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Abstract

RF pulsed heating is a process by which a metal is heated from magnetic �elds on

its surface due to high-power pulsed RF. When the thermal stresses induced are

larger than the elastic limit, microcracks and surface roughening will occur due to

cyclic fatigue. Pulsed heating limits the maximum magnetic �eld on the surface and

through it the maximum achievable accelerating gradient in a normal conducting

accelerator structure. An experiment using circularly cylindrical cavities operating in

the TE011 mode at a resonant frequency of 11:424 GHz is designed to study pulsed

heating on OFE copper, a material commonly used in normal conducting accelerator

structures. The high-power pulsed RF is supplied by an X-band klystron capable of

outputting 50 MW, 1:5 �s pulses. The test pieces of the cavity are designed to be

removable to allow testing of di�erent materials with di�erent surface preparations.

A diagnostic tool is developed to measure the temperature rise in the cavity utilizing

the dynamic Q change of the resonant mode due to heating. The diagnostic consists

of simultaneously exciting a TE012 mode to steady-state in the cavity at 18 GHz and

measuring the change in re
ected power as the cavity is heated from high-power pulsed

RF. Two experimental runs were completed. One run was executed at a calculated

temperature rise of 120 K for 56 � 106 pulses. The second run was executed at a

calculated temperature rise of 82 K for 86�106 pulses. Scanning electron microscope

pictures show extensive damage occurring in the region of maximum temperature rise

on the surface of the test pieces.
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Chapter 1

Introduction

1.1 Description of RF Pulsed Heating

Pulsed heating is a transient process by which materials (usually metals) are heated

by a pulsing source. This type of heating is in contrast to steady-state heating in

which the source is always active. Hence, pulsed heating causes the temperature in

the material or on its surface to cycle with the same repetition rate as the source.

After the source is switched o�, the temperature inside the material usually decays

close to its ambient value by the time the source is active again.

RF (Radio Frequency) is a term used to denote time-varying electromagnetic �elds.

Essentially, RF pulsed heating is a process in which a metal is heated with a pulsed RF

source of power. The basic mechanism of this process is the local Joule heating that

occurs on the metal surface due to eddy currents created from pulsed RF. Intuitively,

if we ignore radiation e�ects, the heat deposited on the surface of the metal must


ow into the material. The heat 
ow is governed by the well-known heat di�usion

equation

r
2T (~r; t) +

1

k
g(~r; t) =

1

�d

@T

@t
; (1.1)

where T (~r; t) is temperature (K), ~r is position (m), t is time (s), g(~r; t) is power per

unit volume (W=m3), k is thermal conductivity (W=m�K), �d = k=�c" is thermal

di�usivity (m2=s) where � is density in (kg=m3) and c" is speci�c heat at constant

1
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strain in (J=kg�K). It will be shown later that the temperature rise on the surface of

the metal is maximum for heat deposited on the surface.

Stress is induced on the metal surface when the heating occurs faster than the

metal has time to expand. The thermal expansion of metal is limited in time by

the velocity of sound in the material. If the induced stress from each RF pulse is

above a certain threshold, known as the yield strength, then damage in the form of

microcracks will eventually occur. The damage may not manifest until after many

RF pulses are applied to the material. This damage process is known as thermal

fatigue which is described in more detail in section 1.3. Thermal fatigue from pulsed

heating may eventually cause the material to be unusable.

1.2 Relevance of RF Pulsed Heating to Accelera-

tor Physics

The frontier of accelerator physics aims to achieve higher center-of-mass energies for

particle collisions. Under present technology, the cost and length of conventional RF

accelerators become prohibitive at center-of-mass energies starting at 1 TeV. Current

research is ongoing in advanced accelerator concepts to achieve such energies with

reasonable cost. One such focus of this research is to attain higher gradients in

RF linear accelerators. In order to obtain reasonable accelerator lengths and AC

power requirements it is necessary to operate at shorter wavelengths as compared

to the linear accelerator at SLAC (currently operating at � = 10:5 cm) [58]. Such

research involves studying the limits of high gradients due to phenomena such as RF

breakdown, dark current trapping and, of course, pulsed heating. It is interesting to

consider these limitations as a function of RF wavelength.

Dark current trapping occurs when �eld emitted electrons are accelerated to rela-

tivistic energies in an RF cycle and trapped by a travelling RF wave in the accelera-

tor [50]. This phenomenon can cause beam loading and random de
ecting wake�elds
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Figure 1.1: Gradient limits due to dark current trapping, RF breakdown, and pulsed

heating. The data points represent gradient achieved with reasonable dark cur-

rent [50].

and occurs when the gradient exceeds [58]

Gtrap =
1:6 MeV

�
: (1.2)

RF breakdown is characterized by pulse shortening and high-power spikes caused by

the emission of absorbed gas from the surface of the metal into the high-power vacuum

device. There is little understanding of the underlying causes of RF breakdown, but

with the guidance of some experiments [35, 56] a convenient scaling is obtained [58]

Gbreak =
1:1 GeV/m

[�(cm)]7=8
: (1.3)

These two scalings are shown in Figure 1.1 along with gradients measured at di�erent

wavelengths [50].

Pulsed heating can cause another limit to high gradients which arises when the

metal surface yields due to pulsed temperature rises. This limitation is considered in

more detail in the sections that follow, but the criterion is related to the induced stress
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� 8:95� 103 kg=m3

c" 385 J=kg �K
k 391 W=m �K
� 1:67� 10�5 K�1

E 1:23 GPa

� 0.345

�y 34 MPa

�0f 426 MPa [7, p. 88]

"0f 0.29 [7, p. 88]

b -0.11 [7, p. 88]

c -0.51 [7, p. 88]

�c 5:8� 107 S

Table 1.1: Parameters of fully annealed OFE copper at room temperature.

exceeding the yield strength of the material. Equation (1.29) gives the temperature

rise at which the induced stress from pulsed heating of a metal surface will exceed

its yield strength. Noting that damage will accumulate when the temperature rise is

twice this value (see section 1.3.4) and using the values given in Table 1.1 for fully

annealed OFE copper, we expect the damage threshold to be �T = 40 K. Other

sources have quoted a threshold value for damage to be �T = 110K for OFE copper

due to heating from pulsed electron 
ux [23, 42]. The calculation of the �T = 110K

threshold assumed that the dynamic yield strength is about three times higher than

the static one quoted in Table 1.1. The value of the yield strength of copper in the

regime of RF pulsed heating is not known. It is also not known if damage due to

pulsed heating from RF is di�erent from pulsed electron 
ux since electrons have a

higher penetration depth than electromagnetic �elds in metal.

A convenient scaling for pulsed temperature rise is [58]

�T =
G2
p
Tp

Z2

H

Rsp
��c"k

; (1.4)

where G is unloaded gradient, Tp is the RF pulse length, Rs is the surface resis-

tance, � is the density, c" is the speci�c heat at constant strain, and k is the thermal



CHAPTER 1. INTRODUCTION 5

conductivity. The impedance ZH is the ratio

ZH =
G

Hmax

; (1.5)

where Hmax is the maximum surface magnetic �eld. The surface resistance is given

by

Rs =

r
��clight

��c
; (1.6)

where � is the RF wavelength and �c is the metal conductivity. Equation (1.4) will be

derived in Chapter 3. If we use the values for NLC (Next Linear Collider, � = 2:6cm),

ZH = 300
 and Tp = 360ns, scale RF pulse length with �lling time, Tp � �3=2 [34, 50]

and use the values in Table 1.1 we get

Gpulse = (28 MeV/m)
�T 1=2

[�(mm)]1=8
: (1.7)

Various temperature rises have been plotted in Figure 1.1. As Figure 1.1 shows, pulsed

heating becomes an important impediment to higher gradients at shorter wavelengths

as compared to RF breakdown and dark current trapping. Based on the above results,

an experiment, which is described in Chapter 2, has been created to test OFE copper

at various temperature rises. The goal is to experimentally demonstrate the dangers

of pulsed heating to future accelerator designs.

1.3 Thermal Fatigue of Metals

Analysis of heating is important for determining the behavior of the material in

various applications. Speci�cally, one worries about damage induced in the material

by thermal loads that render the material unusable. Usually the �rst criterion that is

met is that the temperature rise due to pulsed heating must be less than the melting

point of the material. In high-power RF applications, which due to electric breakdown

in air must be performed under high vacuum, this criterion limits the energy that may

be applied in a single pulse. There are, of course, other limits to high-power RF, such

as RF breakdown, that do not directly depend on Joule heating. Such limitations
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will not be discussed here.

The melting of metal is an important, and perhaps obvious, limitation of high

power. However, damage to metals may occur from thermally-induced stress due to

temperature changes much lower than necessary to melt the surface. \Damage" is

used loosely to describe an unwanted permanent change in the material. For some

applications damage could simply mean cracks of a certain length on the surface (frac-

ture). For other applications, damage could be nothing more than surface roughening

in which the surface �nish of a metal is no longer as good as it was initially.

Obviously the amount of stress necessary to cause damage depends on the proper-

ties of the material. However, damage may not occur in metals until stress has been

repeatedly applied many times. This type of damage mechanism is known as fatigue

or cyclic fatigue. When the stress is thermally-induced this mechanism is known as

thermal fatigue. The level of stress necessary to cause fatigue is much lower than that

which is necessary to cause damage in one pulse or cycle. Before we discuss thermal

fatigue in more detail, it would be worthwhile to review some elasticity theory.

1.3.1 Linear Elasticity and Thermal Stress

Forces distributed over the surface of a body are called surface forces. The surface

force per unit area is known as stress. Internal stresses in a body are surface forces

that result from physical contact between two imaginary surfaces in the body. The

deformation of a body is found by considering the displacements of particles in the

body. Only displacements that result in deformation of the body and not rigid-body

movement are considered. Strains are the relative elongations or distortion of angles

between these sets of particles.

In general, materials will deform under applied loads or stresses. The theory of

elasticity [8, 12, 29, 52, 55] describes such deformations as long as the deformations

are \small" in the sense that when the loads disappear so do the deformations. A

material is said to be elastic in this range of stresses. When the applied stress is larger

than this elastic limit then permanent deformation will occur. Basically, when these

stresses are removed the material will not revert back to its original size or shape
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depending on the nature of the applied stress. The material is said to be plastic in

this region, and the theory of plasticity [8] will be needed to describe the deformation

of the material.

In this section we will only discuss linear elasticity in order to place more em-

phasis on the basic physics involved in the study of pulsed heating. Linear elasticity

describes the situation in which the stress is proportional to the strain. This property

depends on the material, but it is usually a good assumption in practice. Also, we

will assume that the material is isotropic, meaning that the properties of the material

do not depend on the coordinate direction. We will limit our discussion to cartesian

coordinates for purposes of illustration.

Based on the assumptions given above, there are a total of 15 components needed

to describe the material under applied loads. In cartesian coordinates these compo-

nents are the 6 stress components �xx, �yy, �zz, �xy, �yz, �xz, the 6 strain components

"xx, "yy, "zz, "xy, "yz, "xz, and the 3 displacement components ux, uy, uz. We only

need six stress components and six strain components instead of nine, because we as-

sumed the material is isotropic which gives �ij = �ji and "ij = "ji. Figure 1.2 shows

the positive orientation of the stress components on an in�nitesimal cube inside a

body.

It must be remembered that stress and strain are second-order tensors. One

cannot think of these components as vector components unless you de�ne a reference

plane. Hence the shear stress components �xy, �yz, �xz may be zero with respect to

one plane and nonzero with respect to another. This fact will be important when

considering metals with grain boundaries.

There are 15 equations necessary to uniquely solve for the stress, strain, and

displacement in a body. The �rst three equations involve the stress components

and are known as the equilibrium equations. These equations are independent of the

material properties and are derived solely from the consideration of equilibrium of

the body:
@�xx
@x

+
@�xy
@y

+ @�xz
@z

+ Fx = 0
@�xy
@x

+
@�yy
@y

+
@�yz
@z

+ Fy = 0
@�xz
@x

+
@�yz
@y

+ @�zz
@z

+ Fz = 0

9>>=
>>;

; (1.8)
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Figure 1.2: Stress components on an in�nitesimal cube inside a body. Arrows show

direction of positive stress.

where Fx, Fy, and Fz are body force intensities or body forces per unit volume. Body

forces are forces associated with the mass of the body and are distributed throughout

its volume. Body forces also include the e�ect of inertia forces which are important

in the study of pulsed heating. The inertia forces are given below

Fx = ��@2ux
@t2

; Fy = ��
@2uy
@t2

; Fz = ��@2uz
@t2

; (1.9)

where � is the mass density of the material (kg=m3).

The next set of equations are known as the strain-displacement relations. They are

derived from purely geometrical considerations and are also independent of material

properties.

"xx =
@ux
@x

"yy =
@uy
@y

"zz =
@uz
@z

"xy =
1

2
(@ux
@y

+
@uy
@x

)

"yz =
1

2
(
@uy
@z

+ @uz
@y

)

"xz =
1

2
(@uz
@x

+ @ux
@z

):

9>>>>>>>>>>=
>>>>>>>>>>;

(1.10)
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The last six equations are known as the stress-strain relations or generalized

Hooke's law. They are constitutive relations that depend directly on the proper-

ties of the material. As mentioned before, these relations embody the assumptions of

linear elasticity:

"xx =
1

E
[�xx � �(�yy + �zz)] + �T

"yy =
1

E
[�yy � �(�zz + �xx)] + �T

"zz =
1

E
[�zz � �(�xx + �yy)] + �T

"xy =
1

2G
�xy

"yz =
1

2G
�yz

"xz =
1

2G
�xz

9>>>>>>>>>>=
>>>>>>>>>>;

; (1.11)

where E is Young's modulus (Pa), � is the coeÆcient of linear thermal expansion

(K�1), T is temperature (K), � is Poisson's ratio, and G = E=2(1 + �) is the shear

modulus (Pa). Hooke's law may also be written in terms of stresses:

�xx = �e + 2�"xx � (3�+ 2�)�T

�yy = �e + 2�"yy � (3�+ 2�)�T

�zz = �e + 2�"zz � (3�+ 2�)�T

�xy = 2�"xy

�yz = 2�"yz

�xz = 2�"xz

9>>>>>>>>>>=
>>>>>>>>>>;

; (1.12)

where e = "xx + "yy + "zz is known as the dilatation, and � and � are known as the

Lam�e elastic constants and are related to E and � as follows:

� =
�E

(1 + �)(1� 2�)
; (1.13a)

� =
E

2(1 + �)
= G: (1.13b)
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The following relations also hold:

E =
(3�+ 2�)�

�+ �
; (1.14a)

� =
�

2(�+ �)
: (1.14b)

Notice that thermal strain is also included in equations (1.11) with the �T term.

Since thermal expansion is isotropic (it can only change the size of a body and not

its shape), the shear strains "xy, "yz, and "xz are not a�ected by temperature. Also

note that these equations assume that the reference temperature is 0 K. We will keep

this assumption for convenience.

According to Hooke's law, once the stress and temperature distributions in a body

are known, the strain distribution is easily found. If the body is simply heated with no

applied surface forces then equations (1.11) reduce to the common thermal-expansion

equation �L = �L�T where L is the length of the body in a particular coordinate

direction. Using this fact as a guide, we can separate the normal strains "xx, "yy, and

"zz in equations (1.11) into mechanical and thermal strains "total = "mech+"therm. This

distinction will help us understand the physical mechanism behind thermal stresses.

Thermal stresses arise when a body is heated but is constrained from expanding.

We can imagine heating a long, thin bar that is clamped at its ends. Because the

bar is constrained, the total strain is zero since the bar cannot physically expand.

A mechanical strain is set up from the constraint to oppose the thermal expansion.

This constraint causes stress to build up in the bar.

Since the 15 equations of elasticity are linear, it is perhaps more intuitive to think

of this example in terms of superposition. First, we heat up the bar without any

constraints and allow it to expand longitudinally. Next, we physically compress the

bar back to its original length. The stress necessary to create this mechanical strain is

the same as the thermal stress that would arise if we prevented the bar from expanding

originally. Thus thermal stresses are the same as physical stresses.

It will be interesting to further explore these ideas with some calculations. Let us
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z
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Figure 1.3: Block of material

examine a block of material as shown in Figure 1.3 that is initially at a temperature

of 0 K. We will heat the material to a temperature T under various mechanical

constraints. All results are derived using Hooke's law (1.11) or (1.12):

Case 1: No constraints in all directions (�xx = �yy = �zz = 0)

"xx = "yy = "zz = �T:

Case 2: Constrained in x-direction, but free to expand in y and z-directions

(�yy = �zz = 0; "xx = 0)

�xx = �E�T

"yy = "zz = �T (1 + �):
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Case 3: Constrained in x and y-directions, but free to expand in z-direction

(�zz = 0; "xx = "yy = 0)

�xx = �yy = �
E�T

1� �

"zz =
1 + �

1� �
�T:

Case 4: Constrained in all directions (�xx = �yy = �zz = �
E�T
1�2�

)

"xx = "yy = "zz = 0:

For most metals, � ' 1=3. Therefore, one can see that the more mechanical con-

straints placed on a body, the higher the thermal stress will be when the body is

heated. Also note that the stresses derived above are compressive. If we had started

with the material stress-free at a temperature T and then let it cool down to 0 K,

the stresses would be tensile but with the same magnitude as given earlier.

A material subjected to pulsed heating would behave similarly to the example

considered above. The major di�erence is that the mechanical constraint is due to

the inertia of the material itself, because the body or the surface of the material is

heated and cooled on a small time scale. Therefore one must take into account the

propagation of sound waves in the material which will cause the stress in the material

to relax over time as the body is allowed to expand. The physics of this situation is

contained in the equations (1.8), (1.9), (1.10), and (1.11). Therefore, a full dynamic

calculation must be done before the stress can be determined. However, as a �rst

approximation, if the body is large enough in a certain dimension we may assume

that the total strain in that dimension is zero during the heating of the material. The

results derived in the example above then directly apply. This simpli�cation will serve

as a guide to understanding the dynamic stresses that exist due to pulsed heating.
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1.3.2 Strength of Materials

The knowledge of the stress and strain in a body are important for the study of

fatigue of materials. There are some empirical relationships that relate the lifetime of

a given material to the stress or strain state that exists in the body. These relations

are obviously important for engineering designs of mechanical components. We will

attempt to extend these ideas to the study of pulsed heating, but �rst we must review

some details about the strength of materials [3, 49].

Many studies on the fatigue of materials focus on uniaxial fatigue where the ap-

plied stress or strain on a body occurs in only one direction. Studies of multiaxial

fatigue are harder to interpret and there is much more data available for materials

experiencing uniaxial loads. So in this section, stress and strain are to mean stress

and strain in the direction of the uniaxial load.

All metals follow a characteristic curve known as the stress-strain curve. These

curves basically describe the behavior of a material under applied stresses or strains

and are divided into two classes, the static or monotonic stress-strain curve and the

cyclic stress-strain curve. The static stress-strain curve describes the behavior of a

material under a static or non-varying load while the cyclic stress-strain curve de-

scribes the behavior of a material under a cyclic load. Metals in general behave

di�erently under these two conditions. An example is shown in Figure 1.4. Although

these curves will vary from material to material, they all have some general charac-

teristics that most metals share.

Figure 1.5 shows a particular stress-strain curve in detail. For low values of stress

or strain the curve is linear with the proportionality constant being Young's modulus

E. This region of the curve describes linear elastic deformation in which the defor-

mation disappears when the load is removed. Some materials deviate from linearity

when the stress is above the proportional limit. This region of the curve describes

nonlinear elastic deformation. Although the strain varies nonlinearly with respect to

the applied stress, the deformation still disappears when the load is removed. The

curve is basically retraced back to the origin as the material is unloaded. When the

applied stress is above the elastic limit, the material will experience a permanent

deformation that remains after the load is removed. For some materials it is hard
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Figure 1.5: Detailed stress-strain curve for �ctitious material.
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Figure 1.6: Loading and unloading stress-strain curve for �ctitious material.

to distinguish between the proportional limit and the elastic limit since their values

are close to each other. Above the elastic limit the material will unload along a path

parallel to the elastic region o�set from the origin as shown in Figure 1.6.

The elastic limit signi�es the beginning of the yielding process. Microscopically,

the planes of atoms in the material begin to slip to new equilibrium positions which

results in permanent deformation. For some metals like iron, there is a point where

the stress-strain curve has zero slope. This point is called the yield stress after which

plastic deformation will occur. These metals also exhibit dips in their stress-strain

curves known as necking. Other metals like copper, which begin to show slip but do

not have zero slopes in their stress-strain curves or necking, have their yield stress

determined by drawing a line parallel to the elastic deformation region but o�set by

an amount of 0.2 percent on the strain axis as shown in Figure 1.7. This point is

called the o�set yield stress.

Most materials can be classi�ed into two di�erent groups depending on how they

behave in the plastic deformation regime. Most metals are termed ductile because

they show signi�cant yielding evident in the amount of slip in the material under

test. Materials that are highly resistant to slip are termed brittle. The stress required
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Figure 1.7: Stress-strain curve showing o�set yield stress.

to cause slip in brittle materials is so high that the material simply fractures �rst.

The tensile stress required to cause fracture in either ductile or brittle materials,

de�ned by the separation of a block of material into two or more pieces, is denoted

the ultimate tensile strength or UTS or �UTS.

As mentioned before, plastic deformation will occur when the applied stress ex-

ceeds the yield strength of the material. The material will no longer unload along

the original path in the stress-strain curve. The material will unload along a path

that is parallel to the elastic deformation region and is known as the unloading curve.

As shown in Figure 1.6, residual strain will be left in the material when the applied

stress is zero.

So far the discussion of the stress-strain curve only involved the use of tensile

stresses. Most of the points made above also apply to compression. However, there

is no general fracture point for compression. The material is more likely to buckle

before it fractures. By convention compressive stresses and strains are negative.

For most metals the monotonic stress-strain curve can be modeled using a power

function for stress as a function of plastic strain

� = K("p)
n; (1.15)
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Figure 1.8: Monotonic stress-strain curve showing elastic and plastic strain

whereK is the strength coeÆcient and n is the strain hardening exponent. By knowing

the stress at �nal fracture called the fracture strength, �f , and the strain at �nal

fracture called the fracture ductility, "f , one can determine K using equation (1.15)

K =
�f

"nf
: (1.16)

The total strain can be expressed as (see Figure 1.8)

"t = "e + "p: (1.17)

If we de�ne the elastic strain as

"e =
�

E
; (1.18)

then equation (1.17) can be expressed as

"t =
�

E
+
� �

K

�1=n

: (1.19)

We stated previously that the static and cyclic stress-strain curves are usually

di�erent (see Figure 1.4). This di�erence is due to the phenomenon known as strain
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hardening and strain softening. Some metals like copper experience strain hardening

where the metal gets stronger after a certain amount of cycles. The static stress-

strain curve will gradually change towards the cyclic stress-strain curve and eventually

stabilize there. For metals that strain-harden like fully-annealed OFE copper this

means that the stress necessary to induce a certain strain will be higher than a

previously unloaded sample. The opposite condition occurs for materials that strain-

soften. This phenomenon is important in the consideration of cyclic fatigue.

1.3.3 Cyclic Fatigue

A large amount of information has been gathered on the area of cyclic fatigue of

metals. Only some of the relevant basics will be introduced here and can be found in

many references [3, 7, 22, 44, 53].

It is known that damage due to fatigue does not occur until the material un-

dergoes plastic deformation in which the applied stress exceeds the yield strength

of the material. When this condition occurs failure of metals due to cyclic fatigue is

characterized by three stages: cyclic hardening/softening, crack nucleation, and crack

propagation.

Cyclic Hardening/Softening

Cyclic hardening/softening or strain hardening/softening is the process by which the

static stress-strain curve of a material transforms and stabilizes to the cyclic stress-

strain curve. Usually cyclic hardening/softening only occurs during the �rst few

percent of the cycles to failure. For stress amplitudes larger than the yield strength,

the stress-strain history of the material follows a hysteresis loop in which a material

unloads along a di�erent path from the static stress-strain curve (see Figure 1.6). To

establish the cyclic stress-strain curve, materials are tested at several di�erent stress

amplitudes above the yield strength until a stable hysteresis loop is found for each

stress amplitude. The cyclic stress-strain curve is created by connecting the tips of

these hysteresis loops (see Figure 1.9).

Figure 1.10 shows one particular hysteresis loop in detail in which a material is
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cyclically loaded in tension and compression. The total stress range, ��, is the total

height of the loop and the total strain range, �", is the total width of the loop. The

total strain is the sum of the elastic and plastic strain ranges as shown in Figure 1.10

�" = �"e +�"p: (1.20)

Using Hooke's law, the elastic term can be replaced with ��=E. If we de�ne the

stress amplitude as � = ��=2 and the strain amplitude as " = �"=2 then the cyclic

stress-strain curve may also be represented by a power law function similar to the

static stress-strain curve (see equation (1.19))

" =
�

E
+
� �

K 0

�
1=n

0

; (1.21)

where K 0 is the cyclic strength coeÆcient and n0 is the cyclic strain hardening expo-

nent. � and " are understood to be the cyclically stable stress and strain amplitudes

respectively.

The hysteresis loops may be found by doubling the cyclic stress-strain curve in

Figure 1.11(a) to get the curve in Figure 1.11(b) and �nally shifting the origin of the

coordinates as in Figure 1.11(c). Multiplying equation (1.21) by 2 we get the general

hysteresis curve equation

�" =
��

E
+ 2

�
��

2K 0

�1=n0

: (1.22)

Another important behavior of metals is known as the Bauschinger e�ect [5] shown

in Figure 1.12. If a material is loaded in tension beyond its yield strength for example,

then the material will undergo plastic strains in compression before the original yield

point in compression is reached. This behavior is common in metals that are cyclically

loaded in the plastic region.
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Figure 1.11: Stabilized hysteresis curve from cyclic stress-strain curve.
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Crack Nucleation

This stage of the fatigue process is governed by the nucleation or initiation of cracks

in the metal. These cracks usually develop on the free surface of the material and

are most likely due to localized concentration of plastic strain or imperfections in the

lattice.

The lifetime of a material, de�ned as the number of cycles to failure, depends

largely upon the de�nition of failure. Some de�nitions of failure require cracks to

reach certain lengths. This failure occurs during the crack propagation stage. Other

de�nitions simply require a density of cracks to develop; this failure is largely governed

by the crack nucleation stage. Lifetime curves have been developed for many metals

under uniaxial loads for this type of failure.

Two common methods have been developed to characterize metal fatigue. One

method developed decades ago is known as the stress-life method. The stress-life

method is conducted by cyclically loading the material at a constant stress amplitude

and is useful when the plastic strains are small. Basically, the number of cycles

to failure is recorded for various stress amplitudes. Some metals, such as various

types of steels, also have endurance limits, stress levels below which materials can be
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loaded inde�nitely without failure. Other metals like copper do not have an obvious

endurance limit. In this case endurance limits are de�ned at the stress amplitude

that will cause failure at 107 or 108 cycles.

Since it is known that plastic strains are responsible for the accumulation of dam-

age in a material, the strain-life method is usually used to characterize metal fatigue.

This method is performed by cyclically loading a material under constant total strain

or plastic strain amplitudes and recording the number of cycles to failure. Fatigue due

to pulsed heating is best described using the strain-life approach, since total strain is

proportional to temperature rise (see equations (1.11)).

High-cycle fatigue is the region of the strain-life curve where the plastic strains

are small and the number of cycles to failure is large. The results from the stress-

life method are usually in good agreement with the strain-life method in this region.

However, the strain-life method is better at characterizing materials in the region

of low-cycle fatigue where the plastic strains are large and the number of cycles to

failure are low.

In 1910, Basquin [4] observed that stress-life data could be parametrically modeled

as

� = �0

f (2Nf)
b; (1.23)

where � is stress amplitude, Nf is number of cycles to failure (2Nf is number of

reversals to failure), �0

f is the fatigue strength coeÆcient and b is the fatigue strength

exponent. In the 1950s, CoÆn [13] and Manson [36] independently observed that

plastic strain-life data could be parametrically modeled as

"p = "0

f(2Nf)
c; (1.24)

where "p is plastic strain amplitude, "0

f is the fatigue ductility coeÆcient and c is the

fatigue ductility exponent. Because of their work, the strain-life curve is also known

as the Manson-CoÆn curve. Since the total strain is the sum of the elastic and plastic

strains (equation (1.17)), the strain-life method can be modeled using the strain-life

relation

" =
�0

f

E
(2Nf)

b + "0

f(2Nf)
c: (1.25)
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Figure 1.13: Strain-life curve

A log-log plot of this relation along with the elastic and plastic components is shown

in Figure 1.13. From equations (1.21) and (1.25) we also get the following useful

relations

K 0 =
�0

f

("0

f)
n0
; (1.26a)

n0 =
b

c
: (1.26b)

For constant strain-amplitude loading, the fatigue of most ductile metals are char-

acterized well with power-law parameterizations given by equation (1.25). The pa-

rameters �0

f , "0

f , b and c have been experimentally determined for fully-annealed

copper (see Table 1.1). It is believed that fatigue of copper from pulsed heating can

also be parametrically modeled with equation (1.25), since a material is loaded under

constant total strain from constant temperature rises. However, the values of the

parameters may be di�erent.

There are other e�ects such as surface �nish, environment, mean stress, mean
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strain, variable amplitude loading, multiaxial fatigue and strain rate that may a�ect

the lifetime of the material.

Crack Propagation

Once cracks have nucleated, fracture mechanics must be used to describe their prop-

agation. Fracture mechanics is ultimately used to predict the number of cycles for

cracks to lengthen from an initial critical length to some arbitrary length de�ned as

failure for the specimen. This stage of the fatigue process needs to be studied if one

wants to predict the �nite life of a component. The total lifetime of a specimen is the

number of cycles it takes for cracks to nucleate (found from the strain-life curve) plus

the number of cycles it takes for the cracks to reach a particular length. However,

since there is limited knowledge when the cracks will initiate and then propagate due

to pulsed heating, we will only consider the crack nucleation stage as de�ned by the

strain-life curve.

1.3.4 Thermal Fatigue Due to Pulsed Heating

Thermal fatigue is basically cyclic fatigue induced from cyclic thermal loads. This

type of fatigue, however, is usually complicated by e�ects such as creep where the

strain increases when a high temperature is held at a steady value for some period

of time. Fortunately, these e�ects do not occur from pulsed heating since the tem-

perature rises and falls on a fast time scale. Since the stress from pulsed heating is

induced by the mechanical constraint imposed by the inertia of the material, results

from Section 1.3.3 directly apply. However, the analysis becomes more complicated

when the temperature dependence of the thermal and mechanical properties of the

material is considered. It will be instructive to consider a simple step-by-step example

of the stress-strain response of a metal under pulsed heating [41].

We will use a block of material initially at a temperature of 0 K(see Figure 1.14).

The free surface of the metal will be heated with a fast high-power source. Since the

surface is free to expand into the vacuum, the normal stress at the surface can be

approximated as zero. We will assume that the transverse dimensions of the material
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Figure 1.14: Metal surface being heated with a fast high-power source [41].

are large enough such that the metal remains inertially con�ned during the heating

and cooling of the surface. This assumption implies that the total transverse strain

is zero. Using these assumptions and equations (1.11) and (1.12) we have

�N = "TT = 0

�T = �E�T

1��

"N = 1+�

1��
�T

9>>=
>>;

; (1.27)

where �N is normal stress, �T is transverse stress, "N is normal strain and "TT is total

transverse strain. Since the total transverse strain is zero, the transverse mechanical

strain "TM must be the opposite of the transverse thermal strain or

"TM = ��T: (1.28)

It is the mechanical strain that must be considered in the stress-strain response of the

metal. Equations (1.27) and (1.28) show that a positive temperature rise will result

in compressive stresses and mechanical strains.
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Figure 1.15: Linear-elastic/perfectly-plastic stress-strain diagram for pulsed heating

of metal surface [41].

For simplicity we will also use a linear-elastic/perfectly-plasticmodel for the stress-

strain response of the material. In this model the stress is constant at the yield stress

when the mechanical strain is above the yield strain (shown as point A in Figure 1.15).

Using equations (1.27) the temperature at which the yield stress, �y occurs is

Ty =
(1� �)�y

E�
: (1.29)

From equation (1.28) the yield strain is

"y =
(1� �)�y

E
: (1.30)

Now we will consider the response of the material due to pulsed heating. Because

of our simpli�ed model, we are ignoring cyclic-hardening and the Bauschinger e�ect.

The surface of the metal will be heated to a temperature rise of Tmax and then cooled

back down to zero. Refer to Figure 1.15 for the following discussion. If Tmax < Ty

the material will cycle along the line OA where point A represents the yield strain.
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No plastic strain will occur and hence no damage will occur. If Ty < Tmax < 2Ty

the material will compress along line OA and plastic strain will accumulate along

the path AB during the heating of the surface. The surface will then cool down

along the path BC until the temperature rise and hence the mechanical strain is zero.

Notice residual stress is now left on the surface. At this temperature rise, subsequent

pulses will cycle along the line BC and no more plastic strain or damage will occur.

When Tmax > 2Ty the material will follow the path OABDF during the heating of the

surface. When the surface cools down to 0 K, the material will follow the path FGE

where point G is also the yield stress. Since the temperature rise is not zero when

the material reaches point G, plastic deformation will occur along the path GE until

the mechanical strain is reduced to zero. Subsequent pulses will cause the material

to follow the path EDFGE since the yield strain is exceeded in both compression and

tension. Plastic strain and hence damage will be accumulated in every pulse until

failure occurs.

Comparing Figure 1.15 to Figure 1.10, one should notice that the hysteresis loop

from pulsed heating cycles about a mean compressive strain. Also, we assumed that

the material is still inertially con�ned when the temperature rise reduces to zero. Due

to heat di�usion, the metal surface will take much longer to cool down than to heat up.

The material may be able to expand and relieve the stress in that time. Ultimately,

this condition means the hysteresis loop will cycle about a mean compressive stress.

These factors may have an important e�ect on the lifetime of the material. More

detailed calculations of the thermal response of copper to pulsed heating is presented

in Chapter 3.



Chapter 2

Experimental Setup

As mentioned in the previous chapter, we must design an experiment to test the

surface of OFE copper for damage from thermal fatigue due to RF pulsed heating.

This chapter will describe the design of the experiment and the test structure. We

will discuss cold-test results of the test structure and the modi�cations used. Chapter

4 will describe the results of the high-power tests.

2.1 Cavity Design

Since we are interested in the RF performance of future accelerators, we chose to use

a simple resonant cavity constructed from OFE copper. It might be helpful to refer

to Appendix A for a review of resonant cavities.

There are a few requirements a test structure should have. The �rst requirement is

removable test pieces so future tests may be conducted at di�erent temperature rises

as well as with di�erent materials and surface preparations. Second, there should be

no perpendicular electric �elds on the cavity surface in order to avoid RF breakdown.

Hence, we may isolate the e�ects of pulsed heating. Third, the cavity should be

designed to minimize the heating on the parts that cannot be simply replaced. This

allows several tests to be performed before the need to replace the entire cavity.

29
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Figure 2.1: Circularly cylindrical cavity of radius R and length d. The endcaps are

the test pieces and the sidewall is to be re-used in future tests.

2.1.1 Choice Of Cavity Mode

Noting the above design philosophy, we must choose an operating frequency and

mode for the cavity. In order to have removable test pieces, the surface currents in

the cavity must not require contact between the test piece and the rest of the cavity.

Also, there must be no perpendicular electric �elds on the cavity surface. The only

geometry that allows this is a circular cylindrical geometry. One such cavity is shown

in Figure 2.1. The endcaps will be the test pieces of the experiment. The sidewall of

the cavity will be re-used in future tests.

Looking at equations (A.44), no TM modes can be used because of the nonzero Ez

�elds where ẑ is the axial direction of the cavity. In order for the endcaps to be easily

removable, we do not want the requirement of physical contact between the endcaps

and the sidewall. A good mode to accomplish this is the TE011 mode (see Figure 2.2

for the mode pattern). From equations (A.34) the cavity �elds for the TE011 mode
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Figure 2.2: Field pattern of the TE011 mode in a circularly cylindrical cavity of radius

R and length d.

for a cavity of radius R and length d are
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where the angular resonant frequency is

!011 = c

s�
x0

01

R

�2

+
��
d

�2
: (2.2)

The magnetic �eld at the endcaps is purely radial. Therefore the surface current

~Js = n̂ � ~H is purely azimuthal, so no current 
ows between the endcaps and the
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sidewall.

The electric �eld in the cavity is also azimuthal, so there is no perpendicular

electric �eld on any surface in the cavity. This helps avoid electric �eld breakdown.

However, the use of a coupling aperture will change this fact as it modi�es the �elds

near that region.

We need to choose a frequency where a high-power klystron is available for use. At

SLAC, there are 50 MW X-band klystrons available that operate at 11:424 GHz and

60 MW S-band klystrons that operate at 2:856 GHz. Looking ahead to Section 3.3.1,

we will derive the temperature rises of the endcaps and the sidewall knowing the

input power and unloaded and external Q's of the cavity. These temperature rises

are given by equations (3.72{3.73). Assuming constant coupling (� is constant),

constant power and constant pulse length, the frequency scaling for temperature rise

according to equations (3.72{3.73) is

�T /
RsQ

2

L

!3L5
/

RsQ
2

011

!3L5
/

!1=2!�1

!3!�5
/ !3=2: (2.3)

where L is a characteristic length. Hence, for a given power input and pulse length,

it is best to use the highest frequency possible. So we will choose 11:424 GHz as the

cavity's resonant frequency.

2.1.2 Choice Of Cavity Dimensions

Since we want to use the endcaps as the test surface and we want to re-use the

cavity sidewall, we need to choose the cavity dimensions such that the temperature

rise on the endcaps is maximum while being low on the sidewall. The strain in the

copper is proportional to temperature (see section 1.3.1). According to the strain-life

relation, equation (1.25), the number of cycles to failure follows a power law with

strain. Therefore, several high-power tests may be conducted with di�erent endcaps

before the cavity sidewall becomes signi�cantly damaged from pulsed heating.

