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ABSTRACT

We analyze phenomenologically several models for the high-energy
scattering of hadrons through fixed, large angles. The emphasis is on
trying to isolate and understand those aspects of hadronic forces which
are important at large angles. We review the fixed-angle-lower bounds
derived from analyticity and discuss how simple geometrical concepts
can be used to guide our extrapolation of cross sections away from the
forward and backward peaks into the large angle region. This extrapo-~
lation is important in understanding whether or not we need a new, hard
component of the hadronic force to interpret the data. We try to isolate
the importar_lt features of dual models, statistical models and constituent
models and to clarify the possibility of experimental distinction between

these approaches.
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I. INTRODUCTION AND KINEMATICS
The small-t region of hadronic scattering processes has been extensively
investigated experimentally and has been subjected to thorough theoretical
analysis. [1] The Regge exchange picture which describes data in this region

has been tested, adjusted, and retested. Though it has not remained simple

through all these adjustments there seems little doubt that the approach is viable.

Those questions which are still open seem quite capable of being resolved
within the framework of the basic exchange picture.

In comparison, the description of high energy scattering of hadrons through
a fixed large angle is anything but decided. Although experimental results are
not new, [2] the topic has not attracted corresponding theoretical interest. The
one clear observation is that cross sections at fixed angles fall rapidly. This
fact, in turn, implies small experimental counting rates at high energy and
rules out the kind of detailed comparison of theory with experiment which is
possible in the peripheral peaks. At this point several quite distinct models
for the wide-angle hadronic processes are roughly consistent with experiment.
Which, if any, of these models will ultimately prove correct is unclear but the
new, high-statistics, experiments which may resolve the issue are now being
considered. It seems appropriate, therefore, to compare these models in
order to provide a framework within which new experimental results can be
interpreted.

In this paper we will consider the high energy scattering of spinless hadrons
through a fixed, large angle. The neglect of spin effects at large angles seems

reasonable and allows us to simplify the formalism. We will refer to the
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process as ab — cd and label the kinematic variables

s =(p, * pb)2
t=(, -p,) (1)
u=(@, -py)

The CM momentum of particles a and b is given by

2 _ 1 2] - 27 s
Yy = Zs [s—(ma+mb)]Ls—(ma-md) :l vy 1.2)
The scattering angle is given by
s2 +s@t- (mz+m2+m2+m2)) + (mz—m2 )(mz—mz)
_ _ a b Tc d a b'Ve d
Z =CO0S BS— (1.3)
4s 9ap %eq
Some other useful approximations at high energy include
g1 2
s
1-z)1+z) = sinzes ~ 4—% (1.4)

s

Because we are discussing spinless particles there is a single amplitude,
A(s,t) =A(s,z), which describes the process in all regions of the Mandelstam

plane and gives the differential cross section

q
o - «d L 1A@s,2)l2 (1.5)

d2 4 @r)s

and we can use ¢ invariance to write

do _ ———1—-2—— 1A, t)12 . (1.6)
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The partial wave series for A(s,t),
A(s,z) = }: 2L+ 1)a,(s) Py(z) , (1.7)
£=0

converges inside the Lehmann ellipse and will prove a valuable tool at large

angles, z @ 0. For modest angles the approximation

_ . 2 J1(77) n . 4
Pﬂ(cos ) = Jyln) +sin (6/2) T Joln) + 3 J4(n) { + O(sin 6/2)

(1.8)
where n = @£+ 1)sin(8/2) = @ + 1/2) qT/q gives a semiclassical impact
parameter representation

oo

A(s,t) = z/ bdb a(b,s)JO(qu) (1.9)
0
where
b = (¢ +1/2)
a
and

a(b,s) = 2)6)|) o bg - 1/2) -

The expression (1.8) is useful in defining, at a given energy, a distinction
between small and large angles. Small angles are those for which
20 + 1)maxsin(0 /2) is small so that an impact parameter descriptién is
appropriate.

The plan of this paper is as follows: In Section II we discuss what can be
learned from quite general analyticity principles. These results take the form
of fixed-angle lower bounds as derived by Cerulus and Martin [{3] and extended

by Chiu and Tan. [4] Precisely because the experimental fixed angle cross
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sections fall so rapidly it is interesting to examine the theoretical conditions
under which there are limitations on the asymptotic behavior. In Section III
we discuss the fixed-angle asymptotic behavior in the framework of a simple
semiclassical geometrical picture. This discussion will help clarify how the
exact nature of absorption needs to be understood in order to specify the fixed
angle "'tail” of the peripheral peaks. In Section IV we examine possible reso-
nance contributions to the fixed angle behavior in three different forms. First
we discuss peripheral direct channel resonances in the form of the so-called
direct channel Regge pole model of Chu and Hendry [5] and Schrempp and
Schrempp. [6] This is found to be an explicit representation of many of the
geometrical ideas discussed in Section III. We also discuss narrow resonance
models and give a simple argument which relates the behavior of the amplitude
at fixed angle to the asymptotic behavior of trajectory functions. Finally, we
examine the class of statistical models which result from making a random
phase assumption for the resonance contribution. In Section V we
discuss field theory or constituent models for fixed angle scattering. The
emphasis in this discussion is on obtaining some idea of the energy regime in
which the scaling laws obtained in the field theory approaches might be valid.
We also examine the assumptions which separate the constituent models from
the other models without explicit constituents.

Although several comparisons with data are included in Sections II-V, the
emphasis is on an exposition of the concepts behind the theoretical models. In
Section VI we summarize the results of the models and address directly the
question of how well experimental data can discriminate between the different
approaches. Experimental evidence which bears indirectly on the models is

also discussed, and we attempt to draw some conclusions.

(2
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II. ANALYTICITY BOUNDS AND KINOSHITA'S MINIMAL INTERACTION
Historically, one of the first formal discussions of high energy fixed angle
amplitudes was in the form of a lower bound developed by Cerulus and
Martin. [3] This work was very important in that it first showed how an
amplitude at fixed angle is constrained by analyticity postulates.
The bound of Cerulus and Martin occurs if we assume:
1. The amplitude, A(s,z), has the usual Mandelstam analyticity. That
is, it is analytic in the z plane cut from ~« to - (1 + c/qz) and from
@+ c/qz) to +« where ¢ is some constant;
2. There is a finite domain in the z-plane in which the amplitude is
bounded by sN.
Through the use of a clever conformal mapping and the application of
Hadamard's three circle theorem, [7] Cerulus and Martin showed that these

assumptions imply the fixed angle lower bound,

|A(s,z)l > d'exp l:-c(z)sl/2 ﬁns} 2.1)

where c(z) is some positive function of z =cos 6.

Aside from being a triumph in the application of complex variable techniques
to high energy physics, the bound (2.1) has turned out to have phenomenological
impact. Motivated, in part, by an empirical fit to the differential cross section

.

of pp scattering by Orear, [8]

(%) = A exp (~qy./q,) =A exp(-q sin 6/q) (2.2)

where A =34 mb/sr and 9, = 0.151 GeV/c, Kinoshita [9] proposed that the
bound (2.1) may be saturated by physical amplitudes for angles outside of the

peripheral peaks. He formulated the principle of a "minimal interaction" which
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implies that fixed angle scattering amplitudes should assume the smallest value
consistent with the general requirement of analyticity and unitarity. This hypo-
thesis implies the absence of any really "hard" component in hadronic scatter-
ing so that instead of observing frequent collisions in which hadrons scatter
through large angles we find instead the production of new hadrons at high
energy.

In order to evaluate further the significance of Kinoshita's suggestion we
must analyze the assumptions of Cerulus and Martin. In fact, the assumptions
may be too strong. In particular, assumption (2) would not hold if Regge tra-
jectories rise indefinitely so that for z # 0 there is a region of s for which the
amplitude rises faster than any fixed power. Martin [10] has been able to
rederive the bound (2. 1) under the weaker assumption that the leading Regge

singularity surface, a(t), has the asymptotic behavior
at) = 02 @.3)

Even this assumption may be too strong since dual models have linear tra-
jectory functions. For example, the Veneziano model [11] has the fixed angle

asymptotic behavior [11,12]

(A (s,z)l ~ G(s,z)exp [c(z)s] 2.4)

veneziano

which conflicts with (2.1). The Veneziano model does not have the usual
Mandelstam analyticity in that the cuts on the real axis possessed by a physical
amplitude are replaced by an infinite series of poles. It can be seen, however,
that the important facet of the model which fixes the asymptotic form (2.4) is
the existence of linear trajectories. This will be discussed more completely

in Section IV. What is important here is the fact that it is possible to have a
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reasonable amplitude with a more rapid decrease at fixed angle than the
original Cerulus-Martin bound (2. 1).

