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Abstract. Space-time properties of a class of relativistic invariant distributions
of the type

K@—a') = néi __(;7’:) [ 89 (@ — )

were considered for different sequences of coefficients c,.

1. Introduection

The assumption of a character of distributions takes essential place
among the basis postulates of the local quantum field theory. Such
distributions are coefficient functions in the expansion of the S-matrix
in a series of field operator normal products [1] or are Wightman’s
functions in his axiomatic approach [2]. This assumption is connected
with a definition of local properties of distributions. The important class of
the tempered distributions, becoming a traditional one in investigation of
the quantum field theory, seems to be chosen becausethe concept oflocality
is introduced here by the most simple and natural manner. But lately it has
become more clear that this class is not always an adequate instrument.
It turns out that the class of local distributions can be extended essen-
tially. The most significant results were received by MEeimMaN [3] and
Jarre [4]. It is remarkable that the definition of concept of micro-
causality by MEIMAN and strict localizability by JAFFE takes the basic
place in the papers of these authors. They received the different classes
of the test functions depending on the definitions introduced. MATMAN’S
and JAFFE’s idea is to choose the ‘“‘minimum” class of test functions.
It means the following. If one introduces a certain definition of locality
then only such distributions must be defined on the “minimum” class
of test functions which satisfy the definition introduced. The other distri-
butions must not be defined on the whole class of test functions. The
requirement of the “‘minimality’ permits to get the important physical
consequences from this purely mathematical hypothesis following from
the definition of locality only. (For example, CPT-theorem, theorem of
local commutativity, restriction on behaviour of amplitudes when energy
goes to infinity and so on.)
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The choice of the ,minimum‘ class of test functions is justified
completely if we hold the axiomatic approach in the quantum field
theory and want to deduce physical consequences from the most general
requirements. If we hold the dynamical picture in the quantum field
theory (for example, the construction of the perturbation series for the
S-matrix according to the interaction Lagrangian), then the dynamical
description of a interaction itself should dictate which class of test func-
tions and distributions should be chosen for a correct description of the
interaction picture. It may occur that the interaction is not local. But
at the present time we have no good definition of a relativistic invariant
non-local coupling between quantum field operators. We try to give such
definition in this paper. With this aim we will study the space-time
properties of relativistic invariant distributions of the type
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for different sequences of coefficients c,. We will destinguish the follo-
wing possiblities
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nll_I)I;o len|™ =0 (1.2)
Lim lcn]'l'_ =1 <o (1.3)
n—>0
e[~ — w0
n—>00 lcnl = n—o | {20)! - (14)
— [ S
n£W”=a2<oo. (1.5)

In § 2 we describe the class of test functions and give the definition
of support of distributions, in §§3—5 we consider distributions fo the
type (1.1) for sequences c, satisfying the conditions (1.2—5).

2. The Class of Test Functions

We choose the space 8 of all entire analytic functions f(z) =
= (g, %15 9> %3) = [ (20, 2) depending on four variables z; = x; + 1y,
(7=0,1,2,3) in the capacity of the class of our test functions. We
define in space § the countable sequence of the norms

Iflm = lglli}fn |f (20> 215 205 23)] - 2.1)

We will say that the sequence of functions {fx(z)} where fg(2) €3
converges correctly if it converges uniformly in any bounded region of
real values of arguments (x,, x;, xy, 25).
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Lemma. If each function of the sequence {fx(z)}, where fx(2) €8, s
bounded according to norm |fgl. by the constant M and this sequence
converges correctly, then its limit f(z) belongs to the space 8 and the norm
of f(z) does not surpass M.

This lemma is the other formulation of Vitaly’s theorem about con-
vergence of analytic functions sequences [5]. Therefore the norms intro-
duced are compatible and the space 3 is complete and perfect.

We give one more

Definition. T'he sequence {fg (2)}, where fx (z) €8, converges in the region
G C C*if it converges uniformly in the closed region G.