Since we will optimize the dimensions of the cavity at the �xed frequency of
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11:424 GHz, the radius R of the cavity is a function of the cavity length d

R =
x0

01q�
!011
c

�2
�

�
�
d

�2 : (2.4)

The unloaded Q of the cavity depends on its dimensions. Using equations (A.73)

and (A.34) the unloaded Q for mode TEnmp is

Qnmp =
dR4!

5=2
nmp

p
2�c�

4c2x02
nm
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2
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Hence the unloaded Q for the TE011 mode is

Q011 =
dR4!

5=2
011

p
2�c�

4c2x02

01

1

1

2
dR +

�
�R2

dx0

01

�2
: (2.6)

We may use equation (3.72) to �nd the maximum temperature rise on the endcap

normalized to the input power by varying the cavity length d and the cavity's external

quality factor, Qext. The location of the maximum temperature rise on the endcap

occurs at r = (x0

11
=x0

01
)R = 0:4805R. The location of the maximum temperature rise

on the sidewall occurs at z = d=2. The results are shown in Figure 2.3. This plot

indicates that the optimum cavity length is d = 1:85 cm and the optimum external

Q is Qext = 16770. This corresponds to a cavity radius R = 2:27 cm.

Using the optimum value for external Q, Figure 2.4 shows the normalized heating

on the endcaps and the sidewall as a function of cavity length. At the optimum

cavity length, the ratio between the maximum temperature rise on the endcaps to

the maximum temperature rise on the sidewall is 2.11. At this length, the unloaded

Q of the cavity is Q011 = 21280. Using this value of the unloaded Q, Figure 2.5 shows

the variation of the normalized temperature rise on the endcaps as a function of the

coupling, � = Q011=Qext. The optimum cavity coupling is � = 1:28.

During the initial design, the cavity dimensions were optimized without taking the

�ll-time of the cavity into account (the bracket term in equation (3.72)). When leaving
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Figure 2.3: Temperature rise on cavity endcaps normalized to input power as a func-

tion of the cavity length d and the external quality factor, Qext.
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Figure 2.5: Temperature rise on cavity endcaps normalized to input power as a func-

tion of the coupling � = Q011=Qext calculated at cavity length 1:85 cm.

this term out, the optimum cavity length becomes d = 1:90 cm corresponding to a

cavity radius R = 2:21 cm. The cavity coupling was correctly optimized as a function

of � but with Qext = 17110 to account for the change in Q011. At this cavity length

the temperature rise on the endcaps is reduced by only 0.4%. The ratio between the

maximum temperature rise on the endcaps to the maximum temperature rise on the

sidewall is reduced to 1.90. In a later section, we will show that the coupling aperture

reduces the resonant frequency, hence the cavity radius was reduced to compensate.

The theoretical values for Q011 and Qext given earlier assume a perfect cavity. In

reality, the surface �nish of the cavity is not perfect and will cause more power loss in

the surface than previously estimated. Since the temperature rise in the cavity varies

slowly with small changes of � from the optimum value, it would be safe to assume

an approximate 10% degradation in Q of the constructed cavity. Table 2.1 shows the

�nal design parameters for the cavity.
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fres 11:424 GHz

d 1:90 cm

R 2:2075 cm

Q0 21900

Estimated Q0 19710

Qext 15400

QL 8650

� 1.28

Ra 3:75 mm

da 1:88 mm

Table 2.1: Cavity design parameters for TE011 mode.

2.1.3 Choice Of Temperature Diagnostic

We are mainly interested in the damage on the copper surface that will occur due to

RF pulsed heating and its e�ects on the RF properties of the cavity. We believe a

method that will allow us to measure Q degradation as well as monitor the dynamic

RF changes in the cavity would best suit our needs. We also believe such a method

would be easier to implement than to measure the surface temperature directly (i.e.

infrared radiation). This can be done by exciting the cavity with another mode at

steady-state under low power.

In steady-state, the re
ected power measured from the cavity in this mode would

be constant if no changes occurred to the RF properties of the cavity. However,

when the temperature of the cavity surface rises from pulsed heating from the high-

power mode, the unloaded Q of both modes will change. This change is due to the

temperature dependence of the electrical conductivity of copper. Consequently, the

coupling to the low-power mode will change which can be measured from its re
ected

power. With knowledge of the �eld pattern of this mode, the maximum temperature

rise on the endcaps may be extracted from the dynamic Q change. The details of how

the temperature is extracted is given in Section 3.3.3. Between high-power RF pulses,

the temperature rise of the surface of the copper will reduce to zero. By measuring

the Q of the low-power mode during this time, we may also measure long-term Q

degradation of the cavity to determine permanent damage to the cavity surface.
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Figure 2.6: Field pattern of the TE012 mode in a circularly cylindrical cavity of radius
R and length d.

A natural choice for the low-power mode is the TE012 mode (see Figure 2.6 for the

mode pattern). This mode has the same �eld pattern on the endcaps as the TE011

mode, which is the surface we are interested in. Also, this mode does not require

physical contact between the endcaps and the sidewall. This is necessary in order to

accommodate the high-power TE011 mode. The �elds are

Hz = A012

TE sin

�
2�z

d

�
J0

�
x0

01
r

R

�
; (2.7a)

Hr = A012

TE

2�R

dx0

01

cos

�
2�z

d

�
J 0

0

�
x0

01
r

R

�
; (2.7b)

E� = �A012

TE

!012R

cx0

01

sin

�
2�z

d

�
J 0

0

�
x0

01
r

d

�
; (2.7c)

A012

TE =

r
2

�d

c

!011R
2

x0

01

jJ0(x
0

01
)j
; (2.7d)
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fres 17:820 GHz

Q0 21960

Estimated Q0 19760

Qext 19760

QL 9880

� 1.0

Ra 2:85 mm

da 1:034 mm

Table 2.2: Cavity design parameters for TE012 mode.

where the angular resonant frequency is

!012 = c

s�
x0

01

R

�2

+

�
2�

d

�2

: (2.8)

From equation (2.5) the unloaded Q of this mode is

Q012 =
dR4!

5=2
012

p
2�c�

4c2x02

01

1

1

2
dR +

�
2�R2

dx0

01

�2 : (2.9)

Using the cavity dimensions given in Table 2.1, Q012 = 21960 and the resonant

frequency is 17:820 GHz. With no high-power in the cavity, we would like the re
ected

power from the TE012 mode to be zero for easy measurement. Thus we would like the

coupling to be � = 1 or Qext = Q012 = 19760 where we have assumed an approximate

10% degradation in Q due to surface �nish. Table 2.2 contains the design parameters

for the TE012 mode.

2.1.4 Input Couplers

The cavity will require input couplers to establish the two resonant modes. The use

of water-cooling will make coupling through the endcaps diÆcult. It is simpler to cut

circular apertures into the sidewall of the cavity and couple the power to the cavity

with waveguides.
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Figure 2.7: WR-90 waveguide with the dominant TE10 mode shown.

We will use the Kroll-Yu(KY)/Kroll-Lin(KL) methods [25, 26] to determine the

proper dimensions of the coupling apertures with computer simulation. The simula-

tion is performed in the frequency domain in which the cavity and the waveguide cou-

pler is modeled. The waveguide is shorted at a length D from the coupling aperture.

The length of the waveguide will modify the eigenfrequencies of the waveguide-loaded

cavity. The equation used to model a waveguide-loaded cavity is

tan [k(!)D + �(u) + �0(u)(! � u)] =
v

! � u
; (2.10)

where k is the guided wavenumber, ! is the angular frequency of the waveguide-cavity

system, D is the distance from the shorting-plane of the waveguide to the coupling

aperture and � and �0 parameterize the e�ect of distant cavity resonances. The

resonant frequency of the cavity is given by u and the external Q is Qext = u=(2v). By

varying the waveguide length D and computing the eigenfrequency !, the parameters

u, v, � and �0 can be determined with a nonlinear least-squares �t to equation (2.10).

Normally, only two to four separate simulations are needed to �nd Qext using the

KL/KY methods; however, it is more accurate to �t equation (2.10) with several

data points because Qext is high.

High-Power Coupler

At X-band frequencies, the standard rectangular waveguide to use is WR-90 whose

dimensions are shown in Figure 2.7. At these frequencies only the dominant TE10
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Figure 2.8: Cavity-waveguide coupling con�guration to excite the TE011 mode for a
circularly cylindrical cavity of radius R and length d and waveguide width a.

mode propagates. We will couple to the TE011 mode of the cavity using the magnetic

�eld. The maximum magnetic �eld along the cavity sidewall occurs in the middle

at z = d=2, so we will mount the waveguide there. Thus, the waveguide-cavity

con�guration will be as shown in Figure 2.8. Notice that the width of the waveguide

is longer than the cavity length. Hence the cavity sidewall will be made longer than

necessary in order to mount the waveguide. The endcaps will be mounted on pistons

that will be inserted into the cavity to the correct length. The design of the endcaps

is discussed in Section 2.1.5.

For ease of machining we decided to use a circular aperture to couple the waveguide

to the cavity. The aperture is in the center of the waveguide cross-section as shown

in Figure 2.9. From Table 2.1, we need to determine the dimensions of the circular

aperture to give Qext = 15400 or � = 1:28. A good starting point is to use the

estimate given in [15] for � for a waveguide-cavity system. The importance of Gao's
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Figure 2.9: Coupling aperture at the end of the waveguide. Ra is the aperture radius,

a and b is the width and height of the waveguide respectively.

�nding is that the coupling scales as

� / R6
ae
�(4�=�)da

p
(�=(3:41Ra))2�1; (2.11)

where � is the RF wavelength, Ra is the aperture radius and da is the aperture

thickness. After using the initial estimate, we can use this scaling to change the

aperture dimensions to arrive at the desired coupling.

The cavity-waveguide structures were simulated with �nite-di�erence time-domain

codes using rectangular coordinates. Hence, curved boundaries are diÆcult to simu-

late accurately. Initially MAFIA [16] was used to �nd the aperture dimensions for the

coupling. It was necessary to use manual control over the placement of the mesh lines.

In our attempts to accurately model the aperture geometry, not enough mesh lines

were used in the waveguide. Therefore, the scattering of the �elds near the aperture

were not accurately computed. This resulted in errors for the coupling values when

the cavities were cold-tested. This will be described further in Section 2.1.7. After the

construction of the cavities, an improved meshing routine in Gd�dL [10] allowed us to

more accurately compute the coupling between the waveguide and cavity. The results

from Gd�dL compare favorably with the cold-test results. The aperture dimensions

for the high-power coupler are given in Table 2.1.

Due to the placement of the high-power coupler and the symmetry of the electric

and magnetic �elds, it was only necessary to model 1/4 of the waveguide-loaded cavity
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as shown at the top of Figure 2.10. Notice that there is a groove at the outer radius of

the endcap. This groove is used to eliminate the degeneracy between the TE011 mode

and the TM111 mode. It will be discussed further in Section 2.1.5. A close-up of the

modelling of the coupling aperture is shown at the bottom of Figure 2.10. Figure 2.11

shows pictures of the electric and magnetic �elds from a typical simulation run.

Many simulation runs were used at di�erent waveguide lengths D to determine

the resonant frequency and the external Q. We used a mesh spacing of 0:3 mm. The

data were �t to equation (2.10). The result is shown in Figure 2.12. Although the

simulated resonant frequency is 11:430 GHz, the cavity is easily tunable by moving

the endcaps.

Diagnostic Coupler

We will excite the TE012 mode in a way similar to that of the high-power coupler.

However, we must pick a waveguide dimension such that 11:424 GHz does not prop-

agate along the waveguide. This is necessary in order to protect the diagnostic elec-

tronics from damage due to high power.

WR-42 has a width of 0.42 inches corresponding to a cuto� frequency of 14.051

GHz for the dominant TE10 mode. This waveguide will suit our needs. However,

we will also need a vacuum window for the diagnostic port. Vacuum windows for

WR-62 that operate around 18 GHz were made available to us. The cuto� frequency

for WR-62 is 9:518 GHz, so WR-42 must be used. Since the height of the waveguide

does not a�ect the cuto� frequency, we used a waveguide with the width of a WR-42

(0.42 inches) and the height of a WR-62 (0.311 inches). This allows us to taper the

width of the waveguide to WR-62 to allow the use of available vacuum windows.

The waveguide must be suÆciently long to attenuate the high power that will

leak into it from the TE011 mode. We would like the maximum output power to

be approximately -50 dBm to put it about 20 dB below the minimum power level

measurable at the diagnostic frequency. Assuming that the maximum input power to

the cavity is 25 MW=104 dBm, we need an attenuation of 154 dB. Power in a cuto�

waveguide dissipates as

P = P0e
�2klossd; (2.12)
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Figure 2.10: Geometry of high-power coupler modeled in Gd�dL. Only 1/4 of the

waveguide-loaded cavity structure is needed because of symmetry. A close-up of the

high-power coupling aperture is on the bottom.
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Figure 2.11: The �eld pattern of the TE011 mode modeled in Gd�dL. The electric

�eld is on the top and the magnetic �eld is on the bottom.
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Figure 2.12: Determination of resonant frequency and Qext for the TE011 mode from
equation (2.10) with a mesh spacing of 0:3 mm. Waveguide phase is k(!)D. The
aperture has a radius Ra = 3:75 mm and thickness da = 1:88 mm.

where P0 is the input power. kloss is given by

kloss =

s��
a

�2
�

�
2�f

c

�2

; (2.13)

where a is the width of the cuto� waveguide. In this case, kloss = 171:45 Np=m =

1489:2 dB=m. Thus we need a waveguide length of approximately 10:4 cm.

In order to couple to the TE012 mode, we need to place the waveguide center at

the maximum of the magnetic �eld along the sidewall of the cavity. So we o�set the

waveguide to 1/4 of the cavity length as shown in Figure 2.13.

As with the high-power coupler, our attempts to mesh the coupling aperture accu-

rately in MAFIA resulted in errors for the coupling value. Also it was not determined

until after the �rst high-power test that axial grooves on the endcaps a�ect the cou-

pling to the diagnostic mode. This is due to the proximity of the diagnostic coupling

aperture to one of the endcaps. The results from Gd�dL include the modeling of

the axial groove used for the second high-power test and agree with cold-tests as
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Figure 2.13: Cavity-waveguide coupling con�guration to excite the TE012 mode for a

circularly cylindrical cavity of radius R and length d and waveguide width a.
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described in section 2.1.7.

Due to symmetry, it was only necessary to model 1/2 of the cavity-waveguide

geometry as shown at the top of Figure 2.14. A close-up of the modelling of the

coupling aperture is shown at the bottom of Figure 2.14. Figure 2.15 shows pictures

of the electric and magnetic �elds from a typical simulation run. Many simulation

runs were used at di�erent waveguide lengths D to determine the resonant frequency

and the external Q. We used a mesh spacing of 0:31 mm. The data were �t to

equation (2.10). The result is shown in Figure 2.16.

2.1.5 Endcaps

The cavity endcaps are designed to be removable so other materials and other surface

preparations may be tested. Also, the endcaps are designed to be movable for cavity

tuning. These two considerations along with the necessity of water-cooling (discussed

in Section 2.1.6) lead us to the design shown in Figure 2.17. The endcaps are mounted

onto pistons that contain a bellows, a vacuum 
ange, a di�erential screw and water

pipes. The di�erential screw and the bellows allow for �ne-adjustment of the cavity

length.

In order to mount the endcaps, they must be brazed onto the pistons for each

experiment. However, the bellows cannot be chemically cleaned because the small

space between each of the folds does not allow for the easy 
ow of liquid. Therefore,

the copper endcaps are mounted onto the stainless-steel pistons in a two-step process.

In the �rst step, the copper endcaps are brazed onto stainless-steel rings. This

stainless-steel ring of the assembly is then cut to the correct dimensions for proper

mounting onto the piston. In the second step, the endcap assembly is welded onto

the stainless-steel piston. After a high-power test, the copper endcap is removed

by cutting into the stainless-steel ring. Then the piston is re-machined to mount a

new copper endcap for the next high-power test. Table 2.3 shows the steps for the

assembly of the piston in detail.

In order to insert the endcaps into the cavity without mechanical problems, we

need a small gap between the outer radius of the endcaps and the inner radius of the
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Figure 2.14: Geometry of diagnostic coupler modeled in Gd�dL. Only 1/2 of the

waveguide-loaded cavity structure is needed because of symmetry. A close-up of the

diagnostic aperture is on the bottom.
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Figure 2.15: Field pattern of the TE012 mode modeled in Gd�dL. The electric �eld

is on the top and magnetic �eld is on the bottom.



CHAPTER 2. EXPERIMENTAL SETUP 50

17.8155 17.816 17.8165 17.817 17.8175
3

3.5

4

4.5

W
av

eg
ui

de
 P

ha
se

 (
ra

d)

Frequency (GHz)

Qext = 52231

fres = 17.81575 GHz

Figure 2.16: Determination of resonant frequency and Qext for the TE012 mode from

equation (2.10) with a mesh spacing of 0:31 mm. Waveguide phase is k(!)D. The

aperture has a radius Ra = 2:85 mm and thickness da = 1:034 mm.

STEP DESCRIPTION

1 Cooling channel and grooves machined on copper endcap

2 Surface of copper endcap machined to class-16 �nish

3 Copper endcap brazed to stainless-steel ring

4 Stainless-steel ring assembly machined to correct dimensions

5 Surface of copper endcap diamond 
y-cut to mirror �nish

6 Surface of copper endcap chemically-etched for

5 seconds for vacuum cleaning

7 Stainless-steel ring assembly welded to stainless-steel piston

8 RF spring gaskets placed in RF groove around

circumference of copper endcap

9 Piston assemblies inserted into cavities and placed under vacuum

Table 2.3: Piston assembly and copper endcap surface preparation.
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Figure 2.17: Assembly schematic of endcap and piston. 1. Copper endcap. 2. Part of

di�erential screw assembly. 5. Vacuum 
ange. 8. Cooling pipe mounts. 9. Bellows.

11. Spring gasket housing.

cavity. For the �rst design discussed in [47], this gap was also used to remove the

degeneracy between the TE011 mode and the TM111 mode. However, in that design

we allowed the gap to be too long and RF breakdown occurred along the length

of the piston as shown in Figure 2.18. From the pattern of the breakdown, it was

determined that a coaxial TE31 mode was excited along the length of the piston. The

average distance between the breakdown spots corresponded to a guided wavelength

consistent with 11:424 GHz. This is also consistent with the fact that the nearest

resonant mode that may be coupled from the high-power port is the TE311 mode.

To remedy this problem, we machined two grooves along the outer radius of the

endcaps as shown in Figure 2.19. The groove on the face of the endcap is used to

remove the degeneracies between the TE011 and TM111 modes as well as between

the TE012 and TM112 modes. The smaller groove is used to house a gold-plated

stainless-steel spring gasket from BalSeal (see Figure 2.20). When compressed the
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Figure 2.18: Picture of RF breakdown along endcap piston due to TE31 coaxial mode.

Endcap

Remove 
Degeneracy

Gasket

Figure 2.19: Close-up of endcap with grooves. Not to scale.

Figure 2.20: Spring gasket from BalSeal. An RF short is created when force is applied

to the spring.
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Mode Freq (GHz) Freq (GHz) �F(MHz) �F(MHz) Q Q

MAFIA Nominal Nominal Main Mode Nominal MAFIA

TE011 11.438015 11.438156 -0.1 0.0 21944 21920

TM111 11.326234 11.438156 -111.9 -111.8 10760 7702

TM210 11.046129 11.100256 -54.1 -391.9 16296 12447

TM020 11.870313 11.931238 -60.9 432.3 16895 12582

TE311 11.975997 12.029013 -53.0 538.0 14052 11362

TE012 17.819734 17.820028 -0.3 0.0 21905 21881

TE611 17.969457 18.030973 -61.5 149.7 14821 12588

TM411 18.007711 18.200385 -192.7 188.0 13573 8871

TM112 17.625191 17.820028 -194.8 -194.5 13430 8764

TE312 18.033395 18.204921 -171.5 213.7 14866 9210

TM220 18.086097 18.193231 -107.1 266.4 16296 13705

TE021 17.092433 17.093202 -0.8 -727.3 34102 34066

TM030 18.585457 18.704386 -118.9 765.7 21154 13090

TE212 16.961036 17.103876 -142.8 -858.7 15199 9438

TM121 16.905671 17.093201 -187.5 -914.1 13153 8438

Table 2.4: 2DMAFIA simulation for endcaps with groove lengths of 0:99 mm. \Nomi-

nal" is the theoretical value without perturbations. Only modes that are within 1 GHz

of the resonant frequencies of the TE011 or the TE012 modes are shown.

spring gasket becomes an RF short to stop coaxial modes from being excited along

the length of the piston. Also, stainless-steel rings were brazed onto the inner radius

of the cavity sidewall behind the spring gaskets to help damp any �elds that may leak

through them.

The gap between the endcap and the cavity sidewall is designed to be 0:1 mm.

The spring gasket is estimated to contact the sidewall at approximately 0:4 mm away

from the edge of the endcap groove. The endcap groove was initially designed to be

1:0 mm in radius and 0:99 mm in length. However, cold-tests (see Section 2.1.7) have

shown that the TE012 mode was not suÆciently isolated from other modes. Also,

simulations from Gd�dL after the �rst high-power test shows poor coupling to the

TE012 mode using endcaps with 0:99 mm grooves. The proper groove length was

empirically determined to be 2:49 mm. Two-dimensional simulations of the cavity

using MAFIA with these two di�erent groove lengths are given in Tables 2.4{2.5.
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Mode Freq (GHz) Freq (GHz) �F(MHz) �F(MHz) Q Q

MAFIA Nominal Nominal Main Mode Nominal MAFIA

TE011 11.437957 11.438156 -0.2 0.0 21944 21915

TM020 11.673101 11.931238 -258.1 235.1 16895 8002

TE311 11.827942 12.029013 -201.1 390.0 14052 8675

TM111 11.025434 11.438156 -412.7 -412.5 10760 5552

TM210 10.897198 11.100256 -203.1 -540.8 16296 9095

TE012 17.819611 17.820028 -0.4 0.0 21905 21875

TE611 17.785366 18.030973 -245.6 -34.2 14821 9561

TM220 17.733733 18.193231 -459.5 -85.9 16296 10179

TM030 18.010282 18.704386 -694.1 190.7 21154 6604

TM411 17.338607 18.200385 -861.8 -481.0 13573 4835

TE312 17.158428 18.204921 -1046.5 -661.2 14866 3679

TE021 17.092316 17.093202 -0.9 -727.3 34102 34054

TM112 17.053051 17.820028 -767.0 -766.6 13430 7173

Table 2.5: 2DMAFIA simulation for endcaps with groove lengths of 2:49 mm. \Nomi-

nal" is the theoretical value without perturbations. Only modes that are within 1 GHz

of the resonant frequencies of the TE011 or the TE012 modes are shown.

Of course, the coupling apertures were not taken into account in these simulations.

These two tables show only the modes that are within 1 GHz of the resonant

frequencies of the TE011 or the TE012 modes. Notice that the degenerate modes

TM111 and TM112 are more than 100 MHz away from the desired modes. Also, since

the coupling to TM modes is weak due to the con�guration of the waveguide couplers,

only TE modes should be carefully considered.

The closest mode to the TE011 mode is the TE311 mode. According to the tables,

the TE311 mode is more than 300 MHz away and will not interfere with the desired

mode.

The tables also show that the TE611 and the TE312 modes are the two closest

TE modes that may interfere with the TE012 mode. Although the TE611 appears to

be approximately 150 MHz higher for the endcaps with 0:99 mm groove lengths, the

high-power coupling aperture actually decreases the resonant frequency of the TE611

mode. This will be shown in more detail in section 2.1.7. This fact was discovered

after the �rst high-power test. According to Table 2.5, the resonant frequency of
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the TE611 mode is approximately 34 MHz lower than the resonant frequency of the

TE012 mode for the endcaps with 2:49 mm groove lengths. However, the high-power

coupling aperture lowers this frequency further and will eliminate the possibility of

interference with the TE012 mode. Also, the TE312 is more than 600 MHz away.

Hence, no modes are likely to interfere with the TE012 mode in this con�guration.

A schematic of the full cavity assembly with the endcaps inserted is shown at

the top of Figure 2.21. For completeness a sideview of the cavity in which the high-

power coupler and the diagnostic coupler can both be seen is shown at the bottom of

Figure 2.21.

2.1.6 Water-Cooling

Although a high temperature rise is desired for a pulsed heating experiment, we must

remove the average heat that is applied to the cavity. This is necessary for a stable

resonant frequency. Otherwise, the cavity tune will constantly shift from thermal

expansion. In steady-state there is some power re
ected from a cavity that is not

matched (� 6= 1). Taking account of this fact, the peak power dissipated in the cavity

walls is [43, p. 163]

Pdiss =
4�

(1 + �)2
Ppeak; (2.14)

where Ppeak is the peak RF power input to the cavity and � is the coupling coeÆcient.

The total average power dissipated in the cavity walls is

Ptotal =
4�

(1 + �)2
PpeakTpfrep; (2.15)

where Tp is the pulse length of the RF and frep is the repetition rate of the RF source.

The cavity is cooled by contact with a turbulent 
ow of water. The water carries

the heat away from the system as it is deposited by the RF source and places the

system in thermal equilibrium. It is desirable to place the water as close to the heated

surface as possible. In other words, the material we want to cool should be as thin

as possible to keep the average temperature rise in the material low.

For any cooling situation, the temperature of the water must remain below the
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Figure 2.21: Assembly schematic of cavity with endcaps. The sideview of the cavity
is shown on the bottom. 1. High-power port. 2. Endcap/Piston assembly. 3. Brace
for di�erential screw assembly. 4. Vacuum gasket. 5. Di�erential screw locknut. 6.

Di�erential screw. 15. Water-cooling pipes for cavity sidewall. All dimensions are in

inches.
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�w 1:0 g=cm3

cp;w 4:186 J=g � K

� 1:006� 10�2 cm2=s
kw 5:95� 10�3 W=cm �K

Table 2.6: Parameters for water at room temperature.

boiling point. The average temperature rise of water from a known heat input is

�Tw =
Ptotal

�wcp;wQw

; (2.16)

where �w is the density of water, cp;w is the speci�c heat of water and Qw is the 
ow

rate of water. Some parameters of water are given in Table 2.6. It is more convenient

to convert the 
ow rate to gallons per minute (gpm), since most commercial 
ow

equipment use this unit. Using Table 2.6 we have

�Tw[K] =
Ptotal[W]

264:1Q[gpm]
: (2.17)

�Tw must be less than approximately 70 K to keep the room-temperature water below

the boiling point.

The heat transfer coeÆcient h [W=(cm2
� K)] is the parameter that characterizes

the amount of cooling available from the water 
ow. For turbulent water 
owing in

a tube, h can be parameterized as [38, eq.(9-10b)]

h = 0:023
kw

dh
Re0:8Pr0:33; (2.18a)

Re =
dhv

�
; (2.18b)

Pr =
�w�cp;w

kw
; (2.18c)

dh =
4Ah

Lh

; (2.18d)

where Re is the Reynold's number, Pr is the Prandtl number, dh is the hydraulic
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Figure 2.22: Schematic of the spiral cut into the back of the endcaps. The spiral

becomes a rectangular tube of cross-section 0.125 inches by 0.25 inches.

diameter, v is the velocity of the water 
ow, � is the kinematic viscosity of water, kw

is the thermal conductivity of water, Ah is the cross-sectional area of the tube and

Lh is the perimeter of the tube. Using the values in Table 2.6 we may write the heat

transfer coeÆcient as

h [W=(cm2
� K)] = 0:01

v [cm=s]0:8

dh [cm]0:2
: (2.19)

The velocity of the water in the tube is given by the 
ow rate divided by the cross-

sectional area. In our chosen units we get

v [cm=s] =
63:09Q[gpm]

Ah [cm2]
: (2.20)

Figures 2.17 and 2.22 show the design for the water-cooling of the endcaps. A

spiral is cut into the backs of the endcaps in order to keep the velocity of the water 
ow

constant. Had we allowed the water to simply 
ow radially outward from the center

of the endcap, the velocity of the water 
ow would decrease because of the increase

in the cross-sectional area. According to equation (2.19), h would also decrease and

the cooling would not be as e�ective.

Once the endcap is mated to the piston, the spiral becomes a long rectangular

tube with cross-section 0.125 inches by 0.25 inches. For a pressure drop of 60 psi, the


ow was measured to be 1.1 gpm. The 
ow parameters for the endcaps are given in

Table 2.7.
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dh 0:42 cm

Ah 0:20 cm
2

�P 60 psi

Q
w

1.1 gpm

v 340 cm=s
h 1:3 W=(cm2

� K)

Table 2.7: Flow parameters for water-cooling of endcaps.

d
h

0:36 cm

Ah 0:16 cm
2

�P 75 psi

Qw 0.75 gpm

v 290 cm=s
h 1:2 W=(cm2

� K)

Table 2.8: Flow parameters for water-cooling of the cavity body.

Figures 2.21 and 2.23 show the design for the water-cooling of the cavity body.

The water 
ow splits and 
ows around the circumference of the cavity on both sides

of the high-power coupler. The 
ow is in a rectangular tube with cross-section 0.1

inches by 0.25 inches. The 
ow parameters for the cavity body are given in Table 2.8.

Since the geometry for the cooling of the endcaps and the sidewall is complicated,

it is necessary to solve for the temperature numerically. To simplify the problem,

we will approximate the cooling of the endcaps as azimuthally symmetric. This will

allow us to use two-dimensional �nite element codes. The cooling for the sidewall is

already azimuthally symmetric.

First, we need to modify the heat-di�usion equation to take advantage of this

azimuthal symmetry. In steady-state, equation (3.9) becomes

�~r �

�
k~rT

�
= g; (2.21)

where we allow the thermal conductivity k to be spatially-dependent. T is the tem-

perature and g is the heat per unit volume added to the system. In cylindrical



CHAPTER 2. EXPERIMENTAL SETUP 60

Figure 2.23: Schematic of the cooling tubes around the circumference of the cavity

body. 4. Stainless-steel half-tube mated to a copper post to create a complete water

tube of cross-section 0.1 inches by 0.25 inches.
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coordinates this equation becomes

�

1

r

@

@r

�
rk

@T

@r

�
�

1

r

@

@�

�
k

r

@T

@�

�
�

@

@z

�
k
@T

@z

�
= g; (2.22)

Since the heating is azimuthally symmetric we let @T=@� = 0. The heating equation

�nally becomes

�

@

@r

�
kr

@T

@r

�
�

@

@z

�
kr

@T

@z

�
= gr: (2.23)

If we let k0 = kr, then equation (2.23) is a two-dimensional cartesian heat-di�usion

equation with a spatially-dependent thermal conductivity k0. Thus, we may solve

a rotationaly symmetric heating problem in steady-state using the two-dimensional

heat-di�usion equation in cartesian coordinates.

The general boundary condition from equation (3.13) is written as

rkin̂i �
~rT

���
~ri

+ rhiT j~ri = rfi (~ri; t) ; (2.24)

where i denotes the surface and hi is the heat transfer coeÆcient for surface i. Basi-

cally, we use a two-dimensional code to solve for the heating by allowing

ki ! kir; hi ! hir; fi ! fir: (2.25)

For an isolated surface hi = 0 and fi = 0. For a water-cooled surface fi = 0. For a

heated surface, hi = 0 and fi = dP=dA where dP=dA is the heat 
ux.

For the cavity, the total power dissipated on the surface is

Ptotal = Pside + 2Pend; (2.26)

where Pside is the power dissipated on the sidewall and Pend is the power dissipated

on an endcap. The power dissipated on the sidewall is

Pside =
1

2
Rs

Z
d

0

jHz(r = R)j
2
2�Rdz =

1

2
�RdRsH

2

0
J2

0
(x0

01
) ; (2.27)
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and the power dissipated on an endcap is

Pend =
1

2
Rs

Z R

0

jHr(z = 0)j2 2�r dr = H2

0

�3RsR
4J2

0
(x0

01
)

2d2x02

01

; (2.28)

where H0 is a �eld-strength constant to be determined. Substituting equations (2.27{

2.28) into equation (2.26) and solving for H0 gives

H2

0
=

Ptotal

RsJ
2

0
(x0

01
)
h
1

2
�dR + �3R4

d2x02

01

i : (2.29)

Hence the heat 
uxes for the endcaps and the sidewall are

dP

dA

����
end

=
1

2
Rs jHr(z = 0)j2 =

1

2

�2R2Ptotal

x02

01
d2J2

0
(x0

01
)
h
1

2
�dR+ �3R4

d2x02

01

iJ2

1

�
x0

01
r

R

�
; (2.30a)

dP

dA

����
side

=
1

2
Rs jHz(r = R)j2 =

1

2

Ptotal

1

2
�dR+ �3R4

d2x02

01

sin2
��z
d

�
: (2.30b)

The cavity endcap is modeled in Figure 2.24. Since the endcap is axisymmetric,

only half of the endcap is modeled. The heat 
ux is applied to the surface on the

right and the water boundary conditions are applied along the �ns. We will assume

� = 1 to obtain an upper bound on the temperature rise. Using the parameters given

in Table 2.7 for Ppeak = 10 MW, Tp = 1:5 �s and frep = 60 Hz we get the average

temperature rise as shown in Figure 2.24. The maximum average temperature rise

is approximately 14 K and it occurs at the location of the maximum heat 
ux. The

temperature rise of the water is approximately 1 K.

The cavity sidewall is modeled in Figure 2.25. The stainless-steel half of the water

tube is not modeled since its thermal conductivity is much lower than copper's. The

heat 
ux is applied to the bottom surface around the center. Using the parameters

given in Table 2.8 we get the average temperature rise as shown in Figure 2.25.

The maximum average temperature rise is also approximately 14 K and it occurs

at the location of the maximum heat 
ux. The temperature rise of the water is

approximately 1:5 K.
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Figure 2.24: Average temperature rise on the cavity endcaps for Ppeak = 10 MW,

Tp = 1:5 �s and frep = 60 Hz. All dimensions are in cm.
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Figure 2.25: Average temperature rise on the cavity sidewall for Ppeak = 10 MW,

Tp = 1:5 �s and frep = 60 Hz. All dimensions are in cm.
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If the cavity structure were completely made of the same material and the tem-

perature rise was equal at all points, then the expansion may be computed from only

the volume that contains the electromagnetic �elds. When the length of the cavity

structure increases, the pistons are pulled back because they are connected to the

body. The pistons, however, will also expand the by same amount. The net increase

is due to only the cavity volume itself. However, the pistons are mostly contructed

from stainless-steel whose expansion is much less than copper's. Therefore, we ex-

pect a larger decrease in the resonant frequency as the cavity sidewall expands from

heating. From equation (2.2) the sensitivity of the frequency to small changes in the

cavity dimensions is

@f

@R
= �2:7� 103 MHz=cm;

@f

@d
= �2:9� 103 MHz=cm: (2.31)

If we assume the maximum temperature rise of 14 K to be equal across the length of

the cavity then the expansion would be

�d = (1:67� 10�5 K�1)(1:9 cm)(14 K) = 0:4 �m;

�R = (1:67� 10�5 K�1)(0:5 cm)(14 K) = 0:1 �m;

where the cavity sidewall is approximately 0:5 cm thick. This corresponds to a total

decrease in frequency of approximately 1:5 MHz. Chapter 4 will show that the actual

decrease in frequency is higher by a factor of 3.

2.1.7 Cold-Test Results

Three complete cavities were constructed. Figure 2.26 shows a picture of one such

cavity with one of its endcaps sitting outside. The cavities are labeled from one to

three to distinguish them. The third cavity is not used in any high-power tests, since

there is a problem inserting the endcaps into the cavity. The spring gaskets used

to cuto� the coaxial modes were caught in the hole left over from the brazing of

stainless-steel rings in the cavity.

The �rst set of cold-tests were completed with endcaps that have 0:99 mm groove
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Figure 2.26: Cavity body with endcap shown on the outside. The water-cooling pipes

can be seen on the bottom of the cavity body.
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Figure 2.27: Magnitude and phase of the re
ection coeÆcient for the TE011 mode of
cavity 1.

Cavity � QL Q011 Qext Qext;sim

1 1.65 7670 20350 12300 12830

2 1.69 7670 20600 12200 12830

Table 2.9: Measured parameters for the TE011 mode of cavities 1 and 2.

lengths. The second set of cold-tests were completed with endcaps that have 2:49 mm

groove lengths.

First Set

Data for the TE011 mode for cavities 1 and 2 were obtained with a HP8510C network

analyzer using a WR-90 calibration kit. The data for cavity 1 is shown in Figure 2.27.

Since the slope of the phase is negative, cavity 1 is over-coupled (see equation (A.143)).

Using the method presented in Section A.4.4, we can �t to the data to determine �,

QL and Q0 for each cavity. The coupling mechanism for the TE011 mode is lossless.

The results are given in Table 2.9. The data for cavity 2 is shown in Figure 2.28, and

the results are also given in Table 2.9.

Figures 2.29{2.30 show the data for the TE012 mode for cavities 1 and 2 respec-

tively. Because of mode-leakage through the high-power coupler, we must treat

the system as a two-port cavity. However, notice there are nearby modes interfering
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Figure 2.28: Magnitude and phase of the re
ection coeÆcient for the TE011 mode of

cavity 2.

with the diagnostic mode. The coupling for this mode is quite poor. Because of this

problem, the diagnostic mode was not used for the �rst high-power test described in

Chapter 4. The next section will discuss how this problem was resolved.

Cold-test cavity

In order to study the problem with the diagnostic mode, we modi�ed one of the �rst

set of cavities that were built. The modi�ed cavity allowed us to use endcaps with

di�erent groove lengths. Figure 2.31 shows a picture of the modi�ed cavity. This

modi�ed cavity has a thicker aperture for the high-power coupler (2:064 mm) but the

same aperture for the diagnostic coupler.

