (`, 0) +
(`+ 1, 0). By this analysis one can determine the boundary fields coming from

the bulk (see table 2.1) [42].

An approach to obtaining the defect action for D3⊥D5k, that we are

currently pursuing, consist of folding the theory along the defect to obtain a

boundary theory with a gauge group U(N)⊕ U(N − k). This is then one of

the D5-like 1/2-BPS boundary conditions classified in [44]. The field theory

may then be written, formally, as a three-dimensional theory with a continuum

of fields, indexed by x⊥ > 0 [44]. Since the theory has 3d N = 4, the possible

terms in a Lagrangian is highly restricted. In fact, in terms of 3d N = 2
superfields there are only 6 contributions [44, 47]. Un-doing the folding and

squashing, and writing it out in components is technical challenge, however I

look forward to report on this soon.
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2. The defect theories

Field Scaling dim. (∆̂) SO(3)C SO(3)E U(N − k)

(φ̂1,2,3)`m `+ 1 1⊗ ` 0 sing.

(φ̂4,5,6)`m `+ 2 ` 1 sing.

(Âµ̂)`m `+ 2 ` 0 sing.

(ψ̂1,2,3,4)`m `+ 3
2

1
2 ⊗ `

1
2 sing.

[φ̂1,2,3]n,a k+1
2 1⊗ k−1

2 0 fund.

[φ̂1,2,3]n,a k+3
2

k−1
2 1 fund.

[φ̂1,2,3]n,a k+3
2

k−1
2 0 fund.

[φ̂1,2,3]n,a k+2
2

1
2 ⊗

k−1
2

1
2 fund.

qa
1
2

1
2 0 fund.

χa 1 0 1
2 fund.

Table 2.1 – The spectrum of boundary fields.
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3 Computing one-point

functions

“Solution to any good problem is given by a

determinant.”
— L. D. Faddeev, as remembered by F. Smirnov

In this chapter I shall review the computation of one-point functions in N = 4
SYM with probe brane defects. In particular I will discuss the results on the

tree-level one-point functions in D3⊥D7k1,k2 for non-protected operators in

the SU(2) sector.

In a defect conformal field theory the expectation value of a local operator

O(x) takes the form

〈O(x)〉 = C

x∆⊥
,

as a consequence of the residual conformal symmetry. Here ∆ is the conformal

weight of the local operator and x⊥ denotes the distance to the defect. The

constant C depends on normalisation of the operator. We shall fix ambiguities

in C by normalising the two-point function of the operator to

〈O(x1)O(x2)〉 = |x1 − x2|−2∆

far away from the defect (x1)⊥, (x2)⊥ �|x1 − x2|. We will shall pick the phase

such that the one-point structure constant is real and non-negative C ≥ 0.

The one-point functions of chiral primaries in the D3⊥D5k setup was

shown to agree between a weak-coupling, gauge theory computation and a

strong-coupling, supergravity computation, thus initiating a series of precision

tests of the AdS/dCFT correspondence [52]. Furthermore, it was noticed that

one-point functions at strong coupling λ� 1 for chiral primaries organises itself
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3. Computing one-point functions

into a perturbative series in λ
k2 and provides a prediction for the next-to-leading

term [52]. These observations generalise to the two D3⊥D7 setups [38].

A determinant formula for one-point functions of SU(2)-sector operators

at k = 2 was discovered based on the coordinate Bethe ansatz expression for

the conformal local operators [53]. The determinant formulas extends to any

k using an integrability-based recursion relation [54]. A determinant formula

for one-point functions continues to work for higher rank sectors [55, 56]. A

framework for the perturbative computation of quantum corrections to the one-

point functions in D3⊥D5k in was developed in [43]. The one-loop computation

was found to be in perfect agreement with the string theory prediction [57].

An asymptotic formula, i.e. all loop but neglecting wrapping corrections, was

conjectured based on the integrability structure [58].

For the D3⊥D7 setups: Closed expressions for one-point functions at

tree-level for certain operators with few excitations are known in the SO(5)-

symmetric D3⊥D7n defect theory [59]. In the SO(3) × SO(3)-symmetric

D3⊥D7k1,k2 setup, the one-loop corrections to the BMN vacuum was computed

in [51] finding agreement with the double-scaling predictions from supergravity.

The D3⊥D5 setup have a counterpart in β-deformed N = 4 SYM. In the β-

deformed setup, tree-level one-point functions for operators with few excitations

have been computed [60].

3.1 The Bethe Ansatz for N = 4 Operators

The anomalous dilatation operator at one-loop for the local operators of N = 4
SYM constructed from L scalars φi is given by the Hamiltonian of an integrable

spin chain with SO(6) symmetry [15]. In the following, we shall restrict to an

SU(2) subsector, i.e. local operators constructed from the complex scalars

Φ↑ := φ3 + iφ6 , Φ↓ := φ1 + iφ4 .

In the SU(2) sector the local operators constructed from M Φ↓ and L−M Φ↓

only mix amongst themselves. In fact, the SU(2) sector is an example of a

closed sector [61].

In the SU(2) sector, the anomalous dilatation operator takes the form

Γ (g) = λ

8π2

L∑
n=1

Hn,n+1 + . . . , (3.1)
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3.1. The Bethe Ansatz for N = 4 Operators

where λ = g2N is the t’ Hooft coupling and

Hab = 1ab − Pab ,

is the local Hamiltonian density of the Heisenberg XXX 1
2

spin chain. The exact

diagonalisation of the XXX 1
2

spin chain was obtained in the seminal paper [19]

using the coordinate Bethe ansatz. For reviews see [62, 63]. The coordinate

Bethe ansatz provides an explicit wave function for the eigenstates

|{xi}〉 = N
∑
{ni}

( ∑
σ∈SM

Aσ

M∏
j=1

x
nj
σj

)
|{ni}〉 , (3.2)

where N is a normalisation factor, |{ni}〉 =
∏M
i=1 S

−
ni |0〉 is the position-basis

kets, {ni} is the list of positions of ↓ in a sea of ↑s, and the pseudo-vacuum

state is |0〉 = |↑↑ · · · ↑〉. The pseudo-momenta pi of the excitations, magnons,

are encoded in the variables xi = eipi . It is beneficial to express quantities in

terms of the rapidities ui. The rapidities are another parametrisation of the

momenta related to xi through

xi =
ui + i

2
ui − i

2
.

The rapidities are constrained by translational invariance to be roots of algebraic

equations called the Bethe ansatz equations (BAE). We will discuss the BAE

and its solutions in section 3.1.1. To describe an eigenstate of Eq. (3.1) the

coefficients Aσ in Eq. (3.2) have to satisfy the condition

A(...j...i...)

A(...i...j...)
= ui − uj + i

ui − uj − i
. (3.3)

In the expression above, we have written the permutation σ as
(
σ(1)σ(2) . . . σ(M)

)
.

This condition relates all the coefficients in the wave function Eq. (3.2), through

a decomposition of σ into transpositions, to A1. We choose the normalisation

N such that A1 = 1. A hallmark of quantum integrability is that the M -body

scattering amplitudes are reduced to products of two-body scatterings is [64].

The algebraic Bethe ansatz or quantum inverse scattering method (QISM)

provides an alternative method to construct eigenstates of the Hamiltonian

Eq. (3.1) [65,66]. I postpone a discussion of the QISM to section 4.1 in relation

to open spin chains. However, I shall briefly recall how the algebraic Bethe

anstaz constructs Bethe states for Eq. (3.1).
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3. Computing one-point functions

The basic object is the quantum Lax operator Ln,a(u) that acts locally on

the n’th site of the spin chain, called the quantum space Vn and an auxiliary

space Va. Importantly, the Lax operator satisfy an intertwining relation

Rab(u− v)Ln,a(u)Ln,b(v) = Ln,b(v)Ln,a(u)Rab(u− v) . (3.4)

Here Rab(u− v) is the R-matrix satisfying the Yang-Baxter equation. From

the Lax operators one constructs the monodromy matrix

Ta(u) = La,L(u) · · · La,1(u) =

A(u) B(u)
C(u) D(u)

 ,

which is a 2x2 matrix in the auxiliary space with components being operators

that act on the spin chain Hilbert space H = ⊗Ln=1Vn. As a consequence of

the intertwining relation Eq. (3.4) the monodromy matrix Ta(u) also satisfy

the Yang-Baxter algebra. Let t(u) = tra Ta(u) = A(u) + D(u). Since the

R-matrix is invertible, we have [t(u), t(v)] = 0. Therefore, t(u) is an infinite

family (indexed by commutes for any value of arbitrary complex parameter

u ∈ C) of commuting matrices. This can be formulated as ln t(u) being a

generating series of conserved charges. In particular the Heisenberg spin chain

Hamiltonian is schematically given as

H ∼ ∂

∂u
ln t(u)

∣∣
u=0 .

The eigenstates of t(u) can be constructed algebraically as

|{ui}〉 = B(uM ) · · ·Bu1 |0〉 . (3.5)

From the commutation relations the operators of A,B, and D one finds that

the state Eq. (3.5) is an eigenstate of t(u), provided that the rapidities satisfy

the Bethe ansatz equations [65].

As presented above, there exists methods to analytically construct eigen-

states and -values of the matrix Eq. (3.1). For the one-loop operator mixing

problem of N = 4 SYM, we can therefore write down the explicit operators

with good conformal scaling dimensions, i.e. eigenstates of the dilatation

operator [17]. The local operators are obtained from the Bethe states. In

particular the local operator in the SU(2) sector with conformal dimension ∆

is expressed as

O∆(x) =
(4π2

λ

)L
2 Z
L

1
2

∑
{si}

tr(Φs1 · · ·ΦsL)〈s1 · · · sL|{ui}⟫ . (3.6)
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3.1. The Bethe Ansatz for N = 4 Operators

The scaling dimension is then

∆ = L+ λ

8π2

M∑
i=1

1
u2
i + 1

4
,

where L is the length of the operator. The pre-factor in Eq. (3.6) is chosen so

that the two-point function is normalised according to Eq. (??), λ = g2
YMN

is the t’ Hooft coupling, and Z is the multiplicative factor that renders the

correlation functions of renormalised operators finite [67]. The |{ui}⟫ is a

normalised Bethe eigenstate

|{ui}⟫ := |{ui}〉√
〈{ui}|{ui}〉

,

where |{ui}〉 can be either the coordinate or algebraic Bethe states. The norm

formula depends on conventions and comes in a variety of forms, with various

prefactors corresponding to this. In our conventions, the norm of the coordinate

Bethe state Eq. (3.2) is given by

〈{ui}|{ui}〉 =
M∏
i=1

(
u2
i + 1

4
)

detG , (3.7)

where the Gaudin matrix G is given by

Gij = ∂Φj({uk})
∂ui

(3.8)

and the functions Φi({uj}) are

Φi({uj})) = −i ln
[(ui − i

2
ui + i

2

)L M∏
j=1
j 6=i

ui − uj + i

ui − uj − i

]
. (3.9)

This norm formula was conjectured by Gaudin [68] and later proven in the

framework of the algebraic Bethe ansatz [69].

The local operators should be gauge invariant, and therefore, they are given

as a trace of the the adjoint scalar fields [61]. The cyclicity of the trace then

implies that the total momentum of the Bethe state should be a
∑

i pi = 0
mod 2π. Therefore, the solutions of Bethe equations that corresponds local

operators have to satisfy
M∏
i=1

ui + i
2

ui − i
2

= 1 . (3.10)

19



3. Computing one-point functions

The coordinate Bethe ansatz can also be formulated for integrable spin

chains based on higher rank groups through a nesting procedure (e.g. the

exposition in [70]). The discussion above could be extended to the various

sectors of PSU(2,2|4) where such an ansatz is known [71,72].

3.1.1 On solving Bethe ansatz equations

The coordinate and algebraic Bethe ansatz approaches have in common that for

the states Eq. (3.2) or Eq. (3.5) to be eigenstates of the Hamiltonian Eq. (3.1),

the rapidities have to satisfy a set of algebraic equations known as the Bethe

ansatz equations (BAE). For the SU(2) spin chain discussed above they take

the form (
ui + i

2
ui − i

2

)L
=

M∏
j=1
j 6=i

ui − uj + i

ui − uj − i
. (3.11)

A solution is known as Bethe roots {ui} and they can be encoded in a Baxter

polynomial

Q(u) =
M∏
i=1

(u− ui) .

Note that the commutativity of the creation operators [B(u), B(v)] = 0 means

that solutions that are merely permutations of the rapidities produces the same

states and should therefore be considered the same solution. The basic idea is

that to each solution {ui} of Eq. (3.11) there should correspond an eigenstate

|{ui}〉 of the spin chain. However, this is not the case, and choosing admissible

solutions is more subtle.

Solutions with coinciding rapidities are believed not to be physical for the

XXX 1
2

spin chain [73] e.g. one should not consider states Eq. (3.5) of the form

{u, u, u1, . . . , uM−2} .

This is formulated as the Pauli exclusion completeness conjecture: That the

complete spectrum of the Heisenberg spin chain are constructed from states

Eq- (3.5) with pairwise distinct rapidities {ui} such that ui 6= uj for all i, j

with i 6= j [73,74].

The states given by Eq. (3.2) and Eq. (3.5) are highest weight states1, i.e.

they are annihilated by the total spin raising operator S+ [65]. The Hilbert

1The SU(2) descendents corresponds to solutions with roots at infinity, in particular
B(∞) ∼ S−.
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3.1. The Bethe Ansatz for N = 4 Operators

space of the XXX 1
2

spin chain is the L-fold tensor product of spin-1
2 represen-

tations of SU(2). The decomposition in terms of irreducible representation

is [73] (1
2

)⊗L
=

L/2⊕
s=0

[(
L

L/2− s

)
−
(

L
L/2− s− 1

)]
s .

In particular, the number of highest weight states in a given subspace of M

excitations is (
L

M

)
−
(

L

M − 1

)
. (3.12)

The Pauli exclusion completeness conjecture requires that there is exactly this

number (3.12) of pairwise distinct solutions {ui} of the Bethe equations. This

is also not the case. There are in general more solutions than necessary. These

extra solutions comes from a class of solutions known as singular solutions

[75, 76]. The singular solutions contains 2-strings { i2 ,−
i
2 , u3, . . . , uM} and

therefore requires a regularisation prescription due to zeros (or infinities) in

wavefunctions and energy. Singular solutions are physical when [76]

M∏
k=3

(
uk + i

2
uk − i

2

)L
= (−1)L . (3.13)

Therefore, the spectrum of the Heisenberg spin chain is given by the Bethe

eigenstates (plus descendents) where the rapidities {ui} are pairwise distinct

and solves the Bethe ansatz equations Eq. (3.11). If the solution is singular it

should also satisfy Eq. (3.13) [76,77]. This was for the simplest spin chain and

much less is known in general [77].

