
TVLSI-00311-2019 1

Abstract1— This paper describes an independent, self-arbitrating
asynchronous two-to-one multiplexor called Conflux. Conflux can
be used to implement clockless and token-less Time-Division
Multiplexing between two sources. This capability can then be used
to create a clockless and token-less aggregate data bus which can be
used as a complete asynchronous readout architecture for a chip, a
part of a chip or an entire multi-chip system. Conflux utilizes a
classic, four-phased asynchronous handshake on both of its input
ports as well as on its output port. Asynchronous Request is bundled
with Data to ensure consistent propagation delay. The Request is
also implemented as a differential signal to account for propagation
delay differences between Logical Ones and Zeros. Arbitration
between the two Conflux input streams is accomplished by three Set-
Reset latches. Finally, Conflux cells were used successfully to
implement the readout architecture of the FCP130 prototype chip.
Tests indicate single Conflux stage delays of 1.8ns and a bandwidth
of approximately 11 Gbps in 130nm CMOS.

Index Terms—Asynchronous Circuits, Multiplexing, Time
Division Multiplexing

I. INTRODUCTION

IG Physics experiments are, for the most part, growing
larger and more intricate [1]-[4]. As the size and

complexity increase, so too does the difficulty associated with
delivering the accurate, high-speed clocks necessary for
synchronous readout [5]. To make matters worse, in front end
systems, the same clocks that are necessary for synchronous
readout have become a source of noise interfering with the very
signals that the front ends are trying to detect. Conflux
originated as engineering research into a high-speed tracking
trigger readout for the Compact Muon Solenoid (CMS)
experiment located at the Large Hadron Collider (LHC) in
Geneva, Switzerland [6]-[8]. An on-chip architecture became
necessary to read out a 2-dimensional array of pixels, each of
which might or might not be a source of data at any given point
in time. These intermittent pixel outputs needed to be merged
into a single data stream for output from the chip. Each
complete pixel chip would itself be part of a larger array of
chips that have to get their data to a concentrator and, from
there, off detector. In an effort to minimize data driving
distances, the idea was to have each chip accept output from its
neighbor (for example) to the left and to time-division multiplex
(TDM) that left-neighbor-data stream with its own internally
generated data stream and to pass a merged data stream on to

1 This work was supported by Fermi Research Alliance, LLC under Contract
No. DE-AC02-07CH11359 with the United States Department of Energy.

the chip’s neighbor to the right. Conflux emerged as a clockless
architecture that could deal with both the intra-chip and inter-
chip data readout.
 The following paper will describe Conflux completely.
Section II will discuss the background and general requirements
of a clockless, aggregate readout architecture. It will describe
the chosen protocol, and the architecture of Conflux. Section
III will go into the circuit specifics of the Conflux architecture.
Section IV will describe the fabrication and testing. Finally,
Section V will conclude.

II. A CLOCKLESS, AGGREGATE READOUT ARCHITECTURE

All Big Physics detector systems with bussed readout
architectures can be generalized to consist of a collection of data
generators that seek to send their data to one or more data
destinations – e.g. an array of photodetectors sending their data
to a data concentrator ASIC or, alternately, an array of pixel
detectors sending their data off-chip. Many systems fit this
generalized description.

In shared-bus architectures (Fig. 1(a)), each data source is
conditionally and individually connected to a common bus that

J. R. Hoff (telephone: 630-840-2398 email: jimhoff@fnal.gov), is with the
Fermi National Accelerator Laboratory, Batavia, IL 60510 USA

Conflux – An Asynchronous 2-to-1 Multiplexor
for Time-Division Multiplexing and Clockless,

Token-less Readout
James R. Hoff

B

Fig. 1 Generic readout architectures: (a) A shared-bus architecture (b) An
aggregate, clocked bus architecture and (c) an aggregate, clockless bus
architecture.

FERMILAB-PUB-19-219-PPD
ACCEPTED

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S.
Department of Energy, Office of Science, Office of High Energy Physics.

TVLSI-00311-2019

2

has its other end connected to the data destination. At any given
instant, one and only one data source is connected to the data
destination via that bus and only that data source can drive its
data to the destination. Such a system requires a clock
distributed throughout the shared bus and a means of bus
arbitration like a token or a priority encoder. Shared-bus
systems are relatively simple, but they suffer from several
drawbacks. As the number of individual data generators grows,
the size of the bus grows as does the parasitic load on all drivers
(input and output). This load sets both the maximum frequency
and the minimum power consumption of the shared-bus
system [9].

In an aggregate-bus system (Fig. 1(b)), each data generator is
paired with its own local bus control circuit and its own local
2-to-1 multiplexor. At any given instant, each local bus control
circuit is aware of whether it must drive its local data or drive
data from the previous neighbor, and it sets the local
multiplexor accordingly. In this type of system, the parasitic
loading problem is dramatically reduced because each stage is
only required to drive data to its next neighbor. The complexity
arises from the implementation of the local bus controllers and
multiplexors. On one extreme, they can be implemented as a
logical equivalent to the shared-bus system. The select signals
of the local bus controllers function as one-hot logic and then
one multiplexor grabs data from its local source and all others
are in previous-neighbor-to-next-neighbor mode. The
maximum clock frequency of such a system is equal to

𝑓 =
1

𝑁 × 𝑡𝐷

Where N is the number of data sources in the array and tD is the
propagation delay of a single 2-to-1 multiplexor. On the other
extreme, data can be advanced from one neighbor to the next
synchronously with a readout clock. Decisions are made
locally as to whether a single data source has data and, if so,
which data (local or previous neighbor) is to advance.
Complexity in this system arises from determining what to do
in the event of data collisions.
 Both the classic shared-bus and the aggregate-bus
architectures of Fig. 1(a) and (b) require a clock. To eliminate
the clock and create the architecture shown in Fig. 1(c), several
requirements become apparent.

1. The circuit must still behave as a 2-to-1 multiplexor
(mux) that gets input from two interfaces (local and
previous neighbor) and provides output to one
interface (next neighbor).

