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Abstract. AMI is the main interface for searching for ATLAS datasets using physics metadata 
criteria. AMI has been implemented as a generic database management framework that allows 
parallel searching over many catalogues, which may have differing schema, and may be 
distributed geographically, using different RDBMS.

The main features of the web interface will be described; in particular the powerful graphic 
query builder. The use of XML/XLST technology ensures that all commands can be used 
either on the web or from a command line interface via a web service.

1. Introduction
This article describes the ATLAS metadata interface (AMI) [1] which was chosen to be the official 
ATLAS tool for dataset selection in July 2006. We have previously described the context of metadata 
in ATLAS and the place of the dataset search within this context [2]. An overview of ATLAS 
metadata has been presented at this conference [3]. In this article we give more detailed information 
concerning the architecture of AMI. The details of some of the advanced features of the dataset search 
web interface are described. We discuss some recent work to improve the quality of service.

2. Main features of the AMI framework
AMI is a framework consisting of relational databases which contain their own description, a software 
layer to exploit this auto-description, and a set of generic interfaces for the usual database functions 
(insert, update, delete and select). AMI can manage different database schema deployed on 
geographically distributed servers with different relational database management systems (RDBMS) 
simultaneously. This enables AMI to support schema evolution in a seamless way.

The AMI framework supports several applications for ATLAS:
The Dataset Search
The Tag Collector
Nomenclature reference tables
The Monte Carlo dataset number broker
Catalogues of nightly builds.

The AMI server code is written in JAVA and uses JAVA Database Connections (JDBC). In 
consequence, it is independent of platform, operating system and database technology. The application
software is built in three levels above JDBC as shown in Figure 1. The three lower level packages 
wrap the connections to the databases managing transactions, connection pooling, transmission of 
SQL commands, and recuperation of query results. The top layer of the software contains application 
specific packages with knowledge of non generic features of the database tables. Those which are for 
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dataset searching contain in particular the software to manage all the tasks that pull data from the 
various sources, and the dataset provenance tracking.

A client who queries an AMI database is not expected to have knowledge of the name or type of 
the database, or the name of any database tables, or the relation between the database tables. The 
architecture allows clients to express queries in terms of the application semantics. Thus a user of the 
AMI dataset selection application should be able to work with a schema of datasets and files, whereas 
a user of another AMI based application, such as Tag Collector, works with different semantics.

33. Authorisation, Authentication and User  Specific Functions
AMI implements several mechanisms of user authentication:

Username and Password.
Grid Certificate.
Possibility to upload a VOMS [4] proxy (using ACACIA [5]) and to pass this proxy to a third 
party application. This mechanism is shown in Figure 2. It is used notably for the formation of 
“super datasets” for instance the reprocessing coordinator may make a container dataset which 
groups together all the files in other containers which are known to be good. Since the ATLAS 
Distributed Data Management (DDM) only allows one level of hierarchy this must be done 
with a special interface. Such an interface has been implemented in AMI, and uses the VOMS 
proxy of the reprocessing coordinator to make the new containers. AMI does not need any 
special dataset making rights, merely transmitting VOMS proxy of the AMI user to the DDM
client.

It is important to note that users of AMI do not possess a real database password. All DB access is 
controlled at the application level.

Authorization is managed by a hierarchical set of roles.
Users are mapped to one or more roles within the AMI framework. 

o John Smith is a Monte Carlo Coordinator.
o Jean Dupont is a Package manager of the Package XYZ.

Roles are mapped to commands.
o A Monte Carlo Coordinator can edit the cross section information of any Monte Carlo 

Datasets.
o Package Managers can add new code modules to their package.
o A “guest” can only read.

Further restriction is possible by assigning a “validator” class to the role.
o Jean Dupont can only add new code modules to Package XYZ.
o Jane Doe can only update information on records which she herself added.

OVERVIEW of AMI Software

Application Specific Software DATASET SEARCH TAG 
COLLECTOR

OTHERS

AMI Generic Software Generic AMI Command management
Database Connection management Connection Pooling, Transaction management of AMI 

Commands
JDBC Standard JAVA Package
Specific Database Libraries ORACLE mySQL SQLITE

Figure 1 : The layered architecture of AMI software
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Roles are organized in hierarchies, so that a Manager can give rights to a part of his domain to 
someone else.

There are also AMI roles in ATLAS VOMS, for example “AMI Writer”. This possibility is not 
exploited as yet, but it would give the possibility for ATLAS management to regulate who can write to 
AMI.