Chiu and Tan first extended the methods of Ref. 3 to discuss Regge asymp-
totics more general than (2.3). [13] 'fhey showed that a generalized bound of

the form

[A(s,z)] < exp [—c,y(z)syﬁns] @.5)

can be written and that v =1 is appropriate for a linear Regge trajectory. By
analysis of the phase contour structure of physical amplitudes Eden and Tan [14]

showed that there is a value of y

/2 <y <1 2. 6)

under which (2.5) is v‘alid. Kaiser [15] has repeated this result under slightly
different technical assumptions.

The interpretation of Kinoshita's conjecture is therefore seen to be very
dependent on which version of the fixed angle bound (2.5) is appropriate. This
is, in turn, related to the question of the asymptotic form of Regge singularity
surfaces. In spite of the many other phenomenological successes of dual
models, there is no experimental support for a falloff as rapid as than given by
(2.4). If Regge trajectories are indeed linear, or approximately so, then the
apparent absence of any exponential falloff in s would indicate a violation of the
principle of a "minimum interaction.' The question of the asymptotic behavior
of Regge singularity surfaces is, of course, extremely difficult to pin down and
without hypothesizing a breakthrough in experimental resonance spectroscopy
techniques it seems unlikely that the dual model assumption of approximately
linear trajectory functions will be either confirmed or ruled out in the near

future. [16]

B
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The possibility that singularity surfaces obey (2. 3) should therefore be
kept in mind. If they rise no faster than a square root or if there is some Jmax
beyond which there are no J-plane singularities then the original version of the
Cerulus-Martin bound is appropriate. In this case Kinoshita's conjecture has
some chance of being valid. As we shall see, the hypothesis that the bound (2. 1)
is saturated for some c(z) has a simple geometric interpretation. This form

also emerges naturally in several models. We can evaluate more carefully

what is meant by a minimal interaction through examining the models.
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III. SIMPLE GEOMETRICAL CONSIDERA TIONS
The convenience of describing hadronic scattering in an equivalent semi-
classical geometrical picture has long been emphasized. [17] Even if we had
a complete theoretical picture the translation of this theory into familiar geo-
metrical concepts would provide a useful mnemonic device. In the absence of
a definitive theory the abstraction of a geometrical picture from phenomeno-

logical analysis can aid in the development of tractable theoretical ideas.

A. The Geometry of Hadronic Scattering as Determined at Small Momentum

Transfer

The most reliable source of information about the geometrical structure
of hadrons has been Regge pole phenomenology. Because Regge fits are done
only over a limited range of transverse momentum the feature in the picture
are necessarily crude. As a practical matter we can require of models for
large-angle scattering processes that they be roughly consistent with the crude
structure deduced from the small-momentum-transfer region. We can then
apply the picture at large angles making the assumption that there is no finer
structure and the results can be used to normalize and to examine the possi-
bilities for new effects.

The basic picture of a hadron is that of an extended object with diameter
approximately 1 fm (5.1 GeV-l). In addition, we know that a hadron is fragile
in high energy collisions. The fragility of a hadron is an important dynamical
characteristic. It means simply that a hadron is likely to break into pieces in
a collision. Collisions of hadrons bear certain similarities to collisions of
ordinary macroscopic fragile objects (such as glass ashtrays) except that the
pieces of a hadron are themselves hadrons or groups of hadrons. As indicated

schematically in Fig. 3.1, the hadrons in a collision usually emerge retaining

%%
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the direction of the momenta of the incident particles. When there are only
two particles in the final state, the assumed fragility tends to mean that the
event was either diffractive or peripheral.

The distinction between diffractive and peripheral scattering injects an
important nonclassical element into the discussion. We will attempt to under-
stand diffraction as the feedback of other processes back on the elastic channel
so that a diffractive component of the elastic amplitude must be present at all
impact parameters at which a collision takes place. {18] In order to under-
stand the diffractive component, it is obviously important that we know some-
thing about production processes. There are many approaches to diffractive
processes which involve making simple approximations for the production
amplitudes. [19] It is not our purpose to review here these efforts but it is
obvious that the overall geometrical picture we are discussing here depends on
the nature of diffraction.

There is also a nondiffractive peripheral component in two-body processes.

In Regge language this peripheral piece corresponds to quantum number exchange.

It is not, however, the exchange of a simple Regge pole. A single Regge pole
contains contributions at small impact parameter while our intuitive notion of
fragility suggests that a collision at small impact parameter is unlikely to lead

to a final state with only two hadrons. Phenomenological Regge models imple-
ment this dynamical constraint by absorbing the low partial waves of the Regge
pole. Absorption consists of modifying a single Regge pole exchange with cor-
rection terms corresponding to cuts as indicated in Fig. 3.2. There is consider-
able disagreement among practitioners of Regge fits both about the precise
nature of the basic Regge pole exchange and the treatment of the many-body

intermediate states in the Regge cut diagram in Fig. 3.2. [20] All of the
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various approaches agree to some extent with the implications of our semi-
classical notion of fragility in that quantum number exchange amplitudes tend
to be large only within a band of impact parameter corresponding to the edges
of the hadrons. As shown in Fig. 3.3 this feature of nondiffractive scattering
also emerges from the more-or-less model independent extraction of ampli-
tudes from data.

Since we are interested here in fixed-angle scattering, it is important to
notice that these peripheral processes necessarily involve a smaller range of

partial waves than the diffractive ones. The uncertainty principle in the form

-AL(s)A6

A(s, cos 8) > c(s)e 3.1)

can be used to relate the size of the fixed angle amplitude to the ""coherence

length" AL in angular momentum. Diffractive partial waves are roughly coher-

b
_ _ . 0 1/2 _ . .
ent from { =0outto £ =L = 58 where bO = bo(s) is the diameter of a

- hadron so that using (3.1) we can get

A .-(s,cosﬂ 5 exp{———q-sl/ze} 3.2)

If bO(s) grows logarithmically with s the simple uncertainty principle result
coincides in form with the lower bound of Cerulus and Martin. [3] This can be
understood as giving a rough geometric interpretation to the analyticity assump-
tions of Ref. 3. In models with linear Regge trajectories we see we can have

some type of coherence out to £ =L

~ a's which gives the weaker bound of
max

Chiu and Tan. {13]
The peripheral or edge scattering should then dominate over diffractive
Lperlph. This

scattering at large angles since it has a smaller coherence, A

range is governed by the amount of overlap that two relativistic hadrons can

=
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have such that they exchange quantum numbers but do not fragment. This
defines in some sense a "'skin depth'" of the hadrons. We obviously need a very
detailed theory of absorption in order to obtain a quantitative expression for the
skin depth. In simple models where Regge cuts are built iteratively from pole
exchange such as indicated schematically in Fig. 3.2 the absorptive cuts are
damped relative to the poles by logarithmic factors. In this case the exchange
amplitude eventually behaves at fixed angle much like the diffractive amplitude.
There seems, however, to be no fundamental reason why this iterative approach
to absorption must be correct so we must consider a wider range of possibilities
for ALP erip h. Among these are growth corresponding to 2 ring in impact

parameter space

ALperiph = (M) Sl/Z (3.3)

\ 2

where b1 - b2 < bO' It is also possible that

ALPETIPR o s (3.4)

or even that it becomes asymptotically constant. At this point we can do little

more than compare the various possibilities with data.

B. Simple Classical Model for the Forward and Backward Peripheral Peaks
It is an amusing exercise to consider a simple classical model for peri-

pheral scattering, This exercise helps us understand under what conditions

the peripheral amplitude can be important at large angles and give at the same

time a reasonable description of the forward and backward peaks.

i
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Assume that the partial waves of a nondiffractive amplitude are given by

. 1/2 1/2
h (s) ean(S) £ /bOS - bOS +c
g e\” 2 ¢ T3

a,(s)

aﬂ(s) 0 otherwise . 3.5)

In (3.5) hﬂ(s) is a smooth function of £ and is real and positive while the phase,
n Q(s) = 7 (s), does not depend sensitively on ¢ over this range. We then have

a nondiffractive amplitude

(%)bosl/z +c
An'd(s,cose) A @0+ 1) hy(s) Plcos 8)  (3.6)

(%)bos I/z -C

The assumptions on the partial waves are quite severe and not necessarily

realistic. Presumably a physical absorption mechanism would change both the
phase and the modulus of the partial waves. By making hﬂ(s) positive and by not
separating even and odd partial waves we are imposing a''classical" definition
of the forward direction for the process ab — cd and ignoring parity.

