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Abstract1— This paper describes an independent, self-arbitrating 
asynchronous two-to-one multiplexor called Conflux.  Conflux can 
be used to implement clockless and token-less Time-Division 
Multiplexing between two sources.  This capability can then be used 
to create a clockless and token-less aggregate data bus which can be 
used as a complete asynchronous readout architecture for a chip, a 
part of a chip or an entire multi-chip system.  Conflux utilizes a 
classic, four-phased asynchronous handshake on both of its input 
ports as well as on its output port.  Asynchronous Request is bundled 
with Data to ensure consistent propagation delay.  The Request is 
also implemented as a differential signal to account for propagation 
delay differences between Logical Ones and Zeros.  Arbitration 
between the two Conflux input streams is accomplished by three Set-
Reset latches.  Finally, Conflux cells were used successfully to 
implement the readout architecture of the FCP130 prototype chip.  
Tests indicate single Conflux stage delays of 1.8ns and a bandwidth 
of approximately 11 Gbps in 130nm CMOS. 

Index Terms—Asynchronous Circuits, Multiplexing, Time 
Division Multiplexing 

I. INTRODUCTION

IG Physics experiments are, for the most part, growing
larger and more intricate [1]-[4]. As the size and 

complexity increase, so too does the difficulty associated with 
delivering the accurate, high-speed clocks necessary for 
synchronous readout [5]. To make matters worse, in front end 
systems, the same clocks that are necessary for synchronous 
readout have become a source of noise interfering with the very 
signals that the front ends are trying to detect. Conflux 
originated as engineering research into a high-speed tracking 
trigger readout for the Compact Muon Solenoid (CMS) 
experiment located at the Large Hadron Collider (LHC) in 
Geneva, Switzerland [6]-[8]. An on-chip architecture became 
necessary to read out a 2-dimensional array of pixels, each of 
which might or might not be a source of data at any given point 
in time. These intermittent pixel outputs needed to be merged 
into a single data stream for output from the chip. Each 
complete pixel chip would itself be part of a larger array of 
chips that have to get their data to a concentrator and, from 
there, off detector. In an effort to minimize data driving 
distances, the idea was to have each chip accept output from its 
neighbor (for example) to the left and to time-division multiplex 
(TDM) that left-neighbor-data stream with its own internally 
generated data stream and to pass a merged data stream on to 

1 This work was supported by Fermi Research Alliance, LLC under Contract 
No. DE-AC02-07CH11359 with the United States Department of Energy. 

the chip’s neighbor to the right.  Conflux emerged as a clockless 
architecture that could deal with both the intra-chip and inter-
chip data readout. 
 The following paper will describe Conflux completely. 
Section II will discuss the background and general requirements 
of a clockless, aggregate readout architecture.  It will describe 
the chosen protocol, and the architecture of Conflux.  Section 
III will go into the circuit specifics of the Conflux architecture. 
Section IV will describe the fabrication and testing.  Finally, 
Section V will conclude.   

II. A CLOCKLESS, AGGREGATE READOUT ARCHITECTURE

All Big Physics detector systems with bussed readout 
architectures can be generalized to consist of a collection of data 
generators that seek to send their data to one or more data 
destinations – e.g. an array of photodetectors sending their data 
to a data concentrator ASIC or, alternately, an array of pixel 
detectors sending their data off-chip.  Many systems fit this 
generalized description. 

In shared-bus architectures (Fig. 1(a)), each data source is 
conditionally and individually connected to a common bus that 
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Fig. 1 Generic readout architectures: (a) A shared-bus architecture (b) An 
aggregate, clocked bus architecture and (c) an aggregate, clockless bus 
architecture. 
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has its other end connected to the data destination.  At any given 
instant, one and only one data source is connected to the data 
destination via that bus and only that data source can drive its 
data to the destination.  Such a system requires a clock 
distributed throughout the shared bus and a means of bus 
arbitration like a token or a priority encoder.  Shared-bus 
systems are relatively simple, but they suffer from several 
drawbacks.  As the number of individual data generators grows, 
the size of the bus grows as does the parasitic load on all drivers 
(input and output).  This load sets both the maximum frequency 
and the minimum power consumption of the shared-bus  
system [9].   

In an aggregate-bus system (Fig. 1(b)), each data generator is 
paired with its own local bus control circuit and its own local  
2-to-1 multiplexor.  At any given instant, each local bus control 
circuit is aware of whether it must drive its local data or drive 
data from the previous neighbor, and it sets the local 
multiplexor accordingly.  In this type of system, the parasitic 
loading problem is dramatically reduced because each stage is 
only required to drive data to its next neighbor.  The complexity 
arises from the implementation of the local bus controllers and 
multiplexors. On one extreme, they can be implemented as a 
logical equivalent to the shared-bus system.  The select signals 
of the local bus controllers function as one-hot logic and then 
one multiplexor grabs data from its local source and all others 
are in previous-neighbor-to-next-neighbor mode. The 
maximum clock frequency of such a system is equal to  

𝑓 =
1

𝑁 × 𝑡𝐷
 

Where N is the number of data sources in the array and tD is the 
propagation delay of a single 2-to-1 multiplexor.  On the other 
extreme, data can be advanced from one neighbor to the next 
synchronously with a readout clock.  Decisions are made 
locally as to whether a single data source has data and, if so, 
which data (local or previous neighbor) is to advance.  
Complexity in this system arises from determining what to do 
in the event of data collisions.   
 Both the classic shared-bus and the aggregate-bus 
architectures of Fig. 1(a) and (b) require a clock.  To eliminate 
the clock and create the architecture shown in Fig. 1(c), several 
requirements become apparent. 