The space § is not closed relative to this convergence definion. But
we will make use of it for another definition of the support of a func-
tional on the space 8.

The space of all linear continuous functionals defined on the space 8
is denoted by §’. The explicit form of such functionals can be found
according to usual procedure [6, 7].

= [ @) dur)
lzl<m
where up(z) is a complex completely additive measure in the region
|z;] = m. This formula with all possible m gives the general form of
linear continuous functionals on the space &.

Let us introduce the concept of the functional support. We give the
following

Definition. T'he region G C C* is said to be the support of the functional
F €@ if this functional can be extended continuously on the space 3 (G)
of functions, which are analytical in the closed region Q.

If the region G is a point z = (zg, 21, 29, 23) then functional is said to
be local.

It follows from given definitions that the sequence of numbers (F, fx)
converges to zero if the support of the functional F is a region G and
{fr} where f (2) € 8 is any sequence which converges to zero in G.

3. The Loeal Distributions

Let us consider the distributions (1.1) where the coefficians ¢, satisfy
the condition (1.2) We consider the functional:

oo

Cﬂ
(K, f) (o) = [ &2 K (@ — o) f (') = X g ). @)
We make use of the followmg mtegral representation for the operator [1:

22”.n!(n+2)! , o
i nli)ngo |an] 1. (3.3)

a, =
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The integration in (3.2) is performed over the Euclidean globe
=it toitei=e+oi=1.
Let us introduce the function of a complex variable &:
2 catt,

W)= X (3.4)

2n+1
n=20 ¢

It follows from the conditions (1.2) and (3.3) that W (&) has the only
essential singularity at & = 0 and has not other singularities in the com-
plex plante of &. Therefore

tuty = 5z P asen () (3.5)

where the integration is performed over any closed contour around the

point & = 0. Making use of (3.2) and (3.5) the functional (3.1) can be
written in the form

K0 @) = 3 gy g Pasewe@ fate (ferm+ o) 1@

o . (3.6)

s Paswe [ Xt (ieg+ ey ).
ot n=

In the last term the summation is performed over all #n because the integral

over p of the odd powers of (z Q4%+ 95%-) is identically equal to
0

zero. Observing that there is the displacement operator with respect to
the arguments (z,, ) in (3.6) one can get

(K. ) (0) = g7 PAEW @ [ doftaytioibix+08). (1)
1<l
This expression is well defined becalglse of f(xy, @) €8.

The integration over & can be performed over counter with an arbit-
rary small radius because W (&) has the only singularity at the point
& = 0. Therefore the functional (3.7) can be extended continuously on
the space of functions which are analytic at the point & = (zy, ). Hence
the distributions (1.1) with the condition (1.2) are local according to
our definition.

The Fourier-transform of the distributions (1.1) can be written in
the form

Rt - %

n=20

ey P (3.8)

The function K (p?) is an entire analytic function of the order y < %
in the complex plane p? i.e.

R ()] < VT (3.9)
for any & > 0. According to the theory of entire analytic functions (see

e.g. [6]) it is known that for these functions there is not any direction in
10 Commun. math. Phys., Vol. 7
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the complex plane p?, along which they could decrease. It means that
they cannot play the role of the cutoff functions in the constructing of
the perturbation theory for the S-matrix if we somehow want to make
use of the quasi-local arbitrariness in constructing the coefficient func-
tions in the perturbation expansion of the S-matrix.

The “minimum” space of test functions in this case is the class §°
of functions which are analytic with respect to each argument z; = 2,44y,
in some band |y;| < d; where d; depends on the function f(z) and can be
arbitrary quantity. The fixed band |y;| < d, where all functions f €3
are analytic does not exist. In this way we got the relativistic generali-
zation of MEIMAN’s class C, [3].