2. The output stream is a Time Division Multiplexed
(TDM) stream of the two input streams.

3. Both input streams must have predictable rights to the
output stream.

4. Given the stochastic nature of data from the inputs, the
circuit must be able to handle any conceivable arrival
sequence – e.g. repeated data from local with nothing
from previous neighbor, repeated data from previous
neighbor with nothing from local, data arriving from
both local and previous neighbor, collisions of data,
etc.

5. As a consequence of the stochastic nature of input

data, the circuit must be able to recognize that it has
captured data in one or both of its inputs and it must
be able to hold that data until it has passed that data on
to the next neighbor.

6. The circuit must arbitrate for itself depending on all
available information. That information can only
consist of whether it has local data, whether it has
previous neighbor data and the current
acknowledgement state of the next neighbor.

7. Whatever asynchronous protocol is chosen, each input
should be capable of maintaining and ultimately
completing that protocol independently and
irrespective of whether the input has won or lost the
current arbitration.

A. Asynchronous Protocol

The two canonical asynchronous protocols are Level
Signaling (a.k.a. Four-Phased) and Transition Signaling
(a.k.a. Two-Phased) [10]-[12]. They are shown in Fig. 2. Both
protocols are typically implemented as Bundled Data Protocols
which is to say that both the Request and the Data are
transmitted together such that they have similar (preferably
identical) drivers, similar (preferably identical) loads and wires
that are impedance matched as much as possible. This helps
minimize propagation delay dispersion between the request and
data bits. Using a differential signal as Request can further
minimize the adverse effects of propagation delay dispersion.
Since both a Logical 1 and a Logical 0 would be transferred as
the Request, any potential propagation delay differences
between Logical 1s and Logical 0s are guaranteed to be taken
into account simply by looking at the propagation of the
Request.

The requirement that the clockless Mux be able to handle any
conceivable arrival sequence makes the Four-Phase protocol
very appealing. Looking again at Fig. 2(a), all transitions begin
and end with the same logical levels in the Four-Phase protocol.
Therefore, previous stages always know a priori what logic
levels should presented before and at the start of a new transfer.
If a Two-Phase protocol was used, the proper Acknowledge
transition to one input would depend on the transition direction
of the corresponding Request. This requirement would exist
regardless of which transmission won an arbitration and
regardless of how many transmission victories have been
granted to the other input. Clearly, extra logic would be
required to keep track of the appropriate transition direction for

Fig. 2 (a) Single transfer under a Four-Phase Protocol (b) Two transfers under
a Two-Phase Protocol.

TVLSI-00311-2019

3

the Request and Acknowledge of each input.
It is for these simple reasons that a Four-Phase Bundled Data

protocol with a differential signal as the Request was chosen for
Conflux.

B. MOUSETRAP
MOUSETRAP [13] is a simple, elegant, high-performance

asynchronous pipeline stage. It is not a multiplexor. Also, it
uses Transition Signaling, so it is not directly applicable to the
clockless, aggregate multiplexor problem as defined herein.
However, it has several valuable features that are of use to
Conflux. It employs level-sensitive latches to capture the Data
and Request from a previous stage. (See Fig. 3 and note that
the figure contains three complete MOUSETRAP pipeline
stages in series.) A stage’s captured Request forms the
Acknowledge to the previous stage. All the latches of a stage
are simultaneously changed from transparent to opaque by a
logical function of the stage’s captured Request and the
Acknowledge from the next stage. Since this logical function
is an exclusive-NOR and the latches are positive active, then
the latches are transparent whenever the captured Request is
equal to the Acknowledge from the next stage. This is to say
that when the captured Request of this stage is equal to the
captured Request of the next stage, then the latches of this stage
are made transparent. Since MOUSETRAP uses Transition
Signaling if the captured Request of this stage is equal to the
captured Request of the next stage, then the next stage has
captured the bundled data of this stage and this stage is now free
to capture new data. If the captured Request of the next stage
is not equal to the captured Request of this stage, then the next
stage has not yet captured the bundled data of this stage and this
stage must remain opaque and maintain its captured data
bundle.

MOUSETRAP’s use of level-sensitive latches and its
processing of captured Request signals is what is so elegant and

so useful to Conflux. The level-sensitive latches help ensure
that the Request and Data are truly bundled in that they have the
same drivers, the same loads and, if properly routed, the same
parasitics. This serves to minimize the dispersion in
propagation delay between the different bits of the bundled
data. Since the decision to make the latches transparent or
opaque is performed on signals that have already passed
through the latches, the latches, in effect, are closed after the
Data and Request have already entered the stage.

To account for possible propagation delay differences
between Logical 1s and Logical 0s, Conflux employs a
differential signal as its Request and therefore requires two
Request latches. Of course, since Conflux uses a Four Phase
protocol and since it must arbitrate between two input streams,
the capture logic of Mousetrap (i.e. the XNOR gate) will not
work for Conflux.

C. Conflux

Fig. 4 shows a block-level sketch of the Conflux multiplexor.
It has two independent, bundled data inputs (Input A and
Input B) and one bundled data output. Inputs are captured by
two, independent level-sensitive latch sets. These latches are
enabled by IhaveData A and IhaveData B, respectively. These
signals are generated by independent Capture Logics (one
Capture Logic per latch set). These same signals become the
Acknowledge to Previous signals (Ack To Prev A and Ack To
Prev B) as well as the inputs to the Arbitration Logic. Finally,
the respective Captured Data vectors are passed through classic
combinatorial multiplexors whose select signal is controlled by
the result of the Arbitration Logic. A Request to Next is formed
in the Arbitration Logic.

Looking at the block diagram of Fig. 4, imagine a previous
stage raises a Request, for example, on Input B. This is Phase
1 of Fig. 2(a). Since this is a bundled data protocol, this Request
propagates with its Data. When the Request is captured by the
Input B Latches, the Capture Logic recognizes the Request and
issues IhaveData B. This is the Acknowledge to Previous B
that completes Phase 2 of Fig. 2(a). Since the bundled data has
been captured and Phase 2 completed, the previous stage is free
to withdraw its Request, completing Phase 3. The
Acknowledge to Previous will remain active as long as the

Fig. 3. A sketch of three MOUSETRAP pipelines in series. Note that the same
latches are used for both the Request from Previous and the Data from Previous.
The captured Request becomes the Acknowledge to Previous and it is gated
with the Acknowledge from Next to form the Enable of the MOUSETRAP
latches.