1. The circuit must still behave as a 2-to-1 multiplexor 
(mux) that gets input from two interfaces (local and 
previous neighbor) and provides output to one 
interface (next neighbor). 

2. The output stream is a Time Division Multiplexed 
(TDM) stream of the two input streams. 

3. Both input streams must have predictable rights to the 
output stream. 

4. Given the stochastic nature of data from the inputs, the 
circuit must be able to handle any conceivable arrival 
sequence – e.g. repeated data from local with nothing 
from previous neighbor, repeated data from previous 
neighbor with nothing from local, data arriving from 
both local and previous neighbor, collisions of data, 
etc. 

5. As a consequence of the stochastic nature of input 

data, the circuit must be able to recognize that it has 
captured data in one or both of its inputs and it must 
be able to hold that data until it has passed that data on 
to the next neighbor. 

6. The circuit must arbitrate for itself depending on all 
available information.  That information can only 
consist of whether it has local data, whether it has 
previous neighbor data and the current 
acknowledgement state of the next neighbor. 

7. Whatever asynchronous protocol is chosen, each input 
should be capable of maintaining and ultimately 
completing that protocol independently and 
irrespective of whether the input has won or lost the 
current arbitration. 

A. Asynchronous Protocol 

The two canonical asynchronous protocols are Level 
Signaling (a.k.a. Four-Phased) and Transition Signaling 
(a.k.a. Two-Phased) [10]-[12].  They are shown in Fig. 2.  Both 
protocols are typically implemented as Bundled Data Protocols 
which is to say that both the Request and the Data are 
transmitted together such that they have similar (preferably 
identical) drivers, similar (preferably identical) loads and wires 
that are impedance matched as much as possible.  This helps 
minimize propagation delay dispersion between the request and 
data bits.  Using a differential signal as Request can further 
minimize the adverse effects of propagation delay dispersion. 
Since both a Logical 1 and a Logical 0 would be transferred as 
the Request, any potential propagation delay differences 
between Logical 1s and Logical 0s are guaranteed to be taken 
into account simply by looking at the propagation of the 
Request.  

The requirement that the clockless Mux be able to handle any 
conceivable arrival sequence makes the Four-Phase protocol 
very appealing.  Looking again at Fig. 2(a), all transitions begin 
and end with the same logical levels in the Four-Phase protocol. 
Therefore, previous stages always know a priori what logic 
levels should presented before and at the start of a new transfer.  
If a Two-Phase protocol was used, the proper Acknowledge 
transition to one input would depend on the transition direction 
of the corresponding Request.  This requirement would exist 
regardless of which transmission won an arbitration and 
regardless of how many transmission victories have been 
granted to the other input.  Clearly, extra logic would be 
required to keep track of the appropriate transition direction for 

Fig. 2 (a) Single transfer under a Four-Phase Protocol (b) Two transfers under 
a Two-Phase Protocol. 
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the Request and Acknowledge of each input. 
It is for these simple reasons that a Four-Phase Bundled Data 

protocol with a differential signal as the Request was chosen for 
Conflux. 

B. MOUSETRAP 
MOUSETRAP [13] is a simple, elegant, high-performance 

asynchronous pipeline stage.  It is not a multiplexor.  Also, it 
uses Transition Signaling, so it is not directly applicable to the 
clockless, aggregate multiplexor problem as defined herein. 
However, it has several valuable features that are of use to 
Conflux.  It employs level-sensitive latches to capture the Data 
and Request from a previous stage.  (See Fig. 3 and note that 
the figure contains three complete MOUSETRAP pipeline 
stages in series.) A stage’s captured Request forms the 
Acknowledge to the previous stage. All the latches of a stage 
are simultaneously changed from transparent to opaque by a 
logical function of the stage’s captured Request and the 
Acknowledge from the next stage.  Since this logical function 
is an exclusive-NOR and the latches are positive active, then 
the latches are transparent whenever the captured Request is 
equal to the Acknowledge from the next stage.  This is to say 
that when the captured Request of this stage is equal to the 
captured Request of the next stage, then the latches of this stage 
are made transparent.  Since MOUSETRAP uses Transition 
Signaling if the captured Request of this stage is equal to the 
captured Request of the next stage, then the next stage has 
captured the bundled data of this stage and this stage is now free 
to capture new data.  If the captured Request of the next stage 
is not equal to the captured Request of this stage, then the next 
stage has not yet captured the bundled data of this stage and this 
stage must remain opaque and maintain its captured data 
bundle.  

MOUSETRAP’s use of level-sensitive latches and its 
processing of captured Request signals is what is so elegant and 

so useful to Conflux.  The level-sensitive latches help ensure 
that the Request and Data are truly bundled in that they have the 
same drivers, the same loads and, if properly routed, the same 
parasitics.  This serves to minimize the dispersion in 
propagation delay between the different bits of the bundled 
data.  Since the decision to make the latches transparent or 
opaque is performed on signals that have already passed 
through the latches, the latches, in effect, are closed after the 
Data and Request have already entered the stage. 

To account for possible propagation delay differences 
between Logical 1s and Logical 0s, Conflux employs a 
differential signal as its Request and therefore requires two 
Request latches.  Of course, since Conflux uses a Four Phase 
protocol and since it must arbitrate between two input streams, 
the capture logic of Mousetrap (i.e. the XNOR gate) will not 
work for Conflux. 

C. Conflux  

Fig. 4 shows a block-level sketch of the Conflux multiplexor. 
It has two independent, bundled data inputs (Input A and 
Input B) and one bundled data output.  Inputs are captured by 
two, independent level-sensitive latch sets.  These latches are 
enabled by IhaveData A and IhaveData B, respectively.  These 
signals are generated by independent Capture Logics (one 
Capture Logic per latch set).  These same signals become the 
Acknowledge to Previous signals (Ack To Prev A and Ack To 
Prev B) as well as the inputs to the Arbitration Logic.  Finally, 
the respective Captured Data vectors are passed through classic 
combinatorial multiplexors whose select signal is controlled by 
the result of the Arbitration Logic.  A Request to Next is formed 
in the Arbitration Logic.  

