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We present a systematic approach to the classification of the UV properties of higher dimensional
operators spanned by Φ†Φ (where Φ is the Higgs doublet) and ordinary derivatives thereof (e.g.
∂µ(Φ

†Φ)∂ µ(Φ†Φ),(Φ†Φ)3,(Φ†Φ)4, . . . ) in Higgs Effective Field Theories. The procedure is
purely algebraic and thus regularization-independent. It relies on a novel set of hidden symmetries
that can be formulated in an extended field space where the singlet Φ†Φ is treated as a dynamical
variable. The resulting relations stemming from such symmetries are valid to all orders in the
loop expansion for off-shell 1-PI Green’s functions (and not only for S-matrix elements). One-
loop applications are briefly discussed.
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1. Introduction

After the discovery at the LHC of a scalar particle whose properties are compatible with the
Standard Model (SM) Higgs boson [1, 2] an important theoretical and experimental question is to
constrain the potential triggering the electroweak spontaneous symmetry breaking (SSB). Effec-
tive Field Theories (EFTs) provide a useful tool to parameterize in a model-independent way the
effects of Beyond-the-Standard-Model (BSM) physics induced by higher dimensional operators
suppressed by inverse powers of a large energy scale Λ [3]. In the EFTs approach one enumerates
all possible operators compatible with the symmetries of the theory by organizing them in layers of
a given dimension. When dealing with physical quantities like S-matrix elements, some ambigui-
ties are present, associated with the equivalence of operators differing by terms proportional to the
equations of motions. These ambiguities can be fixed by choosing a particular operator basis [4].
EFTs are of course not power-counting renormalizable. Their UV properties can be understood
within renormalizability in the modern sense à la Weinberg and Gomis [5], namely all possible UV
divergences can be reabsorbed provided that all possible operators compatible with the symmetries
of the theory are introduced, at the price of adding higher and higher dimensional operators as the
loop number increases. It has been recently realized by explicit one-loop computations that in the
SM extended with dimension-6 operators a surprising pattern of cancellations exists, yielding a
much more constrained set of UV divergences than one would expect on the basis of symmetry
arguments only [6, 7, 8]. These cancellations have been traced back to the remnants of supersym-
metry in a (non-supersymmetric) EFT [9, 10]. A classification of one-loop non renormalization
theorems for EFTs involving dimension six operators based on holomorphy arguments has been
given in [11]. These results are valid at one-loop order for physical on-shell quantities since equa-
tions of motion are in general used in these computations. In [12] an alternative reformulation of
the SSB sector of the SM has been proposed, based on the idea of using the singlet Φ†Φ (after
SSB) as the dynamical variable describing the physical scalar excitation. The advantage of this
approach is the possibility to establish at one loop a diagrammatic separation between the SM and
the BSM contributions to 1-PI Green’s functions, which is in turn the consequence of some hidden
functional symmetries.

The functional identities provide very strong constraints on the 1-PI Green’s functions; these
constraints are expressed in terms of 1-PI amplitudes involving insertions of a suitable set of exter-
nal sources with a better UV behaviour than the quantized scalar fields. This in turn allows to use
the techniques of Algebraic Renormalization [13, 14, 15, 16] in order to study the renormalization
properties of the Higgs EFTs.

A unique deformation of the functional identities allows one to control the inclusion of the
derivative operator ∂µ(Φ

†Φ)∂ µ(Φ†Φ) by modifying the 2-point function of the field describing
the physical scalar excitation, while the interaction vertices are left unchanged.

2. Functional Identities

We denote by Φ the standard scalar field SU(2) doublet:

Φ =
1√
2

(
iφ1 +φ2

φ0 + iφ3

)
,
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where φa are the pseudo-Goldstone fields, φ0 the would be Higgs field and v its expectation value.
In order to use the combination Φ†Φ (after SSB) as the dynamical variable associated with the
singlet field X2, describing the physical scalar mode, we need to introduce a Lagrange multiplier
X1 enforcing on-shell the condition

X2 =
1
v

(
Φ

†
Φ− v2

2

)
= σ +

1
2v

σ
2 +

1
2v

φ
2
a . (2.1)

The tree-level action of the model will be S = SSM + SSSB, where SSM is the usual SM action
involving the Yang-Mills, fermion, Yukawa, the gauge fixing and ghost terms and SSSB replaces the
SSB Higgs term and reads1

SSSB =
∫

d4x
[
DµΦ†DµΦ− M2

2 X2
2 − c �c+ 1

v (X1 +X2)�
(

Φ†Φ− v2

2 − vX2

)
+c∗

(
Φ†Φ− v2

2 − vX2

)
+V (X2)

]
, (2.2)

with D the usual covariant derivative and V (X2) a BSM potential in the X2 field. c̄∗ is an external
source required to control the renormalization of the non-linear operator Φ†Φ− v2

2 − vX2. In the
present paper we consider the simplest case of a trilinear interaction V (X2) = g6X3

2 . Then one needs
to add to Eq.(2.2) a further external source R coupled to X2

2 .
The dependence on X1 and X2 is fully controlled by the following functional identities (a

subscript denotes differentiation w.r.t. the variable):

