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During last two decades the so called squeezed states were the subject of incre- 
asing flow of papers in various fields of quantum physics. It seems rather difficult 
to cite the first paper, since the history of these states goes back to Schrbdinger 
[1], who first investigated Gaussian wave packets in quantum mechanics. Another 
important  step was made by Glauber [2] who introduced the concept of cohe- 
rent states. A lot of papers were devoted to various generalizations of Glauber 's  
states. We mention only a few of them [3]-[8]. More complete lists of references 
can be found, e.g., in [9]-[12]. Different authors invented different names for new 
types of quantum states: minimum uncerlainty states, two-photon stales, etc. 
Now these states are usually called squeezed stales. They are in fact nothing but  
Gaussian wave packets in corresponding representations, and different names 
describe different characteristic features of these states. 

In ref. [13] the concept of correlated states was introduced. These states cor- 
respond to the minimal possible value of the lefthand side of the Robertson- 
Schr6dinger uncertainty relation [14,15] 

O-p O"q ( 1 - r 2 ) > h2 /4 . (1) 

Here trp and trq are variances of the momentum and coordinate operators: ~q = 
(~2) _ (~)2 , while r is the dimensionless correlation coefficient: 

1 ~rpq)~/=, ~ q  = ~ ( ~  + F4) -- @(~) ,  Irl < 1 (2) 
r =-- ( O'pO'q 

In the special case of r : 0 (1) turns into the more familiar Heisenberg-Weyl 
'uncertainty relation. 

The explicit form of the correlated state wave function in the coordinate 
representation is as follows, 

~'0(xlr,n)=N~exp - ~  1 j3=2_~ +-~- (3) 

Here N~ is the coordinate-independent part of the wave function (including the 
normalization factor), T/= ~q ,  ~ is a complex parameter. Function (3) satisfies 
the equation 
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with 

g = ~  1 ~ + i n ~  (5) 

Beginning with eq. (3) we use dimensionless variables and assume h = 1. If  we 
define the basic annihilation operator as 

= ~ + i~ (6) 
v~ 

then the relation between two systems of operators is as follows, 

g = ~ + v ~  +, I~l'-Ivl==l, [~,a+]=[g,g+]=l, (7) 
( u )  1 (1 ir ) r/ 

3ust relations like (5) or (7) were the bases for introducing the new types of 
coherent states (new, gerteralized, mi~im~tm ~ncergain~y, ~wo-pho~on, squeezed, 
etc.) in refs. [4]-[12]. Therefore the mathematical  grounds of all investigations 
in this direction are the same - -  linear canonical transformations and their 
properties. 

Here we would like to elucidate the physical significance of correlated states 
and to give in this connection a brief review of our recent papers. (The ma- 
thematical  interrelations between different generalizations of Glauber 's  coherent 
states were given in ref. [lfi].) 

The main field of applications of both usual and generalized coherent states 
is quantum optics. But  in quantum optics experiments people measure usualy 
not variances of quadrature components ¢rq and % but  distribution functions of 
quanta. If  quantum number eigenstates (Fock's states) are defined in terms of 
the basic operators (6): 

~+ ~1-> = n In> ,  (9) 

then the distribution function of quanta in a state ~ is nothing but  Wn = ]Cn [ S, 
where Cn, n = 0, 1 , 2 ,  . . .  are coefficients of the expansion 

• = ~ c .  ln> (,0) 
In the case of the Glauber state k~a satisfying the equation 

we have the simple Poisson distribution function 

I°'1=" e -t°t= 0 2 )  Wn - n! 

This distribution possesses the single peak at the value n,~,~x ~ (n) = la[ 2. Quite 
different situation takes place for correlated or squeezed states satisfying eqs. 
(4), (5), (7), (8). In this case [17]-[19] 

= v /~ [ 1 
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H, (x) being the Hermite polynomial. In spite of a simple analytic expression 
distribution (13) as a function of the integral variable n shows rather irregular 
behaviour. For certain combinations of parameters u, v,/3 (or 7, r,/3) its graph 
has many peaks separated by intervals in the n-axis with almost or even exactly 
zero values of the probabilities. Moreover, the situations are possible when the 
probability to detect the number of quanta which is equal to their average value 
exactly equals zero. Besides, the distribution function usually highly oscillates 
with the period An = 2, and both situations when the probability is large for 
even values of n and for odd values of n are possible. For the details see refs. 
[17]-[19]. Such a complicated structure of the distribution function can be used 
for detecting the system in the correlated or squeezed states. 