Looking at the block diagram of Fig. 4, imagine a previous 
stage raises a Request, for example, on Input B.  This is Phase 
1 of Fig. 2(a).  Since this is a bundled data protocol, this Request 
propagates with its Data.  When the Request is captured by the 
Input B Latches, the Capture Logic recognizes the Request and 
issues IhaveData B.  This is the Acknowledge to Previous B 
that completes Phase 2 of Fig. 2(a).  Since the bundled data has 
been captured and Phase 2 completed, the previous stage is free 
to withdraw its Request, completing Phase 3.  The 
Acknowledge to Previous will remain active as long as the 

Fig. 3. A sketch of three MOUSETRAP pipelines in series.  Note that the same 
latches are used for both the Request from Previous and the Data from Previous.  
The captured Request becomes the Acknowledge to Previous and it is gated 
with the Acknowledge from Next to form the Enable of the MOUSETRAP 
latches. 
 

Fig. 4 A block-level sketch of the entire Conflux multiplexor. 
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Capture Logic recognizes that it has data in its Latches, and it 
will do so until it wins arbitration and passes its data along to 
the next stage.  Consequently, in this example, the previous 
stage of Input B will remain in Phase 3 until its Request wins 
arbitration.  Therefore, the previous stage of Input B cannot 
begin a new Request until its current Request wins arbitration 
and output stream passes the Input B data to the next neighbor 
the Acknowledge From Next. 

III. CONFLUX CIRCUITRY 

A. Latch and Capture Logic 

Because of the Four Phase protocol and because of the basic 
requirements of an independent, self-determining, 
asynchronous multiplexor, the Latch and Capture Logic (Fig. 5) 
must be able to capture bundled data, recognize that bundled 
data is present in its latches and then hold the bundled data 
indefinitely.  The signal that does this, IhaveData, is basically 
the gatekeeper of its input stream.  It functions as the 
Acknowledge To Previous.  When active, it locks the previous 
neighbor at Phase 3 of its Four-Phased transfer and prevents any 
additional requests on this stream.  When active, the latches of 
the Latch and Capture Logic are made opaque.  When inactive, 
the latches are transparent, Phase 4 has been completed and the 

Conflux is awaiting the next request on this input stream. 
IhaveData must be efficiently recognized and latched until 
used, and once used, the signal must be unambiguously erased.   

The IhaveData Latches annotated in Fig. 5re are Reset-
Dominant SR Latches – i.e. an SR Latch that has one Set 
condition (S=0, R=1), two Reset conditions (S=0, R=0 or S=1, 
R=0) and one Hold condition (S=1, R=1) (see Appendix A 
Section B).  Consequently, when the Reset of the IhaveData 
Latch is active, the Latch and Capture Logic have no choice but 
to erase IhaveData regardless of the current activity on the 
Request From Previous (e.g. Is the previous stage trying to enter 
Phase 1 for a new bundled data transmission?).  Furthermore, 
since IhaveData is also the Acknowledge to the previous stage, 
no Acknowledge To Previous can possibly be sent until that 
reset is withdrawn.  Section III.E will show that the reset of the 
IhaveData Latch is actually the Acknowledge from the next 
stage (Acknowledge From Next).  Therefore, the Reset-
Dominant IhaveData Latch ensures that the current stage cannot 
possibly advance the next bundled data transmission to its 
Phase 2 until the current bundled data transmission has cleanly 
completed Phase 4 (see Fig. 2(a)).  In short, the Latch and 
Capture Logic capture the incoming bundled data, lock the 
previous neighbor and no further than Phase 3 of the handshake, 
hold the data and request indefinitely until it wins arbitration, 
outputs the data on the output stream and receives 
acknowledgment from the next neighbor.  

Recognition of the presence of data within the Latch and 
Capture Logic is simple given the bundled data protocol.  Data 
is present when the Request is active.   

1. For a single-ended, positive-active Request, the 
Request is active when captured Request From 
Previous (i.e. the output of the Request From 
Previous Latch) is high. 

2. For a Request that is a differential signal, Request is 
active when the captured Request From Previous + 
is high and the captured Request From Previous – 
is low.  A NAND gate of the captured Request and 
Request  signals is used as shown in Fig. 5(a).   

3. Fig. 5(b) shows the circuit that was actually used in 
this first implementation of Conflux.  Here Request 
is active when                                           

a. both the uncaptured Request From 
Previous + input and the captured Request 
From Previous + are high and  

b. both the uncaptured Request From 
Previous – input and the captured Request 
From Previous – are low and  

c. IhaveData is low (inactive).   
The chosen implementation prevents transient noise (such 

as charge that could be induced by high energy particles) 
from accidentally activating IhaveData.  Speaking more 
generally, this more complex implementation of the capture 
logic shows that functionality can be added within the Latch 
and Capture Logic depending on the user’s definition of what 
constitutes the presence of data within the latches. For 
example, if dual-rail data protocols are being used [10], data 

Fig. 5 (a) Minimal Latch and Capture Logic necessary for a differential Request 
(b) the actual Latch and Capture Logic implemented in the first test of Conflux.  
(It is worth noting that if the Request is single ended, all that is necessary is for 
the Request. 
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recognition could be gated until all the data has successfully 
arrived; data recognition could also be withheld until a 
successful parity check; etc. 