ΓX1 =
1
v
�Γc̄∗ , ΓX2 =

1
v
�Γc̄∗+3g6ΓR−�X1− (�+M2)X2− vc̄∗+2RX2 . (2.3)

By going on-shell with X1 in Eq.(2.2) one recovers the classical SM action plus a dimension
six operator V (X2) = g6X3

2 ∼
g6
v3 (Φ

†Φ− v2

2 )
3. One should notice that Eqs.(2.3) still holds without

any further external source if one adds a kinetic term
∫ z

2 ∂µX2∂ µX2 for X2 into Eq.(2.2), so that
now the X2-equation reads

ΓX2 =
1
v
�Γc̄∗+3g6ΓR−�X1− ((1+ z)�+M2)X2− vc̄∗+2RX2 . (2.4)

By going on-shell with X1 this is equivalent to the inclusion into the action Eq.(2.2) of the dimension
six operator

z
v2 ∂

µ(Φ†
Φ)∂µ(Φ

†
Φ) .

Eqs.(2.3) and (2.4) are valid to all orders in the loop expansion and for any (symmetric) regu-
larization scheme. It should be noticed that at z 6= 0 the identities connecting amplitudes involving
X2-external legs with those without do not change with respect to the case z = 0 (the z-dependent
term in the right hand side of Eq.(2.4) being confined at tree-level). However the UV divergences
of X2-independent amplitudes change at z 6= 0. The reason is that the propagator ∆XX of the com-
bination X = X1 +X2 now falls off for large momenta as 1/p2 (instead as 1/p4, as it happens at

1a further term− m2

2v2

(
Φ†Φ− v2

2

)2
is allowed in the above action [17] without altering the UV behaviour of the 1-PI

amplitudes. Nevertheless the parameter m drops out of physical amplitudes [17] and thus for the sake of simplicity it is
set here to zero.
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z = 0):

∆XX =
i(−zp2 +M2)

p2[(1+ z)p2−M2]
(2.5)

Then the derivative interaction vertices in the first line of (2.2) become dangerous and spoil the
milder UV behaviour of the z = 0 theory. A complete classification of UV divergences at z 6= 0 is
beyond the scope of the present work and is currently under investigation.

The action (2.2) is invariant under a U(1) BRST symmetry sc̄ = Sc̄∗ , sX1 = vx , sc = 0
ensuring that the only physical scalar particle is described by the field X2, while the combination
σ ′ = σ −X1−X2 cancels out together with X1 to all orders in the loop expansion [12, 17].

3. One-loop Effective Action

The advantage of the reformulation of the SSB action in Eq.(2.2) is that it allows a one-loop
diagrammatic decomposition of the SM and BSM-contributions of the complete 1-PI amplitudes
(not only of on-shell quantities) and a classification of UV divergences in terms of Green’s functions
involving the external sources R, c̄∗.

Indeed the BSM coupling g6 only appear in the trilinear interaction vertex for X2 and thus it can
never contribute at one loop to amplitudes without external X2-legs. On the other hand, amplitudes
involving at least one external X2-leg are uniquely fixed by Eq.(2.4) in terms of amplitudes that do
not involve X2 and which are thus g6-independent.

In order to recover the 1-PI amplitudes in the standard formalism one needs to go on-shell with
both X1 and X2. This amount to replace X2 by the solution (2.1) to the X1-equation of motion and
by enforcing the tree-level X2-equation of motion (at zero external sources)

�(X1 +X2) =−(z�+M2)X2 +3g6X2
2 , (3.1)

where X2 is to be substituted by Eq.(2.1). Thus for example for any given amplitude involving
n-insertions of the Higgs field σ in the target theory (the one in the standard formalism), one has
the following contributions:

• the pure SM part, equal to the 1-PI Green’s function Γ
(1)
σ(x1)...σ(xn)

in the X1,2-theory;

• the BSM contribution, obtained by summing up all amplitudes with a X1 or X2-external leg
that give rise upon the substitutions in Eqs.(2.1) and (3.1) to amplitudes with n-external σ -
legs in the target theory.

The UV properties of the BSM contribution to these amplitudes are fixed by those of the kernels in-
volving the external sources R, c̄∗, which in turn can be easily classified. We refer the reader to [18]
for a detailed application of this method and the complete classification of one-loop divergences of
amplitudes involving the Higgs field in a SM Higgs EFT with an arbitrary derivative-independent
potential V (X2).
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4. Conclusions

At one-loop level Higgs EFTs exhibit interesting unexpected cancellations of UV divergences
that cannot be ascribed to gauge-invariance. We have presented an approach that allows for a
complete classification of one-loop divergences in the presence of a derivative-independent SSB
potential depending only on Φ†Φ. The main technical tool is the reformulation of the SSB mech-
anism at work in the SM by using the invariant Φ†Φ as the new dynamical variable (after SSB).
The correspondence with the standard formalism is achieved by going on-shell with X1 and X2.
This in turn allows for a diagrammatic decomposition of the 1-PI amplitudes into a pure SM part
and a BSM contribution, whose UV properties can be easily studied by classifying those of the
kernels involving the external sources insertions. This provides a very effective way to compute
the one-loop divergences of 1-PI amplitudes in the Higgs EFTs. We remark that the results hold
for the full 1-PI amplitudes, without any restriction to on-shell physical quantitites as done before
in the literature.
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