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Jake Vernon Bennett

AN AMPLITUDE ANALYSIS OF THE π0π0 SYSTEM PRODUCED
IN RADIATIVE J/ψ DECAYS

Despite many years of study, a complete understanding of the interactions of

quarks and gluons within hadronic states remains elusive. Quantum Chromodynam-

ics (QCD) has long predicted the possibility of states in which gluonic excitations

can contribute to the characteristics of the state (a hybrid) or even take the place of

constituent quarks altogether (a glueball), yet no incontrovertible evidence yet exists.

This is partially due to the nature of the low mass spectrum, in which broad, overlap-

ping states make experimental methods challenging. Recent technological improve-

ments and high statistics data sets now enable a rigorous study of regions in which

experimentalists may perform fundamental tests of QCD. This dissertation presents

one such study, focusing on the π0π0 spectrum. Particular emphasis is placed on the

scalar meson spectrum (JPC = 0++), wherein the lightest glueball state is expected.

An amplitude analysis of the π0π0 system produced in radiative J/ψ decays is

presented. A mass independent analysis of the (1.3106 ± 0.0072) × 109 J/ψ decays

collected by the BESIII detector at BEPCII in Beijing, China is repeated under

different model assumptions and experimental conditions. Additionally, the branching

ratio of radiative J/ψ decays to π0π0 is measured to be (1.147±0.002±0.042)×10−3,

where the first error is statistical and the second is systematic. This is the first

measurement of this reaction.
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Chapter 1

Motivation

While the Standard Model of physics has yielded remarkable successes, a complete

understanding of the fundamental interactions of particles remains elusive. The light

scalar meson spectrum, for example, remains relatively poorly understood despite

many years of scientific investigation. This lack of understanding is due in part to

the nature of the structures in this region. States that are narrow and well separated

in an invariant mass spectrum can be described quite well by a particular function,

for example a Gaussian or Breit-Wigner function. In contrast, the broad, overlapping

states that are present in the light scalar spectrum are poorly described by the most

accessible analytical methods [1]. A rigorous study of the particle interactions in this

region can yield useful information on the fundamental interactions of particles.

While significant progress has been made recently, the nature of the scalar states

remains uncertain. This may be due in part to the use of simple parameterizations

of resonances, such as the Breit-Wigner parametrization, which only provide good

approximations for narrow, well separated states. The application of such a parame-

terization to data with broad, overlapping states has several drawbacks. For example,

overlaps of resonances may result in an apparent shift in the Breit-Wigner parameters

of a given resonance [1]. All of this makes identification and interpretation of such
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states quite challenging.

The scalar meson spectrum has been studied in many ways, including πN scatter-

ing [2], pp̄ annihilation [3], central hadronic production [4], ψ′ [5], J/ψ [6, 7, 8], B [9],

D [10], and K [11] meson decays, γγ formation [12] and φ radiative decays [13]. The

PDG lists nine f0 states. These include the f0(500) (or σ), the f0(980), the f0(1370),

the f0(1500), the f0(1710), the f0(2220), and the f0(2330) [1]. Two additional states,

the f0(2020) and the f0(2100), are listed with the caveat “needs confirmation”.

Knowledge of the low mass scalar meson spectrum is important for several reasons.

If one is interested in probing the most fundamental of interactions, ππ scattering is

an attractive medium as it allows for testing of chiral perturbation theory to one loop

[14]. Additionally, the lightest glueball states are expected to be scalars [15, 16, 17].

The observation of such states would be an excellent test of QCD. Unfortunately,

glueballs may mix with bound states of quarks, making identification of glueballs

experimentally challenging. A practical method for observing glueballs is to look for

overfilled nonets, wherein all isoscalar quark bound states have been associated with

observed mesons and an additional meson is also observed. Such an analysis requires

a thorough understanding of the properties of each state.

The glue-rich environment created by the annihilation of the charm and anti-charm

quarks within the J/ψ is an excellent laboratory in which to search for glueballs. Ra-

diative decays of the J/ψ, in particular, are expected to produce a clean spectrum for

such a search. The conservation of parity in strong and electromagnetic interactions,

along with the conservation of angular momentum, restricts the quantum numbers of

a ππ resonance produced in this channel to JPC = 0++, 2++, 4++, etc. This restric-

tion simplifies an amplitude analysis since fewer amplitudes are accessible. An added

benefit of an analysis of this channel is the range of the mass spectrum accessible by

radiative J/ψ decays. Thus an amplitude analysis of radiative J/ψ decays provides

an excellent laboratory in which to study the scalar meson spectrum. The neutral
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channel is of particular interest due to the lack of large backgrounds like ρπ, which

provides a challenge for an analysis of the charged channel [18].

In addition to these considerations, radiative decays of the J/ψ to π0π0 are sim-

plified relative to other three body decays, because the radiative photon does not

interact with the π0π0 pair. This means that the final state interaction is entirely

contained in the piece of the amplitude that describes the π0π0 interaction. Of course,

rescattering effects in the final state, for example KK to π0π0, may still exist. Un-

fortunately, it is not possible to separate the part of the amplitude for this decay

associated with the production process from that of the final state interactions. Fi-

nally, an analysis of radiative J/ψ decays has the added benefit of a high statistics

data sample, (1.3106± 0.0072)× 109 events, from the BESIII experiment.

The possible π0π0 intermediate states of J/ψ radiative decays include several

glueball candidates such as the f0(1500) and the f0(1710), though the existence of

f0(1500) in this decay is uncertain due to low statistics [18]. Radiative J/ψ decays may

be used to test interpretations of states such as the f0(1370) and f0(1710), which may

be interpreted as a bound system of vector mesons [19, 20]. The existing branching

fractions for the f0(1710) to ππ and KK in radiative J/ψ decays to ππ [18] and

KK [21] appear inconsistent with those from J/ψ decays to ωππ [7] and ωKK [8].

Additionally, in some molecular and quark models, the suppression of the f0(1370)

relative to the f0(1710) in radiative J/ψ decays is contrary to expectations [20]. The

authors of Ref. [20] claim that a possible explanation for this is that the structure

near 1.765 GeV/c2 should not be attributed to the f0(1710). A high statistics study

of the scalar spectrum in radiative J/ψ decays would be useful to clarify this picture.

Model predictions on the nature and mixing of scalar qq̄ and glueball states vary.

One prediction [22] suggests that the f0(1710) is mostly ss̄, while the f0(1370) and

f0(1500) share roughly equal amounts of glue, though mixing is not necessarily re-

quired [23]. Another suggests that the f0(1500) is dominantly ss̄, while the f0(1710)
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carries the largest glueball component. Stronger evidence of the existence and rela-

tive size of scalar states in radiative J/ψ decays may be of use in better constraining

these interpretations. For example, if the f0(1500) and/or f0(1710) consist primarily

of glue, they should be copiously produced in the glue-rich J/ψ decay. A pure glueball

state is expected to decay into ππ, ηη, ηη′ and KK with relative ratios 3:1:0:4 [23].

The strongest evidence for glueballs require the knowledge of the production of

candidate states in various environments. For example, glueball states should be

favored over qq̄ states in radiative J/ψ decays, but the opposite should be true in

γγ fusion [24]. Neither the f0(1500) nor the f0(1710) have significant signals in this

channel [25]. Studies of these final states in radiative J/ψ decays are therefore useful.

Other expectations for glueball states include their being favored over qq̄ states in

central scattering processes like pp as well as their production in pp̄ annihilation [26].

A thorough study of the scalar states in each of these processes is therefore necessary

to determine their nature.

J/ψ radiative decays to π+π− have been analyzed previously by the MarkIII [27],

DM2 [28], and BES I [29] experiments. Decays to π0π0 were also studied at Crystal

Ball [30] and BES I [31], but these analyses were severly statistics limited, particularly

for the higher mass states. Each of these analyses claimed evidence for the f2(1270)

and some possible additional states near 1.710 GeV/c2 and 2.050 GeV/c2. More

recently, the BES II experiment studied these channels and implemented a partial

wave analysis [18], but this analysis, like its predecessors, was limited by complications

from large backgrounds as well as low statistics. Prominent features in this analysis

include the f2(1270), the f0(1500), and the f0(1710). The BW mass and width of

each of these structures is measured. Due to statistical limitations, the π0π0 channel

was studied only as a cross check on the analysis of the charged channel.

The amplitude analysis presented here on the π0π0 spectrum in radiative J/ψ

decays is performed using a mass independent method, which attempts to introduce
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as few model dependencies as possible. In particular, the final state interactions

are not parametrized according to a model, but are absorbed into the complex fit

parameters in a maximum likelihood fit. By binning the data set in terms of π0π0

invariant mass and performing a fit in each bin, it is possible to extract the function

that describes the final state interactions as a function of invariant mass. These

results may be useful for more complete analyses of the scalar spectrum. The data

set consists of the approximately (1.3106± 0.0072)× 109 J/ψ decays collected by the

BESIII collaboration in 2009 and 2012.

In addition to the mass independent analysis, a mass dependent approach is im-

plemented. This allows for a comparison with previous studies of this reaction and

shows that the mass independent method gives results that are consistent with a

mass dependent parameterization. In the mass dependent analysis, the part of the

amplitude that describes the final state interactions is parameterized with a set of in-

terfering Breit-Wigner line shapes. The information on the scalar and tensor spectra

from the mass independent results provide a useful handle for the number and type

of resonances to be included in the mass dependent fits.
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Chapter 2

Theoretical Background

Nearly all of the experimental data that has been gathered concerning the properties

and interactions of subatomic particles can be explained in the framework of the

Standard Model of Particle Physics 1. Despite some shortcomings, such as the fact

that it can only describe three of the four fundamental forces of nature, for the past

century new experimental data has conformed closely to this framework. One notable

example is the recent discovery of a Higgs-like particle at the Large Hadron Collider,

perhaps the world’s best know particle accelerator [34, 35].

According to the Standard Model, all of the conventional matter in the universe

consists of different combinations of fundamental particles called fermions, along with

several force mediating bosons. The word fundamental in this context means that we

believe these particles are indivisible (unlike the atom, whose name actually means

indivisible). These fermions can be further divided into quarks and leptons, which

interact via four fundamental forces; gravity, electromagnetism, and the strong and

weak nuclear forces. These forces are mediated by particles called gauge bosons. That

is, the interaction is accomplished with the exchange of these mediating particles.

The Standard Model provides a theoretical framework that describes how particles

interact under the electromagnetic, strong and weak forces. The duty of the experi-

1For a general review of this topic, see for example Ref. [32] or Ref. [33]
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mental particle physicist, then, is to test the theoretical predictions that emerge from

the Standard Model and other theories and to rigorously investigate any unexpected

discoveries. Experimental evidence can provide validation or refutation for a theory

or perhaps support a modification of the original theory to encompass the observed

behavior. The interplay between theory and experiment is what ultimately leads to

the best understanding of nature.

2.1 Standard model hadrons

Both quarks and leptons may be organized into generations of matter, with higher

generation particles being unstable and eventually decaying into their first generation

counterparts. For this reason, most of what we imagine as ordinary matter consists

of the lowest generation of quarks (less than whimsically named up and down) and

leptons (the electron and electron neutrino). The higher generations of these particles

exist only in high energy environments such as stars or particle accelerators. For each

particle there also exists an antimatter partner, which are generally labeled with a

bar for quarks (ū) and with the appropriate sign for charged leptons. When a matter

particle meets its antimatter partner, for example an electron (e−) and a positron

(e+), the two annihilate into energy. This is a useful mechanism for creating high

energy environments, which have the potential to produce new, interesting particles

that may consist of higher generation quarks or leptons.

2.1.1 Classification

The six flavors of quarks may be divided into two categories; light quarks (up, down,

and strange) and heavy quarks (charm, bottom, and top). Each quark flavor other

than u and d is ascribed a property which is conserved in all interactions other than

weak interactions. For example, the charm quark (c) carries charm. This means
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that subatomic particles that contain these types of quarks prefer to decay in specific

ways. For example, charmonium states like the ψ(3770) prefer to decay through a

DD̄ pair. Since the ψ(3770) does not carry charm, the charmed D mesons must

carry opposite charm quantum numbers. This is a useful characteristic for studies of

charmed mesons.

Interestingly, quarks never appear by themselves. Rather, they are the con-

stituents of a group of subatomic particles called hadrons. Baryons, like the proton

or neutron, are comprised of three quarks. Mesons, like the pion, instead contain

one quark and one anti-quark. While the theory of quarks and gluons (discussed be-

low) does not proscribe hadrons with greater numbers of quarks, most experimental

evidence is consistent with meson states consisting only of quark anti-quark pairs.

Recent studies that contradict this notion have generated a great deal of interest in

the field of meson spectroscopy.

Subatomic particles like hadrons can be classified in other ways. The basic idea

is to group particles according to their characteristics. For example, particles have

an intrinsic quality called spin. Those with half integral spin are called fermions

and those with integral spin are called bosons. This classification is useful because

fermions and bosons behave differently. Fermions obey the Pauli exclusion principle,

which states that identical fermions cannot occupy the same quantum state, while

bosons are exempted for this restriction. The quantum state of a particle is given by

a descriptive set of parameters called quantum numbers, which also provide a useful

means of classification.

In high energy physics, the most useful identifying characteristics of mesons are

the quantum numbers JPC . The total angular momentum of the meson, J , is a

combination of its spin S and orbital angular momentum L. The other two quantum

numbers relate to the effect of some basic symmetry operations. Parity, P , relates to

the properties of the meson under the reversal of each spatial component. The parity

8



of a meson is given by the product of −1L and the intrinsic parities of the constituent

quarks (by convention fermions are given P = +1). The third quantum number of

interest is C, which describes the effect of charge conjugation. This is essentially

the reversal of the charge and magnetic moment of a particle. Not all meson have a

charge conjugation quantum number, because the symmetry operation may change

its species. For example, applying charge conjugation to the π− will turn it into a

π+.

Another useful property of hadrons is called isospin. Isospin is an approximate

symmetry that is conserved in strong interactions due to the fact that the two lightest

quarks (up and down) are approximately degenerate in mass. The symmetry is broken

due to the small difference in mass of the up and down quarks. It is isospin symmetry

that explains why the proton and neutron have such similar masses (the difference is

on the order of 0.14% of the neutron mass). A proton consists of two up quarks and

one down quark, while the neutron contains only one up quark and two down quarks.

Isospin symmetry implies that the proton and neutron can be viewed as different

states of the same particle. In mathematical terms, they are said to be part of the

doublet, the fundamental representation, of an SU(2) Lie group. In this sense, the

proton and neutron both have isospin 1/2. The projection, Iz, of the isospin for the

proton is 1/2, while that for the neutron is −1/2. Table 2.1 gives the isospin and

other identifying features of the quarks.

u d c s t b
Electric charge (Q) 2

3
-1
3

2
3

-1
3

2
3

-1
3

Isospin (I) 1
2

1
2

0 0 0 0
Isospin z-component (Iz)

1
2

-1
2

0 0 0 0
Strangeness (S) 0 0 -1 0 0 0
Charmness (C) 0 0 0 1 0 0
Bottomness (B) 0 0 0 0 -1 0
Topness (T) 0 0 0 0 0 1

Table 2.1: The quantum numbers of quarks.
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By applying these mathematical tools to the light quarks, one can envision mesons

as elements of an SU(3) symmetry group [1]. This set is commonly labeled SU(3)f

to emphasize that is applied to the approximate symmetry under the interchange of

the light quark types, called flavors. In this sense, two combinations of a quark and

antiquark (3 x 3) are possible; the singlet and the octet (1 + 8). Together these are

called a nonet (Fig. 2.1). In reality, this symmetry is badly broken because the strange

quark is significantly more massive than the up and down quarks. Nevertheless, the

organization this brings to the “particle zoo” is very helpful.

1

3
(uu + dd + ss )

ds

ds us

us

udud

1

6
(uu + dd 2ss )

1

2
(uu dd )

S

Iz

Figure 2.1: A graphical representation of the light quark nonet with states labeled

by their quark content.

Given the basic structure of a meson and the restrictions of the Pauli exclusion
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principle, the possible states for a meson containing u and d quarks include

|I = 1, Iz = 1 >= |ud̄ >

|I = 1, Iz = 0 >=
1√
2
|uū− dd̄ >

|I = 1, Iz = −1 >= −|ūd > .

(2.1)

For the simplest case of mesons with total angular momentum 0 and odd parity (-),

these states relate to the π+, π0, and π− mesons respectively. In a similar way, it

is possible to describe an isospin zero partner of the pions, which is called the eta8

( 1√
6
(uū + dd̄ − 2ss̄)), as well as the isospin zero singlet state, the η0 ( 1√

3
(uū + dd̄ +

ss̄)). These together with these and the isospin 1/2 Kaons, the pions are part of

the pseudoscalar nonet. The name pseudoscalar references the fact that, while these

states are scalars (J = 0), parity operations on these states are similar to those of a

vector (the wavefunctions change sign under spatial inversion).

While certain particles like the ω and φ retain their historical names, neutral

flavor mesons, with strangeness and heavy quark flavor equal to zero, are named

according to a particular scheme (Tab 2.2). For example, isovector (I=1) scalar

(JPC=0++) particles are labeled with an a and given a subscript which designates

the total angular momentum of the state. Isoscalar (I=0) scalar states are instead

labeled as f (or f ′) states. The analysis presented here focuses on a study of the

isoscalar scalar spectrum (IGJPC=0+0++), and so is primarily concerned with the f

states.

2S+1LJ = 1(L even)J 1(L odd)J 3(L even)J 3(L odd)J
ud̄, uū− dd̄, ūd π b ρ a
uū+ dd̄ and/or ss̄ η,η′ h,h′ ω,φ f ,f ′

cc̄ ηc hc ψ χc
bb̄ ηb hb Υ χb

Table 2.2: The naming scheme for neutral flavor mesons [1].
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2.1.2 Quantum Chromodynamics

The interactions of hadrons are described by a non-abelian field theory called Quan-

tum Chromodynamics (QCD). In a similar way that Quantum Electrodynamics (QED)

ascribes to electrons an electric charge, which is mediated via the exchange of pho-

tons, QCD ascribes to the quarks an additional property called color charge, which

is mediated via gluons. The reason quarks must carry color charge is because of

symmetry considerations for quarks within hadrons (recall quarks are fermions). The

contrast between QED and QCD is that, while photons are not electrically charged,

gluons carry color charge and therefore may interact with other gluons. This greatly

complicates the theory because higher order interactions, consisting of gluon loops,

make significant contributions to each process. In fact, a simple prediction using the

sum of the masses of constituent quarks would give masses of particles like the proton

that are wildly inconsistent with experimental data.

One of the important characteristics of QCD is the notion of quark confinement.

The strength of the force between quarks is great at relatively large quark separation

(or low energies), confining the quarks to hadrons. It is only in the short distance (high

energy) limit that the binding is weakened, a concept called asymptotic freedom. This

variability in the coupling of quarks within hadrons presents a challenge to theoretical

treatments of QCD. Perturbative analyses, in which a prediction is calculated by

adding successively more complex interactions, fare poorly at all but the highest

energies. One method to overcome this difficultly is to perform the calculations

in a finite area under specific conditions, a process called Lattice QCD (LQCD)

[36]. Unfortunately, theoretical and technological barriers necessitate that lattice

calculations use quark masses that are often greater than those found in nature.

The self-interacting nature of gluons also suggests that hadrons may exist in which

the gluonic field within a hadron carries some angular momentum (a hybrid) or even

in which no quarks are present and the hadron is composed entirely of gluons (a
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glueball). Mesons of this type may have quantum numbers that are inaccessible

to their conventional counterparts. Observation of a meson with exotic quantum

numbers is conclusive evidence for mesons that cannot consist of a simple quark-

antiquark pair.

Not all mesons containing gluonic excitations are readily apparent as non-conventional

states. The lowest lying glueball state is expected to have scalar quantum numbers

(0++). An observation of a state matching this prediction is experimentally challeng-

ing, because the glueball may mix with the conventional states. That is, each state

within the spectrum may have some fractional composition of a glueball state and

some from conventional quark states. In fact, the challenges to hadron spectroscopy

in this region also extend to LQCD calculations. The existence of broad and low mass

resonances (like the σ) make calculations in this region very complicated. No LQCD

calculations in the low mass scalar spectrum have been published to date [36]. This

makes experimental data vital for a good understanding of states in this spectrum.

2.2 The π0π0 System

The nature of meson states with scalar quantum numbers has been a topic of great

interest for several decades. Despite the availability of a large amount of data on ππ

and KK scattering in this region, the existence and characteristics of these states

remain controversial. Nonetheless, coupled channel studies using the K-matrix for-

malism have recently produced some excellent measurements [37]. Additionally, dis-

persive analyses have been directed toward understanding the scalar meson spectrum

in the lowest mass region [38]. With the inclusion of data from radiative decays, an

interpretation of the scalar meson states may become more clear.

The Particle Data Group (PDG), provides a compilation of experimental results.

In the 2013 edition of the PDG [1], seven f0 states are listed. These include the broad
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f0(500) or σ (which was previously listed as the f0(600)), a very narrow f0(980), an

f0(1370), an f0(1500), and f0(1710), an f0(2200), and an f0(2330). Also listed are

two additional states, the f0(2020) and f0(2100), which are given the caveat “needs

confirmation.” Other states in this region may include the f0(1790), which is observed

in J/ψ decays to φπ+π−, distinct from the f0(1710) [6]. Some studies also introduce

other states in an attempt to better interpret the experimental and theoretical results.

A brief description of some of these states follows. For a more detailed description

of the current theoretical and experimental standings of scalar meson states, see for

example Ref. [23] or Ref. [39].

2.2.1 The f0(500) (σ)

The σ has been studied in ππ S-wave phase shift data from πN scattering [40, 41],

near threshold Ke4 [11, 42], ππ to KK̄ rescattering [43, 44], pp̄ annihilation at rest

[45, 3] and in central collision [46], D+ decays to π+π−π+ [10], J/ψ decays to ωπ+π−

[7], and ψ(2S) decays to J/ψπ+π− [47, 5]. Despite this plethora of experimental

study, the history of the f0(500) or σ meson is rife with controversy. This may be due

in part to its complicated structure, particularly its phase motion, which is unlike a

traditional resonance [23].