In the forward direction the nondiffractive amplitude (3.6) can be written

AR (5 0) = 116) g0 bosl/z <h(s)> (6.7

1/2
bOS

2

J =

where the bracket denotes mean value. We now require the forward amplitude

to have, within logarithmic factors, Regge asymptotic behavior,

a1 (0)

AM% 5 0) ~ BO) s (3.8)
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Let's assume that the trajectory intercept on(O) is the same as that empirically
observed in hadron scattering, aM(O) ~ 1/2. We can combine (3.7)and (3. 8)

in the form

5(0) o-in(s) gy (0) - 1/2

c(s)<h2(s)> ~ 55 8 (3.9)
0

Under our assumptions, the r.h.s. of (3. 9) is a slowly varying function of s.

From (3.5) we have

b
cE) < o g1/2 (3. 10)
and from generalized partial wave unitarity,
hys) < 1. (3.11)

Within the context of our simple model there are several ways in which we can
get a slowly varying function of s on the left hand side of (3.9). The extremes

are that

c(s) = const. (3.12)

which "saturates' the unitarity bound with a fixed or slowly varying number of
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partial waves, or that

h,(s) ~ ds” V2
bOS1/2
L= 5
b, -b
c(s) = vz—y-l— 51/2 (3.13)

where a ring of nearly fixed width in impact parameter is filled with partial
wave amplitudes which vanish asymptotically.

The second possibility, (3.13), is closer to the situation which emerges
from simple absorptive corrections to Regge exchange but since we cannot pre~
tend to understand the total effect of all the absorptive corrections we cannot
yet rule out the possibility (3.12) or some form of intermediate behavior.

Using (3. 1) we see that the slower the growth of c(s) the larger the asymptotic
cross section at fixed angles.

In the backward peak,

(%) bosl/2 +c

A% g ) = NE) \4 @2+ 1)hys) (1) (3.14)
be681/2 -c
If we write
g,6) = @n+1)hy (5)- @n+3)h, . () (3.15)
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then the assumed smoothness of'hﬂ(s) makes this well behaved and we can write

&) b0s1/2 +c/2

AVd g gy = o7 (S)» L g (s) 3.16)
&) bys™? - c/2
= ein ) c(s) <gn(s)> (3.17)
b sl/2
0
ne —

Since gy represents the difference between two partial waves of different
parity we do not have a constraint from partial wave unitarity. Our classical
picture would expect it also to be bounded by a constant but, for example, if
the positive parity partial waves were systematically larger than the negative
parity ones g (s) could grow with n.

If we wanted a semiclassical picture of, for example 7N scattering where
the backward peak has power behavior characteristic of baryon exchange

ozB(O) =~ 0 we might expect

<hﬂ(s)>
- = const. (3.18)
<gﬁ/2(s)>
so that
A% 4 0) 1/2
—3 2 o Zbo(s)s (3.19)
A7 (s,T)

Although we have not dealt here with spin constraints we have seen that, at
least for mnemonic purposes, it is possible to think of both forward and back-

ward nondiffractive scattering occurring within the same peripheral band of
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partial waves, It therefore makes sense to consider the extrapolation of this
simple picture to the intermediate angles between the two peaks and this extra-
polation is important to the question of whether we see anything "new' at large

angles.

C. Geometry as a Constraint on Models for Fixed Angle Scattering
Straightforward application of the uncertainty relation (3. 1) can then give
bounds or constraints on scattering amplitudes at large angles. Let's, for
example, in the spirit of Kinoshita's conjecture, [9] assume that there is an
absence of fine structure so that the uncertainty relation can be interpreted as

an approximate equality for some AL(s).

ﬁ—%:—:%)) ~ exp {—AL(S)@} o< /2 (3.20)

For pp scattering we can ask whether (3.20) can be valid with AL(s) determined

by the diffractive channel alone,

b
ALE) = - s1/2 (3.21)

with b0 ~1fm (.1 GeV-l). We take this size to be the approximate width of a

gaussian b-space amplitude which describes pp scattering and, to first approximation,

neglect shrinkage effects.
g2 %% (s, 8 =7/2) < exp {—5.1% \/E}

o exp {—8.0 s1/2} 3.22)

which is much more rapid than the experimental falloff as seen in Fig. 3.4. We
conclude that diffraction is negligible at 90° and that a geometrical model for

pp scattering must contain a peripheral component as well as a diffractive one.
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The best fit of the data in Fig. 3.4 to a form

{
s 92 s, 0 =7/2) ocexp{-(mo)-z7£ sl/zj- (3.23)

where Ab can be interpreted as the width of the peripheral band in impact

parameter gives
Ab = 0.48 fm . (3.24)

in rough agreement with the width of the band of partial waves inferred from Kip
scattering in Fig. 3.3. We could get different numbers from fitting different
portions of the curve, however, since the data does not follow a simple exponen-
tial.

More direct evidence for a peripheral component in pp scattering is found
in a geometrical interpretation of structure in the polarization data. This is
discussed in some detail by Hendry and Abshire [22] to whom we refer the
interested reader. This is important since a straightforward application of
duality or exchange degeneracy ideas might imply that pp is entirely diffractive.

Detailed fits to the shape and energy dependence of pp scattering which
embody these simple geometric ideas have been presented by Chu and
Hendry. [28] These fits are excellent at all angles and reproduce some quite
complicated structure.

A comment on the applicability of geometrical concepts is in order. In
Section V we will discuss field theory models for large angle processes. In
these models the large-angle scattering is due to the pointlike constituents of
the hadrons. The fixed angle differential cross sections fall off with a large
power of s such as s—8 or s-lo instead of exponentially like (3.23). We could

reproduce the fixed-angle behavior of these models if we allowed the band of

'y

<
=
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important peripheral partial waves to grow logarithmically with s as in (3. 6)
instead of as \/s_ We cannot be sure if this type of interpretation of these
constituent models is correct since, because they do not introduce a distance
scale, there is no way of calculating in these models what the diameter of a
hadron is and what a peripheral collision is. However, an extremely interest-
ing development in the interpretation of constituent models for hadrons has been
the formulation of so-called ""bag models." [24] These models allow both for
the quasi-free behavior of the constituents and for the comparatively sharp
boundaries of the composite hadrons in a natural way. It would not be sur-
prising to find that a version of the bag model could incorporate the concept of
fragility we have discussed here. If this can be done it would represent a
major step in the interpretation of collision processes.

Without a complete understanding of the binding mechanism it is difficult
to know whether a hard scattering between two point constituents represents a
"mew" component of the hadronic cross section. If the constituents or partons
are located randomly in the interior of the hadron this component would add
incoherently to the tail of the small angle contributions we have considered
here. One test for the region of validity of these models, therefore, is that
fixed angle contribution of peripheral quantum number exchange be negligible.
To a certain extent this can be guaranteed only after detailed amplitude
analyses at different energies clarify the situation. At this point it is not clear

that we need such a new component.
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IV. RESONANCE CONTRIBUTIONS AT LARGE ANGLES
Resonance formation in hadron collisions provides a strong clue to the
strong interaction force and resonance spectroscopy is therefore an active
subfield of high energy physics. Large angle may be a particularly fruitful

place to investigate the properties of direct channel resonances.