B. Demultiplexer for Acknowledge from Next 

Fig. 4 clearly indicates that there must be two independent 
Latch and Capture Logic sets, one for each input stream.  It is 
obvious that the same Acknowledge from Next signal cannot 
be distributed in common to both sets.  If both IhaveData A and 
IhaveData B were active and yet the Arbiter chose IhaveData A, 
a common Acknowledge from Next signal would reset both 
IhaveData signals even though IhaveData B was not the data 
being acknowledged.  The Acknowledge from Next signal must 
be demultiplexed depending on the state of the Arbiter. 

This simple circuit is shown in Fig. 6.  This circuit also 
provides a convenient location for an asynchronous reset signal.   

C. Arbitration Logic 
Arbitration in digital systems is hardly new [14] and Conflux 

shares much in common with existing systems.  Arbitration in 
Conflux occurs in response to the state of IhaveData A and 
IhaveData B.  However, even though IhaveData A and 
IhaveData B can change at any time, the state of arbitration can 
only be allowed to change between transfers – i.e. after the 
withdrawal of an Acknowledge from Next and before the next 
assertion of Request to Next.  So, if there is an active transfer 
on the output stream and the state of IhaveData A or 
IhaveData B changes, then arbitration must wait.  If there is no 
active transfer on the outputs stream, then arbitration can occur 
immediately.  Additionally, once an arbitration decision has 
been reached, it must be maintained throughout the Four-Phase 
Protocol of the output stream.   

Ignoring questions of metastability for the moment, a simple 
solution to arbitration in Conflux is to use a Hold-Dominant SR 
Latch – i.e. an SR Latch that has one Set condition (S=0, R=1), 
one Reset condition (S=1, R=0) and two Hold conditions (S=0, 
R=0 or S=1, R=1) (see Appendix A, Subsection D). If such a 
latch is fed with logic as shown in Fig 7(a) then  

1. Between asynchronous transfers, if both 
IhaveData A and IhaveData B are inactive, the 
Arbitration Latch makes no change from its 
previous arbitration state because this is one Hold 
condition of the latch. 

2. Similarly, between asynchronous transfers, if both 
IhaveData A and IhaveData B are active, the 
Arbitration Latch makes no change from its 
previous arbitration state because this is another 

Hold condition of the latch. 
3. Between asynchronous transfers, if either 

IhaveData A or IhaveData B are active, the 
Arbitration Latch selects the appropriate input 
stream because one active IhaveData and one 
inactive IhaveData is either the Set or Reset 
condition of the latch. 

4. During asynchronous transfers, the Arbitration 
Latch is kept in one of its Hold conditions by the 
presence of the Request to Next and/or 
Acknowledge from Next signals. 

Of course, while a Hold-Dominant SR Latch solves the logic 
of arbitration in Conflux, metastability and mutual exclusion 
must be also considered.  Fig 7(b) shows a complete arbitration 
latch.  It is a combination of the following: 

1. A Hold-Dominant SR Latch that sets up the 
subsequent arbiter so that it behaves as a self-
arbitrating asynchronous two-to-one multiplexor 

2. A non-overlapping SR Latch that enhances mutual 
exclusion, and  

3. A Seitz Arbiter or MUTEX [10]-[12][15].  
The Hold-Dominant SR Latch is highlighted by the red box 

within Fig 7(b).  It is constructed by adding simple 
combinatorial logic in front of a basic SR Latch – i.e. an SR 
Latch that has one Set condition (S=0, R=1), one Reset 
condition (S=1, R=0) one Hold condition (S=1, R=1) and one 
Forbidden condition (S=0, R=0) (see Appendix A, Subsection 
A).  The non-overlapping SR Latch is highlighted by the green 
box within Fig 7(b).  It is constructed by adding delay (in this 

Fig. 6 The demultiplexer and reset logic for the Acknowledge From Next. 
 

Fig 7. (a) The complete Arbitration Logic surrounding the Hold-Dominant, SR 
Arbitration Latch. (b) The Hold-Dominant, SR Arbitration Latch itself. 
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case, two inverters) within the feedback structure of an SR 
Latch.  The Seitz Arbiter is highlighted by the gold box within 
Fig 7(b).  It is constructed by combining an SR Latch with a 
Metastability filter which itself is highlighted by the blue box 
within Fig 7(b). 
1) Mutual Exclusion 

The combinatorial logic added to make a Hold-Dominant 
Latch is symmetric across S and R and is such that an active S 
(or R) will actually block R (or S) before it activates the S’ (or 
R’) of the basic SR Latch inside the Hold-Dominant SR Latch.  
This has a beneficial side effect on arbitration in Conflux.  Not 
only does the Hold-Dominant Latch perform the correct logical 
functions enumerated above, but it guarantees that a change to 
the state of S or R will not cause a re-arbitration even before 
Request To Next activates and blocks re-arbitration through the 
logic of Fig 7(a).  In short, it helps guarantee that only time-of-
arrival determines the arbitration winner. 