The PDG listed the σ as “not well understood” until 1974. It was subsequently

removed in 1976 and then reappeared in 1996 as the f0(600). Studies in heavy meson

decays led to listing the f0(600) as “well established” in 2002 even though the mass

range extended from 400 to 1200 MeV and the width from 500 to 1000 MeV[48]. More

recently, the consistency of dispersive results has led to a much narrower estimate of

the mass to be between 400 and 550 MeV and the width between 400 and 700 MeV

[38]. The name was also changed to the f0(500) in the more recent versions of the

PDG [1].
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2.2.2 The f0(980)

In contrast to the σ meson, the existence of the f0(980) is not controversial. Never-

theless, its measurement and interpretation provide significant challenges. This is due

in part to its proximity to the threshold for KK̄ production, to which it strongly cou-

ples. This produces a cusp-like effect of the f0(980) lineshape. Study of the f0(980)

is further complicated by its interference with nearby broad states like the σ.

The f0(980) has been studied in π−p decays to π0π0n [49], φ decays to f0γ [50, 51],

and γγ to ππ [12]. It is often described as being a KK̄ molecule [52], but may have

a much more complicated structure [53]. The PDG quotes a mass of 980 ± 20 MeV

and a width range between 50 and 100 MeV [1].

2.2.3 The f0(1370)

The f0(1370) meson is a very broad state whose existence has been somewhat con-

troversial. It was called the ǫ(1300) upon its discovery in experiments on ππ to KK

scattering [54, 44] and decays dominantly to four pions [114]. Some interpret the

lack of convincing phase motion around 1370 MeV/c2 as evidence that the f0(1370)

is not a resonant state. Analyses on CERN-Munich data have found no evidence

for the f0(1370), instead describing the low mass spectrum with only the f0(980),

f0(1500), and an f0(1670) scalar glueball state [55, 56]. Other studies have shown

that the existing data, including pp̄ annihilation and J/ψ decays, are consistent with

an f0(1370) [57].

The PDG does not quote a mass for the f0(1370), rather listing a range for the

pole position of (12001500)i(150250) MeV [1]. A Breit-Wigner fit in J/ψ decays

to φπ+π− gives a mass of 1350 ± 50 MeV and a width of 265 ± 40 MeV [6]. In

comparison, studies in pp̄ annihilation give masses between 1330 and 1360 MeV with

widths between 200 and 450 MeV [39].
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2.2.4 The f0(1500)

With a mass and width of 1505 ± 6 MeV and 109 ± 7 MeV respectively, the f0(1500)

branching ratio to ππ is about 35%, while its decay through 4π makes up about half of

the total decay [1]. In radiative decays to π+π−, a previous Breit-Wigner fit yielded a

mass of 1466 ± 6 ± 20 MeV [18], significantly lower than the PDG mass. In contrast,

studies in central pp production yield masses closer to 1510 MeV [25].

The f0(1500) state is one of the prime candidates for a scalar glueball. The

branching ratio of the f0(1500) to KK̄ is small [58], but the upper limit from π+π−

suggests a mainly ss̄ state [25]. These contradictory results suggest that the f0(1500)

may possess a high concentration of glue [1]. This interpretation is supported by the

non-observation of the f0(1500) in γγ collisions, since glueball states do not couple

directly to photons and therefore their production should be suppressed in this channel

[59, 25]. The presence of the f0(1500) in radiative J/ψ decays is debatable [18] due

to limited statistics.

2.2.5 The f0(1710)

First discovered as an ηη resonance in radiative J/ψ decays [60], the angular momen-

tum of the f0(1710) was controversial. An analysis with data from WA102 in central

collisions finally set the quantum numbers to be 0++ [58]. The lack of a signal for the

f0(1710) in analyses of pp̄ annihilation data suggest that it is primarily an ss̄ state

[61]. This is due to the fact that the OZI rule forbids pp̄ annihilation production of

states made purely of ss̄, even though scalar mesons are strongly produced by this

mechanism [23]. The data from ALEPH are consistent with this interpretation since

the f0(1710) is not observed in γγ collisions to π+π−, but may be observed in K0
sK

0
s

[59, 25]. This is also in accord with recent results from the Belle Collaboration on γγ

collisions to K0
sK

0
s [62].

Studies of the f0(1710) have yielded masses from 1710 ± 12 ± 11 MeV in centrally
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produced pp production [4], which is very close to the PDG value of 1720 ± 6 MeV

[1], to as much as 1765 ± 4 ± 13 in radiative J/ψ decays [18]. Indeed, there is some

suggestion that the state produced in this latter mechanism should be attributed to

a different scalar state [20].

2.2.6 Higher mass scalar states

Several scalar states have been observed above 2 GeV/c2. These include the f0(2100),

which was observed in J/ψ decays [63] as well as pp̄ annihilation [64]. The latter study

also saw evidence of an f0(2200) and an f0(2330), which are also listed in the PDG

[1]. Also listed are two additional states including the f0(2020), which has been seen

in central pp interactions [4], and and f0(2100).

2.2.7 Tensor states

The description of spin 2 states in the low mass region is much less complicated than

the scalar spectrum. The f2(1270) is the dominant feature in the ππ system [18]

while the f ′
2(1525) decays primarily to KK̄ [65]. The general interpretation of this

system is a nearly ideally mixed system in which the f2(1270) is primarily uū and

dd̄ and the f ′
2(1525) is primarily ss̄. These two states are joined by a relatively large

number of less well established states. For a review of the tensor meson spectrum,

see for example Ref. [66].

2.2.8 Spin 4 states

Two spin 4 states are listed in the PDG [1]. These states exist above 2 GeV/c2 and

include the relatively wide f4(2050) [67, 68] and the f4(2300) [69].
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2.3 Production Mechanism

As discussed above, various production mechanisms have been utilized for meson

spectroscopy in the low mass scalar region. One of the most promising is that used in

this analysis, radiative decays of the J/ψ meson. The J/ψ is a charmonium meson,

which consists of a charm anti-charm quark pair, but exists below the open charm

threshold. That is, the energy of the J/ψ is not great enough to allow it to decay

into charmed mesons. Charmed mesons contain a charm quark and a light quark

and are the favored channel for charmonium decays when kinematically accessible.

This means that decays in which the quarks annihilate into gluons now dominate.

These decays are otherwise suppressed (called OZI suppression). This “glue-rich”

environment provides an excellent laboratory in which to search for glueballs.

Recall that mesons carry no color (they are color singlet states). This means that

the annihilation process in J/ψ decays must proceed through at least two gluons.

Since the J/ψ is a spin triplet state, C-parity restrictions require an odd number of

gluons, so the favored decay is mediated by three gluons. Radiative J/ψ decays on

the other hand, proceed through two gluons. The extra factor of the fine structure

constant results in a suppression of the radiative decay relative to that of the three

gluon decay. This suppression factor, though, is only about a factor of ten, which

leaves the rate of radiative J/ψ decays at about 8% of all J/ψ decays. For a more

thorough review of J/ψ decays, see for example Ref. [30].
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a.

b.

Figure 2.2: A graphical representation of the (a) radiative decay and the (b) three

gluon decays of the J/ψ meson.
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Chapter 3

Experimental Apparatus

Amidst the aftermath of the violent collision between high energy particles lie clues to

the nature of fundamental forces. Some of the most interesting and illuminating infor-

mation may only be accessed from particle interactions at very high energies. These

energies are attainable only in collisions such as those which occurred immediately

following the big bang. Physicists are able to recreate these high energy collisions

in the laboratory of particle accelerators. The result is the creation of unstable par-

ticles that will decay almost instantly into lower energy particles. These may then

decay again, according to a particular decay channel. Surrounding the point at which

the collisions occur are particle detectors that are designed to collect information on

the final state particles from a decay. From this information, it becomes possible to

determine the properties of the original, or parent, particle.

Recording all of the information that is released in the collision and subsequent

annihilation of high energy particles requires sensitive and finely tuned equipment. A

great deal of time and effort is required in the construction and maintenance of each

component of a particle detector that in the heart of a particle accelerator. Once a set

of data is collected, analysis of the information requires sophisticated computational

tools and techniques. Through the collaboration of detector hardware and software,
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and often the creativity of the researcher, it is possible to reconstruct and interpret

the details of the collision and the underlying physics of the particle interactions.

3.1 The BEPCII Accelerator

The Beijing Electron Positron Collider II (BEPCII) is a major upgrade of the accel-

erator based at the Institute for High Energy Physics (IHEP) in Beijing, China. The

original BEPC accelerator was operated from 1989 to 2004. The upgraded collider

was completed in July of 2008 and began running for data collection in March of

2009. With a design luminosity of 1 × 1033cm−2s−1 at a center of mass energy of

3.78 GeV, BEPCII operates at energies between 2 and 4.6 GeV. This energy range

is of interest because it spans a region wherein both short-distance and long-distance

effects are relevant.

BEPCII is a double ring e+e− collider with a circumference of 237.5 m (Fig.

3.1). A 202 meter long linear accelerator (LINAC) uses a Radio Frequency (RF)

system to accelerate electrons and positrons to an energy of approximately 1.89 GeV.

The positron beam is a derivative of the electron beam and is created by impinging

electrons, which are accelerated to an energy of about 250 MeV, on a tungsten target.

The positrons created by this collision are collected using focusing magnetic field.

The electron and positron beams are then injected into two storage rings, one for the

electron beam and another for the positron beam. In each beam, a superconducting

RF cavity is used to change or maintain the beam energy.

The storage rings contain a series of dipole and quadrupole magnets, which are

useful for bending and focusing the beams respectively. Sextupole correcting magnets

are also used to shape the beam. The electron and positron beams consist of bunches

of particles spaced about 8 ns apart and have a relative energy spread of about 0.5

MeV. The beams rotate in opposite directions and are steered to an interaction point
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Figure 3.1: A schematic representation of the BEPCII storage ring is shown here.

The bending and focusing magnets are depicted by red and blue markers along the

beam lines. The beams bypass each other at the northern crossing (top), while at the

interaction point (bottom) the beams collide at an angle of about 11 mrad.

(IP) that lies at the center of the BESIII detector. The collision takes place at a

horizontal crossing angle of about 11 mrad. This means that any particles created

by the interaction of the beam bunches will not be produced exactly at rest, but will

have some non-zero momentum. Decay products from the collision move outward

through the BESIII detector components.

3.2 Introduction to the BESIII Detector

The Beijing Spectrometer (BESIII) is a general-purpose, hermetic detector located

at BEPCII in Beijing, China. BESIII and BEPCII represent major upgrades to

the BESII detector and BEPC accelerator. The physics goals of the BESIII experi-

ment cover a broad research program including charmonium physics, D-physics, light

hadron spectroscopy and τ physics, as well as searches for physics beyond the stan-

dard model. The detector is described in full detail elsewhere [70]. Brief descriptions

of the detector components follow.
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The BESIII detector consists of five primary components working in conjunction

to facilitate the reconstruction of collision events. A schematic of the detector is

displayed in Fig. 3.2. Charged particle tracking is performed with a helium-gas based

multilayer drift chamber (MDC). The momentum resolution of the MDC is expected

to be better than 0.5% at 1 GeV/c2, while the expected dE/dx resolution is 6%. With

a timing resolution of 90 ps (120 ps) in the barrel (endcap), a plastic scintillator Time-

Of-Flight (TOF) detector is used to assist in particle identification. The energies of

electromagnetic showers are determined using information from the electromagnetic

calorimeter (EMC). The EMC consists of 6240 CsI(Tl) crystals arranged in a barrel

and two endcap sections. The EMC provides an angular coverage of about 93% of

4π and an energy resolution of 2.5% (5%) at 1.0 GeV. The position resolution of the

EMC is 6 mm (9 mm) in the barrel (endcap). Particles that escape these detectors

travel through a muon chamber system (MUC), which provides additional information

on the identity of particles. The MUC provides 2 cm position resolution for muons

and covers 0.89 of 4π. Muons with momenta over 0.5 GeV/c2 are detected with an

efficiency greater than 90%. The efficiency of pions reaching the MUC is about 10%

at this energy. Finally, a superconducting solenoid magnet provides a uniform 1 T

field within the detector.

3.3 Charged Particle Tracking

Much of the information on final state particles moving through the detector comes

from the charged particle tracking systems. By combining the information from

each of these detector components, it is possible to calculate the momentum of high

energy particles coming from the beam interaction. For particles with momentum

within a certain range, it is also possible to use information from these components

to determine the identity (mass) of the particles.
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Figure 3.2: A schematic representation of the BESIII detector is shown here. The

beam line runs horizontally with the interaction point at the center of the diagram.

The detector is cylindrically symmetric about the beam line.

3.3.1 The Solenoid Magnet

The superconducting solenoid magnet, located outside of the EMC, encloses the inner

detector components. It is designed to provide a uniform axial magnetic field with a

magnitude of 1 T. The solenoid has a mean radius of 1.482 m and a length of 3.52 m.

This gives a good idea of the overall size of the BESIII detector. The magnetic field

created by the solenoid enables accurate measurements of the momentum of charged

particles, which are deflected due to the Lorentz force. Any charged particle moving

through the field will follow a helical trajectory, which depends on the sign of the

electric charge. This allows reconstruction algorithms to determine the charge of the

particle.
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3.3.2 The Main Drift Chamber

The bunches of electrons or positrons that make up the beams interact within a

beryllium beam pipe at the center of the detector. The MDC immediately surrounds

the beam pipe and is responsible for collecting much of the information that is useful

for calculating the momenta of charged particles coming from the interaction point.

With an inner radius of 59 mm (2 mm from the beam pipe) and an outer radius of

810 mm, the BESIII MDC covers a polar angle of | cos(θ)| ≤ 0.83 for the innermost

layers and | cos(θ)| ≤ 0.93 for the outermost layers (Fig. 3.3). The overall design

of the MDC is similar in design to the drift chamber used in the CLEO-III detector

[71]. Drift chambers of this type depend on the ionization of gas molecules caused

by collisions with high energy charged particles. Some fraction of the energy of the

particles is lost when it collides with the gas molecules. The electrons created by

such collisions drift toward wires that collect information such as the total charge of

particles created by the ionization.

The MDC consists of many drift cells, each of which contain a sense wire sur-

rounded by eight field wires. The 110 µm gold plated aluminum field wires are held

at ground while the 25 µm gold plated tungsten sense wires are held at positive high

voltage. The field accelerates the ionized electrons toward the sense wires, inducing

additional ionization by the electrons as they near the wires. The resulting electron

avalanche is detected by the sense wires, which are amplified and read out by fast

electronics. In total, the MDC contains 28,640 wires.

By measuring the arrival time of the electrons at the sense wire, and with knowl-

edge about the drift velocity of electrons within a certain gas, it is possible to deter-

mine where within the cell the initial ionization occurred and therefore the position

in the transverse plane through which the high energy particle passed. The drift

velocity of electrons depends strongly on the nature of the gas. A helium based gas

mixture with a ratio of He to C3H8 of 60:40 is used for the BESIII MDC. To precisely
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determine the three-dimensional trajectory of the charged particles, several layers of

sense wires within the MDC are given a stereo angle. Of the 43 sense wire layers,

24 are oriented with a small angle with respect to the axial direction. This gives a

resolution in the z direction (along the beam line) of 3 to 4 mm [70]. The resolution

from a single cell is less than 130 µm in the transverse plane.

Figure 3.3: A schematic representation of the MDC is shown here. In total the MDC

contains 28,640 wires.

The curvature of the track traced out by a charged particle in the MDC is related

to the strength of the magnetic field and the momentum of the charged particle

according to the Lorentz Force. Therefore, using knowledge on the strength of the

magnetic field created by the solenoid magnet and a measurement of the curvature of

the track in the MDC, it is possible to determine the momentum of charged particles.

The momentum resolution of the MDC is expected to be less than 0.5% at 1 GeV/c2.

In the BOSS framework, a tracking algorithm uses the hit patterns in the MDC

to calculate track segments. These segments are then used to extrapolate circular

patterns. These circular tracks are combined with the stereo hit information to gen-

erate helical particle trajectories. Finally, a fitting mechanism attempts to include

additional hits that may come from the particle under investigation.

In addition to measuring the arrival time of the electron avalanche, the drift
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chamber facilitates a measurement of the specific ionization energy loss (dE/dx) of a

high energy particle. The total amount of ions collected by the wire is proportional

to the initial amount of ionization in the drift cell of interest. This information,

gathered across different cells, gives a measure of the ionization energy loss. To

a good approximation, the rate of energy deposition for charged particles depends

only on the particle’s velocity. Together with the measurement of the momentum

from the tracking and magnetic field information, knowledge of the particle’s velocity

provides a means of identifying a particle by determining its mass. The expected

dE/dx resolution is 6%.

3.4 Particle Identification

As discussed above, information on the dE/dx and momentum of a particle are useful

for particle identification (PID). That is, a pion will exhibit a different dE/dx than a

kaon or an electron. Thus, with information from the MDC, it is possible to determine

the mass of a particle and therefore its identity. It is also possible to determine the

identity of a particle by comparing the momentum measurement from the MDC with

the velocity of the particle. The BOSS framework uses all of this information to

produce a probability for each track to be produced by a certain charged particle.

That is, each track will have a probability to come from an electron, pion, kaon, etc.

This information may be useful in reducing backgrounds.

3.4.1 The Time of Flight System

A plastic scintillator time-of-flight system (TOF) directly encloses the MDC and

provides the primary means of particle identification for the BESIII detector (Fig.

3.4). The barrel of the TOF consists of two layers of 88 trapezoidal shaped scintillating

bars, each of which are 5 cm thick and 2.3 m long. Two photomultiplier tubes (PMTs)
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are attached to the end of the bars to read out the signal. The endcaps contain only

a single layer each of 48 fan shaped counters with a width of 5 cm and length of 48

cm and is read out by another PMT.

Figure 3.4: A schematic representation of the TOF is shown here. The barrel of

the TOF consists of two layers of 88 trapezoidal shaped scintillating bars, while the

endcaps contain only a single layer each of 48 fan shaped counters.

The TOF detector depends on the principle that charged particles passing through

matter will excite the molecules they encounter. When this occurs in the plastic

scintillator of the TOF, which is made of an organic scintillation material called

Bicron BC-408, these excited molecules then release a small fraction of that energy as

light. This light then bounces along the length of the scintillator bar until it reaches a

PMT. A PMT is a light sensitive device, in which incoming photons knock electrons

off of a series of metal plates. These electrons are then accelerated by an electric

field, eventually colliding with additional sets of plates and knocking off more and

more electrons. The resulting shower of electrons produces a measurable signal. This

allows for a precision measurement of the time at which the charged particle hit the

TOF. The timing resolution for the barrel (endcap) of the TOF is approximately 90

ps (120 ps).

By combining the timing measurements from the TOF and the time of the e+e−
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collision at the interaction point, it is possible to determine the velocity of a charged

particle moving through the detector. When coupled with the momentum measure-

ment from the MDC, this provides a means to determine the identity of charged

tracks.

3.4.2 The Muon System

A muon identifier (MUC) composed of resistive plate capacitors (RPCs) is useful for

supplemental particle identification. This detector system is composed of nine (eight)

layers of RPCs in the barrel (endcap) of the detector. The RPCs are placed between

layers steel plates in the magnetic flux return of the solenoid magnet. High energy

electrons will deposit most of their energy in the calorimetry system of the detector,

but the much more massive muons are able to penetrate matter far more deeply than

electrons (and other charge particles). Tracks reconstructed within the MUC are

matched with an extrapolation of the tracks identified in the MDC. Thus, charged

particles that are able to reach the MUC may be identified as muons.

Figure 3.5: A schematic representation of the MUC is shown here. The MUC is

composed of resistive plate capacitors and is useful for particle identification.

The total thickness of the steel plates in the MUC is 41 cm, with the innermost

layers being an intentionally thin 4 cm. This allows for the detection of lower momen-
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tum muons, while still providing a dense material in which to absorb other charged

particles. In this way, the minimum momentum of muons which can be effectively

detected by the MUC is about 0.4 GeV/c2. The MUC provides 2 cm position reso-

lution for muons and covers 0.89 of 4π. Muons with momenta over 0.5 GeV/c2 are

detected with an efficiency greater than 90%. The efficiency of pions reaching the

MUC is about 10% at this energy.

3.5 Calorimetry

The detection and measurement of neutral particles is very important in particle

detectors, because many particles undergo a decay to final state photons. Neutral

particles pass straight through the other detector components (barring any interaction

with the detector material). The process of measuring the energies of photons takes

place in devices called calorimeters.

3.5.1 The Electromagnetic Calorimeter

Between the TOF and the solenoid magnet is the Electromagnetic Calorimeter (EMC),

which is used primarily to measure the energy and position of photons in the detector

(Fig. 3.6). The EMC consists of 6240 CsI(Tl) crystals arranged in a barrel and two

endcap sections. A gap of 5 cm separates the barrel and endcap of the EMC in order

to allow for mechanical support and service lines of the inner detectors.

Cesium-iodide is a type of inorganic scintillator with a high light yield. Inorganic

scintillators like these are useful for cases in which it is necessary to convert much

of the energy of incident photons into a measurable signal. In the case of high en-

ergy particles, the dominant means by which these particles deposit energy in the

calorimeter are bremsstrahlung radiation by charged particles and pair production of

electrons and positrons by photons [1].
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Figure 3.6: A schematic representation of the EMC is shown here. The EMC consists

of 6240 CsI(Tl) crystals arranged in a barrel and two endcap sections.

When a high energy photon is incident upon the EMC, it will produce an electron-

positron pair according to a probability distribution given by

dw

dx
=

1

λ
e−x/λ, (3.1)

where λ is the average distance necessary for pair production. It is related to the

radiation length, which is a characteristic of the material traversed by high energy

photons and electrons, by λ = 9
7
X0. The electrons and positrons produced in this

manner will then emit bremsstrahlung radiation according to

−
(

dE

dx

)

=
E

X0

. (3.2)

In this context, the radiation length is a measure of the average distance over which

an electron loses all but 1
e
of its energy by bremsstrahlung. The photons which are

produced in this event will then travel a certain distance in the crystal before pair-

producing and the process is repeated. The resulting cascade of shower particles,

including electrons, positrons and photons, creates a measurable signal in light sen-

sitive devices. In the case of the BESIII EMC, this is achieved with Hamamatsu
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S2744-08 photodiodes.

The signal detected in each EMC crystal is used to determine the energy deposited

in that crystal. A clustering algorithm uses the energy information for each crystal

to identify clusters of energy deposition in the EMC. Presumably, these are areas in

which a photon has entered the calorimeter (though the cluster may be due to inci-

dent charged particles or electronic noise). Another algorithm identifies crystals with

relative energy maxima and uses them to determine the number and characteristics of

reconstructed showers. This includes the position and energy of the incident photons.