Fig. 4 A block-level sketch of the entire Conflux multiplexor.

TVLSI-00311-2019

4

Capture Logic recognizes that it has data in its Latches, and it
will do so until it wins arbitration and passes its data along to
the next stage. Consequently, in this example, the previous
stage of Input B will remain in Phase 3 until its Request wins
arbitration. Therefore, the previous stage of Input B cannot
begin a new Request until its current Request wins arbitration
and output stream passes the Input B data to the next neighbor
the Acknowledge From Next.

III. CONFLUX CIRCUITRY

A. Latch and Capture Logic

Because of the Four Phase protocol and because of the basic
requirements of an independent, self-determining,
asynchronous multiplexor, the Latch and Capture Logic (Fig. 5)
must be able to capture bundled data, recognize that bundled
data is present in its latches and then hold the bundled data
indefinitely. The signal that does this, IhaveData, is basically
the gatekeeper of its input stream. It functions as the
Acknowledge To Previous. When active, it locks the previous
neighbor at Phase 3 of its Four-Phased transfer and prevents any
additional requests on this stream. When active, the latches of
the Latch and Capture Logic are made opaque. When inactive,
the latches are transparent, Phase 4 has been completed and the

Conflux is awaiting the next request on this input stream.
IhaveData must be efficiently recognized and latched until
used, and once used, the signal must be unambiguously erased.

The IhaveData Latches annotated in Fig. 5re are Reset-
Dominant SR Latches – i.e. an SR Latch that has one Set
condition (S=0, R=1), two Reset conditions (S=0, R=0 or S=1,
R=0) and one Hold condition (S=1, R=1) (see Appendix A
Section B). Consequently, when the Reset of the IhaveData
Latch is active, the Latch and Capture Logic have no choice but
to erase IhaveData regardless of the current activity on the
Request From Previous (e.g. Is the previous stage trying to enter
Phase 1 for a new bundled data transmission?). Furthermore,
since IhaveData is also the Acknowledge to the previous stage,
no Acknowledge To Previous can possibly be sent until that
reset is withdrawn. Section III.E will show that the reset of the
IhaveData Latch is actually the Acknowledge from the next
stage (Acknowledge From Next). Therefore, the Reset-
Dominant IhaveData Latch ensures that the current stage cannot
possibly advance the next bundled data transmission to its
Phase 2 until the current bundled data transmission has cleanly
completed Phase 4 (see Fig. 2(a)). In short, the Latch and
Capture Logic capture the incoming bundled data, lock the
previous neighbor and no further than Phase 3 of the handshake,
hold the data and request indefinitely until it wins arbitration,
outputs the data on the output stream and receives
acknowledgment from the next neighbor.

Recognition of the presence of data within the Latch and
Capture Logic is simple given the bundled data protocol. Data
is present when the Request is active.

1. For a single-ended, positive-active Request, the
Request is active when captured Request From
Previous (i.e. the output of the Request From
Previous Latch) is high.

2. For a Request that is a differential signal, Request is
active when the captured Request From Previous +
is high and the captured Request From Previous –
is low. A NAND gate of the captured Request and
Request signals is used as shown in Fig. 5(a).

3. Fig. 5(b) shows the circuit that was actually used in
this first implementation of Conflux. Here Request
is active when

a. both the uncaptured Request From
Previous + input and the captured Request
From Previous + are high and

b. both the uncaptured Request From
Previous – input and the captured Request
From Previous – are low and

c. IhaveData is low (inactive).
The chosen implementation prevents transient noise (such

as charge that could be induced by high energy particles)
from accidentally activating IhaveData. Speaking more
generally, this more complex implementation of the capture
logic shows that functionality can be added within the Latch
and Capture Logic depending on the user’s definition of what
constitutes the presence of data within the latches. For
example, if dual-rail data protocols are being used [10], data

Fig. 5 (a) Minimal Latch and Capture Logic necessary for a differential Request
(b) the actual Latch and Capture Logic implemented in the first test of Conflux.
(It is worth noting that if the Request is single ended, all that is necessary is for
the Request.

TVLSI-00311-2019

5

recognition could be gated until all the data has successfully
arrived; data recognition could also be withheld until a
successful parity check; etc.

B. Demultiplexer for Acknowledge from Next

Fig. 4 clearly indicates that there must be two independent
Latch and Capture Logic sets, one for each input stream. It is
obvious that the same Acknowledge from Next signal cannot
be distributed in common to both sets. If both IhaveData A and
IhaveData B were active and yet the Arbiter chose IhaveData A,
a common Acknowledge from Next signal would reset both
IhaveData signals even though IhaveData B was not the data
being acknowledged. The Acknowledge from Next signal must
be demultiplexed depending on the state of the Arbiter.

This simple circuit is shown in Fig. 6. This circuit also
provides a convenient location for an asynchronous reset signal.

C. Arbitration Logic
Arbitration in digital systems is hardly new [14] and Conflux

shares much in common with existing systems. Arbitration in
Conflux occurs in response to the state of IhaveData A and
IhaveData B. However, even though IhaveData A and
IhaveData B can change at any time, the state of arbitration can
only be allowed to change between transfers – i.e. after the
withdrawal of an Acknowledge from Next and before the next
assertion of Request to Next. So, if there is an active transfer
on the output stream and the state of IhaveData A or
IhaveData B changes, then arbitration must wait. If there is no
active transfer on the outputs stream, then arbitration can occur
immediately. Additionally, once an arbitration decision has
been reached, it must be maintained throughout the Four-Phase
Protocol of the output stream.

Ignoring questions of metastability for the moment, a simple
solution to arbitration in Conflux is to use a Hold-Dominant SR
Latch – i.e. an SR Latch that has one Set condition (S=0, R=1),
one Reset condition (S=1, R=0) and two Hold conditions (S=0,
R=0 or S=1, R=1) (see Appendix A, Subsection D). If such a
latch is fed with logic as shown in Fig 7(a) then

1. Between asynchronous transfers, if both
IhaveData A and IhaveData B are inactive, the
Arbitration Latch makes no change from its
previous arbitration state because this is one Hold
condition of the latch.