One of the possible ways to create the co~related ox squeezed state is to use 
some parametric process. Indeed, if we consider the Schr6dinger equation with 
a time-dependent Hamiltonian like 

1 ~2 l n 2  ^2 04)  ~ ( t ) = ~  + ~  ( t )q  , 

then its general solution (first obtained by Husimi [20]) is as follows, 

( i ~  2 ) (15) ~P (x ,  t )  -~ exp ~ + . . .  , 

where e (t) is a solution of the classieM equation of motion 

~'(t) + a ~ ( t ) ~ ( t )  = 0 (16) 

satisfying the subsidiary condition 

r e *  - t*  e =_ 2i (17) 

Comparing this expression with eq. (3) wc see that solution (15) is just the 
correlated state with the correlation coefficient 

r = - -  1 - I , ~ 1  - =  (18) 

and the squeezing coefficient 

k = (~ . / ~p ) l / ~  = }*/~1 (19) 

Using eqs. (16), (18) we can find such a dependence [2 (t) for which, e.g., the 
correlation coefficient does not depend on time [21]: 

( t )  = (2rt + const ) - I  (20) 

The corresponding quantum state is in fact unsqueezed, because 

kn = $2(t)  (eq/crp) l /2  - 1, aq = (2/2)-1 (1 - r2)-1/~ . (21) 

Note that just the modified squeezing coefficient kn describes the squeezing 
properly, since the ground-state variances of the oscillator with the unit mass 
and frequency 12 are as follows: ~rq = h / 2~2, Crp = S2h / 2 . This example shows 
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distinctly the difference between the correlated and squeezed states: the state 
may be correlated but unsqueezed. If we shall look for the cases when k = const, 
then two dependences /2 (t) are possible. The first one is $2 = k-Z: then we have 
unsqueezed (kn = 1) and noncorrelated (r = 0) states, i.e., usual coherent states. 
The second case corresponds to the unstable system with ~2 = _k  2, when 

1 
trq = ] k  cosh ( 2 t / k ) ,  ~p = (2k)  -z c o s h ( 2 t / k ) ,  r =  t a n h ( 2 t / k )  (22) 

Eq. (16) itself can be considered as the one-dimensional Helmholtz equation 
describing the propagation of some wave through the po~e~ttial barrier ~2 (z). If 
the corresponding energy reflection coefficient from this barrier R is known (it 
is supposed that  1"2 (z) = const when z ~ -4-oo), then relations (17)-(19) lead to 
the following limitations on the possible values of the correlation and squeezing 
coefficients [17,21]: 

Ir[< 2 ' / ~  - - 1 -  vr-R < k < 1 + v ~ .  -- kmax = ~ 1 + rmax__ (23) 
- z + R '  l + v ~ -  - z  v ~ '  ~ rm= 

Suppose that  the final frequency S)f = / 2  (t ---* +oo) = 1 (this means tha t  we 
normalize all quantities by the value of ~r). Introducing the energy of fluctua- 

z tions in the final states Ef = ~ (% + ~q) and taking into account the relations 
[22] 

1 
O'q: ~ 1 Ic(t)[= , ~p = ~  l~(t)l = (24) 

one can obtain from eq. (18) the following inequality: 

r <_ 1 - ~ (2S) 

Linear canonical transformation (7) generating correlated or squeezed states 
is determined by two complex parameters satisfying one subsidiary condition. 
Thus we have three real parameters. However, one parameter is trivial - -  it 
is a common phase of complex numbers u and v which has no physical signi- 
ficance. Hence only two parameters determine in fact transformation (7) and 
wave function (3). In the most general case of a t ime-dependent  Hamiltonian 
like (14) these parameters are independent, as was demonstrated above. But in 
the special case of the oscillator with a t ime-independent frequency the additio- 
nal symmetry connected with the arbitrariness of choosing the initial moment  of 
time arises. Therefore in this case parameters k and r are not independent: they 
are periodic functions of time and can be expressed, e,g., through the maximum 
values of the squeezing or correlation coefficients k,~x or rmax (these coefficients, 
in turn, are related by the last equality in (23)). So in the stationary case there is 
no essential diffcrcnce between correlated and squeezed states: they periodically 
turn into each other. 

A simple geometrical picture illustrates the situation. If wc calculate the 
Wigner function corresponding to the wave function (3), it will be again the 
Gaussian exponential. Consequently the curve W (q, p)) = const is an ellipse. 
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When the axes of this ellipse are parallel to the coordinate axes in the phase 
space, then the correlation coefficient equals zero, so that we have a squeezed 
noncorrelated state. The correlation and squeezing coefficients are connected 
with the angle ~ between the main axis of the ellipse and the coordinate axis by 
means of the relation 

kr 
tan ( 2 ~  ) - kS _ 1 (26 )  

But in the case of the constant oscillator frequency the ellipse of constant values 
of the quasiprobability rotates as the rigid body, i.e., without changing its shape, 
with the angular velocity I2. Thus squeezed and correlated states periodically 
turns into each other. 