The CsI(Tl) crystals used in the EMC have a radiation length of about 1.85

cm. In order to absorb the maximum amount of energy from showers, the length

of the crystals must be at least 10 to 15 times the radiation length. The BESIII

EMC crystals are 28 cm in length, or 15 times the radiation length, with a gradually

increasing cross section measuring 5.2 cm by 5.2 cm in the front and 6.4 cm by 6.4

cm in the rear. The barrel section of the EMC consists of 5,280 CsI(Tl) crystals,

arranged into 44 rings of 120 crystals, while the remaining 960 crystals are contained

in the endcaps, which are segmented into six rings of varying numbers of crystals.

The crystals which make up the endcaps are irregularly shaped in order to avoid gaps

in the detector apart from the segmentation between the barrel and endcap. With an

angular coverage of about 93% of 4π, the EMC provides an energy resolution of 2.5%

(5%) at 1.0 GeV and a position resolution of 6 mm (9 mm) in the barrel (endcap).

3.6 Data Summary

Over a total running time of a little more than 3 months in 2009 and 2012, the BESIII

collaboration has collected the world’s largest sample of J/ψ decays. This data sample

was collected by running at a center of mass energy equal to the J/ψ mass (3.0969

GeV/c2). The total luminosity of the sample is approximately 430 pb−1, while the
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total number of J/ψ decays is determined to be (1.3106 ± 0.0072) × 109, where the

error is statistical only. The analysis presented here utilizes the full J/ψ data sample

as well as a sample of events collected below the J/ψ peak (3.080 GeV/c2) in order

to study continuum backgrounds.
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Chapter 4

Experimental Methods

Much of the effort necessary to complete a physics analysis goes into isolating the

events of interest, called the signal, while eliminating those events that resemble the

signal but actually originate from some other process. In other words, the number

of signal events must be maximized, while the number of background events must

be minimized. This process is accomplished primarily by studying simulated events,

called Monte Carlo (MC) events, whose features are predetermined. By comparing

the distributions of measurable variables in the MC samples with what is visible in

the data, it is possible to estimate the background that is present in the data. MC

samples can come in several types. Inclusive MC samples contain all known processes

and possibly some approximation of any remaining unknown decays. Exclusive MC

(sometimes called signal MC) samples contain only one or more specific decay channels

and are useful for studies of particular signal or background types.

Typically, the data sample is purified by applying selection criteria or “cuts” to

different variables. For example, backgrounds like detector noise or out of time events

may produce showers in the EMC. In other words, some showers do not correspond

to a particle coming from the true event. By restricting the energy of photons, it may

be possible to reduce or even eliminate these backgrounds while not severely reducing
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the number of true events. After all selection criteria are applied, it is possible to use

a MC sample to calculate the reconstruction efficiency of the sample. That is, how

many events remain from the original MC sample after reconstruction and selection

criteria have been applied.

With the exception of backgrounds due to J/ψ decays to γη(′), which are specif-

ically addressed in the fitting procedure, the amplitude analysis presented here is

performed with the assumption that all background events have been eliminated.

Each event left in the sample is treated as a true signal event. Therefore, it is impor-

tant to reduce the backgrounds in the sample as much as possible. Any remaining

backgrounds may produce a systematic uncertainty in the results. Uncertainties of

this type are studied by varying the selection criteria or fitting method.

4.1 The Reconstruction Software

Information coming from the BESIII detector subsystems is processed by the BESIII

Offline Software System (BOSS) [72]. BOSS is an object-oriented framework that

utilizes the C++ programming language. The interfaces and utilities which are useful

for simulation, reconstruction and analysis are provided by the Gaudi package [73],

and management of the software is performed with CMT [74].

This analysis is performed with data reconstructed with BOSS version 6.6.4. The

data consist of (1.3106 ± 0.0072) × 109 J/ψ events, which were collected by BESIII

at BEPCII in the two separate runs, one in 2009 and the other in 2012.

4.2 Detector Simulation

Selection criteria and background estimation are studied using a GEANT4-based MC

simulation. The BESIII Object Oriented Simulation Tool (BOOST) [75] provides

a description of the geometry, material composition, and detector response of the
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BESIII detector. The MC generator KKMC [76], is used for the production of J/ψ

mesons by e+e− annihilation, while BESEVTGEN [77] is used to generate the known

decays of the J/ψ according to the world average values from the PDG [1]. Ad-

ditionally, the unknown portion of the J/ψ decay spectrum is generated with the

Lundcharm model [78].

An inclusive MC sample of 1.225 × 109 J/ψ decays, also reconstructed in BOSS

version 6.6.4, is used for background analysis and signal isolation. Additional exclu-

sive MC samples were generated in the same BOSS version for further investigation

of particular backgrounds and for efficiency calculations. A phase space exclusive MC

sample was generated using the AmpTools package and reconstructed in the BOSS

framework for calculation of normalization integrals in the mass independent analysis.

4.3 Extracting the Reconstructed Data

A software package called FSFilter is implemented to extract the reconstruction in-

formation for each event in the data and MC samples. This package was designed

by Ryan Mitchell to aid in the reconstruction of BESIII events that correspond to a

particular reaction. FSFilter looks for events with the appropriate topology, like the

number of tracks or photons in an event, and applies some loose restrictions, such as

the typical photon angle and energy restrictions. The algorithm obtains this infor-

mation by extracting the reconstruction objects from the BOSS environment. It can

also perform any pertinent analysis procedures such as kinematic fitting. After all

such procedures, FSFilter produces a ROOT file that contains all of the information

that will be necessary for the analysis. This includes the four-momenta of the final

state particles before and after the kinematic fit as well as other information like the

χ2 from a kinematic fit.

For the analysis presented here, FSFilter is asked to look for events that have a
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final state consisting of a photon and two π0s. This requires a final state with at

least five photons, each of which must satisfy a set of restrictions. Any photon that

lands in the barrel of the detector must have an energy of at least 25 MeV, while

any photon that lands in the endcap must have an energy of at least 50 MeV. The

typical BESIII timing restriction on photons is relaxed due to the absence of charged

tracks, which are used to determine the interaction time. The typical restriction only

accepts showers that have a time within 700 ns of the time of interaction. Since the

interaction time cannot be accurately measured for the reaction under study, each

shower time must instead be within 500 ns of the time of the most energetic shower.

In addition to individual photons, the BOSS reconstruction framework generates

objects that represent particles like the π0, which decays to two photons. For every

unique pair of photons in the event, BOSS gives a π0 reconstruction object. This

type of object contains information like the identity of the daughter photons and the

χ2 from any kinematic fit that is performed on the daughter particles. FSFilter looks

for each π0 object and applies the same photon restrictions described above to each

of the two daughter photons. For this analysis, the invariant mass of the photon pair

is required to fall within 28 MeV/c2 of the π0 rest mass. Additionally, the χ2 from a

1C kinematic fit of the two photons to have an invariant mass equal to that of the π0

is restricted to be less than 2500 (a very loose criterion).

FSFilter applied a 6C kinematic fit on any events that have the topology described

above. This includes a 4C kinematic fit of the total four-momenta of the final state

particles to come from a J/ψ meson. FSFilter also accounts for the small crossing

angle of the beams in the detector which generates a non-zero momentum for the

J/ψ. In addition to the 4C kinematic fit, each pair of photons coming from the π0

reconstruction objects is constrained to have an invariant mass equal to that of a π0.

The resulting kinematic fit has 4+ 1+1 = 6 constraints. Only events with a χ2 from

the 6C kinematic fit less than 600 are accepted for further analysis.
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If more than 5 photons that satisfy the above criteria are found for a single event,

all possible combinations of γπ0π0 are reconstructed. FSFilter analyzes each com-

bination as though it came from a separate event. Theoretically speaking, only one

such event represents the true event, while the other combinations will become a back-

ground to the signal. To account for this background, only the combination that has

the smallest χ2 from the 6C kinematic fit is retained for each event. This restriction

is applied after all event selection criteria (discussed below) are applied.

4.4 Event Selection Criteria

In order to perform a mass independent amplitude analysis, it is necessary to extract a

signal that is very clean. That is, it is necessary to reduce the size of any backgrounds

to be as close to zero as possible. Any significant background contamination that

remains must be addressed either in the fitting procedure itself or by introducing

systematics uncertainties.

In the context of variables that are useful for signal isolation, some of the signal

events will necessarily be eliminated when selection criteria are applied. In many

cases it is possible to define a figure of merit, with which one is able determine the

optimal selection criteria. For the case of the amplitude analysis presented here, the

need to reduce the background to nearly zero implies that a figure of merit may not

give the optimal outcome. Rather, the selection criteria must tend more strongly

toward background reduction than to the retention of signal events.

4.4.1 Optimization

The π0π0 invariant mass spectrum for all events from the data and inclusive MC

samples that pass the minimal selection criteria applied by the FSFilter algorithm

are shown in Fig. 4.1. This sample has a background contamination on the order
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of 27% according to the inclusive MC sample. Significant backgrounds include J/ψ

decays to γη (η → π0π0π0) and γη′ (η → ηπ0π0; η → γγ) as well as to ωπ0 (ω → γπ0).

In order to further reduce the remaining backgrounds, a series of additional selection

criteria are applied.
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Figure 4.1: The π0π0 invariant mass spectrum is plotted here after only minimal event

selection criteria are applied. The markers show the J/ψ data and the histograms

indicate the backgrounds according to the inclusive and exclusive MC samples. The

MC samples have been scaled to the size of the data sample after all selection criteria

have been applied. Significant backgrounds from J/ψ decays to γη(′) are visible,

particularly below 0.6 GeV/c2.

The most problematic backgrounds for this analysis are those from J/ψ decays

to γη and γη′. Each of these backgrounds consists only of final state photons (each

of the π0s and ηs decay into two photons). The reconstruction algorithm takes all

combinations of five photons which have a reasonable probability to come from a

final state of γπ0π0. Some combination of five of the seven photons coming from

each of these final states may meet this criterion. In particular, if two of the photons
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from the π0 or η decays are lost in the detector, the final state appears to have the

event topology of interest. Statistically speaking, it is likely that such a background

is significant. This will create a background contamination that peaks in the π0π0

invariant mass, the kinematic variable of greatest interest for this analysis.

While it is possible to reconstruct a seven photon final state as a five photon final

state, the χ2 of a kinematic fit to such a final state should be greater than that of a

γπ0π0 event. In this way, it is possible to reduce the backgrounds containing decays

to γη(′) by restricting the χ2
6C from the 6C kinematic fit. This criterion is tailored to

address primarily the γη(′) backgrounds and so is applied selectively to the invariant

mass spectrum. Events with a π0π0 invariant mass below 0.99 GeV/c2 (the region in

which these backgrounds are significant) must have a χ2
6C less than 20. Events above

0.99 GeV/c2 need only have a χ2
6C less than 60. The selection criterion in the high

mass region is determined such that the backgrounds remaining after all selection

requirements is on the order of 1%. The χ2
6C distributions for these two regions are

shown in Fig. 4.2. For clarity, these same distributions are plotted on a log scale in

Fig. 4.3.

The result of the selection criteria on the χ2
6C is to reduce the signal size by about

32%. While some portion of the γη(′) backgrounds remains even after this restriction,

the amount is now only about 0.3% of the signal size.

Several of the backgrounds to γπ0π0 actually have the same final state as the

signal itself. These channels decay through a final state of Xπ0 where the X decays

to γπ0. The most significant of these backgrounds comes from J/ψ decays to ωπ0

(ω → γπ0). The ωπ0 background is apparent in the Dalitz-like plot shown in Fig.

4.4. Since the ω is very narrow, it is possible to greatly reduce this background by

requiring that the invariant mass of each γπ0 pair be at least 50 MeV/c2 away from

the ω mass (782.7 MeV/c2) (Fig. 4.5).
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Figure 4.2: The χ2 distribution from the 6C kinematic fit is plotted here after minimal

event selection criteria are applied. The left (right) plot shows the χ2 distribution

for events with a π0π0 invariant mass below (above) 0.99 GeV/c2. The markers are

the J/ψ data and the histograms come from the inclusive and exclusive MC samples.

Placing a restriction on the 6C χ2 to be less than 20 in the low mass region is an

effective means of reducing the background from J/ψ decays to γη(′). In the high

mass region, this requirement is relaxed to be less than 60.
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Figure 4.3: The χ2 distribution from the 6C kinematic fit is plotted here before any

event selection criteria are applied. The left (right) plot shows the χ2 distribution

for events with a π0π0 invariant mass below (above) 0.99 GeV/c2. The markers are

the J/ψ data and the histograms come from the inclusive and exclusive MC samples.

Placing a restriction on the 6C χ2 to be less than 20 in the low mass region is an

effective means of reducing the background from J/ψ decays to γη(′). In the high

mass region, this requirement is relaxed to be less than 60.
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selection criteria on the χ2
6C .
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Figure 4.5: Backgrounds from J/ψ decays to ωπ0 where the ω decays to γπ0 are

removed by restricting the invariant mass of each γπ0 pair in an event to be at least

50 MeV/c2 from the mass of the ω.
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Some of the reconstructed events take as the radiative photon one of the photons

from the π0 decays. This is essentially a misreconstructed event that presents as a

background to the signal. In order to reduce this background, the invariant mass of

the radiative photon paired with any π0 daughter photon is required to be greater

than 0.15 GeV/c2 4.6. Thus, it is very unlikely that the radiated photon actually

came from a π0 decay. This restriction reduces the size of the data sample by about

9%. The remaining misreconstructed background is approximately 0.14% of the size

of the data sample.
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Figure 4.6: Misreconstructed events are reduced by requiring the invariant mass of

the radiative photon paired with any π0 daughter photon to be greater than 0.15

GeV/c2. Each combination of the radiative photon, γr, and a π0 daughter photon,

γπ0 , is plotted.

The left plot of Fig. 4.7 shows the generated invariant mass of the π0π0 pair as a

function of its reconstructed invariant mass. The events that fall off of the diagonal

represent the misreconstructed background. The events remaining after the restric-

tion on the radiative photon are plotted on the right. Most of the misreconstructed
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background is removed by this restriction (Fig. 4.8 gives the efficiency for the signal

and this background as a function of π0π0 invariant mass).
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Figure 4.7: These two dimensional plots show the generated mass versus the recon-

structed mass of the π0 pair from the inclusive MC sample. A significant number of

events are misreconstructed by swapping the radiative photon with one of the pho-

tons from a π0. The plot on the left (right) shows the distribution before (after) the

radiative photon selection criteria are applied. By restricting the likelihood that the

radiative photon comes from a π0, this background is greatly reduced.

After all event selection criteria are applied, the total number of background

events is reduced to about 1.8% of the size of the signal according to the inclusive

MC sample (Fig. 4.9). The number of events remaining in the data is 442,562.

To measure the efficiency of these selection criteria, a set of phase space MC was

reconstructed according to the same procedure described above. According to this

sample, the efficiency across the full spectrum is 37.9%. The efficiency is plotted as

a function of π0π0 invariant mass in Fig. 4.10. One additional source of backgrounds

come from continuum events, in which the interaction does not resonate through a

J/ψ. Continuum backgrounds are investigated with a data sample collected at a

center of mass energy of 3.08 GeV. Only 247 events, which represents approximately
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Figure 4.8: The signal efficiency of the selection criteria on the radiative photon

according to an exclusive MC sample is shown here by the black markers. The number

of misreconstructed events before the selection criteria on the radiative photon is given

by the red histogram, while the number after the criteria are applied is shown by the

blue histogram. The selection criteria on the radiative photon are very efficient in

reducing this misreconstructed background.

0.8% of the signal when scaled by luminosity, survive after all signal isolation cuts.
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Figure 4.9: The π0π0 invariant mass spectrum is plotted here after all event selection

criteria have been applied. The markers show the J/ψ data and the histograms come

from the inclusive MC sample. The backgrounds have been reduced to the order of

1.2% of the signal (according to the inclusive MC sample).
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Figure 4.10: The efficiency is plotted here as a function of π0π0 invariant mass. The

integrated efficiency across all mass bins is 37.9%.
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4.4.2 Background Analysis

The primary remaining backgrounds after all selection criteria have been applied are

the signal mimicking decays of the J/ψ to Xπ0, where the X then decays to γπ0. The

types and amounts of the backgrounds which remain in the inclusive MC sample are

listed in Table 4.1. The first two rows give the number of events in the data sample

and in a continuum sample taken at 3.08 GeV respectively. The next three rows give

the backgrounds for signal mimicking decays. Additional backgrounds include the

decays of a J/ψ to γη(′), which will be further discussed below, and a background

due to misreconstruction of signal events.

Decay channel Number of events

J/ψ → γπ0π0 (data) 442,562
J/ψ → γπ0π0 (continuum) 247
J/ψ → ωπ0;ω → γπ0 865
J/ψ → ρπ0; ρ→ γπ0 832
J/ψ → b1π

0; b1 → γπ0 618
J/ψ → γη; η → 3π0 903

J/ψ → γη′; η′ → ηπ0π0; η → γγ 377
Misreconstructed signal events 608

J/ψ → b1π
0; b1 → ωπ0;ω → γπ0 1,717

J/ψ → ωπ0π0;ω → γπ0 829
J/ψ → ωη;ω → γπ0 437
Other backgrounds 774

Total Background (MC) 7,960

Table 4.1: The number of events remaining after all selection criteria for each of a

number of background channels is shown in the right column.

The decays of the J/ψ to γη(′) introduce a challenge to the amplitude analysis.

They both peak in the low mass region near interesting structures. The γη final state

lies in the region of the f0(500), which is of particular interest to many theorists for

its importance to Chiral Perturbation Theory (ChPT) [1, 79]. The γη′ background

peaks near the f0(980), which is also of particular interest due to its strong coupling
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to KK and its implications for a scalar meson nonet [23]. These backgrounds are

therefore addressed by performing two independent analyses. One analysis treats

these backgrounds as negligible while the other utilizes an exclusive MC sample to

remove the background events from the fit. The presentation of both results makes

it possible to study the uncertainties introduced by backgrounds of this type.

An exclusive MC sample consisting of J/ψ decays to γη(′) is generated according

to the branching fractions of these reactions given by the PDG [1]. This angular

distributions of events in this sample are generated according to a model within

BESEVTGEN called the JPE model. Each of the selection criteria discussed above

is applied to the MC sample. The events that remain are plotted in Fig. 4.11. These

events may be included in the amplitude analysis with a negative weight. In this way,

when the exclusive MC sample is included in the fit, it has the effect of canceling out

the remaining γη(′) backgrounds in the data sample.
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Figure 4.11: The combined data set is plotted here as the black markers. The γη(′)

backgrounds generated according to the PDG branching ratios (and the JPE model)

are plotted as the blue histogram.
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Continuum backgrounds are investigated with a data sample collected at a center

of mass energy of 3.08 GeV, just below the J/ψ peak. Only 247 events (Fig. 4.12)

survive after all signal isolation criteria. The continuum sample contains 29.14 pb−1,

while the data sample contains 430.84 pb−1. After scaling by luminosity, the contin-

uum background represents approximately 0.8% of the data sample. This suggests

that backgrounds of this type are negligible for the amplitude analysis. A systematic

uncertainty due to the background contamination is included in the branching ratio

measurement.
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Figure 4.12: The distribution of continuum events that pass the selection criteria

described above is shown here. Only 247 events remain, which correspond to less

than 0.8% of the data sample, suggesting that this background is negligible.

Due to the fact that this analysis implements a 6C kinematic fit, it is not possible

to study the π0 sidebands. The ability to study sidebands is important, because it may

be possible to take a photon from each true π0 in the event and improperly combine

them to form a false π0. This would result in a background for the analysis. As an

alternative means to investigate this possible background, the two photon invariant
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mass spectrum is studied under different conditions. The invariant mass spectrum

for the wrong combination of photons (one from each π0 object) is shown for the

data before the χ2 selection criteria in Fig. 4.13. Two bands are apparent in each

distribution. For reference, the reconstructed two photon invariant mass spectrum

for each π0 object is shown in the left plot of Fig. 4.13. The two photon invariant

mass distributions are shown in Fig. 4.14 after applying the restriction on the χ2
6C

from the kinematic fit. The vertical and horizontal bands are no longer apparent.

To further study this background, an exclusive MC sample was also utilized. This

sample contains structures similar to those visible in the data and was generated

using a Breit-Wigner parameterization, with the masses and widths taken from a

mass dependent fit to the data (see Section 6.3). Each photon is compared with

the truth information. To isolate the miscombination effect, the only events that

are analyzed are those in which the four photons coming from the π0 objects can be

unambiguously matched by energies and angles to the four true π0 daughter photons

in the event. The energy tolerance is 0.05 GeV, while the angular tolerance on cos θ

is 0.03 (Fig. 4.15). The goal is then to determine how many of these events use the

wrong combination of photons to make a π0. This is accomplished by determining

the number of events for which one reconstructed photon matches a photon from one

generated π0 while the partner of the reconstructed photon matches a photon from

the other generated π0.

Of the 438,635 events from the exclusive MC sample, 130,658 have photons that

can be unambiguously matched to a generated photon. This means that only one

reconstructed photon has values of energy and cos θ near that of the truth information

(energy tolerance = 0.05, cos θ tolerance = 0.03 - see Fig. 4.15). Most of the other

events (255,983) contain more than one reconstructed photon that can be matched

to a single generated photon. Of the unambiguously matched events, only 752 events

are misreconstructed (a background of about 0.6%). After the χ2 cut, these numbers
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are reduced to 15 miscombined events out of 123,504 (a background of about 0.01%).

Modification of the tolerances results in background sizes consistent with this value.

This suggests that the background of this type is negligible.
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Figure 4.13: These plots show the invariant mass of two photon combinations before

the 6C kinematic fit is applied. The first subscript gives the parent π0 of the photon,

while the second identifies the daughter. The left plot shows the two photon invari-

ant mass distributions for photons that come from the same reconstructed π0. The

selection criteria for π0s require the unconstrained π0 mass to be between 0.107 and

0.163 GeV/c2. The plot on the right shows all combinations of two photons coming

from opposite π0 objects. The normal reconstruction criteria (at least one photon of

the appropriate energy, at least two π0s with appropriate unconstrained mass, etc.)

are applied, but no additional selection criteria have been applied.
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Figure 4.14: These plots are the same as those above, except that the signal isolation

criteria has been placed on the kinematic fit χ2
6C .
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Figure 4.15: These plots show a comparison between a reconstructed photon and

a generated photon. The absolute difference in cos θ (left) for a matching pair of

photons is required to be less than 0.03, while that for the energy (right) is required

to be less than 0.05.
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Chapter 5

Amplitude Analysis

One of the biggest challenges to meson spectroscopy in the low mass region is the

presence of broad, overlapping states. Whereas the classical principle of superposition

may be used to interpret a composite wave as a simple sum of the intensities of two

or more waves, superposition in the quantum mechanical sense brings a new level

of complexity to the problem. The intermediate states in a decay process are not

independent of one another. Rather, the reaction is a quantum mechanical mixture

of many different intermediate processes. In addition to measuring the intensity for

each intermediate process, it is also necessary to consider the interference between

them. Such an analysis is called an amplitude analysis because it investigates the

reaction on the level of quantum mechanical amplitudes.