2. Similarly, between asynchronous transfers, if both
IhaveData A and IhaveData B are active, the
Arbitration Latch makes no change from its
previous arbitration state because this is another

Hold condition of the latch.
3. Between asynchronous transfers, if either

IhaveData A or IhaveData B are active, the
Arbitration Latch selects the appropriate input
stream because one active IhaveData and one
inactive IhaveData is either the Set or Reset
condition of the latch.

4. During asynchronous transfers, the Arbitration
Latch is kept in one of its Hold conditions by the
presence of the Request to Next and/or
Acknowledge from Next signals.

Of course, while a Hold-Dominant SR Latch solves the logic
of arbitration in Conflux, metastability and mutual exclusion
must be also considered. Fig 7(b) shows a complete arbitration
latch. It is a combination of the following:

1. A Hold-Dominant SR Latch that sets up the
subsequent arbiter so that it behaves as a self-
arbitrating asynchronous two-to-one multiplexor

2. A non-overlapping SR Latch that enhances mutual
exclusion, and

3. A Seitz Arbiter or MUTEX [10]-[12][15].
The Hold-Dominant SR Latch is highlighted by the red box

within Fig 7(b). It is constructed by adding simple
combinatorial logic in front of a basic SR Latch – i.e. an SR
Latch that has one Set condition (S=0, R=1), one Reset
condition (S=1, R=0) one Hold condition (S=1, R=1) and one
Forbidden condition (S=0, R=0) (see Appendix A, Subsection
A). The non-overlapping SR Latch is highlighted by the green
box within Fig 7(b). It is constructed by adding delay (in this

Fig. 6 The demultiplexer and reset logic for the Acknowledge From Next.

Fig 7. (a) The complete Arbitration Logic surrounding the Hold-Dominant, SR
Arbitration Latch. (b) The Hold-Dominant, SR Arbitration Latch itself.

TVLSI-00311-2019

6

case, two inverters) within the feedback structure of an SR
Latch. The Seitz Arbiter is highlighted by the gold box within
Fig 7(b). It is constructed by combining an SR Latch with a
Metastability filter which itself is highlighted by the blue box
within Fig 7(b).
1) Mutual Exclusion

The combinatorial logic added to make a Hold-Dominant
Latch is symmetric across S and R and is such that an active S
(or R) will actually block R (or S) before it activates the S’ (or
R’) of the basic SR Latch inside the Hold-Dominant SR Latch.
This has a beneficial side effect on arbitration in Conflux. Not
only does the Hold-Dominant Latch perform the correct logical
functions enumerated above, but it guarantees that a change to
the state of S or R will not cause a re-arbitration even before
Request To Next activates and blocks re-arbitration through the
logic of Fig 7(a). In short, it helps guarantee that only time-of-
arrival determines the arbitration winner.

The extra delay inserted in the feedback paths of the non-
overlapping SR latch force both 𝑄′ and 𝑄′̅ to Logical 1s for a
period of time equal to the propagation delay of the NAND gate
plus the two inverters. This coupled with the Metastability
Filter force 𝑄 and �̅� to Logical 0s for the same time, ensuring
that there is a fixed period of inactivity between arbitrations
with different winners. In other words, it provides predictable
mutual exclusion. Fig. 8 shows the arbitration results when
both IhaveData A and IhaveData B activate very close to one
another. The x-axis is the simulated time difference in
picoseconds between the activation of IhaveData B and
IhaveData A assuming that the Conflux is between simulations
and IhaveData A won the last arbitration. A similar graph can
be shown plotting the simulated time difference between the
activation of IhaveData A and IhaveData B assuming that the
Conflux is between simulations and IhaveData B won the last
arbitration. Of course, this is obvious from the fact that the
circuits are symmetrical with respect to S and R. The arbitration
winner depends only on time of arrival and the winner of the
last arbitration. Arbitration winner favors the last winner
because of the mutual gating effect of the Hold-Dominant SR
Latch. At time differences less than approximately 120ps
activation of S (in Fig 7(b)) does not have enough time to pull
S’ below threshold and the basic SR Latch does not change
state. Next, the arbitration winner does not change once
arbitration has been decided. In fact, if metastability is not a
concern, the Hold Dominant logic and the non-overlapping SR
Latch do a very good job of ensuring mutual exclusivity on their

own. If desired, the metastability filter of Fig 7(b) can be
replaced by simple inverters between 𝑄′ and �̅� and between 𝑄′̅
and 𝑄.
2) Metastability

The positive feedback present in any latch implies that there
are two stable states ((𝑄 = 0, �̅� = 1) and (𝑄 = 1, �̅� = 0)) and
one metastable state (𝑄 ≅ 𝑄 ≅

𝑉𝐷𝐷

2
) [11]-[13][15]. Ordinarily,

this is not a problem, but when S and R change very close to
one another in time, this can cause a time delay in resolving the
final state of the latch. In most SR Latches and in particular in
the Conflux arbiter, this time delay is the result of an oscillation
in the feedback network whose duration is dependent on the
arrival times of S and R, the rise and fall times of S and R, the
propagation delay of the Latch and the rise and fall times of 𝑄
and �̅�. In all cases there is a time window (sketched in Fig. 8)
where disruption of normal operation can occur. By simulation,
this window is approximately 20ps wide for the full arbiter
shown in Fig 7(b). If the metastability filter is eliminated and
replaced by inverters, the window is reduced to approximately
10ps wide due to the reduction in the rise and fall times of 𝑄
and �̅�. If the non-overlapping SR Latch is replaced by a simple
SR Latch, the metastability window reduces to the single digit
picosecond range due to the reduction in the propagation delay
of the latch.

However, while the metastability window is reduced by these
measures, the consequences of metastability can increase. In
the presence of metastability, the metastability filter holds the
outputs of the arbiter at (𝑄 = 0, �̅� = 0), meaning that neither
state wins until the metastability resolves. Replacing the
metastability filter in Fig 7(b) with inverters does reduce the
metastability window, but it does filter the oscillations from 𝑄
and �̅�.