4. The Non-local Distributions

Now let us consider the distributions (1.1) where the coefficients ¢,
satisfy the condition (1.3) where [/ is some parameter. We consider func-
tional (X, f) (x) for which the formula (3.1) is valid. Let us make use of
the integral representation (3.2) and introduce the function W, (&) of the
complex variable & according to (3.4). In this case it follows from the
conditions (1.3) and (3.3) that the function W, (£) is analytic in the com-
plex plane £ outside of the circle |£] = [. Inside of this circle it has some
singularities the positions of which depend on an explicit form of the
coefficients c,. Therefore

=gy PAEEMWLE). (1)
[&]>1
Repeating the calculations of the preceding section one can get for the
functional (1.1) with the condition (1.3) the following representation

(K1) @) = g PAEWU®) [diofleo+ i w08,  (42)
[§>1 =1
This expression is well defined on 3.

Let us demonstrate that the representation (4.2) is relativistic cova-
riant on 8. We have to prove that the integral in (4.2) over the Euclidean
space is covariant under coordinate transformations from the homoge-
neous Lorentz group, i.e.

[ dof(Ao;(x; + 0;8), Ag;(@; + 0;8))
=1

= [ dof(dg;x; + 04, Ag;x; + 058)

’=1
where /A is a representation of the homogeneous Lorentz group L. The
summation is performed over j = (0, 1, 2, 3). Here we introduced the
notations g, = tg, and § = (1, 2, 3).
Any A € L can be represented in the form A = A;4,4, where A,
and /, are usual rotations and /A, is the purely Lorentz transformation

(4.3)
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along three-axis. The integral (4.3) obviously is covariant with respect
to rotations in the three-dimensional Euclidean space. Therefore it will
be sufficient for us to demonstrate the covariantness of the representa-
tion (4.2) under the purely Lorentz transformation A,. Then the rela-
tion (4.2) can be written

stfld49f((xo + 1048) Chd) + (25 + 0,8) Shd), @ + 9, &, @, +
+ 0.8, (o + 70,8) Sh + (25 + p;&) Chd)
=02£1d49f(x00h19 + 23Shd + tp4&, @ + 0, &,y +
+ 05&, 2ySh 4 2;,Chd 4 p,&)

where th?) = %’ I < |&l <1+ e. Let us go over to the polar coordinates

(4.4)

in the plane (g,, p5) and put g, =r Cos¢q, 9; = r Sinp. Then the left
part of (4.4) can be written as
1

2m
[dg [drer  []  dodayf(eh+ i Coslp+ i®), v +
0 0 e +ois1—r? (4.5)

+ 018 @y + 0,8, w3 + Er Sin(g + 19))

where 2§ = 2, Ch® + @, Sh¥), x5 = 2, Shd + x, Ch9.

In so far as the function f(z,, 2,, 2,, 25) is entire analytic with respect to
the arguments z; it will be the entire analytic function with respect to
the complex argument @. In doing so the integrand in (4.5) is periodic
along the real axis in the complex plane ¢ with the period 2. Therefore
in (4.5) one can displace the integration contour over ¢ from 0 to 2z
by any purely imaginary number, i.e.

i9+2a

2n 27
Jdvdle) = | dedlg)= 0f dopA(p—id) (4.6)

where 4 (¢) is the integrand in (4.5). Thus the right part of (4.4) is equal
to the left part and our assertion is proved.

Now let us go over to the study of space-time properties of the distri-
butions K (x — z’) in (4.2). The functional (4.2) can be extended with the
relativistic covariance conservation on the space of functions & (G, (x))
which are analytic in the open region G;(x) where 2’ € G, (z) if

| —a)| =12 (4.7)
where (2" — )2 = (2y — 2,)* — (2’ — X)%
The intersection of the region ¢, (x) with the real space R* is the hyper-
boloid
SRS (@ —w) = (X — X2 = 2. (4.8)
This region in R* is infinite and its 4-volume is infinite too.