5.1 Introduction to Amplitude Analyses

An unbinned extended maximum likelihood fit is an analytical tool with which to mea-

sure one or more parameters that describe a physical process. This method requires

a model that contains free parameters and predicts the probability of having an event

with a particular topology. The true values for the parameters are approximated by

maximizing the probability that the model matches the data.
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Practically, an amplitude analysis is performed by fitting several quantum me-

chanical amplitudes to the observed distribution of events in a data sample. The

amplitudes contain the production mechanism, dynamics of the interaction, and pos-

sibly also the decay of intermediate states. For radiative J/ψ decays to π0π0, the

amplitudes may be factorized into a piece that contains the radiative transition of

the J/ψ to an intermediate state X12 and a piece that contains the π0π0 interaction

U =
∑

X=ππ,KK,...

< J/ψ|HEM |γJγX12 > × < X12|HQCD|π0π0 >, (5.1)

where the sum includes any pseudoscalar-pseudoscalar final state. The part of the

amplitude that describes the π0π0 interaction is the piece that is of greatest interest

for this study.

The amplitude in Eq. 5.1 may be parameterized in various ways depending on

the desired information. For example, if the goal of an analysis is to measure char-

acteristics like the masses and widths of intermediate resonances, it may be useful

to parameterize the part of the amplitude that describes the π0π0 interaction with a

sum of Breit-Wigner functions. A mass dependent approach such as this introduces

model dependencies, which are necessary to explain the final state interactions. The

free parameters in the fit then contain the couplings of radiative J/ψ decays to each

π0π0 resonance. Unfortunately, these couplings are only useful in the context of the

model being used.

Another possible method to perform the amplitude analysis is to bin the data

sample as a function of π0π0 invariant mass and to absorb the part of the amplitude

that describes the interaction of final state particles into the free parameters. In

this mass independent method, the free parameters contain the dynamical function

that describes the π0π0 interactions, which is assumed to be constant across some

small range of π0π0 invariant mass (the bin size). By performing a fit in each bin, the
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dynamical function is replaced by a table of complex numbers. While it is not possible

to extract quantities like branching fractions from the results of a mass independent

analysis, this method is useful because any arbitrary model may be fit to the results

for each amplitude. This is not possible with only the results of a mass dependent

analysis.

For the mass independent method, the amplitude for an event at some position

in phase space ~x is given by

U(~x) = V (~x)A(~x), (5.2)

where V (~x) contains the product of the coupling of the amplitude to the radiative J/ψ

decay and the piece of the amplitude that describes the π0π0 interaction. Then A(~x)

contains the piece of the amplitude that describes the decay and is determined by

the kinematics of an event. In each fit, the production coefficients, V ~x, are replaced

by free parameters, V . The intensity function I(~x), which represents the density of

events at some position in phase space ~x, is given by

I(~x) =
∑

β

∣

∣

∣

∣

∣

∑

α

Vα,βAα,β(~x)

∣

∣

∣

∣

∣

2

. (5.3)

The coherent sum over α includes the different accessible amplitudes and the inco-

herent sum over β includes the observables of the reaction. For the reaction under

study, the observables are the polarization of the J/ψ, M= ±1, and the helicity of

the radiative photon, λγ = ±1. The free parameters are constrained to be the same

for each of the four incoherent sums.

To extract the couplings, Vα.β, an unbinned extended maximum likelihood fit is

performed in each bin of π0π0 invariant mass. The probability to make N independent

observations of a quantity X (X1, ..., XN) is given by a joint probability density
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function (pdf)

P (X|θ) = P (X1, ..., XN |θ) =
N
∏

i=1

f(Xi|θ), (5.4)

where f(X|θ) is the probability density function (pdf) to observe a quantity X with

a set of parameters θ. When the variable quantity X is replaced by experiment

observations ~x, this quantity no longer represents a probability. Instead, it is called

a likelihood

L(~x, θ) =
N
∏

i=1

f(~xi|θ). (5.5)

The true value for the parameters θ may be estimated by determining the values θ0

for which the likelihood function is maximized [80].

If a data sample is entirely free of backgrounds, the likelihood function is con-

structed as

L(~x, θ) =

Nsig
∏

i=1

f(~xi|θ). (5.6)

The number of events in the pure sample is given by Nsig. Now, the likelihood may

be written

L(~x, θ) =

Nsig
∏

i=1

f(~xi|θ)
Nbkg
∏

j=1

f(~xj|θ)
Nbkg
∏

k=1

f(~xk|θ)−1, (5.7)

where an additional joint pdf, which describes the reaction for background events,

has been multiplied and divided. Consider now a more realistic data sample that

consists not only of signal events, Nsig, but also some number of background events,

Nbkg. Then the first two factors of Eq. 5.7 are simply the joint pdf for the entire

(contaminated) data sample, but the likelihood represents only that of the pure signal

since the background joint pdf has also been divided. Now, for a given data set,

any backgrounds remaining after selection criteria have been applied are difficult to

distinguish from the true signal. Rather than using the true background to determine

the background joint pdf, it is therefore necessary to approximate it using an exclusive
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MC sample. That is,
NMC
∏

i=1

f(~xi|θ)−wi ≈
Nbkg
∏

i=1

f(~xi|θ)−1, (5.8)

where the weight, wi, is necessary for scaling purposes. For example, if the MC

sample is twice the size of the expected background, a weight factor of 0.5 is necessary.

Finally, the likelihood function may be written

L(~x, θ) =

Ndata
∏

i=1

f(~xi|θ)
NMC
∏

k=1

f(~xk|θ)−wk . (5.9)

For the analysis presented here, each data event is unweighted (has a weight of 1).

The probability to find an event in the detector at some location in phase space,

~x, is given by

f(~x|θ) = η(~x)I(~x|θ)
∫

η(~x)I(~x|θ)dx, (5.10)

where η(~x) is the efficiency of the detector to find an event at ~x (1 if the event is

detected, 0 if not) after all selection criteria have been applied. For a physics model

that predicts a number of events µ, the likelihood is given by the probability of

observing N events multiplied by a Poisson distribution of N events with a mean of

µ,

L(~x, θ) =
(e−µµN)

N !

N
∏

i=1

η(~xi)I(~xi|θ)
∫

η(~x)I(~x|θ)d~x. (5.11)

Here the set of variables θ to be approximated are the production amplitudes, Vα,β.

The integral
∫

η(~x)I(~x|θ)d~x (5.12)

is simply the expected number of events µ.

Rather than maximizing the likelihood, it is computationally preferable to mini-

mize -2 lnL. Note here that maximizing lnL (or minimizing -2 lnL) also maximizes

L. Also, by expanding the log likelihood function it is possible to drop terms that

62



are constant in Vα,β since they merely result in the addition of a constant value to

the likelihood and do not affect the minimization. The log likelihood, with like terms

canceled, is given by

lnL =
N
∑

i=1

ln I(~xi|θ)−
∫

η(~x)I(~x|θ)d~x, (5.13)

where the constant factors,
N
∑

i=1

ln η(~xi)− lnN !, (5.14)

are dropped. The second term in Eq. 5.13 may be separated into a piece containing

the free parameters and a piece that may be pre-computed using a large phase space

MC sample,

∫

η(~x)I(~x|θ)d~x =

∫

η(~x)
∑

α,α′

VαAα(~x)V
∗
α′A∗

α′(~x)d~x =
∑

α,α′

VαV
∗
α′φα,α′ , (5.15)

where φα,α′ represents the normalization integral. Since η(~x) is equal to one for

accepted events and zero otherwise, the normalization integral may be approximated

using a flat distribution of MC events, Nacc of which are accepted from a sample of

Ngen events. Then,

φα,α′ =
U

Ngen

Nacc
∑

i=1

Aα(~xi)A
∗
α′(~xi), (5.16)

where U is the volume of phase space and may be absorbed into the production

amplitudes Vα,

V ′
α,β = Vα,β

√
U. (5.17)

This transformation results in an overall shift in the log likelihood and does not affect

the intensity distribution.

For the case of background subtraction in the likelihood as in Eq. 5.9, the likeli-
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hood is given by

L(~x|θ) = (e−µµN)

N !

N
∏

i=1

η(~xi)I(~xi|θ)
∫

η(~x)I(~x|θ)d~x × (e−µ
′

µ′NMC )

NMC !

NMC
∏

k=1

[

η( ~xk)I( ~xk|θ)
∫

η(~x)I(~x|θ)d~x

]−wk

,

(5.18)

where µ′ is the expected number of background events and NMC is the number of

background events in the MC sample. Note that µ′ is independent of Vα,β. Here again,

by taking the natural log of the likelihood equation and dropping terms constant in

Vα,β,

lnL =
N
∑

i=1

ln I(~xi)−
NMC
∑

k=1

wk ln I( ~xk)−
∫

η(~x)I(~x)d~x, (5.19)

where the weights wk of the background events are all equal to -1.

5.2 The Mass Independent Amplitude Analysis

The primary goal of the mass independent analysis is to extract the function that

describes the interaction of the two pseudoscalars (π0π0). For a “model independent”

approach of this type, the decay is parameterized such that the couplings contain the

π0π0 interaction. As described above, these will become the (complex) fit parameters,

which are extracted from a fit to the data. The decay amplitudes, Aα,β(~xi), contain

the angular distributions of the final state particles. These decay amplitudes are

determined solely from event kinematics and are described more fully below.

Once again, the mass independent analysis is directed toward providing a set of

results that have as few model dependencies as possible. Results like these can be

utilized in a more complete analysis of the scalar spectrum. For example, results of

this type are expected to be useful in a K-matrix analysis, as they provide a com-

plementary source of hadronic production to that of pion beam and pp̄ experiments

[37]. While it is possible to perform a K-matrix analysis on the π0π0 spectrum from

radiative J/ψ decays, the results can be better constrained with data from radiative
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J/ψ decays to other channels like KsKs and ηη. A more complete K-matrix analysis

will therefore be delayed until results on these other channels are prepared.

While the mass independent analysis is intended to be as model independent as

possible, some assumptions must be made. These assumptions include requiring that

the intensity function for each amplitude and that of the phase difference be contin-

uous across the π0π0 invariant mass spectrum. Additionally, each set of amplitudes

with the same JPC are constrained to have the same phase below the KK threshold.

This latter constraint comes from the assumption that the vertex factors associated

with the production process are purely real numbers unless additional channels are

available. Above the KK threshold, though, rescattering effects may become signif-

icant. This has the potential to generated phase differences between the amplitudes

of the same JPC .

A difficulty arises when the constraint on the phases is relaxed. When this hap-

pens, the intensity is no longer uniquely determined. That is, ambiguities appear in

the fit beyond the non-trivial ambiguities associated with the construction of the fit

function. Each of these types of ambiguities are discussed more fully below. In an

effort to provide as much detail as possible, the mass independent analysis is repeated

with and without the phase constraint applied above the KK threshold. In this way,

any study that is performed using the results of this analysis may either enforce the

constraint on the phases of the 2++ amplitudes or not. For example, if a model which

predicts minimal rescattering, the mass independent results with the phase constraint

enforced provide greater accuracy. This constraint may even be applied selectively to

specific regions of invariant mass.

The amplitude analysis is performed with the assumption that all backgrounds

have been eliminated. While this seems like a plausible assumption for most of the

π0π0 invariant mass spectrum, significant backgrounds from J/ψ decays to γη and

γη′ exist below 1 GeV. Rather than inflate the errors of these results according to the
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uncertainty introduced by these backgrounds, which would not take into account the

bin-to-bin correlations, the mass independent analysis is repeated with and without

the γη(′) background subtraction. The background subtraction is accomplished ac-

cording to the procedure discussing in section 4.4.2. Recall that the ratio of events

from the reaction J/ψ → γη(′) that survive the event selection criteria for the γπ0π0

final state is very small. Minor changes to the modeling of the former decay may have

a large effect on the backgrounds to the latter. Therefore, the systematic difference

between the two sets of results, which treat the backgrounds differently, is taken as

the systematic uncertainty due to backgrounds of this type. This is important for

any studies that take the results of this analysis as inputs.

For each data set, the mass independent analysis is carried out by performing

an extended maximum likelihood fit in each bin. The MIGRAD algorithm is used

in the MINUIT framework to minimize -2 lnL. A covariance matrix is estimated

at each step of the algorithm, but is generally not sufficiently accurate. To obtain

a more accurate estimate of the covariance matrix, the HESSE method is applied

after minimization. This algorithm determines the covariance matrix by calculating

the matrix of second derivatives at the minimum. The results are culled by applying

constraints on certain MINUIT flags. The fit must converge, have an accurate error

matrix, and an estimated distance to the minimum (an estimate of the goodness of

the fit) of less than 10−5.

In each bin, the solution with the minimum value of -2 lnL is retained as the

“best” solution. Any other solutions that have values of -2 lnL within 1 unit of the

minimum and parameter values that are distinct from the best solution (and any

other results that are retained) are also kept. The issue of ambiguities in the fit is

discussed below and in Appendix A. The choice of nominal solutions is discussed in

the results section.
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5.2.1 Mass Binning

In order to study the interaction between two pseudoscalars as a function of the π0π0

invariant mass, it is necessary to bin the data as finely as possible without losing

information. If the binning is too fine, the statistics in each bin may be reduced to

such a degree that the errors from the fit would make the results useless. Also, it

is important that the resolution of the measured quantity (in this case the invariant

mass of the π0 pair) does not exceed the bin size.

The large size of the J/ψ data set collected at BESIII allows for very fine binning.

The bin size for the mass independent analysis is set to 15 MeV/c2, which is somewhat

larger than the π0π0 mass resolution. To determine the mass resolution, an exclusive

MC sample was generated according to phase space for the radiative J/ψ decay to

π0π0. For each, event, the difference between the generated and reconstructed π0π0

invariant mass is fitted with a double Crystal Ball shape (Fig. 5.1). The double

Crystal Ball shape is essentially the superposition of two Crystal Ball shapes, each of

which must have the same mass, width, and number of events [81]. This shape was

used in order to account for the tails of the distribution that are visible on either side

of the peak. The width of the Gaussian core, measured to be about 9 MeV/c2, was

taken as the mass resolution.

To probe the effect of the energy of the radiative photon on the mass resolution

of the π0π0 pair, the phase space MC sample is divided into bins of photon energy.

In each bin, the resolution is measured as described above. A slight shift is noted for

mid-range photon energies, but the resolution is no greater than about 11 MeV/c2

(Fig. 5.2). A bin size of 15 MeV/c2 is therefore a reasonable choice.

5.2.2 The Radiative Multipole Basis

The amplitude for radiative J/ψ decays to π0π0 can be determined in different bases

depending on the information of interest. For example, in the helicity basis, the
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amplitude depends on the angular momentum and helicity of the π0π0 resonance

as well as the angular momentum and polarization of the J/ψ. It is also possible to

redefine the basis such that the dependence of the amplitudes is shifted to the angular

momentum and helicity of the radiative photon. In this way it is possible to relate the

amplitudes to radiative multipole transitions. Such a basis is useful because it allows

for physical arguments about the amplitudes. For example, a model may suggest that

the E1 radiative transition should dominate over the M2 transition.

In the radiative multipole basis, the amplitude for J/ψ → γπ0π0 is given by

U(~x) =
∑

Jγ ,j12,µ12

NJγNj12D
J
M,µ12−λγ (π + φγ, π − θγ, φ1)d

j12
µ12,0

(θ1)
1 + P12(−1)j12

2

1 + (−1)j12

2

〈Jγ − λγ; j12µ12|Jµ12 − λγ〉
1√
2
[δλγ ,1 + δλγ ,−1P12(−1)Jγ−1]TJγj12(s12)

(5.20)

where ~x describes the kinematics of the event. The parity, total angular momentum,

and helicity of the pair of pseudoscalars are given by Pij, jij, and µij, respectively.

The angular momentum of the photon, Jγ, is related to the nuclear radiative decays.

The possible values of Jγ are limited by the conservation of angular momentum. The

helicity of the radiative photon is given by λγ. The total angular momentum and

polarization of the J/ψ are given by J and M, respectively. Finally, Nj =
√

2j+1
4π

is a

normalization factor.

The angles (φγ, θγ, 0) are the azimuthal and polar angles of the photon in the

rest frame of the J/ψ. The angles (φ1, θ1, 0) are the azimuthal and polar angles of

one π0 in the rest frame of the π0π0 pair, with the -z axis along the direction of the

photon momentum. The π0 momenta in this frame are given by q1 + q2 = 0.

Parity is a conserved quantity for strong and electromagnetic interactions. Hence,

for J/ψ radiative decays, P12 = (−1)j12 must be positive. This means that the only

intermediate states avaiable have jP12

12 = 0+, 2+, 4+, etc. Additionally, isospin symme-
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try in strong interactions requires IG12

12 for the intermediate state to be 0+ (isoscalar).

The dynamical amplitude TJγj12(s12) describes the π0π0 interaction as a function of

center of mass energy, s12, and may be parametrized in different ways. In order

to minimize the model dependence of the mass independent analysis, the dynami-

cal amplitude is replaced by a (complex) free parameter in the unbinned maximum

likelihood fit. Thus, the amplitude is given by

U(~x) = V (~x)A(~x), (5.21)

where

Aα,β(~x) =NJγNj12D
J
M,µ12−λγ (π + φγ, π − θγ, φ1)

dj12µ12,0(θ1)
1 + P12(−1)j12

2

1 + (−1)j12

2

〈Jγ − λγ; j12µ12|Jµ12 − λγ〉
1√
2
[δλγ ,1 + δλγ ,−1P12(−1)Jγ−1],

(5.22)

and α represents the unique amplitudes accesible for the given set of observables,

β. In this case, α includes the anguar momentum of the photon, Jγ, the angular

momentum of the intermediate state, j12, and its helicity, µ12. The index β includes

the polarization of the J/ψ, M, and the helicity of the raditive photon, λγ.

Any amplitude with total angular momentum greater than zero will have three

components (the 0++ amplitude has only an E1 component). Thus, the 2++ ampli-

tude has components relating to E1, M2, and E3 radiative transitions. While any

amplitude with even total angular momentum and positive parity and charge conju-

gation are accessible for this decay, preliminary fits suggest that the 4++ amplitude

is not significant in this region. For this reason, only the 0++ and 2++ amplitudes are

included in the fits.

69



5.3 Ambiguities in the Amplitude Analysis

Since the intensity distribution, to which the amplitudes are fit, is constructed from

the squares of the coherent sums of amplitudes, it is possible to identify multiple

sets of amplitudes that give identical values for the intensity. In this way, multiple

solutions may give comparable values of -2 lnL for a particular fit. For the γπ0π0

final state, two types of ambiguities are present. Trivial ambiguities may be partially

addressed by applying a phase convention to the results of the fits. Non-trivial ambi-

guities represent a more challenging problem to the analysis and cannot be eliminated

without introducing model dependencies.

5.3.1 Trivial Ambiguities

While it is not possible in principle to measure the absolute phase of the amplitudes

(the fit function contains an absolute square), it is possible to study the relative phases

between amplitudes. For the fits in each bin, one of the amplitudes is constrained

to be real. The phase difference between this and the other amplitudes can then be

determined for each mass bin.

A set of trivial ambiguities arises due to the possibility of applying a complex

conjugation to each amplitude without changing the intensity distribution, Eq. 5.13.

This has the effect of multiplying only the imaginary pieces of each amplitude by -1,

and therefore changing the sign of the phase difference with respect to the reference

amplitude. This issue is partially resolved by establishing a phase convention. In this

case, the amplitude that is constrained to be real is required to be positive.

The remaining ambiguity is due to the inability to determine the absolute phase.

That is, the total phase of the amplitudes may be either positive or negative (the

intensity is unchanged when each amplitude is multiplied by a factor of -1). This

ambiguity introduces the added complication that when a phase difference approaches

70



zero, it is impossible to determine if the phase difference changes sign. For clarity,

only positive phase differences are plotted. Any analyses taking these results as input

should also include the various permutations of the phase differences. The intensity

distributions are redundant for each permutation of phase differences.

5.3.2 Non-trivial Ambiguities

In an amplitude analysis, the angular dependence of the intensity function is the driv-

ing mechanism to determine the fractional intensity of each amplitude. That is, each

of the amplitudes has a particular angular distribution, which is used to discriminate

between it and the other amplitudes. By writing out the angular dependence of the

intensity function, it is possible to show that the freedom for the relative phases to

float for components of a given amplitude (2++ E1, M2, and E3, for example) gener-

ates an ambiguity in the intensity distribution. The very construction of the intensity

allows for the existence of multiple sets of amplitudes that give the exact same in-

tensity distribution. The ambiguities that appear in this analysis are described more

fully in Appendix A below. Only two such ambiguous solutions are present. Rather

than make an argument as to which solution is the physical solution, both sets of

results from the mass independent analysis are presented.

5.4 The Mass Dependent Amplitude Analysis

Many amplitude analyses performed to date have utilized a set of interfering Breit-

Wigner line shapes to describe the structures present in the data. This method has

obvious flaws for wide, overlapping states (such as violating unitarity). Nevertheless,

a Breit-Wigner parameterization of the γπ0π0 spectrum may provide a useful means

of comparing the results of this analysis with previous studies. The results of such an

analysis may also be useful in a comparison with the results of the mass independent
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analysis. That is, it may be useful to show whether the mass independent solution

gives a fair representation of the data in comparison to the results using a mass

dependent parameterization. With that goal in mind, a mass dependent amplitude

analysis using interfering Breit-Wigner functions is performed in addition to the mass

independent analysis.

A few words on the K-matrix approach are appropriate here. While this method

also has some flaws, a K-matrix parameterization is generally considered to be a

more appropriate method than a Breit-Wigner parameterization to extract informa-

tion on wide and overlapping states. The K-matrix formalism accounts for unitarity

constraints and can accommodate multiple overlapping resonances from the same am-

plitude. Additionally, the formalism allows for a couple channel analysis to difference

final states. For a review of the K-matrix formalism, see for example Ref. [82].

One of the ultimate goals of the analysis of the pseudoscalar-pseudoscalar spec-

trum in radiative J/ψ decays is to perform just such a parameterization. A K-matrix

analysis, though, is likely to change significantly with the addition of more channels

like γKSKS. Therefore, rather than perform a K-matrix analysis on the π0π0 system,

a full analysis of this type is delayed until data on additional channels is ready.