For one-point functions we are particularly interested in the unpaired

operators [53]. A parity operation on the spin chain states changes the order

of the spins [78]

Π |s1 . . . sL〉 = |sL . . . s1〉 .

This Π commutes with the Hamiltonian and flips the sign of the rapidities

u→ −u in the Bethe states [67,78]

Π |{ui}〉 = (−1)M(L+1) |{−ui}〉 .

The parity operatorΠ is therefore block diagonal on the Bethe states |{ui}〉. We

shall distinguish between the unpaired states, that satisfy |{u}〉 = |−{u}〉 and

are parity eigenstates, and the 2×2 blocks for paired states |{u}〉 6= |−{u}〉 [17].
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3. Computing one-point functions

There exists a variety of methods to solve the Bethe equations. An efficient

approach for small spin chains is to solve the QQ-relations∣∣∣∣∣∣Q(u− i
2) Q(u+ i

2)
Q̃(u− i

2) Q̃(u+ i
2)

∣∣∣∣∣∣ ∝ uL , (3.14)

in Baxter polynomials Q(u), Q̃(u) [79]. Eq. (3.14) is the Wronskian of the two

independent polynomial solutions to Baxter’s TQ relation

Λ(u)Q(u) =
(
u+ i

2
)L
Q(u− i) +

(
u− i

2
)L
Q(u+ i) ,

where Λ(u) is the eigenvalue of the transfer matrix t(u) and Q(u) is the Baxter

polynomial. The occurrence of the second Baxter polynomial Q̃(u) can be

understood from solving the BAE for M > L/2. No new states arise as the

they could have be constructed from the other pseudo-vacuum |0̄〉 = |↓ . . . ↓〉
by acting with M ≤ L/2 C(u)s [80]. By demanding both Q(u) and Q̃(u) to be

polynomials one finds only the physical solutions, thereby circumventing the

problems associated with unphysical solutions [79].

Let me note that we will mainly be interested in unpaired states in the

follow. Finding unpaired states can be accomplished by restricting the form of

the polynomials. For unpaired states the rapidities comes as pairs {ui,−ui}.
Therefore, Q1-function only contains even powers

Q1(u) =
M/2∏
j=1

(u− uj)(u+ uj) = uM +
b(M−1)/2c∑

n=0
qnu

2n ,

and as a result, one can choose Q2(u) to only contain odd powers of u. Fur-

thermore, the requirement for cyclic invariant states Eq. (3.10) takes the

form

lim
u→0

Q(u+ i
2)

Q(u− i
2)

= 1 ,

in terms of the Baxter polynomial.

3.2 Tree level one-point Functions

To compute the one-point functions at tree-level, we need to evaluate the overlap

of a Matrix Product State and a Bethe state. In this section, I shall review

some general considerations of these computations. In the interest of clarity,
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3.2. Tree level one-point Functions

the discussion will be written with the SU(2) sector in mind, though most of

the considerations carry over to higher ranks without much modification [56].

The one-point function at leading order is obtained by inserting classical

solutions for the scalars into the expression of the operator Eq. (3.6)

C(0) =
(4π2

λ

)L
2 Z
L

1
2

∑
{si}

tr(Ts1 · · ·TsL)〈s1 · · · sL|{ui}⟫

where φcli (x) = x−1
⊥ Ti is one of the solutions to the classical equation of motion

discussed in chapter 2. By introducing the spin chain state

〈MPS| = tra
L∏
n=1

(∑
s

Ts ⊗ 〈s|
)
, (3.15)

we may write the one-point structure constant as

C(0) =
(4π2

λ

)L
2 Z
L

1
2

〈MPS|{ui}〉
〈{ui}|{ui}〉

1
2
.

The computation of tree-level one-point functions is therefore essentially eval-

uating the overlap between a matrix product state Eq. (3.16) defined by a

classical solution of N = 4 SYM and a Bethe eigenstate describing the operator

in question [53].

3.2.1 Matrix product states

The spin chain state that describes the fuzzy funnel solutions in N = 4
Eq. (3.16) is a matrix product state. A Matrix Product State (MPS) is defined

as

|MPS〉 =
∑
s1

· · ·
∑
sL

tr
(
ts1 . . . tsL

)
|s1 . . . sL〉 , (3.16)

Where the states are denoted by si in the i’th position and {ts} is a list

of matrices, one for each possible state s. Graphically we shall represent a

matrix product state as shown in Fig. 3.1. Matrix product states are widely

Figure 3.1 – A matrix product state

23



3. Computing one-point functions

studied for one-dimensional systems and tensor network computations [81,82].

They provide excellent approximations to ground and low-lying excited states

of gapped Hamiltonians and are therefore interesting in quantum quench

problems [83].

In the following, we shall consider the matrix product states corresponding

to the D3⊥D5k and D3⊥D7k1,k2 fuzzy funnels in N = 4 SYM and restrict to

the SU(2) sector. The matrix product state representing the D5 defect takes

the form

〈D5k| = tra
L∏
x=1

(
t
(k)
3 ⊗ 〈↑|x + t

(k)
1 ⊗ 〈↓|x

)
, (3.17)

where the sum over {si} denotes the summation over all possible configura-

tions of the spins si ∈ {↑, ↓} and the matrices t
(k)
i realise a k-dimensional

representation of the su(2) algebra

[t(k)
i , t

(k)
j ] = iεijkt

(k)
k .

The matrix product state representing the D7 defect takes the form

〈D7k1,k2(α)| = tra
L∏
n=1

(
T

(k1,k2)
3 (α)⊗ 〈↑|x + T

(k1,k2)
1 (α)⊗ 〈↓|x

)
, (3.18)

where the matrices are2

T
(k1,k2)
i (α) := t

(k1)
i ⊗ 1k2 + α1k1 ⊗ t

(k2)
i .

The matrices T
(k1,k2)
i (α) satisfy an α-dependent su(2) algebra

[T (k1,k2)
i (α), T (k1,k2)

i (β)] = iεijkT
(k1,k2)
i (αβ) .

The matrix product states of D3⊥D5k and D3⊥D7n are annihilated by the

third charge of the spin chain3 [53, 59]. In fact, they are annihilated by any

odd charge [56]. As a consequence only unpaired states have non-zero overlap

with the matrix product states.

That the matrix product states are annihilated by the odd charges is a sign

of integrability, as we shall discuss in chapter 4. In the following we will just

2Note the slight generalisation to arbitrary α. D3⊥D7k1,k2 corresponds to α = i.
3Note that for the SO(5)-symmetric D3⊥D7 configuration one have to consider the full

SO(6) sector of scalars to have non-vanishing one-point functions [59]
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3.2. Tree level one-point Functions

focus on Q3. The third charge Q3 acts on three neighbouring sites and can be

expressed in terms of the Hamiltonian density [67]

Q3 =
L∑
j=1

[Hj−1,j ,Hj,j+1] .

For the SU(2) spin chain with L the Q3-density is

Q
(3)
j−1,j,j+1 = [Pj−1,j , Pj,j+1] .

Therefore, for a MPS Eq. (3.16) to be annihilated by Q3 the matrices must

satisfy the conditions

L∑
j=1

tr
(
ts1 . . .

(
tsj tsj+1tsj−1 − tsj+1tsj−1tsj

)
. . . tsL

)
= 0 (3.19)

for any configuration of the spins {si}. This equation is neatly written in

graphics notation (see Fig. 3.2).

Figure 3.2 – The action of Q3 on the Matrix Product State.

The MPS for D3⊥D5k satisfy the conditions Eq. (3.19) as a result of

the su(2) algebra [53]. Starting at L = 12, the MPS for D3⊥D7k1,k2 do not

satisfy Eq. (3.19) and is therefore not annihilated by Q3. This have drastic

consequences for the selection rules and overlap formulae as we shall explore

in section 3.4.

The matrix product states described is in terms are related to the field

theory boundary state. Lorentz invariance provides a useful tool to study

boundary theories in terms of the bulk theory. In a Lorentz-invariant field

theory we can rotate a boundary to a state [84]. A Hamiltonian description

of a quantum field theory is essentially chopping up the partition function in

a foliation along some chosen time direction. The Hamiltonian describes the

evolution along this time direction. When we have a boundary, we can choose

to foliate parallel with the boundary or orthogonal to the boundary. This gives

two different descriptions of the same system. The one-point functions may

therefore be written as

〈Ω| O(x) |Ω〉 ,
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3. Computing one-point functions

where |Ω〉 denotes the vacuum in the theory with a boundary or as

〈B| O(x) |0〉 ,

where |B〉 is the boundary state i.e. the state in the bulk Hilbert space that

describes the boundary in the rotated channel [84, 85]. Therefore, the spin

chain matrix product states are the tree-level building blocks of the boundary

state 〈B| describing the D-brane in terms of N = 4 SYM [53].

3.2.2 Selection Rules

A set if selection rules for the overlaps follows from the properties of the matrix

product states defined in Eq. (3.17) and Eq. (3.18). The selection rules restricts

the set of Bethe states for which we need to explicitly compute the overlap.

The matrix product states are one-site, or translational invariant. Let

U = eiP be the translation (or shift) operator along the spin chain, then the

condition can be written as U |MPS〉 = |MPS〉. In other words, P = 0 where

P is the total lattice momentum. It follows that 〈MPS|{ui}〉 = 0 unless the

Bethe state satisfy
∑

i pi = 0. In terms of the rapidities this is written in

Eq. (3.10). Note that we are simply repeating ourselves as the map between

N = 4 SYM operators and spins already was phrased as an overlap with a

translational invariant matrix product state Eq. (3.6).

Consider the matrix product state Eq. (3.17) for D3⊥D5k. The coefficients

of a state 〈s1 . . . sL| is

tr(ts1 · · · tsL)

where ti are k-dimensional representations of su(2). The su(2) algebra have

the following automorphisms U, V and W [53]

Ut1U
−1 = t1 , Ut2,3U

−1 = −t2,3 , V t3V
−1 = t3 , V t1,2V

−1 = −t1,2 ,

Wt2W
−1 = t2 , Wt1,3W

−1 = −t1,3 . (3.20)

As the trace factor is cyclic these similarity transformations provides restrictions

on the trace factors, e.g. for U we pick up a minus for each t3 therefore [53]

tr(tA3 t1tB3 t1 · · · ) = (−1)L−M tr(tA3 t1tB3 t1 · · · ) .

It follows that L−M must be even if the traces are not to vanish. Similarly

for V it follows that M must be even. In total, the overlaps 〈MPS|{ui}〉 = 0
unless both L and M are even [53]. Now consider the D3⊥D7k1,k2 MPS
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3.2. Tree level one-point Functions

Eq. (3.18). The similarity transformations Eq. (3.20) naturally lifts to the

algebra of T
(k1,k2)
i (α). E.g. for U and T

(k1,k2)
i (α) we have

U1 ⊗ U2T
(k1,k2)
1 (α)U−1

1 ⊗ U−1
2 = T

(k1,k2)
1 (α) ,

and similarly for the rest. This implies that L and M likewise must be even

for the D3⊥D7k1,k2 overlaps to not vanish.

One can derive further identities between the trace factors for D3⊥D7k1,k2

using the similarity transformations Eq. (3.20). A useful observation is that

tr
(
T

(k1,k2)
3 (α)AT (k1,k2)

1 (α)T (k1,k2)
3 (α)B · · ·

)
= tr

(
T

(k1,k2)
3 (−α)AT (k1,k2)

1 (−α)T (k1,k2)
3 (−α)B · · ·

)
, (3.21)

which follows from inserting (1 ⊗W )(1 ⊗W )−1 into the trace factor. This

leads to a further selection rule for α = ±i and k1 = k2 = k. There exists an

invertible matrix S that interchanges the spaces in the Kronecker product, e.g.

S1⊗ tiS−1 = ti ⊗ 1 .

By inserting SS−1 in the trace factor we have that

tr
(
Ts1(i) · · ·TsL(i)

)
= iL tr

(
Ts1(−i) · · ·TsL(−i)

)
.

Since the traces in the SU(2) MPS is invariant under α → −α according to

Eq. (3.21), it follows that for α = ±i and k1 = k2 the length L must satisfy

iL = 1, i.e. L/4 ∈ N, for the traces, and hence the overlaps, to not vanish.

The D3⊥D5k matrix product state Eq. (3.17) is annihilated by all the odd

charges of the spin chain. Therefore, if the overlaps with the on-shell Bethe

states are not to vanish the Bethe states must be unpaired [53]. This is not

the case for the D3⊥D7k1,k2 .

3.2.3 Organising the overlap computations

Having introduced the Bethe states Eq. (3.2) and the matrix product states

Eq. (3.16) we now proceed to evaluate the overlaps. Since the Bethe states are

explicitly known, we in principle can compute any the overlap with any state

on a case by case basis. However, we are after an integrability-based closed

formula for the overlaps expressed in terms of the rapidities, the length of the

spin chain L and the number of excitations M .
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3. Computing one-point functions

The overlap between a Bethe states Eq. (3.2) and a matrix product state

Eq. (3.16) takes the form

〈MPS|{ui}〉 = N
∑

n1<···<nM

( ∑
σ∈SM

Aσ

M∏
j=1

x
nj
σj

)
〈MPS|{ni}〉 , (3.22)

where {ni} is the positions of the magnons, σ is a permutation of M elements,

Aσ is the amplitude given its decomposition into two-body scatterings according

to Eq. (3.3), and xi are the fugacities xk = eipk . Here N is a normalisation. In

reporting the overlaps we always choose the phase to be positive and real.

We shall denote the wavefunction of the MPS as the trace factor. It is

given as the trace of distributing the excitations t1 according to {ni} on the

vacuum of t3’s:

〈MPS|{ni}〉 = tr[· · · t1
n1
· · · t1

nM
· · · ] =: T ({ni}) , (3.23)

The trace factor is given as

T ({ni}) = Tr
(
t
L−δM,1−1
3 t1

M−1∏
i=1

t
δi+1,i
3 t1

)
, (3.24)

where we have introduced the distance between the excitations δij = ni − nj .
We can think of the overlap computation as integrating the trace factor

against a ”Bethe measure” ∫
dµM T ({ni})

where
∫

dµM denotes the summation over positions weighted by an appropriate

Bethe wavefunction in accordance with Eq. (3.22).