Fig. 3. The AMI-VOMS solution

When a user logs on to AMI, all the web pages are modified to reflect his or her authorised actions.
For example, a user who has the rights to update dataset information will see a button for this action.
Other users who do not share this right will not see the button. Each user has access to a personalized 
home page. The home page is to list the user’s bookmarks, and the roles assigned to the user. It is 
possible to limit the actions or even the visibility of certain fields to a particular role.

44. The AMI web interface
The AMI web interface portal page [1] gives users access to the dataset search, to their personal page, 
to related AMI applications such as the Monte Carlo dataset number broker, and it is also possible 
simply to browse all the data in AMI. In the rest of this section we discuss only the Dataset Search.
Several types of search have been implemented:

A simple search which performs a partial string search on the dataset name.
A simple search which performs a keyword string search on a selection of fields.

Fig. 3. The AMI-VOMS ssssssolution

Figure 2: The ACACIA mechanism

1. User authenticated by grid certificate
2. User authorized to use JAVA Web Start
to launch ACACIA and create a proxy
3. User chooses the pkcs12 certificate 
which ACACIA will present to the VOMS 
server
4. VOMS server returns a proxy
5. ACACIA uploads the proxy on the 
server using a secure connection
6. The server stores the proxy
7. The server can extract information from
the proxy if necessary (e.g. “AMI Writer 
Role”)
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A more complex search which allows the user to specify the required values for a number of 
key parameters. This interface was defined with the help of one of the ATLAS user groups.
A “hierarchical” search for datasets, where the user selects one parameter at a time.

Behind the scenes, user requests are transformed to a request expressed in the EGEE gLite 
grammar [6]. This grammar, which is also implemented by the native EGEE metadata application [7],
looks similar to SQL but makes no assumptions about schema, so is ideally suited to the AMI 
philosophy. The gLite query is then sent out in parallel to all open dataset catalogues. They respond if 
they can reply to the query. (A query for information about a particular parameter can only be satisfied 
by a catalogue which contains information on this parameter.) A second request to the catalogue gets 
the data, which is then displayed for the user. If no datasets are found in the open catalogues the 
archived catalogues are searched, and if a result is found the user is warned that it comes from the 
archives. The archives can be included in the first search if the user desires.

The results are displayed for all catalogues. The user can modify the appearance of the results by 
selecting the fields to display, or the order in which they are displayed. Pop-up windows give 
additional information about the meaning of the fields. The results can be refined by added schema 
specific filters. Users can bookmark their favourite requests, which are always re-executed
dynamically. It is also possible to have an RSS feed for a dataset record, to be informed when there is 
a modification in the state, for example when events become available.

4.1. The database schema for datasets
As explained above, AMI uses self-describing relational schema. The generic AMI commands make 
no assumptions about the schema; they use the internal description to discover it. On the other hand, 
the top layer software contains detail of the particular application’s semantics. In the case of the 
dataset catalogues a few semantic constraints are imposed. All schema must have a database table 
called “dataset” and this table contains a key field that holds the unique dataset name. Another 
imposed field is an internal status field, which enables the search to hide datasets that are known to be 
bad. Apart from these constraints, the dataset catalogue schema can differ from one another. A 
catalogue of Monte-Carlo datasets has a different set of attributes than that of a catalogue of datasets
coming from the detector data acquisition.

Some global catalogues are maintained. The largest one is a list of all datasets known to AMI. It 
guarantees that the dataset names are unique across all catalogues. The dataset provenance information 
is also managed globally by using a database representation of a direct acyclic graph. The third type of 
global table is for use in the manner of reference tables. These tables constrain the values which can be 
used for certain parameters.

In 2008 ATLAS introduced a stricter control of nomenclature for datasets [8]. Figure 3 gives an 
example of the nomenclature for one type of dataset. This dataset nomenclature is quite mnemonic;
dataset names have a fixed set of fields, and the values of most of these fields are restricted. Functions 

Project.runNumber .streamName.prodStep.dataType.Version

Figure 33 : The nomenclature template for  a pr imary rreal data set; examples of constrained fields are given.

Used to make 
subsets of data

Used for data 
placement

Numeric tag 
which 
defines SW 
versions
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to manage the nomenclature have been implemented in AMI [9] using the global reference tables. 
Coordinators can define new allowed values for the fields using AMI, and the information is circulated 
automatically by email to the groups that need it. For instance the distributed data management 
organizes data storage according to the data type and project name.

Collaborating applications that need to name datasets have direct read access on the AMI reference 
tables so it is possible for them to control nomenclature.