A. The '"Direct Channel" Regge Pole Model

An interesting approach to the inclusion of direct channel resonances is
due originally to Chu and Hendry. [23] This is the suggestion that direct
channel resonances can be approximately accounted for by a "Regge Pole'" in
the direct channel. That is, we presume that the partial wave amplitude for
spinless particles contains, in those channels with nonexotic quantum numbers,
a contribution

pole - f(s)
& B = TTaENEFIFaB) (4.1)

where a(s) is a complex trajectory function. This corresponds to an amplitude

of the form

fs)P -
Apole(s’z) _ ©) .ozgsz( z)
sin Ta(s)
6 #0. “.2)

where Pa (z) is a Legendre function. In the strict forward direction, 6 =0, the
partial wave series (1.7)with (4.1) diverges but this can be handled by intro-
ducing some extra convergence factor in the sum over £ without altering sig-
nificantly the validity of the approximation (4.2) away from the forward direc-

tion.
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Chu and Hendry [5, 23] originally parameterized separately the s-channel
helicity flip and nonflip amplitudes in 7N scattering in terms of a central com-
ponent given by a gaussian and a peripheral resonance component given by pole
term analogous to (4.1). With a fair amount of freedom allowed by fitting
separately the parameters at different energies they achieved a good fit to the
differential cross section and polarization data at all angles. Typical fits to
Tp— TP, 7r+p —_ 7r+p and 7 p — 7°n are shown in Fig. 4. 1.

The fits of Chu and Hendry should be considered an explicit parameteriza-
tion of the simple geometrical ideas discussed in Section III. They verify the
connection of the central component with diffraction and the peripheral component
with quantum number exchange. The fits offer a convenient way of summariz-
ing a great deal of data.

B. Schrempp and F. Schrempp [6,25] have formulated a quite similar
s-channel Regge pole model which they call the dual peripheral model. This
model is motivated to some extent by the dual absorption model of Harari. [26]

They take from the dual model the decomposition of the amplitude
A(s,t) = V(s,t)+V(s,u) +V(u,t) “.3)
and then use an amplitude very similar to AP le (s,z) in (4.2) for the terms with

s-channel poles. A major improvement over the approach of Chu and Hendry is

that Schrempp and Schrempp use a specific complex trajectory function
1 . s
as) = -5 —_— q!Zn\e—— e “4.4)
with R =1 fm in order to enforce the basic geometrical structure of a hadronic

scattering event. With (4.3) they are also able to impose crossing relations.

They show how their peripheral dual model explains a great deal of the

=
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systematics of 0~ %-*- -0 %+ reactions. A good example of the predictions
are those for polarization in 7p — KA(Z) and crossed reactions illustrated in
Fig. 4.2.

Still another fit involving a direct channel Regge pole has been done by
Kondo, Shimizu and Sugawara. [27]

One thing that can be done with the explicit form of the scattering amplitude
(4.2) is to check the asymptotic fixed-angle behavior and compare it with our
expectations based on the uncertainty relation (3.1). Inserting the asymptotic

form for P, (-cos §) valid when Rea — = into (4.2) we get

pole - f(s)
[A (s,cos 0)l {sin(WRe a)cosh(rIm o) + cos(TRe @) sinh(w]lma)]

2 1/2p 9 1/2
(wla [sind, Ls1n ((Rea+ -—)(71— 6) +—) +sinh? (Ima (- 9))]
‘ 4.5)

If Ima is also large this simplifies to
1/2
) 7 exp {—Imoz 0}

(4.6)

2f(s) ‘ [ 2
sin(r Re @) + cos (7t Re &) \wlozlsi‘ne

1AP°1 (s cosg)l ~

Since Im « in the Breit-Wigner form of (4. 1) determines the width, AL, of the
band of partial waves which are important this is in agreement with the estimate
of the amplitude based on (3. 1).

If the direct channel Regge pole model is valid we can use the relation (4.6)
which gives the shrinkage at fixed angle to compare with the value of Im a(s)

which determines the total widths of the peripheral resonances through

M, = Ima(MZ) 4.7)
NTN Reoz(M2 Rea =N .
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One important qualification concerning the use of the direct channel Regge
pole model exists. Taken at face value, it implies that only those channels with
nonexotic s-channel quantum numbers and, hence, resonances should have a
peripheral component in the amplitude. This agrees with the basic ideas of 2-
component duality and exchange degeneracy. However, we have already noted
that the interpretation of the pp elastic polarization data given by Hendry and
Abshire [22] requires a peripheral band of partial waves in at least one of the

helicity amplitudes in this process.

B. Fixed Angle Behavior of Meromorphic Amplitudes

The asymptotic behavior at fixed angle of the Veneziano model [28] was
discussed in Section Ias an example of the violation of the original form of the
Cerulus-Martin bound. [3] We would like to present here a simple way to
estimate the fixed angle asymptotic behavior of a more general class of mero-
morphic functions (functions whose only finite singularities are poles). This
exercise is instructive and, if we assume Veneziano's interpretation {29] of
dual models as being a realistic approximation of physical amplitudes, will give

us some ingight into the possible behavior of the data. The convenient feature

of meromorphic amplitudes is the absence of any normal threshold singularities.

Because of this we can use simple analyticity arguments to discuss asymptotic
behavior in terms of the spacing of poles and zeros.

Suppose we have a crossing-symmetric meromorphic amplitude which can
be decomposed

A(s,t) = M(s,t) + M(s,u) + M(t,u) (4.8)

in the usual way. The function M(s,t) has poles located on the real axis at

a(sN) =Nand at a(tM) =M. We want to get an estimate of the asymptotic

3
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behavior of A(s,t) as s — o with t/s = -¢ fixed. At high energy using (1.3)

g o 1£Z “.9)

In this limit the Beta function has the behavior [11,12]

&

I'(=>= Res) 1/2

I'(-s)T'(-t) T (27T§Res> [rRes + Joe (L
T(-s-t) | /g = P(1+—i§_TgRes) 1-¢ exp{ll_ﬁw es + Ims log( E)]}

x exp{ResI:g log ¢ + (1-£) log(l—ng - 12_ (III%SS)Z +O(I§;i)}
(4.10)
which simplifies to (2.4). | {30]
We can get a fairly good estimate of the fixed angle asymptotic behavior
without knowing the specific form for the amplitude M(s,t) in terms of Beta
functions. Consider the argument principle {31] applied to the function

Fg(s) = M(S, -£ S),

n, (. F) -0 0 F) = g /ds -]i?) (4.11)
Y

Here v is a closed contour which does not intersect any poles or zeros, nZ('y, F)
is the number of zeros of F, and np(*y, F) is the number of poles of F contained

within y. For simplicity we can choose 7y to be the closed circle

s =Re? e, 2m @.12)

with the understanding that, if necessary, we treat separately the regions near

¢ =0and 9 =7 where we might be close to poles or zeros.

s
s
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By our definitions, the number of poles enclosed in this contour is given
by
np('y,F) = [e®)] +[a(¢R)] +2 4.13)

where the brackets denote the greatest integer function. We will assume that

the trajectory function grows indefinitely and that asymptotically it has the

simple form

o) ~ bsB 4.14)

Then the 1.h.s. of (4.11) is large and negative. The fastest growth occurs in
the situation where the number of zeros is small compared to the number of
poles.

Let hg (s) =-In F(s), as R — « suppose we have an asymptotic approxima-~

tion to h(s) and h'(s), that is, there is some h(o)(s) such that

~ p{®
hys)~ b7 )

4.15)
1 - wO)
hg (s) ~h ¢ (s)

for son 7.

In this case the statement of the argument principle 4. 11) assuming (4. 14)

and (4.15) is

2T

L do e'? h(g)' ®e'?y ~ c@)RP @. 16)

In the absence of systematic cancellations in the integrand of (4.16) we can conclude

1 - B‘l
hg(s) |s e y = 067) (4.17)

LS
%
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where the power B is the same as that which gives the asymptotic behavior of
the trajectory function. If we assume that, except for exceptional points, the

logarithm is suitably smooth we get

M(s, &) ~ exp {-g(g)sﬁ} 4.18)

The agreement with (3.1) can be understood by noting that Mmax 2 o (s) in this
amplitude.

It is an important question whether this strong connection between fixed-
angle behavior and the trajectory functions is more general than merbmorphic
amplitudes. The derivation of fixed angle bounds suggests that this might be
the case. However, we might expect that in a unitary, physical amplitude that
Regge poles do not determine the fixed-angle behavior but that Regge cuts
dominate. Because of this expectation, the work of Ellis and Freund [31] is
interesting. They claim that in dual models with loop corrections where the
dominant singularity remains linear, a(s) ~ a's, that the asymptotic expres-

sion
A(s,z) ~ expj—oz's f(z)} (4.19)

remains valid. The expression (4.19) is actually verified only at the one-loop
level but Ellis and Freund conjecture that it is a general feature of unitarized
dual models.