The extra delay inserted in the feedback paths of the non-
overlapping SR latch force both 𝑄′ and 𝑄′̅ to Logical 1s for a 
period of time equal to the propagation delay of the NAND gate 
plus the two inverters.  This coupled with the Metastability 
Filter force 𝑄 and �̅� to Logical 0s for the same time, ensuring 
that there is a fixed period of inactivity between arbitrations 
with different winners.  In other words, it provides predictable 
mutual exclusion.  Fig. 8 shows the arbitration results when 
both IhaveData A and IhaveData B activate very close to one 
another.  The x-axis is the simulated time difference in 
picoseconds between the activation of IhaveData B and 
IhaveData A assuming that the Conflux is between simulations 
and IhaveData A won the last arbitration.  A similar graph can 
be shown plotting the simulated time difference between the 
activation of IhaveData A and IhaveData B assuming that the 
Conflux is between simulations and IhaveData B won the last 
arbitration.    Of course, this is obvious from the fact that the 
circuits are symmetrical with respect to S and R.  The arbitration 
winner depends only on time of arrival and the winner of the 
last arbitration.  Arbitration winner favors the last winner 
because of the mutual gating effect of the Hold-Dominant SR 
Latch.  At time differences less than approximately 120ps 
activation of S (in Fig 7(b)) does not have enough time to pull 
S’ below threshold and the basic SR Latch does not change 
state.  Next, the arbitration winner does not change once 
arbitration has been decided.  In fact, if metastability is not a 
concern, the Hold Dominant logic and the non-overlapping SR 
Latch do a very good job of ensuring mutual exclusivity on their 

own.  If desired, the metastability filter of Fig 7(b) can be 
replaced by simple inverters between 𝑄′ and �̅� and between 𝑄′̅ 
and 𝑄. 
2) Metastability 

The positive feedback present in any latch implies that there 
are two stable states ((𝑄 = 0, �̅� = 1) and (𝑄 = 1, �̅� = 0)) and 
one metastable state (𝑄 ≅ 𝑄 ≅

𝑉𝐷𝐷

2
) [11]-[13][15].  Ordinarily, 

this is not a problem, but when S and R change very close to 
one another in time, this can cause a time delay in resolving the 
final state of the latch.  In most SR Latches and in particular in 
the Conflux arbiter, this time delay is the result of an oscillation 
in the feedback network whose duration is dependent on the 
arrival times of S and R, the rise and fall times of S and R, the 
propagation delay of the Latch and the rise and fall times of 𝑄 
and �̅�.  In all cases there is a time window (sketched in Fig. 8) 
where disruption of normal operation can occur.  By simulation, 
this window is approximately 20ps wide for the full arbiter 
shown in Fig 7(b).  If the metastability filter is eliminated and 
replaced by inverters, the window is reduced to approximately 
10ps wide due to the reduction in the rise and fall times of 𝑄 
and �̅�.  If the non-overlapping SR Latch is replaced by a simple 
SR Latch, the metastability window reduces to the single digit 
picosecond range due to the reduction in the propagation delay 
of the latch. 

However, while the metastability window is reduced by these 
measures, the consequences of metastability can increase.  In 
the presence of metastability, the metastability filter holds the 
outputs of the arbiter at (𝑄 = 0, �̅� = 0), meaning that neither 
state wins until the metastability resolves.  Replacing the 
metastability filter in Fig 7(b) with inverters does reduce the 
metastability window, but it does filter the oscillations from 𝑄 
and �̅�.   

D. Request Release Logic 
The purpose of the Request Release Logic is, first, to convert 

the internal, single-ended Request signal into a differential 
Request To Next signal in keeping with the chosen bundled data 
format of Conflux and, second, to ensure the correctness of the 
bundled data output stream.  Correctness means that the 
Request within a bundled data is not active until its Data is 
stable [12].   

Fig. 9. A schematic of the Request Release Logic 

Fig. 8. A graph of the Arbitration Winner as a function of the time difference 
between the activation time of IhaveData B (tS) and the activation time of 
IhaveData B (tR) given that the Conflux is between transfers and that Q 
(IhaveData A) won the last arbitration.  Metastability Window not drawn to 
scale. 
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The Request Release circuitry is shown in Fig. 9.  The 
complete Conflux is shown in Fig. 11 and in that figure, the 
Request Release logic is annotated with letter (k).  The boxes 
“Captured Data #1” and “Captured Data #2” represent the data 
captured in the two Latch and Capture Logics.  They are passed 
through a multiplexor selected by the output of the arbiter and 
the selected data becomes Data To Next.  Similarly, the two 
IhaveData signals are passed through an identical multiplexor 
also selected by the output of the arbiter.  However, the selected 
IhaveData does not become Request To Next directly.  First, it 
passes through the Request Release circuitry.  The IhaveData 
signals are used to form Request To Next because they come 
into existence after data is present in an input stream and then 
they are removed unequivocally by the presence of 
Acknowledge from Next through the action of the Reset-
Dominant Latch in the Latch and Capture Logic.  Fig. 8 shows 
that the Arbitration circuitry does not permit the Arbitration 
Winner to change back and forth.  In other words, regardless of 
which input stream won the last arbitration, request and data 
from this arbitration will be released together and will not be 
removed until the Acknowledge from Next is received. Finally, 
only the Request, not the Data is passed through the Request 
Release Logic, guaranteeing that Request To Next comes into 
existence after the Data of the output stream.  Moreover, this 
prototype contains a variable delay element controlled by 
NMOS and PMOS Current Limit, permitting user control of the 
duration of the delay between Data To Next and Request To 
Next.   

E. Data Flow 
Fig. 10 is a basic timing diagram for two transfers across 

Conflux, the first from Input Stream A while the Conflux is 
between transfers, and the second from Input Stream B while 
the Conflux is engaged in the first transfer.   

Initially, all latches in the conflux are transparent. The 
bundled data arrives from Input Stream A and the most 
immediate consequence is that IhaveData A activates.  This, in 
turn, results in the activation of Acknowledge To Previous A 
and the changeover of the Input Stream A latches to opaque.  
The Inputs Stream B latches remain transparent.  The activation 
of IhaveData A also results in an arbitration whose outcome is 
Choose A.  This causes the captured data, DA1, to be routed to 
the Data To Next and the IhaveData A to be routed to the 
Request Release Logic whose outcome is the activation of 
Request To Next.  After some time, Acknowledge From Next 
activates, resulting in the removal of Request To Next and the 
Resetting of IhaveData A.  The resetting of IhaveData A results 
in the removal of Acknowledge To Previous A and the 
changeover of the Input Stream A latches to transparency. 