D. Request Release Logic
The purpose of the Request Release Logic is, first, to convert

the internal, single-ended Request signal into a differential
Request To Next signal in keeping with the chosen bundled data
format of Conflux and, second, to ensure the correctness of the
bundled data output stream. Correctness means that the
Request within a bundled data is not active until its Data is
stable [12].

Fig. 9. A schematic of the Request Release Logic

Fig. 8. A graph of the Arbitration Winner as a function of the time difference
between the activation time of IhaveData B (tS) and the activation time of
IhaveData B (tR) given that the Conflux is between transfers and that Q
(IhaveData A) won the last arbitration. Metastability Window not drawn to
scale.

TVLSI-00311-2019

7

The Request Release circuitry is shown in Fig. 9. The
complete Conflux is shown in Fig. 11 and in that figure, the
Request Release logic is annotated with letter (k). The boxes
“Captured Data #1” and “Captured Data #2” represent the data
captured in the two Latch and Capture Logics. They are passed
through a multiplexor selected by the output of the arbiter and
the selected data becomes Data To Next. Similarly, the two
IhaveData signals are passed through an identical multiplexor
also selected by the output of the arbiter. However, the selected
IhaveData does not become Request To Next directly. First, it
passes through the Request Release circuitry. The IhaveData
signals are used to form Request To Next because they come
into existence after data is present in an input stream and then
they are removed unequivocally by the presence of
Acknowledge from Next through the action of the Reset-
Dominant Latch in the Latch and Capture Logic. Fig. 8 shows
that the Arbitration circuitry does not permit the Arbitration
Winner to change back and forth. In other words, regardless of
which input stream won the last arbitration, request and data
from this arbitration will be released together and will not be
removed until the Acknowledge from Next is received. Finally,
only the Request, not the Data is passed through the Request
Release Logic, guaranteeing that Request To Next comes into
existence after the Data of the output stream. Moreover, this
prototype contains a variable delay element controlled by
NMOS and PMOS Current Limit, permitting user control of the
duration of the delay between Data To Next and Request To
Next.

E. Data Flow
Fig. 10 is a basic timing diagram for two transfers across

Conflux, the first from Input Stream A while the Conflux is
between transfers, and the second from Input Stream B while
the Conflux is engaged in the first transfer.

Initially, all latches in the conflux are transparent. The
bundled data arrives from Input Stream A and the most
immediate consequence is that IhaveData A activates. This, in
turn, results in the activation of Acknowledge To Previous A
and the changeover of the Input Stream A latches to opaque.
The Inputs Stream B latches remain transparent. The activation
of IhaveData A also results in an arbitration whose outcome is
Choose A. This causes the captured data, DA1, to be routed to
the Data To Next and the IhaveData A to be routed to the
Request Release Logic whose outcome is the activation of
Request To Next. After some time, Acknowledge From Next
activates, resulting in the removal of Request To Next and the
Resetting of IhaveData A. The resetting of IhaveData A results
in the removal of Acknowledge To Previous A and the
changeover of the Input Stream A latches to transparency.

 The arrival of bundled data on Input Stream B is
essentially the same except that the activation of IhaveData B
does not lead directly to a new arbitration. The next arbitration
must wait until the arrival and removal of Request To Next and
Acknowledge from Next. The outcome of the second
arbitration is Choose B and the next transfer continues as did
the last one.

 These transfers are simple, but what happens if there is

more data on Input Stream A? Can one input stream lock out
another? The Latch and Capture Logic’s IhaveData latch is
reset upon reception of Acknowledge From Next. This means
that Acknowledge to Previous A also is deactivated, finishing
the last phase of Input Stream A’s four-phase transfer, and
permitting Input Stream A to start its next transfer. However,
the fact that the IhaveData latch is reset-dominant means that as
long as Acknowledge From Next is active, IhaveData A cannot
re-activate. Once Acknowledge From Next deactivates, the
IhaveData Latch of Input Stream A must be set and the signal
must be driven to the arbitration latch. Meanwhile, if IhaveData
B is already active when Acknowledge From Next deactivates,
IhaveData B is already at the arbitration latch and is guaranteed
by the logic of the Hold Dominant latch to win the arbitration.
Due to the symmetry of the arbitration logic, in the presence of
an abundance of data, the arbitration winner will always
alternate between transfers from one input stream to the other.
One input stream cannot resource starve the other.

F. Complete Conflux
 The complete Conflux as designed for this first

implementation is shown in Fig. 11. (a) and (b) highlight the
two input streams, each with a differential Request From
Previous and single-ended Data From Previous. (c) and (d)
highlight the two Latch and Capture Logics. Note that the
slightly more complicated version shown in Fig. 5(b) is used.
It was known at the time of this chip’s design that this chip
could be used in a high-radiation environment. This implied
that high energy particles could be incident on this chip. Under
such circumstances, transient charge can be deposited randomly

Fig. 10. A timing diagram of two transfers across Conflux, one from Input
Stream A and the next from Inputs Stream B. It is meant to illustrate timing
flow in Conflux.

TVLSI-00311-2019

8

on this circuitry through processes collectively called Single-
Event Effects (SEEs) [17]. A complete description of SEEs is
beyond the scope of this paper. However, a standard heuristic
analysis of the consequences of SEEs led to the determination
that it was possible to prevent accidental activation of
IhaveData by requiring:

1. both the uncaptured Request From Previous + input and
the captured Request From Previous + are high and

2. both the uncaptured Request From Previous – input and
the captured Request From Previous – are low and

3. IhaveData is low (inactive).
The Capture Logic in Fig. 5(b) and Fig. 11 is functionally

equivalent to the Capture Logic of Fig. 5(a). However, the extra

circuitry in Fig. 5(b) and Fig. 11 acts to filter out transient
signals that are shorter than the propagation delay of the Latch
and the NAND gate. This should cover most of the noise
anticipated through incident radiation.

The latches used for both Request and Data in the Latch and
Capture Logic are Earle Latches [15] (See Appendix B).
Simulations indicate that ordinary D-type Latches work as well.
However, the fact that Earle Latches are free of static hazards
was viewed as a positive in this first implementation.