The functions that integrates to zero against the Bethe measure can be given

by the selection rules for the overlap. Since the Bethe states are highest weight

states of weight M
2 all wavefunctions of states with different excitation number

will result in zero as will their descendents. In particular the vacuum states

∆(L)(S−)M |Ω〉 corresponds to a constant wave function, i.e. independent of

{ni}. Therefore we can drop any constant term in the trace factors when

computing the overlap.

The number of terms in the expression Eq. (3.22) is L!
(L−M)! ∼ LM +

O(LM−1) which quickly becomes unwieldy as we increase the size of the spin

chain L and the number of excitations M . To organise the computations it is
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3.2. Tree level one-point Functions

useful to interchange the sums in the overlap and write

〈MPS|{ui}〉 = N
∑
σ∈SM

AσΣσ ,

where we have introduced the sums

Σσ :=
∑

n1<···<nM

T ({ni})
M∏
j=1

x
nj
σj .

When the trace factors Eq. (3.24) have terms that are exponentials in ni,

the sums Σσ become linear combinations of nested geometric sums. The nested

geometric sums can be evaluated in general [53]

∑
1≤n1<...<nM≤L

qn1
1 · · · q

nM
M =

M∏
i=1

qL+1
i

+
M∑
a=1

1−
a∏
i=1

qL+1
i

 a∏
j=1

qjj
1−

∏a
i=j qi

 M∏
j=a+1

qL+1
j∏j

i=a+1 qi − 1

 . (3.25)

In evaluating the overlaps in Mathematica it is useful to have the nested

geometric sums pre-computed as in Eq. (3.25) and introduce a replacement

rule that transforms terms
∏
i q
ni
i into their summed values.

We are interested in on-shell Bethe states and should therefore restrict

the rapidities to satisfy the Bethe equations. For unpaired states, the Bethe

equations can be written as

xLk = xk

M/2∏
j=1,j 6=k

(uk + i)2 − u2
j

(uk − i)2 − u2
j

.

This means that in the overlaps we swap any xLk with xk · · · , thereby decreasing

the powers of xk in the expression.

For unpaired states the rapidities are paired as ui+M
2

= −ui. This means

that the fugacities are inverses

xi+M
2

= x−1
i .

Therefore, the nested geometric sums Eq. (3.25) have spurious poles for un-

paired states. One should take care to expand4 the expressions in ε for

4For implementations in Mathematica it is crucial to SeriesExpand as Limit too often
do not find the limit.
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3. Computing one-point functions

xi+M
2

= x−1
i + ε and consider the limit as ε→ 0. An important observation is

that terms in the geometric sums that have spurious poles are of a form

∼ (xy)L − 1
xy − 1 → L

for y → x−1. Hence, pairing the rapidities produce terms that are higher order

in L. Thus, the highest power of L produced is L
M
2 which corresponds to

having all the paired rapidities sitting next to each other. The permutations σ

that produce the highest power in L are the permutation for which the paired

rapidities stay together. For M magnons, the number of permutations that

contribute to the leading L term is(
M
2
)
! 2

M
2 .

We shall apply this trick to compute the leading L overlaps in D3⊥D7k1,k2 .

However, note that this trick could be very useful for integrable matrix product

states where the overlap is expected to take the form

∼
[∑
a

∏
j

fa(uj)
]

detG+ ,

and detG+ carries all the L-dependence [86].

3.3 D3⊥D5k

In this section, we shall review what is known about overlaps relevant for the

D3⊥D5k one-point functions. We shall focus on the SU(2) sector and the

properties that are relevant for a comparison to the overlaps for D3⊥D7k1,k2

which we will discuss in section 3.4.

As described in section 3.2.2, the overlap is only non-zero for on-shell Bethe

states for unpaired states with an even number of magnons M and for even

length spin chains L. The overlaps between such on-shell Bethe states and the

matrix product state Eq. (3.17) for k = 2 can be written as a determinant [53]

〈D52|{ui}〉 = 1
2L−1

M
2∏
i=1

u2
i + 1

4
ui

√
ui + 1

4 detG+ . (3.26)

This expression was proven in [87] I shall discuss the idea behind this proof in

chapter 4. The matrix G+ is given by

G+
ij = ∂uiΦj + ∂ui+M/2

Φj ,
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3.3. D3⊥D5k

where Φj are the functions Eq. (3.9). This matrix originates from the block

structure of the Gaudin matrix Eq. (3.8) for unpaired states where we have

arranged the rapidities as ui+M/2 = −ui. For unpaired states the norm formula

Eq. (3.7) factorises into

detG = detG+ detG−

where the M
2 ×

M
2 matrices G± are given by [53,88]

G±ij =
( L

u2
i + 1

4
−

M
2∑

k=1
K+
ik

)
δij +K±ij ,

with

K±ij = 2
1 + (ui − uj)2 ±

2
1 + (ui + uj)2 .

The overlap for higher dimensional representations k are given in terms of

k = 2 by the action of a transfer matrix [54]

〈D5k|{ui}〉 = 2L−1 Q(0)
Q( ik2 )

Tk−1(0)〈D52|{ui}〉

where Q(u) is the Baxter polynomial and Tk−1(0) is the transfer matrix in the

k-dimensional irreducible representation [56] (see also Appendix B of [42])

Tk−1(u) =

k−1
2∑

n= 1−k
2

(u+ in)L Q[k]Q[−k]

Q[2n−1]Q[2n+1]

where f [n] := f(u+ n i
2).

3.3.1 Large k overlaps

For comparison with string theory we are interested in a double scaling limit

in which we take k →∞ [52]. The large k expansion of the D3⊥D5k one-point

functions was studied in [53] where they found that the M magnon overlaps

scale as ∼ kL−M+1. Here I shall present an algebraic approach to compute

the necessary trace factors for large representations. While this method seems

more laborious, it is well-defined and easily generalises to D3⊥D7k1,k2 .

Consider the trace factor for the vacuum is tr(t(k)
3 )L. Where t3 is the

diagonal generator of SU(2) in the k-dimensional representation. The trace is

readily evaluated

tr(t(k)
3 )L = −2

BL+1(1−k
2 )

L+ 1 . (3.27)
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3. Computing one-point functions

where Bn(x) is the n’th Bernoulli polynomial given by

Bn(x) =
n∑
p=0

1
p+ 1

p∑
k=0

(−1)k
(
n

k

)
(x+ k)n .

The trace Eq. (3.27) is a polynomial in k of order L+ 1. We find the first few

term

tr(t(k)
3 )L = (−1)L

2L(L+ 1)

(
kL+1 − 1

6L
(2)kL−1 + 7

360(L− 2)(4)kL−3 +O(kL−5)
)
,

(3.28)

where L(n) denotes Pochhammer symbols, or factorial powers, e.g. L(n) =
L(L+ 1) · · · (L+ n− 1).

Consider the trace factor with two excitations, i.e. tr(t1tA3 t1tL−A−2
3 ) where

A = n2 − n1 − 1 and n1, n2 are the positions of the excitations. This trace

factor can be rewritten using the su(2) algebra

tr
[
t1t

A
3 t1t

L−A−2
3

]
= 1

2

bA/2c∑
p=0

(
A

2p

)
tr
[
(k2−1

4 − t23)tL−2p−2
3

]

− 1
2

b(A−1)/2c∑
p=0

(
A

2p+ 1

)
tr
[
tL−2p−2
3

]
leaving only traces of t3 to some power.

Since each trace tr tm3 starts to contribute at order km+1 (see Eq. (3.28))

we can pick out the contributions to the trace factor at each order in k. At

O(kL+1) only p = 0 from the first term contributes

k2

8 tr tL−2
3 − 1

2 tr tL3 .

Note that this will also produce O(kL) terms when expanding the traces.

However, since this contribution to the trace factor is constant it will not

contribute to the overlap (cf. the discussion in section 3.2.3).

The next terms from the expansion gives O(kL−1) pieces. Note that there

will be constant pieces which we drop. The non-constant terms in the trace

factor contributing at order kL−1 are

−1
2A(A− 1) tr tL−2

3 + k2

16A(A− 1) tr tL−4
3 − 1

2A tr tL−2
3 .

We obtain the trace factor at kL−1 by inserting the leading terms of the large k

expansion of the traces. Computing the overlap with this trace factor T ({ni})
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3.4. D3⊥D7k1,k2

as outlined in section 3.2.3, we find

〈D5k|u,−u〉 =
Lu
√
u2 + 1

4

2L−2(L− 3) k
L−1 + O(kL−2)

in agreement with [53].

3.4 D3⊥D7k1,k2

In this section, I will discuss the results on overlap formulae relevant for

the tree-level one-point functions of SU(2)-sector operators in the D3⊥D7k1,k2

defect theory. The matrix product state is given in Eq. (3.18). Various selection

rules were discussed in section 3.2.2 in particular the restriction is that L and

M are even. For k1 = k2 and α = ±i the restriction on the length is enhanced

to L/2 being even.

3.4.1 Closed expressions for small M

For low excitation numbers (M = 0, 2, 4) we may readily evaluate the overlap

Eq. (3.22) and obtain closed-form expressions for the overlaps in terms of

rapidities {ui} and length of the chain L. This provides an explorative study

of the overlaps and will lead us to a conjecture for the leading L term, which

we will discuss in section 3.4.2.

The overlap formula for the vacuum M = 0 at any α is easily expressed as

Bernoulli polynomials, originating from traces of t
(ki)
3 , by the binomial theorem

since [t(k1)
3 ⊗ 1k2 ,1k1 ⊗ t

(k2)
3 ] = 0. The expression is

〈D7k1,k2(α)|0〉 =
L/2∑
q=0

α2q

(L− 2q + 1)(2q + 1)

(
L

2q

)
BL−2q+1(1−k1

2 )B2q+1(1−k2
2 )

(3.29)

For two magnons, M = 2, the trace factor for α = i and k1 = k2 = 2 is

tr[T1T
δn−1
3 T1T

L−δn−1
3 ] = − 1

2
L
2

iδn(1 + (−1)δn)iL/2(1 + iL) ,

where δn = n2 − n1. We see that the traces are zero unless δn = 2m and

L = 4` for m, ` ∈ N. Computing the overlap as outlined in section 3.2.3, we

find

〈D72,2(i)|u,−u〉 = L

2
L
2−2

u
√
u2 + 1

4∣∣∣u2 − 1
4

∣∣∣ . (3.30)
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3. Computing one-point functions

In fact, we may evaluate the overlap for any α and find

〈D72,2(α)|u,−u〉 = L

2L−2

u
√
u2 + 1

4

8α2(u2 + α2

4 )(u2 + 1
4α2 )

F (α) ,

where

F (α) = (1 + 4α2(u2 + 1
4) + α4)

(
(α− 1)L + (α+ 1)L

)
+ (α+ α3)

(
(α− 1)L − (α+ 1)L

)
.

A few checks of this expression are available from various values of α. For α = 0
this is proportional to 〈D52|u,−u〉, for α = i it gives back Eq. (3.30), and for

α = 1 the matrices are the tensor product representation of two 2-dimensional

representations and thus decomposes as 3⊕1. Accordingly the overlap reduces

to the 〈D53|u,−u〉 overlap.

We have computed M = 2 overlaps for a selection of small (k1, k2) =
(2, 3), (3, 2), (3, 3), (2, 4), (4, 4) and was unable to find a recursion formula that

would relate the various overlaps at different (k1, k2). The recursion formula

for D3⊥D5k was expressed in terms of typical ingredients from integrability,

transfer matrix eigenvalues and Baxter polynomials, and can possible be

understood from the integrability of the D5k matrix product state [54,89]. The

fact that Q3 do not annihilate |D7k1,k2〉 means that is this state is not related

to an integrable matrix product boundary state. This may explain the lack of

success in finding a recursion relation.

As we increase the number of magnons, the expressions become more

cumbersome. At four magnons, that is M = 4, the trace factor for α = i and

k1 = k2 = 2 is

Tr
[
T1T

δ21−1
3 T1T

δ32−1
3 T1T

δ43−1
3 T1T

L−δ41−1
3

]
= (−1)

L
4 in1+n2+n3+n4

2
L
2

(
1 + (−1)n1+n2+n3+n4

)
×
(

(−1)n2+n3 + (−1)n1+n2 + (−1)n1+n3 − 1
)
,

where δij = ni − nj and ni for i = 1, 2, 3, 4 are the positions of the excitations.

Computing the overlap produces

〈D72,2(i)|u1, u2,−u1,−u2〉 = 1
2
L
2

u1u2
(
(u2

1 + 1
4)(u2

2 + 1
4)
) 3

2

|u2
1 − 1

4 ||u
2
2 − 1

4 |
detG+ + O(L) .

(3.31)
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Now, the alert reader may have noticed that we have been computing the

overlaps for unpaired states even though there is nothing restricting us to

unpaired states for D3⊥D7k1,k2 as the MPS is not annihilated by Q3. We

are studying the course of events from our current vantage point. The fact

that there is an order L piece in Eq. (3.31) not captured by the Gaudin-like

determinant detG+ was the first clue that the MPS in this setting behaves

qualitatively different from the D3⊥D5k and D3⊥D7n.

3.4.2 A conjecture for large L overlaps

Since the D7k1,k2 matrix product state is not integrable, we shall aim a little

lower than to find the full overlaps. As we discussed in section 3.2.3 the leading

L terms in the overlaps comes from having paired rapidities since each pair

produces a factor of L. Having computed the overlaps for unpaired states for

M = 0, 2, 4, it is tempting to conjecture that the pattern for the leading L

contribution continues to hold

〈D72,2(i)|{ui}〉 = LM/2

2
L
2−2

M/2∏
i=1

ui

√
u2
i + 1

4∣∣∣u2
i −

1
4

∣∣∣ +O(LM/2−1) . (3.32)

This conjectured expression for the overlaps at leading L has further been

tested for M = 6. The trace factor for k1 = k2 = 2 and α = i can be written as

Tr
[
T1T

δ21−1
3 T1T

δ32−1
3 T1T

δ43−1
3 T1T

δ54−1
3 T1T

δ65−1
3 T1T

L−δ61−1
3

]
= (−1)

L
4 i
∑
i ni

2
L
2 +1

(∑
i

(−1)ni −
∑
i<j<k

(−1)ni+nj+nk

+
∑

i<j<k<l<m

(−1)ni+nj+nk+nl+nm

)
.

In computing the overlap, we make use of all the tricks mentioned in sec-

tion 3.2.3. The leading L piece of the overlap thus produced exactly agrees

with Eq. (3.32) giving further support to the conjecture.

