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Abstract
Jiménez andMaroto ((2011)Phys. Rev.D 83, 023514)predicted that free-space, longitudinal
electrodynamicwaves can propagate in curved space-time, if the Lorenz condition is relaxed. The
presentwork studies this possibility by combining and extending the original theory byOhmura ((1956)
Prog. Theor. Phys.16, 684) andWoodside’s uniqueness theorem ((2009)Am. J. Phys. 77, 438) to general
relativity.Our formulation results in a theory that applies to both thefield- (E,B) andpotential- (Φ,A)
domains.We establish a self-consistent, longitudinalwave-propagation theory for themicroscopic
longitudinal part of the electricfield (EL).Wefirst show that the product of the parameters used
previously for the extensionof classical electrodynamics canbe expressed as a superposition of
microscopic displacementmodes,which are confined to the energy shell, |ω|=cq.We then show that
nonlinear electrodynamicmixing allows creationof longitudinal waves in the near-field region of a
source. A propagator approach gives substantial physical insight into the emission process.

1. Introduction

A1956 paper byOhmura [1] suggested two independent extensions of the classicalmicroscopicMaxwell-
Lorentz equations. One extension used double-potentials to avoid the pathological string concept inDirac’s
theory ofmagneticmonopoles [2, 3], as demonstrated byCabibbo and Ferrari [4]. Recent work [5] showed that a
non-local, space-time transformation of the electric- andmagnetic-vector potentialsmaintains aminimum-
coupling, singularity-free, photon-wave description. Ohmura’s other extension introduced new scalar
(COHMURA) and pseudo-scalar fields. OnlyCOHMURA appears in the present paper, becausewe do not include
magneticmonopoles.COHMURA is a key quantity in the special- and general-relativistic extension of classical
electrodynamics, as discussed below.

Prior toOhmura’s work, Fock andPodolsky [6] suggested a new electrodynamic Lagrangianwith a scalar
fieldwithout deriving the resultantfield equations. Other notable work under special relativity includes [7–12].

An outline of our paper follows. Section 2 deals with extended electrodynamics (EED) under special
relativity. Section 2.1 briefly summarizes the various forms of EEDunder special and non-extended Lagrangian
densities, showing that EED changes only the irrotational (longitudinal)part of the dynamics [13]. Section 2.2
discusses EED in the potential formulationwith particular attention to thewave equations for the scalar- and
longitudinal-vector-potentials. The Lorenz-gauge-breaking-scaling parameter (λ) connects the potential
description to uniqueness theorems in special- [14, 15] and general-relativity [13], involving a scalar field,
C=∇·A+c−2∂Φ/∂t.A andΦ are the classical vector and scalar potentials, respectively; c is the speed of
light; t is time.Onlywhenλ is explicitly taken into account does a self-consistent EED theory occur in both the
electromagnetic-field- (B,E) and in the potential- (A,Φ) formulations.B andE are themagnetic and electric
field vectors, respectively.We obtain−COHMURA=λC≡Cλ forλ≠1. Forλ=1, an apparent extension
arises in the (B,E) equations, while thewave equations for (A,Φ) are non-extended, hyperbolic wave equations
for all choices ofλ [13–15]. Themagnetic field is transverse, and thus is unaffected by the extension [13].
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Section 3 explains the general-relativistic (GR)EED formulation in 3-vector form [16–21]. Jiménez and
Maroto (JM) [22] extended the potential theory of general relativity to account for unexplained cosmological
phenomena. The JM theory relaxes the Lorenz gauge condition, and consequently predicts a new propagating,
longitudinal electric field. Section 4 elucidates the longitudinal (L)field propagation via a so-calledmicroscopic
L-displacement field (DL). Two remarkable properties arise for free-space propagation of the L-displacement
field (sections 4.1, 4.2). First,Cλ can be eliminated in favor ofDL. Second,Cλ is completely determined by a
plane-wave, Fourier-integral decomposition (q,ω) ofDL, inwhich only values on the energy shell enter
(|ω|=cq). Section 4.3 shows the derivation of amatter- and curvature-drivenwave equation for the
longitudinal electric field (EL). Nowave propagation occurs forEL in classical electrodynamics (CED),
although a non-propagatingEL-field exists in the free-space, near-field of a transmitter.EL plays a fundamental
role in understanding the photon-localization problem [23].

Section 5 discusses the possibility of L-wave excitation in curved space-time via a propagator formalism
(section 5.1) and in thewave-vector-frequency domain (section 5.2).We conclude that CEDprovides no direct
possibilities for L-wave excitation [22]. Near-field electrodynamics provides indirect possibilities, inwhich case
off-energy-shell contributions to the classical current density are needed. Section 6 explains our prediction for
launchingEL-waves in free, curved, space-time by non-linear opticalmixing.