Fig. 11(e) and (f) highlight the fact that the IhaveData output
of each Latch and Capture Logic ((c) and (d)) become the
Acknowledge to Previous of each respective input stream.
They also become the inputs to the Arbitration Logic (Fig.

Fig. 11 A sketch of the complete Conflux cell

TVLSI-00311-2019

9

11(g)). Given that this was a prototype chip that would not be
used in a wider system, it was decided not to implement the
metastability filter of Fig 7(b) and instead use the two inverters.
This could possibly allow additional testing if time and
circumstances allowed. In the end, the narrowness of the
metastability window meant that this was never a problem.

The outputs of the Arbitration Logic are connected to the
Select inputs of two multiplexors and one demultiplexor. The
demultiplexor is the logic of Fig. 6 and is highlighted as Fig.
11(h). The two outputs of this logic are connected to the reset
of the Latch and Capture Logic (Fig. 5(b)) and steer the
Acknowledge from Next to the appropriate Latch and Capture
Logic. Fig. 11 (i) and(j) highlight the fact that the arbitration
result steers the appropriate IhaveData signal to the Request
Release Logic (k) and steer the appropriate Captured Data to
the Data To Next output.

IV. FABRICATION AND TESTING

A. Two Basic Readout Configurations

 When using Conflux as a complete readout architecture,
there are two obvious configurations, Series and Parallel. These
are shown in Fig. 12.

In the Series configuration (Fig. 12.(a)) N Conflux cells are
arrayed end-to-end. The output of the ith Conflux output is
connected to the #2 input of the (i+1)th Conflux. The output of
the Nth (last, rightmost) Conflux is the output of the entire
readout architecture. The #1 inputs of each Conflux as well as
the #2 input of the first Conflux provide N+1 gateways into the
TDM output stream. Since Conflux performs Time Division
Multiplexing of the N+1 input streams, the Series configuration
effectively acts as a priority encoder giving highest priority to
the #1 input of the Nth (last, rightmost) Conflux and lowest
priority to #1 and #2 inputs of the first (leftmost) Conflux.
Assuming unlimited data input streams on each input, In 8
through In 1, the output stream of Fig. 12(a) over a statistically
significant period of time will be 50% In 1, 25% In 2, 12.5% In
3, etc. Inputs on the left also have greater latency due to their

lower priority.
In the Parallel configuration (Fig. 12. (b)), 2N inputs are

funneled down to one output through log2(N) stages of Conflux.
The inputs all have equivalent priority in the Parallel
configuration of Fig. 12(b). Assuming unlimited input data
streams on each input, In 8 through In 1, the output stream over
a statistically significant period of time will contain 12.5% of
each of the input data streams and the latencies will be
equivalent.

Admixtures of Series and Parallel configurations in which
the outputs of Series configurations become inputs to Parallel
configurations and vice versa are easily imaginable.

B. Fabrication
Conflux was first implemented as the readout architecture for

FCP130 [19], a test vehicle for research into synchronous pixels
for front-end vertex detectors in High-Energy Physics. This is
the reason why steps were taken in the design to minimize the
possible effects of radiation on performance. FCP130 consists
of 40 “super-columns” each consisting of 4 columns of 128
pixels each. Forty Conflux cells, one per super-column, were
arranged in a Series readout configuration as shown in Fig. 13.
The #2 inputs of the first (leftmost) Conflux as well as the
outputs of the 40th (rightmost) Conflux were connected to pads
to allow multiple FCP130 chips to output their data in one large
aggregate bus system. The Conflux bus width was set at 20 bits
with fixed locations for chip address, pixel address, column
address, super-column address, and hit magnitude. FCP130
was fabricated in a commercial, low-power 130nm CMOS
process.

C. Testing
The test station was designed to examine the function of the

FCP130 as a novel pixel front-end architecture. Testing
Conflux solely as an asynchronous readout system was thereby
prevented. Specifically, the chip was bump bonded to an
oversized detector and this blocked access to the leftmost pads
of the chip. Unfortunately, these pads are the direct inputs to
the #2 input stream of the leftmost Conflux stage. As such the
test station itself prevented testing things like Bit Error Rate
Tests that might explore the limits of the capabilities of

Fig. 13 A sketch of the FCP130 chip showing its Series configuration Conflux
readout. “CON” is the label for each Conflux cell.

Fig. 12 (a) Conflux in a Series Configuration with 7 Conflux circuits and 8
inputs (In 1 has the highest priority; In 7 and In 8 have the lowest priority.) (b)
Conflux in a Parallel Configuration with 7 Conflux circuits and 8 inputs (All
equal priority.) “CON” is the label for each Conflux cell.

TVLSI-00311-2019

10

Conflux. Nevertheless, some tests on Conflux were possible.
1) Propagation Delay

For any given super-column under low-luminosity
conditions, the following equation defines the propagation
delay from the time a hit is transferred into a Conflux cell to the
time the final Request To Next signal emerges out of the
FCP130 chip:

𝑡𝑃𝐷 = 𝑡1 + 𝑁 ∗ 𝑡𝐶𝑜𝑛𝑓𝑙𝑢𝑥 + 𝑡2
where t1 is the time to transfer data to the Conflux within a
super-column, t2 is the extra time necessary to get the Request
To Next from the last Conflux to test equipment, tConflux is the
Propagation Delay of an individual Conflux, and N is the
number of Conflux cells from the hit column to the end of the
chip. The delays t1 and t2 are constants regardless of which
pixel in which column is hit.
 A single signal simultaneously releases all data from the
FCP130 super-columns to the Conflux readout. It is possible to
plot of the delay from that signal to the appearance of the
Request To Next signal at the output of the FCP130 chip for a
single hit pixel as a function of the super-column number that
was hit. Fig. 14(a) shows such a plot. The slope of that line is

the propagation delay of a single Conflux. That slope must be
a function of the bias current sent to the starved inverter delay
elements of the Request Release Logic (Fig. 9). That analysis
was repeated for a range of bias currents and the slopes are
plotted in Fig. 14(b). The minimum achievable propagation
delay is approximately1.8ns per Conflux. This corresponds to
a operational frequency of 555.6MHz. The 20 bit wide data bus
for this implementation of Conflux at this operational frequency
yields a bit rate of 11.1Gbps.
2) Data Transfer Integrity and Arbitration Reliability

To test both data and arbitration efficiency, a charge was first
injected into Pixel A of super-column 1 and then a second
charge was injected into Pixel B of super-column 2 where A
and B were arbitrary. This process was then repeated again and
again, forcing new bits and new arbitrations through the Series
Conflux readout architecture of FCP130. Of course, all 40
Conflux cells performed a new arbitration each time a new
event passed through themselves. However only super-column
2 had its arbitration winner change from Input #1 to Input #2
and back. Super-column 1 always found Input #1 to be the
winner and Super-columns 3 through 40 always found Input #2
to be the winner.(See Fig. 12(a) and Fig. 13.)