4.2. Data sources
AMI extracts and correlates the information which users need for dataset selection from the primary 
sources of that information. This extraction, or data pulling, is done by a special AMI task server. 
Tasks are run as JAVA threads, and scheduled with variable frequency using a task control database 
table.

FFigure 4 : Result of a query. Links to other  applications are shown in dark blue.

The current sources for dataset information stored in AMI are the Tier 0 management system [10],
the ATLAS production database [11], the production Task Request system [12], the ATLAS SVN
repository, and other AMI based applications such as the Tag Collector [13].

Datasets formed at Tier 0 appear in AMI within 5 minutes. State changes of simulated datasets are 
also seen within about 5 minutes, but their treatment may take much longer, depending on the number 
of files produced by a simulation task. Less essential updates like calculating the links to event 
generation job options files in the SVN repository are done at a much slower cadence, typically every 
6 hours.

It is also possible for authorized physicists to update information in the dataset catalogues using 
either the web interface or a web service client. For example the Monte Carlo coordinator can correct 
cross-section values that are in some cases reported incorrectly in generator log files.
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Of course we do not aim to copy all the metadata available from our data sources. It is essential 
only to have a handle on the data in other metadata databases. For example AMI keeps a record of the 
production system job execution ID for each file, and this can be used to obtain the complete job 
record.

Figure 5 : A screen 
shot of the AMI 
interface for refining 
a standard query. The 
user sees a graphical
representation of the 
gLite query, which 
he or she can modify 
by adding a condition 
on any field in the 
schema.

The AMI web interface can link to information in another ATLAS metadata application by either 
providing the URL to the application’s own web site or by considering the other application to be a 
part of AMI. The latter functionality is implemented by entering an AMI compatible description of the 
external database in the AMI router database. All the AMI generic software will then work on the 
external database because it is seen as part of AMI. In this way we can provide web browsers for 
ATLAS databases that do not have their own. The only requirement is that the database tables thus 
described have single column primary and foreign keys and, of course, we must have a read access to 
the database. Some typical search results are shown in Figure 4.
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4.3. Fixed queries on AMI catalogues
The most common query on AMI starts with a part of the dataset name. It is also possible to search 
using a subset of parameters, such as projectName and SW Release version, or a search based on 
keywords attached to datasets. The simplest dataset search gives access to these ‘fixed” queries, 
generated in gLite grammar and sent to all AMI dataset schema. Once a reply has been obtained (see 
Figure 4) users may use the results to navigate to more details, change the look of the display, or 
modify the query itself, as described in the next section.

4.4. Arbitrary queries on AMI catalogues
Because of the generic, multi-catalogue structure of AMI the parameters that the user can define in the 
“fixed” query interfaces are those which are present in the majority of catalogues. But we also provide
a means to build an arbitrary SQL request on a selected catalogue. A graphical interface shows the 
user the complete schema for the selected catalogue, and guides the selection of the fields. As an 
example, one set of ATLAS users was interested only in those datasets of a catalogue which have the 
AOD format and which have exactly 30 files. A query constructed using the “Refine Query” function 
permits this list to be provided. This interface is shown in Figure 5; it is constructed dynamically by 
introspection of the schema.

55. The Web Service
AMI has provided a classic “SOAP” web interface since 2003. The AMI API now contains over 50 
different commands for different actions on the dataset catalogues, although in many cases they are 
just wrappers to generic commands. We decided not to represent these commands individually in the 
web service interface (the “WSDL” file) but to keep the client very simple. The client process can be 
summarized as “send us AMI a command; get the reply”. The command and its arguments are sent to 
the server, the command is executed on the server, and then the XML of the reply can be used directly 
by the client, or transformed using one of the XSLT files we provide. The advantage of this approach
is that we do not have to modify the client in any way if a new command is added on the server. The 
disadvantage is that clients must rely on independent documentation to know which commands are 
available.

The web interface implementation uses the same set of commands as those that are available for the 
web service, but in this context the XML output of the command is transformed to HTML. The web 
interface provides a means to show the AMI command which was actually used. So it is possible to 
extract the command on the web, recuperate the syntax and then paste it into a script for execution via 
the web service.

The web interface also provides a special “web service” page where users can try out web service 
commands, without having to install a client.