We briefly summarize the results of this paper, as follows. Under special relativity, Gauss’ law
(∇·E=ρ/εo) inmicroscopic, classical electrodynamics shows that the electric field in charge-free space
(ρ=0) is transverse. Thus, only transversely-polarized electromagnetic fields can propagate in vacuum.
Extension ofGauss’ law to general relativity replaces the usual derivative (∇) by the covariant derivative (∇COV

≡ {∇μ}). These operators differ by a so-called gauge term.Gauss’ law then has an extra termunder general
relativity [∇·E=εo

−1 (ρ+ρCURV)]. The new term (ρCURV) is an ‘effective’ charge density that is associated
with the space-time curvature. The electric field nowhas a longitudinal component (EL) in charge-free space
(ρ=0).We show in sections 3, 4 that theEL-field leads to longitudinal wave propagationwhenCED is extended
to EED.More specifically, relaxation of the Lorenz-gauge condition in the potential formalism allowsEL-wave
propagation under general relativity.

To includemagnetic-monopole electrodynamics in EED,we start from the double-potential formalism
[1, 4, 5]. This approach predicts propagation of a longitudinalmagneticfield (BL). The transverse dynamics
(with andwithoutmagneticmonopoles) are unaffected by the symmetrized extension of electrodynamics.
Consequently, theEL- andBL-waves are not accompanied bymagnetic- and electric-field components,
respectively. Inclusion ofmagneticmonopoles in the present formof EEDmakes the analysis of the canonical
particlemomentum, angularmomentumbalance, and photon dynamics quite complicated. Therefore, a
detailed EED theorywithmagneticmonopoles is beyond the scope of the present work.

2. Special relativistic EED

Webeginwith the covariant notation that is used. The contravariant 4-potential is {Aμ}=(Φ/c,A), for
μ=0–3. Bold symbols denote 3-vectors. Here,Φ andA are the usual scalar and vector potentials, respectively.
The speed of light in vacuum is c=(εoμo)

−1/2; εo andμo are the vacuumpermittivity and permeability,
respectively. The contravariant 4-current is {Jμ}=(cρ, J), where ρ and J are themicroscopic electric charge and
current densities, respectively. The covariant 4-derivative is {∂μ}=(c−1∂/∂t,∇), where t is time. Indices are
raised and lowered, using ametric signature of (−,+,+,+). The covariantmetric tensor is {gμν}with a
determinant of g<0, which is shared by the contravariantmetric tensor, {gμν}. Summation over repeated
lower and upper indices is implicit throughout this work. Thewave operator (d’Alembertian) has the form,
∂μ∂

μ=∇2−c−2∂2/∂t2≡,, as denoted by the box symbol. SI units are used throughout this paper.

2.1. Extended covariant Lagrangian density
The particle component of the Lagrangian density is omitted in the subsequent description, because it is of no
importance in this theoretical formulation. The extended Lagrangian density that we use is:

. 1F I  = + ( )

Thefield (F)Lagrangian density with parameter (λ) is:

c
A A A

2
1 . 2o

F

2
2

e
l= - ¶ ¶ - - ¶m

n m
n m

m[( )( ) ( )( ) ] ( )

Thefield-matter interaction Lagrangian density is:

J A . 3I = m
m ( )
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Forλ=1, F reduces to thewell-known (not extended) covariant field Lagrangian density:

c
A A

2
. 4o

F
COV

2


e

= - ¶ ¶m
n m

n( )( ) ( )

An alternative covariant electrodynamic formulation uses the Fermi (F) Lagrangian density [24], instead of
:F

COV

c F F
A

2 2
. 5o

F
F

2
2

e
= - + ¶mn

mn

m
m

⎡
⎣⎢

⎤
⎦⎥( ) ( )

Equations (4) and (5) are equivalent, because they differ only by a 4-divergence. In equation (5),
Fμν=∂μAν−∂νAμ is theμν-th component of theMaxwellfield tensor. A formoften used in extended
electrodynamics is:

c F F
A

2 2
. 6o

F

2
2

e
l= - + ¶mn

mn

m
m

⎡
⎣⎢

⎤
⎦⎥( ) ( )

Equation (6) reduces to the Fermi Lagrangian density forλ=1,making equations (2) and (6) equivalent.
The generic formof the Euler-Lagrange equation is:

A A
. 7

 
¶

¶
¶ ¶

=
¶
¶

a
a

b b

⎛
⎝⎜

⎞
⎠⎟( )

( )

Application of equation (7) to equation (1) for F from equation (2) yields:

A A J1 . 8ol m¶ ¶ - - ¶ ¶ = -m
m n n

m
m n( ) ( ) ( )

However, all covariant gauges have the following form:

A K . 9¶ =m
m ( )

Here,K is a constant that is independent of space and time.When equation (9) holds, then equation (8) reduces
to the classical set (ν=0–3) of covariant wave equations. Thewell-knownLorenz gauge usesK=0.