The cavity was modi�ed such that when a 
at circular plate is placed on each end

of the cavity there would be no axial grooves on the endcaps. In order to use di�erent

groove lengths, we use copper endcaps with the speci�ed grooves and copper spacer

rings to push the endcaps back an equal amount to recover the proper cavity length.

However, the frequencies are shifted higher due to the crushing of the spacer rings

when pressure is applied to the endcaps for proper placement. Since the strain is

approximately equal for all of the spacer rings, the longer rings will be crushed more

and consequently cause a higher shift in the cavity resonant frequencies.

Table 2.10 lists the results for the TE011 mode. The external Q's are di�erent
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Figure 2.29: S-parameters for the TE012 mode of cavity 1. Port 1 is the diagnostic

coupler, and port 2 is the high-power coupler.
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Figure 2.30: S-parameters for the TE012 mode of cavity 2. Port 1 is the diagnostic

coupler, and port 2 is the high-power coupler.
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Figure 2.31: A picture of the modi�ed cavity used to test endcaps with di�erent

groove lengths. A vice grip is used to hold the endcaps in the cavity.

Groove Length (mm) Frequency (GHz) Q0 Qext Qext;sim

0.0 11.42390 18750 15680 17030

0.99 11.45176 19070 15290 16400

2.49 11.48172 18870 14090 15220

Table 2.10: Measured parameters for the TE011 mode of modi�ed cavity. Coupling

aperture thickness da = 2:064 mm.
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Figure 2.32: TE012 and TE611 modes with high-power coupling aperture taped. There

are no axial grooves on the endcaps.

from those listed in Table 2.9 because the coupling aperture is thicker. The simulated

results for the external Q's are also given in Table 2.10.

As previously shown in Figures 2.29{2.30, measurement of the TE012 mode must be

treated as a two-port cavity due to leakage out the high-power coupling aperture. At

these frequencies, the TE20 rectangular waveguide mode would be cuto� in a WR-62

waveguide. After adding a 6-inch WR-62 waveguide to the high-power coupler, no

attenuation was measured in jS21j. Hence the leakage of power occurs as a TE10 mode

in the waveguide.

We may also cover the high-power coupling aperture from inside the cavity with

copper tape to remove its e�ect on the �elds in the cavity. Figure 2.32 shows this

measurement with the high-power coupling aperture taped and with no axial grooves

on the endcaps. Table 2.4 shows that the mode on the right is the TE611 mode.

Table 2.11 gives the results of the Q measurements of the TE012 mode when the

high-power coupling aperture is taped and with di�erent axial groove lengths on the

endcaps. The axial groove lengths have a signi�cant e�ect on Qext for the TE012

mode. The close proximity of one of the endcaps to the diagnostic coupling aperture

a�ects the scattering of the electromagnetic �elds near the aperture.
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Groove Length (mm) Frequency (GHz) Q0 Qext Qext;sim

0.0 17.82745 12672 16480 12660

0.99 17.89800 3060 3470 3620

2.49 17.96370 14610 48520 52230

Table 2.11: Measured parameters for the TE012 mode of modi�ed cavity with high-

power coupling aperture taped.
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Figure 2.33: Re
ection from the diagnostic port of TE012 mode with no axial grooves

on endcaps and the copper tape removed from the high-power coupling aperture.

Using the measured resonant frequencies of the TE011 and the TE012 modes, equa-

tions (2.2) and (2.8) will give the actual cavity radius and length to be R = 2:216 cm

and d = 1:879 cm. Using these values, the resonant frequency of the TE611 mode is

predicted to be 17:980 GHz. This is in close agreement with the measured resonant

frequency of 17:9813 GHz.

Figure 2.33 shows the re
ection from the diagnostic port when the copper tape is

removed from the high-power coupling aperture. There is obvious mode interference

with the TE012 mode and most likely the TE611 mode. The high-power coupling

aperture couples strongly to the TE611 mode and causes a downwards frequency shift.

Using the Kroll-Yumethod, Gd�dL estimates this frequency shift to be approximately
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Figure 2.34: Re
ection from diagnostic port of TE012 mode with 0:99 mm axial

grooves on the endcaps.

230 MHz, but the measured shift is close to 150 MHz.

Figure 2.34 shows the re
ection from the diagnostic port of the TE012 mode with

0:99 mm axial groove lengths on the endcaps. There is still mode interference and

other parasitic modes exist. This picture is di�erent from Figures 2.29{2.30 because

the high-power coupling aperture has a di�erent thickness. It is not known what

causes the other parasitic modes to exist; however, it is quite clear that the TE012

mode is unsuitable in this con�guration.

Figure 2.35 shows the re
ection from the diagnostic port of the TE012 mode

with 2:49 mm axial groove lengths on the endcaps. No parasitic modes exist within

�100 MHz of the TE012 mode. A proper two-port measurement of the cavity using

the methods described in Section A.4.4 gives the results shown in Table 2.12. A com-

parison of this method with the one described in Section A.4.3 will be described in

Section 4.2.3. Notice that the external Q for the diagnostic port is lower as compared

to the external Q when the high-power coupling aperture is taped. The high-power

coupling aperture is large enough to a�ect the �elds in the cavity and will change the

scattering of the �elds near the diagnostic coupling aperture.
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Figure 2.35: Re
ection from diagnostic port of TE012 mode with 2:49 mm axial

grooves on the endcaps.

QL 11450

Q0 18920

Qe1 31650

Qe2 347000

Table 2.12: Two-port measurement of TE012 mode with 2:49 mm axial grooves on the

endcaps. Qe1 is the external Q for the diagnostic port, and Qe2 is the external Q for

the high-power port.
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Figure 2.36: Magnitude and phase of the re
ection coeÆcient for the TE011 mode of

cavity 1 with 2:49 mm axial grooves on the endcaps.

fres 11:42529 GHz
Q0 17750

Qext 6850
� 2.59

Table 2.13: Cold-test results of TE011 mode for cavity 1 with 2:49 mm axial grooves
on the endcaps.

Second test

From the previous section, using endcaps with 2:49 mm axial grooves eliminates the

interference with other modes. This design for the endcaps was used for the next

high-power test.

Figure 2.36 shows the data for the TE011 mode in cavity 1. Table 2.13 lists the

results of the Q measurement of this mode. The Q's of this mode are lower as

compared to the �rst cold-test presented in Table 2.9 because of the damage that

occurred to the high-power coupling aperture from RF breakdown in the �rst high-

power test.

Figure 2.37 shows the data for the TE012 mode. Table 2.14 lists the results of the

Q measurement.

The slopes in the phases of the S11 and S22 signals are due to the length of

waveguide attached to the cavity. Equations (A.161) represent a cavity with ports
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Figure 2.37: S-parameters for the TE012 mode of cavity 1 with 2:49 mm axial grooves

on the endcaps. Port 1 is the diagnostic coupler and port 2 is the high-power coupler.
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fres 17:85 GHz

Q0 20380

Qe1 28180

Qe2 144500

�1 0.72

�2 0.14

Table 2.14: Cold-test results of TE012 mode for cavity 1 with 2:49 mm axial grooves

on the endcaps.

that have zero length.

The asymmetry that occurs in S21 is due to transmission nulls from the interaction

with other modes [24]. The phase of the transmission is de�ned with respect to the

drive signal to the cavity. Using superposition of the modes in the cavity, the phase

is only uniquely de�ned between 0 Æ and 180 Æ. For each mode, the phase of the

transmission, S21, undergoes a 180 Æ phase shift when passing through the resonant

frequency. At frequencies between two modes, one mode is above resonance and

the other mode is below resonance. At a frequency in which the amplitude of the

transmission for each mode is equal, the phase shift is almost 180 Æ and a transmission

null occurs. The interaction may be due to a mode that occurs several GHz away.

However, the higher mode could not be found within the calibration limit of the

network analyzer due to the TE20 cuto� limit in WR-62 waveguide at 19:04 GHz.

2.2 Klystron setup

Two di�erent setups were used to conduct high-power tests with X-Band klystrons.

Each experimental setup is required to protect the klystron from re
ected power. The

speci�cations require a maximum of 5 MW of re
ected power back to the klystron

output.
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2L Vac Pump
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Klystron In

Load

8L Vac Pump

Figure 2.38: Schematic of the two-cavity setup for high power tests.

2.2.1 Two-cavity setup

In this particular setup, two cavities were connected to opposite sides of a magic-tee

with a high-power load attached to the fourth arm. A schematic of this setup is

shown in Figure 2.38. Due to the �ll-time of the cavities, the re
ected power will

vary over the RF pulse length. Having two identical cavities on opposite arms of a

magic-tee would ideally make the re
ected power back to the klystron zero, since the

phase di�erence between the arms is 180 Æ. Since a high-power circulator does not

exist at X-Band, this setup provides the maximum power to a cavity. Also, this setup

allows us to test two sets of endcaps at the same time.

A picture of the setup that is to be attached to the klystron is shown in Figure 2.39.

Figure 2.40 shows a close-up of one of the cavities. Each cavity has an 8 L=s vacuum

pump-out port and a 55-dB directional coupler for measurements of the forward and

re
ected power to and from the cavity. There is also a 2 L=s vacuum pump-out port

attached to the back of each cavity for pumping behind the spring gaskets of each

piston.

In order to successfully put power into each cavity and protect the klystron, the

resonant frequencies of each cavity must match. The di�erential screws were used

to make large changes to the cavity frequencies, but were incapable of making �ne

adjustments due to backlash. Fine adjustments to the cavity frequencies were made
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Figure 2.39: Picture of two-cavity setup with magic-tee, vacuum pump-out ports and
55-dB directional couplers attached.

by slight adjustments of the water 
ow to the endcaps. The 
ow to the cavity endcaps

was easily adjusted with electric 
ow controllers that were operated with a computer.

Hence, the cavities were matched in frequency under high-power due to thermal

expansion.

It is not possible to reach the desired power level in the cavity immediately due to

absorbed gases in copper. Normally the components are �rst placed under vacuum

then baked out at high temperature (at least 400 ÆC) for a few days to remove the

gases. However, the RF spring gaskets used to prevent the excitation of coaxial modes

along the pistons cannot be baked at such a high temperature. They may lose their

elastic properties causing their e�ectiveness as an RF short to deteriorate. Thus, the

cavity body and the magic-tee were baked out separately at high temperature because

they were new and were not handled in a clean environment. However, the endcaps

did not go through a high-temperature bake-out. Afterwards, the components were

assembled and attached to the klystron. After being placed under vacuum, the com-

ponents were baked with heater tape at 150 ÆC for 3 days. This procedure removes

some absorbed gas on the surface.

The klystron power level must be increased slowly as the high-power �elds in the

cavity and other waveguide components pull more gas out of the surface. This is
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Figure 2.40: Close-up of one cavity of the two-cavity setup.
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known as power conditioning. There are interlocks to shutdown the klystron when

there is too much gas in the system. If this is not done, damage may result to the

components due to RF breakdown. Over time, the gas is slowly removed and the

power may be increased. As will be discussed in Chapter 4, RF breakdown at the

high-power coupling aperture limited the amount of power that could be put into the

cavity. At this point, gas is released violently and the cavity cannot be conditioned

any further in a reasonable amount of time.

Periodic measurements were made of the cavity Q's by turning down the power

on the klystron and measuring the re
ected power from each cavity. The power was

lowered so the Joule heating would not a�ect the cavity Q. The method described in

Section A.4.2 was used. Each cavity had to be measured separately since the cavities

are only matched in resonant frequency when the power input is high. However,

the results from these measurements were far from agreement with measurements

performed with a network analyzer. It was realized later that when the cavities are

not matched to each other when their properties are measured, inconsistencies in the

measurements will result. As a consequence, we decided to use only one cavity for

the next high-power test.

2.2.2 One-cavity setup

In order to eliminate the problem of tuning cavity frequencies with respect to each

other, we opted to use only one cavity in the next high-power test. This requires

throwing more power away, since we must use more power dividers to protect the

klystron from the re
ected power from the cavity. Using two magic-tees as a 6-dB

directional coupler, we reduce the maximum possible re
ected power to the klystron

by a factor of 16 down from its output power. A schematic of the setup is shown in

Figure 2.41.

For a 50 MW klystron, the maximum power delivered to the cavity, ignoring

losses in the waveguide, is 12:5 MW. Hence, the maximum re
ected power back to

the klystron is 3:125 MW. Since the maximum input power to the cavity is limited to

8:5 MW to 10 MW due to RF breakdown at the coupling aperture, the loss of input
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Figure 2.41: Schematic of the one-cavity setup for high-power tests.

power is not a hindrance.

In this setup, none of the components received a new high-temperature bake-out.

Each component, except for the cavity pistons, received a high-temperature bake-out

in the past and were handled cleanly since that time. After the components were

assembled and attached to the klystron, the system was placed under vacuum and

baked with heater tape at 150 ÆC for 4 days. The system was conditioned under

high-power as described in the previous section.

2.3 Diagnostic setup

As discussed earlier, the diagnostic mode was �xed using a di�erent groove length for

the endcaps. This �x was performed after the �rst high-power test with two cavities.

The diagnostic mode was used during the next high-power test with one cavity.

There are three items we want to measure in real-time: pulsed temperature rise,

cavity Q, and pulse count. We want to measure the change in the cavity Q over time

and correlate it with the number of pulses at which the cavity surface is subjected to

a particular temperature rise.
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2.3.1 Measurement of Pulsed Temperature Rise and Cavity

Q

Pulsed temperature rise may be determined by measuring the change in cavity Q

during a high-power pulse. Since the electrical resistivity is a function of temperature,

the cavity Q will change when the cavity surface is heated. This means the coupling

to the diagnostic mode will change. By measuring the change in the amplitude and

phase of the re
ected power from the diagnostic mode, we may indirectly determine

the temperature rise on the surface of the cavity. Section 3.3.3 discusses this in more

detail. A schematic of the setup to measure pulsed temperature rise and cavity Q is

shown in Figure 2.42.

A low-power RF source excites the diagnostic mode into steady-state. A circulator

is used to isolate the re
ected signal from the input signal. Directional couplers with

crystal detectors are placed on either side of the circulator to measure forward and

re
ected power. When the cavity is heated from a high-power pulse, the amplitude

and phase of the re
ected signal will change. A quadrature mixer is used to measure

this signal. The oscilloscope measures the quadrature outputs, I and Q, from the

mixer. As discussed in Section 3.3.3, the change in the cavity's resonant frequency

and Q may be determined from the re
ected signal. The temperature rise is then

inferred.

Although the quadrature mixer can also measure re
ected power, the crystal is

used to tune the cavity mode in real time. The output from the mixer has to be

added in quadrature after subtracting DC o�sets in its outputs. Crystal detectors

only measure magnitudes. The cavity is tuned by measuring the steady-state re
ected

power from the crystal detector. The frequency of the low-power source is varied until

the re
ected power is a minimum, which occurs at the resonant frequency of the cavity

mode. Afterwards, a temperature rise measurement is taken with the quadrature

mixer. Typical sensitivities of the crystals used are between approximately 500 to

700 mV=mW. Also, the input power to the quadrature mixer must be kept below

-10 dBm to keep the phase imbalance between the I and Q outputs to a minimum,

approximately 1:5 Æ.
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Figure 2.42: Schematic of the diagnostic setup to measure pulsed temperature rise

and cavity Q.
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A waveguide low-pass �lter is placed at the input to the cavity to protect the

electronics from high-power harmonics from the klystron that may leak through the

diagnostic coupler. These harmonics are not cuto� in the WR-42 hybrid waveguide.

The forward and re
ected high power from the cavity is also measured with crystal

detectors attached to 55-dB directional couplers with additional attenuation added.

Certain subtleties of the circuit in Figure 2.42 must be understood. The circulator

must have good isolation to prevent the forward power from interfering with the

measurement of the re
ected power from the cavity. The isolation of this circulator

at 18 GHz is approximately 32 dB.

The steady-state re
ection from the cavity with a coupling coeÆcient of � = 0:7

is 16 dB below the input power. With an additional insertion loss of 2 dB for the

circulator and directional coupler, the re
ected signal will be approximately 14 dB

above the input power that is transmitted through the isolation of the circulator. Thus

this signal is easily measured and does not cause great error in the determination of

the coupling coeÆcient of the cavity.

For the measurement of pulsed heating, Q0 of the cavity will fall and � will

increase. This will result in a greater mismatch with more re
ected power from the

cavity. Thus, the steady-state re
ection from the cavity when it is not heated from

high power represents the lower limit of the power that may be measured. Due to the

high isolation of the circulator, the forward power does not add appreciative error to

the measurement of pulsed heating.

We would also like to know the cavity Q when the surface temperature rise is

zero. This will allow us to determine the amount of Q degradation that will occur

over time. An RF switch is used to allow the stored energy to drain from the cavity.

The switch is triggered between high-power RF pulses. For frep = 60 Hz, the switch

would be triggered at 8:3 ms after an RF pulse. Since the temperature rise goes to

zero on the order of 10's of �s(see Section 3.3.1), this will give us the amount of Q

degradation over time. Also, by pre-triggering the oscilloscope with respect to the RF

switch, the coupling coeÆcient of the cavity mode may be determined by measuring

the steady-state re
ected power as shown in Figure 2.43. These measurements are

discussed in more detail in Chapter 4.
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Figure 2.43: Example of re
ected waveform from the cavity when the RF switch is

opened. The spike occurs when the switch is opened.

2.3.2 Measurement of Pulse Count

We need an accurate count of the number of pulses applied to the cavity to determine

the lifetime of the material at a particular temperature rise. We may measure pulse

count easily with an 8-channel event counter.

We use the forward power port of the 55-dB directional coupler and digitize the

square waveform. The height of the waveform is then binned into one of eight chan-

nels depending on a chosen reference voltage. This information is then passed to

an 8-channel event counter. A computer periodically reads the event counter and

stores the pulse count. Hence, the pulse counts may be stored at di�erent power

levels to distinguish between pulses at di�erent temperature rises. Also, each time

a temperature rise and Q measurement is taken, the pulse count is recorded. This

allows us to correlate Q-degradation with the number of pulses applied at a particular

temperature rise.



Chapter 3

Theory

As mentioned in Chapter 1, pulsed heating will induce stress on a metal surface. This

stress can be evaluated using the thermoelasticity equations discussed further in later

sections. The purpose of this chapter is to evaluate the temperature rise and stress

induced by RF pulsed heating on the test device described in Chapter 2. Solutions to

various simpli�ed models of the test device will be discussed in detail. The dynamic

electrical response of the test device will also be discussed, and, more speci�cally, how

it applies to the measurement of the pulsed temperature rise on the metal surface.

3.1 Thermoelasticity

Usually problems of heat conduction and elasticity are solved assuming that they are

uncoupled phenomena. However, when the storage of elastic energy is considered in

irreversible thermodynamics [8] a coupling term arises in the familiar heat conduction

equation

kr2T + g = �c"
@T

@t
+ (3�+ 2�)�T0

@e

@t
; (3.1)

where � and � are the Lam�e constants, e = "xx + "yy + "zz is the dilatation, and T0

is the ambient temperature in Kelvin. See Section 1.1 for the de�nition of the other

symbols. The last term on the right of equation (3.1) is the term that couples heat

di�usion to the elasticity equations. This coupling term arises from the fact that

88
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some of the energy from the work done on the system to induce mechanical strain is

dissipated as heat. Equation (3.1) along with equations (1.8{1.11) are known as the

thermoelasticity equations.

The thermoelasticity equations were derived using linearization which assumes

that not only are the strains small such that the system remains elastic but also

the temperature rise �T = T � T0 is small compared to the ambient temperature,

�T � T0. Although the temperature rises in the pulsed heating experiment will not

satisfy this requirement, the approximation will be good for the temperature ranges

in which the system is elastic. When the stress induced by pulsed heating exceeds

the yield strength of the material, then the equations of plasticity must be considered

instead of the thermoelasticity equations. The theory of plasticity will be considered

in more detail in later sections.

It is desirable to remove the coupling term from the heat di�usion equation in order

to simplify the solutions. Once the coupling term is removed then the temperature

may be found independently of the elasticity equations. The temperature becomes

a known function and the stresses in the system may be found by substituting the

temperature into the elasticity equations.

The strength of the coupling term can be approximated by considering the amount

of energy used in creating strain that is dissipated as heat [9]. Consider the expansion

of a long metal rod due to heating and ignore lateral contractions. The thermal energy

density input through heat is

�uthermal = �c"�T: (3.2)

Using Hooke's Law, � = E", the work per unit volume necessary to compress the rod

back to its original length from an expansion of " = ��T is

�uelastic =
1

2
�" =

1

2
E�2�T 2: (3.3)
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The ratio of these two energies is

�uelastic

�uthermal

=
E�2�T

2�c"
: (3.4)

For OFE copper heated to �T = 100 K, using the values given in Table 1.1, this

ratio is 5:0� 10�4 : This ratio is an upperbound on the energy dissipated as heat

from the work done on the rod. The low value of this ratio demonstrates that the

heat created from mechanical strain is much smaller than the heat input to create a

moderate temperature rise. Thus, the coupling between the thermal system and the

mechanical system is weak and may be safely ignored in a pulsed heating calculation.

To reinforce the physical argument given above, we will look at the coupling term

in the heat di�usion equation more closely. Following the treatment given in [8, pp.

42{43], equation (3.1) may be written as

kr2T + g = �c"
@T

@t

�
1 + Æ

�
�+ 2�

3�+ 2�

��
@e=@t

�@T=@t

��
; (3.5)

where

Æ =
(3�+ 2�)2�2T0

�2c"v2e
; (3.6)

and v2
e
= (� + 2�)=�. The term proportional to Æ is the coupling term, and it is

negligible compared to unity if

1

3�

@e=@t

@T=@t
�

1

Æ

�
�+ 2�=3

�+ 2�

�
: (3.7)

Using the values in Table 1.1 for OFE copper at a temperature of T0 = 300 K,

Æ = 0:018. Using this value of Æ in equation (3.7) we arrive at the condition

1

3�

@e=@t

@T=@t
� 37; (3.8)

for OFE copper. If there are no sharp variations or discontinuities in the time history

of the temperature distribution then we intuitively expect that the time rate of change

of the dilatation is of the same order of magnitude as that of the temperature. If



CHAPTER 3. THEORY 91

this assumption is correct then equation (3.8) shows that the coupling term in the

heat di�usion equation may be ignored. When the coupling term in equation (3.1) is

ignored, the determination of stress is known as the theory of thermal stresses. The

mechanical response of copper to RF pulsed heating falls under this condition and

will be discussed in more detail in later sections.

In the sections to follow, the temperature distribution for the test device described

in Chapter 2 will be solved �rst. It will also be shown how this information will be

used to determine the measurable change in the electrical properties of the test device.

Knowing the time history of the temperature distribution, the mechanical response

of the test device will be solved and discussed afterwards.

3.2 Heat Conduction

The heat conduction equation for a homogeneous isotropic body will be restated here

for convenience

r
2T (~r; t) +

1

k
g (~r; t) =

1

�d

@T (~r; t)

@t
in volume V; (3.9)

where the thermal conductivity k and the thermal di�usivity �d = k=�c" are constant.

The initial temperature distribution is given by

T (~r; 0) = F (~r) : (3.10)

The boundary conditions for equation (3.9) can be stated in three di�erent forms.

The �rst kind of boundary condition is a prescribed temperature at boundary Si,

T (~ri; t) = fi (~ri; t) ; (3.11)

where ~ri are the coordinates of surface Si. The second kind of boundary condition is

a prescribed heat 
ux on the surface,

kin̂i �
~rT

�
�
�
~ri

= fi (~ri; t) ; (3.12)
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where n̂i is an outward pointing normal from surface Si and ki is the thermal con-

ductivity at the surface. The third kind is a convective boundary condition,

kin̂i �

~rT

�
�
�
~ri

+ hiT j~ri = fi (~ri; t) ; (3.13)

where hi is the heat transfer coeÆcient for surface Si. This boundary condition

is usually used for situations where liquid or gas is 
owing across a surface and

fi = hiT1 where T1 is the ambient temperature. hi can be a function of position ~ri.

The boundary conditions are most often written in the general form of equation (3.13)

where the other types of boundary conditions are retrieved by setting ki = 0 or k and

hi = 0 or h.

There are many methods available to evaluate the solution to equations (3.9{

3.13) such as separation of variables, Fourier transforms and Laplace transforms.

We will use the method of the Green's function throughout this chapter to solve

heat conduction problems. This method reduces the partial di�erential equation to

integrals which are easily evaluated numerically. This type of reduction is well-suited

for temperature calculations of the conducting walls in resonant cavities due to RF

power dissipation at the surface.

3.2.1 Green's Function Solutions

The general solution of equations (3.9{3.13) using Green's functions can be split into

three terms [6]

T (~r; t) = Tin (~r; t) + Tg (~r; t) + Tbc (~r; t) : (3.14)

The �rst term is due to the initial conditions,

Tin (~r; t) =

Z
V

G (~r; tj~r 0; t0 = 0)F (~r 0) dV 0; (3.15)
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where G (~r; tj~r 0; t0) is the Green's function. The second term is due to the volumetric

energy source,

Tg (~r; t) =

Z t

t0=0

Z
V

�d

k
G (~r; tj~r 0; t0) g (~r 0; t0) dV 0 dt0: (3.16)

The third term is due to the boundary conditions and has two di�erent parts,

Tbc (~r; t) = ��d

Z t

t0=0

sX
i=1

Z
Si

fi (~r
0

i; t
0) n̂0

i �
~rG

���
~r 0=~r 0

i

ds0

i dt
0 (�rst kind) (3.17a)

= �d

Z t

t0=0

sX
i=1

Z
Si

fi (~r
0

i; t
0)

ki
G (~r; tj~r 0

i; t
0) ds0

i dt
0 (second or third kind);

(3.17b)

where we must include all real physical boundaries. In general, 0 � s � 6. Boundary

conditions at x ! �1 for semi-in�nite or in�nite bodies are not included. For

example, a one-dimensional semi-in�nite slab will have s = 1.

The Green's function G (~r; tj~r 0; t0) is found from the following equation

r2G +
1

�d

Æ (~r � ~r 0) Æ(t� t0) =
1

�d

@G

@t
t > t0; (3.18)

with initial condition

G (~r; tj~r 0; t0) = 0 t < t0; (3.19)

and boundary conditions

kin̂
0

i �
~rG

���
~ri

+ hiGj~ri = 0 t > t0: (3.20)

The Green's function for the heat conduction equation is due to a point source located

at position ~r 0 and turned on for one instant of time t0. The body is considered to

be under homogeneous boundary conditions and zero initial condition. Because of

causality, there is no response for times t < t0.

The power of the Green's function method lies with the fact that once G is found

for a particular geometry for all homogeneous boundary conditions and zero initial
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condition, then the temperature T may be found for any arbitrary source, boundary

condition and initial condition for that geometry by integration (equations (3.14{

3.17)). The di�erential equation (3.9) does not need to be solved again for di�erent

sources, boundary conditions or initial conditions. Although we must resort to other

methods to solve for the Green's function, they are, fortunately, well-tabulated for

common geometries [6, pp. 431{510]. More than one form of Green's functions may

exist for a particular geometry and boundary condition to make calculations more

convenient for short or long times and for steady-state solutions. Which Green's

function to be used will depend on the particular problem being solved.

The Green's functions used in this chapter were derived assuming the speci�c

heat and thermal conductivity are constant. It will be shown later that ignoring the

temperature dependence of these parameters over the temperature range of interest

introduces less than 2% relative error. However, the source term g (~r; t) is allowed to

be temperature-dependent. This is necessary for an accurate calculation of tempera-

ture rise due to pulsed heating of copper.

3.2.2 1D Solution For Semi-In�nite Body

In anticipation of further results, we will consider a one-dimensional semi-in�nite body

subject to RF power dissipation at its surface due to a surface magnetic �eld (see

Figure 3.1). We know that the power dissipated per unit area into a lossy conductor

by a magnetic �eld tangential to the surface is given by [20, p. 339]

dP

dA

�
�
�
�
S

=
1

2
Rs

�
�Hk

�
�
2

; (3.21)

where Rs is the surface resistance given by equation (A.71). We also know from

section A.3.1 that the tangential magnetic �eld decays into the conductor as e�z=Æ

where Æ is the skin-depth given by equation (A.68). Since the power dissipated in the

z-direction must be normalized to one, the power dissipated per unit volume is

g(z; t) =
dP (z; t)

dA dz
=

dP (t)

dA

2

Æ
e�2z=Æ z � 0: (3.22)
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Figure 3.1: A one-dimensional semi-ini�nite slab in the z-direction with power per

unit area being dissipated at the surface due to a magnetic �eld.

This heating problem is described by the following equation

@2T (z; t)

@z2
+

g(z; t)

k
=

1

�d

@T (z; t)

@t
0 � z <1; (3.23)

with initial and boundary conditions given by

T (z; t = 0) = T0; (3.24a)

@T

@z

�
�
�
�
z=0

= 0: (3.24b)

The Green's function for a semi-in�nite slab with the boundary condition of a pre-

scribed heat 
ux at the surface is [6, eq. X20.1]

G (z; tj; z0; t0) =
1p

4��d (t� t0)

(
exp

"
�

(z � z0)
2

4�d (t� t0)

#
+ exp

"
�

(z + z0)
2

4�d (t� t0)

#)
:

(3.25)

Substituting equations (3.22, 3.24 and 3.25) into equations (3.14{3.17) and using the

known integral [6, eq. X20.4]

Z
1

0

G (z; tjz0; t0) dz0 = 1; (3.26)
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the temperature at all points z in the conductor is found to be

T (z; t) = T0 +
�d

k

Z t

0

Z
1

0

g (z0; t0)G (z; tjz0; t0) dz0 dt0

= T0 +
1

�c"
p
��d

Z t

0

Z
1

0

dz0 dt0
dP (t0)

dA

1

Æ

1p
t� t0

exp

�
�2z0

Æ

�

�
(
exp

"
� (z � z0)

2

4�d (t� t0)

#
+ exp

"
� (z + z0)

2

4�d (t� t0)

#)
dz0 dt0:

(3.27)

For performing the integration over z0 we will make use of [17, eq. 3.322.2]

Z
1

u

exp

�
� x2

4�
� 
x

�
dx =

p
�� e�


2

erfc

�


p
� +

u

2
p
�

�
; (3.28)

and [17, eq. 3.323.2]

Z
1

�1

exp
��p2x2 � qx

�
dx = exp

�
q2

4p2

�p
�

p
p > 0; (3.29)

where erfc(x) is the complementary error function given by

erfc(x) =
2p
�

Z
1

x

e�t
2

dt: (3.30)

By making a change of variables in equation (3.27) and using the above integrals with

the identity

2� erfc(x) = erfc(�x); (3.31)
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the temperature in the conductor is found to be

T (z; t) = T0 +
1

�c"

Z t

0

dt0
dP (t0)

dA

1

Æ
exp

�
4�d (t� t0)

Æ2

�

�
(
e�2z=Æerfc

"
2

Æ

p
�d (t� t0)� z

2
p
�d (t� t0)

#

+e2z=Æerfc

"
2

Æ

p
�d (t� t0) +

z

2
p
�d (t� t0)

#)
:

(3.32)

This integral must be evaluated numerically.

A numerical example would prove valuable for understanding the basic process

of heat di�usion due to pulsed heating. Let us assume a constant pulse of power is

dissipated into the conductor due to a source resonating at a frequency of 11.424 GHz

for a time tp

dP (t)

dA
=

8<
:

dP
dA

0 � t � tp

0 t > tp:
(3.33)

Using the value given in Table 1.1 for electrical conductivity of pure copper, the skin-

depth at this frequency is Æ = 0:62 �m. Figure 3.2 is a plot of the temperature rise

�T = T (z; t)�T0 normalized to the surface temperature at t = 1:0 �s in the conductor

at various times for a pulse length of tp = 1:0 �s. The value of the thermal constants

were taken from Table 1.1. Notice that at all times the maximum temperature rise

occurs on the surface.

One notable characteristic of heat di�usion is the di�usion length de�ned by the

length D =
p
�dtp over which the e�ect of the source decays on the order of 1/e at

time tp (see equation (3.25)). It is analagous to the rms width of a gaussian curve. In

the example worked out above, D = 10:8 �m, which is an order of magnitude larger

than the skin-depth. This suggests that for a suÆciently long pulse, the decay of the

surface magnetic �eld into the conductor has little e�ect on the temperature rise. In

this regime the temperature rise is dominated by di�usion. We may let Æ ! 0 with

little loss of accuracy to simplify the calculation.

Let us look at the di�erence in surface temperature for the above example with
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Figure 3.2: The temperature rise at various times in the conductor normalized to the

surface temperature at t=1.0 �s. The source is on for 1.0 �s.

the assumption Æ ! 0. On the surface, z = 0, equation (3.32) becomes

T (z = 0; t) = T0+
2

�c"

Z
t

0

dt0
dP (t0)

dA

1

Æ
exp

�
4�d (t� t0)

Æ2

�
erfc

�
2

Æ

p
�d (t� t0)

�
: (3.34)

If we use the approximation [1, eq. 7.1.23]

erfc(x) �
1

p
�xex

2
x� 1; (3.35)

then the temperature on the surface is approximately

T (z = 0; t)j
Æ!0

= T
0
+

1

�c"
p
��d

Z
t

0

dt0
p
t� t0

dP (t0)

dA
: (3.36)

This is the same result as the 1D semi-in�nite case with a prescribed surface heat


ux

�k
@T

@z

����
z=0

=
dP (t)

dA
; (3.37)

and zero volume energy generation, g(z; t) = 0. For a constant power input of length t
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Æ �T=(dP=dA) Relative Error

(�m) (�10�8 K=(W=m2)) (%)

0.0 3.0350 0.00

0.62 2.9589 2.57
1.0 2.9135 4.17

2.0 2.7986 8.45

5.0 2.4910 21.8
10.0 2.0868 45.4

20.0 1.5562 95.0

Table 3.1: Normalized temperature rise at the surface for various skin-depths com-

pared to no skin-depth. Di�usion length is 10.8 �m.

the surface temperature is simply

T (z = 0; t) = T0 +
dP

dA

2
p
t

�c"
p
��d

: (3.38)

If the power dissipation is due to a constant surface magnetic �eld

dP

dA
=

1

2
Rs

�
�Hjj

�
�
2

; (3.39)

then we arrive at equation (1.4).

Table 3.1 compares the solutions from equations (3.32) and (3.36) for various

values of Æ with a constant power input of time tp = 1:0 �s as before. Intuitively,

the calculated temperature rise with a �nite skin-depth will be lower than with no

skin-depth since the power is dissipated over a �nite volume. The table shows that

the error due to ignoring the skin-depth is 2.6%. If the copper material were at an

ambient temperature of 800 K, then the electrical conductivity would be 1:9� 107 S.

This corresponds to a skin-depth of 1:1 �m resulting in less than 5% error in the cal-

culation of the surface temperature rise. By ignoring the skin-depth, the calculation

of temperature rise due to pulsed heating is simpli�ed when we allow the prescribed

surface heat 
ux to be temperature-dependent.

In the temperature range of interest (�T < 500K), we have shown that the varia-

tion of skin-depth due to temperature introduces less than 5% error in the calculation
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T cp k �d �T=(dP=dA)

(K) (J=kg�K) (W=m�K) (�10�4 m2
=s) (�10�8 K=(W=m2))

300 385.2 401 1.163 3.035

350 392.6 396 1.127 3.025

400 398.6 393 1.102 3.013

500 407.7 386 1.058 3.007

600 416.7 379 1.016 3.002

Table 3.2: Thermal data of pure copper for various temperatures with the corre-

sponding surface temperature rise for a constant power input for time t = 1:0 �s.

of temperature rise. This is an upper bound on the error since a more accurate calcula-

tion would take account of the temperature dependence of the electrical conductivity.

Before we conjecture that equation (3.36) should be used to calculate the temperature

rise of the cavity described in Chapter 2, we should also investigate the error due to

ignoring the temperature dependence of the thermal parameters.

Table 3.2 contains values of the thermal parameters of pure copper for various

temperatures [31]. Although the speci�c heat at constant strain, c"; is best approx-

imated with the speci�c heat at constant volume, cv, data is more easily obtained

for the speci�c heat at constant pressure, cp. For temperatures larger than room

temperature, the di�erence between these two values is less than 1% [54, p. 23].

Table 3.2 also shows the normalized temperature rises calculated from equa-

tion (3.38) for a constant power input of t = 1:0 �s. At an ambient temperature

of 600 K, the error in ignoring the temperature dependence of the thermal param-

eters is 1.1%. This error is also an upper bound since the calculation assumes the

thermal parameters are held constant at their values.

In conclusion, for the temperature range of interest to pulsed heating, we may

ignore the temperature dependence of the thermal parameters. We may also ignore

the e�ect of the skin-depth for suÆciently long pulses. We have also shown that the

temperature rise is maximum on the surface for a prescribed surface heat 
ux. In the

next section, we will demonstrate that for short times the e�ect of di�usion in lateral

directions for two or three dimensions is negligible. Once this fact is shown, then

equation (3.36) may be used to calculate the surface temperature rise at all points in
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the cavity due to pulsed heating. This is an important simpli�cation when we allow

the prescribed heat 
ux to vary with temperature since the electrical conductivity

will vary signi�cantly over the temperature range of interest.

3.2.3 Heat Conduction in Two Dimensions

In this section, the geometry of the test cavity described in Chapter 2 will be taken

into account when calculating the temperature rise on the surface due to pulsed

heating. We will demonstrate that for short times every point on the surface of the

cavity behaves like a one-dimensional semi-in�nite slab. We will consider the endcaps

and the cylindrical sidewall separately.