This conjecture conflicts with the approach to dual models which takes

r

seriously the resonance spectrum of the dual born terms but assumes that the
primary effect of the uni‘tar}i‘zation procedure is to break the tremendous degen-
eracy of the mass spectrum. This latter approach emphasizes the connection of

dual models to the statistical models which we will discuss more fully in
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Section IV. C. Since there is no evidence for the rapid falloff (4.19)a resolution
of this difference in interpretation is important to the continued viability of dual

models.

C. Statistical Models

One line of thought which gives an alternative to constituent models for
describing large transverse momentum phenomena can be grouped roughly under
the general heading of "statistical models.!" These approaches have a venerable
history [32] in the time scale of the development of ideas concerning hadronic
processes. Much of the present thinking can be traced to the work of
Hagedorn [33] and Frautschi. [34] There are many ways of motivating the
"statistical" approach but perhaps the most direct and instructive is to form
an analogy between hadronic physics and nuclear physics. We will briefly
review this analogy [35] here in order to place in perspective the application of
statistical models to large angle exclusive processes.

The diagram in Fig. 4.3 gives a rough indication of the energy levels in
nuclear physics and hadronic physics.

In nuclear physics there are roughly three energy regimes. At low energies
there are a few well defined resonances or energy levels which can be calculated
in shell models. There is an intermediate energy range in which the number of
levels is large and the levels can be treated statistically. There is evena
small overlap region where the number of levels is large but they have not begun
to overlap so that we can '"verify'" the statistical approximations to some extent.
The situation in hadronic physics is similar even if not so clear cut. At low
energies there are well defined levels which are described nicely by the quark
model. At higher energies there appear to be more resonances but it is not

completely clear where statistical approximations are relevant. Of crucial

By
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importance is the absence of an upper bound on the energy range of the statis-
tical region. Most treatments assume that such a bound does not exist or, if it
does, is located at super-asymptotic energies where free quarks can be created
and that this energy is high enough to be ignored. In view of the fact that reso-
nances overlap already at low energies, it seems impossible by traditional
methods, such as phase shift analysis, to establish whether or not very high
mass resonances exist and we have to follow our physical intuition. [36]

In nuclear physics it is acknowledged that amplitudes in the resonance
region are saturated by the direct-channel resonance contributions. In hadronic
physics we also have to consider contributions corresponding to resonances in
the crossed channel. It is also not completely clear the role that diffractive
processes play in hadronic physics. One assumption that is usually made is

then the Freund-Harari hypothesis: [37-38] a finite fraction of nondiffractive

amplitudes is given by the direct channel resonances. Once the existence of
high-mass resonances in hadronic scattering amplitudes is assumed there are
two ways of going about the derivation of the level density. The first is a self-
consistent or "bootstrap' approach advocated by Hagedorn and Frautschi.
Assuming a fraction, f, of the s~channel nondiffractive amplitude is saturated

by resonances we have the "unitarity' constraint

p(m) '(m) = 5= Nm) .20)

where p(m) is the level density. I'(m) the average total width and N(m) is the
number of open channels. We are already bringing in some statistical assump-
tions to say that (4.20) is valid on the average. The number of open channels,
N(m), in turn depends in a nonlinear way on the level density, p(m), and by

solving the '"bootstrap' equation with assumptions about I'(m), we can obtain a
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form for p(m). The level densities of Hagedorn and Frautschi can be para-
meterized asymptotically
a m/ kTO
p(m) ~bm e 4.21)
There are some technical differences in the approaches which give different

values of a. The value of kT, is derived by Frautschi and Hamer [35] and

0
determined independently by Hagedorn [33] to be approximately

kT, = I = m_ 4.22)

Notice that the expression (4.22) for the density of states is not valid in
exotic channels such as pp or K+p. One failing of the statistical approach is
that selection rules have to be put in by hand. [39]

Instead of the bootstrap approach, one can analyze the level density of
specific models. Krzywicki [40] has argued that the level density (4.21) is
implied by the basic assumption of duality. Examination of specific dual
models [41] has confirmed the validity of this level density under these
assumptions. A different asymptotic level density can be found, for example,
in the quark model of Feynman, Kislinger and Ravndal [42] but both agree on
the number of intermediate mass states. The difference between the level
densities is not likely to be resolved directly.

In the statistical model the behavior of amplitudes at large enough angles
to be away from the forward diffractive peak and other "coherent" effects is
presumed to be given by the incoherent sum of the resonances. It is not clear
that the incoherent effect will necessarily dominate the coherent '"tail" of
peripheral exchange effects considered in the naive geometrical model of

Section III. It may be true that the resonance contribution should be important
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at an intermediate range of energies. We are making a random phase approxi-
mation for the large number of resonances.
If we consider the process ab — cd, neglecting spin and assume that in the

region of interest |A l2 can be approximated by the incoherent sum of resonances

) 3 i+ 1) P (cos8)(ypy ) (og)
[A(s,z)] o = — 5 ) (4.23)
§ =90 i g (v s - m, ﬂ) +1/4 I‘i g

The sum in ¢ extends over the range fe (0, qR), where R is a typical hadronic
radius. If we neglect the dependence of the residues over this range we can

factor out the ¢ dependence

@20 +1)2 Pi@ose)

=[M&(=[M%

£(s,0) = (4.24)
2L+ 1)
and deal with the appropriate average quantities in the form
2 2
o @M (v (Ve (V) p(Vs) £6s,0)
[A,z)|” = 4.25)

T(vs)

Now the further statistical assumption of equal partition of probability among

channels
O VI (V5 )
= — = 4.26)
r(’s) r(\/s) p(Vs)
allows us to simplify further
dg ~ _1 Tk £ (s,0) (4.27)

A2 g = 90°  641%s  p(Vs)



- 32 -

By simple space-time arguments we know that a resonance cannot decay

before a signal can pass across a typical hadronic radius and that

I'(vs) = 0(/s ) 4.28)

The statistical bootstrap model gives, of course, a specific prediction for both
I( \/s_), (4.22) and p(\/g ) 4.21) and has been compared to data by Eilam,
Gell, Margolis, and Meggs. [33] There is only an overall normalization factor
corresponding to b in (4.21), the expression for the density of states and a
small ambiguity concerning the value of kTO' Fits to_vrip and pp elastic scat-
tering at 90° are shown in Fig. 4.4 and compared to the power behavior of
constituent models. The agreement is good.

A major flaw in the approach is that no predictions are made for the behavior
of fixed angle cross sections in exotic channels. One possible way around this
is to extend the observed spectrum to exotic channels and just state that the
density of states in exotic channels is small. This would then imply, for

example

do/dQ pp — pp
= = >> 1 4,29
do/dQPp —~ PP |, ~ o ®.29)

IR

+ +
do/dOQK p ~K'p 5> 1 . 30)
0

do/dQKp - K p le =~ 90

which is in agreement with present observations. It would also seem that the
naive approach would imply large fluctuations about the mean in such exotic
channels. This is not observed as we will discuss in the next section. Pre-
sumably, the correct answer for exotic channels involves getting the spectrum

in nonexotic channels right and then implementing crossing. This can be
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investigated in the context of dual models but is somewhat outside the range of

the straight statistical models.

D. Ericson Fluctuations in Hadronic Physics

One way of testing for existence of overlapping direct channel resonances
is to look for Ericson fluctuations. [44] These are well known in nuclear physics
where, in the region of overlapping resonances, peaks and dips are attributed
not to individual resonances but to fluctuations in the number and couplings of
the overlapping resonances. The differential cross section in p+.56Fe—> p+56Fe [45]
pictured in Fig. 4.5 is a particularly clean example of this effect.

If high mass direct channel resonances are a feature of hadronic scattering
we would expect to see these oscillations in hadronic cross sections as well.
The equations (4.26) and (4.27) should be expected to have corrections of order
/2

2 _ T(J/s 1/2
(VBN = SEEL v/ MYy (. 31)

4

The period of these oscillations in energy is expected to be on the order of
( \/s— ). The average resonance width can therefore be determined if fluctuations
are observed and there period measured. In principle, the magnitude of the
oscillations can be used as an indirect measure of the density. In hadronic
scattering this is not too reliable since, for example, the p(\/—s—) in the statistical
bootstrap model (4.21) varies over the period of one oscillation (4¢.22). It is
also not clear whether oscillations should be attributed to the fluctuations in ('y)2
or the interference of fluctuations in y with a coherent background.