One of the advantages of a web service is that in theory a client can be generated for any modern 
computing language. But we do not expect the average physicist to be able or willing to do this. An 
AMI client written in PYTHON (pyAMI) is available in the ATLAS software release. It will return 
results either as a PYTHON object or in text. We have provided PYTHON wrappers of many 
commands and in some cases have aggregated the basic commands to provide more complex 
functions. For instance the wrapper “amiGetDatasetEVNTInfo” takes an arbitrary Monte Carlo dataset 
name as its argument, and returns selected information about the parent event generation data

A SOAP interface is not well adapted for all client needs, and so we have also provided a 
Representational State Transfer (REST) type interface for some special functions. 
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Figure 6 : The XML/XSLT mechanism and 
the use of gLite grammar.

66. Cur rent status and prospective

6.1. Quality of service
In 2008 AMI and Tag Collector were moved from Grenoble to the French Tier 1 site at Lyon, whose 
staff now manages all the infrastructure tasks of these applications. The dataset catalogues are hosted 
on ORACLE, using 4 ATLAS dedicated instances; Linux RHEL 5.2 64 Bits (bi-pro quadri-core) 
machines, ORACLE version 10.2.0.4. The Atlas Release databases for Tag Collector use mySQL, 
running at Lyon. The AMI /Tag Collector services are running on two servers, using the TOMCAT
web container. A front end Apache server manages the load balancing. User sessions are routed 
transparently to one of the two servers.

Figure 7 Deployment of AMI and Replication
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These applications are unusual for ATLAS because most essential services run at CERN. In order 
to increase the availability of the dataset search, the AMI dataset catalogues are replicated to 
ORACLE at CERN using the 3D mechanism [14] which is based on ORACLE streams.

This means that users who are interested only in reading AMI can do so using the CERN replica, if 
they wish. If the ORACLE database at Lyon is unavailable for any reason, the AMI web interface will 
redirect users requesting read-only operations to the AMI replica at CERN. All writing operations are 
done on the master database. For various reasons, the streaming mechanism is not the method of 
choice for ensuring redundancy. Nevertheless, if there were to be a serious problem at the CCIN2P3 it 
would be possible to change the CERN replica to the master in a few hours.

All the other replicated database applications are distributed FROM CERN to Tier 1 sites.

6.2. Performance and Scalability aspects of AMI
A well known problem with database applications which aim to support several database back ends is 
that they cannot easily optimise queries for a particular database engine. To some extent we have been 
able to counter this problem by a polymorphic design of connection software. At the lowest level of 
the software (See Figure 1) the database connections “know” to which engine they are connected. We 
use this level to manage specific RDBMS syntax and frequent non-application specific database 
operations can be optimized therein. A second application strategy is to remove very time critical 
operations to the top application level, and allow them to by-pass the generic query mechanism. When 
AMI is reading the Tier 0 database to get the information about the latest ATLAS datasets, there is no 
reason to check that the AMI catalogue receiving the data has a schema which is correct for ATLAS 
real datasets, performed in the AMI generic software layers, thus one can exploit bulk inserts and bind 
variables at this level.

Our use of threaded generic queries to independent ORACLE schema has turned out to be very 
successful, we are sure it will be scalable as it implies that we can easily archive old data and as yet we 
have had no need for the possibility ORACLE gives of partitioning large tables; if we were to do this 
it would be transparent to the AMI software. The same is true of the creation of any special database 
specific kind of index.

A typical successful dataset search returns in under 2 seconds on the web interface. The more 
complex "keyword" search, over many fields and tables, returns in about 10 seconds.

Over the past 12 months the number of web site visitors has increased by 60%, and we typically 
support at least 50 TOMCAT sessions on each of our servers, peaking to several hundred when the 
nightly build mechanism is reading from the Tag Collector database. (Our servers do not distinguish 
between the two applications.)

Although our current performance is more than acceptable we are aware that several things could 
be done to improve performance. However our first priority is to increase the functions available.

6.3. Conclusions
AMI has shown itself to be a powerful tool which can be used for the physics metadata catalogues of 
ATLAS. Both datasets and files will be catalogued, from real and from simulated data. Searching is 
fast and flexible. Metadata is correlated from several input sources and held in the AMI tables. The 
AMI interface is one of the main entry points for all ATLAS metadata sources.

ATLAS metadata information is available from many sources, with different granularities. Users 
need to be able to navigate from one granularity to another in order to find and combine the data from 
these different sources. This is not a trivial task since the information is distributed across many 
applications, and each source application presents a different interface and exports the data in a 
different format. A mediator interface is defined as “a software module that exploits encoded 
knowledge about some sets or subsets of data to create information for a higher layer of applications”
[15]. To put it another way, a mediator is an application which puts some domain expertise between 
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the user and a group of data sources, so that information coming from these different sources can be 
aggregated. Our ambition is that AMI will become a “mediator” for ATLAS metadata.
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