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ABSTRACT 

A method is proposed to calculate quantum numbers on solitons in 

quantum field theory. The method is checked on previously known examples 

and, in-a special model, by other methods. We find, for example, that 

the fermion number on kinks in one dimension or on magnetic monopoles in 

three dimensions is, in general, a transcendental function of the 

coupling constant of the theories. 
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Peculiar quantum numbers have been found to be associated with 

solitons in several contexts: 

(i) The soliton provides, of course, a different background than the 

usual vacuum around which to quantize other fields. The difference 

between these "vacuum polarizations" may induce unusual quantum 

numbers localized on the soliton.lD3 

(ii) Solitons may require unusual boundary conditions on the fields 

interacting with them, in particular leading to conversion of 

internal quantum numbers into rotational quantum numbers.4-6 

(iii) In the case of dyons, there is classically a family of solitons 

with arbitrary electric charge. The determination of which of 

these are in the physical spectrum requires quantum-mechanical 

considerations and brings in the e-parameter of non-Abelian 
._ 

gauge theories.7*8 

At present all these phenomena seem distinct although there are 

suggestive relationships. In this note, we shall concentrate on (i), 

proposing a general method of analysis and working out a few examples. 

Polymer Chains: An intuitively appealing, and perhaps physically 

realizable, example of the phenomena we are addressing are the fractionally 

charged solitons on polyacetylene.2y3*g A caricature model of a poly- 

acetylene molecule is shown in Fig. l(a) - in the ground state we have 

alternating single and double bonds, which may be arranged in two in- 

equivalent but degenerate forms A and B. If there is an imperfection, 

as shown in Fig. l(b), we go from A on the left to B on the right. This 

configuration cannot be brought to either pure A or pure B by any finite 

rearrangement of electrons, so it will relax to a stable configuration - 
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a soliton. If we put two imperfections together, as in Fig. l(c), we 

find a configuration which begins and ends as A. Compared to the . . 

corresponding segment of pure A, it is missing one bond. If we add an 

electron to the two-imperfection strand, we can deform this configuration 

by a finite rearrangement into a pure A strand. (We are pretending, for 

simplicity, that each bond represents a single electron instead of a pair.) 

Interpreting this, we see a two-soliton state is equivalent to the ground 

state if we add an electron. Thus, by symmetry, each separated soliton 

must carry electron number -l/2 (and electric charge +1/2 e). 

We can relate these stick-figure pictures of polyacetylene to field 

theory as follows: Let dl > d2 be the internuclear distances characteri- 

zing single, respectively double, bonds. Define a scalar field which is 
. 

a function of the link i by qi = (-l)'(d-%dl -%d2), where d is the 

-internuclear distance for link i. Thus in the A configuration $i = 

%(dl -d2> (independent of i), in the B configuration $i = -%(dl-d2), 

and in the soliton configuration @i interpolates between these values. 

Now we can show that it makes sense to approximate @i by a continuum 

field and the interactions of the electrons with 0 (a charge-density 

wave) by 5?I = g$v5$$, furthermore the electrons can be treated for 

present purposes (near the Fermi energy) as relativistic particles. 

In this formulation, we make contact with the work of Jackiw and 

Rebbi.l They found that the spectrum of the Dirac equation-in the 

presence of a soliton contains a zero-energy solution. BY symmetry, 

this solution is composed of (projects onto) half a positive-energy and 

half a negative-energy solution with respect to the normal ground state. 

Thus if we fill the zero-energy level, we have a soliton state with 

electron number +1/2, if we leave it empty, the electron number is -l/2. 
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Su'and Schrieffer have described a generalization,1° which occurs in 

a chain with a repeating unit of single-single-double bonds, as in Fig. 2. . . 

A slight modification of the discussion of Fig. 1 shows that we now have 

solitons which can be added in triples to give the normal ground state, 

deficient by one electron. We expect the electron number of a single 

soliton to be -l/3. 

A field theoretic model must now have essentially new features. 