The results of the mass dependent analysis are products of (complex) vertex fac-

tors, which are related to the coupling strength of each resonance in an amplitude.

By extracting these values, it is possible to determine the fractional intensity for each

resonance. Measurements of the mass and width of significant resonances are also

possible with this method. Of course, these results should be considered only for

comparative reasons.

The mass dependent analysis is performed with the same assumptions as the

mass independent analysis (aside from the parameterization of the π0π0 interaction).

That is, the three components of the 2++ amplitude are not constrained to have the

same phase. In fact, the 2++ amplitude is relatively well understood experimentally.
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Contributions to this amplitude come primarily from the f2(1270) and the f ′
2(1525),

with a few other less well defined resonances above 1.5 GeV/c2. Rather, the region

of greatest interest is the 0++ amplitude.

To first order, a parameterization of this type would proceed according to the

isobar model. In the simplest approximation, this relates to simple s-channel pro-

duction. This is somewhat reasonable given that the photon does not interact in the

final state. This means that the amplitude is a product of two vertex factors and a

Breit-Wigner propagator,

AX = fX;J/ψ,γBW (X)f ∗
X;π0π0 . (5.23)

Now, in order to preserve time reversal invariance, this amplitude should be equal to

the reverse process,

AX = f ∗
X;J/ψ,γBW (X)fX;π0π0 , (5.24)

which implies that the product of vertex factors must be real. For a parameterization

of this type, then, one would expect the production amplitudes (the fit parameters)

to be real. A failure of the fit to describe the data under these assumptions would

imply that other effects are causing the couplings to become complex. This is a fairly

common assumption [1]. Under these considerations, interference effects near the

threshold of the f ′
2(1525), which has a strong coupling to the KK final state, lead to

the expectation that the 2++ amplitudes to be complex. Therefore, the coupling for

each amplitude in the mass dependent analysis is allowed to be complex.
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Figure 5.1: The π0π0 mass resolution is determined by fitting a double Crystal Ball

function to the invariant mass of each π0 pair in a phase space exclusive MC sample.
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Figure 5.2: The dependence of the π0π0 mass resolution on the energy of the radiative

photon is probed by fitting a Crystal Ball shape to the invariant mass of each π0 pair

in bins of photon energy. The resolution is less than 15 MeV/c2, the size of each bin

in the mass independent analysis, in each bin.
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Chapter 6

Results

The results of this analysis may be separated into three distinct pieces. First, the

branching ratio of radiative J/ψ decays to π0π0 is presented along with a discussion

of the systematic uncertainties for this measurement. Second, the results of the mass

independent amplitude analysis are presented. The mass independent approach allows

for the extraction of model independent information about the scattering amplitude.

These results enable one to fit the amplitude using any arbitrary model, allowing for

a systematic study of model dependencies. Finally, the mass dependent analysis is

presented. Measured quantities include masses, widths, and fractional intensities for

each resonance included in the fit. Alternative fits using a sigma pole parameterization

are also included as well as systematic checks for other significant resonances.

6.1 Branching Ratio

The results of the amplitude analysis are useful in the determination of the branching

ratio of radiative J/ψ decays to π0π0, which is determined according to:

B(J/ψ → γπ0π0) =
ǫγNγπ0π0 −Nbkg

NJ/ψ

. (6.1)
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Here Nγπ0π0 is the number of acceptance corrected signal events determined from the

amplitude analysis, Nbkg is the remaining background contamination according to the

inclusive and exclusive MC samples, ǫγ is an efficiency correction, and NJ/ψ is the

number of J/ψ decays in the data. The efficiency correction is necessary to extrapolate

the π0π0 spectrum down to a radiative photon energy of zero. This is accomplished

by determining the fraction of phase space that is removed by applying the typical

selection requirements on the energy of the radiative photon. This extrapolation

increases the total number of events by 0.06%. Therefore, ǫγ is taken to be 1.0006.

The global value for the number of radiative J/ψ decays to π0π0, Nγπ0π0 , is 1,543,050

events.

The remaining backgrounds are of four types. Decays of the J/ψ to γη(′) are

studied with an exclusive MC sample generated according to the PDG branching ratio.

The remaining misreconstructed backgrounds are determined from an exclusive MC

sample that resembles the data. The other remaining backgrounds are determined

from the inclusive MC sample. Finally, any events remaining in the continuum data

sample taken at 3.08 GeV are also taken as a background. Each of these background

is scaled appropriately. The continuum backgrounds are scaled by luminosity and a

correction factor for the difference in cross section as a function of center of mass

energy. In total, the acceptance corrected number of background events, Nbkg, is

determined to be 40,412. This gives a branching ratio of (1.147 ± 0.002) × 10−3,

where the error is statistical only.

6.1.1 Branching Ratio Systematic Uncertainties

Sources of systematic uncertainties on the calculation of the branching ratio include

contamination of the data sample by background events, the photon detection ef-

ficiency systematic uncertainty, and the uncertainty in the number of J/ψ decays.

Additionally, sources of systematic uncertainty on the number of acceptance cor-
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rected signal events include how the ωπ0 background is addressed in the fit, possible

mismodeling in the kinematic fit, differences with the yield of analysis with a model

of the dynamical function that describes the ππ interaction, and the effect of the re-

maining miscombined backgrounds. The uncertainty on the branching ratio of π0 to

γγ according to the PDG is 0.03%, which is negligible in relation to the other sources

of error [1]. The systematic uncertainties are described below and summarized in

Table 6.1.

Photon Detection Efficiency

The primary source of systematic uncertainty comes from the reconstruction of pho-

tons. To account for this uncertainty, the photon detection efficiency of the BESIII

detector is studied using a sample of J/ψ → π+π−π0 events, where the π0 decays into

two photons. One of these final state photons is reconstructed, along with the two

charged tracks, while the other photon is left as a missing particle in the event. This

information can then be used to determine the region in the detector where the miss-

ing photon is expected. The photon detection efficiency is calculated by taking the

ratio of the number of missing photons that are detected in this region to the number

that are expected. The numbers of detected and expected photons are determined

with fits to the two photon invariant mass distributions.

The systematic error due to photon reconstruction is determined by investigating

the differences between the photon detection efficiencies of the inclusive MC sample

and that of the data sample. This difference is measured to be less than 0.5%. For

the five photon final state the overall uncertainty due to this effect is 2.5%.

Background Size

According to the inclusive MC sample, the total amount of background events that

contaminate the signal is about 1.7%. These do not include the misreconstructed
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backgrounds, which are addressed in a separate systematic uncertainty. Additionally,

continuum MC studies yield a contamination of approximately 0.8%. A conserva-

tive systematic error of 2.5% is added to the branching ratio measurement due to

background contamination.

Number of J/ψ

The number of J/ψ decays is determined from an analysis of inclusive hadronic events

NJ/ψ =
Nsel −Nbg

ǫtrig × ǫ
ψ(2S)
data × fcor

, (6.2)

where Nsel represents the number of inclusive events remaining after selection criteria

have been applied and Nbg is the number of background events estimated with a

data sample collected at 3.08 GeV. The efficiencies for the trigger is given by ǫtrig,

while ǫ
ψ(2S)
data is the efficiency for ψ(2S) decays to π+π−J/ψ. Finally, fcor represents a

correction factor to translate ǫ
ψ(2S)
data to the efficiency for J/ψ events. To obtain Nsel,

at least two charged tracks are required for each event. Additionally, the momenta of

these tracks and the visible energy of each event are restricted in order to eliminate

bhabha and di-muon events as well as beam gas interactions and virtual photon-

photon collisions. The total number of J/ψ decays in the data sample according to

Eq. 6.2 is determined to be (1.3106 ± 7.2) ×109 events. The uncertainty on this

number is 0.5% [83].

Uncertainty in the acceptance corrected signal yield

The nominal results restrict the backgrounds due to J/ψ decays to ωπ0 (ω → γπ0)

by cutting on the invariant mass of each γπ0 combination. An alternate method to

account for this background is to include an amplitude for this decay in the analysis.

The difference between the branching ratio using the signal yield for the alternate
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method compared to the nominal method is about 0.8%.

Differences in the results of a kinematic fit between the data and MC sample may

cause a systematic difference in the acceptance corrected signal yield. This effect

was investigated by varying the selection criterion requiring each event with a π0π0

invariant mass above 0.99 GeV/c2 to have a χ2 from the 6C kinematic fit to be less

than 60. This restriction was instead relaxed to be less than 125. The difference in

the branching ratio for the results of the analysis with the loosened χ2 cut relative to

that of the nominal results is about 0.2%.

Another source of systematic uncertainty in the branching ratio is the difference

between applying a model that describes the ππ interaction or now. To test this effect,

a model dependent fit using interfering Breit-Wigner line shapes was performed. The

difference in the branching ratio using the acceptance corrected yield of this analysis

compared to the nominal results is about 0.5%.

The effect of the remaining misreconstructed backgrounds on the results is studied

by performing the mass independent amplitude analysis on an exclusive MC sample.

This MC sample was generated according to the results of a model dependent analysis

of the data and includes the proper angular distributions. After applying the same

selection criteria that are applied to the data, the MC sample is passed through the

mass independent analysis. This process is repeated after removing the remaining

misreconstructed backgrounds from the sample. The difference in the branching ratio

between these two methods is 0.01%. The effect of these backgrounds is therefore

taken to be negligible.

6.1.2 Branching Ratio Results

Using the world’s largest data sample of its type, the branching ratio of radiative

J/ψ decays to π0π0 is measured to be (1.147± 0.002± 0.042)× 10−3, where the first

error is statistical and the second is systematic. This is the first measurement of the
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Source J/ψ → γπ0π0 (%)
Photon detection efficiency 2.5

Number of J/ψ 0.5
Background size 2.5
ωπ0 background 0.8
Kinematic fit χ2

6C 0.2
Model dependence 0.5

Total 3.7

Table 6.1: This table summarizes the systematic uncertainties (in %) for the branch-

ing ratio of J/ψ → γπ0π0.

exclusive branching fraction.

6.2 Mass Independent Analysis Results

With the goal of presenting the greatest amount of information possible, the results

of the mass independent amplitude analysis are presented in two ways. First, plots

of the intensities of each amplitude and their relative phase differences are presented

here as a function of π0π0 invariant mass. Second, a series of data sets will be made

available that contain the intensities and phase differences of all amplitudes in the fit

for each bin of π0π0 invariant mass. These data sets may be used to fit the amplitude

using any arbitrary model. This allows for a systematic study of model dependencies

such as whether or not the phases of component amplitudes of a similar type should

be constrained. True to this spirit, rather than treating differences due to unavoidable

assumptions as systematic errors, the results of the analysis under each assumption

are presented independently. An estimate of the uncertainty due to these assumptions

may be determined by fitting a model to each set of results. Differences between the

results of such applications give an estimate of systematic uncertainties.

The nominal results of the mass independent analysis are obtained by allowing the

relative phases of the 2++ amplitudes allowed to float above the KK threshold. The
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primary difficulty with this method is the presence of ambiguous solutions to the fits

in most bins. The most significant difference between the ambiguous solutions is in

the E1 component amplitudes (the 0++ and 2++ swap some amount of the intensity).

This is especially apparent by looking at the fit projections in a bin with a significant

difference in the fractional intensities between the two sets of solutions (Fig. 6.2 and

Fig. 6.1).

For each bin in the nominal results, the predicted ambiguous solutions may be

calculated using the prescription described in the Appendix A. These predicted am-

biguous solutions agree well with the experimentally determined solutions. For some

bins, the ambiguous solution is identical to the solution from which it was calculated.

That is, several bins do not exhibit ambiguities. Below the KK threshold, the nomi-

nal results utilize the background subtracted data set, in which the γη(′) backgrounds

have been removed from these results as discussed in section 4.4.2.

Two sets of alternate results are presented in addition to the nominal results.

Alternate results 1 contain the results of fits in which the phases of the three com-

ponents of the 2++ amplitude are constrained to be the same even above the KK

threshold. The region below the KK threshold utilizes the background subtracted

data and is therefore equivalent to the nominal results in that region. In contrast,

alternate results 2 have the phase constraint relaxed above KK threshold as in the

nominal results, but do not have the γη(′) backgrounds subtracted. Thus, the re-

sults above the KK threshold are equivalent to the nominal results, but the results

below the threshold are independent results with a different assumption about the

backgrounds.

Several bins in the mass independent analysis contain more than one set of solu-

tions that are not ambiguous partners. In other words, some bins have extra solu-

tions (beyond the ambiguous pair) which have similar values of -2 lnL. These are

interpreted as local minima in the likelihood function. Any extra solutions can be
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eliminated by applying simple assumptions like the continuity of the intensities and

phase differences as a function of π0π0 invariant mass.

The continuity of the intensities and phase differences is determined quantitatively

by calculating a χ2 value as follows. For each bin, the function values (intensities or

phase differences) in the neighboring two bins are averaged to give x̄ = (xi+1−xi−1)/2

(for each function x). The difference between the function value in the bin of interest

and this average value is used to give the χ2 for this particular solution,

χ2 =

(

x̄− xi
σi

)2

, (6.3)

where σi is the error on the function value in the bin of interest. If a neighboring

bin contains multiple solutions, this process is repeated for each of the three function

values. The solution in each bin with the minimum χ2 value is taken as the nominal

result. This process is carried out by starting from bins that do not have multiple

solutions and iterating through the entire mass spectrum.

6.2.1 Mass Independent Fit Projections

It is useful to plot the angular projections of the fit results in each bin. The angles of

interest for this channel are the polar and azimuthal angles for the radiative photon

in the J/ψ rest frame and those for one of the π0s in the π0π0 center of mass frame.

In each bin, the predicted distributions for each of the amplitudes may be plotted

according to the results of the fit in that bin.

The lab frame is defined with the z-axis in the direction of the positron beam.

There is a small crossing angle between the electron and positron beams. The cross

product between the beams defines the y-axis in the lab frame. The photon angular

distributions are calculated in the J/ψ rest frame, which is created by a boost from

the lab frame to that in which the J/ψ is at rest.
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The π0 angular distributions are calculated in the rest frame of the π0π0 pair. The

z-axis is given by the direction opposite the direction of propagation of the radiative

photon. This means that the z-axis is the direction of flight of the π0π0 pair (the

direction along which the boost to this rest frame has been performed) in the J/ψ

rest frame. The y-axis is defined by the cross product of the z-axis with the positron

beam direction.

The fit projections are useful for studying the differences between the ambiguous

solutions. That is, the angular distributions for a given bin calculated from the sum

of all amplitudes are the same for each of the ambiguous solutions, but individual

amplitudes may have different distributions. By studying the fit projections in a bin

that contains multiple solutions, it is evident that the E1 component amplitudes of

the 0++ and 2++ waves tend to have the most significant change (Figure 6.1,6.2).
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Figure 6.1: The angular distributions for the two ambiguous solutions in the π0π0

mass bin around 2.0 GeV are plotted here. The left four plots show the angular

distributions for one of the ambiguous solutions and the right four show the same

distributions for its partner. These plots include detector acceptance effects.
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Figure 6.2: The angular distributions for the two ambiguous solutions in the π0π0

mass bin around 2.0 GeV are plotted here. The left four plots show the angular

distributions for one of the ambiguous solutions and the right four show the same

distributions for its partner. Here the acceptance effects have been removed.
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6.2.2 Nominal Results

Again, the nominal results of the mass independent analysis are obtained by allowing

the relative phases of the 2++ amplitudes allowed to float above the KK threshold.

The nominal intensity for each amplitude as a function of π0π0 invariant mass is

plotted in Figure 6.3. Each of the phase differences between two amplitudes is plotted

in Fig. 6.4. Above the KK threshold, two distinct sets of solutions are apparent.

The bins below about 0.6 GeV contain multiple non-ambiguous solutions, only one

set of which preserves continuity as defined above. Several other bins, both above

and below the KK threshold, exhibit similar behavior.
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Figure 6.3: The intensity for each amplitude is plotted here as a function of π0π0

invariant mass for the nominal results. The solid black markers show the intensity cal-

culated from one set of solutions, while the open red markers represent its ambiguous

partner.

As discussed in Appendix A, the mathematical ambiguities may be predicted from

the experimental results. Figures 6.5 and 6.6 show the experimentally determined
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Figure 6.4: The phase differences are plotted here as a function of π0π0 invariant mass

for the nominal results. The solid black markers show the phase differences calculated

from one set of solutions, while the open red markers represent its ambiguous partner.

and mathematically predicted solutions. It is apparent that the predictions match

the intensities calculated from the fitting procedure.
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Figure 6.5: The intensity for each amplitude is plotted here as a function of π0π0

invariant mass. The solid black markers show the intensity calculated from one set

of solutions, while the open red markers represent its ambiguous partner. The solid

blue triangles show the predicted intensity for the ambiguous partner to the solutions

represented by the solid black markers. The open green squares similarly predict the

ambiguous partner to the open red circle solutions.
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Figure 6.6: The phase differences are plotted here as a function of π0π0 invariant

mass. The solid black markers show the intensity calculated from one set of solutions,

while the open red markers represent its ambiguous partner. The solid blue triangles

show the predicted intensity for the ambiguous partner to the solutions represented

by the solid black markers. The open green squares similarly predict the ambiguous

partner to the open red circle solutions.
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6.2.3 Permutations

For the nominal results, it is apparent that the ambiguous sets of solutions are distinct

in some regions, while they approach and possibly cross at other points. The most

powerful discriminator of this effect is the phase difference between the E1 and M2

components of the 2++ amplitude (the middle plot of Fig. 6.4). In particular, one set

of solutions appears to be consistent with no phase difference between the components

of the 2++ amplitudes for most of the invariant mass spectrum (the black markers),

while the other is significantly different for the regions between about 1.0 GeV and

1.3 GeV as well as between about 1.5 GeV and 2.4 GeV. In the regions just below

1.5 GeV and above 2.4 GeV, the two solutions are consistent with each other. Due

to this possible crossing of solutions, each distinct permutation of the possible sets

of solutions is presented. Three crossing regions are defined near 0.99 GeV (the KK

threshold), 1.3 GeV, and above 2.4 GeV. This leads to four distinct permutations of

the nominal results. They are shown in Figs 6.7-6.10.
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Figure 6.7: The intensity for each amplitude in the first permutation of the nominal

results is plotted here. These results are extracted from the background subtracted

data sample.
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Figure 6.8: The intensity for each amplitude in the second permutation of the nominal

results is plotted here. These results are extracted from the background subtracted

data sample.

92



]2)  [GeV/c0π0πMass(
0.5 1 1.5 2 2.5 3

E
ve

nt
s 

/ 1
5 

M
eV

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
 Intensity++0  Intensity++0

]2)  [GeV/c0π0πMass(
0.5 1 1.5 2 2.5 3

E
ve

nt
s 

/ 1
5 

M
eV

0

5000

10000

15000

20000

25000

30000
E1 Intensity++2 E1 Intensity++2

]2)  [GeV/c0π0πMass(
0.5 1 1.5 2 2.5 3

E
ve

nt
s 

/ 1
5 

M
eV

0

2000

4000

6000

8000

10000

12000

14000

16000
M2 Intensity++2 M2 Intensity++2

]2)  [GeV/c0π0πMass(
0.5 1 1.5 2 2.5 3

E
ve

nt
s 

/ 1
5 

M
eV

0

500

1000

1500

2000

2500

3000

3500

4000
E3 Intensity++2 E3 Intensity++2

]2)  [GeV/c0π0πMass(
0.5 1 1.5 2 2.5 3

E
1 

P
ha

se
 D

iff
er

en
ce

  [
ra

d]
+

+
 -

 2
+

+
0

0

0.5

1

1.5

2

2.5

3

E1 phase difference++ - 2++0 E1 phase difference++ - 2++0

]2)  [GeV/c0π0πMass(
0.5 1 1.5 2 2.5 3

E
ve

nt
s 

/ 1
5 

M
eV

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000
Total IntensityTotal Intensity

Figure 6.9: The intensity for each amplitude in the third permutation of the nominal

results is plotted here. These results are extracted from the background subtracted

data sample.
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Figure 6.10: The intensity for each amplitude in the fourth permutation of the

nominal results is plotted here. These results are extracted from the background

subtracted data sample.
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6.2.4 Alternate Results 1

The mass independent analysis is also repeated after constraining the components of

the 2++ amplitude to have the same phase above the KK threshold. These results

are presented in Fig. 6.11. The region below the KK threshold is redundant with

the nominal results above, containing data with the γη(′) background subtraction.
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Figure 6.11: The intensity for each amplitude in alternate results 1 is plotted here

as a function of π0π0 invariant mass. The ambiguous solutions are no longer present

due to the constraint that the phases of each component of the 2++ amplitude must

be equal.

The 0++ and 2++ spectra in alternate results 1 appear very similar to one set

of solutions for the nominal results. This is a predicable outcome given that one

set of solutions in the nominal results has phase differences between each pair of

2++ amplitudes that are consistent with zero. Alternate results 1 are determined by

applying the constraint that these phase differences are exactly zero. For comparison,

the two sets of results are overlaid in Fig. 6.12. The pull distributions, calculated by
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dividing the difference between the nominal and alternate results by the error on the

nominal results, is shown in Fig. 6.13.
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Figure 6.12: For comparison, a blue histogram representing alternate results 1 is

overlaid on the nominal results. The alternate results appear consistent with one

set of solutions for the nominal results (that with phase differences between the 2++

waves consistent with zero). The two sets of results are redundant in the low mass

region.
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Figure 6.13: The pull distribution (defined in the text) of one set of solutions from

the nominal results versus alternate results 1.
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6.2.5 Alternate Results 2

Finally, the mass independent analysis is also repeated with the pure data, which

does not contain the γη(′) background subtraction (Fig. 6.14). For clarity, this

process is briefly repeated here. An exclusive MC sample of J/ψ decays to γη(′) are

generated according to the branching fractions given by the PDG [1] and with angular

distributions according to a model within BESEVTGEN called the JPE model. This

sample must then pass all of the selection criteria discussed in section 4.4. The events

that remain are added to the maximum likelihood fit with a negative weight (-1). In

this way, when the exclusive MC sample is included in the analysis, it has the effect

of canceling out the effect of the remaining γη(′) backgrounds in the data sample.

Since the backgrounds of this type are only significant below the KK threshold,

the results above 0.99 GeV are redundant with the nominal results above. Both the

0++ and 2++ spectra are equivalent to those of the nominal results for much of the

invariant mass spectrum. The primary difference is a slight enhancement in the 0++

intensity in the region below about 0.6 GeV and near the η′ peak (Fig. 6.15). This

is interpreted as being due to the contribution of events decaying through γη(′) that

are being treated as signal events.