Experimental searches for Ericson fluctuations in pp scattering have been

made. Allaby et.al. {46 ] looked at 16.9 GeV/c over a range of angles and

-
i



-34 -

Akerlof et.al. [47] looked at ch =90° over a range of energies. Both results
were negative. This would argue against trying to take the same statistical
approach in pp scattering as in pp except for allowing the density of states in
exotic channels to be small since this would imply large fluctuations.

Frautschi [35] has interpreted structure at 180° in 7 p —n p and 7T+p —->7T+p in
terms of interference of statistical fluctuations with a coherent background.
This is shown in Fig. 4.6.

F. Schmidt et.al. {48] have looked at wip —»wip at large angles and at

two nearby energies near 5 GeV/c. The structure they see, Fig. 4.7, is indica-

tive of Ericson fluctuations although it would be more clear cut if more energy

bins could be examined.

The search for Ericson fluctuations provides an important experimental tool

for deciding on the existence of overlapping high mass resonances. If fluctua-
tions are found in a given energy range it would tend to support the interpreta-
tions of the energy dependence of fixed angle cross sections in terms of direct
channel effects. Simple constituent model explanations should probably not be

applied at energies where there are such direct channel effects.

TR
=
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V. CONSTITUENT MODELS AND SCALING LAWS
The models we have discussed so far have all contained an explicit dis-
tance scale which governs the asymptotic behavior of fixed angle cross sections.

/2

In the dual resonance model [29-30] the scale is determined by (oz')l where
a' is the slope of the dominant Regge singularity. In the other approaches a
scale is determined by the size of the hadrons, [9] by their peripheral "skin
depth'" [5,6] or by the level density of excited states. [33,34] We now want to
examine the possibility that the large-angle scattering of hadrons results from
the pointlike interaction of elementary constituents. This approach is largely
motivated by the fact that simple quark models explain crucial elements of
hadron spectroscopy [42,49] while quark-parton models provide a good descrip-
tion of structure functions in deep-inelastic electron scattering. [50] Although
composite hadrons are not necessarily neat surgical probes of their own
structure, there is, in the context of specific models, a strong connection

between electromagnetic form factors and structure functions and high-energy

fixed-angle hadronic scattering.

A. Constituent Counting Scaling Laws

Brodsky and Farrar {51] have studied the scattering of composite objects
in renormalizable field theories. They begin by studying diagrams such as those
shown in Fig. 5-1. Neglecting the binding energy between the quarks in these
diagrams it is necessary that all constituents of the same hadrons have equal
momenta. In the kinematic region where t and u are large and proportional to
s (the fixed-angle region) the CM energy of each constituent is then proportional
to \/; Dimensional arguments indicate that the invariant amplitude has dimen~
sion

d = Qength)* ™ | G.1)
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where n is the number of external lines. If \,/s— is large compared to any

masses in the problem the fixed-angle amplitude should be proportional to
B -n+4
A®(s,2) «<Ws) , G.2)

From this point, the basic assumption is that there is a scale-invariant inter-
action between the quarks so that the binding of the quarks in the hadron does
not modify this simple result. Brodsky and Farrar have therefore examined
the assumption that this free—quark Born diagram has the same behavior as the
physical amplitude in specific field theories. They find, for example, that
diagrams like 5. 1d can contribute a finite number of logarithmic factors but
the result (5.2) is approximately valid for the physical amplitude unless some
set of these diagrams sums to build up a new power. Diagrams such as 5. 1e
do not change the behavior (5.2) provided the bound-state wave functions are
finite everywhere.

One exception to the Brodsky-Farrar rules has been reported by
Landshoff. {52] He has found that the diagram shown in Fig. 5.2 dominates
over the Brodsky-Farrar terms when there is a scale-invariant quark-quark
scattering. There are reasons, within the context of specific models, [53]
why diagrams such as that shown in Fig. 5.2 may not be important but there is
still a great deal yet to be understood on this point.

Whatever the diagrammatic justification for the Brodsky-Farrar rules, they
must be considered an outstanding empirical success. The formula for the
fixed-angle differential cross section,

-(na+nb+nc+nd) + 2
(dO‘/dt)ab —ed ™ ft/s) s , (5.3)
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combined with usual quark-model assignments for the particles has shown
remarkable success for correlating the systematics of the different processes.
The comparison between the prediction, (5.3), and the result 6f fitting the data
at 90° to a simple power law is displayed in Table 5.1. [54-56
The empirical success of (5.3) is all the more remarkable in view of the

fact that the original assumptions, including the neglect of binding energies
between the constituents, would seem to rule out the application of (5.3) in
energy regumes where resonant effects are important. However, there is sub-

stantial evidence for 7N resonances of mass M > 3 GeV. This is in the middle

N
of the range in which (5. 3) is compared with data in Table 5.1. It may be that
there is a new principle resembling the original form of Dolen-Horn-Schmid
duality [58] which allows us to apply this type of asymptotic formula with no
corrections even at very low energies. One of the problems in understanding
the fact that there is no experimental evidence for unbound quarks arises from
the ability of free-quark formulas such as (5. 3) to successfully describe data.
The very existence of high mass resonances is an interesting question in the
context of field theory models because of the bearing such states have on the
nature of the constituent binding mechanism.

One explicit dynamical model for the role of constituents in fixed-angle
scattering is that of Blankenbecler, Brodsky and Gunion. [53] In this approach
it is assumed that any direct interaction between quarks from different hadrons
is absent or suppressed. The fixed-angle scattering is assumed dominated by
the interchange of constituents. The identification is made between the hadronic

constituents and the carriers of the electromagnetic current in order to relate

the fixed-angle hadronic cross sections to form factors.
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The expression for the fixed-angle invariant cross section in this model

is of the form
A(s,z) < s Fa(s) Fc(t) Fd(u) I(z) (5.4)

where the F's are form factors and I(z) is some smooth function. There is some

question whether this expression is appropriate for a 3-quark proton. With a

dipole proton form factor (5.4) predicts an s_12 behavior for the pp elastic

cross section which conflicts with the Brodsky-Farrar value in Table 5.1. In

other reactions the predictions of (5.4) agree with the constituent counting rules.
In the constituent interchange model the connection between fixed-angle

behavior and fixed-t behavior of amplitudes can be studied. The fixed-angle

power behavior is found to join on smoothly with the Regge regions providing

that Regge trajectories approach negative constants at large momentum transfers.

For meson channels, the prediction is

tlim_wam(t) =-1 (5.5)
where am(t) is the trajectory which, for example, determines large-t mp elastic
scattering. This prediction is connected with the question, mentioned earlier,
of the existence of high-spin, high-mass resonances. Experience with potential
models [59] where (5.5) is valid combined with the usual analyticity properties
of trajectory functions makes it difficult to reconcile (5.5) with an indefinitely
rising resonance spectrum at positive t. Studies of effective Regge trajectories
may be able to decide whether (5.5) is a better representation of the data than a
linearly falling trajectory as we will discuss later. It is important to note that

the prediction (5.5) is to be valid in exotic channels as well as those with
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nonexotic quantum number exchange. That is, it should describe the fixed-t
behavior of 7 p — K =~ as well as 7 p — 7°n.

It should be noted that the constituent interchange model makes a lé,rge
number of predictions for inclusive and semi~-inclusive processes as well as
fixed-angle scattering and that its success in correlating a large amount of
data has been surprising. A more thorough discussion of the model is outside
the scope of this paper and we refer the reader to the review of
Blankenbecler. [60]

In a different interpretation of constituent models Fishbane and Quigg [61]
have discussed the ratios of cross sections at 90° under the assumption that
they are proportional to the number of ways the constituents of a and b can be
recombined to form c and d. This assumes the complete dissociation of the
hadrons in a hard collision and the absence of any interference effects. For
example, the ratios of the cross sections for pp — pp and np — np are obtained

by making the usual quark model assignments of u (up) and d (down) quarks

P (wud)

n = (udd) (.6)

In a pp collision the number of ways we can reform to protons out of a collection

(uuuudd) is

4) (2 _
(2/ (1> = 12, (6.7)
while in an np collision we have to reform a proton and a neutron out of (uuuddd)

with probability.