The functional (4.2) can be extended on the wider class of functions.
We have proved that the representation (4.2) can be written on the class
10



144 G. V. Ermvmov:

B(G,(x)) in the followincr equivalent forms

(K@) =5mr P a6W®) [ dtoflw+ Ae8)  (49)
lél >1 e*s1
where A = A (9, ¢, p) is a representation of the homogeneous Lorentz
group, ¢ is the Lorentz angle, ¢ and y are the Euclidean angles. If we
choose some definite representation with the fixed parameters 9, ¢ and
p then for given A(J, p, ) the functional (4.9) can be extended on the
class of functions which are analytic in the region

G,(9, 9, p32) C Gy(a). (4.10)
The point 2’ belongs to G, (&, ¢, p; 2) when § = ¢ = p =0 if
2o — @2+ |2 — x|2 = 12 (4.11)

In the case of arbitrary values of &, ¢ and y the region @;(&, ¢, v; )
can be obtained by the Lorentz transformation from the region (4.11).
In other words, G;(J, @, y; ) is a globe in the case ¥ = ¢ = p = 0 and
is a ellipsoid in the case of arbitrary }, ¢ and y which is located entirely
inside of the hyperboloid ¢, (4.8). Emphasize that the region G (&, ¢, y; x)
for each given &, ¢ and y is bounded and the 4-volume of all regions
G (9, @, p; x) is the same. It is finite and proportional to 4.

So, the functional (4.9) is extended for each given representation A
on the space of the test functions (G, (9, @, p; ) DF (G (x) D S.
Consequently the support of the functional (1.1) with the condition (1.3)
is some bounded region G (<, @, y; x) C G, ().

The same could be done in a somewhat different way. We could
choose a sequence f, (z) € 3 converging to zero in G (9, ¢, y; «) and then
we could get that nlim (K, fn) () = 0, i.e. the support of K (v — 2') is

G (D, @, ;).

In other words, the distributions considered possess the following
property. They transform any functions f(x) different from zero in some
restricted space-time region G, C R* into functions F(x) = (K, f) (x)
different from zero only in a some-what larger restricted space-time
region Gy = G4 + dGy. The region 3G, is restricted and completely locat-
ed inside the region Gy, such that « ¢ G, if —12 < (x — y)? < 2 where
y € G;. The shape of this ,,diffused* region Gp should depend only on the
behaviour of the function f(x) in the region G,.

The physical meaning of the distributions K (x — «’) is the follo-
wing. Let @(x) be a certain field that appears and then disappears in
some restricted space-time region Gy. Then, due to the “propagator”
K (z — 2') this field will affect a certain bounded region with finite four-
volume. This region is completely located inside theregion @, ;. The shape
of this region will depend on the “‘micro-shape’ of the pulse of the field
D (z).
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The Fourier transforms of the distributions (1.1) with the condition
(1.3) can be written in the form (3.8). They are entire analytic functions
of the order 1/2 and the type ! in the complex plane p?, i.e.

IR (p%)] < et +oVT 4.12)

for any & > 0. Such functions may have only one direction in the com-
plex plane along which they may decrease. Therefore, they can play
the role of the cutoff functions in the perturbation series for the S-
matrix [10].
The “minimum” space of test functions in this case is the class g
of functions which are analytic in the region I, C C* The point z € I
if
~PEg-ypsi. (4.13)

5. Essentially Non-local Distributions

Now we consider the sequences c, satisfying the condition (1.4).
We restrict ourself to studying only such sequences for which the coeffi-
cients ¢, are real and can be represented as a solution of the following
moment problem

Cuty = [ ut"do(u) (5.1)
0

where the coefficients a, are given by the formula (3.3) and o(u) is a
real monotoneously increasing function. It is possible to demonstrate
easily that the coefficients ¢, in (5.1) always satisfy the condition (1.4).
Making use of (5.1) and performing the calculations as it was done
earlier one can obtain for the functional (X, f) (z) the formal represen-

tation

(K, f) (x) = Ofmda(u) 2 £1d49f(x0 + o, X + gu) (5.2)
= [ d*o V(0% f(xo + i04 X + @)
where
iy = [ 1 53)