Cavity Endcaps

If we are only interested in the temperature at the surface, then for short times we

may treat a piece of metal with suÆcient thickness as a semi-in�nite slab. For the

times we are interested in, the example provided in the previous section may be used

for guidance. In that particular case, the source is on for t = 1:0 �s corresponding

to a di�usion length of D = 10:8 �m. By referring to Figure 3.2, we see that even

at t = 10:0 �s the temperature rise at a distance of 100 �m into the conductor is

negligible. We may safely conclude that a piece of metal with a thickness an order

of magnitude larger than this distance for the time scale we are interested in can be

treated as a semi-in�nite slab. The cavity endcaps have a solid thickness of 3 mm

before the cooling channels on the back are reached, so their approximation as semi-

in�nite slabs is a good one.

Since the cavity of radius R and length d is operated in the TE011 mode, the

surface magnetic �eld on the endcaps at z = 0 and z = d is purely radial (see

equations (A.34))
�
�Hjj

�
� = ATE

�R

dx11
J1

�x11r
R

�
jh011j ; (3.40)

where ATE is given by equation (A.36) and h011 is the expansion coeÆcient for the

magnetic �eld in the cavity for mode TE011. We used the identity J 0
0
(x) = �J1(x)

and x11 is the �rst zero of J1. To reduce the clutter, we will de�ne a constant C1 such
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that
�
�Hjj

�
� � C1J1

�x11r
R

�
: (3.41)

To determine the temperature rise on the endcaps, we will only look at the endcap

located at z = 0. The heating of the endcap at z = d will be identical.

The calculation of the temperature rise is set up as follows:

1

r

@

@r

�
r
@T

@r

�
+
@2T

@z2
=

1

�d

@T

@t
0 � r � R; 0 � z <1; (3.42)

where z is now the distance into the conductor. The initial condition is

T (r; z; t = 0) = T0; (3.43)

and the boundary conditions are

@T

@r

����
r=R

= 0; (3.44)

and

�k
@T

@z

����
z=0

=
dP

dA
=

1

2
Rs

��Hjj

��2 : (3.45)

The Green's function for this geometry is given by [6, eq. R02.1 and X20.1]

G (r; z; tjr0; z0; t0) =
1

�R2

1p
4��d (t� t0)

2
41 + 1X

m=1

e��d�
2
m
(t�t0)=R2

J0
�
�mr

R

�
J0

�
�mr

0

R

�
J2
0 (�m)

3
5

�

(
exp

"
�

(z � z0)
2

4�d (t� t0)

#
+ exp

"
�

(z + z0)
2

4�d (t� t0)

#)
;

(3.46)

where the constants �m are the m-th zeros of J1. By substituting equation (3.46) into

equations (3.14{3.17) and using the result [6, eq. R02.12 and eq. X20.4]

Z
1

0

Z
R

0

G (r; z; tjr0; z0; t0) 2�r0 dr0 dz0 = 1; (3.47)
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the temperature is found to be

T (r; z; t) = T0 +
�d

k

Z
t

0

Z
R

0

G (r; z; tjr0; z0 = 0; t0)
1

2
Rs

��Hjj

��2 2�r0 dr0 dt0: (3.48)

We are only interested in the temperature at the surface, so using equations (3.46)

and (3.41) in equation (3.48) we have

T (r; z = 0; t) = T0 +
C2
1Rs

�c"R2
p
��d

Z
t

0

Z
R

0

dr0 dt0
1p
t� t0

r0J2
1

�
x11r

0

R

�

�

2
41 +

1X
m=1

e��d�
2
m
(t�t0)=R2

J0
�
�mr

R

�
J0

�
�mr

0

R

�
J2
0 (�m)

3
5 :

(3.49)

We shall integrate over r0 �rst. Using the integral [17, eq. 6.521.1]

Z 1

0

xJ2
�
(�x) dx =

1

2
J2
�+1(�) for J�(�) = 0; � > �1; (3.50)

and the indentity [17, eq. 8.473.1]

J2(x) =
2

x
J1(x)� J0(x); (3.51)

we get Z
R

0

r0J2
1

�
x11r

0

R

�
dr0 =

1

2
R2J2

0 (x11) : (3.52)

By de�ning the constants Km to be

Km �
Z

R

0

r0J2
1

�
x11r

0

R

�
J0

�
�mr

0

R

�
dr0; (3.53)
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and using equation (3.52) we have for the surface temperature

T (r; z = 0; t) = T0 +
C2

1
Rs

�c"R2
p
��d

�
Z t

0

dt0
p
t� t0

"
1

2
R2J2

0
(x11) +

1X
m=1

e��d�
2
m
(t�t0)=R2KmJ0

�
�mr

R

�
J2

0
(�m)

#
:

(3.54)

The constants Km must be numerically evaluated. Using the integral [17, eq. 3.361.1]

Z u

0

e�qx
p
x
dx =

r
�

q
erf (

p
qu) ; (3.55)

the surface temperature is �nally written as

T (r; z = 0; t) = T0 +
C2

1
Rs

�c"
p
��d

�

"
J2

0
(x11)

p
t+

r
�

�d

1

R

1X
m=1

KmJ0
�
�mr

R

�
�mJ

2

0
(�m)

erf

 p
�d�2

mt

R

!#
:

(3.56)

If di�usion in the transverse direction is negligible for short times, then we may

use equation (3.38) to determine the temperature at each point on the surface. Using

equations (3.39) and (3.41) in equation (3.38) gives

T (r; z = 0; t) = T0 +
C2

1
Rs

�c"
p
��d

J2

1

�x11r
R

�p
t: (3.57)

We will compare equation (3.57) to (3.56) to test this assumption.

The �rst 10 values of �m are given in Table 3.3 along with the corresponding

values of Km for the cavity radius R = 2:2075 cm. We shall �rst test if the 10

values of �m given in Table 3.3 are suÆcient for good accuracy in the calculation of

temperature rise with equation (3.56). If equation (3.57) is suÆcient to calculate the

surface temperature, then we expect both equations to predict the same location for

the maximum temperature rise. According to equation (3.57), this maximum occurs



CHAPTER 3. THEORY 105

m �m Km(�10
�10 m2)

1 3.83171 69617.5

2 7.01559 -71123.5

3 10.17347 -2639.27

4 13.32369 496.108

5 16.47063 -161.447

6 19.61586 67.5956

7 22.76008 -32.9761

8 25.90367 17.8601

9 29.04683 -10.4483

10 32.18968 6.48206

Table 3.3: The �rst 10 values of �m and Km for radius R = 2:2075 cm. x11 = �1.

Equation �T=(C2

1
Rs)

(�10�9 K=(W=m2))

1-D 5.14038

2-D, m=9 5.14037

2-D, m=10 5.14016

Table 3.4: Temperature rise for 1-D and 2-D equations at position r = 1:0607 cm for

time t = 1:0 �s.

at

r = R
x0
11

x11
; J 0

1
(x0

11
) = 0: (3.58)

Since x0
11

= 1:84118, the maximum temperature rise occurs at r = 1:0607 cm. Ta-

ble 3.4 gives the calculated temperature rises at this point. The relative error between

the temperature rises listed in Table 3.4 is less than 0.01%.

Figure 3.3 plots the temperature rises from equations (3.56) and (3.57). Figure 3.4

plots the relative error between the calculations. As the two previous �gures show, the

relative error over the region of interest is less than 1% up to a time of t = 1:0ms. The

relative error increases towards the center of the endcap because the one-dimensional

solution predicts a temperature rise close to zero. In the case of pulsed heating we

are only interested in times on order of 1 �s. Therefore, equation (3.36) is suÆcient

to calculate the surface temperature rise on the cavity endcaps due to pulsed heating.
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Figure 3.3: 1-D and 2-D temperature rises for various times.
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Cavity Sidewall

In the last section, we showed that for times less than 1 ms lateral di�usion is not im-

portant for a smoothly varying power density over a 
at surface. From this result, we

also expect that lateral di�usion along the cavity axis is not important for calculating

the temperature rise on the surface of the cylindrical sidewall of the cavity. Since

the surface magnetic �eld varies as sin (�z=d), the power density is also a smoothly

varying function. However, the cavity sidewall is not a 
at surface. We must test the

e�ect of the curvature of the surface on the temperature rise.

Since we only care about the curvature of the cavity surface, we may simplify

the analysis by using an in�nite hollow cylinder with a constant power input on the

surface. The problem is formulated as follows:

@2T

@r2
=

1

�d

@T

@t
; R � r <1; (3.59)

with initial condition

T (r; t = 0) = T
0
; (3.60)

and boundary condition

�k
@T

@r

�
�
�
�
r=R

=
dP

dA
: (3.61)

We are only interested in the temperature on the surface. For �d(t� t0)=R2 � 1,

the Green's function for this geometry is [6, eq. R20.3]

G (r = R; tjr0 = R; t0) =
1

2�R2

"
Rp

��d (t� t0)
�

1

2
+

3

4

r
�d (t� t0)

�R2

#
: (3.62)

Using equations (3.14{3.17) and the fact that [6, eq. R20.6]

Z
1

R

G (r; tjr0; t0) 2�r0 dr0 = 1; (3.63)
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the temperature at the surface is found to be

T (r = R; t) = T0 +
�d

k

Z
t

0

dP

dA
G (R; tjR; t0) 2�R dt0

= T0 +
dP

dA

2
p
t

�c"
p
��d

�
1�

p
��d

4R

p
t+

�d

4R2
t

�
:

(3.64)

In order for the above equation to be accurate we need t � R2=�d = 3 s, which

is suÆcient for the time range we are interested in. By comparing equation (3.64)

with equation (3.38), we see that the �rst term corresponds to a one-dimensional

semi-in�nite slab. The last two terms are the corrections due to the curvature of the

surface. We �nd that the �rst-order correction due to the curvature will cause a 1%

relative error to occur at time

t =
16R2

10201��d

: (3.65)

For the cavity radius R = 2:2075 cm, this corresponds to a time of t = 1:5 ms. Since

the temperature rise due to pulsed heating occurs on the order of 1 �s, we may ignore

the e�ect of the curvature of the walls.

Based on the analysis in this section and in the previous section, we may use equa-

tion (3.36) to calculate the surface temperature rise at every point in the cavity. In the

next section, we will allow the power density dP=dA to be temperature-dependent.

By using equation (3.36) the analysis is greatly simpli�ed.

3.3 Pulsed Heating of Test Cavity

In this section, we will consider the pulsed heating of the surface of the test cavity

as it �lls with energy from an RF pulse. The test cavity of radius R and length d

resonates in the TE011 mode. The magnetic �eld in the cavity is given in Chapter 2.

On the surface of the endcap, the magnetic �eld is

jHrj = jh011(t)jA011

TE

�R

dx11
J1

�x11r
R

�
; (3.66)
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Q0 21900

Qext 17110

QL 9605

� 1.28

Pin 10 MW

tp 1:0 �s

Table 3.5: Cavity design parameters from Chapter 2.

where h011(t) is the magnetic expansion coeÆcient found from equation (A.102). Sim-

ilary, the magnetic �eld on the surface of the cavity sidewall is

jHzj = jh011(t)jA
011
TE

sin
��z
d

�
jJ0(x11)j ; (3.67)

with the normalization

A011
TE

=

r
2

�d

cx11

!011R2 jJ0 (x11)j
; (3.68)

and angular resonant frequency

!011 = c

r�x11
R

�2
+
��
d

�2
: (3.69)

For the test cavity with radius R = 2:2075 cm and length d = 1:9 cm, the resonant

frequency of the TE011 mode is f011 = 11:438GHz. However, as described in Chapter

2, the coupling iris reduces the resonant frequency to f011 = 11:424 GHz.

Equation (3.36) will be used to determine the temperature rise on every point of

the surface of the test cavity. Before we include the temperature dependence of the

parameters, we will �nd the temperature rise due to constant cavity parameters as

a point of comparison to later results. We will use the data in Table 3.5 throughout

this section.
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3.3.1 Constant Cavity Parameters

Since Q0 � 1 and is held constant in this section, we may use equation (A.107) for the

expansion coeÆcient of the magnetic �eld in the cavity. Using this coeÆcient with the

condition dP=dA = (1=2)Rs

�
�Hjj

�
�
2

in equation (3.36) gives the surface temperature

on the endcap as

T (r; t) = T0 +

r
�

�d

8c2

�0�c"J
2

0
(x11)

RsPinQ
2

L

!3

011
QextR2d3

J2

1

�x11r
R

�

�

Z t

0

dt0
p
t� t0

�
1� exp

�
�
!011t

0

2QL

��2
:

(3.70)

If we introduce the easily-computed Dawson's integral [46, pp. 259-261]

F (x) = e�x2
Z x

0

et
2

dt; (3.71)

then the surface temperature on the endcap can be written as

T (r; t) = T0 +

r
�

�d

16c2

�0�c"J
2

0
(x11)

RsPinQ
2

L

!3

011
QextR2d3

J2

1

�x11r
R

�

�

"
p
t� 2

r
2QL

!011

F

�r
!011t

2QL

�
+

r
QL

!011

F

�r
!011t

QL

�#
:

(3.72)

Similarly, the surface temperature on the cavity sidewall is

T (z; t) = T0+
16c2x2

11

�3=2�0�c"
p
�d

RsPinQ
2

L

!3

011
QextR4d

sin2
��z
d

�

�

"
p
t� 2

r
2QL

!011

F

�r
!011t

2QL

�
+

r
QL

!011

F

�r
!011t

QL

�#
:

(3.73)

If we consider an RF pulse that is on up to time t = tp, then for time t > tp,

the expansion coeÆcient for the magnetic �eld is found from equation (A.109) with
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Pin = 0. Using continuity at t = tp we have

h011(t) = �jQL

s
8Pin

�0Qext!011

�
exp

�
!011tp

2QL

�
� 1

�
exp

�
�

!011t

2QL

�
; t > tp: (3.74)

For t > tp, the integral from equation (3.70) is written as

Z tp

0

dt0
p
t� t0

�
1� exp

�
�
!011t

0

2QL

��2
+

Z t

tp

dt0
p
t� t0

�
exp

�
!011tp

2QL

�
� 1

�2
exp

�
�
!011t

0

QL

�
(3.75)

Therefore, for time t > tp, the surface temperature in the cavity is found by replacing

the terms in brackets in equations (3.72{3.73) with the following terms

(�
p
t�
p
t� tp

�
� 2

r
2QL

!011

"
F

�r
!011t

2QL

�
� e

�

!011tp

2QL F

 s
!011 (t� tp)

2QL

!#

+

r
QL

!011

"
F

�r
!011t

QL

�
+
�
1� 2e

�

!011tp

2QL + e
�

!011tp

QL

�
F

 s
!011 (t� tp)

QL

!#)
:

(3.76)

Using the values given in Table 3.5, the point of maximum surface temperature

rise for the endcaps and the cavity sidewall is plotted in Figure 3.5 as a function of

time. Notice that the maximum temperature rise occurs at a time slightly larger than

tp. This occurs because there is still stored energy in the cavity when the RF pulse

turns o�. Even when the RF is o�, power is dissipated in the cavity walls. Figure 3.6

is a plot of the surface temperature rise for each surface as a function of position at

the time of maximum temperature rise.

3.3.2 Temperature-Dependent Parameters

We now allow the surface heat 
ux, dP=dA, to vary with temperature due to the

dependence of the electrical resistivity, �res, on temperature. The electrical resistivity

is the reciprocal of the electrical conductivity, �. Not only will the surface resistance,

Rs vary with temperature due to its dependence on the square root of the resistivity
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Figure 3.5: Point of maximum temperature rise for endcaps (r = 1:0607 cm) and

cavity sidewall (z = 0:95 cm) as a function of time using the values from Table 3.5.
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1
) and cavity sidewall (sin2) as a

function of position at the time of maximum temperature rise.
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T �data ��t Relative Error
(K) (�10�8 
 �m) (�10�8 
 �m) (%)
273 1.543 1.528 0.99
293 1.678 1.668 0.59
298 1.712 1.703 0.52
300 1.725 1.717 0.46
400 2.402 2.418 0.68
500 3.090 3.120 0.95
600 3.792 3.821 0.76
700 4.514 4.522 0.18
800 5.262 5.223 0.74

Table 3.6: Data for temperature dependence of electrical resisitivy for pure copper [31]
along with the linear �t and the relative error.

(see equation (A.71)), but so will the magnetic �eld. The magnetic �eld varies with

the unloaded cavity Q and this quantity varies as 1=Rs (see equations (A.73), (A.102),

(A.104) and (A.107)).

The resistivity varies linearly with temperature and the data for pure copper is

given in Table 3.6 [31, p. 12-43] The �t to the data using the linear least-squares

method is given by

�res(T ) = 7:012� 10�11T � 3:865� 10�9 (
 �m); 273K � T � 800K: (3.77)

A plot of this �t is shown in Figure 3.7. The �t at the data points is also given in

Table 3.6 along with the relative error. The table shows that the error is less than

1% over the desired temperature range.

Putting the temperature dependence into equation (3.36) gives

T (~r; t) = T0 +
1

�c"
p
��d

Z
t

0

dt0
p
t� t0

dP (t0; T )

dA

= T0 +
1

2�c"
p
��d

Z
t

0

dt0
p
t� t0

Rs(T )
��Hjj (~r; t

0; T )
��2 ;

(3.78)

where ~r denotes position along the surface of the cavity. Because temperature is



CHAPTER 3. THEORY 115

200 300 400 500 600 700 800
1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

−8

intercept= −3.865e−009
slope= 7.012e−011

Temperature (K)

R
es

is
tiv

ity
 (

Ω
−

m
)

Data
Fit 

Figure 3.7: A plot of the linear �t of the electrical resistivity to temperature.

on the right-hand side of equation (3.78), we must solve an integral equation. In

the literature, this equation is known as a nonlinear Volterra equation of the second

kind [33, eq. (4.1)]

f(t) = g(t) +

Z
t

0

K(t; t0; f(t0)) dt0; (3.79)

where K is called the kernel. Inspection of equation (3.78) shows that a singularity

occurs at t0 = t. Since the kernel is singular, the equation is best written as [33, eq.

(8.1)]

f(t) = g(t) +

Z
t

0

p(t; t0)K(t; t0; f(t0)) dt0; (3.80)

where p(t; t0) represents the singular part of the kernel that has been separated from

the original kernel. In our case

p(t; t0) =
1

p
t� t0

: (3.81)

There are numerical procedures known as product integration methods [33, Ch. 8]

that can be used to solve equation (3.80). For the case of equation (3.81), the solution
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may be found with [33, eqs. (8.15{8.16)]

Fn = g (tn) +

n�1X
j=0

wnjK(tn; tj; Fj); n = 1; 2; : : : ; (3.82)

where Fn is the approximation for f(tn) and

wnj = 2
�p

tn � tj �
p
tn � tj+1

�
: (3.83)

The method used to derive equation (3.82) is essentially Euler's method, so the error

is approximately

jFn � f(tn)j = O(h); (3.84)

where h is the stepsize. Since we only need to know the temperature rise due to pulsed

heating to within a few percent, we do not need high accuracy. Hence, equation (3.82)

is suitable for our needs. If more accuracy is desired, then we may use a technique

known as Richardson's extrapolation [33, pp. 133{134]. Richardson's extrapolation

combines solutions to equation (3.82) with di�erent stepsizes in such a way as to

reduce the error to O(hp) where p > 1.

Using equations (3.66{3.68) and (A.71), the kernels for the cavity endcaps and

sidewall are

Kend(r; t; t
0; T ) =

r
�c

2��d

�c2

�c"!
3=2

011
R2d3J2

0
(x11)

J2
1

�x11r
R

�p
�res(T ) jh011(t

0; T )j
2
;

(3.85)

Kwall(z; t; t
0; T ) =

r
�c

2��d

c2x2
11

��c"!
3=2

011
R4d

sin2
��z
d

�p
�res(T ) jh011(t

0; T )j
2
; (3.86)

where �res is given by equation (3.77) and h011 is found from equation (A.102). Notice

that the right-hand side of equations (3.85{3.86) do not depend on t. t is kept on the

left-hand side of these equations as a placeholder to prevent confusion when they are

substituted into equation (3.82).

The magnitude of the magnetic �eld in the cavity depends on the unloaded Q, so
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we must calculate its variation with temperature. According to equation (A.73), the

unloaded Q for the TE011 mode is

1

Q011(T )
=

1
p
2�c!011

Z
Sw

dS
p
�res(T (~r))

��� ~H011(~r)
���2

=
1

p
2�c!011

�
A011

TE

�2 �4�3R2

d2x2
11

Z R

0

p
�res(T (r))J

2

1

�x11r
R

�
r dr

+2�RJ2

0
(x11)

Z d

0

p
�res(T (z)) sin

2

��z
d

�
dz

�
:

(3.87)

We now see that we must know the temperature before calculating the unloaded Q

and the magnetic �eld. However, the temperature depends on the magnetic �eld.

For this reason, equation (3.82) is desirable since the temperature at time tn depends

only on quantities determined for time up to tn�1. The procedure consists of �nding

the temperature at time tn using the magnetic �eld for times up to tn�1. Then the

unloaded Q and the magnetic �eld is updated using this temperature. Of course, this

process is repeated until the �nal timestep is reached.

The magnetic expansion coeÆcient h011(t) = ~h011(t)e
�j!t is found from equa-

tion (A.102), where ! is the angular drive frequency. For a numerical solution, we

need to split the real and imaginary parts of ~h, which will result in two coupled

�rst-order di�erential equations. De�ning ~h = ~hR + j~hI we have

d~hR

dt
=

1

!

1 + 1

Q011

2 + 1

Q011

"
M
d~hI

dt
� !N~hR +W ~hI

#
; (3.88a)
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(3.88b)
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where

M =
!

Q011

+
!011

Qext

�
1 + 1

Q011

� ; (3.89a)

N =
!

Q011

+
!011

Qext

; (3.89b)

W =
!2

011

1 + 1

Q011

� !2: (3.89c)

Many methods exist to numerically solve equations (3.88{3.89). We will use the

Runge-Kutta method of order four [11, p. 297]. With this method, we may obtain

the solution to the magnetic �eld one timestep at a time.

We will test our algorithm with the results from the last section by setting �res

to be constant at its room temperature value. Using the values from Table 3.5, the

magnetic �eld found from equations (3.88{3.89) should match that found from equa-

tions (A.107) and (3.74). The �elds in the cavity are initially zero, so ~h011(t =

0) = 0. Also we assume that we drive the cavity at the measured resonance,

! = !011=
p
1 + 1=Q011. Remember that the resonant frequency of a lossy cavity

is shifted slightly. Figure 3.8 compares the solutions for the expansion coeÆcient of

the magnetic �eld. The error between the two solutions at the time of maximum �eld

is less than 0.01%.

When calculating the temperature rise with the new algorithm, the timestep used

must be larger than an RF period. By adhering to this limit, we avoid any ambigu-

ity about the value of Q011 throughout the integration. For a resonant frequency of

11:424 GHz the RF period is approximately 0:1 ns. We will use a timestep of 1 ns.

Figure 3.9 compares the solutions for the temperature rise of the cavity endcaps and

sidewall of the new algorithm with equations (3.72{3.73) and (3.76). Figure 3.10

shows the absolute error for the temperature rise of the endcaps. The absolute error

for the cavity sidewall is similar. The relative error between the two maximum tem-

perature rises is less than 0.05%. Therefore, this algorithm may be con�dently used

to calculate the temperature rise from pulsed heating with variable �res.

Figure 3.11 compares the temperature rise on the endcaps for variable �res (see
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Figure 3.8: Comparison of the expansion coeÆcient of the magnetic �eld from equa-

tions (3.88{3.89) with equations (A.107) and (3.74) for constant �res.

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

120

Time (µs)

T
em

pe
ra

tu
re

 R
is

e 
(K

)

Endcaps Numerical  
Endcaps Analylical 
Sidewall Numerical 
Sidewall Analytical

Figure 3.9: Comparison of the temperature rise for the cavity endcaps and sidewall

from the new algorithm with the analytical solution from the last section.
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Figure 3.10: Absolute error in the temperature rise of the cavity endcaps between the
new algorithm and the analytical solution from the last section.

equation (3.77)) as compared to constant �res. The maximum temperature rise on the

endcaps is greater by 10:3 K. This corresponds to a di�erence of approximately 10%.

Figure 3.12 displays the comparison of temperature rises for the cavity sidewall. The

di�erence in maximum temperature rise is only 1:5 K. The di�erence is smaller than

for the endcaps because the temperature rise is smaller and the electrical resistivity

does not change as much. Figure 3.13 shows the change of Q011 as the cavity heats

and then cools. In this case, Q011 drops by approximately 12%.

3.3.3 Measurement of Pulsed Temperature Rise

In Chapter 2, we discussed the implementation of a steady-state low-power TE012

mode in the cavity to measure the change in Q's and the temperature rise of the

surface. A change in the resonant frequency and unloaded Q of this mode will result

in a change in the amplitude and phase of the re
ected signal as measured from the

diagnostic port. In this section we will show what a typical signal will look like. Also,

we will demonstrate how to extract the change in Q and the temperature rise of the

surface from this re
ected signal. The design parameters for the TE012 mode are
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Figure 3.11: Comparison of variable �res with constant �res on the temperature rise

of the cavity endcaps.
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Figure 3.12: Comparison of variable �res with constant �res. on the temperature rise

of the cavity sidewall.
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Figure 3.13: Change in Q011 and Q012 due to heating of cavity.

given in Table (3.7).

Typical cavity response

In the previous section we discovered that the unloaded Q for the TE011 mode changes

due to the heating of the surface. Likewise, the unloaded Q for the TE012 will also

change according to (see equation (A.73))

1

Q012(T )
=

1
p
2�c!012

Z
Sw

dS
p
�res(T (~r))

��� ~H012(~r)
���2

=
1

p
2�c!012

�
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TE

�2 �16�3R2

d2x2
11

Z
R

0

p
�res(T (r))J

2

1

�x11r
R

�
r dr

+2�RJ2

0
(x11)

Z
d

0

p
�res(T (z)) sin

2

�
2�z

d

�
dz

�
;

(3.90)

where the magnetic �eld for the TE012 mode is given in Chapter 2. The change in Q012

due to the temperature rise derived in the last section is also shown in Figure 3.13. In

this case the unloaded Q drops by approximately 13%. Note that it is a coincidence
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Q0 21880

Qe1 21880

Qe2 100000
QL 9860

�1 1.0

�2 0.22

f012 17:81 GHz

Table 3.7: Cavity design parameters for the TE012 mode from Chapter 2.

due to the geometry of the cavity that the values for the unloaded Q's of the TE011

and TE012 modes are close.

To �nd the change in the re
ected signal from the diagnostic port, we must

use equation (A.125). The TE012 mode is driven in steady-state with a low-power

frequency generator at its measured angular resonant frequency, !012=
p
1 + 1=Q012,

through the diagnostic port which will be labeled as port one. Thus, deV +

1
=dt = 0 andeV +

2
= 0. Before the cavity heats up due to a high-power pulse in the TE011 mode,

the re
ected signal from the diagnostic port is initially

eV �
1eV +

1

�����
t=0

=
V1�~e�eV +

1

�����
t=0

� 1 =
2QL;012

Qe1

�
1 + j

1

Q012

�
: (3.91)

Likewise with the previous section, we must split equation (A.125) into real and

imaginary parts and use a Runge-Kutta method of order four to solve the coupled �rst-

order di�erential equations that ensue. Let V1�~e�=eV +

1
= a+jb, then equation (A.125)

becomes

da

dt
=

A

!

�
M

db

dt
� a!N + bW +

2!!012

Qe1

�
; (3.92a)

db
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=

�
A

!
M2 +

!

A
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�1
�
a(AMN �W )� b

�
A

!
MW + !N

�
�

2!012

Qe1

AM +
2!!012

Qe1Q012

�
(3.92b)
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where

A =
1 + 1

Q012

2 + 1

Q012

; (3.93a)

M =
!

Q012

+
!012

1 + 1

Q012

�
1

Qe1

+
1

Qe2

�
; (3.93b)

N =
!

Q012

+ !012

�
1

Qe1

+
1

Qe2

�
; (3.93c)

W =
!2

012

1 + 1

Q012

� !2: (3.93d)

Using the change in Q012, the re
ected signal from the diagnostic port will change

according to eV �
1
(t)

eV +

1

=
V1�~e�(t)eV +

1

� 1 = [a(t)� 1] + jb(t): (3.94)

Using the parameters in Tables 3.5 and 3.7, the magnitude and phase of the re
ected

signal from the diagnostic port is shown in Figure 3.14. Notice that the amplitude and

phase of the re
ected signal reach an extremum some time after the high-power pulse

turns o� and the unloaded Q's reach a minimum. The time at which these extrema

occur are on order of the �ll-time after the pulse turns o� (see equation (A.106)).

The phase shift in the re
ected signal arises from the change in the cavity's res-

onant frequency due to the change in its unloaded Q. If we look more closely at

equation (A.125), we notice that the measured angular resonant frequency of the

cavity is

!0 =
!012q
1 + 1

Q012

: (3.95)

Initially, we drive the cavity at this resonant frequency, so the term

!2

012

1 + 1

Q012

� !2; (3.96)

is zero. However, as Q012 changes during the heating of the cavity, this term will di�er
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Figure 3.14: Magnitude and phase of re
ected signal from diagnostic port due to the

change in Q012 from pulsed heating.
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from zero. It is the change in this term that results in a phase shift of the re
ected

signal. Of course, the amplitude of the signal changes because a change in unloaded

Q results in a change in coupling to the cavity mode.

Measuring temperature rise

Figure 3.14 shows the typical response of the TE012 mode to pulsed heating. In this

section, we will show how to determine the temperature rise on the surface from the

measurement of the amplitude and phase of the re
ected signal.

The �rst step involves extracting the change in unloaded Q from the re
ected

signal. However, we must also allow for a change in !012 from the deformation of the

surface of the cavity due to heating. This e�ect is diÆcult to predict since the heating

is high enough to cause the deformation to be nonlinear. Fortunately, this e�ect can

be easily measured and it is predicted to be small. Looking back at equation (A.125),

we split it into real and imaginary parts and solve the resulting equations in terms of

Q012(t) and !012(t)

Q2

012

�
!012

Qejj

db

dt
� 2!

da

dt
+ b

�
!2

012
� !2

�
� a

!!012

Qejj
+

2!!012

Qe1

�

+Q012

�
!

�
db

dt
�

da

dt

�
� (a + b)!2

� a
!!012

Qejj
+

2!!012

Qe1

�

+ !
db

dt
� a!2 = 0; (3.97a)

aQ2

012
!2

012
+ !012

�
Q2

012

Q
ejj

�
da

dt
+ b!

�
+Q012

�
b

!

Q
ejj

�

2!

Qe1

�
�

2!

Qe1

�

+Q2

012

�
2!

db

dt
� a!2

�
+Q012

�
!

�
da

dt
+

db

dt

�
+ (b� a)!2

�

+ !
da

dt
+ b!2 = 0; (3.97b)

where
1

Q
ejj

=
1

Qe1

+
1

Qe2

: (3.98)
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Equations (3.97) may be solved using algorithms that �nd solutions of nonlinear

systems of equations [11, pp. 543{576].

We will test this method. First we will use the unloaded Q change shown in Fig-

ure 3.13 given by the temperature rise found in section 3.3.2. Next we will introduce

a �ctitious frequency shift of 100 kHz that occurs at the end of the pulse

!012 =

8>>><
>>>:

!012(t = 0) + �!

tp
t t � tp

!012(t = 0) + �!

tp
(2tp � t) tp < t � 2tp

!012(t = 0) t > 2tp;

(3.99)

where �! = 2�(100 kHz). This frequency shift is about 10% of the Q-bandwidth for

the TE012 mode. The amplitude and phase of the re
ected signal due to changes in

Q012 and !012 are shown in Figure 3.15. After solving equations (3.97) with the data

shown in Figure 3.15, the change in Q012 and !012 is plotted in Figure 3.16 along with

their relative errors.

Once the value of Q012 as a function of time is extracted from the re
ected signal,

we may indirectly approximate the maximum temperature rise of the surface. We

will use equation (3.90) to determine the temperature rise in the cavity. Since Q012

is a global parameter of the cavity, we must make some assumptions.

The �rst assumption is that the temperature rise on the endcaps and the cavity

sidewall have a functional dependence which ignores the variation of the electrical

resistivity. At �rst glance, this approximation may seem to have large error, because

Section 3.3.2 showed that the variation of the electrical resistivity caused a 10%

increase in the maximum temperature rise on the endcaps. However, the overall error

is smaller and acceptable, because the variation of the electrical resistivity is taken

into account in equation (3.90). Thus, we model the temperature on the endcaps and

cavity sidewall as

T (r) = T0 +
�Tr;max

J2
1
(x0

11
)
J2
1

�x
11
r

R

�
; (3.100a)

T (z) = T0 +�Tz;max sin
2

��z
d

�
; (3.100b)
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Figure 3.15: Magnitude and phase of re
ected signal from diagnostic port due to the

change in Q012 from pulsed heating and the �ctitious change in !012.
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Figure 3.16: Extracted Q012 and !012 from the re
ected signal data in Figure 3.15.

Their relative errors are shown beneath.
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where the term J2

1
(x0

11
) is used for normalization.

The second assumption is the ratio between the maximum temperature rise on the

endcaps to the maximum temperature rise on the cavity sidewall. Our simulations

show this ratio to be approximately 2. Fortunately, the temperature determined

using equation (3.90) is not sensitive to this ratio since Q012 is approximately 8 times

more sensitive to changes on the endcap than on the cavity sidewall. So we let

�Tr;max = 2�Tz;max.

Using these assumptions and equation (3.77) in equation (3.90) we have

p
�c!012

Q012 (A012

TE)
2
� 16�3R2

d2x2
11

Z R

0

dr rJ2

1

�x11r
R

�s
a1

�
�Tr;max

J2

1
(x0

11
)
J2

1

�x11r
R

�
+ T0

�
+ a2

� 2�RJ2

0
(x11)

Z d

0

dz sin2
�
2�z

d

�s
a1

�
1

2
�Tr;max sin

2

��z
d

�
+ T0

�
+ a2 = 0;

(3.101)

where

a1 = 7:012� 10�11 
 �m=K; a2 = �3:865� 10�9 
 �m: (3.102)

!012 will be taken as a constant in equation (3.101) since its variation is slight. �Tr;max

may be found by solving equation (3.101) by iteration where the integrals are com-

puted numerically. We may simulate this procedure by using the value of Q012 found

in the previous section. The results are plotted in Figure 3.17.

This procedure will always systematically underestimate the actual temperature

rise since the assumed temperature ignores the variation of the electrical resistivity.

However, the relative error in this case is less than 3%. This error will increase for

higher temperature rises. For example, for a temperature rise of 250 K, the relative

error is less than 5%. This is an acceptable error. The change in relative error

due to the approximation that the ratio of the maximum temperature rise on the

endcaps to the maximum temperature rise on the cavity sidewall is 2 is also slight.

From simulations, the ratio varies from 1.9 to 2.4 over the temperature range of room

temperature to the melting point of copper. Over this entire range, the relative error
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changes at most by 1%.



Chapter 4

Results

In this chapter, we will discuss the results obtained from two high-power tests on

OFE copper using the cavities described in Chapter 2. The �rst high-power test used

the two-cavity setup described in Section 2.2.1. In the second high-power test, we

used the one-cavity setup described in Section 2.2.2.

4.1 First Test

A picture of the test setup is shown in Figure 4.1. We used an XL-3 50 MW klystron

for the high-power RF source. Although the tube is capable of producing 1:5 �s

pulses, we were limited to 1:25 �s pulses due to rounding of the RF pulse by the

modulator. The repetition rate is 60 Hz.

We experienced extensive RF breakdown at the coupling irises and were required

to surround the cavity structures with 2-inch lead bricks. Because of this breakdown,

we limited the input power to each cavity to 8:5 MW and accumulated pulses at this

setting. The vacuum in the cavities was approximately between 10�9 Torr and 10�8

Torr.

133
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Figure 4.1: A picture of the two-cavity setup attached to the klystron. The XL-3

klystron is seen in the background. The cavities are on the left and right of the setup

in the lower part of the picture.
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4.1.1 Run-Up Procedure

As described in Section 2.2, the input power to the cavities must be raised slowly due

to outgasing from the copper surface and RF breakdown. The entire experimental

run occurred over a two-month period. It took approximately two weeks to reach

8:5 MW to each cavity. Although the power to each cavity could eventually be raised

over time, we decided to stay at one power level for two reasons. First, the amount of

time required to raise the power further became prohibitive. Second, it was desirable

to accumulate high-power pulses at one temperature rise to minimize the e�ects of

cyclic fatigue from multiple stress levels. We stayed at 8:5 MW because we considered

calculated temperature rises over 100 K to be interesting.

During the experiment, the cavities were tuned to each other in such a way

that their resonant frequencies would match after thermal expansion due to aver-

age heating. Using equation (2.15) with � = 1:7, Ppeak = 8:5 MW, Tp = 1:25 �s and

frep = 60 Hz, the total power dissipated in the cavities is approximately 595 W. This

assumes the RF pulse is a 
at-top. Looking at Figure 4.4, the input pulse is actually

rounded. Therefore, this approximation represents an upper-bound on the average

temperature rise.

Following the discussion in Section 2.1.6, the maximum temperature rise due

to average heating on the endcap surface is calculated to be approximately 10 K.

The maximum temperature rise due to average heating on the cylindrical sidewall

is approximately 9 K. The cavity frequencies decreased around 4 MHz at full power

giving a ratio of 6:7 kHz=W. According to equation (2.31), the sensitivity of the cavity

resonant frequency to length changes in the radial or axial direction is approximately

�7 MHz for every 25 �m increase in dimensions. Cavity 2 shifts an additional 400 kHz

more than cavity 1 due to average heating which represents a change of less than 10%.

This may be due to small di�erences in the 
ow of water to each cavity.

4.1.2 Measurement of RF Power

As described in Section 2.2, attached to the high-power coupler of each cavity is a

55-dB directional coupler. Directional couplers allow the measurement of forward and
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1 2

3 4

TO CAVITY FROM
KLYSTRON

COUPLING HOLES

Figure 4.2: Schematic of a 55-dB directional coupler. Port 1 is connected to the input

of the test cavity and Port 2 is the input from the klystron.

re
ected power from the cavity by coupling a small amount of power to a side-coupled

waveguide. In this case, the amount of coupling is small enough such that the loss of

power to the cavity is less than 0.1 dB. A schematic of a directional coupler is shown

in Figure 4.2.