Jackiw and Rebbi emphasized that in their model the Dirac equation in the 

presence of a soliton has a charge conjugation symmetry, and then their 

interpretation of the zero modes cannot account for any charges other than 

half-integral. Thus we will consider models where the background destroys 

all symmetries which interchange positive and negative energy solutions of 

the Dirac equation. 

Adiabatic Charge Flow: Our method of calculating the soliton quantum 

number will be to imagine building up the soliton by slow changes in fields, 

starting from the ground state. In order to reach the solitons by slow 

changes, we may have to enlarge the field space during intermediate stages, 

as we shall see. In any case, for slow variations of fields in space and 

time, we can readily compute the flow of the appropriate charge in the no- 

particle state. We then simply integrate to find the accumulated charge 

on the soliton. 

Let us illustrate these remarks on a concrete example. We consider, 

in l+l dimensions, massless fermions interacting with two scalar fields 

41 and 9, as follows: 

2 I = 8(+, + iY5@, > J, (1) 
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Now if $1 and $2 are slowly varying in space and time, i.e., their 

gradients are << g(4:+$;)', we may conveniently calculate the change in 

the expected value of ju = $yuJ, in the no-particle state by considering 

the Feynman graph of Fig. 3. Since the interaction (1) is chirally in- 

variant, we may first suppose that only @,#O at a given point, and then 

express the result in a chirally symmetric form. We then need only do a 

very simple calculation for an effectively massive fermion to find 

'a av 'b 1 vv 

Id2 
=YF v a tan-l ? . (2) 

If the scalar fields do not propagate (they represent very massive 

particles) more complicated graphs need not be considered. 

If in the end we reach the soliton state by slow changes, we need 

~only to evaluate (2) to find the fermion number charge on the soliton. 

It is important to remark that the resulting state will be a true eigen- 

state of the charge, not a superposition of states of different charge 

(even though we only derived an expectation value). For this it is only 

necessary to note that there are no degenerate states of different charge. 

In this the localized charge on a soliton differs from, for instance, the 

"localized charges" of l/2 on the top and bottom of an ammonia ion. 

Two general features of the result deserve comment. First, the 

divergence auj" vanishes identically, reflecting the conservation of 

fermion number. Second, the charge Q = 
/ 

j"dxl = & A(tan-1+2/$l) is 

independent of the coupling constant g and depends only on the values 

of 0, and +2 at spatial infinity. 
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We can represent a massive fermion by fixing $,=m/g. If the theory 

supports a soliton for which $,(x) -t +v as x -f +m, we find 

Q=$tan m -1 fl . 

Notice this is a transcendental function of the couplings! As m -t 0, we 

find Q +- l/2; this is the Jackiw-Rebbi case of a single (linear) scalar 

coupling. The limit m -f 0 is delicate just because there are two de- 

generate states of charge +1/2 in the limit. If we take m=O from the 

beginning adiabatic changes will fill these equally on an average. The 

current would vanish. A slight perturbation lifts the degeneracy. Of 

course the charge -l/2 state is reached by letting m -+ 0 through negative 

values. 

A field theory version of the chains of Figs. 1 and 2 is the inter- 
._ 

action 

% 
iW5 

=glCle do (4) 

for which we find 

<j'-'> = & EFIV ave 1 , Q=gAe . (5) 

The solitons with 0 varying from 0 to T (so two together give 0 + 2~r N 0, 

equivalent to vacuum) have charge l/2, with 0 varying from 0 to 21~/3 

charge l/3, etc. 

Bosonization: Some 1+1 dimensional models become especially trans- 

parent if the method of bosonization is employed. In l+l dimensions, one 

can rewrite fermion fields as nonlocal expressions in boson fields." 

Some bilinears transform in a simple local way, however: 
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i$y5$ + usin2J;; $ 

(u = arbitrary scale parameter). Thus the interaction (4) becomes in 

this representation 5?'T = gl.r cos(26 @- 0). Now if 0 in a soliton varies 

by A(3 from --m to +m, the potential -9 is minimized when (p = e/2&; in 

particular, A$ = A0/2&. Integrating Gy"$ = a,$/&, we find the charge 

A0/2~, as from our earlier derivation. 