V (0% differs from zero according to our condition. It is clear generally
speaking that this functional is not defined on our space 8. It is necessary
to coordinate the rate of decrease of the function V (¢*) with the order
of the entire functions f(z) € 8 so that the integral (5.2) should be con-
verged. Let us suppose that we have found such a space 8, so that the
functional (5.2) exists. Obviously this functional is essentially non-local,
i.e. it is equivalent to an integral operator whose kernal differs from zero
over the whole x-space.
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Nevertheless one can say that the functional (5.2) is characterized
by some ‘“‘elementary length I’’ in a certain approximate sense. We
mean the following. Let a function f(x) differs from zero in some region
G;C R% Then the functional (X, f) () in (5.2) differs from zero in the
whole space R%. But if the function V (p2) which is a kernel of the integral
operator in (5.2) decreases “‘rapidly enough” at p? — oo and the region
where V(p?% differs markedly from zero is characterized by a certain
effective length 7, one can say that the distribution K (x — «’) transforms
a region G, where f(z) == 0 into a wider region G, where the functional
(K, f) (x) differs markedly from zero and it is equal approximately to zero
in the other points of 4. Thus we have in a certain sense the case con-
sidered in the section 4 .The question arises what is the “‘rapidly enough”
decreasing of the function V(p?). How is it possible to formulate the
concept of “approximate elementary length I %

The “rapidly enough’ decreasing is considered usually in physics to
be an exponential decreasing, i.e. the function ¥V (p?) decrcases rapidly
enough if it satisfies the limiting relation

lim V(%) /)" — ¢ (5.4)
0*— oo
for some @ >0 and ¥ > 0. If N =1 the decrease is considered to be
good enough.

We will study the classes of such functionals for which the function
V (0?) satisfies the condition (5.4) for N = 1 and any ¢ = 0.

Let us define the space of test functions 8y. The function is said to
belong to the space &y if it is the entire analytic function with respect

to each of its arguments z;(j = 0, 1, 2, 3) of the order less then N, i.e.
ln]f(zos z13 225 Za)l
25— o0 [zl

=0,0=0,1,2,3). (5.5)

Let us define the space 8, = l\.} By of all entire functions of finite

order. It is possible always to find such N = 1 that the limiting relation
(56.5) is valid.

We will introduce into consideration another space Z} [8]. This space
consists of all entire analytic functions f(z) satisfying the inequalities

3
)] = C exp{ > [— %ﬂ} (5.6)

i=0
for certain positive constants b, C, 1; and f;. The space Z} is a subspace of
B for b < N. It is not trivial, probided b > 1.
We will make use of
Theorem. Let ¢(x) be a piecewise-smooth bounded and absolute inte-
grable function on R* then this function can be approximated uniformaly
by f(x) € Bx (N > 1) with arbitrary accuracy of any ¢ > 0.

x; lb
- +
5]
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Let us choose such f(z) €28 C Sy which is real for x € R* and is
normalized by the condition

[dtaf@x)=1.

One constructs the sequences of functions

he—2) =51 (555 (5.7)

where » is a real parameter. For each function ¢ () satisfying the con-
ditions of the theorem we make to correspond the function

¢ (@) = [d*a'f,(x — ) (@) . (5.8)

Making use further of usual methods of the mathematical analysis (see
e.g. [11]) it is easy to prove that ¢, (z) € S and for any ¢ > 0 it is possible
to find such v, that for any » < », the inequality

lp@) — @ (2)] < & (5.9)
is valid uniformly in all points of continuity of the function ¢(x) and

pz—0) w; P+ 0) @) <e (5.9)
is valid in the points of discontinuity. Thus this theorem is proved.