6.2.6 Discussion

The results of the mass independent analysis exhibit significant in the 0++ amplitude

just below 1.5 GeV/c2 and near 1.7 GeV/c2. If these structures are interpreted as

the f0(1500) and f0(1710) respectively, the presence of these states in radiative J/ψ

decays is quite conclusive. This would also lend credence to a prediction for each of

these states to have a significant glueball component. The apparent strength of the

f0(1710) coupling to ππ over theKK final state seems to contradict the corresponding

ratio to these final states in J/ψ decays to ωππ and ωKK [20]. Interestingly, there

is no visual evidence for a structure around 1.3 GeV/c2, which would correspond to
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Figure 6.14: The intensity for each amplitude in alternate results 2 is plotted here

as a function of π0π0 invariant mass. In these results, the γη(′) backgrounds have not

been subtracted from the data.

the f0(1370). A definitive statement on the necessity of the f0(1370) to describe the

data will require a coupled channel analysis to determine the number and placement

of pole positions.

Additional structures are present below 0.6 GeV/c2 and near 2.0 GeV/c2. It

seems reasonable to interpret the former as the σ (f0(500)), while the latter may be

attributed to the f0(2020). The presence of the four states below 2.1 GeV/c2 would

be consistent with the previous study of radiative J/ψ decays to ππ by BESII [18].

Due to the fact that this study constrained the phases of the 2++ amplitudes to have

the same phase, a comparison with alternate results 1 rather than the nominal results

is most appropriate. The results of this analysis also suggest that 0++ spectrum may

also exhibit a structure just below 1 GeV/c2, which was not observed in Ref. [18],

but the enhancement in this region is quite small. Finally, there also appears to be
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Figure 6.15: For comparison, alternate results 2 are overlaid in blue on the nominal

results. The two results differ only in the low mass region.

some structure around 2.4 GeV/c2 in the 0++ spectrum.

In the 2++ amplitude, the results of this analysis indicate a strong contribution

from what appears to be the f2(1270) consistent with previous results [18]. However,

the remaining structure in the 2++ amplitude appears significantly different than

the BESII results. In particular, Ref. [18] describes the region between 1.5 and 2.0

GeV/c2 with a relatively narrow f2(1810). One permutation of the nominal results

in this region indicates that the structures in this region are much wider, while the

other permutation suggests that there is very little contribution from states in this

region.

For both permutations of the nominal results, there appears to be a broad struc-

ture above 2 GeV/c2. The previous results on this reaction include an f2(2150) and

an f4(2050) in this region [18]. The tensor spectrum near 2 GeV/c2 is of interest in

the search for a tensor glueball. Lattice calculations suggest that a tensor glueball in

100



]2)  [GeV/c0π0πMass(
0.3 0.4 0.5 0.6 0.7 0.8 0.9

| N
om

in
al

 -
 S

ys
t. 

| /
 E

rr
or

0

0.5

1

1.5

2

2.5

 Intensity++0  Intensity++0

]2)  [GeV/c0π0πMass(
0.3 0.4 0.5 0.6 0.7 0.8 0.9

| N
om

in
al

 -
 S

ys
t. 

| /
 E

rr
or

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

E1 Intensity++2 E1 Intensity++2

]2)  [GeV/c0π0πMass(
0.3 0.4 0.5 0.6 0.7 0.8 0.9

| N
om

in
al

 -
 S

ys
t. 

| /
 E

rr
or

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M2 Intensity++2 M2 Intensity++2

]2)  [GeV/c0π0πMass(
0.3 0.4 0.5 0.6 0.7 0.8 0.9

| N
om

in
al

 -
 S

ys
t. 

| /
 E

rr
or

0
0.2

0.4
0.6

0.8
1

1.2

1.4

1.6

1.8
2

2.2

E3 Intensity++2 E3 Intensity++2

]2)  [GeV/c0π0πMass(
0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
1 

P
ha

se
 D

iff
er

en
ce

  [
ra

d]
+

+
 -

 2
+

+
0

0

1

2

3

4

5

6

E1 phase difference++ - 2++0 E1 phase difference++ - 2++0

]2)  [GeV/c0π0πMass(
0.3 0.4 0.5 0.6 0.7 0.8 0.9

| N
om

in
al

 -
 S

ys
t. 

| /
 E

rr
or

0

2

4

6

8

10

12

Total IntensityTotal Intensity

Figure 6.16: The pull distribution (defined in the text) of one set of solutions from

the nominal results versus alternate results 2. The results differ only in the low mass

region.

this region should have a mass of about 2.40 ± 0.15 GeV/c2 [16]. However, studies of

the φφη final state in π−p production and the π+π− system in pp̄ annihilation indicate

that all tensor states may be associated with conventional quark states except for a

broad structure near 2.01 GeV/c2 [84, 85]. This latter state may be interpreted as

a tensor glueball state [86]. The structure above 2 GeV/c2 in the nominal results of

this analysis appear consistent with such a state.
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6.2.7 Error analysis

A common issue for analyses of this type is the consistency of error bars. Some bins

that are near each other in invariant mass may have results with wildly different

error bars. This may be due in part to some of the assumptions that go into the

determination of the errors. Minimization is accomplished by using the MIGRAD

algorithm of MINUIT, while the HESSE method is used to calculate the error matrix.

HESSE calculates the second derivative matrix after minimization and inverts it to get

there error matrix. In this way, the error matrix accounts for parameter correlations,

but not non-linearities. That is, it only measures the second derivative matrix at a

single point and does not measure the likelihood contour elsewhere. HESSE also relies

on the assumption of Gaussian errors, which may not be correct, in the determination

of the error matrix. The MINOS processor calculates the parameter errors taking into

account any non-linearities by actually determining the likelihood function away from

the minimum, but at the cost of losing the error matrix, which is needed to account

for parameter correlations.

Investigations into the error bars in the mass independent analysis have not pro-

vided any conclusive evidence that there is a problem with how the error bars are

calculated. First of all, some bins do not exhibit multiple solutions. This is likely

due to the inability of MINUIT to discern two minima in the likelihood contour.

These errors may understandably be larger than their neighbors. For bins that do

exhibit multiple solutions, contour plots of the likelihood function as a function of

the 0++ parameters may be compared. The contours in bins with small and large

error bars are plotted in Fig. 6.17 and Fig. 6.18 respectively. Of course, these plots

are something of a simplification due to the fact that the true contour exists in seven

dimensional space. Due to the presence of multiple solutions in a bin, discontinuities

are produced in these plots if other parameters are allowed to float. It is not apparent

that the error bars are inconsistent with the likelihood contours.
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Figure 6.17: These plots show the likelihood distribution for the 0++ parameters

near the minimum (shown by the maker and error bars). The errors in this bin

are small relative to its neighbor. All other parameters are held at their minimum

values according to the solution in each bin. The top plot shows likelihood values up

to 10 units larger than the minimum, while the bottom plot shows up to 100 units

difference.
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Figure 6.18: These plots show the likelihood distribution for the 0++ parameters

near the minimum (shown by the maker and error bars). The errors in this bin

are large relative to its neighbor. All other parameters are held at their minimum

values according to the solution in each bin. The top plot shows likelihood values up

to 10 units larger than the minimum, while the bottom plot shows up to 100 units

difference.

104



6.3 Mass Dependent Analysis Results

The mass dependent fits are carried out in a series of steps. Based on the results

of the mass independent analysis and previous studies of this channel, a preliminary

set of resonances is selected. The mass and width of each of these amplitudes is

allowed to float individually, along with the complex couplings, in a series of fits.

This process is repeated iteratively until the mass and width parameters are stable

for subsequent fits. For parameters that do not converge, the PDG value is used in

the fit. Instability in the resonance parameters occurs only for the tensor states in

the high mass region, where the 2++ wave is least significant. Once a satisfactory set

of parameters is determined, a simple fit is performed with the masses and widths of

each resonance are fixed to the nominal values. The best fit is that with the minimum

value of -2 lnL.

The results of the mass dependent fit are plotted in Fig. 6.19. As expected, the

2++ amplitude is dominated by an f2(1270), with some additional contributions by

several additional resonances including the f ′
2(1525), the f2(1950) and the f2(2150).

The 0++ amplitude is composed of several resonances, each of which contribute a

significant amount to the intensity. These resonances include the f0(500) (the σ),

f0(1500), f0(1710), f0(2020), and f0(2330). There is also some evidence of an f0(980),

which is discussed below. The masses, widths, etc. for each resonance in the fit are

given in Table 6.2).

The mass independent results provide complementary information on the structure

of the amplitudes in the mass dependent fit. Thus it is useful to overlay the two types

of solutions to gauge the consistency between the two types of analysis methods.

Figure 6.20 shows this comparison for each wave and the phase difference between

the 0++ and 2++ E1 amplitudes. One area of concern is the comparison in the 0++

amplitude and the phase difference, wherein the two analysis types diverge fairly

strongly (Fig. 6.21). This may suggest the need for an f0(980).
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Figure 6.19: The results of a mass dependent fit of the γπ0π0 couplings is plotted here

as a function of π0π0 invariant mass. The left two plots show the contributions of each

total amplitude (0++, 2++E1, etc.), while the right two plots show the contribution

of each resonance to these amplitudes. The black markers show the intensity of the

data, while the black, empty histogram shows the total intensity from the fit. The

resonances and their BW parameters are given in Tab. 6.2.

To quantify the comparison between the mass dependent and mass independent

results, a χ2 is calculated according to the following procedure. The results of the

mass dependent fit is used to determine the value of each (complex) coupling at the

center of each bin of π0π0 invariant mass. This may then be compared with the mass

independent fit results for each bin. The vector, ∆, is the difference between the

amplitudes in the mass independent analysis and the mass dependent analysis. The

error matrix, Err, is the inverse of the correlation matrix from the mass independent

results. Then,

χ2 = ∆TErr∆ (6.4)
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Amplitude Mass Width Efficiency Fit Fraction

f0(PHSP ) − − 0.233 2.0± 0.1
f0(500) 0.508± 0.004 0.442± 0.009 0.216 6.5± 0.1
f0(1500) 1.443± 0.001 0.118± 0.003 0.222 3.4± 0.1
f0(1710) 1.752± 0.001 0.189± 0.004 0.237 7.9± 0.2
f0(2020) 1.980± 0.003 0.481± 0.008 0.242 27.4± 0.6
f0(2330) 2.342± 0.004 0.313± 0.041 0.250 0.30± 0.04
f2(1270) 1.264± 0.001 0.196± 0.001 0.231 46.9± 0.3
f2(1565) 1.540± 0.002 0.096± 0.004 0.252 0.9± 0.1
f2(1950) 1.943± 0.016 0.283 (fixed) 0.241 3.1± 0.1
f2(2150) 2.143± 0.014 0.272 (fixed) 0.301 1.0± 0.1

Table 6.2: The characteristics of the resonances from the mass dependent fit are

described here. These parameters represent the best fit results which do not include

the f0(980).

may be calculated for each bin. Here Gaussian errors have been assumed. The sum

of this quantity over each bin is then a measure of the similarity of the two results.

A comparison between one set of solutions from the nominal results and the mass

dependent results given in Fig. 6.19 gives a χ2 of 104,071 and a χ2/DOF of 99.2.

The significance of each resonance in the fit is tested by removing each resonance

individually and comparing the best value of -2 lnL with and without the resonance.

The results of these tests are shown in Tab. 6.3. The middle set of values are for

the removal of each amplitude individually. Several additional resonances are also

checked by adding it to the fit and comparing the likelihood values as above. These

additional resonances include the f0(980), the f4(2050) and the f4(2300), each with

masses and widths given by the PDG. The results are shown in the bottom group of

values in Tab. 6.3. The f0(980) does appear to be significant, especially considering

the comparison of the fits above.
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Figure 6.20: The nominal mass independent results are overlaid here with the results

of the mass dependent fit. The colored histograms show the mass dependent solutions

for each amplitude, while the markers show the mass independent results.

Resonance -2 lnL Difference

Best Fit -8955117.576 —
f0(500) -8941288.419 -13829.157
f0(1500) -8950719.865 -4397.711
f0(1710) -8945770.755 -9346.821
f0(2020) -8949484.995 -5632.581
f0(2330) -8954554.941 -562.635
f2(1270) -8871079.36 -84038.216
f2(1525) -8954058.95 -1058.626
f2(1950) -8952719.432 -2398.144
f2(2150) -8953386.604 -1730.972
f0(980) -8955925.882 808.306
f4(2050) -8955351.222 233.646
f4(2300) -8955155.611 38.035

Table 6.3: The significances of the resonances in the mass dependent fit are shown

here by comparing the values of -2 lnL with and without each resonance individually.
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Figure 6.21: The nominal mass independent results are overlaid here with the results

of a mass dependent fit. The colored histograms show the mass dependent solutions

for each amplitude, while the markers show the mass independent results.
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Figure 6.22: The χ2 per bin for the nominal mass independent results and the mass

dependent fit.
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6.3.1 Adding an f0(980)

After studying the significances above, the mass dependent fits were repeated with

the inclusion of the f0(980). The mass and width of the f0(980) were allowed to float

individually as in the procedure discussed above. The results are shown in Fig. 6.23

and Tab. 6.4. Comparisons with the mass independent results are shown in Fig. 6.24

and Fig. 6.25. It appears as though the f0(980) is necessary for the results of the mass

dependent fit to give a phase difference between the 0++ and 2++ amplitudes which

is consistent with that from the mass independent results. The χ2 for the comparison

given in Fig. 6.24 is 97,868 with a χ2/DOF of 93.3, slightly better than the results

without the f0(980).

Amplitude Mass Width Efficiency Fit Fraction (%) Significance

f0(PHSP ) − − 0.295 3.13± 0.01
f0(500) 0.520± 0.003 0.497± 0.013 0.226 6.45± 0.01 1,588
f0(980) 0.957± 0.002 0.039± 0.004 0.227 0.13± 0.01 411
f0(1500) 1.440± 0.001 0.121± 0.002 0.296 4.93± 0.01
f0(1710) 1.763± 0.001 0.158± 0.003 0.312 7.52± 0.01 5,859
f0(2020) 1.974± 0.004 0.441± 0.007 0.315 32.51± 0.03 6,591
f0(2330) 2.229± 0.009 0.223± 0.014 0.326 0.58± 0.01 584
f2(1270) 1.263± 0.001 0.186± 0.001 0.309 45.88± 0.03 10,087
f2(1565) 1.547± 0.002 0.078± 0.003 0.346 0.72± 0.01 1,414
f2(1950) 1.940 (fixed) 0.283 (fixed) 0.319 3.89± 0.01 5,556
f2(2150) 2.157 (fixed) 0.272 (fixed) 0.396 0.95± 0.01 848

Table 6.4: The characteristics of the resonances from the mass dependent fit are

described here. These parameters represent the best fit results which include the

f0(980).
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Figure 6.23: The results of a mass dependent fit including the f0(980) is plotted here

as a function of π0π0 invariant mass. The left two plots show the the contributions

of each total amplitude (0++, 2++E1, etc.), while the right two plots show the contri-

bution of each resonance to these amplitudes. The black markers show the intensity

of the data, while the black, empty histogram shows the total intensity from the fit.

The resonances and their BW parameters are given in Tab. 6.4.
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Figure 6.24: The nominal mass independent results are overlaid here with the results

of a mass dependent fit with the f0(980). The colored histograms show the mass

dependent solutions for each amplitude, while the markers show the mass independent

results.
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Figure 6.25: The nominal mass independent results are overlaid here with the results

of a mass dependent fit with the f0(980). The colored histograms show the mass

dependent solutions for each amplitude, while the markers show the mass independent

results.
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Figure 6.26: The χ2 per bin for the nominal mass independent results and the mass

dependent fit with an f0(980).
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Chapter 7

Systematic Uncertainties

The systematic uncertainties for the mass independent analysis are discussed in this

section. Two types of systematic uncertainties are discussed. The first type has to

do with the systematic uncertainty in the overall normalization of the results. The

second type of systematic uncertainty has to do with model dependencies. Rather

than introduce systematic errors due to these effects, the mass independent analysis is

repeated under different assumptions to allow for systematic studies of their effect on

the results. This method is chosen due to the fact that the systematic uncertainties

are correlated amongst all bins the in mass independent analysis. Therefore, if a

subsequent analysis is to properly consider these uncertainties, the correlated shift of

the nominal results is the pertinent information.

The systematic uncertainties include the assumption that phase differences be-

tween amplitudes of the same JPC are allowed to float above KK threshold and the

effect of assumptions about various backgrounds. Additionally, several cross checks

are performed in order to study the effects of how the ωπ0 background is addressed

and to test the significance of an additional 4++ amplitude.

The systematic uncertainties on the branching ratio of radiative J/ψ decays to

π0π0 are discussed in Sec. 6.1.1.
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7.1 Normalization

Sources of systematic uncertainties to the normalization of the mass independent

results include the photon detection efficiency systematic uncertainty, contamination

of the data sample by background events, the uncertainty in the number of J/ψ

decays, how the ωπ0 background is addressed in the fit, possible mismodeling in

the kinematic fit, and the effect of the remaining miscombined backgrounds. The

uncertainty on the branching ratio of π0 to γγ according to the PDG is 0.03%, which

is negligible in relation to the other sources of error [1]. These systematic uncertainties

were introduced in Sec. 6.1.1. Selected results are described below in greater detail.

7.1.1 Photon detection efficiency systematic uncertainties

The primary source of systematic uncertainty comes from the reconstruction of pho-

tons. From a study of J/ψ decays to π+π−π0, which is discussed in detail in Appendix

C, the uncertainty due to photon reconstruction is less than 0.5% per photon. This

gives an overall uncertainty of 2.5% per event (five final state photons).

In addition to this, a study was performed to determine the uncertainty due

mismodelling of the photon detection efficiency in the inclusive MC sample. The phase

space MC samples in each bin of the mass independent fit were modified according to

the differences in the shape of the cos θ distribution between the inclusive MC sample

and the data. This is accomplished by weighting each event of the phase space

MC sample by the quantity δ, which represents the fractional difference between the

efficiencies of the inclusive MC sample and the data according to δ = edata/eMC . Here

eMC is the photon detection efficiency from the inclusive MC sample and edata is that

from the data. The value δ is determined in bins of cos θ (Fig. 7.1). Then, each phase

space MC event is weighted by δ for each photon, depending on which angular bin

into which it falls. This means that each event will have a weight that is the product
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of five different individual weights.
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Figure 7.1: The difference between the angular distributions of the photon detection

efficiency between the inclusive MC and data samples is shown here. The difference

is quantified by δ, where δ = edata/eMC .

The benefit to using this method is that the number of events in the phase space

MC sample has not changed, but the effect of the difference in acceptance may be

studied. This method is similar to that described in Sec. 5.1. Recall that the

normalization integral is approximated using a phase space MC sampel (Eq. 5.16.

In a similar way that Eq. 5.8 was used to approximate the pdf for some remaining

background in the sample, the normalization integral may be approximated by

U

Ngen

Nacc
∑

i=1

(Aα(~xi)A
∗
α′)

wi =
U

Ngen

Nacc
∑

i=1

Aα(~xi)A
∗
α′ , (7.1)

where the weights are used to account for systematic differences between data and

MC samples. After the weighting process, the mass independent analysis is repeated

using the same process as that described above. The results of the analysis with the

reweighted MC samples are consistent with the nominal results. The pull distribution

118



between the nominal results and those with this systematic effect are shown in Fig.

7.2. Here and below, a pull distribution is defined as the difference between the

intensity or phase difference from the nominal results and those from an analysis

with a systematic difference (such as a reweighted MC sample) divided by the error

from the nominal results.

Normally for a systematic study like this, the difference between the results with

the alternative phase space MC sample relative to the nominal results would be

taken as the systematic uncertainty. In reality, the differences across the bins in the

mass independent fit are correlated. This means it is not possible to simply take

the difference in each bin as a systematic uncertainty. Fortunately, the differences

between the results with the reweighted sample and the nominal sample as so small

relative to the error on each bin that they may be neglected.

This same study was also performed for a similar systematic uncertainty due to

differences in the photon detection efficiency between the inclusive MC sample and

the data as a function of photon energy. The same procedure as that described above

is applied using δ now as a function of photon energy (Fig. 7.3). The pull distributions

are shown in Fig. 7.4.
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Figure 7.2: The pull distributions for the analysis with a MC sample that has

been reweighted due to differences in the angular distributions of the photons for the

inclusive MC sample relative to that in the data. Both the nominal results and the

reweighted results exhibit ambiguous solutions in most bins. A pull distribution is

plotted for each of the two sets of solutions. The results appear consistent with the

nominal results.
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Figure 7.3: The difference in the photon detection efficiency between the inclusive

MC and data samples as a function of photon energy is shown here. The difference

is quantified by δ, where δ = edata/eMC .
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Figure 7.4: The pull distributions for the analysis with a MC sample that has been

reweighted due to differences in the energy distributions of the photons in the inclusive

MC sample relative to that in the data. Both the nominal results and the reweighted

results exhibit ambiguous solutions in most bins. A pull distribution is plotted for

each of the two sets of solutions. The results appear consistent with the nominal

results.
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7.1.2 Kinematic fit

Differences in the results of a kinematic fit between the data and MC sample may

cause a systematic difference in the acceptance corrected signal yield. This effect

was investigated by varying the selection criterion requiring each event with a π0π0

invariant mass above 0.99 GeV/c2 to have a χ2
6C from the kinematic fit to be less

than 60. This restriction was instead relaxed to be less than 125. The results of the

analysis with this loosened restriction are shown in Fig. 7.5 in comparison with the

nominal results. The pull distributions are shown in Fig. 7.6.
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Figure 7.5: The intensity for each amplitude in the analysis with a loosened χ2
6C

restriction is plotted here as a function of π0π0 invariant mass by the red markers.

For reference, the nominal results are shown by the black markers.
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Figure 7.6: The pull distribution for each amplitude is plotted here as a function

of π0π0 invariant mass. The vertical axis gives the difference between the intensities

with the nominal and loosened χ2
6C restriction divided by the error on the nominal

results.

7.1.3 Misreconstructed backgrounds

Before the restriction on the invariant mass of the radiative photon paired with a

π0 daughter photon is applied, the background consisting of misreconstructed events

causes a significant results on the fit. This effect is apparent by performing the mass

independent analysis with and without the selection requirement. A comparison

between these results is shown in Fig. 7.7. The pull distribution is determined by

subtracting the approximate backgrounds in each bin from the total intensity. In this

way, the value obtained from the nominal results is comparable to that taken from

the results without the selection requirement. To confirm that this effect is due to

this background, the same comparison is made with an exclusive MC sample (Fig.