3.4.3 Large k1, k2 overlaps

To compare with supergravity computations for D3⊥D7k1,k2 , one would need

the the limit of large fluxes k1 and k2 on the spheres [38]. In section 3.3.1,

we demonstrated an algebraic approach to systematically compute the traces
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3. Computing one-point functions

for large representations in D3⊥D5k. In this section, we will extend this to

compute the leading k1, k2 terms in the D3⊥D7k1,k2 overlaps for M = 0, 2.

The matrices Ti(α) satisfy the algebra

[Ti(α), Tj(β)] = iεijkTk(αβ) .

In the following, we shall adhere to the notation Ti := Ti(α). The commutator

of powers of T3(α) with the other generators is then given as

[T3(α)A, T1(β)] = i

bA−1
2 c∑

p=0

(
A

2p+ 1

)
T2(α2p+1β)T3(α)A−2p−1

+
bA2 c∑
p=1

(
A

2p

)
T1(α2pβ)T3(α)A−2p ,

with a similar expression for [T3(α)A, T2(β)].
The trace factor relevant for M = 2 overlaps can be reordered by commuting

the T3s to the left and using various relations amongst the trace factors. The

final result can be written in terms of traces of T3s

Tr [T1T
A
3 T1T

L−2−A
3 ] =

1
2

bA2 c∑
p=0

(
A

2p

)
Tr
[(

(k
2
1−1
4 + α2p+2 k2

2−1
4 )− T3(iα1+p)T3(−iα1+p)

)
TL−2p−2

3

]

− 1
2

bA−1
2 c∑

p=0

(
A

2p+ 1

)
Tr [T3(α2p+3)TL−2p−3

3 ] .

In this expression, we can take the large k1, k2 limits in a systematic way since

the traces that occur are traces of products of T3’s and these are known sums

of products of Bernoulli polynomials (see M = 0 overlap Eq. (3.29)). The

different α’s might change the weight slightly but the overall scaling with k1

and k2 can easily be estimated.

For the M = 0 overlap we expressed the trace in terms of Bernoulli

polynomials Eq. (3.29). Here we shall write the trace of powers of T3(α)
in terms of the smaller traces. Expanding tr(t(ki)3 )m to leading order in ki

36



3.4. D3⊥D7k1,k2

according to Eq. (3.28) we obtain an expansion with the first few coefficients

Tr [T3(α)L] = 1
2L(L+ 1)(L+ 2)[k1, k2]L+2

α

− 1 + α2

2L6 [k1, k2]Lα

+ (7 + 10α2 + 7α4)L(L− 1)
2L360 [k1, k2]L−2

α + O(kL−4) ,

(3.33)

where we have introduced the notation

[k1, k2]Lα := (k1 + αk2)L − (k1 − αk2)L

2α . (3.34)

This reduces to the imaginary part of (k1 + ik2)L when α = i

(k1 + ik2)L+2 − (k1 − ik2)L+2

2i
= Im(k1 + ik2)L+2

= (k2
1 + k2

2)L/2+1 sin((m+ 2) arctan(k1
k2

)) .

Note that this generalises to D7k1,k2 , the observation made in [53] that overlaps

for M = 0 only contain odd powers of k. Here it is the combination Eq. (3.34)

that only occurs with odd powers. Let me note that a number of large k

expressions for traces, including the one above, have also been found in [51]

where ψ0 := arctan(k1
k2

).
From (3.33) we see that the sum of exponents of k1 and k2 for the leading

term at large k1, k2 is L+ 2. Furthermore this does not depend on the αis in

the T3s since there will always be a term without αs: tr1(tm3 ) tr2(1) ∼ kL+1
1 k2.

Hence, we can simply count the weight in ks by the number of T3s.

Returning to the M = 2 trace factor at large k1, k2. From (3.23) we see

that the last term have less T3s than the first and is hence subleading in k1, k2.

For the first term, the number of T3s decrease with p, hence we find the leading

term in k1, k2 for p = 0. Therefore, the trace is

Tr [T1T
A
3 T1T

L−2−A
3 ] =

1
2

(
k2

1
4 + α2 k2

2
4

)
Tr
[
TL−2

3

]
− 1

2 Tr
[
T3(iα)T3(−iα)TL−2

3

]
+ O(kL+1)

for large k1, k2. This do not depend on how the excitations are arranged. That

is, the right hand side is independent of A = n2−n1−1. Therefore, the M = 2
overlap vanishes at this order in k1, k2. We turn to the sub-leading pieces to

get a non-trivial contribution to the overlaps. The first non-constant terms in

the trace factor are of order kL
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Tr [T1T
A
3 T1T

L−2−A
3 ] ∼

1
2 Tr [(−1

4 −
α2

4 )TL−2
3 ]− 1

2ATr [T3(α3)TL−3
3 ]

+ 1
4A(A− 1)(k

2
1
4 + α4 k2

2
4 ) Tr [TL−4

3 ]

− 1
4A(A− 1) Tr [T3(iα2)T3(−iα2)TL−4

3 ] + O(kL−1) .

Evaluating the resulting traces at leading order in k1, k2 we find the explicit

trace factor

Tr [T1T
A
3 T1T

L−A−2
3 ] = − iL(k2

1 + k2
2)L/2 sin((L− 2)ψ0)

2L−1(L− 1)(L− 2)(L− 3) A(L−2−A)+O(kL−1)

where A = n2 − n1 − 1. The overlap can now be computed along the lines

described in section 3.2.3. We find that for M = 2 and α = i the overlap is

〈D7k1,k2(i)|u,−u〉 =
Lu
√
u2 + 1

4

2L−2(L− 2)(L− 3)(k2
1 +k2

2)L/2 sin((L−2)ψ0)+O(kL−1) .

For k1 = k2 = k the overlap simplifies further to

〈D7k,k(i)|u,−u〉 =
LkLu

√
u2 + 1

4

2L/2−2(L− 2)(L− 3)
+O(kL−1) .

3.5 Discussion & Outlook

This chapter dealt with the explicit computation of spin chain overlaps relevant

for the tree-level one-point functions in N = 4 SYM with domain walls. The

new results presented in this chapter concern the explicit computation of

the overlaps of on-shell Bethe states and the D7k1,k2 matrix product state

relevant for the tree-level one-point functions of SU(2)-sector operators in the

SO(3)×SO(3) symmetric D7 probe brane field theory.

We have seen that while the D5k and D7k1,k2 matrix product states look

very similar, i.e. containing one or two spheres, the resulting overlap formulas

are qualitatively different. In contrast to D5k, the D7k1,k2 overlaps of unpaired

states have corrections at order LM/2−1 to, what may be called, the integrable

piece, i.e. term proportional to detG+, as we have explicitly seen for M = 4, 6.

Furthermore, paired states have non-zero overlaps this have been verified

numerically for M = 6. At the time, this was contradicting the standard lore;
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that the matrix product states for the fuzzy funnel domain walls should be

integrable.

In the process of computing overlaps, we have refined some tricks. In

particular, the observation that the leading L terms are given by the unpaired

states. This means that one can restrict the number of sums Σσ needed to

determine the overlap at leading order in L to the permutations σ that keeps

the paired rapidities together, thereby bringing the number of sums down

from M ! to (M/2)!2M/2. This have lead to a conjecture for the leading L

expressions of the D72,2 overlaps Eq. (3.32). The conjecture have been tested

for M = 0, 2, 4, 6. It would be interesting to extend this analysis to the full

SO(6).

For the eventual comparison to string theory, we have computed the leading

piece of the overlaps M = 0, 2 for large representations k1, k2. To this end

we have considered a systematic algebraic approach to finding the expansion

of trace factors in k1, k2. To test the method we have affirmed the leading k

term M = 2 in the D5k setup. Applying this to D7k1,k2 gives the leading k1, k2

M = 2 overlap which for α = i have a particularly simple form.

The simple form of the overlaps at leading L, for k1 = k2 = 2 and any M ,

and large k1, k2, for α = i, indicates that we may obtain simple expressions

for the overlaps in these limits. In this regard it would be very interesting

to extend the analysis of leading k1, k2 to higher M to form a conjecture. It

is exciting to speculate that the large L leading k1, k2 could possibly have a

simple form in integrability terms even though the matrix product state itself

is not an integrable state.

39





4 On the integrability of

one-point functions

“It is well known that a vital ingredient of success is

not knowing that what you’re attempting can’t be

done.”
— T. Prachett, Equal Rites

In this chapter, we shall discuss the integrability of one-point functions. In

chapter 3 we saw that one-point functions in D3⊥D5 can written formulation

in terms of Baxter’s Q-functions.The Matrix Product State was annihilated

by the parity odd charges of the spin chain. This resulted in a selection rule

for overlaps; that the Bethe roots be paired, i.e. {ui} = {−ui}. Interestingly,

the D3⊥D7 systems has two different behaviours: For the SO(5) symmetric

configuration, the Matrix Product State is annihilated by all the odd charges

whereas for the SO(3)×SO(3) symmetric system, the Matrix Product State is

not. In this chapter we shall contemplate these observations.

The original motivation for the investigations in the current chapter was

to generalise, if possible, the proof of the overlap formula in the SU(2)-sector

based on a 6-vertex model [87] to the sectors SU(3) and SO(6) for which the

overlap formulas are conjectured [55,56]. We shall return to this question in

the outlook, however we will initially review the argument for the SU(2) sector

in section 4.2.

In the process we will need to review Sklyanin’s algebraic construction of

integrable open quantum spin chains in section 4.1. The construction is based

on solutions of the reflection equation and in particular we shall report on a

novel solution describing boundary conditions for an open SO(6) spin chain

with SO(3)× SO(3) boundary symmetry.
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4. On the integrability of one-point functions

By exploiting the underlying integrable structure of N = 4 super Yang-Mills

theory we can sometimes compute observables in at loop orders inaccessible

by Feynman diagrammatic techniques. To go beyond the asymptotic results

for long operators, we need the wrapping corrections. The philosophy of the

thermodynamic Bethe ansatz (TBA) is that this corresponds to having the

mirror theory at finite temperature. The precise application to one-point

functions is still an on-going research project. It is our hope that the open

spin chain in the cross-channel for the SO(6) sector will provide useful insights

in this regard.

4.1 Integrable open spin chains

In the following I shall review Sklyanin’s approach to construct integrable open

spin chains [90] based on consistency conditions for factorised scattering on a

half-space [91].

The R-matrix Rab(u−v) is a solution of the Yang-Baxter equation Eq. (4.2).

We shall graphically denote the R-matrix as in Fig. 4.1 In the Quantum In-

Figure 4.1 – The R-matrix. Note we take time to flow North-East.

verse Scattering Method the R-matrix acts as an intertwiner for local quantum

Lax operators Lai(u) from which one builds a set of commuting matrices t(u)
indexed by u ∈ C. Expanding t(u) in the complex parameter defines a set of

commuting observables Qi amongst which one can choose a Hamiltonian thus

obtaining a quantum integrable system [66]. The Yang-Baxter equation is a

consistency for scattering amplitudes to factorise into 2-body amplitudes.

In the following we assume the R-matrix to be PT -symmetric

R21(u) = RT
12(u) .

42



4.1. Integrable open spin chains

Figure 4.2 – The Yang-Baxter equation.

Note that a ’symmetric’R-matrix is both P - and T -symmetric, R12(u) = R21(u)
and R12(u) = RT

12. There exists non-symmetric, yet PT -symmetric, R-matrices

[92]. A R-matrix is said to be unitary if it satisfies

R12(u)R21(−u) = ρ(u)1 (4.1)

and cross-unitary if

Rt2
12(u)M2R

t2
21(−u− η)M−1

2 = ρ̃(u)1 (4.2)

where ρ(u), ρ̃(u) and η are model-dependent quantities. A large class of known

R-matrices fall in to this category [92,93]

An open spin chain is a quantum system based on the Hilbert space

containing a factor
⊗

i Vi where Vi corresponds to the Hilbert space of the

spin at site i. One can construct an open integrable spin chain from the

solutions of the boundary Yang-Baxter equation, also known as the reflection

equation [90, 94]. Like the Yang-Baxter equation, the reflection equation

also arises from a consistency condition for factorisable scattering on a half

space [91]. The reflection equation takes the form

K−2 (v)R12(u+ v)K−1 (u)R21(u− v)

= R12(u− v)K−1 (u)R21(u+ v)K−2 (v) (4.3)

and is depicted in Fig. 4.3

Consider the bulk monodromy matrix Ta(u) obtained from scattering an

auxiliary spin along the chain from left to right. This is given as the product

of Lax operators

Ta(u) = RaL(u− ξL) · · ·Ra1(u− ξ1)
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4. On the integrability of one-point functions

=

Figure 4.3 – The boundary Yang-Baxter equation. The intersections corresponds
to R-matrices and the scattering off of the wall is given by the K-matrix.

where ξi are inhomogeneity parameters. Let T̄ be the bulk monodromy matrix

of the spin chain transversed in opposite order

T̄a(u) = R1a(u+ ξ1) · · ·RLa(u+ ξL)

From these we can then construct Sklyanin’s monodromy operator T for the

integrable open spin chain according to

T −a (u) := Ta(u)K−a (u)T̄a(u) (4.4)

where Ta(u) and T̄a(u) are the monodromies defined above for an auxiliary

spin scattering with full spin chain going respectively right and left along the

chain. K−a (u) is a solution of the boundary Yang-Baxter equation Eq. (4.3)

for scattering of the auxiliary spin on the left boundary. A diagrammatic

representation is given in Fig. 4.4.

Figure 4.4 – Sklyanin’s monodromy matrix for reflection on the left boundary
T −a (u) as defined in Eq (4.4).

The operators, i.e. the auxiliary space components, of the open spin chain

monodromy matrix Ta given in Eq. 4.4 satisfy the reflection algebra

T −2 (v)R12(u+ v)T −1 (u)R21(u− v) = R12(u− v)T −1 (u)R21(u+ v)T −2 (v)
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4.1. Integrable open spin chains

This follows from the reflection equation Eq. (4.3) by inserting quantum

spaces 1, 2, . . . , L from the right and moving them towards the boundary using

the Yang-Baxter relation Fig. 4.2. Similar to the ’train’-argument for the

fundamental commutation relations of the Yang-Baxter algebra in the closed

spin chain case this argument is easier drawn than written see Fig. 4.5.

Figure 4.5 – The ’train’ argument for lifting the reflection equation to an algebra
of quantum operators on the spin chain.