The functionals K (x — 2’) in (5.2) will be defined on the space 3
if the corresponding functions ¥V (p?) in (5.2) decrease not more slowly
then an exponent of the order NV, i.e. it is possible always to find such
A > 0 that

lim ¥ (g2) 4(Ve) = 0. (5.10)

0%

Let us find the restrictions on the growth of coefficients ¢, in (5.1).
It follows from (5.10) that there exist such C > 0 and a > 0 that

V(u?) < Ce= ¥, (5.11)

Then one can get the following estimate for large n

<

len] = ‘fmuz"do‘(u) I = l (2n + 4) joduu2"+3V(u2)
0 0 (5.12)

= (2n+4)ofduu,2n+36—auﬂ:02"+4) 1—,(2%-{-4).
N J

2n+4 J
a ¥ N

Here we intergated by parts. This relation can be written in another form
1

lim "‘ — < 0. (5.13)

n—oo ’nN

Only such functionals K will be defined on the space &, for which the
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functions V (p?) decrease more rapidly than any exponent of finite order,
ie.
lim V(o2 /@)= 0 (5.14)

0>

for any N. For example V(p?) = exp {—e¢?}. The condition on ¢, can
be written in the form

N 1
lim feal® (5.15)

n—> 00 ns
for any £ > 0.
What are properties of functions ¥V (p?) ¢ We give
Definition. T'he function V (9?) is said to locate approximately in the
region p* < I? with accuracy & > 0 if it decreases rapidly enough at p* — oo
and
JdeV(e®) =1,
| [ d*oV(e¥)|<e. (5.16)
eﬁ < lZ

The parameter ! has a sense of the dimension of the region outside
which the function ¥V (¢?) is approximately equal to zero. We introduce
the notation
_ [V(e¥) when %<2

14 2
&) 10 when %> 1%.

(6.17)

Our problem is to demonstrate that the function ¥ (p?) in the func-
tional (5.2) can be replaced by the function V;(p?), i.e. it is possible in a
certain approximate sense to consider these functionals as non-local ones
with elementary length I (see § 4).

First of all we touch on the physical sense of the studied functionals.
The functions of a test space describe some distributions of physical
quantities, e.g. distributions of a field or a charge or an amplitude of
some physical process. These distributions are given in real space-time
R* and described by functions which are restricted usually in R% The
functional has a sense of a propagator which is connected with the dyna-
mics of a process. We study the space-time properties of the functional
K (x — ') then we have to choose a certain functicn ¢(x) which differs
from zero in a region @ C R*and look where the function @ (z) = (K,¢) (x)
will differ from zero in R%. But our test function spaces do not contain
functions with a finite support. Therefore we have to choose the sequence
of functions ¢, (x) which belong to our space and approximate @ (x) with
a given accuracy. Let us apply the functional K (x — 2’) to the functions
@, (@):

B,() — [ (K, 1) @ — ') pa) dia’ (5.18)
= [F,(x —a') (') d*a’,
F,@) = (K.1,) (@) = [dioV(e®) [,y +ion X+ @) .  (5.19)
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Further we will consider the space 8. Let f,(x) belong to Z3(b < N).
Obviously we can restrict ourselves to the study of the properties of the
functions F, (x). First of all we notice that

Jd&'F,(x —a')= [d*V(e?) =1 (5.20)
and this integral does not depend on ». One estimates the modulus of
I, (x):

B, @) = | [ 210V (@) 1w + 0w x + ) =
1 (0} + 2% [
= Cfd49v_46Xp{_—lzv—_ Bov —jé’o

The estimate can be got by the most simple manner for V> 2. Making

x, b 1b 3

v,

14

Mlb} . (5.21)

use of the inequality (g% + €)% 2l + [exl™ + lgal¥ + es¥ we obtain
b
IF, ()] < C exp {— }-A (%) B (x), (5.22)

1) Jouonltf +f5

Lo

viy

y 94

v fo
o (5.23)
l 1 \b
=27fdtexp{—t1"+(vﬁﬂ) tb},
0
1 i i | ;105 lP
B(x) :—v;fdgexp {—'21 [% + fﬂﬁg } (5.24)
=

The parameter v has a simple sense. If the function f () is approximately
located in the region |z;] =4, (j =0, 1,2, 3) in the sense of our defini-
tion (5.16) the function f,(«) will be approximately located in the region
;] ZvA;.