Power is coupled to the coupling arm of the directional coupler through apertures

cut along the broad wall of the waveguide. Looking at Figure 4.2, the length between

the coupling holes of the directional coupler is chosen such that most of the power

coupled to port 4 is from port 1 and most of the power coupled to port 3 comes

from port 2. For a 55-dB directional coupler, the isolation between ports 1 and 3 and

ports 2 and 4 is approximately 90 dB. Since these couplers are to be operated under

vacuum for high power, ports 3 and 4 have RF vacuum windows that are matched at

11:424 GHz.

Forward power measurements are important for two reasons. First, using the for-

mulas presented in Section 3.3, knowledge of the input power to each cavity allows

us to calculate the maximum temperature rise on the surface. Second, as discussed

in Section A.4.2, the coupling coeÆcient to each cavity may be determined in con-

junction with the measurement of re
ected power from the cavity.

The forward power to each cavity is measured at port 3 of the directional cou-

pler with the use of a crystal detector. Depending on the detector, the maximum

power a crystal detector can measure without damage is approximately +10 dBm.

Since 8:5 MW corresponds to 99.3 dBm, we must add additional attenuation to the
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Figure 4.3: Crystal detector calibrations for the forward power (left) and the re
ected
power (right) for cavity 1.

directional couplers. The additional attenuation comes from cross-guide couplers,

which are waveguide-couplers that behave similarly to directional couplers, and coax-

ial attenuators. The coaxial attenuators are added after using waveguide-to-coaxial

adapters. 16 GHz low-pass waveguide �lters are also added to the cross-guide couplers

to eliminate higher harmonics of the klystron frequency.

The parameters of the above components used in the experiment were measured

with a HP8510C network analyzer. Since the network analyzer cannot measure over

100 dB of attenuation with reasonable accuracy due to noise, the components must

be measured separately. When the network analyzer is calibrated with isolation and

averaging, the error in the measurement of the coupling of the directional coupler is

�0:2 dB. The same error occurs with the measurement of the cross-guide couplers

with coaxial attenuators attached. Adding the errors in quadrature, the total error

for the measurement of forward power is �0:3 dB. This error is systematic because

all measurements of forward power will have the same discrepancy.

There is also random error in the measurement of forward power. The output

voltage of the crystal detectors is calibrated with a known RF power close to the

frequency at which a measurement is taken. Figure 4.3 shows the calibration curves

for the crystal detectors used to measure the forward and re
ected power to cavity

1. The amplitude of the waveforms are converted to power using cubic interpolation

of the crystal calibrations. The noise from the klystron modulator adds a random
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Figure 4.4: Forward and re
ected high-power waveforms for cavity 1 from the �rst

high-power test. Pf and Pr are the forward and re
ected powers measured in steady-

state respectively. \Residual" is the residual forward power after the RF pulse turns

o� due to mismatches along the waveguide line.

error of approximately 0:5 mV to the output of the detector. This error in voltage is

converted to an error in power using the calibration curves for the crystal detectors.

The error will depend on the crystal amplitude. Since the power in units of dBm

varies logarithmically with crystal voltage, smaller voltages will result in larger errors

in power.

A typical forward power waveform is shown on the left of Figure 4.4. Notice that

the forward power waveform is not a perfect square wave. This is due to the mixing

of the re
ected power from the cavities with the forward power. This mixing will be

explained in more detail in Section 4.1.3. However, notice that there seems to be an

exponential �lling time to reach full power. Since saturation occurs at approximately

5 �lling-times, the �lling time for this process is approximately 0:6 �s=5 = 0:12 �s.

This is in rough agreement with the �lling-time of 0:14 �s for the cavities at the end of

the high-power test. It will also be shown later in Section 4.1.3 that this has negligible

e�ects on the measurement of the coupling coeÆcient and loaded Q for each cavity.

The re
ected power from each cavity is measured at port 4 of the directional

couplers. A typical re
ected waveform is shown on the right of Figure 4.4. The �rst

peak in the �gure occurs when the RF turns on and the second peak occurs when

the RF turns o�. The measurement of re
ected power is important for two reasons.
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Cavity Initial Q0 Final Q0 Initial QL Final QL
1 20350� 520 14360� 300 7670� 110 5010� 50

2 20610� 530 16810� 260 7670� 110 5010� 50

Cavity Initial � Final � Initial Qext Final Qext

1 1:65� :06 1:87� :05 12320� 520 7690� 260

2 1:69� :06 2:36� :07 12220� 530 7140� 250

Table 4.1: Cavity Q measurements of cavity 1 and 2 using a HP8510C network

analyzer before and after the �rst high-power test. The change in Qext is due to the

increase in size of the high-power coupling apertures.

First, the re
ected power waveform is needed to determine the resonant frequency

of each cavity. The amplitude of the steady-state part of the waveform before the

RF pulse turns o� is at a minimum at the resonant frequency of the cavity. Second,

the coupling coeÆcient and the loaded Q for each cavity can be measured from this

waveform.

As with the measurement of forward power, there are systematic and random er-

rors involved with the measurement of re
ected power. Although cross-guide couplers

are also used, the total systematic error is �0:2 dB. We are using less attenuation to

measure the steady-state part of the re
ected waveform more accurately. Of course,

the random errors in power will vary with crystal amplitude.

4.1.3 High-Power Results

Table 4.1 gives the values of the cavity Q's measured with a HP8510C network an-

alyzer before the start of the high-power test. Using the values given in Table 4.1

with an 8:5 MW, 1:25 �s pulse in the equations presented in Section 3.3.2 gives a

temperature rise of 120 K �10 K. The error in the calculated temperature rise comes

from the range of input power due to systematic error, 8:5 MW �0:6 MW. At this

power level, the error is dominated by systematics. Consequently, the temperature

rise on the cylindrical sidewall is 60 K �5K (see Section 2.1.2).

The experiment was run at the temperature rise of 120 K for 5:6 � 107 pulses.

Afterwards, the cavities were removed from the test setup and their Q's were measured
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with a network analyzer. The results are given in Table 4.1. Both the unloaded and

the external Q's are lower than their initial values for each cavity. These changes are

explained in Section 4.1.5.

The coupling coeÆcient � and loaded Q of each cavity were determined throughout

the experiment by measuring the forward and re
ected power to and from each cavity

in the time domain. The typical shape of these waveforms is shown in Figure 4.4. The

amplitudes of these waveforms are converted to power using the known calibrations

of the crystal detectors.

The coupling coeÆcient is essentially determined by the ratio of the re
ected to

forward power in steady-state. Steady-state occurs near the end of the RF pulse when

the cavities have been �lled with energy longer than 5 �ll-times. When the RF pulse

turns o�, the power decays out of each cavity exponentially at a rate proportional to

1=QL. QL is found by �tting this decay curve to an exponential. These measurement

points are shown in Figure 4.4. Refer to Section A.4.2 for more background on these

measurements.

Measurement of Coupling CoeÆcient

The coupling coeÆcient for each cavity is determined by measuring the forward and

re
ected power in steady-state at the points indicated by Pf and Pr in Figure 4.4

respectively. Using equation (A.133) and assuming the cavity is �lled by the end of

the pulse (t!1), the re
ected power is simply

Pr =

�
� � 1

� + 1

�2

Pf : (4.1)

Using the parameters in Table 4.1 with a pulse length of 1:25 �s shows that the error

in the assumption t!1 is less than 0.1%. Solving this equation for � gives

� =
1�

q
Pr
Pf

1�
q

Pr
Pf

; (4.2)
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where the upper sign is for � > 1 and the lower sign is for � < 1. Since the height of

the second peak in the re
ected waveform is higher than the height of the �rst peak,

� > 1 (see Section A.4.2).

We also discussed earlier the fact that the forward power is not a perfect square-

wave. In the analysis used in Section A.4.2, we assumed eV +

1
is constant. Looking at

Figure 4.4, we may model the waveform as �lling from some initial power level to the

�nal desired power level. We will assume that the �lling-time is equal to that of the

cavities at the end of the high-power test. Thus we write

eV +

1

eV +

1;0

= A1 + A2

�
1� e�t=�

�
; (4.3)

where eV +

1;0 is the desired voltage (/
p
P ), � is the �lling-time, and A1 and A2 are

ratios such that A1 + A2 = 1. In Figure 4.4, the rounding of the input power occurs

over a range of 2 dB corresponding to 80% of full power. Hence, A1 = 0:8 and

A2 = 0:2. If we drive the cavity at its resonant frequency and use equation (4.3) in

equation (A.129) with the continuity condition eV �
1

= eVC � eV +

1
, then the re
ected

power normalized to the forward power is

�����
eV �
1

eV +

1;0

�����
2

=

����
� � 1

� + 1
�

2�

� + 1
e�t=� � A2

!

Qext

te�t=�
����
2

: (4.4)

This result is similar to the case where eV +

1
is constant except for the last term on

the right-hand side of equation (4.4). Using the �nal values given in Table 4.1 at the

time where � is measured (t = Tp = 1:25 �s) we �nd that the last term is smaller by

three orders of magnitude than the �rst two dominant terms. Therefore, the e�ect of

the rounding of the forward power on the measurement of � is negligible.

Before a measurement is done, the power from the klystron must be decreased

below approximately 2 MW to each cavity to minimize the e�ects of pulsed heating

on the cavity Q and the coupling coeÆcient. Also, the power must be high enough for

the signal to have suÆcient amplitude for reasonable error. However, at this power

the cavities are no longer matched to each other. The consequence of this fact will
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Cavity 1 Cavity 2

�low 1:73� :04 2:51� :09

�nom 1:79� :04 2:68� :11

�high 1:85� :05 2:87� :12

�freq 1:87� :05 2:36� :07

Table 4.2: Measurement of coupling coeÆcients for cavities 1 and 2 in the time

and frequency-domain at the end of the high-power test. The range of � is due to

systematic errors in the measurement of power where �nom is the nominal value. The

errors listed for each value is due to random errors. �freq is the value measured in

the frequency-domain.

be shown later in this section.

The oscilloscope used to measure these waveforms, LeCroy 9314M, adds a small

DC-o�set to the signal amplitude that should be subtracted. Although the errors in

the measurement of forward and re
ected power due to noise depends on the crystal

amplitude, all measurements were taken at roughly the same power level resulting

in a constant error. Hence, for cavity 1, the average error in the measurement of

forward power due to noise is approximately 0.1 dB. Likewise, the average error in

the measurement of re
ected power is 0.35 dB. For cavity 2, the average error in the

measurement of forward power is 0.2 dB and the average error in the measurement

of re
ected power is also 0.2 dB. The variation in these errors is due to the di�erent

sensitivities of the crystal detectors.

We will compare the measurements in the time-domain for cavities 1 and 2 at

the end of the high-power test with the measurments done in the frequency-domain.

Table 4.2 presents the range of values measured for the coupling coeÆcient of cavities

1 and 2. The three di�erent measured values of � in the time-domain for each cavity

are due to the extreme ranges of the systematic errors in the measurement of forward

and re
ected power. The error given for each value of the coupling coeÆcients is due

to random errors. The systematic errors dominate. Although the discrepancy between

the accepted or nominal value for � in the time-domain and the value measured in

the frequency-domain is approximately 4% for cavity 1 and 14% for cavity 2, the

range of � due to errors in the time-domain is consistent with the measurement in
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Figure 4.5: Variation of the nominal value of � for cavity 1 (left) and cavity 2 (right)
as a function of pulse count at a 120 K temperature rise on the endcap surfaces. The
errors shown are due to random errors only.

the frequency-domain.

The measurement of � as a function of pulse count for each cavity is shown in

Figure 4.5. As described in Section 2.3.2, the pulse count is determined by digitizing

the forward power waveform and binning it by power level into an event counter.

Looking at Figure 4.5, we see that � increases quickly for both cavities in the �rst

10 to 20 million pulses. If damage is occuring on the surface of the cavity in the

form of surface roughening and cracks, we expect Q0 to decrease due to the increase

in electrical resistivity of the surface. Since � = Q0=Qext, this suggests that Qext is

decreasing in this pulse range since Q0 cannot increase. This is in agreement with the

decrease in Qext presented in Table 4.1. The decrease in Qext is due to the increase

in size of the coupling aperture of each cavity and is discussed in more detail in

Section 4.1.5.

After 20 million pulses, there is a decreasing trend in � for cavity 1. This indicates

a decrease in the value of Q0. According to Table 4.1, Q0 for cavity 1 decreases by

almost 30%, but Figure 4.5 shows only a 10% decrease in � starting at 20 million

pulses. Also, Qext decreased by almost 40% according to frequency-domain measure-

ments. This shows that Qext for cavity 1 likely decreased over the entire pulse range,

competing with the degradation of Q0.
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Figure 4.6: Forward power waveforms for cavity 2 at 32 million pulses (left) and at
56 million pulses (right). A change is visible in the region where Pf is measured and
also in the \Residual" power.

Notice that for cavity 2, � generally increases over the entire pulse range. Accord-

ing to Table 4.1, cavity 2 su�ered a 18% degradation in Q0 with over 40% degradation

in Qext. This fact combined with Figure 4.5 indicates that the degradation in Qext

dominated the change in Q0, since Q0 is only expected to decrease over time. After

20 million pulses the variation in � is slight until after 40 million pulses have been

reached. This suggests that in this region Q0 began to degrade while Qext did not

degrade as much. However, after 40 million pulses there appears to be another sharp

rise in �. Although this may be due to another sharp change in Qext, it is more likely

due to additional measurement error.

Figure 4.6 shows forward power waveforms for cavity 2 recorded at 32 million

pulses and at 56 million pulses when the experiment was stopped. There is an ob-

vious di�erence in the shapes of these two waveforms. There is an ambiguity of the

measurement of forward power depending on what point in the waveform the mea-

surement is taken. This problem stems from the fact that the cavities are not matched

to each other during the measurement process.

Ideally, the asymmetric magic-tee used to split the input power to the two cavities

will cause the re
ected power from the cavities to go to a load. From symmetry,

this occurs only if the up-and-back transmission length between the klystron and

each cavity represent a 180 Æ phase shift between their �elds and if the cavities have
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identical properties. Even an ideal magic-tee with the correct phase shift at the correct

frequency will not prevent re
ected power going back to the klystron if the cavities

are not matched to each other. In our case, the cavities not only become increasingly

mismatched over time as shown in Figure 4.5, but one is driven o�-resonance while

the properties of the other cavity is measured.

The output cavity of the klystron is grossly over-coupled to provide high band-

width for its output signal. Hence, the klystron is not matched to the magic-tee. The

di�erence between the re
ected power from the cavities will go to the klystron and

re
ect back to be split by the magic-tee again. This signal will interfere with the

output power from the klystron. This causes a change in the actual forward power

to each cavity and is not simply a measurement problem.

From the data, it appears that only cavity 2 is a�ected by this problem. Mis-

matches between the cavity and the magic tee will cause a slight detuning of the

cavities. Hence, a measurement of � will occur slightly o�-resonance causing the

measured � to move farther away from 1 than the actual value. It is likely that a

stronger mismatch occured on the side with cavity 2 over time than on the side with

cavity 1. Figure 4.5 indeed shows that the measured value of � for cavity 2 is higher

than compared to the measurement in the frequency domain.

Overall, each cavity su�ered extensive degradation in their values of Q0 and Qext.

Although damage most likely occured to the coupling aperture of each cavity over the

entire pulse range, it would appear that the damage became less extensive over time

due to the slower variation of � in the last half of the experiment. This corroborates

the fact that RF breakdown became less of a problem at this power level over time. In

the last half of the experiment there was no measurable outgasing and the disruption

of the forward and re
ected waveforms due to RF breakdown occurred less frequently.

As will be discussed in Section 4.1.6, we know that breakdown occured at the coupling

apertures of each cavity.

After 20 million pulses it appears that degradation ofQ0 for each cavity dominated

the change in �. Cavity 1 su�ered a greater degradation inQ0, causing � to eventually

decrease over time. However, the degradation of Q0 for cavity 2 was not enough to

overcome the change in Qext and only caused � to increase less swiftly.
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Figure 4.7: Re
ected waveform from cavity 1 at the end of the �rst high-power test.

The �t of the waveform using linear least-squares is on the right.

The measurement of loaded Q, QL, for each cavity combined with the measure-

ment of � isolates the values of Q0 and Qext. However, the problem with the mis-

matched cavities described earlier also a�ected the results forQL. As will be described

in the next section, this made it diÆcult to conclude how Q0 degraded over time for

each cavity.

Measurement of Cavity Q

The loaded Q of each cavity can be determined from the re
ected waveform using

the method described in section A.4.2. The decay of the power leaking out of the

cavity after the RF is turned o� is �t to an exponential to �nd the loaded Q. As

an example, the re
ected waveform for cavity 1 on the right of Figure 4.4 will be

analyzed in detail. A close-up of this waveform is shown in Figure 4.7. As with

the measurement of �, the DC-o�set in the oscilloscope is subtracted �rst. Then the

amplitude is converted to power by interpolation of the crystal calibration curve. The

�rst few points near the peak of the amplitude are ignored, because the crystal may

not accurately represent the spike that occurs when the RF is shut o�. The points

near zero amplitude are also ignored due to the large error in the conversion to power.
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Cavity 1 Cavity 2

QL;time 6910� 110 7180� 70

QL;freq 5010� 50 5010� 50

Table 4.3: Comparison of measurment of QL for cavities 1 and 2 in the time and

frequency-domain at the end of the �rst high-power test.

From equation (A.136), the re
ected power is parameterized as

Pr = A exp

�
�

!0t

QL

�
; (4.5)

where A is a constant. Since energy is simply decaying out of the cavity after the RF

turns o�, the rounding of the forward power waveform has no e�ect on the measure-

ment of QL.

The amplitude of the crystal detector is converted to power in dBm, so it is useful

to convert equation (4.5) to dBm

Pr[dBm] = B � 10(log e)
!0

QL

t; (4.6)

where B is a constant. This equation may be �t using linear least-squares. The �t

is shown on the right of Figure 4.7. The results of the �t are presented in Table 4.3

along with the result for cavity 2. The error in the �t is due to the assumed error of

approximately 0:5 mV in determining the amplitude because of noise. The systematic

error due to the calibration of the 55-dB directional couplers is ignored since the

determination of absolute power is not necessary.

The discrepancies between the measurements of QL in the time and frequency-

domains for cavities 1 and 2 are 38% and 43% respectively. These discrepancies are

likely due to the mismatch of the cavities with respect to each other and the mismatch

of the klystron output cavity to the magic-tee. As with the measurement problem of

the coupling coeÆcient, a portion of the re
ected power from each cavity will reach

the klystron output cavity due to the mismatch of the test cavities. Although the RF

is o�, the klystron output cavity will �ll and emit power using the re
ected power
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Figure 4.8: QL for cavity 1 (left) and cavity 2 (right) as a function of pulse count for

a 120 K temperature rise on the endcap surfaces.

from the test cavities as an input. This can be seen in the forward power waveform in

Figure 4.4 as residual power after the RF pulse turns o�. The level of residual power

changes over time as the properties of the cavities change as can be seen in Figure 4.6.

The emitted power from the klystron output cavity will have a characteristic decay

due to its loaded Q. This emitted power will travel back to the cavities and �ll them

causing them to re-emit power. Hence, the overall measured re
ected power from

each cavity will involve the mixing of characteristic decays of both test cavities and

the klystron output cavity.

Figure 4.8 shows the measurement of QL for each cavity versus pulse count.

Notice that there are large discrepancies between the measurements in the time and

frequency-domain even at the beginning of the high-power test when the cavities were

almost identical. This is due to the fact that one cavity is driven half a Q-bandwidth

o� resonance while the properties of the other cavity is measured. Both cavities show

a degradation in QL for the �rst 30 million pulses. However, QL increases in cavity 1

after 30 million pulses almost back to its beginning value at the end of the high-power

test. Since we know that Qext must be decreasing over time due to the increase in size

of the coupling aperture, Q0 would have to increase in order for QL to increase. This

is the opposite of what we expect to occur from surface damage. We believe these

measurements do not correctly re
ect the change in the properties of the cavities over

time because of the interference that results from the measurement of re
ected power
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Figure 4.9: Q0 for cavity 1 (left) and cavity 2 (right) as a function of pulse count for

a 120 K temperature rise on the endcap surfaces.

due to the mismatch of the cavities with respect to each other.

Figure 4.9 shows the value of Q0 = QL(1 + �) for each cavity versus pulse count.

The discrepancies between the measurement of Q0 in the time and frequency-domain

at the end of the high-power test are large (30% for cavity 1 and 60% for cavity 2.)

The estimation of the errors do not account for such large discrepancies. Also, both

cavities display behavior that is contrary to what we expect to occur during damage.

Figure 4.9 shows that Q0 for cavity 1 increases after 30 million pulses and Q0 for

cavity 2 did not change much during the entire pulse range. We only expect Q0 to

decrease.

In conclusion, measurements of the properties of the cavities in the frequency-

domain conducted at the beginning and end of the data taking run show degradation

in both Q0 and Qext for both cavities. The measurements of � in the time-domain

are consistent with measurements taken with a network analzyer when the systematic

errors due to the calibration of the couplers are considered. Hence, Figure 4.5 seems

to be a good indication of the change in the properties of the cavities over time. This

is reasonable since the mismatch of the test cavities and the klystron will change

the actual forward power to each cavity. This will change the steady-state re
ected

power from each cavity by the same ratio and should not a�ect the determination of

�. However, QL is determined by �tting an exponential to the decay of power out of
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each cavity after the RF pulse turns o�. Due to the mismatches of the test cavities

and the klystron described above, the characteristic decays from each test cavity and

the klystron output cavity will be mixed. The measurement of QL will be a�ected

and the large discrepancies between the time and frequency domains indicate that

the measurement of QL in the time domain is unreliable. Hence, the variation of Q0

and Qext over time cannot be properly isolated.

4.1.4 Endcap Removal

At the end of the high-power test, the vacuum in the cavities was broken with a

nitrogen purge. The cavity properties were measured with a network analyzer; the

results are given in Table 4.1. The pistons with the endcaps attached were removed

from the cavities, and the endcaps were carefully removed from the pistons using a

lathe (see Section 2.1.5). The surface of the endcaps were protected with a ceramic

cover at all times, and all parts were handled with gloves and covered with aluminum

foil that was cleaned for vacuum. Afterwards, the surfaces of the endcaps were in-

spected visually and with a scanning electron microscope. The inner cross-section of

one endcap was also inspected. See Table 2.3 for the preparation of the surfaces of

the copper endcaps for the high-power test.

Each endcap is labeled uniquely with a three character designation. The �rst

character is the cavity number. The second character is L or R whether the endcap

is on the left or the right side of the cavity looking from the high-power coupler.

The last character is the test number. For the �rst high-power test, the endcaps are

labeled 1L1, 1R1, 2L1 and 2R1. For the second high-power test, the endcaps are 1L2

and 1R2.

4.1.5 Visual Inspection of Copper Endcap Surface

Each copper endcap is made from polycrystalline OFE copper. This means the struc-

ture at the surface is made from crystal grains whose lattices are oriented in a generally

random direction with respect to each other. This is not completely true due to the

nature of how the copper material was formed, but it is a good approximation for our
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Figure 4.10: Picture of endcap 2L1. A change in the crystal grains is visible even

in the region where the temperature rise was lower by 10% as explained in the next
section. The tarnish from the sputtering of copper is on the lower part of the endcap.

study. The intersections of these grains are known as grain boundaries.

A visible change in the surface of all four endcaps is obvious with the naked eye.

Figure 4.10 shows endcap 2L1 still attached to a piston as well as a snapshot from

the top. In both of these pictures an obvious change in the crystal grains is visible in

the region where the temperature rise is maximum, which is approximately half-way

between the center and the outer radius of the endcap. In this area in which there

is high-amplitude cyclic straining, steps may form in crystal grain boundaries with

height di�erences on the order of �ms [7, p. 126]. This would change the direction

of light specularly re
ected from the surface, which will cause a contrast between the

grains in the fatigued area compared to the rest of the surface.

Tarnish

Also visible is a tarnish of the surface. The tarnish is thicker at the outer radius and at

the azimuth closest to the high-power coupling aperture. The next section will show

that the tarnish is due to copper globules. These copper globules were sputtered onto

the surface of the endcaps from fatigue damage and RF breakdown that occurred

at the high-power coupling aperture. Because these copper globules may add to the
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surface roughness of the cavity, we cannot conclude that the degradation in Q0 shown

in Table 4.1 is completely due to cracks from pulsed heating. However, the table also

shows that the aperture for cavity 2 changed more than cavity 1 yet cavity 1 su�ered

a larger Q degradation. This would indicate there is no direct correlation between

the amount of aperture damage and the amount of Q degradation.

Multipacting

Also visible on the endcap surface are black patches that appear on the half of the

endcap that is closest to the coupling aperture. We believe these patches are due to

multipacting since they occur mostly in pairs. Since the magnetic �eld is radial at

the endcap surface, electrons emitted from the surface will orbit around the magnetic

�eld lines. At the time that the electron comes back to the surface to cause another

electron to be emitted, the magnetic �eld goes through 180 Æ phase shift to allow

the next emitted electron to travel on a reverse trajectory. Thus one electron must

complete an orbit in one-half of an RF period. This restricts the energy of the

electrons.

If we assume a perfectly semi-circular orbit for the electron, then equating the

centripetal force with the force from the magnetic �eld gives

H =
mev

�ere
; (4.7)

where me is the mass of the electron, v is the electron's velocity and re is the radius

of its orbit around the magnetic �eld. Since the orbit must be completed in one-half

of an RF period

v =
�re
TRF

2

= 2�refRF ; (4.8)

where TRF is the RF period and fRF is the RF frequency. Thus the strength of the

magnetic �eld must be

H =
2�fRFme

�e
: (4.9)

For fRF = 11:424 GHz, H = 0:32 MA=m. Using the initial values given in Table 4.1

with an 8:5 MW, 1:25 �s pulse, the maximum magnetic �eld on the surface of the
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endcap is 0:47 MA=m. This is in good agreement with the previous result considering

that the actual orbit of the electron will not be perfectly circular. The azimuthal

electric �eld will a�ect the electron trajectory, thus a�ecting the required magnetic

�eld.

On average, the distance between each pair of patches on the surface is approxi-

mately 2 mm which gives re = 1 mm. If we continue to use the assumption that the

orbit is perfectly semi-circular, then equation (4.8) gives a kinetic energy of 15 keV

for the electron. It is possible for the electron to receive such energy from the az-

imuthal electric �eld. The maximum electric �eld occurs at the same radius in the

cavity as the surface magnetic �eld on the endcap, but in the middle of the cavity

at z=0. For the above parameters, the maximum �eld strength is approximately

260 MV=m. Therefore, the electron with an orbital radius of 1 mm will experience

an electric �eld strength of approximately 40 MV=m at its maximum excursion from

the surface of the endcap. However, a perpendicular electric �eld is required on the

endcap for an electron to be emitted from the surface. A perfect TE011 mode will

only have azimuthal electric �elds. It is likely that a tilt of the surface of the endcap

due to a misalignment of the vacuum 
anges of the piston and the cavity caused a

small perpendicular component of the electric �eld to occur on the surface.

According to a Gd�dL simulation in the time-domain, the maximum magnetic

�eld on the endcap closest to the azimuth of the high-power coupling aperture is

approximately 5% higher than on the spot diametrically opposite of it. Since multi-

pacting only occurs over a small range of energies, this may explain why dark patches

are only seen on one half of the endcap. That half of the endcap is the half closest to

the high-power coupling aperture.

4.1.6 Damage to High-Power Coupling Aperture

In Figure 4.11, we see the high-power coupling aperture of cavity 1 after the �rst

high-power test. The magnetic �eld is in the up-down direction of the picture and the

electric �eld is in the left-right direction near the aperture. The aperture is rounded

in the direction of the magnetic �eld, which suggests the damage is due to heating.
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Figure 4.11: A picture of the high-power coupling aperture of cavity 1 after the �rst

high-power test. Near the aperture, the magnetic �eld is in the up-down direction

and the electric �eld is in the left-right direction. The aperture has been rounded

in the up-down direction, and pitting has occured to the left and the right of the

aperture.

According to simulations using HFSS [2], which solves for the �elds in steady-state,

the magnetic �eld at the edge of the aperture is approximately 0:7 MA=m for an

input power of 8:5 MW. The maximum magnetic �eld on the endcap at this power

is approximately 0:5 MA=m. Therefore the temperature rise is almost twice as high

on the coupling aperture than on the endcap. The electric �eld on the aperture is

approximately 85 MV=m, which is suÆcient to cause RF breakdown.

A likely explanation of the damage to the coupling aperture is fatigue due to pulsed

heating. As cracks develop in the aperture region, the heating will increase due to the

larger electrical resistivity. The increased heating will cause more cracks to develop

and increase the size of cracks that already exist. Eventually, local melting will result.

Metal will evaporate and spray from these cracks [23, Ch. 7]. The aperture increased

in size on the cavity side which explains the drop in external Q shown in Table 4.1.

Although the copper endcaps were the main test pieces of the pulsed heating

experiment, the damage that occurred at the high-power coupling apertures sets

another limit. It shows that a temperature rise of approximately 250 ÆC will cause

extensive damage after 50 million pulses. The damage occurred before this time, but

we could not accurately assess the time at which the damage became signi�cant as
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shown in Figure 4.11.

4.1.7 Internal Cross-Section

Endcap 2L1 was cut along a diameter and polished to view the cross-section. Mag-

ni�ed scans were taken at the center of the endcap and in the region in which the

maximum temperature rise occurred. No cracks were found in the center of the end-

cap where the temperature rise is close to zero. Less than 10 cracks are visible in the

region of maximum temperature rise at magni�cations up to 1000, and only 2 cracks

are longer than 10 �m. Figure 4.12 shows both of these cracks. These cracks were

�rst created at the surface and then propagated internally, because higher stresses

and strains occur at the surface than in the interior of the metal [22, p. 66]. Once

cracks nucleate at the surface, stress is ampli�ed near the crack tips leading to further

crack propagation. However, only a few cracks will actually propagate internally to

cause fracture as compared to the amount of cracks that are nucleated at the surface.

As will be shown in Section 4.1.8, many cracks do occur on the surface as compared

to internal cracks.

The crystal lattice structure of copper is face-centered cubic. This con�guration

contains 12 slip planes, which are planes at which the atoms can move most easily

along one another in the lattice. Microcracks nucleate due to slip processes and lie

predominantly along slip planes [7, p. 59]. Slip occurs when the shear stress along

a slip plane is above a critical value[49, Sec. 6.2.3]. Slip may be seen as striations

on the surface and some examples will be shown in Section 4.1.8. In the case of the

copper endcaps, the normal stress axis occurs parallel to the surface; therefore, the

maximum shear stress occurs along a plane inclined at 45 Æ to the copper surface as

shown in Figure 4.13. For polycrystalline copper, only grains that have slip planes

oriented close to this angle will show slip if the stress is large enough.

Notice in Figure 4.12 that the two large cracks begin propagating at roughly 45 Æ

to the surface within the �rst few �m into the surface. This is known as Stage I

crack propagation where cracks will propagate along the slip plane. Stage II crack
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Figure 4.12: An internal cross-section of endcap 2L1 in the region of maximum tem-

perature rise on the surface. The endcap surface is the boundary between the white

and black regions of the pictures. The crack on the top propagated 25 �m into the

surface before reaching an internal grain boundary. The crack on the bottom propa-

gated 15 �m into the surface.
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STRESSSTRESS

Figure 4.13: A schematic of the creation of intrusions and extrustions on the surface

due to fatigue slip bands. The slip bands are at an interior angle of 45 Æ due to stress

in the lateral direction.

propagation occurs when the cracks propagate perpendicular to the surface and per-

pendicular to the stress axis [7, p. 60], which is also shown to occur in Figure 4.12.

Fracture of specimens occur due to the propagation of Stage II cracks. Since the

depth of the copper endcaps is 3 mm and the longest crack shown is 25 �m, fracture

would not occur for some time but may be inevitable at this stress level.

4.1.8 Scanning Electron Microscope Inspection of Copper

Endcap Surface

Each endcap was inspected with a scanning electron microscope (SEM) using sec-

ondary scattering with a 5 kV beam. First, scans were taken along a random diame-

ter of each endcap. Cracks are only visible in the region where the maximum heating

occurred at a radius of 10:6 mm. The thickness of this region is approximately 4

to 5 mm for each endcap. No other damage is visible on the surface except at the

region where the �elds scattered from the diagnostic coupling aperture. This only

occured on endcaps 1R1 and 2R1 because they are nearest to the diagnostic coupling

aperture.

Second, scans were taken around the region of maximum heating at di�erent

magni�cations. One such region is shown on the left of Figure 4.14. Numerous cracks

are visible on the surface of endcap 1L1. The bumps that occur on the surface are due

to copper globules being sputtered onto the endcaps from the coupling aperture. For

comparison, the center of the endcap is shown on the right of Figure 4.14. No cracks

are visible in the center where the temperature rise is close to zero. A few close-ups



CHAPTER 4. RESULTS 158

Figure 4.14: Comparison snapshot of a region of maximum temperature rise on the

left and a region of zero temperature rise on the right for endcap 1L1. The length

scale is 100:7 �m.

of some of the cracks are shown in Figure 4.15. The copper globules sputtered on

the surface are most dense near the outer radius where no cracks are visible. This

suggests that the copper gobules are not responsible for the nucleation of cracks on

the surface.

As mentioned earlier, some crystal grains will show signs of slip if they have the

proper orientation. Figure 4.16 shows an example of these slip bands as striations

on the surface. Slip bands are created from stress relaxation of the surface due

to plastic deformation, which results in surface intrusions and extrusions as shown

schematically in Figure 4.13. Surface intrusions create a notch e�ect for possible

nucleation of microcracks as demonstrated on the right of Figure 4.16 [7, p. 60]. In

general, crack propagation along the surface is perpendicular to fatigue striations [22,

p. 95].

Figure 4.17 demonstrates another instance of slip bands in which the grain bound-

ary is evident where the slip bands suddenly stop. On the right of the �gure is a

close-up of some of these slip bands in which some cracks are also evident at the base

of the slip bands.
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Figure 4.15: Two close-ups of cracks appearing on the left of Figure 4.14. The legnth

scale is 10 �m.

Figure 4.16: Fatigue slip bands on a particular crystal grain in the area of maximum

temperature rise on endcap 2R1. The picture on the right is a close-up of these slip

bands in which some microcracks are evident at the base of the slip bands. The scale

is 100:7 �m on the left and 10:1 �m on the right.
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Figure 4.17: Fatigue slip bands on a particular crystal grain in the area of maximum

temperature rise on endcap 2R1. A grain boundary is evident at the left of the picture
on the left where the slip bands suddenly stop. The picture on the right is a close-up
of these slip bands in which some microcracks are evident at the base of the slip

bands. The length scale is 100:7 �m on the left and 10:1 �m on the right.

Other than slip bands, another common site for crack nucleations are grain bound-

aries [22, p. 67]. Usually cracks nucleate because grain boundaries are obstacles

against slip bands if the neighboring grain is incompatible with the slip plane. Hence,

grain boundaries can be seen at the point where slip bands suddenly stop. Figure 4.18

shows such an example. The transition between the whitening caused by slip bands

and the rest of the surface is the grain boundary. Figure 4.19 shows two close-ups of

grain-boundary cracks.

Figure 4.20 is another example of cracks along grain boundaries. In the picture on

the left, the transition between the area with whitening from the slip bands and the

area without the slip bands is clear. A close-up of of the grain-boundary crack is on the

right. Notice that the striations of the slip bands end at the crack. Grain boundaries

act as natural barriers for slip bands, because the neighboring grains usually have

incompatible orientations to allow slip bands to propagate across the boundary. The

enhanced stress from this incompatibility may lead to crack nucleation at the grain

boundary. Appendix B contains more examples of cracks along grain boundaries.
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Figure 4.18: Instance of cracks occuring along grain boundaries on endcap 1L1. The

length scale is 100:7 �m.

Figure 4.19: Two close-ups of cracks appearing in Figure 4.18. On the left, the crack

occurs between an area with slip bands and an area with no such structure. On the

right, cracks not only occur along a grain boundary near the top, but also along the

slip bands. The length scale is 10 �m.
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Figure 4.20: Grain-boundary cracks on endcap 2R1 in the area of maximum tem-

perature rise. The grain boundary is the transition where the whitening due to slip

bands stop. A close-up of one crack is on the rightwhere the grain boundary is clear.

The length scales are 100:7 �m and 10:1 �m respectively.

It is not obvious that all cracks occur along grain boundaries or as a result of

surface relaxation due to slip. Figure 4.21 shows one example in which several micro-

cracks are present in random directions. Figure 4.22 shows some close-ups of these

cracks.

Scans were completed along random diameters of each endcap at the same mag-

ni�cation. Each snapshot corresponded to an area approximately 0:9 mm by 0:9 mm.

If a snapshot showed damage in the form of fatigue slip bands or surface roughening,

then an arbitrary value 1.2 was assigned. If that area contained at least one crack,

then a value of 1 was assigned. If the area showed no signs of damage, then a value

of 0 was assigned. Figure 4.23 shows the results of these scans.

In general, the scans indicate that surface roughening from fatigue is a precursor

for crack nucleation, because most of the regions containing cracks are within the

regions of surface roughness. Also, the bands generally surround the expected area

of maximum temperature rise at the radius of 10:6 mm. The widths of these regions

are listed in Table 4.4. The variation in the widths of damage reported in Table 4.4

among each endcap is due to the location of the scanned diameter with respect to the
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Figure 4.21: Cracks occuring in area of maximum temperature rise on endcap 1L1.

No obvious signs of slip bands or grain boundaries are evident. The length scale is

100:7 �m.