After scattering off of the right end the auxiliary spin have fully transversed

the spin chain. Hence we consider the double-row transfer matrix t(u) given by

t(u) = tra[K+
a (u)T −a (u)]

where the trace is understood to be taken over the auxiliary space and K+
a (u)

satisfies the boundary Yang-Baxter equation for scattering off of the right end

K+
b (v)Rtb,−1,tb

ba (u+ v)K+
a (u)R−1

ab (u− v)

= R−1
ba (u− v)K+

a (u)Rta,−1,ta
ab (u+ v)K+

b (v) . (4.5)

Note that due to unitarity Eq. (4.1) and cross-unitarity Eq. (4.2) the various

operations on the R-matrix are nothing but matrix notation book-keeping for

how the various legs of the linear operators are connected. In particular the

right and left reflection algebras are isomorphic in the sense that if K−(u)
satisfy the reflection equation Eq. (4.3) then K+(u) = K−(−u− η) satisfy the

dual reflection equation Eq. (4.5).

The integrability of the spin chain models follows, since the double-row

transfer matrices t(u) and t(v) defined according to Eq. 4.1 commutes for

arbitrary u, v ∈ C. That the double-row transfer matrices commute can be

seen by an explicit computation [95].
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4.2 Vertex models and spin chain overlaps

Integrable 1+1 dimensional quantum systems and exactly solvable statistical

mechanics systems in 2 dimensions are intimately related [66,96,97]. We can

interpret the R-matrix as specifying the local Boltzmann weights of a nearest

neighbour lattice model in 2 dimensions [96]. That is, for the four possible

configuration of states on the legs in Fig. 4.1 we assign a weight

[R]βδαγ ∼ e−βε(α,β,γ,δ) ,

where ε(α, β, γ, δ) is the energy of the local configuration with states α, β, γ, δ.

Corresponding to the the XXZ1/2 spin chain is the so-called 6-vertex model.

The name derives from the 6 the attainable vertex configurations in the statis-

tical ensemble. The restriction to these vertices follows from spin conservation

at the vertices, known as the ice rule1. The R-matrix has the expression

Rab(u− v) = (u− v)1ab + iPab =


u− v + i 0 0 0

0 u− v i 0
0 i u− v 0
0 0 0 u− v + i

 .

Figure 4.6 – The three different types vertices defined by the rational R-matrix.
The types of the vertices are named in order: a-type (two lines of the same
flavour intersects), b-type (wo differently flavoured lines intersect) and, c-type
(two differently flavoured lines intersect, out going lines are swapped compared to
b-type).

The weight of a particular configuration of the full lattice is the product of

local contribution. To obtain the partition function we sum the weights of all

1The 6-vertex model is also known as the square ice model as it provides a 2 dimensional
approximation of the hydrogen-bonded hexagonal structure of type Ih water ice crystals [98].
Each vertex then represents a water molecule with the legs signifying the hydrogen bonds
to other water molecules of the crystal [99]. Interestingly, square ice has supposedly been
observed for water confined to 2 dimensions obtained by squeezing a water droplet between
sheets of graphene [100].
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4.2. Vertex models and spin chain overlaps

configurations. Schematically

Z ∼ 〈si| 〈si|
∑

RR · · ·R |si〉 |si〉

In the algebraic Bethe ansatz the Bethe eigenstates are given as

B(uM ) · · ·B(u1) |0〉 .

Thus, the eigenstates corresponds to a partition function of the 6-vertex model

with boundary conditions imposed on three sides. The bottom legs have all

spin up corresponding to the pseudo-vacuum |0〉, while the left side have spin

down and the right, spin up. Similarly, the dual states are by given with an

unspecified lower boundary and the upper boundary being the pseudo-vacuum.

The overlap of a Bethe state with any configuration of spins |{si}〉 can

be written as a 6-vertex model with boundary conditions specified by the

B-operators, the pseudo-vacuum |0〉 and the specified configuration {si}. This

is simply the statement that the 6-vertex model specifies the wave function of

the Bethe state.

We are particularly interested in states that correspond to integrable

boundary conditions of the vertex model. Integrable boundary conditions

satisfy the boundary Yang-Baxter equation allowing moves of the type shown

in Fig. 4.3.

The most general integrable boundary conditions for the (rational) 6-vertex

model is given by the K-matrix [101]

K−(u) =

u+ ξ λu

µu u− ξ

 , (4.6)

where ξ, λ and µ are free parameters. This can be seen as follows: Consider

the most general 2× 2 matrix-valued function of u. Note that any solution to

the reflection equation Eq. (4.3) implies a family of solutions since an arbitrary

u-dependent scalar factor simply cancels out. Thus, let us rescale the first

entry to 1 and consider the matrix 1 b(u)
c(u) d(u)

 .

Inserting this into the reflection equation Eq. (4.3) implies functional equations

for the coefficient functions b(u), c(u) and d(u). Amongst the equations only
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one involves d(u):

v − u+
(
u+ v

)
d(v) + d(u)

(
−u− v +

(
u− v

)
d(v)

)
= 0 . (4.7)

From Eq. (4.7) follows that the dependence on u is

d(u) = u− ξ
u+ ξ

,

for a free parameter ξ. This already fixes the diagonal elements of the solution

Eq. (4.6). By inserting this expression for d(u) into the remaining functional

equations, the problem reduces to solving system

b(u)c(v) = b(u)c(v) ,

v(u+ ξ)c(u) = u(v + ξ)c(v) .

The first equation implies that b(u) ∝ c(u), while the last equation gives that

c(u) takes the form

c(u) = µu

u+ ξ
,

where µ is a free parameter.

The partition function with integrable boundary conditions for λ = µ = 0,

was computed in [102] using an appropriate generalisation of the method used

to prove the Bethe norm [103]. This argument also generalises to λ 6= 0 [87].

In section 4.2.1, I shall review the computation of the partition function of the

six vertex model with a partial reflecting end.

4.2.1 Partition function of the six vertex model with partial

reflecting end

The partition function for the six-vertex model on a N × 2N lattice with

a reflecting end boundary condition on one side and domain wall boundary

conditions on the other sides was determined in [102] by the Korepin-Izergin

method. The Korepin-Izergin methods works by proposing a determinant

expression and showing that it satisfy certain analytic properties and recursion

formulas. The properties of the partition function follows from the algebraic

Bethe Ansatz for open spin chains with a diagonal K-matrix (λ = µ = 0 in

Eq. (4.6)). In the following we shall review the arguments for the non-diagonal

case with λ 6= 0 based on [87].
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The partition function on the M ×L lattice is given as the overlap between

an L/2-fold product of two-site boundary states |K(u)〉 and a Bethe state |{ui}〉
on a L notes long closed spin chain

Z({ui}, {va}, ξ, λ, µ) = 〈K(v1)|12 · · · 〈K(vN )|L−1,LB(uM ) · · ·B(u1) |0〉 .
(4.8)

Here B(ui) is the algebraic Bethe ansatz B-operator that creates an excitation

with rapidity ui. Note that we shall not initially require the Bethe state to

be on-shell i.e. we let {ui} be arbitrary complex parameters for now. The

coefficients ξ, λ and µ are arbitrary complex parameters characterising the

couplings at the ends of the open chain. We will consider the case where µ = 0.

The partition function can be depicted as Fig. 4.7 in graphic notation.

Figure 4.7 – The domain wall partition function for the six-vertex model with
a partial reflecting end. Note that it also can be read as the overlap between a
two-site product state and a Bethe state. The domain wall boundary conditions
(DW) for the horizontal lines picks out the B-operator.

The boundary dual states 〈K(u)| satisfy a reflection equation [87]

〈K34(v)⊗K12(u)|R14(u+ v)R13(u− v)

= 〈K12(u)⊗K34(v)|R23(u+ v)R24(u− v) (4.9)

The general boundary state that solves this equation takes the form [104]

〈K(u)|12 =
∑
i,j

[K(−u− i/2)M ]i,j 〈i|1 ⊗ 〈j|2 (4.10)
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where the K-matrix Eq. (4.6) is a generic solution of the reflection equation

Eq. (4.3) and M = ( 0 −i
i 0 ). Note also the appearance of the crossing parameter

i/2. This will be discussed in section 4.3. Explicitly, the generic boundary state

takes the form

〈K(u)|12 = 〈10|
(
u+ i

2 +ξ
)

+〈01|
(
u+ i

2−ξ
)

+〈00|λ
(
u+ i

2

)
+〈11|µ

(
u+ i

2

)
.

(4.11)

The partition function Eq. (4.8) is symmetric in {ui}, i.e. interchanging

ui ↔ uj does not change the value. This follows from the Yang-Baxter algebra

for the B-operators since [B(u), B(v)] = 0. The partition function is similarly

symmetric in {vi} as a result of the boundary Yang-Baxter equation Eq. (4.9).

The reflection algebra implies that moving a leg from one ∩ across an adjacent

∩ one may swap the position. The boundary conditions on the lower end freezes

the two intersections and yields an identical overall factor in both diagrams

thereby proving symmetry in {vi}.
The partition function is a polynomial in ui of degree L − 1. This can

be seen as follows: Consider the horizontal line corresponding to B(ui). The

domain wall boundary conditions injects an excitation on the left and require

that it does not come out on the right. By spin conservation this excess spin

must go somewhere – that is, in any viable configuration along the line labelled

by ui there has to be a least one type c vertex. The weight of the other vertices

is ∝ ui while the type c does not depend on ui hence the weight of the line is

a polynomial in ui.

The partition functions Z({ui}, {va}) satisfy a recursion relation. Parts

of the configuration “freezes” when evaluated at a specific rapidity. Thereby,

equating the partition function on a M × L lattice at a specific rapidity point

to the partition function on a smaller (M − 1)× (L− 1) lattice. To establish

this recursion relation we shall consider the vertex in the lower left corner.

The lower left vertex have to be a b- or c-type due to the domain wall

boundary conditions. The b vertex depends on the difference u1 − (−v1) and

thus vanishes for u1 = −v1. For u1 = −v1, the lower left vertex is fixed to

be the appropriate c-type vertex. By specifing the vertex in the lower left

corner all the vertices freezes along the horizontal line and the first ∩ by spin

conservation (see Fig. 4.8). Above the freezing line, one has the partition

function on a (M − 1) × (L − 2) sublattice with partially reflecting domain

wall boundary conditions. Note that µ = 0 is crucial for this freezing argument

to work.
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4.2. Vertex models and spin chain overlaps

Figure 4.8 – Recursion relation for six-vertex partition function with partial
reflecting end.

This extends trivially to any pair of horizontal line and vertical ∩s since the

partition function is symmetric in ui and va. Therefore, we have the recursion

relation for the partition function

Z({ui}, {va})
∣∣
uj=−vb

= (−2vb + i)i(vb + i
2 + ξ)

×
∏
i 6=j

(
(ui + vb + i)(ui − vb)

)∏
a6=b

(v2
b − v2

a)Z({̂ui}, {̂va}) , (4.12)

where {̂ui} is the set of rapidities without uj . Similarly, {̂va} is the inhomo-

geneities without vb. Furthermore, a similar argument can be made for the

lower right corner when ui = va.

For M = 0, that is no horizontal lines, the partition function is simply

given as a product of the |00〉 coefficients of the boundary state:

Z(∅, {va}; ξ, λ) = λ
L
2

L/2∏
a=1

(va + i
2) .

Together with the properties derived above, this recursively fix the partition

function by Lagrange interpolation. For M > 0 the partition function is a

polynomial in ui of degree L− 1 for i = 1, . . . ,M . The partition function at

ui = ±va for a = 1, . . . , L/2 is given by Eq. (4.12). For each ui this gives L

points that the degree L−1 polynomial should intersect and thus fix it uniquely.

The partition function has various determinant forms [87] including as a M×M
determinant. This generalises the Tsuchiya’s determinant formula [102] to

the case where λ 6= 0. In the limit where the rapidities {ui} are on-shell the
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4. On the integrability of one-point functions

partition function vanishes unless the rapidities are paired in a parity-invariant

way {ui} = {−ui}. For paired rapidities the M ×M determinant takes a

Gaudin-like form ∝ detG+ [87,88].

The last step in proving the overlap formula Eq. (3.26) using the partition

function discussed above depends on relating the boundary state to the k = 2
D3⊥D5 matrix product state. The matrix product state Eq. (3.17) for k = 2
is related to the Néel state [54,105] which in turn is related to the boundary

state [106]. The Néel state is the anti-ferromagnetically ordered spin chain

state

|Néel〉 = |↑↓↑↓ · · · ↑↓〉+ |↓↑↓↑ · · · ↓↑〉 .

Note that for even L the number of spins down M is equal to the number of

spins up L−M i.e. M = L/2. The precise relation is [53]

|MPSM 〉 = 1
2L( i

2)M
|NéelM 〉+ S− |· · ·〉 , (4.13)

where |MPSM 〉 = PM |MPS〉 is the projection onto the M magnon sector of

the matrix product state and |NéelM 〉 is the partial Néel state [87]

|NéelM 〉 =
∑

x1<···<xM
|xi−xj|even

|↑ · · · ↑ ↓
x1
↑ · · · ↓

x2
· · · ↓

xM

· · · ↑〉 .

Consider the boundary state Eq. (4.11) with the parameters u = 0, ξ = ± i
2

and µ = 0, λ = −2i. This produces the states

〈K(0)|
∣∣
ξ= i

2 ,λ=−2i,µ=0 = 〈10| i + 〈00| ,

〈K(0)|
∣∣
ξ=− i

2 ,λ=−2i,µ=0 = 〈01| i + 〈00| .
(4.14)

The L/2-fold tensor product of the states in Eq. (4.14) generate states with

M = 0, . . . , L2 spins down in a background of spins up. Note that the states

generated by ξ = ± i
2 differ by a one-site shift of the spins. Therefore, the sum

of these states produce all M -partial Néel states from M = 0, . . . , L2
L/2⊗
i=1

(
〈10| i + 〈00|

)
+

L/2⊗
i=1

(
〈01| i + 〈00|

)
=

L/2∑
M=0

iM 〈NéelM | .

The on-shell Bethe states |{ui}〉Mi=1 are highest weight states with exactly M

magnons thus the overlap picks out the M -partial Néel state in the above sum.

Therefore, the overlap between the partial Néel state and the Bethe states
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4.3. The MPS as integrable boundary states

can be expressed through the partition functions Eq. (4.8) for the partially

reflecting six-vertex model as

〈NéelM |{ui}〉 = (−i)M
(
Z({ui}, 0, i

2 ,−2i, 0) + Z({ui}, 0,− i
2 ,−2i, 0)

)
.