 The arrival of bundled data on Input Stream B is 
essentially the same except that the activation of IhaveData B 
does not lead directly to a new arbitration.  The next arbitration 
must wait until the arrival and removal of Request To Next and 
Acknowledge from Next.  The outcome of the second 
arbitration is Choose B and the next transfer continues as did 
the last one. 

 These transfers are simple, but what happens if there is 

more data on Input Stream A?  Can one input stream lock out 
another? The Latch and Capture Logic’s IhaveData latch is 
reset upon reception of Acknowledge From Next.  This means 
that Acknowledge to Previous A also is deactivated, finishing 
the last phase of Input Stream A’s four-phase transfer, and 
permitting Input Stream A to start its next transfer.  However, 
the fact that the IhaveData latch is reset-dominant means that as 
long as Acknowledge From Next is active, IhaveData A cannot 
re-activate.  Once Acknowledge From Next deactivates, the 
IhaveData Latch of Input Stream A must be set and the signal 
must be driven to the arbitration latch.  Meanwhile, if IhaveData 
B is already active when Acknowledge From Next deactivates, 
IhaveData B is already at the arbitration latch and is guaranteed 
by the logic of the Hold Dominant latch to win the arbitration.  
Due to the symmetry of the arbitration logic, in the presence of 
an abundance of data, the arbitration winner will always 
alternate between transfers from one input stream to the other.  
One input stream cannot resource starve the other. 

F.  Complete Conflux 
 The complete Conflux as designed for this first 

implementation is shown in Fig. 11. (a) and (b) highlight the 
two input streams, each with a differential Request From 
Previous and single-ended Data From Previous.  (c) and (d) 
highlight the two Latch and Capture Logics.  Note that the 
slightly more complicated version shown in Fig. 5(b) is used.  
It was known at the time of this chip’s design that this chip 
could be used in a high-radiation environment. This implied 
that high energy particles could be incident on this chip.  Under 
such circumstances, transient charge can be deposited randomly 

Fig. 10. A timing diagram of two transfers across Conflux, one from Input 
Stream A and the next from Inputs Stream B.  It is meant to illustrate timing 
flow in Conflux. 
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on this circuitry through processes collectively called Single-
Event Effects (SEEs) [17].  A complete description of SEEs is 
beyond the scope of this paper.  However, a standard heuristic 
analysis of the consequences of SEEs led to the determination 
that it was possible to prevent accidental activation of 
IhaveData by requiring: 

1. both the uncaptured Request From Previous + input and 
the captured Request From Previous + are high and  

2. both the uncaptured Request From Previous – input and 
the captured Request From Previous – are low and  

3. IhaveData is low (inactive).   
The Capture Logic in Fig. 5(b) and Fig. 11 is functionally 

equivalent to the Capture Logic of Fig. 5(a).  However, the extra 

circuitry in Fig. 5(b) and Fig. 11 acts to filter out transient 
signals that are shorter than the propagation delay of the Latch 
and the NAND gate.  This should cover most of the noise 
anticipated through incident radiation.   

The latches used for both Request and Data in the Latch and 
Capture Logic are Earle Latches [15] (See Appendix B).  
Simulations indicate that ordinary D-type Latches work as well.  
However, the fact that Earle Latches are free of static hazards 
was viewed as a positive in this first implementation.   

Fig. 11(e) and (f) highlight the fact that the IhaveData output 
of each Latch and Capture Logic ((c) and (d)) become the 
Acknowledge to Previous of each respective input stream.  
They also become the inputs to the Arbitration Logic (Fig. 

Fig. 11 A sketch of the complete Conflux cell 
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11(g)).  Given that this was a prototype chip that would not be 
used in a wider system, it was decided not to implement the 
metastability filter of Fig 7(b) and instead use the two inverters.  
This could possibly allow additional testing if time and 
circumstances allowed.  In the end, the narrowness of the 
metastability window meant that this was never a problem. 

The outputs of the Arbitration Logic are connected to the 
Select inputs of two multiplexors and one demultiplexor.  The 
demultiplexor is the logic of Fig. 6 and is highlighted as Fig. 
11(h).  The two outputs of this logic are connected to the reset 
of the Latch and Capture Logic (Fig. 5(b)) and steer the 
Acknowledge from Next to the appropriate Latch and Capture 
Logic.  Fig. 11 (i) and(j) highlight the fact that the arbitration 
result steers the appropriate IhaveData signal to the Request 
Release Logic (k) and steer the appropriate Captured Data to 
the Data To Next output. 

IV. FABRICATION AND TESTING 

A. Two Basic Readout Configurations 

 When using Conflux as a complete readout architecture, 
there are two obvious configurations, Series and Parallel.  These 
are shown in Fig. 12.   

In the Series configuration (Fig. 12.(a)) N Conflux cells are 
arrayed end-to-end. The output of the ith Conflux output is 
connected to the #2 input of the (i+1)th Conflux.  The output of 
the Nth (last, rightmost) Conflux is the output of the entire 
readout architecture.  The #1 inputs of each Conflux as well as 
the #2 input of the first Conflux provide N+1 gateways into the 
TDM output stream.  Since Conflux performs Time Division 
Multiplexing of the N+1 input streams, the Series configuration 
effectively acts as a priority encoder giving highest priority to 
the #1 input of the Nth (last, rightmost) Conflux and lowest 
priority to #1 and #2 inputs of the first (leftmost) Conflux.  
Assuming unlimited data input streams on each input, In 8 
through In 1, the output stream of Fig. 12(a) over a statistically 
significant period of time will be 50% In 1, 25% In 2, 12.5% In 
3, etc. Inputs on the left also have greater latency due to their 

lower priority.   
In the Parallel configuration (Fig. 12. (b)), 2N inputs are 

funneled down to one output through log2(N) stages of Conflux. 
The inputs all have equivalent priority in the Parallel 
configuration of Fig. 12(b).  Assuming unlimited input data 
streams on each input, In 8 through In 1, the output stream over 
a statistically significant period of time will contain 12.5% of 
each of the input data streams and the latencies will be 
equivalent. 