2.2. Generalized uniqueness theorem
The extension to classical theory is the second (4-gradient) term in equation (8). This extension affects only the
wave equations for the scalar potential and the irrotational part of the vector potential. TheHelmholtz theorem
guarantees the unique decomposition of any 3-vector field (V) into longitudinal (L) [rotation or curl free] and
transverse (T) [divergence free] components,V=VL+VT. Consequently, equation (8) yields the following
wave equations:

A J ; 10T
o

T m= - ( )

CA J1 ; 11L
o

L l m- -  = -( ) ( )

C

t
1 . 12

o

 l
r
e

F + -
¶
¶

= -( ) ( )

The new scalar term (C≡∂μA
μ) in equations (11), (12) is:

C
c t

A
1

. 13L
2

º  +
¶F
¶

· ( )

The extension does not affect themagnetic field,B=∇×AT, as is sometimes indicated in the literature.
Indeed, equation (10) shows that transverse dynamics satisfies classical electrodynamics (CED). TheT-L
decomposition is not relativistically invariant. However,T- and L-dynamics is notmixed in a transformation
between inertial frames in relativemotion. Rather,ET andB are transformed together, whileEL and JLmix
separately.

Previous uniqueness theorems inMinkowski and pseudo-Riemann space involveC(r, t), but notλ [13, 15].
The uniqueness theorems are useful in EED, but the connection toλ has been obscure until now.We clarify the
role ofλ by rewriting equations (11), (12) as:

A J ; 14L
o

L m= - l ( )

. 15
o


r
e

F = - l ( )
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Equations (14), (15) have new terms on the right-hand side (RHS), which are:

CJ J
1

; 16L L

o

l
m

= +
-

l

⎛
⎝⎜

⎞
⎠⎟ ( )

C

t
1 . 17or r e l= + -

¶
¶l ( ) ( )

The longitudinal part of the electric field (EL) is:

t
E

A
. 18L

L

= -
¶
¶

- F ( )

A longitudinal extension of Ampère’s law arises by: use of c−2∂/∂t on equation (18); inclusion of∇2AL

−∇2AL=0 via the identity∇2AL =∇(∇·AL), knowing that∇×AL=0; simplification via the definition
ofC from equation (13); and use of equation (14) to further simplify the expression. The result is:

c t
C

E
J

1
. 19

L

o
L

2
m-

¶
¶

-  = l ( )

A longitudinal extension of Gauss’ law can be obtained by taking the divergence of equation (18); inclusion
of−∂/∂t(εoμo∂Φ/∂t)+εoμo∂

2Φ/∂t2=0; use of the definition ofC from equation (13); and application of
equation (15) to simplify the expression. The result is:

C

t
E• . 20L

o

r
e

 +
¶
¶

= l ( )

Equations (19), (20) are analogous toWoodside’s uniqueness theorem for extended electrodynamics, which
assumes onlyMinkowski space [15]. The definitions ofC in equation (13) andEL in equation (18) are uniquely
specified via the source terms, JL

l and ρλ, through the hyperbolic wave equations (14), (15). This result holds even
if JL

l and ρλ depend onC andEL, from the definitions in equations (16), (17). A dependence onEL arises (e.g., in
linear response)when JL is proportional toEL. This generalized uniqueness theorem includes the factor, 1−λ, as
expected.

Further simplification is possible by introduction of:

C C. 21l=l ( )

Equations (19), (20) can then be rewritten in the form:

c t
C

E
J

1
; 22

L

o
L

2
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-  =l ( )

C

t
E . 23L

o

r
e
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¶
¶

=l· ( )

Thewave equations forAL in equation (14) andΦ in equation (15) can then be expressed in terms ofCλ:

CA J1
1

; 24L
o

L
l

m+ -  = -l⎜ ⎟⎛
⎝

⎞
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1
. 25
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
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The divergence of equation (22) added to c−2∂/∂t on equation (23) is:

C
t

J . 26o
L m

r
= -  +

¶
¶

l ⎜ ⎟⎛
⎝

⎞
⎠· ( )

Classical charge conservation requires the RHS of equation (26) to be zero, leaving the left-hand side (LHS)
zero as well. SinceCλ is simply scaled byλ, theC-wave equation is:

C 0. 27 = ( )

Equation (27) is a source freewave equation forC (and alsoCλ). As shown previously, a gauge
transformationwith a gauge function (Λ) creates the bridge from the old (COLD=C) to the new (CNEW=λC)
C in equation (21), requiring the condition:

C C C1 . 28NEW OLD lL = - = -( ) ( )
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The effective charge (ρλ) and current (J
L
l)densities also satisfy a continuity equation:

t
J 0. 29L r

 +
¶
¶

=l
l· ( )

To obtain equation (29), we applyμo∇· to equation (16), and add the result to (εoc
−2)∂/∂t as applied to

equation (17).We then employ equation (27) plus classical charge conservation,∇·JL+∂ρ/∂t=0.