Figure 4.22: Close-ups of two cracks from Figure 4.21. The scale is 10:1 �m.
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Figure 4.23: Random scans along diameters of each endcap. The solid line corre-

sponds to regions of surface roughening and the dotted line is for regions that contain

cracks on the surface.

Region 1L1 1R1 2L1 2R1

(mm) (mm) (mm) (mm)

Roughness 6.4 4.5 3.8 3.2 3.9 4.6 3.2 2.6

Cracks 5.1 3.8 0.7 5.8 2.6 3.2 0 1.9

Table 4.4: Widths of regions of surface roughening and cracks for each endcap from

�rst high-power test.
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Endcap Average Radius (mm) Standard Deviation (mm)

1L1 10.4 1.3

1R1 11.3 0.9

2L1 10.5 1.4

2R1 11.1 1.1

Table 4.5: Average radius and standard deviation of the distribution of crack positions

shown in Figure 4.24 for each endcap.

azimuth of the high-power coupling aperture. The widths are generally larger when

the scanned diameter is closer to the aperture. This feature is largely explained by

the higher temperature rise in this area which is discussed later.

Endcap 1R1 contains an example in which cracks are visible outside regions of

surface roughening. This is a scan along one random diameter and is not indicative

of a general pattern. It is possible that signs of surface roughening or slip bands were

not obvious in this region due to the clutter from the sputtered copper globules on

the surface. The random scans taken along the other endcaps do indicate a general

pattern that cracks occur within the region of surface roughening.

Figure 4.24 shows the positions at which higher magni�cation scans were taken of

cracks on the endcaps. Zero degrees is the approximate azimuth of the plane of the

high-power coupling aperture. These scans were taken of some of the cracks present.

They do not represent every crack that occurs on the surface of the endcaps. In fact,

these scans are in areas where the crack density seemed largest when compared to

other regions along the radius. This was determined simply by looking at the number

of cracks present in di�erent regions at the same magni�cation. The distribution

shown for endcap 2L1 is limited because it is the �rst endcap that was investigated

with an SEM. By the time techniques were improved in scanning the other endcaps,

2L1 was already cut to look at its cross-section. Table 4.5 shows the average radius

and standard deviation of the distribution of cracks shown in Figure 4.24 for each

endcap.

Notice that the distribution of cracks shown in these plots are more dense near

zero degrees. From a Gd�dL simulation in the time-domain, the magnetic �eld on
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Figure 4.24: Positions of cracks in the densest areas on the copper endcaps. The

radius is in mm. The azimuth of the high-power couping aperture occurs at 0 Æ.
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the endcap at 180 Æ is approximately 5% lower than the �eld at 0 Æ. The �eld at 0 Æ

is equal to the estimation given by equation (A.115). Hence the temperature rise is

approximately 10% lower at 180 Æ than expected. A di�erence in temperature of 10 K

to 15 K can make a large di�erence in the number of cracks that are visible.

For documentation purposes, additional pictures of damage to the endcap surfaces

are presented in Appendix B.

4.2 Second Test

Only one cavity is used in this test setup for the second experimental run. The

diagnostic mode was used in this run to measure pulsed temperature rise and changes

in cavity Q. We used the same XL-3 50 MW klystron from the previous run for the

high-power RF source. However, a di�erent test area was used in this experiment due

to space availability. The main di�erence of this test area, which will be shown in the

next sections, was the proximity of the modulator to the test setup. The modulator

caused electrical noise on the waveforms of the measured forward and re
ected high

power to the cavity.

The cavity chosen for this experimental run is cavity 1 from the previous run.

Since the high-power coupling aperture has already been processed with high power,

it was conjectured that the run-up time for RF processing would be shorter and

the sputtering of copper onto the endcaps would be less. The vacuum in the cavity

throughout the run is 10�9 Torr.

4.2.1 Run-Up Procedure

The run-up procedure used in this experimental run is similar to the one described in

Section 4.1.1. In this situation, only one week was needed to reach full power. Due

to an error in the calibration of the cross-guide couplers used in the measurement

of forward power, the input power to the cavity is 7:3 MW instead of the desired

8:5 MW. At this power level, not much RF breakdown occurred within the cavity as

compared to the previous run.
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Figure 4.25: Forward power waveform for TE011 mode measured with a crystal de-

tector. The waveform on the right has been low-pass �ltered with an FFT using a

cut-o� frequency of 3 MHz.

4.2.2 Measurement of RF Power

The technique of measuring the forward and re
ected high power to and from the

cavity is described in Section 4.1.2. As noted previously, the additional noise on

the waveforms due to the proximity of the modulator to the test setup has made

the measurements more diÆcult using crystal detectors. Typical examples of these

waveforms are shown in Figures 4.25{4.26.

The forward and re
ected power to the cavity were measured with cross-guide

couplers attached to a 55-dB directional coupler. The systematic error described in

Section 4.1.2 was reduced to � 0.2 dBm due to improved measurement techniques

with the network analyzer. The forward arm had two cross-guide couplers attached so

that forward power could be measured with both a crystal detector and a peak-power

analyzer. The noise from the modulator did not a�ect the peak-power analyzer. The

re
ected power was measured with a cross-guide coupler and a crystal detector.

The noise from the modulator shows a predictable pattern on the waveforms as

shown on the left of Figures 4.25{4.26. It has two e�ects on the results. The �rst

e�ect is the obvious ripple that occurs along the steady-state value of power. The

second e�ect is the change in the amplitude of the zero baseline. It does not occur at

zero volts on the oscilloscope. To determine the actual power, the ripple must either

be removed by using the mean value of the ripple or by using a low-pass �lter on a
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Figure 4.26: Re
ected power waveform for TE011 mode measured with a crystal

detector. The waveform on the right has been low-pass �ltered with an FFT using a

cut-o� frequency of 5 MHz.

Initial Q0 Final Q0 Initial Qext Final Qext Initial QL Final QL

17750� 360 16870� 310 6850� 220 6200� 180 4940� 40 4530� 40

Initial � Final �

2:59� :07 2:72� :06

Table 4.6: Cavity Q measurements of TE011 mode of cavity 1 using a HP8510C

network analyzer before and after the second high-power test. The resonant frequency

is 11:425 GHz. The errors are due to errors from �ts to the data.

Fourier transform of the waveform to reduce the e�ects of the ripple. The right side

of Figures 4.25{4.26 shows an example in which the ripples are removed with Fourier

transforms. Although a peak power analyzer was used to independently determine

the forward power, the waveforms measured with the crystal detectors are important

for determining the coupling coeÆcient and Q of the TE011 mode of the cavity.

4.2.3 High-Power Results

Table 4.6 shows the values of the cavity Q for the TE011 mode before the start of the

high-power test. Table 4.7 shows the values of the cavity Q for the TE012 mode before

the start of the high-power test. The results from using both methods described in

Sections A.4.3{A.4.4 are shown in the table for consistency. In the \Loss Subtract"
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Method Initial Q0 Final Q0 Initial QL Final QL
Loss Subtract 20760� 240 19200� 230 10940� 100 10260� 100

Loss Fit 20380� 360 18570� 320 10940� 140 10140� 120

Method Initial Q1;ext Final Q1;ext Initial Q2;ext Final Q2;ext

Loss Subtract 27140� 470 25880� 470 157000� 6300 147500� 5900

Loss Fit 28180� 850 26920� 910 144500� 5400 130800� 5100

Method Initial �1 Final �1 Initial �2 Final �2
Loss Subtract 0:77� :01 0:74� :01 0:13� :005 0:13� :005

Loss Fit 0:72� :02 0:69� :02 0:14� :005 0:14� :005

Table 4.7: Cavity Q measurements of TE012 mode of cavity 1 using a HP8510C

network analyzer before and after the second high-power test. \Loss Subtract" is

based from the method described in Section A.4.3 and \Loss Fit" is the method

described in Section A.4.4. The resonant frequency is 17:85 GHz.

method listed in Table 4.7, the loss in the coupling in each port is determined by

measuring the value of the re
ection far from resonance. In the case of lossless

coupling, the re
ection should be close to 1. For lossy coupling, the re
ection will

reach steady-state at a value less than 1 due to the loss of power from the coupling

mechanism. This value can be subtracted from the measurement to determine the

actual coupling to the cavity.

In the course of the experiment, we discovered that the RF properties for the TE012

were sensitive to small changes in the resonant frequency. During the experiment,

the cavity is tuned such that under high power the resonant frequency is approxi-

mately 17:85 GHz. Since measurements were also obtained in the time-domain under

low power in which the resonant frequency of the TE012 increased to approximately

17:856 GHz, the properties of this mode were also characterized at this frequency after

the completion of the high-power test. These measurements are given in Table 4.8.

Both methods for determining Q are within 5% of each other; therefore, both

methods are consistent. We will use the results from the \Loss Fit" method, since they

involve �tting data with the real and imaginary parts of the measured S-parameters.

The \Loss Subtract" method only considers the magnitude of the S-parameters and

is not �t to the data.
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Method Q0 QL Q1;ext Q2;ext

Loss Fit 17860� 320 10140� 130 26820� 940 186000� 10000

Method �1 �2
Loss Fit 0:67� :02 0:10� :005

Table 4.8: Cavity Q measurements of TE012 mode of cavity 1 using a HP8510C

network analyzer after the second high-power test. The resonant frequency is

17:856 GHz.

The di�erences in the properties of the TE012 mode due to small changes in fre-

quency are likely due to the proximity of the diagnostic coupling aperture to one of

the endcaps. Since this mode is driven asymmetrically, small changes to the cavity

length can cause a large shift in the mode's RF properties because it changes the

symmetry of the �elds. A similar e�ect is noticed with a small change in the length

of the endcap grooves to remove mode degeneracies as reported in Section 2.1.7.

Using the values given in Tables 4.6{4.7 with an 7:3 MW, 1:5 �s pulse in the

equations presented in Section 3.3.2 gives a temperature rise of 82 K �3 K. The

error in the calculated temperature rise comes from the range of input power due

to systematic error, 7:3 MW �0:3 MW. At this power level, the error is dominated

by systematics. Consequently, the temperature rise on the cylindrical sidewall is

calculated to be 73 K �3 K. The temperature rise along the sidewall is no longer 1/2

that of the endcaps due to the di�erences in the resistivities described below.

The experiment was run at the temperature rise of 82 K for 8:6 � 107 pulses.

Afterwards, the cavity was removed from the test setup and its Q was measured with

a network analyzer. The results are given in Tables 4.6{4.7. Just as with the �rst

high-power test, both the unloaded and the external Q's are lower than their initial

values. These changes are explained in Section 4.2.4.

Since the surfaces of the endcaps are cut to a mirror-�nish and the cavity sidewall

has had damage from a previous high-power test, we expect the resistivities to be

di�erent on these surfaces. By separating the resistivities on the endcaps and the

sidewall and using equation (A.73) for the Q's of the TE011 and TE012 modes, the
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Test �end �wall

(�10�8 
 �m) (�10�8 
 �m)
Initial 1:73� :11 5:1� :7
Final 2:20� :13 4:7� :7

Table 4.9: Electrical resistivities of the endcaps and cavity sidewall before and after
the second high-power test. This assumes the resistivities are constant across the
surface. The reported errors are due to errors in the determination of Q for each
mode.

di�erent resistivities of the endcaps, �end, and the sidewall, �wall, are given by

�end = A
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where R is the radius of the cavity and d is its length. Using the �tted Q's given

in Tables 4.6{4.7 the electrical resistivities of the endcaps and the sidewall are given

in Table 4.9. The theoretical resistivity at room temperature for pure copper is

1:717 � 10�8 
 �m, which is close to the initial value measured for the endcaps. If

the resistivity is constant along the endcap surface after the high-power test, then the

resistivity increased by 27%. This is a lower bound on the resistivity change.

The values given in Table 4.9 so far assume that the resistivity is constant along

each of the surfaces. This is a good approximation before the high-power test; how-

ever, after the test the damage to the endcaps shown in Sections 4.2.4{4.2.5 indicate

that the resistivity will be di�erent within a band around the area of maximum tem-

perature rise. The maximum temperature rise occurs at a radius r = :4805R. Letting

�end;1 be the resistivity inside the band of damage, r = :4805R � rb, and �end;2 the
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rb �end;1 � change
(mm) (�10�8 
 �m) %
1.0 5:0� 1:0 186
1.5 3:8� 0:6 117
2.0 3:2� 0:5 87
2.5 3:0� 0:4 72
3.0 2:8� 0:3 62
3.5 2:7� 0:3 57
4.0 2:7� 0:3 55

Table 4.10: Electrical resisitivities of the endcaps in the band of damage after the
second test. �end;2 = 1:73� 10�8 
 �m. �wall = 4:7� 10�8 
 �m.

resistivity along the rest of the endcap we have
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ylo =
x0
01
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R
; yhi =

x0
01
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R
; (4.11f)

rlo = :4805R� rb; rhi = :4805 + rb; (4.11g)

where we approximate �end;2 as the initial value before the high-power test. Table 4.10

lists the resistivities after the high-power tests assuming di�erent sizes of the band

of damage around the area of maximum temperature rise. The band of damage

discussed in Section 4.2.4 has an approximate width between 7 to 8 mm. Thus,
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�nom 2:16� :04

�low 2:08� :04

�high 2:25� :04

�freq 2:72� :06

Table 4.11: Measurement of � at the end of the second high-power test in the time and

frequency domains. The range of values in the time-domain are due to the systematic

errors in the measurement of power.

Table 4.10 indicates that the resistivity in the area of maximum damage along the

endcap increased between 25% and 60%. The resistivity of the sidewall changed less

than 8%. The width of damage on the endcaps corresponds to a range of temperature

rise from 65 K to 82 K.

Since the temperature rise is proportional to the square-root of electrical resistiv-

ity, the temperature is expected to increase over time as the copper surface becomes

degraded from fatigue damage. With these resistivity increases, the maximum tem-

perature rise on the endcaps increased between 10% to 25% to between 90 K and

105 K. Over time, the resistivity is expected to increase due to further damage from

an increased temperature rise, which leads to thermal runaway.

Measurement of Coupling CoeÆcient and Cavity Q of TE011 Mode

The same procedure described in Section 4.1.3 is used to measure and calculate the

coupling coeÆcient and cavity Q's for the TE011 mode of the cavity. The only dif-

ference occurs with the determination of the coupling coeÆcient from noisy data.

The noise on the waveforms is reduced by low-pass �ltering the waveform's Fourier

transforms as shown in Figures 4.25{4.26.

As described previously, the coupling coeÆcient is determined by using equa-

tion (4.2). The re
ected power is measured at its steady-state value just before the

input RF pulse turns o�. Table 4.11 compares the measurement of the coupling

coeÆcient made in the time-domain at the end of the high-power test with the mea-

surement made in the frequency-domain after the high-power test. The range of

values of the measurement in the time-domain is due to the systematic error in the
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Figure 4.27: Re
ected waveform from TE011 mode at the end of the second high-power
test. The �t of the waveform using linear least-squares is on the right.

measurement of power of �0:2 dB. The random error is due to the residual noise left

on the waveforms after the use of Fourier transforms to �lter the noise. Although the

random error in the measurement of power depends on the amplitude of the voltage

measured on the oscilloscope with crystal detectors, the amplitude is measured at a

consistent value throughout the experiment. Hence, the average random error of the

measurement of forward and re
ected power for the determination of � is 0.1 dB.

As shown in Table 4.11, systematic error dominates the measurement of �. The

discrepancy between the nominal values of � in the time and frequency domains is

20%.

The measurement of loaded Q involves the same procedure as with the �rst high-

power test. No Fourier transforms are necessary to reduce the noise since the signal-

to-noise ratio is large for this measurement. Equation (4.6) is used to �t to the decay

of the power out of the cavity when the RF input pulse turns o�. The waveform of

the last data set is shown on the left of Figure 4.27 along with its �t using linear

least-squares on the right (see equation (4.6)). A comparison of the measurements of

the loaded Q in the time and frequency domains at the end of the high-power test is

given in Table 4.12. The discrepancy between the measured values is 3%.

Figure 4.28 shows the results of the measurements of � and loaded Q for the

TE011 mode of the cavity over the course of the high-power test. The pulse count

was measured with an event counter as described in Section 2.3.2. After 15 million
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QL;time 4680� 40

QL;freq 4530� 40

Table 4.12: Measurement of QL in the time and frequency domains at the end of the

second high-power test. The errors are due to errors from the �t to the data.
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Figure 4.28: Measurement of � and loaded Q of the TE011 mode during the second

high-power test.

pulses, the random error was reduced by decreasing the attenuation of re
ected power

measured by the crystal detector at the risk of destroying the detector over time. The

increased amplitude output by the detector increased the signal-to-noise ratio, thus

the error in the determinatin of � decreased from �0:2 to �0:04.

The measurement of � over time indicates that the coupling to the TE011 mode re-

mained mostly constant. The frequency-domain measurements listed in Table 4.6 are

in agreement with this conclusion. However, the discrepancy between these two mea-

surements is 20% and are not consistent with each other when including systematic

and random errors.

Table 4.6 indicates the loaded Q for the TE011 mode decreased by 8%. Although

the measurement of QL over time is in rough agreement with this small change, it is

diÆcult to discern any pattern due to the scatter of the data.

At 40 and 78 million pulses, there is a sharp change in the measured values of

QL. This occurred at the time the cross-guide couplers from the branch of the 55-

dB directional coupler used to measure forward power were removed to re-calibrate
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Figure 4.29: Measurement of Q0 during the second high-power test.

the attenuation factor. They were placed back in their original position afterwards.

Interestingly, QL is determined only from the measurement of re
ected power. This

suggests the existence of a standing-wave in the coupling arm of the directional cou-

pler, which is depicted as branches 3 and 4 in Figure 4.2. Each time the forward

cross-guide couplers are replaced, the match looking into the couplers change. This

will change the strength of the standing-wave and a�ect the measurement of forward

and re
ected power.

Figure 4.29 shows the measurement of unloaded Q of the TE011 mode determined

by Q0 = QL(1+�). Due to the scatter of data from the measurement of QL, it is also

diÆcult to discern a general pattern in the value of Q0 over time. Table 4.6 indicates

that Q0 decreased by 5% which is in rough agreement with the data scatter shown in

Figure 4.29. However, there is a discrepancy in the measured values of Q0 due to the

discrepancy in the measured values of �.

Table 4.6 also indicates that Q0 and Qext decreased by roughly the same percent-

age. This explains the somewhat constant value measured for �. Therefore, Q0 and

Qext degraded at roughly the same rate.

The drop in Qext is due to damage to the high-power coupling aperture, which
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Figure 4.30: Forward and re
ected waveforms from TE012 mode using crystal detec-

tors.

e�ectively increased the diameter of the coupling hole. However, the damage is not as

extensive as with the �rst high-power test because of the lower power and decreased

�eld enhancement. The drop in Q0 is due to the increase in electrical resistivity of

the surface of the endcaps discussed earlier.

Measurement of Coupling CoeÆcients and Cavity Q of TE012 Mode

The coupling coeÆcients and cavity Q of the TE012 mode were measured with the

setup shown in Figure 2.42. The details of this setup is described in Section 2.3.1.

The forward and re
ected waveforms measured with the crystal detectors and

quadrature mixer do not su�er from modulator noise since they are measured be-

tween klystron pulses. Typical waveforms from the crystal detectors are shown in

Figure 4.30. The acquisition of these waveforms were triggered near the low-power

RF pulse turn-o� such that � and QL may be determined from the same trace.

Referring to Section A.4.3, we may use equation (A.154) to �nd the coupling

coeÆcient to the diagnostic port of the TE012 mode in the time-domain. Assuming

the cavity is �lled by the end of the pulse (t!1), the re
ected power is simply

Pr = (
 � 1)2Pf ; 
 =
2�1

1 + �1 + �2
: (4.12)
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�1;time �1;freq
Hot 0:65� :005 0:69� :02
Cold 0:61� :005 0:67� :02

Table 4.13: Measurement of �1 of TE012 mode assuming �2 = :14 for the \Hot" case
and �2 = 0:10 for the \Cold" case. \Hot" corresponds to fres = 17:850 GHz and
\Cold" corresponds to fres = 17:856 GHz.

Hence the coupling coeÆcient for the diagnostic port is

�1 =



2� 

(1 + �2): (4.13)

The value of �1 depends on the value of �2. Since �2 cannot be measured directly

in the time-domain while the cavity is undergoing a high-power test, its value must

be assumed from an initial measurement conducted in the frequency-domain. Fortu-

nately the value of �2 changes only slightly during the experiment because this port

is weakly-coupled.

Table 4.13 shows a comparison of the measurements of �1 in the time and frequency

domains at the end of the high-power test. The random errors in the time-domain are

due to � 0:2 mV 
uctuations which correspond to an approximate error of � 0.05 dB

at the steady-state value of power. �1 was measured at two di�erent high-power levels,

because it was noticed that the RF properties of the TE012 mode were sensitive to

small changes in resonant frequency. The \Hot" case shown in Table 4.13 occurs

while the TE011 mode is excited at full power corresponding to a resonant frequency

of 17:850 GHz for the TE012 mode. When the RF power was reduced to perform

measurements of the properties of the TE011 mode, another set of measurements

were taken for the TE012 mode while at a resonant frequency of 17:856 GHz. This

corresponds to the \Cold" case shown in the table. The discrepancies for either case

between the time and frequency domains is less than 10%.

Figure 4.31 shows the measurement of �1 for both \Hot" and \Cold" cases over

the course of the high-power test. Since the values of �2 are approximately constant

throughout the experiment, we assume their �nal values given in Tables 4.7{4.8.
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Figure 4.31: Measurement of �1 during the high-power test for both \Hot" (left) and
\Cold" (right) cases.

The scatter in the data is partly due to vibrations of the endcaps from the 
ow

of cooling water, because the endcaps were mounted on bellows that act like springs.

The vibrations are seen as 
uctuations in the steady-state value of re
ected power

from the TE012 mode and only occur when water 
ows through the cooling channels

on the back of the endcaps. The resonant frequency 
uctuates on the order of 50 kHz,

corresponding to length changes of less than 0:1 �m.

Although there is a large scatter in the data, there is a general pattern of decreasing

�1 over time. This in agreement with the measurements in the frequency domain.

This is also expected from Q0 degradation due to fatigue damage on the surface of the

endcaps, which will be shown in Section 4.2.5. Although there is some degradation in

Qext;1 due to damage to the diagnostic coupling aperture, there is more degradation

of Q0 resulting in an overall decrease in �1. Since the TE012 mode is weakly-coupled

to the high-power coupler, a small change in Qext;2 has little e�ect on �2.

Table 4.14 shows a comparison between the measurements of QL in the time and

frequency domains for both \Hot" and \Cold" cases. The discrepancy for either case

is less than 17%. The results, however, are inconsistent with each other. Figure 4.32

shows the measurement of QL for both \Hot" and \Cold" cases over the course of

the high-power test. Although there is a large scatter in the data, the average of the

data points suggests a discrepancy of approximately 20% in the measurements of QL

in the time and frequency domains. However, there is general decreasing trend in the
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QL;time QL;freq

Hot 8450� 60 10140� 120

Cold 9000� 80 10140� 130

Table 4.14: Measurement of QL of TE012 mode. \Hot" corresponds to fres =

17:850 GHz and \Cold" corresponds to fres = 17:856 GHz.
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Figure 4.32: Measurement of QL during the high-power test for both \Hot" (left) and

\Cold" (right) cases.
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Figure 4.33: Measurement of Q0 during the high-power test for both \Hot" (left) and
\Cold" (right) cases.

value of QL that is in agreement with Table 4.7.

The inconsistency of these results could be due to two factors. The �rst is the

vibration of the endcaps due to water cooling discussed earlier. The second may be

due to the leakage of power out the high-power coupler. Although this is nominally

accounted for in �2, this assumes a matched load. There may be re
ections from the

magic-tees and the klystron output cavity that could in
uence this measurement.

Figure 4.33 shows the measurement of Q0 for both \Hot" and \Cold" cases over

the course of the high-power test determined by Q0 = QL(1+�1+�2). The �nal values

given in Tables 4.7{4.8 were used for �2. Due to the discrepancies and data scatter

from the measurement of �1 and QL, the determination of Q0 su�ers from the same

problems. However, a general decreasing trend in the value of Q0 exists in agreement

with Table 4.7. This is also in agreement with the expectation of a degrading Q0 due

to fatigue damage on the surface of the endcaps which will be shown in Section 4.2.5.

Measurement of Pulsed Temperature Rise

Using the experimental setup described in Section 2.3, the maximum pulsed tempera-

ture rise on the surface of the copper endcaps may be inferred from the measurement

of the change in Q012 due to the heating from a high-power RF pulse. By measur-

ing the magnitude and phase of the re
ected power from the TE012 mode using the
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Figure 4.34: Quadrature outputs from quadrature mixer during a typical measure-

ment of re
ected power from TE012 mode.

quadrature mixer, the change in Q012 can be determined from equations (3.97).

The quadrature outputs labeled I and Q from the mixer for a typical measurement

are shown in Figure 4.34. A constant DC-o�set occurs in each output channel due to

leakage of power from the LO channel in the mixer. This o�set must be subtracted

from the outputs �rst.

The mixer was calibrated inline by replacing the cavity with a signal generator

phase-locked to the generator that provides the LO power to the mixer. By measuring

the output amplitude of the mixer at known power levels into the intervening cables

and other components, the mixer output is easily correlated to the output power from

the cavity. By o�setting the frequency of the test generator from the LO generator, the

amplitude of the sine wave that occurs at the di�erence in frequency can be measured.

This procedure removes any ambiguities due to phase in the calibration setup. By

measuring the forward power to the cavity with a calibrated crystal detector, the

re
ection coeÆcient is known. The phase is determined by taking the inverse tangent

of the ratio of the I and Q outputs. As long as the input RF power to the mixer is

below a certain level, the phase imbalance between the two outputs is less than 2 Æ.

Using the described calibration procedure, the magnitude of the re
ection coeÆ-

cient is shown in Figure 4.35 along with the theoretical prediction based on a calcu-

lated 82 K maximum temperature rise on the endcap. The measured and theoretical

prediction for the phase shift assuming no change in !012 due to thermal expansion is
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Figure 4.35: Measured and theoretical re
ection coeÆcients from TE012 mode. The-
oretical prediction is based on an 82 K calculated maximum temperature rise on the

endcap.

shown in Figure 4.36. Notice that the measured re
ected power has an initial large

jump in the signal at the beginning of the RF pulse. Also, the re
ected power 
attens

out instead of decaying back to its initial value. This is due to a long-time e�ect on

the heating of the endcap that will be discussed later. This same e�ect applies to the

measured phase as well.

Since equations (3.97) require the derivatives of the real and imaginary parts of

the re
ected power, the data must be smoothed because of the modulator noise. The

signals are Fourier transformed and a low-pass �lter is applied. The derivatives are

obtained by multiplying the Fourier transforms by the frequency and inverting the

convolutions back to the time domain.

Using the above procedure, the change in the unloaded cavity Q for the TE012

mode is determined using equations (3.97). It is also found from these equations

that no measureable change occurs in !012 due to thermal expansion. The change

in resonant frequency is only due to the change in Q. The measured change in Q012

using the waveforms depicted earlier is shown in Figure 4.37 along with the theoretical

prediction using an 82 K calculated maximum temperature rise on the endcaps.

The initial measured value of Q012 is not equal to the value given in Table 4.7.

This value depends on the initial steady-state response of the cavity. From the mea-

surements of � described in an earlier section, it is known there is variation of the
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Figure 4.36: Measured and theoretical prediction in the change of phase of re
ected

power from TE012 mode. Theoretical prediction is based on 82 K calculated maximum

temperature rise on the endcap.
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power pulse. Theoretical prediction is based on a 82 K maximum temperature rise

on the endcap.
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Figure 4.38: Measured and theoretical prediction of maximum temperature rise on
the endcaps during a high-power pulse. Theoretical prediction is based on a 7:3 MW
power input into the TE011 mode.

steady-state re
ected power due to vibrations of the endcaps from the 
ow of cooling

water. These same vibrations cause the DC levels of the mixer ouput to 
uctuate.

A correct estimate of the temperature rise on the endcap requires the initial value of

Q012 to be accurate. Therefore, each measurement of the change in Q012 is corrected

by subtracing the DC o�sets. This is easily accomplished by making the initial value

of Q012 equal to the value given in Table 4.7.

Using the measured value of Q012 in equation (3.101), the maximum temperature

rise on the endcaps over time is inferred. Using the waveforms depicted earlier,

Figure 4.38 shows the measured maximum temperature rise on the endcap along

with the theoretical prediction based on an input power of 7:3 MW into the TE011

mode. Due to residual noise left on the waveforms, the random error associated with

the measurement of temperature rise amounts to approximately 3%. In this case, the

temperature rise is 72� 3 K. The error in the resistivity of the endcaps reported in

Table 4.9 corresponds to a systematic error of 3% in the determination of maximum

temperature rise. Therefore the full range for the measured temperature rise is 66 K

to 78 K. This is consistent with the calculated temperature rise of 82 K.

The measurement of maximum temperature rise on the endcaps for the �rst 20

million pulses of the high-power test is shown in Figure 4.39. The data is shown only

for the �rst 20 million pulses since the response of the quadrature mixer degraded
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Figure 4.39: Measurement of maximum pulsed temperature rise on the endcaps for

the �rst 20 million pulses of the second high-power test.

over time due to high input power levels during the measurement of � and QL for the

TE012 mode. The diodes in the mixer output were damaged and their sensitivities

were signi�cantly diminished. This was not noticed initially since the raw outputs

of the mixer are o�set in phase. The result is a drop in signal amplitude from the

same input power. If unchecked, the overall e�ect is a measured decline in pulsed

temperature rise over time. The data show that the average temperature rise changed

slowly from between 60 to 70 K to approximately 40 K at the end of the data taking

run. Therfore, the calibration for the device was invalidated for the last 60 million

pulses.

Although there is data scatter in the measurement of temperature rise, an eyeball

average shows the temperature rise is between 60 K to 70 K with a general increase

over time. However, the same initial Q012 given in Table 4.7 was always used. Ideally,

the initial Q used should be the one measured over time as discussed previously. The

data scatter in that measurement prevented any accurate assessment of the pulsed

temperature rise.

Another possible error in the measurement of pulsed temperature rise is from

long-term e�ects of pulsed heating. Figure 4.40 shows the evolution of this e�ect over
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Figure 4.40: Evolution of long-time e�ect on measurement of pulsed temperature rise

on wider time scales on one of the outputs of the quadrature mixer.

larger time scales on one of the outputs from the quadrature mixer. This e�ect occurs

on both outputs of the quadrature mixer. A large ramp in the signal occurs after the

RF pulse turns o� at 1:5 �s. A sinusoidal response occurs in the signal with a period

of approximately 250 �s corresponding to a frequency of 4 kHz. This reponse decays

in time until another RF pulse occurs 16:6 ms later, which is the repetition rate of

the klystron.

This signal response is likely due to stress waves that are launched at the surface

of the endcap due to shock from pulsed heating of the surface. Since the endcaps

are mounted on bellows, these stress waves cause the endcap positions in the cavity

to vibrate. This is a likely conclusion because the signal disappears when the high-

power RF is switched o�. Also, this signal depends on the mode response of the

cavity. Figure 4.41 shows the disappearance of the signal when TE012 mode is driven
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Figure 4.41: The response of the TE012 to stress waves disappears when cavity is

driven more than 2 Q-bandwidths from its resonant frequency.

more than approximately 2 Q-bandwidths away from the mode's resonant frequency.

The two spikes that occur in the plots are due to the RF switch that triggers between

klystron pulses for the measurement of �1 and QL.

This signal response is the reason why the change in the re
ected power to the

TE012 mode does not return to zero after the klystron RF pulse switches o�. A large

signal spike occurs at this time. Also, at the beginning of the RF pulse, the signal is

decaying from the previous klystron pulse. The signal from the heating of the surface

of the endcap is convoluted with the response of the cavity mode to shock waves.

This may explain why the initial cavity Q must be corrected. Also, the measurement

of the overall Q change may also be in
uenced by this response which will cause an

error in the determinaion of pulsed temperature rise.

4.2.4 Visual Inspection of Copper Endcap Surface

As with the �rst high-power test, a visual change in the grains of both endcaps is

obvious with the naked eye. Figure 4.42 shows the surface of each endcap after the

high-power test. The band of damage occurs in the area of maximum temperature rise

with a width between 6 and 8 mm. The width of the damage is wider near the azimuth
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Figure 4.42: Surfaces of endcap 1L2 (left) and 1R2 (right) after high-power test. The
position of the high-power coupling aperture relative to the pictures is the top of
endcap 1L2 and top-left of endcap 1R2.

of the high-power coupling aperture. The surface magnetic �eld is approximately 5%

higher there than at the point diametrically opposite of it. This corresponds to a

higher temperature rise of approximately 10%. Notice at the far point that the band

of damage is not visible.

The visual change across the surface is microscopically due to a change in the

height of the grains. Grain growth occurs due to plastic deformation. The grains

cannot expand laterally due to the constraint of the material, but they are allowed

to expand from the free surface into vacuum.

There is some tarnish on the surface near the azimuth of the high-power coupling

aperture. It will be shown in the next section that this tarnish is due to copper

globules sputtered onto the surface from fatigue damage and RF breakdown at the

high-power coupling aperture. However, the amount of copper sputtered is much less

than the �rst high-power test due to a lower input power. Hence, it is reasonable to

conclude that most of the resistivity change reported in Section 4.2.2 is due to fatigue

damage. The fatigue damage will be more closely examined in the next section.

Another noticeable di�erence from the �rst high-power test is the absense of mul-

tipacting on the endcap surfaces. The surface magnetic �eld is approximately 15%
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less than the �rst high-power test and is not suÆcient to cause multipacting on the

surface. Multipacting occurs over a small range of electron energies. In the �rst

high-power test as reported in Section 4.1.5, multipacting only occured over half of

the surface due to variation of the magnetic �eld. The variation in that case is only

5% and is already suÆcient to cease multipacting on the other half of the endcap.

This is consistent with absence of multipacting in the second high-power test.

4.2.5 Scanning Electron Microscope Inspection of Copper

Endcap Surface

Just as described in Section 4.1.8, the two copper endcaps from the high-power test

were examined with a scanning electron microscope (SEM) using secondary-scattering

with a 5 kV electron beam. A scan along a diameter of each endcap was completed,

and damage in the form of fatigue slip bands and cracks only occured in the region

of maximum temperature rise. The amount of cracking occurring on the endcaps is

much less prevalent than with the endcaps from the �rst high-power test. This result

is attributed to the lower pulsed temperature rise in this experimental run.

The results from this experimental run indicate that cracks only occur along grain

boundaries. Grain boundaries are clearly seen between areas that contain fatigue slip

bands and areas that do not have them. Figure 4.43 shows such a case in which a

crack clearly occurs along a grain boundary in the area of maximum temperature rise

of endcap 1R2. Cracks tend to nucleate at grain boundaries due to incompatibility

of slip from one grain to the next. Incompatible slip will increase the local stress at

a grain boundary.

Another example of this is given in Figure 4.44 where a crack develops along a

grain boundary due to fatigue slip bands along one side. Also, multiple slip bands

are seen to occur at di�erent angles. This is due to multiple slip in which the applied

shear stress will act along multiple slip planes [18, p. 29]. This can occur when the

crystal axes of the grain are such that the applied sheer stress is greater than a critical

value on more than one slip system.

As a point of comparison, the picture on the left of Figure 4.45 shows a region
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Figure 4.43: Grain-boundary cracks on endcap 1R2 in the area of maximum tem-

perature rise. The grain boundary is the transition where the whitening due to slip

bands stop. A close-up of one crack is on the right where the grain boundary is clear.

The length scales are 100:7 �m and 25:0 �m respectively.

Figure 4.44: Grain-boundary crack on endcap 1R2 in the area of maximum temper-

ature rise. A close-up of one crack is on the right where the grain boundary is clear.

Multiple fatigue slip bands are also visible at di�erent angles with one set more dense

than the other. The length scales are 100:7 �m and 25:0 �m respectively.
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Figure 4.45: A comparison between a region in the area of maximum temperature

rise on endcap 1R2 (left) and the center of the endcap in which the temperature rise

is close to zero (right). The length scale is 100:7 �m.

in the area of maximum temperature rise of endcap 1R2 that shows a multitude of

fatigue slip bands including grains with multiple slip. On the right is a region near

the center of the endcap in which the pulsed temperature rise is close to zero. A grain

boundary is evident from the change in contrast in the picture; however, no fatigue

slip bands or cracks occur in this area. Also notice that by comparing these pictures

to Figure 4.14 the amount of copper globules on the surface is much less than with

the �rst high-power test. This supports the conclusion that the resistivity change is

due to surface roughening and cracks on the surface of the endcaps.

Similar results are found on the surface of endcap 1L2. Figure 4.46 shows one

such example where a crack occurs along a grain boundary.

In this experimental run, more fatigue bands and less cracks have occurred on the

surface as compared to the �rst high-power test. This is expected to occur for small

plastic strain. For higher amounts of plastic strain, the number of stress cycles spent

causing fatigue slip bands decreases. More cycles are spent in crack nucleation and

propagation.

For documentation purposes, additional pictures of the damage on endcaps 1L2

and 1R2 are shown in Appendix B.
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Figure 4.46: Grain-boundary crack for endcap 1L2 in the area of maximum temper-

ature rise. A close-up of one crack is on the right where the grain boundary is clear.

The scales are 100:7 �m and 25:0 �m respectively.

As with the �rst high-power test, a scan along a random diameter of each endcap at

constant magni�cation was completed. Each snapshot covered an area approximately

0:9 mm by 0:9 mm in size. If a snapshot showed damage in the form of fatigue slip

bands or surface roughening, a value of 1.2 was assigned. If a crack occurred in the

area, a value of 1 was assigned. If no damage existed, a value of 0 was assigned.

Figure 4.47 shows the results of these scans.