7.8. The two sets of results appear consistent.
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Figure 7.7: The total intensity from the mass independent analysis with and without

the restriction on the radiative photon are shown on the left. The black markers give

the nominal results while the red markers show the results without the restriction.

On the right, the pull distribution for the results on the right is plotted.

The effect the misreconstructed backgrounds that remain after the selection re-

quirements is studied by performing the mass independent amplitude analysis on an

exclusive MC sample. This MC sample was generated according to the results of the

model dependent analysis of the data and includes the proper angular distributions.

After applying the same selection criteria that are applied to the data, the MC sam-

ple is passed through the mass independent analysis. This process is repeated after

removing the remaining misreconstructed backgrounds from the sample. The results

of the analysis with and without the misreconstructed backgrounds are shown in Fig.

7.9-7.11.
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Figure 7.8: The total intensity from analysis on the MC sample with and without

the restriction on the radiative photon are shown on the left. The black markers give

the nominal results while the red markers show the results without the restriction.

On the right, the pull distribution for the results on the right is plotted.
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Figure 7.9: The intensity for each amplitude in the analysis with an exclusive MC

sample.
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Figure 7.10: The intensity for each amplitude for the simulated results with the

misreconstructed background removed is plotted here as a function of π0π0 invariant

mass by the red markers. For reference, the results including the misreconstructed

backgrounds are shown by the black markers.
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Figure 7.11: The pull distribution for each amplitude in the simulated analysis is

plotted here as a function of π0π0 invariant mass. The vertical axis gives the difference

between the intensities with and without the misreconstructed background divided

by the error on the results including the background.

128



7.2 Correlated systematic uncertainties

While the mass independent amplitude analysis is intended to be model indepen-

dent, several assumptions must be made. Differences in the results due to changing

the conditions of or assumptions about the analysis are discussed here. Systematic

differences due to these effects are correlated across mass bins in the results.

7.2.1 Model dependencies in the mass independent analysis

While the mass independent analysis is performed with the intention of eliminating

as many model dependencies as possible, one remaining model assumption is whether

or not to constrain the phases of the 2++ amplitudes. To allow for a systematic study

of this model dependence, the results of the mass independent analysis are presented

both with phases unconstrained (Fig. 6.3) and constrained (Fig. 6.11). These results

are discussed in section 6.2.

7.2.2 Background subtraction

The uncertainty due to how the remaining backgrounds due to J/ψ decays to γη and

γη′ are addressed in the fit is studied in a similar manner. The mass independent

analysis is repeated using the data sample with (Fig. 6.3) and without (Fig. 6.14)

background subtraction. This allows for a test of how these background affect the

shape of the π0π0 interaction.

7.2.3 Cross check: ωπ0 background

One of the largest remaining backgrounds after signal isolation and background sub-

traction is due to the signal mimicking decay of J/ψ to ωπ0, where the ω decays to

γπ0. The nominal method to address this background is to exclude the region of γπ0

invariant mass within 50 MeV/c2 of the ω mass. An alternate method of addressing
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this background is to remove this restriction and include an amplitude for the ωπ0 fi-

nal state in the analysis. The mass independent analysis is performed for both model

assumptions. The results of the fits with phases unconstrained are shown in Figure

7.12. The pull distributions are shown in Fig. 7.13.
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Figure 7.12: The intensity for each amplitude is plotted here as a function of π0π0

invariant mass. The results that include the ωπ0 backgrounds, and an ωπ0 amplitude,

are given by the blue histogram. For reference, the nominal results are shown by the

black markers. The intensity for the ωπ0 amplitude is shown in the bottom left frame.

One additional result of the inclusion of an ωπ0 amplitude to the analysis is the

possibility of using the phase of the ωπ0 to establish the phases of the other amplitudes

in the fit. The results of the analysis, suggest that this is not feasible. This is primarily

due to the fact that both the ωπ0 amplitude and at least one other amplitude are

only significant for a severely restricted region of phase space. The phase difference

of the 0++ amplitude relative to the ωπ0 is shown in the bottom right plot in Fig.

7.12.
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Figure 7.13: The pull distribution for each amplitude is plotted here as a function

of π0π0 invariant mass. The vertical axis gives the difference between the intensities

with and without the ωπ0 backgrounds divided by the error on the nominal results

for that amplitude.

7.2.4 Cross check: 4++ amplitude

As discussed above, angular momentum and parity considerations dictate that the

only amplitudes that contribute to decays of the J/ψ to γπ0π0 must have even J

and positive parity and charge conjugation. Both the 0++ and 2++ amplitudes

have obvious contributions to the spectrum, but additional amplitudes may make

some contributions as well. To test this hypothesis, the mass independent analysis is

repeated with the addition of a 4++ amplitude.

In the radiative multipole basis, the 4++ amplitude has three pieces (similarly

to the 2++ amplitude). The mass independent analysis is repeated, including each

permutation of the three 4++ amplitudes (E3, M4, and E5). For each combination,

the difference in likelihood for each bin with and without the 4++ amplitude(s) is
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plotted. The significance of the additional amplitude can be approximated by taking

the ratio of the log likelihoods and treating the result as a χ2 value in the high

statistics limit [80]. The significance would then be given by

S(2) =
√

−2 lnLwith 4++ + 2 lnLwithout 4++ , (7.2)

where the addition of the 4++ introduces two additional degrees of freedom to the fit.

Thus, a difference of −2 lnL of 9 would correspond to a 3σ significance for the 4++

wave. No significant contribution from a 4++ amplitude is obvious.

Figures 7.14-7.20 show the results of the fits with 4++ amplitudes along with

the intensity for the most significant component of the 4++ amplitude included in

each fit. For each of these plots, the y-axis is the difference in -2lnL without the

additional wave minus the likelihood with it. Therefore, a positive value of likelihood

indicates that the fit prefers the inclusion of the amplitude. For comparison purposes,

the likelihood difference with the removal of the 2++ E3 component, which certainly

appears significant, is shown in Fig. 7.21. For reference, the intensity of the 2++ E3

component across all mass bins is about 2% of the total intensity.

One interesting aspect of this study is the possibility to compare these results

with those from the mass dependent analysis (section 6.3). Including an f4(2050)

in the mass dependent analysis improves the likelihood by about 234 units, but the

intensity is very small. Including instead an f4(2300) only improves the likelihood by

about 38 units and also has a very small intensity. The masses of these resonances do

not appear stable in the fit. That is, when allowed to float, the mass parameters are

moved to the upper limit of the parameter. When floated the width of the f4(2300) is

determined to be a reasonable 0.32 GeV/c2, but the width of the f4(2050) blows up

over 0.7 GeV/c2. The contribution from these resonances from the mass dependent

analysis are overlaid on the mass independent results with a 4++ amplitude in Fig.
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7.14 and Fig. 7.20.
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Figure 7.14: The top plot shows the likelihood difference between the nominal results

and those with an additional 4++ E3 component. The bottom plot shows the intensity

for the most significant 4++ amplitude in the fit (E3). The red histogram shows the

contribution of an f4(2050) to the mass dependent fit, while the blue histogram shows

that of an f4(2300).
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Figure 7.15: The top plot shows the likelihood difference between the nominal results

and those with an additional 4++ M4 component. The bottom plot shows the intensity

for the most significant 4++ amplitude in the fit (M4).
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Figure 7.16: The top plot shows the likelihood difference between the nominal results

and those with an additional 4++ E5 component. The bottom plot shows the intensity

for the most significant 4++ amplitude in the fit (E5).

136



]2)  [GeV/c0π0πMass(
0.5 1 1.5 2 2.5 3

D
iff

er
en

ce
 in

 -
2 

ln
(L

)

-10

0

10

20

30

40

50

]2)  [GeV/c0π0πMass(
0.5 1 1.5 2 2.5 3

2
E

ve
nt

s 
/ 1

5 
M

eV
/c

0

500

1000

1500

2000

2500

3000

E3 Intensity++4 E3 Intensity++4

Figure 7.17: The top plot shows the likelihood difference between the nominal results

and those with an additional 4++ E3 and M4 component. The bottom plot shows

the intensity for the most significant 4++ amplitude in the fit (E3).
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Figure 7.18: The top plot shows the likelihood difference between the nominal results

and those with an additional 4++ E3 and E5 component. The bottom plot shows the

intensity for the most significant 4++ amplitude in the fit (E3).
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Figure 7.19: The top plot shows the likelihood difference between the nominal results

and those with an additional 4++ M4 and E5 component. The bottom plot shows

the intensity for the most significant 4++ amplitude in the fit (M4).
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Figure 7.20: The top plot shows the likelihood difference between the nominal results

and those with an additional 4++ E3, M4, and E5 component. The bottom plot

shows the intensity for the most significant 4++ amplitude in the fit (E3). The red

histogram shows the contribution of an f4(2050) to the mass dependent fit, while the

blue histogram shows that of an f4(2300).
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Figure 7.21: The top plot shows the likelihood difference between the nominal results

with and without the 2++ E3 component. The bottom plot shows the intensity for

the 2++ E3 amplitude.
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Chapter 8

Conclusions

An amplitude analysis of the π0π0 system in radiative J/ψ decays has been performed

using the world’s largest data sample of its type, collected by the BESIII collabora-

tion. A mass independent amplitude analysis is presented under several different

assumptions in order to allow for systematic studies of model dependencies. The

intensities and phase differences for the amplitudes in the fit are presented as a func-

tion of π0π0 invariant mass. Additionally, the amplitudes in each bin will be made

available along with the correlation matrices and normalization information. These

results may be of use for more complete analyses of the scalar spectrum.

In addition to the mass independent analysis, a mass dependent analysis is per-

formed using interacting Breit-Wigner line shapes. The results of each analysis type

appear consistent with each other. This suggests that the results of the mass in-

dependent amplitude analysis are a faithful representation of the data sample. The

structures present in the mass independent analysis also appear in the mass dependent

analysis. The 2++ amplitude is dominated by an f2(1270), with some additional con-

tributions by the f ′
2(1525). There also appears to be some contribution from several

higher mass tensor resonances, for example the f2(1950) and the f2(2150). Visible in

the 0++ amplitude is the f0(500) (the σ), the f0(1500), the f0(1710), the f0(2020),
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and the f0(2300). There is also some evidence of an f0(980). The mass, width, and

fit fraction of each resonance included in the mass dependent analysis is presented in

Tab. 6.2.

The presence of the f0(1500) in both the mass independent and mass dependent

analyses is an important observation. A glueball state is expected to be observed in a

glue-rich environment like radiative decays of the J/ψ, but not in two photon collisions

[59]. The fact that this is true for the f0(1500) provides important information for

the interpretation of this state.

Finally, the branching ratio of radiative J/ψ decays to π0π0 is measured to be

(1.147 ± 0.002 ± 0.042) × 10−3, where the first error is statistical and the second is

systematic. This is the first measurement of this reaction.
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Appendix A

Ambiguities

One of the difficulties of amplitude analyses is the problem of ambiguous solutions,

two solutions that give the same distribution. In this section, the ambiguous solutions

for radiative J/ψ decays to π0π0 are studied.

In the radiative multipole basis, the decay amplitude is given by

Aα=(M,λγ)β=(Jγ ,j12,µ12)(~x) =
∑

µ12

NJγD
J
M,µ12−λγ (π + φγ, π − θγ , φ1)Nj12d

j12
µ12,0

(θ1)

〈Jγ,−λγ ; j12, µ12|J, µ12 − λγ〉
1√
2
[δλγ ,1 + δλγ ,−1(−1)Jγ−1]

(A.1)

where (φγ,θγ) represent the angular distribution of the radiated photon in the J/ψ

rest frame and (φ1,θ1) represents the angular distribution of one of the π0 mesons in

the π0π0 rest frame. Nj is a normalization factor which is given by

Nj =

√

2j + 1

4π
. (A.2)

150



By expanding out the Wigner D functions,

Aα,β(~x) =
∑

µ12

c
Jγ ,λγ
j12,µ12

NJγNj12D
1
M,µ12−λγ (π + φγ, π − θγ , φ1)

× dj12µ12,0(θ1)
1√
2
[δλγ ,1 + δλγ ,−1(−1)Jγ−1]

=
∑

µ12

c
Jγ ,λγ
j12,µ12

NJγNj12e
−ıM(π+φγ)d1M,µ12−λγ (π − θγ)e

−ı(µ−λγ)φ1

× dj12µ12,0(θ1)
1√
2
[δλγ ,1 + δλγ ,−1(−1)Jγ−1]

(A.3)

where the constants c
Jγ ,λγ
j12,µ12

contain the Clebsch Gordan factors. The angular mo-

mentum of the J/ψ is also explicitly written as one. Additionally, let us restrict our

attention only to values of j12 = 0, 2 (the two lowest order partial waves allowed by

parity considerations). We can also realize that the Clebsch Gordan factors restrict

the signs of µ12 to be the same as that of λgamma. Thus, for j12 = 2 and λγ = 1,

only the values µ12 = 0, 1, 2 give non-zero amplitude contributions. It is also impor-

tant to note that the sign of the Clebsch Gordan coefficients will change sign under

λγ → −λγ, but only for Jγ = 2. This will cancel the delta functions in the decay

amplitude, with the result

Aα,β(~x) =
∑

µ12

c
Jγ ,λγ
j12,µ12

NJγNj12e
−ıM(π+φγ)d1M,µ12−λγ (π − θγ)

× e−ı(µ−λγ)φ1dj12µ12,0(θ1)[δλγ ,1 + δλγ ,−1(−1)Jγ−1].

(A.4)

Recall that, for the small d functions, d11,±1(π − θ) = d11,∓1(θ) and d11,0(π − θ) =

d11,0(θ). Then, d
1
M,µ−λγ (π − θ) = d1M,λγ−µ12(θ). Also, note that the restrictions on µ12

mean that the factor µ12−λγ = ±1, 0. It is also useful to note that µ−λγ = λγ, 0,−λγ ,

for µ = ±2,±1, 0 respectively. The usefulness of these features appears when one

writes out the intensity for a given choice of M and λγ. It is also useful to plug in

the values for the constants, which are given by
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c
Jγ ,λγ
0,0 = 1

c1,±1
2,0 =

√

1
10

c2,±1
2,0 = ±

√

3
10

c3,±1
2,0 =

√

6
35

c1,±1
2,1 =

√

3
10

c2,±1
2,1 = ±

√

1
10

c3,±1
2,1 = −

√

8
35

c1,±1
2,2 =

√

3
5

c2,±1
2,2 = ∓

√

1
5

c3,±1
2,2 =

√

1
35

Now, the intensity for a given choice of observables is given by

IM,λγ (~x) =
1

32π2
|
√
3d1M,λγ (θγ)[V0,1 +

1

2
d20,0(θ1)(V2,1 +

√
5V2,2 + 2V2,3)]e

ıλγφ1

+
1√
2
d1M,0(θγ)d

2
1,0(θ1)(3V2,1 +

√
5V2,2 − 4V2,3)

+d1M,−λγ (θγ)d
2
2,0(θ1)(3V2,1 −

√
5V2,2 + V2,3)]e

−ıλγφ1 |2,

(A.5)

where Vα,β is given by Vj12,Jγ . Each term has a specific value for µ12 and therefore

µ12 − λγ as described above. Hence it is possible to group terms with the same

angular dependencies. The values of the coefficients have also been written explicitly.

Things will simplify a bit if we group the θ1 dependence into new functions, hµ12(θ1)

as defined by

I(~x) =
∑

M,λγ

|h0(θ1)d1M,λγ (θγ)e
ıλγφ1 + h1(θ1)d

1
M,0(θγ)

+ h2(θ1)d
1
M,−λγ (θγ)e

−ıλγφ1 |2.
(A.6)

Then,

h0(θ1) =
√
3V0,1 +

√

3

2
(V2,1 +

√
5V2,2 + 2V2,3)d

2
0,0(θ1)

h1(θ1) =
1√
2
(3V2,1 +

√
5V2,2 − 4V2,3)d

2
1,0(θ1)

h2(θ1) = (3V2,1 −
√
5V2,2 + V2,3)d

2
2,0(θ1).

(A.7)

The amplitudes for whichM and λγ have the same (opposite) sign, M = λγ = ±1

(M = −λγ = ±1) are related to each other by a sign change in the exponential factor.
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Note that the terms with a factor of d1M,0 will change sign underM → −M and terms

with a factor of dj12µ12,0 will change sign under λγ → −λγ. Then, the intensity becomes

I(~x) =
∑

M=λγ=±1

|h0(θ1)d11,1(θγ)e±ıφ1 + h1(θ1)d
1
1,0(θγ)

+ h2(θ1)d
1
1,−1(θγ)e

∓ıφ1|2

+
∑

M=−λγ=±1

|h0(θ1)d11,−1(θγ)e
±ıφ1 − h1(θ1)d

1
1,0(θγ)

+ h2(θ1)d
1
1,1(θγ)e

∓ıφ1|2.

(A.8)

Note that the term with h1(θ1) has changed sign in the opposite combination. The

properties of small d functions, djm′,m(θ) = (−1)m−m′

djm,m′(θ) = dj−m,−m′(θ), have

been used to write the incoherent pieces of the intensity in the same way.

Now we can write the intensity in several pieces (in terms of φ1 dependence);

I0(~x) =2[(h0)
2(d11,1)

2 + (h1)
2(d11,0)

2 + (h2)
2(d11,−1)

2]

+ 2[(h0)
2(d11,−1)

2 + (h1)
2(d11,0)

2 + (h2)
2(d11,1)

2]

=[(h0)
2 + (h2)

2][1 + cos2 θγ ] + 2(h1)
2 sin2 θγ,

(A.9)

I1(~x) =2[(h0h
∗
1 + h∗0h1)d

1
1,1d

1
1,0 + (h2h

∗
1 + h∗2h1)d

1
1,−1d

1
1,0] cosφ1

−2[(h0h
∗
1 + h∗0h1)d

1
1,−1d

1
1,0 + (h2h

∗
1 + h∗2h1)d

1
1,1d

1
1,0] cosφ1

=
√
2(−h0h∗1 − h∗0h1 + h2h

∗
1 + h∗2h1) sin θγ cos θγ cosφ1,

(A.10)

I2(~x) =4(h0h
∗
2 + h∗0h2)d

1
1,1d

1
1,−1 cos 2φ1

=(h0h
∗
2 + h∗0h2) sin

2 θγ cos 2φ1

(A.11)
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So the total intensity is given by

I(~x) =[(h0)
2 + (h2)

2][1 + cos2 θγ] + 2(h1)
2 sin2 θγ

+
√
2(−h0h∗1 − h∗0h1 + h2h

∗
1 + h∗2h1) sin θγ cos θγ cosφ1

+ (h0h
∗
2 + h∗0h2) sin

2 θγ cos 2φ1

(A.12)

Which can be modified slightly to give

I(~x) =
3

2
[(h0)

2 + (h2)
2] + (h21) + {1

2
[(h0)

2 + (h2)
2]− (h1)

2} cos 2θγ

+
1

2
(h0h

∗
2 + h∗0h2) cos 2φ1

+
1√
2
(−h0h∗1 − h∗0h1 + h2h

∗
1 + h∗2h1) sin 2θγ cosφ1

− 1

2
(h0h

∗
2 + h∗0h2) cos 2θγ cos 2φ1

(A.13)

It is instructive to write the intensity function as

I(~x) =f0 + f1 cos 2θγ +
1

2
f2 cos 2φ1

+
1

2
f3 sin 2θγ cosφ1 −

1

2
f4 cos 2θγ cos 2φ1.

(A.14)

Comparing the two expressions for the intensity, it is apparent that

f0 =
3

2
[(h0)

2 + (h2)
2] + (h21)

f1 =
1

2
[(h0)

2 + (h2)
2]− (h1)

2

f2 = f4 = (h0h
∗
2 + h∗0h2)

f3 =
√
2(−h0h∗1 − h∗0h1 + h2h

∗
1 + h∗2h1).

(A.15)

Now, assume a set of production amplitudes, Vi, have been found by fitting the

intensity function in Eq. A.14 to the data. Ambiguities would arise if an alternative

set of amplitude couplings, V ′
i , would give the same angular dependence as the original

set. In other words, the new set of amplitudes must give the same values for the fi
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functions (f ′
i = fi).

Consider f2, which can be written as a linear combination of two quadratic forms

f2 =
1

2
(|h0 + h2|2 − |h0 − h2|2). (A.16)

These quadratic forms are given by

|h0±h2|2 = [cos2 θ1(3a1∓a3)+(b−a1±a3)]×[cos2 θ1(3a
∗
1∓a∗3)+(b∗−a∗1±a∗3)], (A.17)

where for simplicity the production coefficients have been combined into new variables

given by

b =
√
3V0,1

a1 =

√
6

4
(V2,1 +

√
5V2,2 + 2V2,3)

a2 = −
√
3

4
(3V2,1 +

√
5V2,2 − 4V2,3)

a3 =

√
6

4
(3V2,1 −

√
5V2,2 + V2,3).

(A.18)

Since the only the absolute square of each combination of h0 and h2 appears in the

intensity, nontrivial ambiguous solutions only appear when the production coefficients

are replaced by their complex conjugate for one choice of sign in Eq. A.17. That is, if

u1 = (b, a1, a2, a3) and u2 = (b′, a′1, a
′
2, a

′
3), the solutions {u1, u2} and {u1, u∗2} should

give consistent values for h0 ± h2. This requires that either

h0 + h2 = h′0 + h′2

h0 + h2 = h′∗0 + h′∗2

(A.19)
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or

h0 − h2 = h′0 − h′2

h0 − h2 = h′∗0 − h′∗2 .

(A.20)

Therefore, either

3a′1 − a′3 = 3a∗1 − a∗3

b′ − a′1 + a′3 = b∗ − a∗1 + a∗3

3a′1 + a′3 = 3a1 + a3

b′ − a′1 − a′3 = b− a1 − a3

(A.21)

or

3a′1 − a′3 = 3a1 − a3

b′ − a′1 + a′3 = b− a1 + a3

3a′1 + a′3 = 3a∗1 + a∗3

b′ − a′1 − a′3 = b∗ − a∗1 − a∗3.