3+1 Dimensional o-Model: Although the o-model proper does not 

support finite-energy solitons, we can consider a fermion interacting 

with external fields of this type. This proves useful as a warm-up for 

the gauge theory monopoles to be discussed shortly. 

The interaction Lagrangian is of standard form: 

with J, an isodoublet fermion field. 

We compute the induced current as in the l+l dimensional examples, 

from graphs as in Fig. 3. A straightforward calculation leads to 

<j'> = 
1 paBYE 

dabc 'daa'aa$'bay'c * (6) 

With this form, aP<j'l> E 0. This, of course, indicates that only the 

behavior at spatial infinity determines the charge, since changes in the 

fields in a finite volume lead only to current flows in a finite volume 
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and therefore do not change the total charge. In fact, if we take 

$0 = m/g; $a . . = iaG>fW , a=1,2,3, where ia + vx,/Ixl as 1x1 + Q), 

and evaluate the current flow at infinity, we find a fermion number 

$ (e - sine c0se) , tanf3 = E (7) 

which + l/2 as m -t 0. 

Gauge Model, Magnetic Monopoles: We may extend this analysis in a 

simple way to the monopole solutions of non-Abelian gauge theories by 

simply gauging the SU(2) x SU(2) chiral symmetry of our o-model. In the 

end, we can specialize by setting the axial gauge fields to zero, and 

fixing a fennion mass (4, = constant). 

The expression (6) for the current is changed in the first instance 

by the conversion of ordinary to covariant derivatives, 2+-V E a+eA. 

This is not sufficient, however, since this minimally modified current 

is not conserved. The current 

<j'> = 1 E WBY 
121T2 edabc @a$) a('@$, tvy$) c 

+ 4 2 eF 'd 
aS,ab 1~12 ('y')c 

I 
(8) 

obeys au<ju> E (-e2/128s )E 2 CGY~ 
sabcdFaB,abFy6,cd' This is the expected 

anomaly and vanishes when we have only vector gauge fields as in the 

monopole. The coefficient of the second term in (8) can be checked by 

evaluation of the diagram in Fig. 3 with one gauge field vertex inserted. 

We now take I$ as before and Aab = iab(g); A,,=O, a,b=1,2,3, where 

i and i are the monopole fields, and find the current flow at infinity. 

Since (Vi$)a =O at infinity, the only contribution comes from taking 



-9- 

y=d=O in the second term of (8) and gives for the fermion number 

- tan-l gX e@ 

4a2 m (9) 

where @ is the magnetic flux out of the sphere at infinity. Since e@ = 47r, 

this gives fermion number l/2 when m -t O! 

Remarks: The direct utility of our results for particle physics is 

highly problematical. Even if magnetic monopoles were found, their fermion 

number is not a reasonable quantity in standard theories. (In principle, 

we could imagine coupling a U(1) gauge field to the fermion number, so 

the calculation is not entirely content-free!) We do think the results 

are an interesting curiosity in quantum field theory and as such may 

eventually be useful. It is likely that kindred, but experimentally 

accessible, effects do arise in condensed matter systems. 

._ 
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FIGURE CAPTIONS 

Fig. 1. (a) The two degenerate ground states for electronic structure 

of polyacetylene. 

(b) An imperfection interpolating between the two ground 

states. 

(c) A chain with two imperfections. 

Fig. 2. A form of polymer with single-single-double bond pattern in 

-the ground state. 

Fig. 3. Vacuum polarization graphs for evaluation of induced currents. 



(a) 

l +A/\//\//\-0 
(b) 

6-81 Cc) 4143Al 

Fig. 1 



. . . - - = - - = . . . 

6-81 4143/v 
. 

Fig. 2 



4’ ‘k 
Current 
Fermion 

-- x Scalar 
6-61 4143A3 

Fig. 3 