The partial Néel state is cohomological to the projected matrix product state

Eq. (4.13) and hence the overlap between the matrix product state and the

on-shell Bethe state can be written as

〈MPS|{ui}〉 = 1
2L−M

(
Z({ui}, 0, i

2 ,−2i, 0) + Z({ui}, 0,− i
2 ,−2i, 0)

)
.

Finally, one obtains the determinant expression for the k = 2 overlap Eq. (3.26)

by taking the limit where the rapidities are parity invariant and on-shell in the

determinant representation of the partition function [87].

Note that we did not refer to the algebraic Bethe ansatz in the open spin

chain channel. That the partition function is symmetric in the inhomogeneity

parameters {va} follows from the commutativity of the open spin chain B-

operators [102,106]. However, the algebraic Bethe ansatz is more involved for

the integrable open spin chains with non-diagonal boundary K-matrices since

the number of magnons is not conserved and one lacks an obvious pseudo-

vacuum reference state [107]. For the triangular K-matrix there exists an

algebraic Bethe ansatz [108,109]. Furthermore, there exists a proposal for the

general boundaries [110]. Presumably, the open spin chain algebraic Bethe

ansatz could equally have been used to establish the properties of the partition

function based on the algebra in line with [69]. A determinant formula for

the trigonometric six-vertex model with arbitrary reflecting end was found

in [111]. With the partition function for the general boundary K-matrix one

could presumably prove the conjectured overlap formula for arbitrary two-site

integrable states proposed in [86].

4.3 The MPS as integrable boundary states

We have seen that integrable boundary conditions on a lattice model corre-

sponds to specifying a two-site invariant state in the quantum spaces. Thus,

the overlap between these boundary states and a Bethe state can be interpreted

as an exactly solvable vertex model where the bulk weights solve the Yang-

Baxter equation and the boundary weights solve the corresponding boundary

Yang-Baxter equation.

53



4. On the integrability of one-point functions

In general we can express the overlaps between Bethe eigenstates and our

matrix product states as a partition function of an exactly solvable vertex

model when the projection of the matrix product state |MPS〉 for each sector

M is equal to a projection of the boundary state at some specified rapidity

plus a lower weight piece. That is when the states satisfy

PM |MPS〉 ∝ PM |K(0)〉+ S− |· · ·〉

for all M = 1, . . . , L/2 and for some states |· · ·〉. We shall refer to this as |MPS〉
and |K(0)〉 being cohomologically identical. Note that this implies that the

overlaps with Bethe states {ui}Mi=1 agree for all M , i.e.

〈MPS|{ui}Mi=1〉 ∝ 〈K(0)|{ui}Mi=1〉 .

This follows immediately from the fact that on-shell Bethe states are highest

weight states

S+ |{ui}Mi=1〉 .

This have been formulated for su(2) but can be formulated in analogy for

higher rank spin chains. In section 4.3.2, we shall see how the cohomology

condition looks in the case of su(3). This is the most general requirement for

the overlaps to agree. However, in the following we shall see that the MPS in

many cases can be expressed as a boundary state for specified parameters [104].

The matrix product state of both the D3⊥D5k and the D3⊥D7n are

annihilated by all the odd charges leading to the Gaudin-like determinant

structure of the one-point functions. In contrast, the D3⊥D7k1,k2 non-zero

overlaps for paired states which spoil this structure.

That a state is annihilated by the odd charges of the spin chain,

Q2p+1 |Ψ〉 = 0 , (4.15)

has recently been proposed as a condition for integrability of the state in the

context of quantum quench dynamics [104] in analogy with the condition for

integrable boundary states in 2d field theories [112]. In section 4.3.1 we shall

analyse the reflection equation Eq. (4.9) for the dual states. A solution to

the reflection equation for states (or dual states) can reasonably be called

’integrable’ as they correspond to integrable boundary conditions for open spin

chain in the rotated channel [104]. Furthermore, by standard manipulations

using the boundary Yang-Baxter equations it can be shown can show that any

solution to the reflection equation for states satisfy the proposed integrability

condition Eq. (4.15) [104].
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4.3. The MPS as integrable boundary states

4.3.1 The boundary Yang-Baxter for dual states

In the proof of the overlap formula above we exploited that the boundary dual

state satisfied a kind of boundary Yang-Baxter equation Eq. (4.9). In the

following we shall rewrite this equation into matrix form following [104].

The R-matrix acts as a bilinear map Va⊗Vb → Va⊗Vb. For the components

of the R-matrix in terms of basis states on the vector spaces Va and Vb of the

legs we shall use the convention that

〈i|a 〈j|bRab(u) |l〉a |k〉b = Rijlk(u) .

This implies that the transpose of the R-matrix in the vector space Va has the

components

〈i|a 〈j|bR
ta
ab(u) |l〉a |k〉b = Rljik(u) .

Note that the transpose ᵀ of Rab written as a (dimVa dimVb)×2 matrix is

only equal to the transpose in each legs successively tatb if the R-matrix is P -

symmetric Rab = Rba in which case the transpose in Va is equal to the transpose

in Vb. In case of P -symmetric matrices, we shall denote the transposition by t.

The R-matrix is expressed in a component expansion as

Rab(u) = Rijlk(u) |i〉a |j〉b 〈l|a 〈k|b ,

where summation over the basis states specified by repeated indices is implied.

The reflection K-matrix, is a linear operator Va → Va. When we write it as

a boundary state that means we are interpreting it as a map Va ⊗ V ∗a → C, i.e.

assigning a number to each bra-ket pair. In a component expansion, we have

〈K(u)|ab = ψij(u) 〈i|a 〈j|b .

Here we name the components ψij(u) in anticipation of the result.

The reflection equation for the boundary state Eq. (4.9) in components

takes the form

〈ijkl|ψ(v)αβψ(u)γjRβγlδ (u+ v)Rαδki (u− v) =

〈ijkl|ψiα(u)ψβγ(v)Rαβδk (u+ v)Rδγjl (u− v) .

The dual state 〈ijkl| is ordered as 〈i|1 〈j|2 〈k|3 〈l|4. Since the dual states 〈ijkl|
provide a basis for the equation, we can consider the equation in terms of the

components:

ψ(v)αβψ(u)γjRβγlδ (u+ v)Rαδki (u− v) = ψiα(u)ψβγ(v)Rαβδk (u+ v)Rδγjl (u− v) .
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4. On the integrability of one-point functions

Let ψ(u)αβ = 〈β|ψ(u) |α〉 then we can write the equation in terms of matrix

elements. Using completeness 1 =
∑

α |α〉 〈α| this implies an equation in terms

of matrices. Therefore, the reflection equation for the states Eq. (4.9) is equal

to the the reflection equation

ψ1(u)Rt(u+ v)ψ2(v)R(u− v) = R(u− v)ψ2(v)Rt(u+ v)ψ1(u) (4.16)

where we have assumed P -symmetry.

This reflection equation Eq. (4.16) can be reduced to the standard boundary

Yang-Baxter equation if the R-matrix have crossing symmetry [104]. Crossing

for an R-matrix means that it satisfy the equation

Rt(u) = γ(u)M−1
1 R(−u− η)M1

where γ(u) is a scalar function, the matrix M satisfy [M1 ⊗M2, R] = 0 and

η is the crossing parameter. For the XXX1/2 or six-vertex R-matrix we have

M = ( 0 −i
i 0 ) and η = i.

For an R-matrix with crossing symmetry Eq. (4.16) is equal to

ψ1(u)M−1
1 R(−u− v − η)M1ψ2(v)R(u− v)

= R(u− v)ψ2(v)M−1
2 R(−u− v − η)M2ψ1(u) . (4.17)

The equation Eq. (4.17) can be transformed into the standard reflection equa-

tion Eq. (4.3) as follows: Insert the identity of the form M−1
i Mi on the right

and left hand side of the equation Eq. (4.17). Use the commutativity of

M1 ⊗M2 with the R-matrix and multiply from the right with (M1 ⊗M2)−1.

After redefining the spectral parameters u→ −v − η/2 and v → −u− η/2 we

have the equation

(
ψ1(−v − η/2)V −1

1
)
R(u+ v)

(
ψ2(−u− η/2)M−1

2
)
R(u− v)

= R(u− v)
(
ψ2(−u− η/2)M−1

2
)
R(u+ v)

(
ψ1(−v − η/2)M−1

1
)
. (4.18)

Therefore solutions of the equation Eq. (4.18) implies solutions of the reflection

equation Eq. (4.3) and vice versa under the isomorphism

ψ(u) = K(−u− η/2)M .

This establishes the equation Eq. (4.10) for the boundary state. In particular,

for the XXX1/2 R-matrix the generic solutions are given by Eq. (4.6) and

56



4.3. The MPS as integrable boundary states

therefore find the states Eq. (4.11) up to overall factors and possible redefinitions

of the parameters.

In general, R-matrices are not crossing symmetric and the boundary Yang-

Baxter equation Eq. (4.9) for the dual states is therefore not identical to the

reflection equation Eq. (4.3) in general. Boundary conditions based on this

reflection equation, known as the twisted boundary Yang-Baxter equation, are

known as ’soliton-non-preserving’ (SNP) boundary conditions for the spin

chain [94, 113, 114]. For the one-point function this is relevant in the SU(3)

sector as the SU(N) R-matrices not crossing symmetric for N > 2. As we shall

see in section 4.3.2, one can still solve the functional equations that Eq. (4.9)

implies for the boundary dual states coefficients.

4.3.2 Towards a proof of the su(3) sector overlaps

A determinant formula for the overlap 〈D52|{ui}, {wi}〉 between the D3⊥D5MPS

and a on-shell parity invariant Bethe state was conjectured in [55]. In this sec-

tion, we shall describe an approach towards proving the overlap formula using

vertex model-based arguments which where succesful in the su(2) sector [87].

To prove the overlap formula by this method, we must overcome two

obstacles. First, to diagonalise the rational SU(3) transfer matrix one uses

the nested algebraic Bethe ansatz [115]. Therefore, the partition function and

boundary conditions that corresponds to Bethe states is more involved [116–118].

Second, and a more imposing problem, is the question of which boundary state

would give the overlap between the matrix product state and a Bethe state.

In this section, I shall briefly review the nested Bethe ansatz construction of

the Bethe states and address the question of choosing an appropriate boundary

state. This defines a particular fifteen-vertex partition function. I shall leave a

detailed study of its properties for future investigations.

The SU(3) spin chain is the immediate generalisation of the XXX 1
2

Heisen-

berg spin chain. This is a chain consisting of fundamental SU(3) representations,

i.e. a Hilbert space H =
⊗L

i=1 C3, and an R-matrix

Rab(u− v) = (u− v)1ab + iPab (4.19)

where Pab is the permutation operator on C3⊗C3. In components, the R-matrix
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4. On the integrability of one-point functions

Eq. (4.19) have fifteen non-zero weights thereby defining a fifteen-vertex model

Rab(u− v) =


u−v+i

u−v i
u−v i

i u−v
u−v+i

u−v i
i u−v

i u−v
u−v+i

 ,

where the empty spaces denotes zeros in the matrix.

The monodromy matrix is

T (u) =

A(u) B1(u) B2(u)
C1(u) D11(u) D12(u)
C2(u) D21(u) D22(u)

 ,

when viewed as a 3× 3 matrix of operators on the quantum spaces. The gener-

ator of conserved charges, the transfer matrix, is the trace of the monodromy

trT (u) = A(u) +D11(u) +D22(u) .

The monodromy matrix encodes the fundamental commutation relations

through the RTT -relation [117, 119]. In components the commutation relation

between the elements of the monodromy matrix Tij(u) is given as

[Tmn(u), Tkl(u)] = i

u− v
(
Tml(u)Tkn(v)− Tml(v)Tkn(u)

)
.

The commutation relations among the Tij(u) for i < j can be written as

Ba(u)⊗Bb(v) = Bb(v)⊗Ba(u)R(2)
ab (u− v) ,

where Ba(u) = (B1(u), B2(u)) and Bi(u) := T1,(i+1)(u). The matrix

R
(2)
ab (u− v) = 1

u− v + i

(
(u− v)1ab + iPab

)
,

is the SU(2) R-matrix. The Bethe states are constructed from the B-operators

acting on the pseudo-vacuum

|{ui}〉 = ψa1,...,aMBa1(u1) · · ·BaM (uM ) |0〉 . (4.20)

For Eq. (4.20) to be an eigenstate of the SU(3) transfer matrix the ψa1,...,aM

have to be an eigenstate of an auxiliary inhomogeneous SU(2) spin chain [120].

This leads to an auxiliary second set of rapidity variables {u(2)
i }. Therefore,
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4.3. The MPS as integrable boundary states

when constructing the eigenstates from a vertex model, we have to include an

auxiliary lattice that sets up the SU(2) wave function and thereby determines

the flavours injected into lattice [116–118].

The SU(3) R-matrix Eq. (4.19) is not crossing symmetric though it satisfy

both unitarity and crossing-unitarity

Rab(u)Rba(−u) = −(1 + u2)1ab , Rt1
ab(u)Rt1

ba(−u− 3i) = −u(u+ 3i)1ab .

As we saw in the previous section, this implies that the reflection equation

for the dual state is not the standard boundary Yang-Baxter equation. This

means that we cannot simply promote solutions of the boundary Yang-Baxter

equation for the rational SU(3) spin chain [121] to boundary states.

One approach is to solve the reflection equation for the dual states

〈K34(v)⊗K12(u)|R14(u+ v)R13(u− v)

= 〈K12(u)⊗K34(v)|R23(u+ v)R24(u− v) . (4.21)

This circumvents the need to cross R-matrices and directly produce dual states

with the algebraic properties that we need. As mentioned in section 4.3.1 this

corresponds to solving a twisted boundary Yang-Baxter equation [104,122].

Looking for the simplest possible states that satisfy Eq. (4.21) we can restrict

to various sets of non-zero coefficients and solve the functional equations that

arise. In an attempt to capture ’diagonal’ states we shall consider only three

coefficients turned on. The solutions in this class of states can be subdivided

into embedded SU(2) solutions. That is, solutions where the non-zero coefficients

occur for only two (out of the three) different flavours and solutions for which

all the flavours occur in the state decomposition.

Solving the functional equations that Eq. (4.21) implies for the embedded

SU(2) ansätze gives states of the form

〈K(u)| = 〈i, i|λu+ + 〈i, j|
(
u+ − ξ

)
+ 〈j, i|

(
u+ + ξ

)
for i 6= j = 1, 2, 3. These are exactly the boundary states for SU(2) Eq. (4.11).