(g) (‘;’) =9, 5.8)

&
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The prediction of Fishbane and Quigg is then

do/dt(pp — pp) -2
dog/dt(pn — pn) 90° 9

, 5.9)

a value which is in rough agreement with data. These combinatorics provide
several other interesting ratios which should be compared with data. [61] It is
important to notice that Fishbane and Quigg assume the "'standard" quark model
instead of colored quarks. It is interesting, within the assumptions associated
with complete dissociation, to investigate how sensitive these ratios are to

different constituent schemes.

B. Other Field Theory Models

The picture of Blankenbecler et.al. [53] discussed above is not the only
approach to fixed angle scattering based on field theory which has some
phenomenological backing. Fried, Kirby and Gaisser [62] advocate a picture
where the scattering of hadrons through large angles occurs from a single hard
exchange modified by the effect of exchanges of soft, virtual neutral vector
mesons between external hadronic legs. They achieve an approximate wide

angle formula

g—g— (s,z) = (d(r/dt)H S(s,z) (6.10)

where (do/dt)H is the Born approximation for single hard meson exchange and
S(s,z) is the effect of all the soft external leg insertions. From this point, they

fit some parameter and then use the relative strength of physical w-couplings
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to make some nontrivial predictions. In this model

do/dt(pp —pp)|  ~ a s 12

900 1
do/dt(mp —7p) o 566 6.11)
do/dt(yp — 7p) ~ ag 5760

90°

In this model pp and kp elastic scattering have the same s-dependence in view

of the strong w-coupling to KK. The appearance of fractional powers in (5. 11)

is not attractive and the systematics of Table (5.1) favor the simpler Brodsky-

Farrar powers but this work is important in that it shows that, within the con~

text of field theories, it is hard to justify the neglect of external leg insertions

since, with physical coupling constants, they can significantly modify the power

behavior. The assumption in the Brodsky-Farrar approach that these are un-

important needs further examination.

Preparata [63] has conducted a thorough investigation of large angle scatter-

ing within the framework of a massive quark model. The basic postulates of this

model are:

(1)
(i)
(iii)

@iv)

v)

Quarks are the fundamental constituents.

The mass of a quark can be considered very large.

Hadrons are bound states of quarks with zero triality.

Green's functions display Regge behavior at high energies and decrease
rapidly in the masses of external quark legs.

Physical amplitudes can be constructed by an iterative procedure in

the number of intermediate quark legs.
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In this approach the interchange diagrams of Ref. 53 are suppressed com-

pared to the diagram in Fig. 5.3. The results of the calculation yield

2 2
dO7dtMB‘ ~ log (s/p”) £ _(z =0)
0 8 MB
90
5.12)
2 2
do/dtBBl ~ Eg—ff’)—/f‘—l g =0)
90

which agree with the Brodsky-Farrar rules. The fact that this model makes a
definite prediction for the number of logarithmic factors is probably not signifi-
cant for experiment. Rather it should be emphasized that the results are quite

similar to those of Blankenbecler, Brodsky and Gunion in spite of the fact that

the starting point is quite different.
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VI. SUMMARY AND CONCLUSIONS

Although we have not attempted a complete review of the theoretical
approaches to large-angle scattering, we have discussed a large number of
models with a wide variety of predictions for the asymptotic cross sections.
The models and their predictions are summarized in Table VI.1. The first
order of business for a phenomenologist would seem to be the comparison of the
predictions in this table with experiment in order to decide which model is
"correct''. However, the problems involved in making a direct comparison of
all these models with experiment are considerable. In spite of the fact that the
asymptotic forms in Table VI. 1 show large differences, the differences in the
predictions of the models at energies where data is currently available are
actually quite small.

Only three different models can be ruled out by a straightforward compari-
son with present data. The dual model with linear trajectories makes the pre-
diction (4.10). This fast falloff of the fixed angle cross section with s is simply
not indicated by the data. The question of whether the bad, fixed-angle behavior
should in any way '"'discredit" dual models is intriguing. The flaw should prob-
ably be considered minor in view of their other successes. As indicated in
Section IV the behavior follows rather directly from the linear trajectory func-
tion and the degeneracy of states with the same mass and different angular
momentum. This degeneracy may not survive a "unitarization" of the model
and so the problem of the dual model's disagreement with fixed-angle scattering
data is not considered serious by many proponents of the dual approach.

A second viewpoint which can be ruled out by the data is the strictest geo-
metrical interpretation of Kinoshita's minimal interaction where the scale is

determined by the size of hadrons. This is essentially the diffraction dominated

=23
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geometrical model discussed in Section III (see Fig. 3.4). It should be noted,
however, that the original formula by Orear, [8] Eq. (2.2), remains in sub-
stantial agreement with large angle scattering. If we relax the geometrical
interpretation of Kinoshita's conjecture then his approach is not particularly
meaningful but it cannot be ruled out.

The final approach to fixed angle scattering which can be ruled out is the
behavior of pointlike hadrons interacting through a scale invariant force. This

would predict a behavior for elastic scattering similar to that in QED

g—‘t’ ~ f(z)s"2 (6.1)

The most that can be said about this type of behavior is that it is evidently not
significant at current energies. We will not say anything more about (6.1)
here.

The remainder of the models discussed in this paper can still be considered
active contestants in the field. The differences in their predictions for the
fixed angle behavior do not work out to be large at present energies. In order
to distinguish these models directly and convincingly it would seem as though
we need two or three more decades falloff in the experimental data. The situa-
tion of having many theoretical models which cannot be distinguished at present
energies but which diverge slowly as energy increases seems a fairly typical
situation in particle physics. However frustrating it may be for experimenta-
lists wanting a fast straightforward experimental test, it looks like unraveling
fixed-angle models will take a lot of time. An important possibility is that new
experiments will discredit all the remaining models simultaneously. It would be
very convenient if theorists received a clear signal about which approach is

correct. As it is, those who emphasize the connection of large-angle scattering
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with weak and electromagnetic phenomena will be drawn to the constituent
approach while those who view wide-angle scattering as a continuation of
small-angle hadronic effects are provided with several convenient mass scales.

There are several important subsidiary questions in the discussion of large-
angle scattering problems. The first is the problem of high-mass, high-spin
resonances. A few years ago, in the heyday of dual models, it seemed heretical
to doubt that such resonances exist. There have since occurred several develop-
ments which have tended to shake this belief. The first, and most important,
result was experimental — the failure of the Northeastern-Stony Brook {64 ]
group to confirm the S, T,U enhancements reported by the CERN Missing Mass
Spectrometer. [65] These bumps fitted nicely on a linear p-A2 trajectory
complex and gave comfort to those who held the dual model viewpoint.

Theoretical developments such as models for scaling, asymptotic freedom,
etc. have tended to support constituent binding schemes in which it is awkward
for trajectories to rise linearly. The essence of the parton model and the
constituent interchange model discussed earlier is an idea of free or
quasi-free constituents. We do not need high mass resonances in these consti-
tuent models and the assumption that the fixed angle behavior is given by a simple
power becomes clear only when we are "above' the resonance region. We do
not understand these models well enough to know whether the results might also
be good at lower energies, but this is an area where considerable theoretical
progress might be made.

Resonance spectroscopy therefore can provide a very important set of input
into the area of knowledge concerning large-angle scattering. As we get to the
masses where the phase shifting techniques are unable to make progress then it

is important to have other evidence concerning resonant effects. The

o iad
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Ericson-Frautschi fluctuations discussed in Section IV are an excellent place

to start. Further experimental evidence concerning these fluctuations would be
very important. The predictions made by Frautschi {35] in the framework of
the statistical bootstrap models rely specifically on the assumption that average
resonance widths are approximately (mﬂ) and that the exponential mass spectrum
of the statistical model is valid. Some kind of fluctuations should appear,
however, whenever resonance contributions are important at fixed angle and
their presence should be considered strong evidence for high mass resonances.
Whether or not the resonances have the properties predicted by the statistical
bootstrap (or some other) model is a harder question which is not easily
susceptible to test by the fluctuations.

Relevant to the quesﬁon of whether or not we are in an energy regime where
the simple constituent counting laws of Brodsky and Farrar [51] are apt to be
valid is the paper of Hendry. [66] He points out that there is a great deal of
fixed-t structure in the cross sections which intersects the fixed-angle behavior
at current energies. This structure is easy to understand in the geometrical
model of Chu and Hendry {23] discussed in Section III where it corresponds to
structure in the Legendre functions which approximate the amplitudes. It is
also possible to understand the structure in terms of Odorico zeros {67] in a
resonance approach but it is not a feature of any simple class of field theory
diagrams.