(A.22)

Now, Eq. A.21 requires that

Im b = −2Im a1

Re b′ = Re b

Im b′ = −2

3
Im a3.

(A.23)

A.22 requires instead that

Im b = −2Im a0

Re b′ = Re b

Im b′ = −2

3
Im a2,

(A.24)
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which simply implies that there is a phase ambiguity. One can choose a convention

for the sign of the phase of the total amplitude, which resolves this ambiguity. Let us

choose the phase convention given by Eq. A.21. Finally, invariance of f1, given the

conditions above, requires that a′2 = a2. Therefore, the alternate set of solutions can

be written in terms of the original set

Re V ′
0,0 = Re V0,0

Im V ′
0,0 = − 1

3
√
2
(3Im V2,1 −

√
5Im V2,2 + Im V2,3)

Re V ′
2,1 = Re V2,1

Im V ′
2,1 = Im V2,1 +

2
√
5

3
Im V2,2 +

5

6
Im V2,3

Re V ′
2,2 = Re V2,2

Im V ′
2,2 = −Im V2,2 −

sqrt5

2
Im V2,3

Re V ′
2,3 = Re V2,3

Im V ′
2,3 = Im V2,3.

(A.25)

In a practical sense, these results are useful to compare the mathematical predic-

tions to what is found experimentally. Essentially, the predicted ambiguous partner

for a set of fit results in a given bin may be calculated in the following way. First, the

results much be rotated in phase space such that the condition in Eq. A.23 is satis-

fied. Next, the ambiguous partner may be determined using Eq. A.25. Finally, this

predicted solutions must be rotated back into the original phase convention. Now, the

predicted ambiguous partner may be compared with the experimentally determined

fit results. Such a comparison is shown in Fig. A.1.
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Figure A.1: The intensities for each amplitude as well as the phase differences between

selected amplitudes are plotted here as a function of π0π0 invariant mass. The solid

black markers give the results for one set of solutions while the empty red circles

show the results for the ambiguous partner. The blue triangles show the predicted

ambiguous partner to the solutions represented by the black markers. Similarly, the

green squares predict the partners of the open red circle solutions. The fit results are

consistent with the prediction.
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Appendix B

Input-Output Study

In order to test the efficacy of the fitting machinery to predict the correct intensity

distributions, a study was performed in which exclusive MC samples were fitted with

the same procedure as the data. The results of the fit may then be compared to the

generated information. Consistency between the generated and reconstructed values

suggests that the fitting mechanism is effectively representing the data.

B.1 Single Resonance

Exclusive MC samples were generated with a single resonance in one of the amplitudes

(0++ or 2++) and fit with both resonances. This provides a means to test whether

the fitting mechanism can properly predict an intensity of zero for an amplitude that

contains no resonant structure. It is also a very clean method to test whether the true

intensity for the amplitude can be determined. This process was repeated with an

exclusive MC sample containing only a 0++ resonance and another sample containing

only a 2++ resonance. In this context, a resonance in the 2++ wave implies that each

component amplitude has a resonant structure (E1, M2, and E3).

One hundred statistically independent exclusive MC samples were generated for

each set of resonances. Each of these samples was binned in terms of π0π0 invariant
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mass. Many fits were performed in each bin with randomized initial parameters. The

best fit results (the ambiguous pair) were then compared to the generated information.

One set of solutions gives an intensity distribution very similar to the generated

information while the other set of solutions is significantly different than the generated

information. The latter is the ambiguous partner to the selected set of solutions.

Pull distributions were generated for the set of solutions that more closely matches

the generated information. Here the pull of a variable is defined as the difference

between the experimentally measured information (xi) and the true value of the

variable (x) divided by the error on the measurement (σi):

pi =
xi − x

σi
. (B.1)

The pull distributions are shown in Figure B.1-B.2. For each bin that has an

appreciable intensity, the pull distribution includes the results from each MC sample.

As a check on the efficacy of the fitting procedure, the number of events falling within

±1 units of a pull value of zero is calculated. If the pull distributions are Gaussian

distributed, as expected, the number of events in this window should be about 68.2%

of the total distribution. The fraction of events within this window is overlaid in the

figures below. These numbers appear reasonable.
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Figure B.1: The pull distributions for a set of exclusive MC samples with a single

resonance in the 2++ wave, but fit with both the 0++ and 2++ waves, are shown here.

The fraction of events within ±1 of a pull value of zero are given for each distribution.
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Figure B.2: The pull distributions for a set of exclusive MC samples with a single

resonance in the 0++ wave, but fit with both the 0++ and 2++ waves, are shown here.

The fraction of events within ±1 of a pull value of zero are given for each distribution.
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B.2 Two Resonances

In addition to the exclusive MC samples described above, a set of 100 statistically in-

dependent exclusive MC samples were generated with a resonance in each amplitude.

These samples are fitted using the procedure described above. The results of these

fits were similar to the simple case. The pull distributions are shown in Figure B.3.
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Figure B.3: The pull distributions for a set of exclusive MC samples with a resonance

in each wave are shown here. The fraction of events within ±1 of a pull value of zero

are given for each distribution.

B.3 Full IO Study

Finally, an exclusive MC sample was generated according to the results of the mass

dependent analysis. This sample was fit using the typical mass independent procedure

and compared to the generated information (Figure B.4). The sample in Figure B.4
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do not contain any effects due to the detector acceptance or resolution. In addition to

this study, the MC events were sent through a detector simulation to add the effects

of detector acceptance and resolution. This reconstructed MC sample was also fit in

the typical manner. The results are shown in Figure B.5.

For each case, with and without detector acceptance and resolutions effects, the

results of the mass independent fit are consistent with the generated information. The

error bars are significantly larger for the case of actual acceptance and resolution ef-

fects. Based on this study, the fitting procedure appears to give a valid representation

of the data sample.
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Figure B.4: These plots show the results of fits to an exclusive MC sample that

closely resembles the data. The black markers give one set of results, while the red

markers show the ambiguous partner. The black histogram depicts the generated

distribution. This sample has perfect detector acceptance and resolution.
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Figure B.5: These plots show the results of fits to an exclusive MC sample that

closely resembles the data. The black markers give one set of results, while the red

markers show the ambiguous partner. The black histogram depicts the generated

distribution. This sample has actual detector acceptance and resolution.
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Appendix C

Photon Detection Efficiency

Analyses at BESIII with multiple final state photons, such as J/ψ and ψ′ decays

to γπ0π0, require good knowledge of the photon detection efficiency of the BESIII

detector. In particular, analyses like these are likely to have significant systematic

errors from photon reconstruction effects. It is therefore important to possess an

accurate measurement of the systematic uncertainty due to the photon detection

efficiency. This efficiency is studied by calculating the difference in the expected

number of photons and the number of photons that are actually detected.

The photon detection efficiency of the BESIII detector is studied using a sample

of J/ψ → π+π−π0 events, where the π0 decays into two photons. One of these final

state photons is reconstructed, along with the two charged tracks, while the other

photon is left as a missing particle in the event. This information can then be used

to determine the region in the detector where the missing photon is expected. By

retaining the reconstruction information for each additional photon in the event, it is

possible to calculate the photon detection efficiency by taking the ratio of the number

of photons which are detected in this region to the number that are expected. The

number of detected and expected photons are determined by fits to the two photon

invariant mass distributions.
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The systematic error due to photon reconstruction is determined by investigating

the differences between the photon detection efficiencies for the inclusive MC sample

and the data. The inclusive MC sample consists of 225 × 106 J/ψ events, which

are reconstructed using BOSS version 6.6.4. Two sets of data were analyzed. These

include the older BESIII data set of (225 ± 2.8) × 106 J/ψ events, which are also

reconstructed with BOSS version 6.6.4, and the new BESIII data set of approximately

1086 × 106 J/ψ events, which are reconstructed with the same BOSS version. The

combined data set contains (1.3106± 0.0072)× 109 J/ψ decays. To justify the use of

the older inclusive MC sample, two sets of exclusive MC were generated, one each for

the run conditions of the old and new J/ψ data sets. The photon detection efficiencies

determined from these two exclusive MC samples are consistent, suggesting that it is

appropriate to use the inclusive MC sample in comparison with the new data set.

C.1 Event Selection

The data selection begins by requiring each event to have two oppositely charged

tracks and at least one good photon. A good photon has an energy greater than 25

(50) MeV in the barrel (endcap) of the detector. If an event has more than one good

photon, each combination of γπ+π− is reconstructed. In this way, each photon from

the π0 is used in the calculation of the photon detection efficiency, effectively doubling

the statistics of the sample. A 1C kinematic fit constrains the missing 4-momentum

for each event to be a photon (have a mass of zero). This kinematically fitted missing

photon is used to identify the region in the EMC in which the real photon is expected

to be found. The reconstruction information for each additional photon in the event

is retained in order to search for a candidate shower in the region of interest. The

γγ invariant mass distribution is shown in Fig. C.1 before any additional selection

criteria are applied.
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Figure C.1: The two photon invariant mass distribution is shown here after minimal

selection criteria. Significant backgrounds include J/ψ → µ+µ−, J/ψ → e+e−, and

J/ψ → γπ+π− as well as final states with extra π0s and/or photons.

Each combination of γπ+π− plus a missing photon must pass a series of additional

selection criteria, which are designed to reduce backgrounds and maximize the signal.

Where applicable, these criteria are also designed to match the typical reconstruction

criteria. For example, the restriction on the opening angle of a photon with respect

to a charged track matches the restriction that is applied by the BOSS reconstruc-

tion code. The charged tracks must satisfy a very loose restriction on the PID (the

probability to be a pion must be greater than 10−5). The largest backgrounds include

J/ψ → µ+µ−, J/ψ → e+e−, and J/ψ → γπ+π− as well as final states with extra

π0s and/or photons (J/ψ → π+π−π0π0 or γπ+π−π0 for example). A large amount

of background also comes from combinatoric effects. Signal events in which a fake

photon is used as the reconstructed photon produce a γγ invariant mass which should

not peak in the π0 mass range.

The χ2 from the 1C kinematic fit is required to be less than 6.3. This restriction
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eliminates a large portion of the background events with extra π0s. The µ+µ− and

e+e− backgrounds can be greatly reduced by restricting the opening angle between

the reconstructed photon and the nearest charged track to be greater than 20 degrees.

This restriction is also applied to the kinematically fitted missing photon. In order to

further reduce J/ψ → µ+µ− and J/ψ → e+e− backgrounds, the invariant mass of the

reconstructed photon plus the two charged tracks is required to be less than 3GeV/c2.

This quantity is also required to be greater than 1GeV/c2 in order to reduce a large

background from J/ψ → γη′, where the η′ decays to gammaπ+π−. Other radiative

decays of the J/ψ are reduced by restricting the energy of the reconstructed photon

to be less than 1.36GeV . Finally, to remove backgrounds from fake photons, the

energy of the reconstructed photon is required to be greater than 0.1 GeV. The γγ

invariant mass spectrum after all selection criteria is shown in Fig. C.2.
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Figure C.2: The two photon invariant mass distribution is shown here after all selec-

tion criteria have been applied. The remaining background is less than 2% of the size

of the signal.

The kinematically fitted missing photon is used to define an angular acceptance
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window in which to search for a candidate shower. If a candidate shower falls within

the angular window, the photon is interpreted as having been detected, while if no

candidate shower falls within the window, the missing photon is interpreted as being

undetected.

The angular acceptance window is determined by fitting a two-dimensional Gaus-

sian distribution to the difference between the angular distributions (cos(θ) and φ) of

the missing photon and the candidate shower. The width of the Gaussian function for

each distribution is taken as one σ deviation for that variable. In order to account for

resolution effects, which are more significant at lower photon energies, these windows

are calculated in bins of the energy of the missing photon. A wide (10σ) acceptance

window is defined for each energy bin. A sample angular distribution for one such

window is shown in Fig. C.3.
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Figure C.3: For a single bin in energy, the kinematically defined angular acceptance

window for the candidate shower is defined by a fit to the difference of the angular

distributions of the kinematically fitted missing photon and each candidate shower.

This distribution is fitted to a double Gaussian shape to determine the width of the

angular window for each variable (cos(θ) and φ).
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C.2 Fitting Methods

Two complementary methods are used to calculate the photon detection efficiency.

In each method, the expected number of missing photons (the denominator of the

efficiency ratio) is determined by fitting the invariant mass distribution of the recon-

structed photon plus the kinematically fitted missing photon. A clear peak is evident

for the parent π0 (Fig. C.4). The numerator of the efficiency ratio is determined

by a similar fit, but only for events which have a candidate shower that is detected

within the angular window defined by the missing photon. The background for each

distribution is represented with a second order Chebychev polynomial function. The

two methods differ in that one uses the missing photon itself in the γγ fit, while the

other uses the real candidate shower. This necessarily changes the signal shape. Each

method is described in more detail below.

C.2.1 Method 1

The first method calculates the number of detected photons using the invariant mass

distribution of the reconstructed photon and the kinematically missing photon. This

method has the benefit that the invariant mass distribution for events that have a real

photon within the angular window is a subset of the same distribution that is used to

calculated the expected number of photons. That is, the numerator of the efficiency

ratio is a subset of the denominator. Method 1 may overestimate the photon detection

efficiency, though, because a fake photon within the angular window may cause an

event to be accepted (a form of background). For such events, the reconstructed and

kinematically fitted photon pair may still have an invariant mass that falls in the π0

mass range. In other words, an event which should have failed the acceptance test is

accepted by chance.
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C.2.2 Method 2

Method 2 fits the invariant mass distribution of the reconstructed photon with the

candidate shower that falls within the angular window. That is, the invariant mass

distribution for the numerator contains only photons that are actually detected. In

this way, the two photon invariant mass distribution created by fake photons that fall

within the angular window should not peak in the π0 mass range. This method has

a drawback in that it is necessary to calculate the expected and detected numbers

of photons from two different distributions. This means that the two distributions

may have different signal line shapes. Therefor, the distribution for the numerator

of the photon detection efficiency is no longer a subset of the distribution for the

denominator. In particular, the γγ invariant mass distribution using the kinematically

fitted photon (denominator) has a resolution that is worse than the same distribution

using only reconstructed photons (numerator).

Sample type BOSS version Method 1 Method 2
Inclusive MC 6.6.4 0.98201± 0.00007 0.983± 0.003
Old J/ψ data 6.6.4 0.98381± 0.00007 0.985± 0.007
New J/ψ data 6.6.3 0.98445± 0.00003 0.982± 0.002

Table C.1: This table gives the photon detection efficiency as calculated by global

fits over all photon energies and angles.

C.3 Results

The γγ invariant mass distributions for method 1 are fitted by a double crystalball

shape over a second order chebychev polynomial. Method 2 differs in that the denom-

inator is fitted with a double crystalball shape and the numerator with a crystalball

plus a Gaussian function. The results of global fits according to methods 1 and 2

are shown in Table C.1. Both methods 1 and 2 show good consistency between the
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inclusive MC sample and both of the data samples (Fig. C.5). The difference between

data and MC is always less than 0.5%.

In order to check the stability of the results, the global fits were repeated after

varying the background shape and angular acceptance window. To probe the effect

of the shape of the background, the second order chebychev polynomial was replaced

with a third order background. The angular acceptance window was loosened from

10σ to 15σ and 5σ in order to probe the effects of the uncertainty of the missing

four momentum from the 1C kinematic fit. The differences between the photon

detection efficiencies for the inclusive MC sample, old and new data sets for each of

these variations are consistent with the best fit method (Table C.4). The difference

between fits to the inclusive MC sample and the data sets for each method is shown

in Fig. C.12.

C.3.1 Energy and Anglular Distributions

In addition to the global fits over all energies and angles, the γγ invariant mass

distributions were also divided into bins of energy (Fig. C.6 and C.7) and cos(θ)

(Fig. C.8 and C.9) for the missing photon. Each bin in energy or angle is fitted as in

the global fits. For each distribution, the results of the fits for data and MC samples

are consistent. As a check on the global fits, the results of the fits in bins of angle

and energy were combined to obtain a global value for the photon detection efficiency

from these methods. The results are consistent with the values obtained from the

global fits (Table C.2 and C.3).

It is important to note that the background due to misreconstructed signal events,

in which a fake photon is used as either the reconstructed or missing photon, may

artificially inflate the efficiency. Not only does this background exist in Method 1 (as

expected), it also peaks near enough the π0 peak in the numerator of Method 2 that

it inflates the efficiency. This inflation of the efficiency appears in both the inclusive
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MC sample and the data. Fake photon backgrounds exists primarily in the low E(γk)

region and result in an inflated value for the detection efficiency as is evident in Fig.

C.6. As the primary purpose of this study is to determine the systematic error due to

differences between the modeled and actual detection efficiency and not the absolute

efficiency itself, this effect does not pose a major problem (see Fig. C.6).

Sample type BOSS version Method 1 Method 2
Inclusive MC 6.6.4 0.98163± 0.00007 0.982± 0.006
Old J/ψ data 6.6.4 0.98243± 0.00007 0.980± 0.006
New J/ψ data 6.6.3 0.98188± 0.00003 0.979± 0.003

Table C.2: This table shows the combined results for the photon detection efficiency

from fits in bins of photon energy.

Sample type BOSS version Method 1 Method 2
Inclusive MC 6.6.4 0.98246± 0.00007 0.982± 0.007
Old J/ψ data 6.6.4 0.98307± 0.00007 0.983± 0.006
New J/ψ data 6.6.3 0.98204± 0.00003 0.982± 0.002

Table C.3: This table shows the combined results for the photon detection efficiency

from fits in bins of photon angle.
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Figure C.4: These plots show a comparison of the two photon invariant mass distri-

butions for the inclusive MC and data samples. In each plot, the black histogram

shows the distribution for the inclusive MC, the red markers show this distribution

for the old J/ψ data, and the green markers show the same for the new J/ψ data.

Figure C.4(a) shows the invariant mass distribution of the reconstructed (γ1) and

missing (γk) photons before looking for the missing photon in the detector. Figures

C.4(b) and C.4(c) show the accepted invariant mass distributions for methods 1 and

2 respectively.
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Figure C.5: These plots show the results of fits to the inclusive MC. The plot on

the left shows the result of a fit to the full distribution of γγ invariant mass (the

denominator of the photon detection efficiency). The dashed red line shows the

Crystalball shape, while the dashed pink line is the polynomial background. The

solid blue line shows the fitted line shape. The middle plot shows the result of a fit

to the accepted distribution for method 1, while that for method 2 is shown in the

plot on the right.
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Figure C.6: These plots show the results of fits in each bin of photon energy. The

photon detection efficiency for inclusive MC (black histogram), old J/ψ data (red

markers) and new J/ψ data (green markers) are shown in the top two plots. The

difference between the MC and the data is plotted in shown in the bottom two plots

for the old (red) and new (green) data samples.
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Figure C.7: This plot shows a comparison of the photon energy distributions for the

inclusive MC and data samples. The black histogram shows the distribution for the

inclusive MC, the red markers show this distribution for the old J/ψ data, and the

green markers show the same for the new J/ψ data.
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Figure C.8: These plots show the results of fits in each bin of photon angle. The

photon detection efficiency for inclusive MC (black histogram), old J/ψ data (red

markers) and new J/ψ data (green markers) are shown in the top two plots. The

difference between the MC and the data is plotted in the bottom two plots for the

old (red) and new (green) data samples.
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Figure C.9: This plot shows a comparison of the cos(θγ) distributions for the inclusive

MC and data samples. The black histogram shows the distribution for the inclusive

MC, the red markers show this distribution for the old J/ψ data, and the green

markers show the same for the new J/ψ data. The shaded region indicates the

regions of the detector that are used for photon reconstruction. The open regions

(including the beam line and the gap between the barrel and endcap of the EMC)

are excluded in calculating the total photon detection efficiency.
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C.3.2 MC Consistency Check

Due to the lack of an inclusive MC sample for comparison with the 2012 J/ψ data

set, the 2009 inclusive MC sample of 225 M J/ψ decays was used in this study. To

validate the use of this older MC sample, a MC consistency check was performed using

exclusive MC samples generated with the run conditions of both the 2009 and 2012

J/ψ data sets. These MC samples were not used to determine the systematic error

due to the photon detection efficiency because they do not contain the backgrounds

that exist in the data and 2009 exclusive MC sample. Each MC sample is divided

into bins of energy and angle and fit as described above. The results of such fits show

that the MC with different run conditions are consistent. This suggests that the use

of the 2009 MC sample is appropriate for this study.

Sample type BOSS version Method 1 Method 2

Nominal results
Inclusive MC 6.6.4 0.98201± 0.00007 0.983± 0.003
Old J/ψ data 6.6.4 0.98381± 0.00007 0.985± 0.007
New J/ψ data 6.6.3 0.98445± 0.00003 0.982± 0.002

3rd order background
Inclusive MC 6.6.4 0.97765± 0.00008 0.983± 0.006
Old J/ψ data 6.6.4 0.98120± 0.00007 0.982± 0.005
New J/ψ data 6.6.3 0.97896± 0.00004 0.983± 0.003

Loose (15σ) window
Inclusive MC 6.6.4 0.98450± 0.00007 0.987± 0.003
Old J/ψ data 6.6.4 0.98531± 0.00007 0.990± 0.003
New J/ψ data 6.6.3 0.98394± 0.00003 0.990± 0.001

Tight (5σ) window
Inclusive MC 6.6.4 0.96636± 0.00010 0.966± 0.001
Old J/ψ data 6.6.4 0.96620± 0.00010 0.965± 0.003
New J/ψ data 6.6.3 0.96435± 0.00005 0.9650± 0.0004

Table C.4: This table gives the results for the photon detection efficiency for fits with

different background shapes and angular acceptance windows.
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Figure C.10: These plots show the results of fits in each bin of photon energy. The

photon detection efficiency for inclusive MC (black histogram), old J/ψ data (red

markers) and new J/ψ data (green markers) are shown in the top two plots. The

difference between the MC and the data is plotted in the bottom two plots for the

old (red) and new (green) data samples.
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Figure C.11: These plots show the results of fits in each bin of photon angle. The

photon detection efficiency for inclusive MC (black histogram), old J/ψ data (red

markers) and new J/ψ data (green markers) are shown in the top two plots. The

difference between the MC and the data is plotted in the bottom two plots for the

old (red) and new (green) data samples.
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Nominal results
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Figure C.12: These plots show a comparison of the photon energy distributions for

the inclusive MC and data samples. The black histogram shows the distribution for

the inclusive MC sample, the red markers show this distribution for the old J/ψ data,

and the green markers show the same for the new J/ψ data.
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C.4 Conclusions

This study of the BESIII detector shows that differences in the photon detection

efficiency between the inclusive MC sample and the data are less than 0.5%. This is

a significant improvement upon the commonly referenced 1.0% systematic error from

a previous study at BESIII. In addition to the global analysis over all energies and

angles, the photon detection efficiency is also analyzed in bins of photon energy and

angle. The detection efficiency for these distributions is consistent between the MC

sample and the data. The total photon detection efficiency from the MC sample and

the data, summed over these energy and angle bins, are consistent within 0.5%.
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