The other possibility gives two types of constant states, i.e. with only an

overall u-dependent

〈i, i|λ+ 〈j, k|+ 〈k, j| ,

for i 6= j 6= k = 1, 2, 3 and a diagonal state

〈1, 1|+ 〈2, 2|λ+ 〈3, 3|µ . (4.22)
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4. On the integrability of one-point functions

This is expected since any invertible solution to the soliton non-preserving

reflection equation is constant [123]. In fact, all invertible solutions can be

brought into a diagonal form by SU(3) symmetry [122].

The D3⊥D5 MPS in the su(3) sector is

〈Dk| = tra
( L∏
x=1

3∑
i=1

t
(k)
i ⊗ 〈i|x

)
, (4.23)

where the trace is over the k-dimensional space of the t
(k)
i matrices. For

L = 4 it has been checked that the diagonal state Eq. (4.22) is cohomologically

equivalent to the k = 2 MPS Eq. (4.23) in the following sense: su(3) have

three raising operators E1
2 , E

1
3 , E

2
3 changing between the flavours. The on-shell

Bethe states are highest weight states and therefore annihilated by the raising

operators. The su(3) algebra implies that E1
3 = [E1

2 , E
2
3 ]. It follows that if

states are related by

|A〉 = |B〉+ E1
2 |Ψ1〉+ E2

3 |Ψ2〉 ,

where |Ψi〉 i = 1, 2 are arbitrary states, they have the same overlap with the

on-shell Bethe states

〈A|{ui}, {wi}〉 = 〈B|{ui}, {wi}〉 .

Similar to the case for su(2), we shall in fact only require this for projections

onto subsectors (M,N) for M ≤ L/2 and N ≤ M/2. To check whether su(3)
states are cohomological, we need to find two states |Ψi〉 ∈ C3. Therefore,

checking cohomology by brute force quickly becomes unfeasible for increasing

lengths. In the next section, we shall discuss a recent approach to constructing

the matrix product states from integrable boundary states circumventing the

need for cohomology arguments. This have already been accomplished for the

SU(3) MPS for for any k [124].

4.4 A higher spin SO(6)-sector boundary state

In many cases, the matrix product states are solutions of the twisted boundary

Yang-Baxter equation evaluated at a specific rapidity [104,122,124,125]. The

reflection equations Eq. (4.3) and Eq. (4.16) also have matrix solutions in

the sense that the components of the K-matrix are operators acting on an

60



4.4. A higher spin SO(6)-sector boundary state

additional quantum space defining boundary degrees of freedom for the spin

chain.

Let ψab(u) be a matrix solution of the soliton non-preserving reflection

equation, then we can construct a two-site invariant integrable matrix product

boundary state

trb
L/2⊗
k=1

ψij(uk) 〈i| 〈j| =
∑
{si}

〈s1 . . . sL| trb
[
ψs1s2(u1) · · ·ψsL−1sL(uL/2)

]
,

where the trace is over the boundary quantum space. Furthermore, if the solu-

tion satisfy ψij(0) = t
(k)
i t

(k)
j , we recover the D3⊥D5 matrix product state when

the inhomogeneities vanish. A solution that corresponds to the matrix product

state Eq. (4.23) in the su(3)-sector for any dimension k of the representation

is known [124]. In the so(6)-sector a solution for k = 2 is known in a different,

albeit related, context of open spin chains in the D3⊥D5 setup at k = 0. Here

the boundary degrees of freedom correspond to fundamental operators on the

defect [126]. Furthermore for the SO(5) symmetric D3⊥D7 a solution has also

been found [124].

In this section, I will describe another solution of the reflection equation

for SO(6) that generalises the DeWolfe-Mann solution to higher-dimensional

representations for the boundary spin. Hereby, we embed the SO(6) sector

matrix product state in a solution of the boundary Yang-Baxter equation.

The R-matrix for the integrable spin chain with SO(6) symmetry is2 [15]

Rab(u) = (u+ 2)P + u(u+ 2)I − uK .

This R-matrix is crossing symmetric satisfying the identity

Rt1(u) = R(−u− 2) .

As discussed in section 4.3.1, this implies that solutions of the reflection equa-

tions Eq. (4.3) and Eq. (4.16) are related by a simply crossing transformation

ψ(u) = K(−u− 1) .

In particular, there is no distinction between K and ψ for the SO(6) equations.

2The R-matrix used here differs from [15,126] by a factor 1
2 and change of sign in the

rapidity u→ −u.
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4. On the integrability of one-point functions

The most general ansatz for a K(u)-matrix that breaks the SO(6) symmetry

of the bulk chain to SO(3)× SO(3) at the boundary takes the form

Kij(u) = f(u)δij + g(u)t(k)
i t

(k)
j + g̃(u)t(k)

j t
(k)
i ,

KiJ(u) = KIj(u) = 0 ,

KIJ(u) = h(u)δIJ ,

(4.24)

where i, j = 1, 2, 3 and I, J = 4, 5, 6 and t
(k)
i are the k-dimensional representa-

tion of the su(2) algebra.

Inserting the K-matrix ansatz Eq. (4.24) into the reflection equation

Eq. (4.3) produces functional equations in u and v that f(u), g(u), g̃(u) and

h(u) are to satisfy. In the following, we shall employ a trick. Since we are

after solutions that factorise Kij(0) = titj , we can solve the equation for v = 0.

Since the matrices factorise, we can simply solve the equation for moving the

ti across the K-matrix (see Fig. 4.9) [124]. In components the square root

Figure 4.9 – The square root relation for moving the ti across the K-block.

relation then takes the form∑
α,β

Rabαβ(u)Kcβ(u)ωα =
∑
α,β

Rcaαβ(u)ωβKαb(u) , (4.25)

where the three independent indices can take values a, b, c ∈ {1, 2, 3, 4, 5, 6}.
We shall refer to {1, 2, 3} as SO(3)H and {4, 5, 6} as SO(3)V. The matrices

ωα are given as

ωα =

tα α ∈ SO(3)H
0 α ∈ SO(3)V

.

The equations Eq. (4.25) vanish for certain configurations of the free indices:

a, b, c ∈ SO(3)V, for two of the indices in SO(3)H and the third in SO(3)V,

and for a ∈ SO(3)H and b, c ∈ SO(3)V. This leaves two possibilities.

For either b ∈ SO(3)H or c ∈ SO(3)H and the rest in SO(3)V we have the

equations[
ug(u)k2−1

4 + ug̃(u)
(
k2−1

4 − 1
)

+ uf(u) + (u+ 2)h(u)
]
t(k)
a = 0 . (4.26)
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4.4. A higher spin SO(6)-sector boundary state

Here k2−1
4 1 =

∑
i(t

(k)
i )2 is the quadratic Casimir operator and a = 1, 2, 3. This

conditions involves all four functions.

Three conditions arise for all indices a, b, c ∈ SO(3)H:

(u+ 2)
[
ug(u) + (u− 1)g̃(u)

]
{t(k)
a , [t(k)

a , t
(k)
b ]} = 0 ,

(u+ 2)
[
ug(u) + (u− 1)g̃(u)

]
i((t(k)

a )2 − (t(k)
b )2) = 0

(4.27)

for a 6= b = 1, 2, 3, and[
g̃(u)

(
uk

2−1
4 + u(u+ 1)

)
+ ug(u)k2−1

4 + 2(u+ 1)f(u)
]
t(k)
c

− i
[
ug(u) + (u− 1)g̃(u)

]
t(k)
a t

(k)
b = 0 (4.28)

for a 6= b 6= c = 1, 2, 3. Note that repeated indices on the matrices do not

imply summation.

The equations Eq. (4.27) determine the functions g, g̃ up to an arbitrary

function of u, i.e. g(u) = q(u)(u − 1) and g̃(u) = −q(u)u. Inserting these

expressions into Eq. (4.28) determines f(u) and finally Eq. (4.26) fixes h(u).
Therefore, we find a solution of the square root relation given by

f(u) = u

(
u2 + u+ k2 − 1

4

)
,

h(u) = −u
(
u2 + u− k2 − 1

4

)
,

g(u) = 2(u+ 1)(u− 1) ,

g̃(u) = −2u(u+ 1) .

(4.29)

We have chosen q(u) = 2(u + 1) for aesthetics, since any solution of the

reflection equation Eq. (4.3) is determined up to an arbitrary overall function

of u .

The square root relation Eq. (4.25) is not the boundary Yang-Baxter

equation. However, a solution of the square root relation is a solution of the

boundary Yang-Baxter equation at v = 0. Aided by CAS software, it is now

straightforward to verify that Eq. (4.24) with Eq. (4.29) do provide a solution

of the boundary Yang-Baxter equation. Furthermore, for k = 2 the solutions

reduces to the DeWolfe-Mann solution3 [124,126].

3Note the overall factor of 1
4 (2u− 1) compared to the K-matrix for k = 2 in [124,126].
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4. On the integrability of one-point functions

The K-matrix Eq. (4.24) with Eq. (4.29) can be used to construct an

open integrable spin chain with SO(6) bulk symmetry that is broken to

SO(3) × SO(3) at the boundary as discussed in section 4.1. Spin chains of

this type have only recently been addressed [127,128] and this spin chain in

particular has, to my knowledge, not been studied before. A novel feature of

this solution compared to SU(3) (cf. [124]) is that it depends on the dimension

of the representation k through the quadratic Casimir. This is a welcomed

feature in the study of wrapping corrections for the one-point functions as we

expect the reflection factors off of the boundary to encode this information [58].

In section 4.3.2, we discussed the possibility to use the integrable matrix

product state in the vertex model based arguments to prove the overlap

formulas. SO(6) vertex models have previously been used for correlation

function computation in N = 4 SYM [27, 129]. It will be interesting to

investigate whether the partition function of the vertex model described in [27]

with a partial reflecting end given by the K-matrix Eq. (4.24) with Eq. (4.29)

can be determined by the Izergin-Korepin technique or other methods [130,131].

A determinant expression for the overlaps are known [56] so this amounts to

determining appropriate conditions for the partition function and verifying

that the known determinant satisfy these.
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5 Two-point functions and the

conformal bootstrap

In this chapter, I shall review how to compute two-point functions in the

D3⊥D5k defect theory. I shall summarise the results of [42] in which we

initiated the computation of two-point functions in the D3⊥D5k defect theory.

We shall adhere to the conventions of the paper [42]. In particular bulk and

boundary refers respectively to x⊥ > 0 and x⊥ = 0 as opposed to its use in

holography.

5.1 Defect conformal constraints

The D3⊥D5k defect theory is believed to be a defect conformal field theory

dCFT. Defect or boundary conformal field theories are conformal field theories

with a boundary that preserves part of the conformal symmetry of the bulk

theory [132–134]. The residual conformal symmetry puts strong constraints on

the form of correlation functions [135,136].

In particular, the spacetime dependence of one-point functions of scalar

primaries is completely fixed

〈Oi(x)〉 = ai
(2x⊥)∆i ,

where ∆i is the scaling dimension of the operator Oi. More generally the

two-point function of a bulk and a boundary operator takes the form to be

〈Oi(x)Ôj(y)〉 = µij
(2x⊥)∆i−∆j (η)∆j

where η = x2
⊥ + (y − x)2 is between the operators. In a defect conformal field

theory, the two-point function between bulk operators of different conformal
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5. Two-point functions and the conformal bootstrap

dimensions need not vanish. In fact, the defect conformal symmetry allows it

to depend on a single conformal cross ratio:

〈Oi(x)Oj(y)〉 = fij(ξ)
(2x⊥)∆i(2y⊥)∆j

(5.1)

where

ξ = |x− y|
2

4x⊥y⊥
.

Away from the boundary, the operator product expansion of two bulk

operators takes the form

Oi(x)Oj(y) = Mij

|x− y|∆ij
+
∑
k

λkij

|x− y|∆ijk
C(x− y, ∂y)Ok(y) (5.2)

where ∆ij := ∆i + ∆j and ∆ijk := ∆i + ∆j −∆k and λkij are the structure

constants. The sum runs over the conformal primary operators, while C(x−
y, ∂y) = 1 + . . . contains the contributions from the conformal descendents.

There exist defect operators Ô(x) at x⊥ = 0. The correlation functions

of boundary operators define a conformal field theory on the defect. This

means that the spacetime dependence of the two- and three-point functions

of boundary operators are determined by their scaling dimensions ∆̂i and

three-point functions λ̂ijk. Near the boundary a bulk operator is resolved into

boundary operators

Oi(x) =
∑
j

µji
(2x⊥)∆i−∆j

Ĉ(x⊥, ∂x)Ôj(x) ,

where the sum is organised by conformal primaries and where Ĉ = 1 + . . .

takes the contributions from the full multiplet into account .

Figure 5.1 – The boundary bootstrap equations.

From the operator expansions we see that the two-point function Eq. (5.1)

can be expanded in two channels, one for the bulk and one for the boundary
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5.2. Computing two-point functions in D3⊥D5k

OPE. Thus fij(ξ) can be expanded as

fij(ξ) = ξ−
∆i+∆j

2
∑
k

λijkakFbulk(∆k, ξ) =
∑
k

µikµjkFbdy(∆k, ξ) .

Here Fbulk(∆k, ξ) and Fbdy(∆k, ξ) are respectively the bulk and boundary

conformal blocks. The bulk and boundary conformal blocks are known hyper-

geometric functions [132].

5.2 Computing two-point functions in D3⊥D5k

In this section we shall discuss the computation of the leading contribution to

the connected two-point correlation function. The full two-point correlation

functions is decomposed as the connected two-point correlation plus the product

of one-point functions. In other words

〈Oi(x)Oj(y)〉c = 〈Oi(x)Oj(y)〉 − 〈Oi(x)〉〈Oj(y)〉 .

Perturbation theory for D3⊥D5k was studied in [43] where they found the

diagonalisation of the action providing the explicit spectrum and propagators.

Table 5.1 shows the spectrum of the scalars [42,43]. The adjoint fields Φ are

written in components as

Φ =

Φ`,mŶ m
` [Φ]n,aEna

[Φ]a,nEan [Φ]a,a′Eaa

 ,
where Eji denotes the unit matrices, i.e. 1 at i, j and 0 elsewhere, and Ŷ m

` are

the fuzzy spherical harmonics [43]. And the propagator for modes in table 5.1

is [43]

Kν(x, y) = g2
YM

16π2
1(2ν+1

ν+ 1
2

) 2F1(ν − 1
2 , ν + 1

2 ; 2ν + 1;−ξ−1)
(1 + ξ)ξν+ 1

2

1
x⊥y⊥

. (5.3)

The massless modes in the k × k block, i.e. the first row for ` = 0, should not

propagate through the defect. The propagator Kν Eq. (5.3) satisfy Dirichlet

boundary conditions for ν = 1
2 and Neumann for ν = −1

2 . This is consistent

with 1/2-BPS boundary conditions for the case when the gauge group is U(N−k)
on the defect [44].