3.General relativistic EED

[16–21] showed thatMaxwell’s equations can be extended to general relativity (GR) in 3-vector notation. The
extension in [21] uses so-called generalizedmicroscopic polarization andmagnetization fields. The resultant
equations are form-identical to themacroscopicMaxwell’s equations, but with a very different physical
interpretation, as discussed next.

3.1. General relativistic CED in 3-vector form
Themanifestly covariant formof the inhomogeneous GRfield equation is:

F x J x . 30om = -m
mn n( ) ( ) ( )

TheGR covariant derivative is {∇μ}, and F
μν=∇μA ν–∇νAμ. Equation (30) is equivalent to the 3-vector

equations:

c t
B

E
J

1
; 31o GR2

m ´ =
¶
¶

+ ( )

E . 32GR

o

r
e

 =· ( )

TheGR charge (ρGR) and current (JGR) densities are:

; 33GR CURVr r r= + ( )
J J J . 34GR CURV= + ( )

Here, ρCURV and JCURV are contributions from the space-time curvature (CURV).

3.2. Extended longitudinal electrodynamics
From equations (31), (32), one obtains theCED longitudinal field equations:

c t

E
J

1
; 35

L

o GR
L

2
m-

¶
¶

= ( )

E . 36L GR

o

r
e

 =· ( )

Comparison of equations (35), (36) to equations (22), (23) shows that GREED satisfies:

c t
C

E
J

1
; 37

L

o GR
L

2
m-

¶
¶

-  =l ( )

C

t
E . 38L GR

o

r
e

 +
¶
¶

=l· ( )

A similar comparison to equations (24), (25) shows that theGRpotential wave equationswithEL from
equation (18) are:

CA J1
1

; 39L
o GR

L
l

m+ -  = -l⎜ ⎟⎛
⎝

⎞
⎠ ( )

C

t
1

1
. 40GR

o


l

r
e

F - -
¶
¶

= -l⎜ ⎟⎛
⎝

⎞
⎠ ( )

Thepotential formalism in the extendedGRLagrangiandensity (c.f., section2.1 and [19])has theparameter,λ:

g
c F F

A J A
2 2

. 41o
2

2
e

l= - - +  +mn
mn

m
m

m
m

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭( ) ( )

Application of theGREuler-Lagrange equation [equation (7)with∂α replaced by∇α] to equation (41)with
neglect of the explicit curvature couplings allows the derivation of equations (39), (40). This approach is
unneeded in the following.
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4.GR longitudinal waves

Wenext introduce a so-called longitudinal displacementfield by the definition:

D E P . 42L
o

L
GR
Leº + ( )

The longitudinal component of theGR-polarization density (PL) has the following properties:

t
J

P
; 43GR

L GR
L

=
¶
¶

( )

P . 44GR GR
Lr = - · ( )

The curvature part of the polarization density is:

P P P , 45CURV
L

GR
L L= - ( )

provided that theGRmetric tensor is known. The curvature polarization density is discussed further in
section 5.5.

4.1. Longitudinal displacementfield equations
Insertion of equations (43)–(45) into equations (37), (38) yields:

t

CD
0; 46

L

om
¶
¶

+


=l ( )

C

t
D 0. 47L

oe +
¶
¶

=l· ( )

Subtraction of the partial-time derivative of equation (46) from the gradient of equation (47) shows that
D 0,L = which is awell-known result inCED.