The plots show that surface roughening and slip bands occur around the area of

maximum temperature rise at the radius 10:6 mm. The o�set that occurs in the plot

for endcap 1L2 is due to an o�set of 2 mm of the scanned diameter from the center

of the endcap. The center of the endcap was approximated at the time the diameters

were scanned and determined more precisely afterwards. The small amount of cracks

that were found do support the conclusion that surface roughening and slip bands

are precursors to crack nucleation which corroborates the �ndings from the �rst high-

power test. The widths of the regions of surface roughening and cracks are given in

Table 4.15.
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Figure 4.47: Random scans along diameters of each endcap. The solid line corre-

sponds to regions of surface roughening and the dotted line is for regions that contain

cracks on the surface.

Region 1L2 1R2

(mm) (mm)

Roughness 4.8 8.8 6.3 8.4

Cracks 0.0 0.0 0.0 1.4

Table 4.15: Widths of regions of surface roughening and cracks for endcaps 1L2 and

1R2.



Chapter 5

Conclusion

In the previous chapters, we have described the design and execution of an experiment

to study the e�ects of pulsed heating on the surface of OFE copper. The damage

that results from pulsed heating will impact future designs of high-energy particle

accelerators.

We have demonstrated that the cyclic stress induced by pulsed heating beyond

the yield stress of fully-annealed OFE copper results in damage to the surface in

the form of surface roughening and cracks. The two experiments have shown such

damage to occur at 56 million pulses at a calculated 120� 10 K temperature rise on

the surface and at 86 million pulses at a calculated temperature rise of 82�3 K on the

surface. The measurements of pulsed temperature rise are in reasonable agreement

with the calculations for the second high-power test. From the destruction of the

high-power coupling aperture, we also know that 56 million pulses at a temperature

rise of approximately 250 K will create enough cracks to cause local melting of the

surface. Cracks cause the electrical resistivity of the surface to increase; consequently,

the temperature rise increases for the same applied power density.

Since the cavity Q depends on the electrical resistivity of the surface, surface

roughening and cracks that ensue will degrade the RF properties of a device long

before catastrophic damage like melting and copper sputtering occur. The numbers

given above are not thresholds for damage to occur. The lifetime of a material

damaged from cyclic fatigue will in general follow a power-law parameterization as
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given in equation (1.25).

The threshold for damage from pulsed heating is not known. From the data

reported above, a design for an accelerator must be well below these temperature

rises for a reasonable lifetime. The prediction given in Chapter 1 for a threshold

of 40 Æ temperature rise is not too conservative. It is commonly known that cyclic

fatigue is highly dependent on the preparation of the surface. The light chemical etch

performed on the surface for vacuum preparation may signi�cantly reduce the lifetime

of the material. Grain boundaries are primary sites for crack nucleation, and the

etching of material within the grain boundaries can increase the stress concentration

in that area. However, the two high-power tests already conducted followed standard

procedures for the preparation of the copper surface. These tests are indicative of the

danger that pulsed heating poses for future accelerator designs.

Some possibilities exist for increasing the lifetime of accelerators for these same

temperature rises. One is to look for material with good electrical conductivities and

high yield strengths. Glidcop is one example. It has the same electrical conductivity

as copper, yet its yield strength when fully annealed is six times that of OFE cop-

per's. The yield strength determines the point at which applied stress causes plastic

deformation. A higher yield strength will increase the material's tolerance to higher

temperature rises.

Another possibility is to operate at a lower ambient temperature. Due to lower

electrical resistivity and higher thermal conductivity, using OFE copper at liquid

nitrogen temperature (T=77 K), the temperature rise from pulsed heating may be

reduced by a factor of 2 for the same applied power density to the surface.

Third, the copper surface may be coated with diamond with a thickness on the

order of the heat di�usion length [32]. Diamond has a higher thermal conductivity

than copper and will act as a heat sink for the fast temperature rises from pulsed

heating. This heat sink may reduce the temperature rise on the surface of copper by

a factor of 2 or 3.

This experiment has shown that pulsed heating is an important limit to achiev-

able acceleration gradients for future accelerators. Due to the dependence of surface

preparation on material lifetime, this experiment was more of a test of the process
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of building accelerators than just a test of the material itself. Many tests should be

performed at di�erent power levels and with di�erent surface preparations before a

de�nite conclusion is made.



Appendix A

Resonant Cavities

Resonant cavities are devices in which electromagnetic �elds resonate in a space

enclosed by good conducting walls. The theory describing resonant cavities is well-

known and can be found in numerous references on electricity and magnetism and

microwave circuits [14, 20, 28, 39, 45, 57]. The equations describing resonant cavities

will be derived in this chapter under a formalism adapted from [28, 57] that allows

easy computation of the heating of the conducting walls in the cavity.

A.1 Maxwell's Equations

The description of resonant cavities begins with Maxwell's equations

~r� ~E = �
@ ~B

@t
; (A.1a)

~r� ~H =
@ ~D

@t
+ ~J; (A.1b)

~r � ~D = �chg; (A.1c)

~r � ~B = 0; (A.1d)

where ~E is the electric �eld, ~H is the magnetic �eld, ~D is the electric displacement,

~B is the magnetic induction, ~J is the current density and �chg is the charge density.

Since we are interested in the �elds in vacuum enclosed by perfectly conducting walls
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where there are no external charges and no external currents we have

�chg = 0; (A.2a)

~J = 0; (A.2b)

~D = "0 ~E; (A.2c)

~B = �0
~H; (A.2d)

where "0 is the electric permittivity of vacuum and �0 is the magnetic permeability

of vacuum. Using the above conditions, Maxwell's equations take the form

~r� ~E = ��0

@ ~H

@t
; (A.3a)

~r� ~H = "0
@ ~E

@t
; (A.3b)

~r � ~E = 0; (A.3c)

~r � ~H = 0: (A.3d)

If we take the curl of both sides of equation (A.3a) we get

~r� ~r� ~E = ~r
�
~r � ~E

�
�r2 ~E = �r2 ~E

= ��0

@

@t
~r� ~H = ��0"0

@2 ~E

@t2
;

(A.4)

where we have used equations (A.3b) and (A.3c). Since the speed of light in vacuum

is given by c = 1=
p
�0"0 equation (A.4) becomes

r2 ~E �
1

c2
@2 ~E

@t2
= 0: (A.5)

Similarly if we take the curl of both sides of equation (A.3b) and substitute equa-

tions (A.3a) and (A.3d) into the result we arrive at

r2 ~H �
1

c2
@2 ~H

@t2
= 0: (A.6)
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When we include the boundary conditions that the tangential electric �eld and the

normal magnetic �eld must vanish on the surface of a perfect conductor we get

�
r

2 � 1

c2
@2

@t2

�( ~E(~r; t);

~H(~r; t)

)
= 0 in volume V; (A.7a)

n̂� ~E(~r; t) = 0 on surface S; (A.7b)

n̂ � ~H(~r; t) = 0 on surface S; (A.7c)

where n̂ is the unit normal on the surface pointing out of the cavity volume into the

conductor. Equation (A.7a) is known as the vector Helmholtz equation and can be

used to solve for either ~E or ~H. Once one �eld is found, the other can be found from

Maxwell's equations.

If we consider the cavity in steady-state oscillation at the angular frequency !

then the �elds may be assumed to have a harmonic time-dependence of e�j!t where

j =
p�1. Using this assumption in equation (A.7a) we get

�r2 + k2
�( ~E (~r)

~H (~r)

)
= 0; (A.8a)

k = !=c; (A.8b)

where k is known as the wavenumber. Maxwell's equations have been reduced to

an eigenvalue equation with eigenvalue k and eigenfunctions ~E and ~H. This fact

suggests that we may expand the electromagnetic �elds in cavities in terms of modes

with eigenvalue k.

A.2 Expansion of Electromagnetic Fields in Cavi-

ties

Kurokawa [27] is credited to be the �rst to do a full treatment of the problem of

expansion of electromagnetic �elds in cavities. A similar treatment will be shown

here adapted from [20, 28, 57].
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A.2.1 Basis Functions

We will enumerate the modes in a cavity with index � which have eigenvalues k� and

eigenfrequencies !� = k�c. For the electric �eld we will choose basis functions ~E� and

expansion coeÆcients e�. Likewise for the magnetic �eld we have basis functions ~H�

and expansion coeÆcients h�. The total �elds are now written as

~E(~r; t) =
X
�

~E�(~r)e�(t); (A.9a)

~H(~r; t) =
X
�

~H�(~r)h�(t): (A.9b)

The basis functions ~E� are chosen such that they are real and orthonormal. The

orthogonality of the basis functions can be shown for non-degenerate modes with

� 6= �0:

�
k2� � k2�0

� Z
dV ~E� � ~E�0 =

Z
dV

h
~E� � r

2 ~E�0 � ~E�0 � r2 ~E�

i

=

Z
dV ~r �

h
~E� �

�
~r� ~E�0

�
� ~E�0 �

�
~r� ~E�

�i

=

Z
dS n̂ �

h
~E� �

�
~r� ~E�0

�
� ~E�0 �

�
~r� ~E�

�i

=

Z
dS

h�
~r� ~E�0

�
�
�
n̂� ~E�

�
�
�
~r� ~E�

�
�
�
n̂� ~E�0

�i

= 0;

(A.10)

where we have used equations (A.7b) and (A.8a) and the vector identity

~r �
�
~f � ~g

�
= ~g �

�
~r� ~f

�
� ~f �

�
~r� ~g

�
: (A.11)

If degenerate modes exist then they may be orthogonalized using the Gram-Schmidt

orthogonalization procedure [40, pp. 928{935]. Hence, we have the condition

Z
dV ~E�(~r) � ~E�0(~r) = Æ�;�0 : (A.12)
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The basis functions for the magnetic �eld are de�ned according to

~r� ~E� = k�
~H�; (A.13a)

~r� ~H� = k�
~E�; (A.13b)

which are also orthonormal

Z
dV ~H�(~r) � ~H�0(~r) =

1

k�k�0

Z
dV

�
~r� ~E�

�
�

�
~r� ~E�0

�

=
1

k�k�0

Z
dV ~r �

h
~E�0 �

�
~r� ~E�

�i

+
1

k�k�0

Z
dV ~E�0 �

�
~r� ~r� ~E�

�

=
1

k�k
0

�

Z
dS n̂ �

h
~E�0 �

�
~r� ~E�

�i
+

k�

k�0

Z
dV ~E�0 � ~E�

=
1

k�k�0

Z
dS

�
n̂� ~E�0

�
�

�
~r� ~E�

�
+

k�

k�0

Æ�;�0

= Æ�;�0:

(A.14)

Using the above orthogonality conditions, the expansion coeÆcients can be deter-

mined as

e�(t) =

Z
dV ~E� (~r) � ~E (~r; t) ; (A.15a)

h�(t) =

Z
dV ~H� (~r) � ~H (~r; t) : (A.15b)

It is proven in [28] that these basis functions form a complete set.

A.2.2 Cavity Modes

We will only be considering cylindrical waveguides and cavities whose axes lie along

ẑ (see Figure A.1), so it will be convenient to separate the perpendicular and longi-
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z

Figure A.1: Cylindrical waveguide of arbitrary cross-section with axis along ẑ.

tudinal components of the �elds as follows

~E� = ~E�? + ẑE�z; (A.16a)

~H� = ~H�? + ẑH�z: (A.16b)

Using the de�nition of the basis functions (equations (A.13)) and the following vector

identity

~f �

�
~r� ~g

�
= ~r

�
~f � ~g

�
�

�
~g � ~r

�
~f �

�
~f � ~r

�
~g � ~g �

�
~r� ~f

�
; (A.17)
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we get the following relation

ẑ �
�
~r� ~E�

�
= ẑ �

�
~r� ~E�?

�
+ ẑ �

�
~r� ẑE�z

�

= ~r
�
ẑ � ~E�?

�
�

�
ẑ � ~r

�
~E�? + ~r [ẑ � (E�z ẑ)]�

�
ẑ � ~r

�
E�z ẑ

= k�ẑ � ~H�

= k�ẑ � ~H�?:

(A.18)

If we de�ne ~r? � ~r � ẑ@=@z and use the fact that ẑ � ~r = @=@z we arrive at the

following useful relation

�
@ ~E�?

@z
+ ~r?E�z = k�ẑ � ~H�?: (A.19)

Similarly, the procedure may be repeated for the magnetic �eld and we get

�
@ ~H�?

@z
+ ~r?H�z = k�ẑ � ~E�?: (A.20)

Since the �elds are propagating in the z-direction with wavenumber k, we may as-

sume an e�jkz dependence for the �elds where the top sign is for a forward-travelling

wave and the bottom sign is for a backward-travelling wave. Substituting this condi-

tion into equations (A.19) and (A.20) we get

�jk ~E�? + ~r?E�z = k�ẑ � ~H�?; (A.21a)

�jk ~H�? + ~r?H�z = k�ẑ � ~E�?: (A.21b)

There are two sets of modes that can exist inside hollow waveguides and cavities.

One set of modes is known as the transverse electric mode or TE mode in which

the longitudinal electric �eld is zero everywhere in the cavity volume. The other

set of modes is known as the transverse magnetic mode or TM mode in which the

longitudinal magnetic �eld is zero everywhere in the cavity volume. We shall look at

each mode set in more detail separately.
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z
d

Figure A.2: Closed cavity of length d with arbitrary cross-section.

TE mode

By substituting the condition E�z = 0 into equations (A.21) we get

~E�? = �j
k�

k
ẑ � ~H�?; (A.22a)

~H�? = �j
k


2
�

~
r?H�z; (A.22b)


2
�
= k2

�
� k2: (A.22c)

Notice that once the longitudinal magnetic �eld is determined, the rest of the �elds

can be calculated from equations (A.22).

If we consider a cavity that has conducting walls normal to the z-direction at a

distance d from each other (see Figure A.2), we expect to have a standing wave in

that direction. The longitudinal magnetic �eld should vary as

H�z � A sin(kz) +B cos(kz): (A.23)
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The normal component of the magnetic �eld must vanish on the surface (equa-

tion (A.7c)) so

H�z(z = 0) = B = 0; (A.24a)

H�z(z = d) = A sin(kd) = 0; (A.24b)

k =
p�

d
; (A.24c)

where p is a positive integer not equal to zero. p = 0 is not an interesting solution

since it implies that the �elds are zero everywhere in the cavity volume. Thus the

longitudinal magnetic �eld has the form

H�z =  � (~r?) sin
�p�z
d

�
p = 1; 2; 3; : : : ; (A.25)

where  � is a function of the perpendicular coordinates to be determined later. Sub-

stituting equation (A.25) into equations (A.22) and separating the forward and back-

ward travelling waves we calculate the other �elds as follows

~H�? =
p�=d


2
�

cos
�p�z
d

�
~r? � (~r?) ; (A.26a)

~E�? = �
k�


2
�

sin
�p�z
d

�
ẑ � ~r? � (~r?) ; (A.26b)


2
�
= k2

�
�

�p�
d

�2

: (A.26c)

 � is determined by substituting equation (A.25) into equations (A.7)

�
r

2

?
+ 
2

�

�
 � (~r?) = 0: (A.27)

The above equation is true for any arbitrary cross-section of the cavity. The boundary

condition for  � on the surface S of the cavity is found by taking the dot product of

both sides of equation (A.21b) with n̂

�jk
�
n̂ � ~H�?

����
S

+ n̂ � ~r?H�z

���
S

= k�n̂ � ẑ � ~E�?

���
S

= �k�ẑ �
�
n̂� ~E�?

���
S

�
: (A.28)
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R

d

Figure A.3: Circularly cylindrical cavity of radius R and length d.

Since n̂ �

~H�? = 0 and n̂� ~E�? = 0 on the cavity surface, we have

n̂ � ~r?H�z

�
�
�
S

= n̂ � ~r? � (~r?)
�
�
�
S

= 0: (A.29)

Since the experiment involves circularly cylindrical cavities, we will focus only on

that geometry where  � (~r?) =  �(r; �) (see Figure A.3). For a cavity with radius R

we must solve the following equation

1

r

@

@r

�
r
@ �

@r

�
+

1

r2
@2 �

@�2
+ 
2

�
 � = 0; (A.30a)

@ �

@r

����
r=R

= 0: (A.30b)

If we choose a reference such that H�z � cos� then the general solution to equa-

tion (A.30a) is

 � = ATE cos(n�)Jn (
�r) ; (A.31)

where we ignored Yn (
�r) since the �elds must be �nite at r = 0. ATE is a nor-

malization constant to be determined later. Applying the boundary condition (equa-

tion (A.30b))


� =
x0
nm

R
where J 0

n
(x0

nm
) = 0; (A.32)
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we get

 � = ATEJn

�
x

0

nmr

R

�
cos(n�): (A.33)

Substituting equation (A.33) into equations (A.25) and (A.26) we arrive at the �elds

for the TE modes of a circularly cylindrical cavity of radius R and length d:

H�z = ATE sin

�
p�z

d

�
Jn

�
x

0

nmr

R

�
cos(n�); (A.34a)

H�r = ATE

p�R

dx0

nm

cos

�
p�z

d

�
J

0

n

�
x

0

nmr

R

�
cos(n�); (A.34b)

H�� = �ATE

np�R
2

rd (x0

nm)
2
cos

�
p�z

d

�
Jn

�
x

0

nmr

R

�
sin(n�); (A.34c)

E�z = 0; (A.34d)

E�r = �ATE

n!�R
2

cr (x0

nm)
2
sin

�
p�z

d

�
Jn

�
x

0

nmr

R

�
sin(n�); (A.34e)

E�� = �ATE

!�R

cx0

nm

sin

�
p�z

d

�
J

0

n

�
x

0

nmr

R

�
cos(n�); (A.34f)

!� = c

"�
x

0

nm

R

�
2

+

�
p�

d

�
2

#1=2
; (A.34g)

where we have used k� = !�=c. We may now distinguish the modes by specifying the

integers n, m, and p and writing the modes as TEnmp. The normalization constant

ATE is determined by substituting the �elds into equation (A.12). Using the following

integral [45, eqn. C.17]

Z x0

nm

0

�
J

02

n (u) +
n
2

u2
J
2

n(u)

�
u du =

(x0

nm)
2

2

�
1�

n
2

(x0

nm)
2

�
J
2

n (x
0

nm) ; (A.35)

we get

ATE =

r
2

�d

c (x0

nm)
2

!�R
2
p
1 + Æn0

(
(x0

nm)
2

2

�
1�

n
2

(x0

nm)
2

�
J
2

n (x
0

nm)

)
�1=2

: (A.36)
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TM mode

The derivation of the �elds for the TM modes is similar to that for the TE modes.

Substituting the condition that H�z = 0 into equations (A.21) and assuming an e�jkz

dependence as before we get

~H�? = �j
k�

k
ẑ � ~E�?; (A.37a)

~E�? = �
k


2�

~r?E�z: (A.37b)

Because there is a standing-wave in the z-direction, the longitudinal electric �eld

must also have the form

E�z � A sin(kz) +B cos(kz): (A.38)

Since the tangential electric �eld ~E�? must vanish on the surface of the cavity we

must have ~r? � ~E�? = �@E�z=@z = 0. Therefore we have

@E�z

@z

�
�
�
�
z=0

= Ak = 0; (A.39a)

@E�z

@z

�
�
�
�
z=d

= �B sin(kd) = 0; (A.39b)

k =
p�

d
; (A.39c)

where p is a non-negative integer. Thus the longitudinal electric �eld takes the form

E�z =  � (~r?) cos
�p�z
d

�
p = 0; 1; 2; : : : (A.40)
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By separating the forward and backward travelling waves and substituting equa-

tion (A.40) into equations (A.37) we have

~E�? = �
p�z=d


2�
sin

�p�z
d

�
~r? � (~r?) ; (A.41a)

~H�? = �
k�


2�
cos

�p�z
d

�
ẑ � ~r? � (~r?) ; (A.41b)


2� = k2� �
�p�
d

�
2

: (A.41c)

Substituting equation (A.40) into equations (A.7) we get the same governing equa-

tion as for the TE mode (equation (A.30a)) except with the boundary condition

 �(r = R) = 0. With this boundary condition we have


� =
xnm

R
where Jn (xnm) = 0: (A.42)

The general solution is then

 � = ATMJn

�xnmr
R

�
cos(n�): (A.43)

The �elds for the TM mode are given by (using equations (A.40) and (A.41))

E�z = ATM cos

�p�z
d

�
Jn

�xnmr
R

�
cos(n�); (A.44a)

E�r = �ATM

p�R

dxnm
sin

�p�z
d

�
J 0

n

�xnmr
R

�
cos(n�); (A.44b)

E�� = ATM

np�R2

rdx2nm
sin

�p�z
d

�
Jn

�xnmr
R

�
sin(n�; ) (A.44c)

H�z = 0; (A.44d)

H�r = �ATM

n!�R
2

rcx2nm
cos

�p�z
d

�
Jn

�xnmr
R

�
sin(n�); (A.44e)

H�� = �ATM

!�R

cxnm
cos

�p�z
d

�
J 0

n

�xnmr
R

�
cos(n�); (A.44f)

!� = c

��xnm
R

�2

+

�p�
d

�2
�1=2

; (A.44g)
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where we have used k� = !�=c. We may now specify the TM modes with TMnmp.

The normalization constant ATM is determined by substituting the �elds into equa-

tion (A.14). Using the following integral [45, eqn. C.16]

Z xnm

0

�
J 02

n (u) +
n2

u2
J2

n(u)

�
u du =

x2nm
2

J 02

n (xnm) ; (A.45)

we get

ATM =
2cxnmp

�d!�R2J 0

n (xnm)
p
(1 + Æn0) (1 + Æp0)

: (A.46)

A.3 Time-domain

In the previous section we derived the basis functions for the expansion of electro-

magnetic �elds in cavities. In this section we are interested in the behavior of the

�elds in the time-domain.

If we consider a closed-cavity with perfectly conducting walls, then we may simply

substitute equations (A.9) into the Maxwell curl equations (equations (A.3a{A.3b))

to get

�
dh�(t)

dt
= �!�e�(t); (A.47a)

de�(t)

dt
= �!�h�(t); (A.47b)

where � =
p
�0="0 is the impedance of free space. Combining the above equations

we get for the �elds �
d2

dt2
+ !2

�

�(
e�(t)

h�(t)

)
= 0; (A.48)

where !� is the angular resonant frequency of the cavity for mode � as expected.

In reality, the conducting walls of a cavity are not lossless. These walls have a �nite

conductivity, and the electromagnetic �elds will penetrate into the surface. Also, the

cavity cannot be completely closed. There must be some openings in the device in

order for the �elds to be excited. Because of these two conditions, the basis functions

derived in the last section are no longer exact. However, we will incorporate these
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conditions as perturbations and use the previous basis functions as approximations

to the mode �elds in the cavity [57]. Thus we will still write the mode amplitudes as

e�(t) =

Z
dV ~E (~r; t) �

~E� (~r) ; (A.49a)

h�(t) =

Z
dV ~H (~r; t) �

~H� (~r) ; (A.49b)

where the integrals are over the unperturbed cavity volume. We will next obtain

equations for the mode amplitudes for a weakly perturbed cavity.

If we take the dot product of equation (A.3a) with ~H� (~r) and integrate over the

unperturbed cavity volume we get for the left-hand side

Z
dV

�
~r� ~E

�
� ~H� =

Z
dV ~r �

�
~E � ~H�

�
+

Z
dV

�
~r� ~H�

�
� ~E

=

Z
dS n̂ � ~E � ~H� +

Z
dV

�
k� ~E�

�
� ~E

= k�e� +

Z
dS n̂ � ~E � ~H�;

(A.50)

where we have used equation (A.49a) and the vector identity

~r �

�
~f � ~g

�
=
�
~r� ~f

�
� ~g �

�
~r� ~g

�
� ~f: (A.51)

n̂ is the unit normal pointing out of the cavity (see Figure A.4)) and the surface inte-

gral is over the unperturbed cavity boundary. The right-hand side of equation (A.3a)

becomes

��0

Z
dV

@ ~H

@t
� ~H� = ��0

X
�0

dh�0

dt

Z
dV ~H�0 � ~H� = ��0

dh�

dt
; (A.52)

where we have used equation (A.49b). Putting these equations together we have for

the mode amplitudes

��0

dh�(t)

dt
= k�e�(t) +

Z
dS n̂ � ~E (~r; t)� ~H� (~r) : (A.53)
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Figure A.4: Cavity with connecting waveguide. n̂ points out of the cavity and into

the conductor. Sp is the reference plane for the waveguide and Sw is the cavity wall.

Similarly, by taking the dot product of equation (A.3b) with ~E� (~r) we have

"0
de�(t)

dt
= k�h�(t) +

Z
dS n̂ �

~H (~r; t)� ~E� (~r) : (A.54)

We are interested in a cavity in which power is coupled to it through an input

waveguide. Since we are only working to �rst-order in the perturbations, we may

consider each perturbation separately and add them together. Thus we may determine

the mode amplitudes with

��0

dh�(t)

dt
= k�e�(t) +

Z
Sw

dS n̂ � ~E (~r; t)� ~H� (~r) +

Z
Sp

dS n̂ � ~E (~r; t)� ~H� (~r) ;

(A.55a)

"0
de�(t)

dt
= k�h�(t) +

Z
Sw

dS n̂ � ~H (~r; t)� ~E� (~r) +

Z
Sp

dS n̂ � ~H (~r; t)� ~E� (~r) ;

(A.55b)

where Sw is over the cavity surface and Sp is over the plane cross-section of the

connecting waveguide (see Figure A.4).

To make the calculation of the perturbations more simple, we will assume the
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�elds to have an e�j!t dependence

~E (~r; t) = eE (~r; t) e�j!t; ~H (~r; t) = eH (~r; t) e�j!t; (A.56)

~e�(t) = ~e�(t)e
�j!t; ~h�(t) = ~h�(t)e

�j!t; (A.57)

where eE (~r; t), eH (~r; t), ~e�(t) and ~h�(t) are complex slowly-varying functions of time.

Substituting these relations into equations (A.55) we have for the mode amplitudes

in the cavity

� �0

d~h�(t)

dt
+ j�0!~h� =

k�~e�(t) +

Z
Sw

dS n̂ � eE (~r; t)� ~H� (~r) +

Z
Sp

dS n̂ � eE (~r; t)� ~H� (~r) ; (A.58)

"0
d~e�(t)

dt
� j"0!~e� =

k�~h�(t) +

Z
Sw

dS n̂ � eH (~r; t)� ~E� (~r) +

Z
Sp

dS n̂ � eH (~r; t)� ~E� (~r) : (A.59)

We will look at each perturbation in more detail separately.

A.3.1 Perturbation From Lossy Walls

When the �nite conductivity of the cavity walls is included in the analysis, the �elds

no longer vanish inside the conductor. The �elds will exponentially decay into the

conductor. We will investigate the �elds inside a conductor by starting with Ampere's

law

~r� ~Hc =
@ ~Dc

@t
+ ~Jc; (A.60)

where the current density ~Jc inside a conductor is given by

~Jc = � ~Ec; (A.61)
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Figure A.5: Conductor with coordinate � normal to the surface and pointing into the

conductor.

where � is the electrical conductivity of the conductor. Inside the conductor we expect

the displacement current to be small compared to the electrical current, so we may

neglect it in Ampere's law. We also expect the spatial variation of the �elds normal to

the surface to be more rapid than the variation of the �elds tangential to the surface.

So we may ignore any derivatives with respect to the transverse coordinates and write

~r � n̂@=@� where n̂ is the unit normal pointing into the conductor (see Figure A.5).

Note that this is opposite of the convention adopted by [20]. The condition for the

electric �eld in the conductor is then

~Ec =
1

�
~r� ~Hc =

1

�
n̂�

@ ~Hc

@�
: (A.62)

If we use Faraday's law

~r� ~Ec = ��c

@ ~Hc

@t
; (A.63)

and take the curl of both sides of Ampere's law we get the following equation for the

magnetic �eld inside the conductor

r
2 ~Hc � �c�

@ ~Hc

@t
= 0; (A.64)

where �c is the magnetic permeability of the conductor. If we adopt the phasor
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notation in equations (A.56) and keep to �rst-order by making the approximation

�
�
�
�
�

@ eHc

@t

������ ! eHc; (A.65)

then the magnetic �eld in the conductor is given by

r
2 eHc + j�c�! eHc = 0; (A.66)

or, noting that only the tangential magnetic �eld will be signi�cant, we can write

d2

d�2
eHk + j

2

Æ2
eHk = 0; (A.67)

where we have introduced the skin-depth

Æ =

r
2

�c�!
: (A.68)

The solution for the magnetic �eld is

eHk(�) = eHk(� = 0) exp

�
�
�

Æ
(1� j)

�
: (A.69)

The boundary condition for the tangential electric �eld at the cavity surface is then

eE���
surf

=
1

�
n̂�

d eHk

d�

�����
surf

= �
1� j

�Æ
n̂� eH���

surf

= �Rs(1� j)n̂� eH���
surf

; (A.70)

where we have de�ned the surface resistance of the conductor as

Rs �
1

�Æ
=

r
�c!

2�
=

r
�c!�res

2
; (A.71)

where �res = 1=� is the electrical resistivity.

We now use this result to �nd the perturbation due to lossy walls. The surface
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integral for the cavity wall in equation (A.58) is calculated as

Z
Sw

dS n̂ �

eE � ~H� = �
Z
Sw

dS n̂ �
h
Rs(1� j)n̂� eHi

� ~H�

=

Z
Sw

dS Rs(1� j)n̂ �
h
n̂
�
~H� � eH

�
� eH �

n̂ � ~H�

�i

=

Z
Sw

dS Rs(1� j) eH � ~H�;

(A.72)

where we have used the boundary condition that n̂ � ~H� = 0 on the cavity surface. If

we assume that only one mode in the cavity is excited then we may approximate the

magnetic �eld as eH � ~h� ~H�. If we also de�ne the unloaded Q of the cavity for mode

� to be
1

Q0�

�
Z
Sw

dS
Æ

2

��� ~H�

���2 = 1p
2�c!

Z
Sw

dS
1p
�

��� ~H�

���2 ; (A.73)

then equation (A.72) is �nally calculated as

Z
Sw

dS n̂ � eE � ~H� � ~h�

Z
Sw

dS Rs(1� j)
��� ~H�

���2

= ~h�(1� j)

r
�c!

2

Z
Sw

dS
1p
�

��� ~H�

���2

=
(1� j)�c!

Q0�

~h�:

(A.74)

The surface integral for the cavity wall in equation (A.59) vanishes as shown below

Z
Sw

dS n̂ � eH � ~E� = �
Z
Sw

dS eH � n̂� ~E� = 0; (A.75)

since n̂� ~E� = 0 on the surface of the cavity.

A.3.2 Perturbation From Connecting Waveguide

The �elds inside a cylindrical waveguide are completely de�ned if the �elds parallel

to the plane normal to the cylindrical axis are given [14, 45]. Similar to the cavity
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�elds, we may expand the perpendicular waveguide �elds into modes a [57]

~E? (~r?; t) =
X
a

~E?a (~r?)Va(t); (A.76a)

~H? (~r?; t) =
X
a

~H?a (~r?)ZcaIa(t); (A.76b)

where ~E?a and ~H?a are the basis functions for mode a and Va and Ia are the expansion

coeÆcients. Zca is the characteristic impedance for mode a and is given by

Zca = �

8<
:
k0=kg for TE mode

kg=k0 for TM mode;
(A.77)

where k2g = k2
0
� k2c and k0 = !=c. kc is the cuto�-wavenumber and for a rectangular

waveguide operating in the dominant TE10 mode with width w, kc = �=2w. The

waveguide �elds are also related by

Zca
~H?a = ẑ � ~E?a; (A.78)

where the cylindrical axis of the waveguide is along ẑ. If we choose the plane Sp as

the reference plane then we get the following orthogonality relations for the �elds [57]

Z
Sp

dS ~E?a (~r?) � ~E?b (~r?) = Æab; (A.79a)

Z
Sp

dS ~H?a (~r?) � ~H?b (~r?) =
Æab

Z2
ca

; (A.79b)

Z
Sp

dS ẑ � ~E?a (~r?)� ~H?b (~r?) =
Æab

Zca

: (A.79c)
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We may also expand the cavity �elds along the plane Sp by using the same waveg-

uide basis functions but with di�erent expansion coeÆcients

~E?� (~r?) =
X
a

~E?a (~r?)Va�; (A.80a)

~H?� (~r?) =
X
a

~H?a (~r?)ZcaIa�; (A.80b)

where Va� and Ia� are given by overlap integrals of the waveguide and cavity modes

on plane Sp

Va� =

Z
Sp

dS ~E� (~r?) �

~E?a (~r?) ; (A.81a)

Ia� = Zca

Z
Sp

dS ~H� (~r?) �

~H?a (~r?) : (A.81b)

As before with the cavity modes, we will adopt phasor notation for the waveguide

expansion coeÆcients

Va(t) = eVa(t)e
�j!t; Ia(t) = ~Ia(t)e

�j!t; (A.82)

where we assume eVa and ~Ia are complex slowly-varying functions of time. Using the

above relations we may now calculate the surface integral over the waveguide plane

in equation (A.58) as

Z
Sp

dS n̂ �

eE �
~H� =

Z
Sp

dS n̂ �

"X
a

~E
?a
eVa

#
�

"X
b

~H
?bZcbIb�

#

= �

X
a

X
b

eVaZcbIb�

Z
Sp

dS ẑ � ~E
?a �

~H
?b

= �

X
a

X
b

eVaZcbIb�
Æab

Zca

= �

X
a

eVaIa�;

(A.83)

where we have used equation (A.79c) and the fact that ẑ points in the opposite



APPENDIX A. RESONANT CAVITIES 221

direction of n̂ (see Figure A.4). The surface integral over the waveguide plane in

equation (A.59) is calculated as

Z
Sp

dS n̂ �

eH �
~E� =

Z
Sp

dS n̂ �

"X
a

~H?aZca
~Ia

#
�

"X
b

~E?bVb�

#

= �

X
a

X
b

Zca
~IaVb�

Z
Sp

dS ẑ � ~H?a � ~E?b

=
X
a

X
b

Zca
~IaVb�

Æab

Zca

=
X
a

~IaVa�;

(A.84)

We are free to choose the location of Sp in the waveguide, so we will choose it such

that Ia� = 0. Thus Z
Sp

dS n̂ � eE �
~H� = 0: (A.85)

A.3.3 Mode Amplitudes

By substituting the perturbations found in equations (A.74), (A.75), (A.84) and

(A.85) into equations (A.58) and (A.59) we get the following relations for the cavity

mode amplitudes

��0

d~h�(t)

dt
+ j�0!~h�(t) = k�~e�(t) +

�c(1� j)!

Q0�(t)
~h�(t); (A.86a)

"0
d~e�(t)

dt
� j"0!~e�(t) = k�~h�(t) +

X
a

~Ia(t)Va�; (A.86b)

where we have allowed Q0� and hence � to be a function of time. We will also allow

k� to be a function of time because the cavity volume may change during the heating.

By solving equation (A.86a) for ~e� and substituting the result into equation (A.86b)
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we get the following equation for the mode amplitude of the magnetic �eld

d2~h�
dt2

+
d~h�
dt

�
�

1

!�

d!�

dt
� 2j! +

(1� j)�c!

�0Q0�

�

+ ~h�

�
�

(1� j)�c!

�0Q0�

�
1

Q0�

dQ0�

dt
+

1

!�

d!�

dt
+ j!

�
+

j!

!�

d!�

dt
� !2 + !2

�

�

= �!�c
X
a

~IaVa�; (A.87)

where we have used k� = !�=c. Since we are considering copper we have �c � �0.

Using this fact and grouping the real and imaginary terms, equation (A.87) becomes

d2~h�

dt2
+

d~h�

dt

��
!

Q0�

�

1

!�

d!�

dt

�
� j!

�
2 +

1

Q0�

��

+ ~h�

�
�

!

Q0�

�
1

Q0�

dQ0�

dt
+

1

!�

d!�

dt
+ !

�
� !2 + !2

�

+j!

�
1

!�

d!�

dt

�
1 +

1

Q0�

�
+

1

Q0�

�
1

Q0�

dQ0�

dt
� !

���

= �!�c
X
a

~IaVa�; (A.88)

Since ~h� is a slowly-varying function of time we have the condition

�����
d2~h�

dt2

������ !2

���~h�
��� : (A.89)

We also expect the unloaded Q of the cavity and the resonant frequency to change

slowly compared to an RF period so we also have

����dQ0�

dt

����� !Q0�;

����d!�

dt

����� !!�: (A.90)

We do not expect the resonant frequency of the cavity to change more than one Q-

bandwidth where �!� = !�=Q0�. In our case, ! � !� � 1010 and Q0� � 104 with a

pulse length on the order of 1 �s. So, �!�=�t � 1012 and !!�=Q0� � 1016. Therefore
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we also have the condition �
�
�
�

d!�

dt

�
�
�
�
�

!!�

Q0�

: (A.91)

Using these approximations, the mode amplitude of the magnetic �eld is

d~h�

dt

"
!

Q0�

� j!
2 + 1

Q0�

1 + 1

Q0�

#
+~h�

"
!2

�

1 + 1

Q0�

� !2
�

j!2

Q0�

#
= �

!�c

1 + 1

Q0�

X
a

~IaVa�; (A.92)

where we have divided equation (A.88) by the factor 1+ 1=Q0� and used the approx-

imation Q0� � 1.

Let us look more closely at the term on the right-hand side of equation (A.92).