Consider the complex scalar Z = φ3 + iφ6. The leading contribution to the

connected part of the bulk two-point function 〈trZJ(x) trZL(y)〉 comes from
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5. Two-point functions and the conformal bootstrap

# φ4,5,6 (ν) φ1,2,3 (ν)
`+ 1 `+ 1

2 `− 1
2

` `+ 1
2 `+ 3

2
(k + 1)(N − k) k

2
k−2

2
(k − 1)(N − k) k

2
k+2

2

Table 5.1 – The spectrum (multiplicity and masses) of scalars in the D3⊥D5k

field theory for x⊥ > 0. Here ` = 0, . . . , k − 1 and additionally contains (N − k)2

massless modes that propagates through the defect. The masses are given as

ν =
√
m2 + 1

4 .

connecting the two composite operators via a propagator. Each insertion point

yields the same contribution since the trace is cyclic. Therefore, we find

〈trZJ(x) trZJ(y)〉c = JL tr((Zcl)J−1Z)(x) tr(Z(Zcl)L−1)(y) .

The Zs that are not contracted gives Zcl(x) = − 1
x⊥
t
(k)
3 ⊕ 1(N−k)×2 . The

contraction of complex adjoint scalars gives a propagator for each possible mode.

As the classical fields are block diagonal and trivial in the (N − k)× (N − k)
block, we need only the k × k block propagators. Therefore,

〈trZJ(x) trZL(y)〉c =
(−1)J+LJL

xJ−1
⊥ yL−1

⊥

∑
`,`′,m,m′

tr(tJ−1
3 Ŷ m

` ) tr(tL−1
3 Ŷ m′

`′ )〈Z`,m(x)Z`′,m′(y)〉 . (5.4)

The expression for the two-point function thus obtained Eq. (5.4) contains two

things that we need to address, the complex scalar propagator and the colour

trace factors. Let us first consider the propagator.

Figure 5.2 – Tree-level diagram for the two-point functions. The local operators
are connected by a single propagator.

The propagator can be expressed in terms of scalar propagators found

in [43]. Note, there is no mixing between easy and complicated flavours.

Therefore,

〈Z`m(x)Z`′m′(y)〉 = 〈(φ3)`m(x)(φ3)`′m′(y)〉 − 〈(φ6)`m(x)(φ6)`′m′(y)〉 .
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5.2. Computing two-point functions in D3⊥D5k

The scalar propagators for the complicated field φ3 are

〈(φ3)`m(x)(φ3)†`′m′(y)〉 = δ``′δmm′
( `+ 1

2`+ 1K
m2=`(`−1)+ `

2`+ 1K
m2=(`+1)(`+2)

)
,

while the propagators for the easy field φ6 are

〈(φ6)`m(x)(φ6)†`′m′(y)〉 = δ``′δmm′K
m2=`(`+1) .

One should beware of the conjugation properties of the fuzzy spherical har-

monics Ŷ m
` implies

〈(φi)`m(φj)`′m′〉 = (−1)m′〈(φi)`m(φj)†`′−m′〉 .

Using a variety of identities relating the hypergeometric function 2F1 at var-

ious values it is possible to write the complex scalar propagator as a single

hypergeometric function

〈Z`,m(x)Z`′,m′(y)〉 = δ``′δm+m′,0
g2
YM

16π2
(−1)m

x⊥y⊥

2F1(`, `+ 1; 2`+ 2;−ξ−1)(2`+1
`+1
)
ξ`+1

ξ

ξ + 1 .

Colour trace factors involving the matrix structure of the classical solutions

t
(k)
i for i = 1, 2, 3 and the fuzzy spherical harmonics Ŷ m

` are ubiquitous in weak

coupling expansions of correlation functions in the D3⊥D5k field theory. For

the connected two-point function at leading order Eq. (5.4) we need the traces

tr(tL3 Ŷ m
` ).

As matrices, the generators ti can be expressed in terms of the fuzzy spher-

ical harmonics Ŷ m
` . For the diagonal generator, we have t3 ∼ Ŷ 0

` . Therefore,

by using that the fuzzy spherical harmonics satisfy an algebra [137]

Ŷ m1
`1

Ŷ m2
`2

=
∑

F `3m3
`1m1`2m2

Ŷ m2
`2

where the fusion coefficients can be expressed in terms of Wigner’s 3j and 6j
symbols

F `3m3
`1m1`2m2

= (−1)m3
∏
i

(−1)`i
√

2`i + 1

 `1 `2 `3

m1 m2 −m3

 `1 `2 `3
k−1

2
k−1

2
k−1

2

 .

Wigner 3j symbols are proportional to Clebsh-Gordon coefficients and therefore

provides the selection rules for coupling spins `1 and `2 to `3.
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5. Two-point functions and the conformal bootstrap

Hence the expansion of tL3 will contain only Ŷ 0
` . Let us introduce the

coefficients

αL` := tr(tL3 Ŷ 0
` ) .

In principle, we can express the trace as sums of products of fusion coefficients

by expressing t3 in terms of Ŷ 0
` and successively fusing the fuzzy spherical

harmonics.

To determine the αs, we proposed an approach based on a numerically

more efficient recursion relation [42]. The basic idea is: The traces tr tL+m
3 can

be written as a Bernoulli polynomial

tr tL+m
3 = −2

BL+m+1(k−1
2 )

L+m+ 1

and each factor tL3 t
m
3 can individually be expanded in Ŷ 0

` . Using the orthogo-

nality of the fuzzy spherical harmonics, we have that

−2
BL+m+1(k−1

2 )
L+m+ 1 =

m∑
`=0

αL` α
m
` ,

where we have assumed that L ≥ m. The last term of the sum, ` = m,

produces αLmα
m
m. It follows that αLm can be expressed in terms of αs with lower

L,m. To start the recursion we should note that αmm and αL0 are known in

general. Furthermore, the recursion relation can be solved to find the αs as

linear combinations of Bernoulli polynomials

αLm ∼
m∑
`=0

β̃(`)
m

BL+`+1(k−1
2 )

L+ `+ 1 .

For the explicit expressions see Appendix C in [42].

Now that we have determined the propagator and the colour trace factors

we may insert them in expression Eq. (5.4) to obtain an expression for the

connected two-point function

〈trZJ(x) trZL(y)〉c =

g2
YM

16π2
JL

xJ⊥y
L
⊥

∑
`

αJ−1
` αL−1

`(2`+1
`+1
) 2F1(`, `+ 1; 2`+ 2;−ξ−1)

ξ`(ξ + 1) .

Let me remark that the two-point function takes the form that is expected

from defect conformal invariance Eq. (5.1). Via similar computations we
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5.2. Computing two-point functions in D3⊥D5k

have likewise found the leading term of the connected two-point functions:

〈trZJ1 tr Z̄J2〉, 〈trZJ1 trXJ2〉 and 〈trZJ1 trXJ2−1Z̄〉 as well as their large k

limit [42].

5.2.1 Conformal data from the OPE

As discussed in section 5.1 the two-point functions in a defect conformal

field theory can be decomposed into conformal blocks using the two available

operator product expansions. In the paper [42], we studied the constraints

imposed by conformal symmetry and what conformal data we could extract

from the connected two-point functions of the BPS operators at leading order.

Since the OPE expansion Eq. (5.2) is valid for the full two-point function,

we have to include the one-point functions. E.g. for the 〈trZJ1(x) trZJ2(y)〉
we have

f(ξ) = atrZJ1atrZJ2

+ 2J1+J2J1J2
g2
YM

16π2

∑
`

αJ1−1
` αJ1−1

`(2`+1
`+1
) 2F1(`, `+ 1; 2`+ 2;−ξ−1)

ξ`(ξ + 1) + O(g4
YM) .

Note that the one-point functions of the BMN vacuum atrZJ is known to

one loop [43]. At leading order, the OPE equates the product of tree-level

one-point functions with a sum of tree-point functions and one-point functions.

Organising the sum over conformal primaries according to their dimension ∆

leads to sum rules for the structure constants at leading order

∑
i

λ(0) Oi
trZJ1 trZJ2 a

(0)
i = 2J+2

(∆+δJ
2 −1
∆−J

2

)(∆−δJ
2 −1
∆−J

2

)
(∆−3
∆−J

2

) BJ1+1(1−k
2 )BJ2+1(1−k

2 )
(J1 + 1)(J2 + 1) ,

(5.5)

where J = J1 + J2 and δJ = J1 − J2 are the sum and difference of the

dimensions Ji of the BMN vacuum trZJi . The sum runs over the conformal

primaries Oi with dimension ∆.

In the sum rule Eq. (5.5) the k-dependence, related to the defect, must

come from the one-point functions since the bulk three-point functions are

local properties independent of the defect. In general the one-point functions

of SU(2) Bethe states and their descendents are polynomial in k of degree

L−M + 1. Therefore, only descendents of the vacuum state carries the kL+1.

This allowed us to fix various simple three-point functions [42]. At one-loop
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5. Two-point functions and the conformal bootstrap

we need the connected two-point function. The conformal blocks depends on

the conformal data and must likewise be expanded in g2
YM. For small BPS

operators, we were able to obtain one-loop one-point functions of multi-trace

operators [42]. Similar sum rules can be derived from the boundary OPE. They

impose restrictions the coupling of single-trace operators to the defect [42].

5.3 Discussion & Outlook

In this chapter, I have discussed the results published in [42]. This includes

computation of the leading contribution to the connected two-point functions in

the D3⊥D5k theory using the perturbative framework of [43]. The constraints

imposed by conformal invariance on the operator product expansion allows us

to extract conformal data from the two-point function in simple cases. We have

not found structure constants that was not already known or as easy to compute

using Feynman diagrammatics. However, let me offer another perspective on

the computations described in this chapter: They support the assumption that

the theory is defect conformal invariant as a quantum field theory. While the

theory for k = 0 have been shown to preserve defect conformal invariance at

the quantum level [47] no similar argument exists for k 6= 0. It could potentially

be interesting to study the D3⊥D7k1,k2 theory where the propagators have

recently been found [51]. It would certainly be interesting to solve for more

involved structure constants e.g. using the analytical bootstrap [138].

In computing the two-point functions we did not make use of the integra-

bility properties of the theory. In a defect conformal field theory the two-point

functions are analogous to four-point functions. In N = 4 SYM four-point

functions at weak coupling have been computed using integrability [25]. The

two-point functions of a SU(2) operator and a length 2 operator are known [139].

It would be interesting to further develop the techniques for computing two-

point functions in the D3⊥D5k theory. Let me note than an immediate obstacle

is that the contractions between operators do not ’cut’ the spin chains in to

local Bethe states.
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6 Concluding Remarks

Though the chapters discuss various aspects of different theories, they are all

part of a bigger picture. The AdS5/CFT4 correspondence, though not yet

proven, is widely believed to be true particularly due to our ever-increasing

proficiency in computing and comparing observables, especially in the planar

limit. Many of these techniques exploit the symmetries of the setup. Intro-

ducing defects or boundaries generically breaks symmetries and are therefore

interesting for testing the limits of our tools.

The aim of this thesis have been to further the understanding the AdS/d-

CFT correspondence by computing observables. In this we have succeeded. As

a result of the one-point function computations described in chapter 3 we now

know that the D3⊥D7k1,k2 field theory differs qualitatively from both the re-

lated D3⊥D7n and the supersymmetric D3⊥D5k. The D3⊥D7k1,k2 defect have

non-zero one-point functions for paired operators, and for the matrix product

state this means that it is not an integrable spin chain state. Nevertheless, we

have been able to conjecture overlaps for large states and it is interesting to

speculate that this is related to integrability.

One-point functions are given by the overlap between a matrix product

state and a Bethe eigenstate. These overlap formulae are useful in the study

of the dynamics of integrable spin chains. As we discussed in chapter 4, recent

developments in spin chain quantum quenches are using these overlaps. This

have provided an interesting cross-fertilisation. The definition of integrable

initial states for quantum quenches gives us a classification of matrix product

states obtained from fuzzy funnel solutions. Using this definition D3⊥D7k1,k2

is not integrable. However, D3⊥D5k certainly is, and in particular in chapter 4

we described a solution of the boundary Yang-Baxter equation that gives

the matrix product state of D3⊥D5k for the SO(6)-sector. Answers prompts

questions, as per usual: Do the characterisation that the matrix product state
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6. Concluding Remarks

is integrable coincide with other characterisations of integrability e.g. does it

correspond to the string world-sheet theory having an integrable boundary?

Chapter 5 discussed the results on computation of two-point functions

in D3⊥D5k. The aim for this investigation was to clarify how the one-point

functions already known in the setup fitted into the OPEs of defect conformal

field theories. Here we showed that it was possible to obtain certain conformal

data using the two-point functions and a minimal knowledge of the spectrum.

Now, N = 4 supersymmetric Yang-Mills theory may be exactly solvable

however there is still a long way ahead before all conformal data is readily

available. A current goal in integrability of N = 4 is to write the correlation

functions in terms of Q-functions from the quantum spectral curve. One-point

functions are potentially amongst the easiest case where one can study this in

general. It is my hope that the boundary Yang-Baxter solution obtained in

chapter 4 will further the computation of wrapping corrections for the D3⊥D5k

one-point functions.
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[134] M. Billò, V. Gonalves, E. Lauria, and M. Meineri, “Defects in conformal
field theory,” JHEP 04 (2016) 091, arXiv:1601.02883 [hep-th].

[135] J. L. Cardy, “Conformal Invariance and Surface Critical Behavior,” Nucl.
Phys. B240 (1984) 514–532.

[136] D. M. McAvity and H. Osborn, “Conformal field theories near a
boundary in general dimensions,” Nucl. Phys. B455 (1995) 522–576,
arXiv:cond-mat/9505127 [cond-mat].

[137] S. Kawamoto and T. Kuroki, “Existence of new nonlocal field theory on
noncommutative space and spiral flow in renormalization group analysis
of matrix models,” JHEP 06 (2015) 062, arXiv:1503.08411 [hep-th].

[138] A. Bissi, T. Hansen, and A. Söderberg, “Analytic Bootstrap for
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