4.2. Elimination ofCλ in favor ofD
L

The vector fields in this work (generically denoted asF) all can be represented as Fourier integrals:

t e
d qd

F r F q, ,
2

, 48i tq r
3

4ò w
w

p
= w

-¥

¥
-( ) ( )

( )
( )( · )

with an inverse transformation:

t e d rdtF q F r, , . 49i tq r 3òw = w

-¥

¥
- -( ) ( ) ( )( · )

The position vector is r;ω is the angular frequency; and q is thewave vector with an amplitude, q. The
gradient (∇) and partial-time derivative (∂/∂t) operators transform intomultiplication by iq and –iω in the (ω,
q)-domain.Hence, equations (46), (47) become:

C
D q

q q
,

,
0; 50L

o

w w
w

m
- + =l( ) ( ) ( )

Cq D q q, , 0. 51L
ow e w w- =l· ( ) ( ) ( )

BothDL andq are in the longitudinal direction, qq q .=ˆ / DL can thenbe rewritten asDL=q DLˆ · resulting in:

D qCq q, , 0; 52o
Lw m w w- + =l[ ( )] ( ) ( )

q D
C

c
q

q
,

,
0. 53o

L
2

m w
w w

- =l[ ( )] ( ) ( )

Anon-zero solution forCλ andμoD
L exists only if the determinant of equations (52), (53) is zero, yielding:

cq. 54w =  ( )

Equation (54) has two branches of the vacuumphoton dispersion [ω=cq (ω>0)] and anti-photons
[ω=–cq (ω<0)], leading to:

C
c D cq

cq
q

q
,

, , for ;

0, for .
55o

L

w
m w w

w
=

 = 
¹ 

l

⎧⎨⎩( )
( )

( )
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In the space-time (r, t) domain, the solution forC(r, t) is:

C t c
d qd

D e cq cq

c d qd
D e cq cq

r q

q

,
2

,

2 2
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o
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( )
( ) [ ( ) ( )] ( )

( · )

( · )

Here, δ(K) is theDirac delta function. A factor ofπ appears in the first line of equation (56), arising fromour
choice ofDL scaling. Then, the factor of½ in the second line of equation (56) is convenient, when adding a term
and its complex conjugate. Integration of equation (56) overω then yields:

C t
c d q

D cq e D cq er q q,
2 2

, , . 57o L i cqt L i cqtq r q r
3

3ò
m

p
= - -l
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[ ( ) ( ) ] ( )( · ) ( · )

Substitution of q→–q in the last termof equation (57) gives:

d q
D cq e

d q
D cq e

d q
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q

q

q

2
,

2
,

2
, 58
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The last step in equation (58) relies onDL(r, t) being real, so thatDL(–q, –cq)=[DL(q, cq)]*. This vectorial
relation implies:

D cq cq cq

cq D cq

q q D q q D q

q D q q

, , ,

, , . 59

L L L

L L
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* *
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Equation (59) allows equation (57) to bewritten as:

C t
c d q

cq e c cr q D q,
2 2

, . . 60o i cqtq r
3

3ò
m

p
= +l

-¥

¥
-( )

( )
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Here, ‘c.c.’ denotes the complex conjugate. Equation (60) shows thatCλ(r, t) is completely determined by the
value ofDL(q,ω) on the energy shell, |ω|=cq.Cλ(r, t) is then composed of planewaves with awave vector (q),
propagating at the vacuum speed of light. Equation (54) also implies thatCλ satisfies equation (26)with the RHS
equal to zero for each plane-wavemode.

4.3. Longitudinal wave equations
Awave equation forDL arises by application of c−2∂/∂t to equation (46) and∇ to equation (47).We then obtain
equation (61) by subtracting the results:

D 0, 61L = ( )

since∇2DL=∇(∇·DL). Equation (61) for the longitudinal displacement field shows thatDL is composed of
energy-shell contributions alone:

t
c d q

cq e c cD r D q,
2 2

, . . 62L o L i cqtq r
3

3ò
m

p
= +

-¥

¥
-( )

( )
( ) ( )( · )

This result shows consistency in equations (46), (47), and (60).
Awave equation forEL can be obtained by insertion of the definition in equation (42) into equation (61) and

utilizing the identity, P P :GR
L

GR
L2 =  ( · )

c t t
E

P
P

P1 1
. 63L GR

L

o o
GR
L GR

L

2



e e

= = -   -
¶
¶

¶
¶

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( · ) ( )

Equation (63) then can be rewritten as an inhomogeneous wave equation, using equations (43), (44):

t
E

J
. 64L

o
GR
L

GR

o

 m
r
e

=
¶
¶

+


( )

Equation (64) is a genuine EED longitudinal wave equation. InCEDhowever, the gradient of Gauss’ law has
the form:
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E E . 65L L

o

2 r
e

  =  =
( · ) ( )

Substitution of equation (65) into theCEDEL-wave equation yields the form is analogous to equation (35),
namely:

t

E
J 0. 66o

L
Le

¶
¶

+ = ( )

As discussed elsewhere [23], thefirst-order differential equation, equation (66), plays a significant role in
understanding the fundamental limitations for spatial photon localization. The presence of the additional non-
zero term,∂Cλ/∂t, in the EED formofGauss’ law, equation (38), prevents the reduction of equation (64) tofirst-
order form.