Admixtures of Series and Parallel configurations in which 
the outputs of Series configurations become inputs to Parallel 
configurations and vice versa are easily imaginable. 

B. Fabrication 
Conflux was first implemented as the readout architecture for 

FCP130 [19], a test vehicle for research into synchronous pixels 
for front-end vertex detectors in High-Energy Physics.  This is 
the reason why steps were taken in the design to minimize the 
possible effects of radiation on performance.  FCP130 consists 
of 40 “super-columns” each consisting of 4 columns of 128 
pixels each.  Forty Conflux cells, one per super-column, were 
arranged in a Series readout configuration as shown in Fig. 13.  
The #2 inputs of the first (leftmost) Conflux as well as the 
outputs of the 40th (rightmost) Conflux were connected to pads 
to allow multiple FCP130 chips to output their data in one large 
aggregate bus system.  The Conflux bus width was set at 20 bits 
with fixed locations for chip address, pixel address, column 
address, super-column address, and hit magnitude.  FCP130 
was fabricated in a commercial, low-power 130nm CMOS 
process. 

C. Testing 
The test station was designed to examine the function of the 

FCP130 as a novel pixel front-end architecture.  Testing 
Conflux solely as an asynchronous readout system was thereby 
prevented.  Specifically, the chip was bump bonded to an 
oversized detector and this blocked access to the leftmost pads 
of the chip.  Unfortunately, these pads are the direct inputs to 
the #2 input stream of the leftmost Conflux stage.  As such the 
test station itself prevented testing things like Bit Error Rate 
Tests that might explore the limits of the capabilities of 

Fig. 13 A sketch of the FCP130 chip showing its Series configuration Conflux 
readout.  “CON” is the label for each Conflux cell. 
 

Fig. 12 (a) Conflux in a Series Configuration with 7 Conflux circuits and 8 
inputs (In 1 has the highest priority; In 7 and In 8 have the lowest priority.) (b) 
Conflux in a Parallel Configuration with 7 Conflux circuits and 8 inputs (All 
equal priority.) “CON” is the label for each Conflux cell. 
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Conflux. Nevertheless, some tests on Conflux were possible. 
1) Propagation Delay 

For any given super-column under low-luminosity 
conditions, the following equation defines the propagation 
delay from the time a hit is transferred into a Conflux cell to the 
time the final Request To Next signal emerges out of the 
FCP130 chip: 

𝑡𝑃𝐷 = 𝑡1 + 𝑁 ∗ 𝑡𝐶𝑜𝑛𝑓𝑙𝑢𝑥 + 𝑡2 
where t1 is the time to transfer data to the Conflux within a 
super-column, t2 is the extra time necessary to get the Request 
To Next from the last Conflux to test equipment, tConflux is the 
Propagation Delay of an individual Conflux, and N is the 
number of Conflux cells from the hit column to the end of the 
chip.  The delays t1 and t2 are constants regardless of which 
pixel in which column is hit.   
 A single signal simultaneously releases all data from the 
FCP130 super-columns to the Conflux readout.  It is possible to 
plot of the delay from that signal to the appearance of the 
Request To Next signal at the output of the FCP130 chip for a 
single hit pixel as a function of the super-column number that 
was hit.  Fig. 14(a) shows such a plot.  The slope of that line is 

the propagation delay of a single Conflux.  That slope must be 
a function of the bias current sent to the starved inverter delay 
elements of the Request Release Logic (Fig. 9).  That analysis 
was repeated for a range of bias currents and the slopes are 
plotted in Fig. 14(b).  The minimum achievable propagation 
delay is approximately1.8ns per Conflux.  This corresponds to 
a operational frequency of 555.6MHz.  The 20 bit wide data bus 
for this implementation of Conflux at this operational frequency 
yields a bit rate of 11.1Gbps. 
2) Data Transfer Integrity and Arbitration Reliability 

To test both data and arbitration efficiency, a charge was first 
injected into Pixel A of super-column 1 and then a second 
charge was injected into Pixel B of super-column 2 where A 
and B were arbitrary.  This process was then repeated again and 
again, forcing new bits and new arbitrations through the Series 
Conflux readout architecture of FCP130.  Of course, all 40 
Conflux cells performed a new arbitration each time a new 
event passed through themselves.  However only super-column 
2 had its arbitration winner change from Input #1 to Input #2 
and back. Super-column 1 always found Input #1 to be the 
winner and Super-columns 3 through 40 always found Input #2 
to be the winner.(See Fig. 12(a) and Fig. 13.) 

A further limitation to this efficiency test was the speed at 
which the test could be performed.  Again, this was imposed by 
the decision to focus on FCP130 as a novel front-end 
architecture.  The dual charge injection process of this test could 
only be repeated at a rate of approximately 115 kHz because of 
the setup necessary to inject charge into a pixel.  Two test 
periods were ultimately performed. One lasted 44 hours and 
produced 2.09e9 events without error.  The other lasted 66 
hours and produced 3.26e9 events without error. 