The graphs in Fig. 6.1 illustrate Hendry's point. It should be noted,
however, that straight lines which interpolate the dip structure in these diagrams
have a slope which is very close to the predictions of Brodsky and Farrar. This
again may be a case where, for some unexplained reason, an asymptotic form

extrapolates quite well into regions where it is not strictly applicable.

v
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It is quite important to consider how predictions for fixed-angle connect
up with the fixed-t behavior. One of the attractive features of the Chu-Hendry
parameterization was that it provided a simple expression which covered the
entire angular range. This feature has subsequently been supported by the work
of Schrempp and Schrempp using the geometrical model at large, fixed t.

While not providing a description of the complete physical region there has
been a considerable effort to extend the Constituent Interchange Model from
the fixed-angle region into the fixed-t region. [53] This effort has resulted in
predictions for the large-t behavior of Regge trajectories. Let us consider

here the status of the predictions

lim a (t) = -1

t— P

lim o (t) = -2 (6.2)
t = bp

This prediction can be tested by measuring the effective trajectory in TP — ™n
and pp elastic scattering.
Barger, Halzen and Luthe [68] have calculated an effective trajectory in pp

scattering using

in cdl_g Pp —pp) = (2aeff(t) -2)fins +n B(t) (6.3)

This is shown in Fig. (6.2). Blankenbecler et. al. [69] have calculated the

effective trajectory in Fig. (6. 3) using
do
I = (P —DPP) = @ g(t) -2) M(-u) + M B(t) (6.4)

which they claim is more consistent with the duality properties of the pp elastic

amplitude. The differences in the t-dependences of these two trajectory functions

w
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is primarily due to

2 ( t—4m2>
n(-u) = s+t -4m ) = fn(s)+n |l + . (6.5)

and so the fact that the trajectory of Barger et.al. falls below -2 should there-
fore not necessarily rule out (6.2).

Possibly more significant evidence concerning the large-t behavior of Regge
trajectories is the study using Finite Energy Sum Rules of the amplitude struc-
ture of T p — n. Elvekjar, Inanie and Rungland [70] report that the large t
region the amplitudes are very similar to what is expected from a simple p-
Regge pole with a linear trajectory. In particular they point out the right-
signatui'e zero at t =-1,6 and a second wrong-signature zero att = ~2,4-2.5
consistent with the places where a linear trajectory would pass through -1 and
-2 respectively. Their results are shown in Fig. 6.4 . There is some feed-
back through the "optimized convergence' finite energy sum rule of the form
assumed for the trajectory function and the structure in the amplitude. However,
if this structure is confirmed independently, for example, by amplitude analysis
at large t then it would argue quite strongly for the existence of indefinitely
falling trajectories.

A final word of caution is appropriate about the dangers of concentrating on
one aspect of hadronic interactions, such as fixed-angle scattering, and drawing
sweeping conclusions about models. Clearly, what we want is a theory which
explains all the data: inclusive and exclusive. What we have tried to do here
is to try to decide which aspects of such a theory might be particularly sensitive

to experimental knowledge on fixed-angle scattering.
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FIGURE CAPTIONS
This diagram schematically suggests one of the basic features of collision
processes of fragile hadrons — absorption of low partial waves in the
2 — 2 channels. A central collision is more likely to fragment one of
the incident hadrons and contribute to a many-body final state as indicated
in Fig. (@). The low partial waves in a 2-2 amplitude are suppressed
leaving a peripheral component such as shown in (b).
Typical approach to absorbing the low partial waves of a Regge pole.
This figure taken from Ref. 21 demonstrates the geometrical difference
between diffractive and nondiffractive scattering. Diagram (@) gives the
Legendre coefficients for the "amplitudes'' in K+p and K p elastic scatter-
ing showing the presence of a central "diffractive" component. Diagram
(b) shows the same thing for the difference of K p and K+p and represents
peripheral quantum number exchange. For more details see Schmid;
Ref. 21.
32 do/dt for proton-proton scattering at 90°. If we ask for a peripheral
component then the data are roughly consistent with (3.26) with a Ab= . 48
fm. The falloff of the data is too rapid to be due to diffraction with
b= 1fm.
The differential cross section at 5 GeV/c for ’1T+p — 1r+p (diagram A),
T p — 7 p (diagram B), T p — n (diagram C). The curves are the fits
of Chu and Hendry explained in more detail in Ref. 23.
Figure taken from Ref. 25 where more details of the model can be found.
The curves compare predictions of the dual peripheral model of Schrempp
and Schrempp for the polarization.

Sketch of Energy Levels in Nuclear Physics and Hadron Physics.
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(@) 7 p elastic scattering data are compared with the theoretical pre-
dictions of the statistical model of Ref. 43 with kTO =140 MeV  (Solid
line). The dashed line represents a form s_8 which corresponds to the
asymptotic behavior of constituent models.

(b) Same for 7r+p elastic scattering.

(c) Data on pp scattering are compared with the theoretical predictions of
the statistical model of Ref. 43 with kTO =140 MeV (Solid Line). The

dashed line represents a form s 10

appropriate for the asymptotic
behavior of statistical models.
do/dQ for p + 56Fe p+ 56Fe at energies around 9.4 MeV. Taken from
Ref. 45.

+ + 0 0 .
Data ondo/dt for m p — 7 pat 0 and 180 . The structure in the back-
ward data is interpreted by Frautschi as evidence for Ericson Fluctua-
tions. For more details see Ref. 35.

Data from Ref. 48 showing fluctuations with energy of 7rip elastic cross

sections near 5 GeV/c. The quantity A is defined as

do(E + AE) - do(E)

A do(E + AE) + do (B)

where AE =36 MeV.

Typical Diagrams considered by Brodsky and Farrar in Ref. 51.

A diagram investigated by Landshoff [52] which does not obey the Brodsky-
Farrar constituent counting power law (5.2).

Diagrams for large-angle scattering in the massive quark model of Ref.

63.

(@) Structure in dg/dt for 1r+p scattering pointed out by Hendry. [66]

(b) Same for pp.
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Effective « in pp scattering from Barger, Halzen and Luthe. [68]
Effective o in pp scattering from Tran Than Van, Gunion and
Blankenbecler. {69]

Structure in amplitudes in 7 p — ~n suggesting a second wrong signa-

ture zero. [70]
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TABLE 5.1

Process Constituent Power Exp;;‘;r]gintal range /s
YN TN 7 7.3+0.3 [54] 2.8-3.8
K(I)Jp Kip 8 8.5+1.4 [56] 2.2-3.4
K,p A 8 7.4+1.4 [56] 2.0-4.0
Kp — 72 8 8.1+1.4 [56] 2.3-3.4
Kp — K'p 8 7 +1  [55] 2.0-3.6
T p T p 8 8 1 [57] 2.0-4.1
p Tp 8 7 +1  [55] 2.0-3.5
PP PP 10 9.7+0.5 (2.5-6.1)
pp pp 10

=
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TABLE VL 1

Comparison of Models for Fixed-Angle Hadronic

Scattering Processes

A. Models with an Explicit Mass Scale

Fixed Angle

Model Mass Scale Behavion Section
Dual Models [11,12] ~1/2
with linear trajectory (") exp{—oz‘s f(z)] Im, Iv
aft) =a(0) + o't
Minimal {9] ~ 1 (f.m)”1
Interaction (1/b0) diameter of exp{-bo Vs f(z)} IL, II

hadrons

Statistical [33-35]
Bootstrap By f(z)exp {— ‘/S—/m'/r} v
Fragile Hadrons [23-25] inverse of
s-channel Regge ""skin depth" exp{—(Ad) \/s_ 9} I, 1v
pole Ad ~ 1/ Mp
B. Models with Pointlike Interactions
Constituent Counting {51] 2-n
Power Laws f(z) s v
Constituent [53] f(z) s for
Interchange pp if proton A%
Model quark + "core"
Heavy Quark [63] f(z) (tns )2 s 8N
Model fz) @ns’s 0NN v

Soft Virtual [62 ]
Neutral Vector
Mesons

Quark-Gluon [50]
1" QEDH

(no generalization)

-11.2
S pp, Kp

™

-2
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