5. Longitudinal wave emission

We introduce a longitudinal curvature (CURV) displacement field to investigate the electrodynamic excitation
of longitudinal waves in curved space-time:

D E P . 67CURV
L

o
L

CURV
Leº + ( )

By a combination of equations (42), (45), and (67), we obtain:

D D P . 68L
CURV
L Lº + ( )

5.1. Propagator formalism in the (r, t)-domain
A DCURV

L -wave equation can be derived by use of thewave operator on equation (68) and use of D 0L = from
equation (61):

D D P0 . 69L
CURV
L L  = = + ( )

Expansion of equation (69) yields the following:

c t t
D P

P
P

1
, 70CURV

L L
L

L
2

 = - =
¶
¶

¶
¶

-  
⎛
⎝⎜

⎞
⎠⎟ ( · ) ( )

since∇2PL=∇(∇·PL). The longitudinal polarization density is related to themicroscopic charge and
L-current densities via ρ=–∇·PL and JL=∂PL/∂t. These relations can be substituted into equation (70) to
obtain the form:

c t
D

J1
. 71CURV

L
L

2
 r=  +

¶
¶

( )

We take the current density distribution (J) to be localized to afinite, space-time volume,V. J and JL are
related in a spatially, non-localmanner [23].More specifically, the space-time volume that is associatedwith the
JL isVL, which is different from (larger than)Vwith both volumes evaluated at the same time. The general
solution to equation (71) is then given by:

t t

d r dt g R t
c

t

t

D r D r

r
J r

, ,

, ,
1 ,

. 72

CURV
L

CURV
L O

V

L

,

3
2Lò t r

=

- ¢ ¢ ¢ ¢ ¢ +
¶ ¢ ¢

¶ ¢

⎡
⎣⎢

⎤
⎦⎥

( ) ( )

( ) ( ) ( ) ( )

The scalar (Huygens) propagator is given by:

g R

R

c
R

,
4

. 73t
d t

p
=

-⎜ ⎟⎛
⎝

⎞
⎠

( ) ( )

TheDirac delta function is δ(R/c−τ)withR=r−r′;R=|R|; and τ=t−t′. This form guarantees an
Einsteinian retarded connection between the source location, (r′, t′), and the observation point, (r, t). The
homogeneous part of the solution, tD r, ,CURV

L O, ( ) originates in electrodynamic sources that are located outside
VL.We assume that the dynamics of the external sources are unaffected by the radiation form the sources inside
VL. NeitherV norVLhas a sharp boundary. Usually, themicroscopic current density exhibits an exponential
fall-off in the surface region due to the quantum-mechanical, wave-function spill-off, whereas the longitudinal
part has a slower algebraic falloff in general. In either case, the integration limitsmay extend to±∞.
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Wenext focus on the inhomogeneous part of equation (72):

t d r dt g R tF r S r, , , , 74L L3ò t= - ¢ ¢ ¢ ¢
-¥

¥
( ) ( ) ( ) ( )

with the definition:

t t
c

t

t
S r r

J r
, ,

1 ,
. 75L

L

2
r=  +

¶
¶

( ) ( ) ( ) ( )

5.2. Propagator formalism in the (q,ω)-domain
Section 4.2 showed that theCEDextension only affects the electrodynamics on the light-energy shells,ω=±cq.
In this view, equation (50) can be rewritten as:

cq C cq cq C cq

D q P q
q

q q

, ,

, , 0. 76

CURV
L L

o

w w w
p
m

d w d w

- +

+ - + + - =l l

[ ( ) ( )]

[ ( ) ( ) ( ) ( )] ( )

Ifω≠±cq, then the second line of equation (76) is zero, yielding P q D q, , .L
CURV
Lw w= -( ) ( ) In the (q,ω)-

domain, we obtainPL(q,ω)=JL(q,ω)/(−iω), since JL=∂PL/∂t. This last equation can be substituted into
equation (76) to obtain an enlightening form:

i D q J q J q, , , , 77CURV
L L Lw w w w= + l( ) ( ) ( ) ( )

where the last term in equation (77) is:

i
cq C cq cq C cqJ q

q
q q, , , . 78L

o

w
p
m

d w d w= - + + -l l l( ) [ ( ) ( ) ( ) ( )] ( )

The extension of CED appears in equation (77) as an additional contribution to the longitudinal current
density. Such an interpretation is reasonable, becauseCλ=λC relates to the 4-potential in equations (13) and
(21). This relation in turn leads to the longitudinal component of electric field in equation (18). SinceEL(q,
ω)=JL(q,ω)/(iεoω) in CED, then EEDwould naturally have an extension in the propagator description.