Another situation holds in the case of a time-dependent frequency. Then the 
shape of the ellipse also changes in time, but its area remains constant due to 
the conservation of the so-called universal quantum invavian~ [23] 

2 eonst (27) I =- O'p O"¢1 - -  O'pq - -  

( t h e  quantum analogue of the classical Liouville theorem on the conservation of 
the phase volume of Hamiltonian systems). 

There are many different methods of generating squeezed states of some di- 
stinguished mode of electromagnetic field inside a resonator [11]. Recently we 
have considered a new approach to this problem based on the parametric exci- 
tation due to the periodic motion of resonator's walls (with the twice frequency 
with respect to the mode eigenfrequency) [24]. The following expression for the 
variance of some quadrature components was found: 

~p = ~ exp (=L 2z  ) ,  z = ~ a N  << 1 , (28)  

where a is the relative amplitude of wall's vibrations (it is assumed to be small 
enough), and N is the number of hMf-periods of vibrations. The correlations 
coefficient in this case is nonzero, but approximately constant in time: Ir[ ~ a/4. 

In ref. [25] the power of the spontaneous electromagnetic radiation from an 
oscillator or system of oscillators moving along an arbitrary trajectory was cal- 
culated in the most general ease of a quite arbitrary quantum state of the oscil- 
lators, and the following formula was obtained for an oscillator in the correlated 
squeezed state: 

P - - P c l a " i c a l + e 2 ~ h  [ ~'4- 1 ] 
8 m e  - - - - r  ~ ( 1 - r ~ )  2 , 

2 m w Crq (29) 
- h ~q = tr~(groundstate) 

Here P¢1.,,i¢.1 is the radiation power of the classical oscillator whose coordinates 
coincides with the average value of the coordinate of the quantum oscillator. We 
see that the correlation coefficient aflhcts essentially on the quantum part of the 
radiation power: 

Apquant > eBht~8 [ _  3hie  8 x/~'-1 r 2 1] (30) 
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Another group of physical phenomena in which correlation and squeezing may 
manifest themselves corresponds to the wave packets propagation and tunneling 
through potential barriers. If we consider the spreading of the wave packet (3) in 
the empty space (without external potentials), then for sufficiently large values 
of time its shape will be as follows, 

t  tl2 = exp 2 n 2 ( 1  - - v t )  (31) 

We see that correlated wave packets with r = 0 looks like uncorrelated one, 
provided Planck's constant h is replaced by effective Planck's constant h, = 
h / ~ -  r 2 in full accordance with generalized uncertainty relation (1). There- 
fore one might suppose that quantum effects may manifest themselves in corre- 
lated states more distinctly than in uncorrelated ones. In particular one could 
imagine that tunneling through potential barriers for correlated states is more 
effective than for uncorrelated ones. The reality, however, is more complicated. 
For example, the transmission coefficient through a rectangular potential barrier 
does not depend on the correlation coefficient at all (at any rate in the leading 
terms of the WKB formulae). The exact solution can be obtained for the para- 
bolic barrier U (x) = -½ f)2 zv.. However, in this case the transmission coefficient 
defined as 

E T = I ~ ( ~ ,  t)l 2d~ (32) 

tends to 1/2 for any initial Gaussian wave packet of the form 

4~12 ÷ i p o x  (33) 

in the limit 

1 /2 ~ 1 t -'+ OO, ~0 ~ --OO, P0 "" OO, --~ X~ "4- ~ p2 _____ ~classical = const (34) 

Such an independence of the transmission coefficient both on the classical part 
of packet's Energy Ec1~,glc~1 and the enrgy of fluctuations (determined by the 
parametelr ~/) is explained by the extremely rapid diffusion of the packet in the 
potential discussed. 

We have considered in detail in ref. [21] the tunneling through the potential 
U (x) = ½ ,~ {x 2--f ~8). In this case highly squeezed and correlated (k >> I, r -* 
I) states have a greater tunneling probability than usual coherent states due to 
a greater energy of fluctuations. However, for moderate values of squeezing and 
correlation coefficients both increasing and decreasing of tunneling rates are 
possible, depending on the relations between phases of complex numbers u and 
v in transfor,nation (7). 

There exists also an interesting relation between correlated states and Berry's 
phase. For one-dimensional quadratic Hamiltonians Berry's phase is nonzero 
only in the case when 

1 
= + + (351 
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and p (t) ~ 0 .  But the instantaneous eigenfunctions of Hamiltonian (35) possess 
the nonzero correlation coefficient r = - p / ~  [26]. Thus Berry's phase can 
be nonzero only for correlated states (at least for quadrat ic  Hamil tonians) .  
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