A further limitation to this efficiency test was the speed at
which the test could be performed. Again, this was imposed by
the decision to focus on FCP130 as a novel front-end
architecture. The dual charge injection process of this test could
only be repeated at a rate of approximately 115 kHz because of
the setup necessary to inject charge into a pixel. Two test
periods were ultimately performed. One lasted 44 hours and
produced 2.09e9 events without error. The other lasted 66
hours and produced 3.26e9 events without error.

V. RESULTS AND CONCLUSIONS
As a readout architecture, the Conflux Series readout

configuration was very successful for FCP130. It performed
without fail throughout the entire single-chip pixel test process.
Unfortunately, decisions made during testing limited the types
of experiments that could be performed. Bit Error Rate Tests
became impossible and the full readout system with multiple
FCP130 chips driving their data in series from one FCP130 to
another as a giant self-propagating daisy chain could not be
realized. This severely limited the number of Conflux-specific
tests that could be performed.

Nevertheless, Conflux was highly successful as an
asynchronous readout architecture for the FCP130 through
months of testing the front-end system. It was very reliable
throughout all phases of the testing and it demonstrated a 1.8ns
propagation delay.

APPENDIX A – SR LATCHES USED IN CONFLUX
Some readers may not be familiar with the terms for the

various SR Latches used in this paper – e.g Reset Dominant and
Hold Dominant. This appendix addresses nomenclature more
than anything else.

(a)

(b)

Fig. 14 (a) A linear fit analysis of Conflux propagation delay. The Y-axis is the
delay to the output of the final Request To Next. The X-axis is the super-
column of the hit. The slope is the individual Conflux propagation delay for
this bias current. (b) A plot of the propagation delays of individual Conflux
cells as a function of current in the starved inverter cells of the Request Release
Logic.

TVLSI-00311-2019

11

A. The SR Latch
 The SR Latches in Conflux are all constructed from two

cross-coupled NAND gates. They could just as easily be
constructed from two cross-coupled NOR gates. The
surrounding Conflux circuitry would require a very slight
adjustment, but the two constructions are functionally
equivalent so, for brevity, that construction will not be
discussed. The basic cross-coupled NAND gate SR Latch
circuit and its associated Karnaugh maps are shown in Fig 16.

 If S=0 and R=1, the latch is being “SET” and Q+ will be
forced to a 1 and Q+̅̅ ̅̅ will be forced to a 0. If S=1 and R=0, the
latch is being “RESET” and Q+ will be forced to a 0 and Q+̅̅ ̅̅
will be forced to a 1. If S=1 and R=1, the latch is in its “HOLD”
state and Q+ and Q+̅̅ ̅̅ will maintain their value. Finally, S=0
and R=0 is the “Forbidden” state. It is so called for two reasons.
First, while S and R are being held to zero, Q+ and Q+̅̅ ̅̅ are both
forced to a 1 and are therefore not inverse to one another.
Second, a transition from the Forbidden state to the HOLD state
is logically unpredictable [10]. If a SET state is followed by a
HOLD state, Q+ and Q+̅̅ ̅̅ will transition to 1 and 0, respectively,
during the SET and then retain that value during the HOLD.
Similarly, if a RESET state is followed by a HOLD state, Q+
and Q+̅̅ ̅̅ will transition to 0 and 1, respectively, during the
RESET and then retain that value during the HOLD. However,
in the case of the forbidden state followed by the HOLD state,
logic alone is insufficient to determine the final states of Q+ and
Q+̅̅ ̅̅ .

B. The Reset-Dominant SR Latch
 A Reset-Dominant SR Latch eliminates the Forbidden state
logically by making it a second RESET state. It is shown in
Fig. 15.

 In this case, the SET, HOLD, and original RESET states
remain logically unchanged. However, if S=R=0, the R input
gates the S input, presenting S=1 and R=0 (RESET) to a classic
SR Latch.

C. The Set-Dominant SR Latch
 A Set-Dominant SR Latch is not used in Conflux, but it is

included here for completeness. The Set-Dominant Latch
eliminates the Forbidden state logically by making it a second
SET state. Its schematic is analogous to the Reset-Dominant
Latch’s schematic. However, in the Set-Dominant Latch the S
input runs directly to the S input of the Classic NAND-based
SR Latch. The R input is inverted and then gated by the S input
through a NAND gate.
 In the case of the Set-Dominant SR Latch, the original SET,
HOLD, and RESET states remain logically unchanged.
However, if S=R=0, the S input gates the R input, presenting
S=0 and R=1 (SET) to a classic SR Latch.

D. The Hold-Dominant SR Latch
 A Hold-Dominant Latch eliminates the Forbidden state
logically by making it a second HOLD state. It is shown in Fig.
17.

In this case, the SET, original HOLD, and RESET states
remain logically unchanged. However, if S=R=0, the S input
gates the R input and the R input gates the S input presenting
S=1 and R=1 (HOLD) to a classic SR Latch.

Fig 16 The classic SR Latch and its associated Karnaugh maps. The so-called
forbidden state is highlighted in red.