In the (q,ω)-domain, equation (74) takes the algebraic form:

g qF q S q, , , , 79L Lw w w= -( ) ( ) ( ) ( )

because equation (74) is a folding integral. The scalar propagator is then given by:

g q
q q

,
1

, 80
o

2 2
w =

-
( ) ( )

where q=|ω|/c, as the vacuumwave-number of light. The singularities of the propagator atω=±cq
correspond to the singularity atR=0 in the (r, t)-domain [equation (73)]. Contour integration over a complex
ω-plane is often used inCED. The poles are located on the real axis atω=±cq.These poles are encircled in the
upper or lower half-plane, depending on the specific application.

5.3. Near-field, off-energy-shell, longitudinal dynamics
The propagator formalism in the (q,ω)-domain reveals a ‘hidden contribution’ in equation (76) that is non-
vanishing only forω=±cq in the extension of CED.Whenω≠±cq, the agreement withCED is complete.
Consequently, SL(q,ω) in the extended theory (EXT)must be replaced by:

i

c
S q S q

J q
, ,

,
. 81EXT

L L
L

2
w w

w w
= - l( ) ( ) ( ) ( )

The structure of SL(q,ω) is given by rewriting equation (74):

i
i

c

i

c

c

S q q q
J q

J q
q

q

, ,
,

;

, , . 82

L
L

L

2

2

2

w r w
w w

w
w

w
r w

= -

=
-

-
⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( )

( ) ( ) ( )

Equation (82) can be rewritten using charge continuity in the (q,ω)-domain:

q J q q, , , 83L w wr w=· ( ) ( ) ( )
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together with the identity:

qq J q J q, , . 84L Lw w=ˆ ˆ · ( ) ( ) ( )

Substitution of equations (83), (84) into equation (82) yields:

i c
q

i
q qS q

J q J q
,

, ,
. 85L

L L

o

2

2
2 2 2w

w
w

w w
w

= - = -
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( ) ( )

Equation (85) uses the definition, q c .o
2 2w= ( )/ Three remarks about equation (85) are important. First, SL(q,

ω)=0 occurs on the light energy shell (|ω|=cq), where EED contributes a non-vanishing component via
equation (81) that is proportional toJ q, .L wl( ) Second, SL(q,ω)=0 on the light energy shell implies that the
curvature displacement field cannot be excited by a CED source, SL(r, t). Third, equation (80) shows theCED
propagator singularities in g(q,ω) that are cancelled by the factor of q qo

2 2-( ) in equation (85). Thus, we obtain:

g q
q q i

q qF q S q
J q

P q

, , ,
1 ,

;

, , 86

L L

o

L

o

L

2 2
2 2w w w

w
w

w

= - =
-
-

-

= -

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ) ( ) ( ) ( )

( ) ( )

since JL(q,ω)=−iωPL(q,ω). The inhomogeneous solution to equation (71) is then obtained by transformation
to the (r, t)-domain and use of equation (66):

t t tE r P r P r, , , . 87o
L

CURV
L Le + = - l( ) ( ) ( ) ( )

The partial-time derivative of equation (87) gives equation (35).
CEDprovides no direct excitation of longitudinal waves in curved free-space-time.However, CEDprovides

indirect possibilities. Namely, a longitudinally polarized electric field does exist in the near-field (rim) zone of
the source [21]. The rim zone extends over the spatial region of JL(r, t), or equivalentlyPL(r, t). Section 6 shows
an example of how a near-fieldEL can be used as a source for L-wave inGR.

5.4. EL on the light-energy shell
Equation (77) provides an EED expression for the longitudinal current density, J q,L wl( ) in the (q,ω)-domain.

tJ r,L
l( ) can be obtained by using by using the Fourier integral transformation in equation (48). The delta
functions in equation (77) enable immediate evaluation of theω-integration:

t
i d q C cq e

C cq e
J r

q q

q
,

2 2

,

,
. 88L

o

i cqt

i cqt

q r

q r

3

3òm p
=

+ -l
l

l-¥

¥ -

+

⎡
⎣⎢

⎤
⎦⎥( )

( )
( )

( )
( )

( · )

( · )

The second termon the RHS of equation (88) can be re-written:

i d q
C cq e

i d q
C cq e

i d q
C cq e

q
q

q
q

q
q

2 2
,

2 2
,

2 2
, 89

o

i cqt

o

i cqt

o

i cqt

q r

q r

q r

3

3

3

3

3

3
*

ò

ò

ò

m p

m p

m p

-

=
-

- -

=
-

l

l

l

-¥

¥
+

-¥

¥
- -

-¥

¥
- -

( )
( )