The transverse electric �eld at the waveguide port Sp must be continuous. If we

consider only TE modes in the waveguide then we may expand the electric �eld in

either basis eE? (~r?; t) =X
a

~E?a (~r?) eVa(t) =X
�

~E� (~r?) ~e�(t): (A.93)

By taking the dot-product of both sides of equation (A.93) with a waveguide-mode,

~E?a, we get the condition eVa(t) =X
�

Va�~e�(t): (A.94)

We will simplify our problem by considering a waveguide operating in its �rst domi-

nant mode (a = 1) and driving only one cavity mode � giving

eV1(t) = V1�~e�(t): (A.95)

If we split the waveguide expansion coeÆcients into forward and backward-travelling

waves eV1 = eV +

1
+ eV �

1
; ~I1 = ~I+

1
+ ~I�

1
; (A.96)

and use the relation [57]

Zca
~I�a = �eV �a ; (A.97)

we get

~I1 =
eV +

1
� eV �

1

Zc1

=
2eV +

1
� V1�~e�

Zc1

; (A.98)
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where we have also used equation (A.95). We de�ne the external Q for mode � of the

cavity as [57]
1

Qe�

�

V 2

1�

"0!�Zc1

: (A.99)

If power Pin is 
owing in the waveguide then [45, 57]

eV +

1
=
p
2PinZc1: (A.100)

If we multiply both sides of equation (A.98) by V1�, substitute into it ~e� from equa-

tion (A.86a) and use equations (A.99) and (A.100) we get

V1� ~I1 =

s
8Pin"0!�

Qe�

+
�0"0!�

Qe�k�

d~h�

dt
�

j�0"0!!�

Qe�k�
~h� +

"0�0(1� j)!!�

k�Q0�Qe�

~h�: (A.101)

Using equation (A.101) in equation (A.92) the mode amplitude for the magnetic �eld

is �nally written as

d~h�

dt

2
4
0
@ !

Q0�

+
!�

Qe�

�
1 + 1

Q0�

�
1
A
� j!

2 + 1

Q0�

1 + 1

Q0�

3
5

+ ~h�

" 
!2

�

1 + 1

Q0�

� !2

!
� j!

�
!

Q0�

+
!�

Qe�

�#
= �

1

1 + 1

Q0�

s
8Pin!

3

�

�0Qe�

; (A.102)

Note that by adopting the phasor notation in equations (A.82) we have assumed that

the waveguide and cavity are driven at angular frequency !. Terms containing the

factor 1=Q0� are kept in equation (A.102) since Q0� is a function of time. However,

if Q0� is constant and we drive the cavity at a frequency ! = !�=
p
1 + 1=Q0� then

equation (A.102) is further simpli�ed as

d~h�

dt

�
1

QL�

� 2j

�
+ ~h�

�
�

j!�

QL�

�
= �

s
8Pin!�

�0Qe�

; (A.103)

where we have divided by !� and used the de�nition of the loaded Q of a cavity
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resonating in mode �
1

QL�

�
1

Q0�

+
1

Qe�

: (A.104)

It is instructive to solve equation (A.103) for further insight into the behavior of

the cavity. The solution for the mode amplitude of the magnetic �eld with the initial

condition ~h�(t = 0) = 0 is

h�(t) = ~h�(t)e
�j!t

= �jQL�

s
8Pin

�0Qe�!�

�
1� exp

�
�

!�t

2QL�

�
exp

�
�

j!�t

4Q2

L�

��
exp (�j!t);

(A.105)

where ! = !�=
p
1 + 1=Q0�. Thus, the build-up of the magnetic �eld in the cavity is

governed by the so-called �ll-time

� �
2QL�

!�

: (A.106)

The oscillation term proportional to 1=Q2

L� may be ignored, because it is negligible

compared to the �ll-time � when QL� � 1. Hence, equation (A.105) may be more

compactly written

h�(t) = �jQL�

s
8Pin

�0Qe�!�

�
1� e�t=�

�
e�j!t: (A.107)

Notice that the resonant frequency is no longer !�, but has been shifted slightly due

to the lossy walls. This shift will be examined further in a later section.

Once the mode amplitude for the magnetic �eld is found, the mode amplitude for

the electric �eld is found from equations (A.86a) and (A.57). The total �elds in the

cavity are �nally calculated from

~E (~r; t) = ~E� (~r) e�(t); (A.108a)

~H (~r; t) = ~H� (~r) h�(t): (A.108b)
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where we have already assumed that only one mode � is excited in the cavity.

A.3.4 Constant Cavity Parameters

In the previous section, the mode equations for the cavity �elds were derived with

the condition that Q0� and !� may be functions of time. Because of this possibility,

it was necessary to adopt phasor notation (equations (A.57)) in order to make the

problem tractable. If we now assume that Q0� and !� are constant, we may repeat

the derivation of the mode equations to arrive at a simpler interpretation of the cavity

response.

By taking the Fourier transform of the mode amplitudes in equations (A.55) and

(A.76), we convert all quantities to the frequency domain. By following the same

derivation with the condition that Q0� is constant and taking the inverse Fourier

transform at the end [48, 57], the mode amplitude for the magnetic �eld is

"
d2

dt2
+

!�

QL�

d

dt
+

!2�

1 + 1

Q0�

#
h�(t) = �

1

1 + 1

Q0�

s
8Pin!

3

�

�0Qe�

e�j!dt; (A.109)

where !d is the angular frequency at which the waveguide-cavity system is driven.

Hence, the cavity is simply a damped, driven oscillator. If the cavity is initially empty

of �elds then the initial conditions are

h�(t = 0) = 0;
dh�

dt

����
t=0

= 0; (A.110)

Thus, the solution is simply

h�(t) =
�
C1e

j
t + C2e
�j
t

�
e�!�t=2QL

� +K 0e�j!dt; (A.111)
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where


 = !�

"
1

1 + 1

Q0�

�

1

4Q2

L�

#1=2
; (A.112a)

K = �
1

1 + 1

Q0�

s
8Pin!

3

�

�0Qe�

; (A.112b)

K 0 =
K

!2
�

1+1=Q0�

� !2

d �
j!d!�
QL�

; (A.112c)

C1 = K 0

�
j!�

4QL�

+

!d

2

�

1

2

�
; (A.112d)

C2 = K 0

�
�

j!�

4QL�

�

!d

2

�

1

2

�
: (A.112e)

Notice that the natural resonant frequency of the system, 
, is shifted from the

unperturbed resonant frequency !�. The perturbed resonant frequency is approxi-

mately written


 � !�

�
1�

1

2Q0�

�
1

8Q2

L�

�
: (A.113)

The term proportional to 1=Q2

L� in equation (A.113) represents the shift in frequency

due to damping. The damping is caused by the loss of power to the cavity walls (Q0�)

and to leakage of power to the coupled waveguide (Qe�). However, this frequency shift

is negligible compared to the shift from the term proportional to 1=Q0�. Q0� causes

a shift in the resonant frequency of the cavity, because the �elds are no longer zero

in the conductor but penetrate to a distance characterized by the skin-depth Æ (see

equation (A.68)). The e�ective volume of the cavity increases, which causes a decrease

in the cavity's resonant frequency.

If we drive the cavity close to its perturbed resonant frequency, !d � 
, and use

the fact that Q0� � 1 and QL� � 1 then

C1 � 0; C2 � �K
0; K 0

� �jQL�

s
8Pin

�0Qe�!�
; (A.114)
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and the mode amplitude for the magnetic �eld is

h�(t) � �jQL�

s
8Pin

�0Qe�!�

�
1� exp

�
�

!�t

2QL�

��
e�j!dt: (A.115)

This solution is the same one found in the previous section, equation (A.107). This

solution also demonstrates that if Q0� � 1 and Qe� � 1, then the assumption that

the cavity �elds resonate at the drive frequency !d is justi�ed.

A.4 Cavity Circuit Parameters

In sections A.2 and A.3, we derived equations for determining the electric and mag-

netic �elds in a resonant cavity. These equations are useful for applications requiring

the knowledge of the magnitude of the �elds, such as calculations of pulsed heating.

However, these equations are not very useful for determination of a cavity's properties

through measurement. For this purpose, it would be useful to derive equations simi-

lar to equation (A.102) in terms of input and output power to the cavity, quantities

which are easily measured with network analyzers or crystal detectors. Equivalently,

we may think in terms of input and output voltages since power is proportional to

the square of the voltage.

A.4.1 Cavity Response

In microwave circuits, voltage is not unique since the RF wavelength is comparable

with the size of the components [45]. However, we may choose a reference plane in

which voltage may be de�ned. If we choose the reference plane Sp in the waveg-

uide coupled to a cavity as in the previous sections, then this voltage becomes (see

equation (A.96))

V1(t) = V +

1
(t) + V �

1
(t); (A.116)

where V +

1
is the forward-travelling voltage wave in the waveguide and V �

1
is the

backward-travelling wave. If we have another waveguide coupled to the cavity then

we may also choose a reference plane in that waveguide and de�ne a voltage on that



APPENDIX A. RESONANT CAVITIES 229

plane as

V2(t) = V +

2
(t) + V �

2
(t): (A.117)

In general, we may have any number of waveguides or ports attached to the cavity.

Since we are treating the perturbations of connecting waveguides to only �rst-order,

we may easily incorporate additional ports by adding additional terms similar toP
a
~IaVa� to equation (A.86b). For simplicity, we will subsume all of those terms

under one summation and allow a to enumerate all modes in all waveguides.

Since equation (A.94) allows us to relate the �elds in the cavity to waveguide

voltage, we will solve for ~e� by eliminating ~h� from equations (A.86)

d2~e�

dt2
+

d~e�

dt

�
�

1

!�

d!�

dt
� 2j! +

(1� j)�c!

�0Q0�

�

+ ~e�

�
j!

!�

d!�

dt
� !2 + !2

�
�

j(1� j)�c!
2

�0Q0�

�

=
1

"0

d

dt

X
a

~IaVa� +

�
(1� j)�c!

"0�0Q0�

�

1

"0

1

!�

d!�

dt
�

j!

"0

�X
a

~IaVa�; (A.118)

where we have allowed !� and Q0� to be functions of time. Since we are considering

copper, we have �c � �0. Using this approximation in equation (A.118) and grouping

real and imaginary terms we have

d2~e�

dt2
+

d~e�

dt

��
!

Q0�

�

1

!�

d!�

dt

�
� j!

�
2 +

1

Q0�

��

+ ~e�

�
�!2

�
1 +

1

Q0�

�
+ !2

�
+ j!

�
1

!�

d!�

dt
�

!

Q0�

��

=
1

"0

d

dt

X
a

~IaVa� �
1

"0

�
1

!�

d!�

dt
�

!

Q0�

�X
a

~IaVa� �
j!

"0

�
1 +

1

Q0�

�X
a

~IaVa�:

(A.119)

Using the approximations in equations (A.89{A.91) and the approximation that
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Q0� � 1, the mode amplitude for the electric �eld is

d~e�

dt

"
!

Q0�

� j!
2 + 1

Q0�

1 + 1

Q0�

#
+ ~e�

"
!2

�

1 + 1

Q0�

� !2 �
j!2

Q0�

#

=
1

"0

1

1 + 1

Q0�

d

dt

X
a

~IaVa� +
1

"0

!

Q0�

X
a

~IaVa� �
j!

"0

X
a

~IaVa�; (A.120)

where we have divided equation (A.119) by the factor 1 + 1=Q0�.

Since the cavity described in Chapter 2 can be considered a two-port device for the

diagnostic mode, we may use equation (A.120) to model its response to input signals.

We will call a = 1 the fundamental mode in port one and a = 2 the fundamental

mode in port two. Expanding equation (A.120) to a = 2 and multiplying by V1� we

get

d (V1�~e�)

dt

"
!

Q0�

� j!
2 + 1

Q0�

1 + 1

Q0�

#
+ (V1�~e�)

"
!2

�

1 + 1

Q0�

� !2 �
j!2

Q0�

#

=
1

"0

1

1 + 1

Q0�

d

dt

�
V 2

1�
~I1 + V1�V2� ~I2

�
+

1

"0

!

Q0�

�
V 2

1�
~I1 + V1�V2� ~I2

�

�
j!

"0

�
V 2

1�
~I1 + V1�V2� ~I2

�
: (A.121)

Using the de�nition of external Q from equation (A.99) we have

V1� =

s
"0!�Zc1

Qe1�

; V2� =

s
"0!�Zc2

Qe2�

; (A.122)

where Zc1 and Zc2 are the characteristic impedances of ports one and two and Qe1�

and Qe2� are the external Q's for ports one and two respectively. Thus, using equa-

tion (A.97)

V 2

1�
~I1 =

"0!�

Qe1�

�eV +

1
� eV �

1

�
; (A.123a)

V2�V1� ~I2 =
"0!�p

Qe1�Qe2�

r
Zc1

Zc2

�eV +

2
� eV �

2

�
: (A.123b)
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Using equations (A.94) and (A.96) we also have

eV +

1
�

eV �
1

= 2eV +

1
� V1�~e�; (A.124a)

eV +

2
�

eV �
2

= 2eV +

2
� V2�~e� = 2eV +

2
�

s
Qe1�

Qe2�

r
Zc2

Zc1

V1�~e�: (A.124b)

Using equations (A.123{A.124), the mode amplitude for the electric �eld is �nally

written as

d (V1�~e�)

dt

"
!

Q0�

+
!�

1 + 1

Q0�

�
1

Qe1�

+
1

Qe2�

�
� j!

2 + 1

Q0�

1 + 1

Q0�

#

+ (V1�~e�)

"
!2

�

1 + 1

Q0�

� !2
� j!

�
!

Q0�

+ !�

�
1

Qe1�

+
1

Qe2�

��#

=
2!�

1 + 1

Q0�

"
1

Qe1�

deV +

1

dt
+

1p
Qe1�Qe2�

r
Zc1

Zc2

deV +

2

dt

#

+ 2!!�

�
1

Q0�

� j

�" eV +

1

Qe1�

+
1p

Qe1�Qe2�

r
Zc1

Zc2

eV +

2

#
; (A.125)

where we have used the approximations Q0� � 1, Qe1� � 1 and Qe2� � 1. Equa-

tion (A.125) allows us to �nd the mode amplitude of the electric �eld in the cavity

knowing the input voltages eV +

1
and eV +

2
. The equation for a one-port cavity can be

found by allowing Qe2� !1.

What is usually measured in the lab are the re
ected waveforms eV �
1

and eV �
2

with

known inputs. We will show in the next sections that the measurment of the re
ected

waveforms may be used to determine !�, Q0�, Qe1� and Qe2�.

A.4.2 Re
ection CoeÆcient For One-Port Cavity

In this section, we will consider a cavity with only one port. A two-port cavity is

considered in section A.4.3.

If we let !� and Q0� remain constant, then we may repeat the analysis in the pre-

vious section with Fourier transforms instead of phasors as was done in section A.3.4.
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Using the assumptions that Q0� � 1 and Qe1� � 1 and letting Qe2� ! 1 we have

for the mode amplitude of the electric �eld [57]

�
d2

dt2
+

!�

QL�

d

dt
+ !2

�

�
VC(t) =

2!�

Qe�

dV +

1
(t)

dt
; (A.126)

where we have rewritten Qe1� as Qe� and de�ned a cavity voltage

VC = V1�e�; (A.127)

for simplicity. Equation (A.126) highlights the cavity as a damped-driven oscillator

and is useful for most calculations of cavity response. This equation also shows

that a cavity is understood if its resonant frequency, !�, as well as its unloaded

and external Q's are known. These quantities can be determined by measuring the

re
ected waveform V �
1

= VC � V +

1
in the time-domain or frequency-domain.

Time-domain

As usual, we drive the cavity system at an angular frequency ! and adopt the pha-

sor notation in equations (A.57) and (A.82), except we will use an ej!t dependence

on time. The assumption of an ej!t dependence for the cavity voltage is correct if

Q0� � 1 and Qe� � 1. If we use the approximation

�����d
2eVC
dt2

������ !2

���eVC��� ; (A.128)

then equation (A.126) is reduced to

2j!
deVC
dt

+

�
j!!�

QL�

+ !2

� � !2

� eVC =
2j!!�

Qe�

eV +

1
: (A.129)

Let us drive a cavity at its resonant frequency, ! = !�, with a square input pulse

of length Tp. The pulse length will be much longer than an RF period, 2�=!, so we
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may take eV +

1
as a constant. Hence, equation (A.129) is reduced to

d

dt

 eVC(t)eV +

1

!
+

!�

2QL�

 eVC(t)eV +

1

!
=

!�

Qe�

: (A.130)

If the cavity is initially empty of �elds then eVC(t = 0) = 0 so the solution for the

cavity voltage is eVC(t)eV +

1

=
2QL�

Qe�

�
1� exp

�
�

!�t

2QL�

��
: (A.131)

We de�ne the coupling coeÆcient as

� =
Q0�

Qe�

: (A.132)

If we remember that 1=QL� = 1=Q0�+1=Qe� and use continuity eV �
1

= eVC � eV +

1
then

the re
ection coeÆcient is

eV �
1
(t)eV +

1

=
� � 1

� + 1
�

2�

� + 1
e�t=� 0 � t � Tp; (A.133)

where � = 2QL�=!� is known as the �ll-time. Note that the loaded Q may also be

written as

QL� =
Q0�

1 + �
: (A.134)

For t > Tp, the RF drive is o� and equation (A.129) is reduced to

deVC
dt

+
!�

2QL�

eVC = 0; (A.135)

where eV +

1
= 0. Using continuity at t = Tp, the re
ection coeÆcient is

eV �
1
(t)eV +

1

=
2�

1 + �

�
eTp=� � 1

�
e�t=� t > Tp; (A.136)

where eVC = eV �
1
+ eV +

1
= eV �

1
.

Plots of V �
1
(t)=V +

1
are shown in Figure A.6 for three di�erent values of �. For the
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Figure A.6: V �
1
(t)=V +

1
for various �.
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case where � = 1, the cavity is critically-coupled. In this case, the re
ected waveform

goes to zero as the cavity is �lled with energy as shown in region 3 of Figure A.6. For

� > 1, the cavity is over-coupled and the re
ected waveform never reaches zero in

region 3. For � < 1, the cavity is under-coupled and the re
ected waveform crosses

zero.

Initially at t = 0, the RF drive signal is fully-re
ected and the cavity acts like an

electric short as shown in region 1. In region 2, the cavity is �lling with energy as

characterized by the �ll-time � , and the re
ected waveform is decreasing. In region

3, the cavity reaches steady-state (if Tp & 5�) and the absolute value of the re
ected

waveform reaches a minimum. Another spike occurs in region 4 when the RF drive

turns o�. If � > 1, then the height of this spike is greater than the spike of region

1. If � < 1, the height of this spike is lower than that of region 1. Finally, in region

5, the re
ected waveform decays with characteristic time � as energy leaks out of the

cavity.

The coupling coeÆcient � is determined by measuring the signal in region 3.

QL� is found by measuring the �ll-time, � , from either region 2 or region 5. From

these two quantities, Q0� and Qe� are determined. The resonant frequency of the

cavity is determined by sweeping the RF drive in frequency until the signal in region

3 reaches a minimum. The re
ection from the cavity is always minimum at the

resonant frequency.

In most cases, only the magnitude of the re
ected waveform is measured. For

example, if the waveform is measured with crystal detectors, then the voltage shown

on an oscilloscope is proportional to the RF power. Hence the measurement is of
�
�V �

1
(t)=V +

1

�
�
2

as shown in Figure A.7. One qualitative di�erence is that the signal

never crosses zero in the over-coupled case. The signal bounces from zero in region

3. We must also be careful when measuring QL�. In region 2, the signal will decay

with two di�erent rates because we are measuring the square of V �
1
=V +

1
. Because of

this fact, it is always best to measure the �ll-time in region 5 as seen by squaring

equation (A.136).
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Frequency-domain

Another method to measure the circuit parameters of a cavity is by measuring its

response in the frequency-domain. This type of measurement is most easily accom-

plished with a network analyzer. A network analyzer measures forward and re
ected

power from the cavity as a function of frequency and automatically displays the result

as S11(!). S11 is the re
ection coeÆcient, eV �
1
(!)=eV +

1
, in the frequency-domain and

is part of a construct in microwave network theory known as S-parameters [37, 45].

In the frequency-domain, equation (A.126) becomes

�
�!2 +

j!!�

QL�

+ !2�

� eVC =
2j!!�

Qe�

eV +

1
: (A.137)

If we de�ne the tuning angle  as [57]

tan � QL�

�
!�

!
�

!

!�

�
; (A.138)

then the cavity voltage can be written as

eVC =
2�

1 + �
cos ej eV +

1
: (A.139)

Since eV �
1

= eVC � eV +

1
, the re
ection coeÆcient is

S11(!) =
eV �
1eV +

1

=
2�

1 + �
cos ej � 1 �

�

2
�  �

�

2
: (A.140)

A vector network analyzer will measure and display the magnitude and phase of

S11(!). The magnitude and phase of S11 is given below and plotted in Figure A.8 for

over and under-coupled cases

jS11j =

s
1�

4�

(1 + �)2
cos2  ; (A.141a)

\S11 = arctan

 
sin 2 

cos 2 � 1

�

!
: (A.141b)
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The resonant frequency occurs where  = 0 and jS11j is a minimum. � is determined

from the minimum of jS11j

min jS11j =
j� � 1j

� + 1
: (A.142)

However, we do not know from this measurement if � > 1 or � < 1. This ambiguity

can be determined by looking at the slope of the phase of S11 at ! = !�. This slope

is
d\S11

d!

�
�
�
�
!=!�

=
d\S11

d 

�
�
�
�
 =0

d 

d!

�
�
�
�
!=!�

= �
4QL�

!�

1

1� 1

�

: (A.143)

If � > 1 then the slope is negative. If � < 1 then the slope is positive.

The loaded Q is determined by measuring the frequency di�erence of a particular

value of jS11j about the resonant frequency !� (see Figure A.8). It is helpful to write

the re
ection coeÆcient as a function of this frequency di�erence, �!,

! = !� �
1

2
�! where �! � !�: (A.144)

The tuning angle becomes

tan = QL�

�
!�

!
�

!

!�

�
= QL�

�
(!� + !) (!� � !)

!!�

�
� QL�

�!

!�
: (A.145)

Hence the re
ection coeÆcient becomes

jS11(�!)j =

s
1�

4�

(1 + �)2
!2�

!2� +Q2

L��!
2
: (A.146)

Solving equation (A.146) for QL� gives

QL� =
!�

�!

s
4�

(1 + �)2
1

1� jS11(�!)j
2
� 1: (A.147)

After measuring � and QL�, Q0� and Qe� is determined from equations (A.132) and

(A.134).
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A.4.3 S-parameters For Two-Port Cavity

In this section we will derive the S-parameters for a two-port cavity. S-parameters

are only used in the frequency-domain, but we will keep this terminology for the

time-domain for simplicity. If we repeat the analysis described in the last section

with Fourier transforms, then the equation for the cavity voltage VC = V1�e� is

�
d2

dt2
+

!�

QL�

+ !2

�

�
VC(t) =

2!�

Qe1�

dV +

1
(t)

dt
+

2!�p
Qe1�Qe2�

r
Zc1

Zc2

dV +

2
(t)

dt
; (A.148)

where the loaded Q of the cavity is now de�ned as

1

QL�

=
1

Q0�

+
1

Qe1�

+
1

Qe2�

: (A.149)

The methods presented here will be used to characterize the diagnostic mode of the

cavity described in Chapter 2.

Time-domain

As with the one-port case described in the previous section, we will drive the cavity

system at an angular frequency ! and adopt phasor notation with an ej!t depen-

dence on time. We will only drive port one, V +

2
= 0. Using the approximation in

equation (A.128), equation (A.148) is reduced to

2j!
deVC
dt

+

�
j!!�

QL�

+ !2

� � !2

� eVC =
2j!!�

Qe1�

eV +

1
: (A.150)

Driving the cavity at its resonant frequency, ! = !�, with a square input pulse of

length Tp gives

d

dt

 eVC(t)eV +

1

!
+

!�

2QL�

 eVC(t)eV +

1

!
=

!�

Qe1�

; (A.151)

where eV +

1
is constant. If the cavity is initially empty of �elds then eVC(t = 0) = 0 so
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the solution for the cavity voltage is

eVC(t)eV +

1

=
2QL�

Qe1�

�
1� exp

�
�

!�t

2QL�

��
: (A.152)

If we de�ne the coupling coeÆcients �1 and �2 for ports one and two respectively as

�1 =
Q0�

Qe1�

; �2 =
Q0�

Qe2�

; (A.153)

and use continuity eV �
1

= eVC � eV +

1
then the re
ection coeÆcient from port one (also

known as S11) is eV �
1
(t)eV +

1

= 
 � 1� 
e�t=� 0 � t � Tp; (A.154)

where � = 2QL�=!� and 
 = 2�1=(1 + �1 + �2). Note that the loaded Q may also be

written as

QL� =
Q0�

1 + �1 + �2
: (A.155)

For t > Tp, the RF drive is o� and equation (A.150) is reduced to

deVC
dt

+
!�

2QL�

eVC = 0; (A.156)

where eV +

1
= 0. Using continuity at t = Tp, the re
ection coeÆcient is

eV �
1
(t)eV +

1

= 

�
eTp=� � 1

�
e�t=� t > Tp; (A.157)

where eVC = eV �
1
+ eV +

1
= eV �

1
.

Plots of V �
1
=V +

1
are similar to Figure A.6 except for the added complication of

the second port. The determination of �1 by measuring the re
ected power from port

one depends on the value of �2 because of transmission out the second port.
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Frequency-domain

In the frequency-domain, equation (A.148) becomes

�
�!2 +

j!!�

QL�

+ !2

�

� eVC =
2j!!�

Qe1�

eV +

1 +
2j!!�p
Qe1�Qe2�

r
Zc1

Zc2
eV +

2 : (A.158)

Using the de�nition of the tuning angle from equation (A.138), the cavity voltage is

rewritten as

eVC = 2QL� cos e
j 

 eV +

1

Qe1�

+

r
Zc1

Zc2

eV +

2p
Qe1�Qe2�

!
: (A.159)

From [45, p. 230], the scattering parameters for a two-port network are

S11 =
eV �1eV +

1

�����
eV
+

2
=0

; S21 =
eV �2eV +

1

�����
eV
+

2
=0

r
Zc1

Zc2
;

S12 =
eV �1eV +

2

�����
eV
+

1
=0

r
Zc2

Zc1
; S22 =

eV �2eV +

2

�����
eV
+

1
=0

: (A.160)

S11 is the re
ection coeÆcient from port one when port two is terminated in a matched

load. S21 is the transmission coeÆcient from port one to port two. The same de�ni-

tions apply to port two. For a reciprocal network like a two-port cavity, S21 = S12.

Using the de�nition of the coupling coeÆcients from equation (A.153) with equa-

tions (A.124) the S-parameters for a two-port cavity are

S11 =
2�1

1 + �1 + �2
cos ej � 1; (A.161a)

S21 =
2
p
�1�2

1 + �1 + �2
cos ej ; (A.161b)

S22 =
2�2

1 + �1 + �2
cos ej � 1: (A.161c)

Figure A.9 plots the magnitude and phase of S11, S22 and S21 for a particular choice

of parameters. A vector network analyzer will measure and display the S-parameters

of a two-port network. From these measurements, we can determine !�, Q0�, Qe1�
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Figure A.9: S-parameters of two-port cavity for �1 = 0:75 and �2 = 0:15. Notice that

both port one and port two are under-coupled.
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and Qe2�.

As in the case of a one-port cavity, the resonant frequency occurs at the minimum

of jS11j. The resonant frequency also occurs at the minimum of jS22j and the maxi-

mum of jS21j. There are two methods for determining the coupling coeÆcients. The

�rst method requires the measurement of the minimums of jS11j and jS22j and the

knowledge of the slope of their phases at the resonant frequency. The second method

requires the minimums of jS11j and jS22j and the maximum of jS21j.

The minimum of jS11j is

S11m � min jS11j =
j�1 � (1 + �2)j

1 + �1 + �2
; (A.162)

and the minimum of jS22j is

S22m � min jS22j =
j�2 � (1 + �1)j

1 + �1 + �2
: (A.163)

If �1 > (1 + �2), then port one is said to be over-coupled. If �1 < (1 + �2), then

port one is said to be under-coupled. Similar de�nitions apply to port two. As with

a one-port cavity, we need to know the slopes of the phases of S11 and S22 at the

resonant frequency to determine if the ports are over or under-coupled. The slopes

are

d\S11

d!

�
�
�
�
!=!�

=
d\S11

d 

�
�
�
�
 =0

d 

d!

�
�
�
�
!=!�

= �
4QL�

!�

1

1� 1+�2
�1

; (A.164a)

d\S22

d!

�
�
�
�
!=!�

=
d\S22

d 

�
�
�
�
 =0

d 

d!

�
�
�
�
!=!�

= �
4QL�

!�

1

1� 1+�1
�2

: (A.164b)

Therefore, if �1 > (1+�2) then the slope of \S11 is negative and if �1 < (1+�2) then

the slope of \S11 is positive. A similar conclusion is made with \S22. Note that it

is possible for ports one and two to be both under-coupled but they cannot both be

over-coupled.
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Looking at equations (A.162{A.163) we may write

�1 = A1(1 + �2); �2 = A2(1 + �1); (A.165)

where

A1 =

8<
:

1+S11m

1�S11m
�1 > (1 + �2)

1�S11m

1+S11m
�1 < (1 + �2);

(A.166)

and

A2 =

8<
:

1+S22m

1�S22m
�2 > (1 + �1)

1�S22m

1+S22m
�2 < (1 + �1):

(A.167)

From the knowledge of the maximum of jS21j

S21m � max jS21j =
2
p
�1�2

1 + �1 + �2
; (A.168)

with A1 and A2, the coupling coeÆcients may also be determined from

�1 =

�
S21m

2

�2
(1 + A2)

�
1 + 1

A2

�

1�
�
S21m

2

�2
(1 + A2)

�
1 + 1

A2

� ; (A.169a)

�2 =

�
S21m

2

�2
(1 + A1)

�
1 + 1

A1

�

1�
�
S21m

2

�2
(1 + A1)

�
1 + 1

A1

� : (A.169b)

Notice that the determination of the coupling coeÆcients from equations (A.169) is

independent of whether ports one or two are under or over-coupled.

The loaded Q for the cavity may be found in a manner analogous to the method

described in section A.4.2 using data from either jS11j, jS21j or jS22j. The formulas
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are given below

QL� =
!�

�!

s
4�1(1 + �2)

(1 + �1 + �2)2
1

1� jS11(�!)j2
� 1; (A.170a)

QL� =
!�

�!

s
4�1�2

(1 + �1 + �2)2
1

jS21(�!)j2
� 1; (A.170b)

QL� =
!�

�!

s
4�2(1 + �1)

(1 + �1 + �2)2
1

1� jS22(�!)j2
� 1: (A.170c)

Q0�, Qe1� and Qe2� are determined from equations (A.149) and (A.153).

A.4.4 Q Measurement With Lossy Coupling

Another method by which the coupling coeÆcients, loaded and unloaded Q of a one-

port cavity may be determined is to examine the re
ection circle on a Smith chart [45].

One such example is shown in Figure A.10 for an over-coupled cavity.

Some quick information may be gathered by inspection of the re
ection coeÆcient

plotted on the Smith chart. If the re
ection circle encloses the center of the Smith

chart, then the cavity is over-coupled (� > 1). Likewise, if the re
ection circle does not

encompass the center of the Smith chart, then the cavity is under-coupled. If there is

no loss in the coupling circuit, then the re
ection circle will touch the circumference of

the Smith chart. If loss does occur, then the re
ection circle will be shifted away from

the circumference of the Smith chart and the value of the overall coupling coeÆcient

will also shift.

An equation may be developed for this circle using an equivalent circuit [21, p.

104]. The re
ection coeÆcient is parameterized as [21, p. 112]

�(Æ) =
a1Æ + a2

a3Æ + 1
; (A.171)

where Æ = 2(! � !L)=!L and a1, a2 and a3 are the coeÆcients to be �t. !L is the

loaded angular resonant frequency which is shifted slightly from the true resonant



APPENDIX A. RESONANT CAVITIES 247

Figure A.10: Output from QZERO program from [21] in which the re
ection circle

from a cavity mode is �t to �nd Q0 and �.
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frequency !0. However, this shift is quite small and is not important in our analysis.

The overall coupling coeÆcient for a device with lossy coupling is split into two

parts. One part describes the coupling to the actual cavity while the other part repre-

sents the loss due to the coupling mechanism. However, this parameterization assumes

the loss occurs within an RF wavelength and may not be suitable for distributed loss

due to long waveguides or scattering from other components. A consistency check

can be performed by comparing the results to the equations given in Section A.4.2.

The two coupling coeÆcients are

�1i =
1

2
�

1

d1i
�

1

d1L

� ; (A.172a)

�1L =

2

d1L
� 1

2
�

1

d1i
�

1

d1L

� ; (A.172b)

where d1i is the diameter of the re
ection circle given by

d1i = 2
ja2a3 � a1j

ja�
3
� a3j

; (A.173)

and d1L is a parameter representing the coupling loss and is given by

d1L =
1� j�dj

2

1� j�dj cos�
; (A.174)

where

�d =
a1

a3
; (A.175a)

�c =
a�
3
a2 � a1

a�
3
� a3

; (A.175b)

� = tan�1

�
= (�d)

< (�d)

�
+ tan�1

�
= (�c � �d)

< (�c � �d)

�
: (A.175c)

For lossless coupling, d1L = 2.
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The total coupling coeÆcient is now given by

� = �1i + �1L: (A.176)

The loaded Q of the cavity is given by

QL = = (a3) ; (A.177)

and the unloaded Q is found from the usual formula

Q0 = QL(1 + �): (A.178)

QZERO is a program presented in [21] that performs a �t to the data and outputs

QL, Q0 and �. An example of its output is given in Figure A.10.

For a two-port cavity, the techniques described above also apply since the S-

parameters, S11, S21 and S22 are all of the same form as equation (A.171)[30]. There-

fore the same �tting techniques described in [21] can be used to �nd the RF properties

of a two-port cavity with lossy coupling.

The coupling coeÆcients are given by

�1 = �1i + �1L; (A.179a)

�2 = �2i + �2L; (A.179b)
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with

�1i =
d1i

2
h
1�

�
d1i

d1L
+ d2i

d2L

�i ; (A.180a)

�1L = �1i

�
2

d1L
� 1

�
; (A.180b)

�2i =
d2i

2
h
1�

�
d1i

d1L
+ d2i

d2L

�i ; (A.180c)

�2L = �2i

�
2

d2L
� 1

�
; (A.180d)

where d1i is the diameter of the re
ection circle for S11, d1L is the coupling loss param-

eter for S11, d2i is the diameter of the re
ection circle for S22 and d2L is the coupling

loss parameter for S22. These parameters can be found from equations (A.173{A.174)

with �d replaced with S11 for d1i and d1L and likewise for S22. The loaded Q is found

from �tting the S21 circle on the Smith chart and using equation (A.177). The un-

loaded Q for the two-port cavity is �nally given by

Q0 = QL(1 + �1 + �2): (A.181)

This method for measuring the RF properties of a two-port cavity will be used in

conjunction with the methods described in Section A.4.3 to check for consistency of

the measurement results.
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SEM Pictures of Endcaps

The following pages show additional pictures of damage to the copper endcaps pre-

sented in Chapter 4. These pictures are for documentation purposes and do not

present any information additional to that which was already discussed in Chapter 4.

B.1 Endcap 1L1

Figure B.1 shows pictures of damage to endcap 1L1 with a scale of 100 �m. Figure B.2

shows various cracks on a smaller scale.

B.2 Endcap 1R1

Figure B.3 shows pictures of damage to endcap 1R1 with a scale of 100 �m. Figure B.4

shows various cracks on a smaller scale.

B.3 Endcap 2L1

Figure B.5 shows pictures of damage to endcap 2L1 with a scale of 100 �m. Figure B.6

shows various cracks on a smaller scale.
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B.4 Endcap 2R1

Figure B.7 shows pictures of damage to endcap 2R1 with a scale of 100 �m. Figure B.8

shows various cracks on a smaller scale.

B.5 Endcap 1L2

Figures B.9{B.10 shows pictures of damage to endcap 1L2 with a scale of 100 �m.

Figure B.11 shows various cracks and slip bands on a smaller scale.

B.6 Endcap 1R2

Figures B.12{B.13 shows pictures of damage to endcap 1R2 with a scale of 100 �m.

Figure B.14 shows various cracks and slip bands on a smaller scale.
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Figure B.1: Pictures of cracks on endcap 1L1 in the area of maximum temperature

rise. The length scale in all pictures is 100 �m.
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Figure B.2: Pictures of cracks on endcap 1L1 in the area of maximum temperature

rise. The length scale in all pictures is 10 �m.
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Figure B.3: Pictures of cracks on endcap 1R1 in the area of maximum temperature

rise. The length scale in all pictures is 100 �m.
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Figure B.4: Pictures of cracks on endcap 1R1 in the area of maximum temperature

rise. The length scale in all pictures is 10 �m.
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Figure B.5: Pictures of cracks on endcap 2L1 in the area of maximum temperature

rise. The length scale in all pictures is 100 �m.
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Figure B.6: Pictures of cracks on endcap 2L1 in the area of maximum temperature

rise. The length scale in all pictures is 10 �m.
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Figure B.7: Pictures of cracks on endcap 2R1 in the area of maximum temperature

rise. The length scale in all pictures is 100 �m.
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Figure B.8: Pictures of cracks on endcap 2R1 in the area of maximum temperature

rise. The length scale in all pictures is 10 �m.
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Figure B.9: Pictures of damage on endcap 1L2 in the area of maximum temperature

rise. The length scale in all pictures is 100 �m.
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Figure B.10: Pictures of damage on endcap 1L2 in the area of maximum temperature

rise. The length scale in all pictures is 100 �m.
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Figure B.11: Pictures of cracks on endcap 1L2 in the area of maximum temperature

rise. The length scale in all pictures is 25 �m.
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Figure B.12: Pictures of damage on endcap 1R2 in the area of maximum temperature

rise. The length scale in all pictures is 100 �m.
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Figure B.13: Pictures of damage on endcap 1R2 in the area of maximum temperature

rise. The length scale in all pictures is 100 �m.
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Figure B.14: Pictures of cracks on endcap 1R2 in the area of maximum temperature

rise. The length scales in the pictures are 10 �m and 25 �m.
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