Fig. 15 The Reset-Dominant Latch at its associated Karnaugh maps. Note that
the forbidden state has been eliminated and replaced with a second RESET
state

TVLSI-00311-2019

12

APPENDIX B – E. THE EARLE LATCH
 Conflux implements Earle Latches as its data path. This is
not strictly necessary. Conflux will still function with standard
D-Latches. However, Conflux implements Earle Latches for
the same reason as that for which they were originally
developed [18]. Namely, the Earle Latch has a consistent 2-
gate input-to-output delay regardless of input, and it is free of
asynchronous static hazards. The Earle Latch schematic is
shown in Fig. 18

Fig. 19 shows the logic underlying the Earle Latch. The
Latch has both a set condition and a reset condition, provided
that a user deliberately forces all inputs (including the
nominally inverted En and En̅̅̅̅) to 0 (reset) or 1 (set). These
conditions are not used in Conflux. In Conflux, the Earle

Latches only make transitions between their Opaque and
Transparent conditions depending on the state of the En signal
which is IHaveData.

ACKNOWLEDGMENT
The author would like to acknowledge Petra Merkel and the

KA-25 research program that sponsored this work. The author
would also like to acknowledge Dave Christian, the project
manager of FCP130 for his oversight and Farah Fahim, the lead
engineer on the FCP130 for her efforts to incorporate Conflux
into her chip. The author would also like to acknowledge Lou
Dal Monte and Benjamin Bentele for their work on the FCP130
testing from which the Conflux timing and reliability were
extracted. The author would also like to acknowledge Grzegorz
Deptuch and Marvin Johnson for numerous helpful discussions.

REFERENCES
[1] J. Christiansen and M. Garcia-Sciveres, “RD Collaboration Proposal:

Development of pixel readout integrated circuits for extreme rate and
radiation”, CERN-LHCC-2013-008, LHCC-P-006 (2013).

[2] CMS Collaboration, “The Phase-2 Upgrade of the CMS Tracker”, CERN-
LHCC-2017-009, CMS-TDR-014 (2017)

[3] ATLAS Collaboration, “Technical Design Report for the ATLAS Inner
Tracker Pixel Detector”, CERN-LHCC-2017-021, ATLAS-TDR-030
(2018)

[4] B. Abi et al., DUNE Collaboration The Single-Phase ProtoDUNE
Technical Design Report, pp. 1-165, July 2017, [online] Available:
https://arxiv.org/abs/1706.07081.

[5] F. Carrió and A. Valero on behalf of the ATLAS Tile Calorimeter System,
“Clock Distribution and Readout Architecture for the ATLAS Tile

Fig. 17. The Hold-Dominant Latch at its associated Karnaugh maps. Note that
the forbidden state has been eliminated and replaced with a second HOLD
state.

Fig. 18. The Earle Latch

Fig. 19 A truth table (a) and Karnaugh Map (b) for an Earle Latch. The red
circles indicate the stable asynchronous states. The orange dashed boxes called
out by the arrows and labels indicate the minterms covered by the gates in Fig.
18. The red circles indicate the six stable asynchronous conditions of the latch.

TVLSI-00311-2019

13

Calorimeter at the HL-LHC”, IEEE Trans. Nucl. Sci, 2018 (Early Access)
DOI 10.1109/TNS.2018.2885456

[6] R. Yarema, et al, “Vertically Integrated Circuit Development at Fermilab
for Detectors”, 2013 JINST 8 C01052, presented at Topical Workshop on
Electronics for Particle Physics, Oxford, Eng., Sept. 2012

[7] J. Hoff, M. Johnson, R. Lipton, and G. Magazzu, “Readout Chip for an
L1 Tracking Trigger Using Asynchronous Logic”, JINST, vol. 7, July,
2012 [Online] http://ccd.fnal.gov/techpubs/tech-pubs-search.html, Report
Number = FERMILAB-CONF-12-411-PPD

[8] J. Hoff, “Time-division multiplexing data bus,” U.S. Patent 9,928,202,
Mar. 27, 2018.

[9] N. Weste and K. Eshragian, Principles of CMOS VLSI Design: A Systems
Perspective, Reading, MA: Addison-Wesley, 1993

[10] C. Myers, Asynchronous Circuit Design, New York, NY: John Wiley &
Sons, 2001

[11] J. Sparso and S. Furber, Principles of Asynchronous Circuit Design: A
Systems Perspective, 2002 edition, Springer, 2001, pp. 3-8

[12] Steven Nowick and Montek Singh, “Asynchronous Design – Part 1:
Overview and Recent Advances, IEEE Design and Test, May/June, 2015,
pp. 16

[13] Montek Singh and Steven Nowick, “MOUSETRAP: High‐Speed
Transition‐Signaling Asynchronous Pipelines”, IEEE Trans VLSI Sys,
Vol. 15, No. 6, June 2007

[14] D. Kinniment and J. Woods, “Synchronisation and Arbitration Circuits in
Digital Systems”, Proc. IEEE, Vol. 123, No. 10, Oct. 1976, pp. 961- 966

[15] C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley:
Reading, MA, 1980, pp. 218-261

[16] T. Kacprzak, “Analysis of Oscillatory Metastable Operation of an RS
Flip-Flop”, IEEE J. Solid-State Circuits, vol 23, no. 1, Feb 1988, pp.260-
266

[17] P. Dodd and L. Massengill, “Basic Mechanisms and Modelling of Single-
Event Upset in Digital Microelectronics”, IEEE Trans Nucl Sci, vol 50,
no. 3, June 2003, pp. 583-602

[18] J. Earle, ‘Latched Carry-Save Adder”, IBM Technical Disclosure Bull.,
vol. 7, March 1965, pp. 909-910

[19] F. Fahim, “Fermi CMS Pixel (FCP130) test ASIC” [Online]
http://ccd.fnal.gov/techpubs/tech-pubs-search.html, Report Number =
FERMILAB-CONF-14-435-PPD, 2015

James Hoff was born in New Jersey, USA,
in 1965. He received the B.S.E.E. degree in
electrical engineering from the University
of Notre Dame in 1987, the M.S.E.E. degree
in electrical engineering from the Illinois
Institute of Technology in 1992 and Ph.D.
in electrical engineering from Northwestern

University in 1997.
In 1988, he joined Fermilab’s Particle Physics Division as an

Integrated Circuit designer for the Electrical Engineering
Department. His current research interests include digital
readout architectures, digital design in extreme environments,
and design verification.

http://ccd.fnal.gov/techpubs/tech-pubs-search.html
http://ccd.fnal.gov/techpubs/tech-pubs-search.html