( )
( )

( )

( )
( ) ( )

( · )

( · )

( · )

The second line of equation (89) uses q→−q; the third line of equation (89) relies onC(r, t) being real so
that:

C cq C cqq q, , . 90*- - =l l( ) ( ) ( )

Substitution of the third line of equation (89) into equation (88) gives:

t
d q

iC cq e c cJ r
q

q,
1

2 2
, . . 91L

o

i cqtq r
3

3òm p
= +l l

-¥

¥
-( )

( )
[ ( ) ] ( )( · )

Here, ‘c.c.’ is an abbreviation for complex conjugate. Thus, generation of a current density, tJ r, ,L
l( ) launches a

longitudinal displacement field.Whenno external field exists, the scalar-propagator description yields:

t t t

c
d r dt g r

t

t

D r E r P r

J r

, , ,

1
,

,
. 92

CURV
L

o
L

CURV
L

L

2
3ò

e

t

= +

= ¢ ¢ ¢
¶

¶ ¢
l

-¥

¥

( ) ( ) ( )

( ) ( ) ( )

Thefirst line of equation (92) comes from equation (66). The second line of equation (92) arises from the
Green’s-function solution to equation (70) for no gradient in the free-space charge density. Equation (92)
implies that a rapidly varying longitudinal current density produces a strong displacement field.
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5.5. ELpropagation in curved space-time
For the following analysis, we assume that t tJ r,L¶ ¶l( )/ is non-zero over afinite space-time interval. After

t tJ r,L¶ ¶l( )/ is zero, equation (92) then implies:

t tE r P r 0, , . 93o
L

CURV
Le + =( ) ( ) ( )

In the absence of gyromagnetic effects [21], we have:

uP E. 94CURV o re e= -
 ( ) · ( )

The relative dielectric tensor is re

withCartesian elements in terms of the contravariantmetric tensor, gμν:

g g g g g . 95ij io jo oo ije = - -( ) ( )

Equations (93), (94) yield the free-spacewave equation forEL:

t tr E r, , 0, 96L e =
[ ( ) · ( )] ( )

with E Le
[ · ] as the longitudinal component of E.e

 · equation (96) reduces to equation (97) for a self-consistent
propagation of theEL-field in a spatiallyflat, expanding universe [13]:

a t tE r 0, , 97L =[ ( ) ( )] ( )

where a(t) is the Robertson-Walker scale factor [25, 26].

6. JL
l by nonlinear opticalmixing

Strong electromagnetic fields are present inmany astrophysical processes. For example, longitudinal electric-
field oscillations (e.g., plasma oscillations)may dominate, which have a frequency that is a function of the plasma
density, and themass and charge of the oscillating ions and electrons.Moreover, sum- and difference-frequency
modes are generated in nonlinear (NL) optics at lowest (second) order. Suchmodes generate aNL current
density (JNL) at the sum- and difference-frequencies for a non-vanishing susceptibility tensor, q q, ; , ,1 1 2 2c w w ( )
via the sum:

d q d
J q q q E q E q q,

2
, ; , : , , . 98NL L L

3

4òw
w

p
c w w w w w=

¢ ¢
¢ ¢ ¢ ¢ - ¢ - ¢

-¥

¥ ( )
( )

( ) ( ) ( ) ( )

The nonlinear, longitudinal current density forω=cq is:

cq cqJ q J q, , . 99L NL=l( ) ( ) ( )

Hence,EL in the source’s near-field via the generated JNL can drive L-waves in free, curved space-time. A closely
related source is current density fluctuations.

7. Conclusions

The present work provides insight into extended electrodynamics (EED) that was pioneered byOhmura [1] and
studied recently by others [8–15]. In the Lagrangian formulation, EED is described in terms of thewell-known
λ-parameter (λnot necessarily one). Previous uniqueness theorems [13–15] formulated EEDwith a non-zero,
scalarfield,C=∂μA

μ. In general relativity, EED allows propagation of longitudinal (L)waves in charge- and
current-free, space-time regions. L-waves cannot exist in free-space CED.We show that EED: (i) only affects the
longitudinal components of the fields and vector potential, and (ii)needs bothC andλ to obtain consistency
between the longitudinal electricfield (EL) and the potential descriptions (Φ,AL) descriptions.We prove that the
parameter product,λC, is completely determined by a superposition of longitudinal displacement-fieldmodes,
all of which are confined to the energy shell, |ω|=cq. This formulation predicts that L-waves can be emitted
into free-space from the near-field of a source by non-linear, electrodynamicmixing. A propagator formalism
offers substantial physical insight into the L-wave emission process.
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