V. RESULTS AND CONCLUSIONS 
As a readout architecture, the Conflux Series readout 

configuration was very successful for FCP130.  It performed 
without fail throughout the entire single-chip pixel test process.  
Unfortunately, decisions made during testing limited the types 
of experiments that could be performed.  Bit Error Rate Tests 
became impossible and the full readout system with multiple 
FCP130 chips driving their data in series from one FCP130 to 
another as a giant self-propagating daisy chain could not be 
realized.  This severely limited the number of Conflux-specific 
tests that could be performed. 

Nevertheless, Conflux was highly successful as an 
asynchronous readout architecture for the FCP130 through 
months of testing the front-end system.  It was very reliable 
throughout all phases of the testing and it demonstrated a 1.8ns 
propagation delay. 

APPENDIX A – SR LATCHES USED IN CONFLUX 
Some readers may not be familiar with the terms for the 

various SR Latches used in this paper – e.g Reset Dominant and 
Hold Dominant.  This appendix addresses nomenclature more 
than anything else. 

(a) 

(b) 

Fig. 14 (a) A linear fit analysis of Conflux propagation delay.  The Y-axis is the 
delay to the output of the final Request To Next.  The X-axis is the super-
column of the hit.  The slope is the individual Conflux propagation delay for 
this bias current.  (b) A plot of the propagation delays of individual Conflux 
cells as a function of current in the starved inverter cells of the Request Release 
Logic. 
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A. The SR Latch 
  The SR Latches in Conflux are all constructed from two 

cross-coupled NAND gates.  They could just as easily be 
constructed from two cross-coupled NOR gates.  The 
surrounding Conflux circuitry would require a very slight 
adjustment, but the two constructions are functionally 
equivalent so, for brevity, that construction will not be 
discussed.  The basic cross-coupled NAND gate SR Latch 
circuit and its associated Karnaugh maps are shown in Fig 16. 

 If S=0 and R=1, the latch is being “SET” and Q+ will be 
forced to a 1 and Q+̅̅ ̅̅  will be forced to a 0.  If S=1 and R=0, the 
latch is being “RESET” and Q+ will be forced to a 0 and Q+̅̅ ̅̅  
will be forced to a 1.  If S=1 and R=1, the latch is in its “HOLD” 
state and Q+ and Q+̅̅ ̅̅  will maintain their value.  Finally, S=0 
and R=0 is the “Forbidden” state.  It is so called for two reasons.  
First, while S and R are being held to zero, Q+ and Q+̅̅ ̅̅  are both 
forced to a 1 and are therefore not inverse to one another.  
Second, a transition from the Forbidden state to the HOLD state 
is logically unpredictable [10].  If a SET state is followed by a 
HOLD state, Q+ and Q+̅̅ ̅̅  will transition to 1 and 0, respectively, 
during the SET and then retain that value during the HOLD.  
Similarly, if a RESET state is followed by a HOLD state, Q+ 
and Q+̅̅ ̅̅  will transition to 0 and 1, respectively, during the 
RESET and then retain that value during the HOLD.  However, 
in the case of the forbidden state followed by the HOLD state, 
logic alone is insufficient to determine the final states of Q+ and 
Q+̅̅ ̅̅ .  

B. The Reset-Dominant SR Latch 
  A Reset-Dominant SR Latch eliminates the Forbidden state 
logically by making it a second RESET state.  It is shown in 
Fig. 15. 

 In this case, the SET, HOLD, and original RESET states 
remain logically unchanged.  However, if S=R=0, the R input 
gates the S input, presenting S=1 and R=0 (RESET) to a classic 
SR Latch. 

C. The Set-Dominant SR Latch 
  A Set-Dominant SR Latch is not used in Conflux, but it is 

included here for completeness. The Set-Dominant Latch 
eliminates the Forbidden state logically by making it a second 
SET state.  Its schematic is analogous to the Reset-Dominant 
Latch’s schematic. However, in the Set-Dominant Latch the S 
input runs directly to the S input of the Classic NAND-based 
SR Latch.  The R input is inverted and then gated by the S input 
through a NAND gate.   
 In the case of the Set-Dominant SR Latch, the original SET, 
HOLD, and RESET states remain logically unchanged.  
However, if S=R=0, the S input gates the R input, presenting 
S=0 and R=1 (SET) to a classic SR Latch. 

D. The Hold-Dominant SR Latch 
  A Hold-Dominant Latch eliminates the Forbidden state 
logically by making it a second HOLD state.  It is shown in Fig. 
17. 

In this case, the SET, original HOLD, and RESET states 
remain logically unchanged.  However, if S=R=0, the S input 
gates the R input and the R input gates the S input presenting 
S=1 and R=1 (HOLD) to a classic SR Latch. 

Fig 16 The classic SR Latch and its associated Karnaugh maps.  The so-called 
forbidden state is highlighted in red. 
 

Fig. 15 The Reset-Dominant Latch at its associated Karnaugh maps.  Note that 
the forbidden state has been eliminated and replaced with a second RESET 
state 
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APPENDIX B – E. THE EARLE LATCH 
 Conflux implements Earle Latches as its data path.  This is 
not strictly necessary.  Conflux will still function with standard 
D-Latches.  However, Conflux implements Earle Latches for 
the same reason as that for which they were originally 
developed [18].  Namely, the Earle Latch has a consistent 2-
gate input-to-output delay regardless of input, and it is free of 
asynchronous static hazards.  The Earle Latch schematic is 
shown in Fig. 18 

Fig. 19 shows the logic underlying the Earle Latch.  The 
Latch has both a set condition and a reset condition, provided 
that a user deliberately forces all inputs (including the 
nominally inverted En and En̅̅̅̅  ) to 0 (reset) or 1 (set).  These 
conditions are not used in Conflux. In Conflux, the Earle 

Latches only make transitions between their Opaque and 
Transparent conditions depending on the state of the En signal 
which is IHaveData.   
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