It is easily to see that the function B(x) is approximately located in
the region |@;| < v4; + I, i.e. the functional can be considered as a quite
non-local one with the elementary length 7.

But the situation is more complicated in the case of a time coordinate.

When I = »f3, then 4 (%) ~ 1 and the decreasc at |xy| — oo is determined
x, b
v

completely by the function exp {—}

}. But when I> v g, then
Nb
A (%) ~ exp {const. (é—)w‘m”} and the distance on which the function

b
F, (x) can be considered negligibly small will be of the order |xy| ~ I (—fj) e,

const, i.e. this distance will be large enough for sufficiently small »v. We
get the following picture. If “the elementary length I’ does not surpass
v f, the functional K can be considered as non-local one with the ele-
mentary length I. But if v 8, is remarkably smaller then [ the region where
the function F,(x) can be considered as zero is determined already by
the parameter » rather than !
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We want to give the following explanation of the results obtained.
Let ¢(x) describe some physical distribution of a field or a charge, for
example. Let the non-locality be characterized by the elementary length I.
Then in the physical sense the accuracy with which the physical distri-
bution ¢ (x) is given in the space-time R* must not surpass /. If it is true
we may not distinguish between the distributions ¢ (x) and ¢, (x) where »
is small enough. Therefore we can assert that the functionals considered
are non-local ones with the elementary length 1.

The analogous estimations can be done for the space 8. In this case
the situation is more favourable because the distance where F,(x) can

be considered as zero is of the order ~ 1L (%) where L(u) is a slowly

changing function of a type Inw or Inlnwu.

The Fourier transforms of the distributions (1.1) with the condition
(1.4) are entire analytic functions of any order. If K ¢ 8y then for
1< N<o

B (p%)] = Cexpla()/]p?] ¥} . (5.25)
If K ¢8', then

B (%) = Cexp {a()/|p])' 5} (5.26)

for any ¢ > 0. € and a are constants.

The “minimum’ spaces of test functions in this case are the same
spaces 8y and §o-

At last let us consider the sequences c, obeying (1.5). The test func-
tion space is §; in this case. The function ¥ (p?) in (5.2) decreases as
linear exponent with respect to ]/E)é, ie. V(p?) ~ e—aVe at 0% — co. The
Fourier transform of this functional is not already an entire function
in the complex plane p* because of (1.5). K (p2) has some singularities, e.g.

_ A
K(p*) = PR AT (5.27)

where A is a parameter. Usually such functions are chosen as cutoff
functions in constructing the perturbation theory for the non-local
S-matrix [12]. From our point of view this choice is worst because,
firstly, the corresponding function V(p?) decreases most slowly and,
secondly, the singularities of the cutoff function in the complex plane p?
destroy the unitarity of the S-matrix and we have to introduce some
additional rules to save the unitarity.

6. Conelusion

We believe that the non-local distributions belonging to the spaces
BY, 8% and By give a reasonable representation for a possible non-
local nature of the quantum field theory. It would be interesting to
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verify such important theorems of the axiomatic approach as the CPT-
theorem, the theorem of local commutativity and so on in the case of
the non-local quantum field theory in the sense described above.

The other important problem is the possibility to utilize the non-

local distributions (1.1) in order to remove the ultraviolet divergences
from the perturbation series for the S-matrix. Here the basic problem is
to define the product of the distribtions. In the case of the space 8%
such a product can be defined unambiguously [10].

In conclusion I express my deep gratitude to Professor D. I. BLox-

HINTSEV and Doctor I. T. Toporov for discussions.

12.
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