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NisHumMA : I do not know. The correspondence
between this solution and the ordinary perturbation
theory solution is that of a non-local interaction in
perturbation theory.

SymMANzIK : The break in that correspondence is
possible, because otherwise one would really lose many
Lagrangian schemes. One may break that simple
connection, for instance, in those examples discussed
this morning after the first talk.

NisHIIIMA : Yes, for the moment I cannot say any
more than this.

OPPENHEIMER : As I understand it, this is primarily
a scheme, that is, a method of constructing the t
function. It is not meant to be looked at abstractly
but as a way of going to higher and higher 7 functions

systematically. Therefore, you will always have to
start with the simplest 7 functions, and you will always
encounter the fact that either © remains zero or it is
an ambiguous object. And that ambiguity will
always have the character of involving ratios of the
p’s or not involving them, so the whole content of
causality is in that first step and, perhaps, some later
steps where also you have constants.

NisHUIMA : The requirement of causality is implic-
itly involved in this definition. First of all, after
writing down this set of equations and the dispersion
relations, we can forget about definitions of the t
functions. If we remember the definition of a t
function, the fourier transform of the p is a function
of scalar products alone only when microscopic
causality is satisfied.
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A new technique is presented for reduction of the
scattering matrix or other physical quantities in quan-
tum field theory. These quantities are expressed as
integrals involving vacuum expectation values of
products of field variables. The procedure is similar
to that of Lehmann, Symanzik and Zimmermann
but differs from LSZ by the explicit introduction of
functions which vanish outside the future light cone.
The new technique is more cumbersome than the
LSZ method and inferior to it for many applications
but has the advantage of yielding a larger primitive
domain of analyticity and of not requiring local
commutativity nor any other form of causality assump-
tion beyond those requirements that are implicit in
the modified asymptotic condition. The method is

illustrated for the case of two particle scattering and
for the vertex function. It has been checked in simple
cases of examples in perturbation theory in lowest
order. It is shown that, without additional assump-
tions, the reduction technique has only trivial conse-
quences, for it is proved that any matrix element can
be chosen as an arbitrary invariant function of the
energies and momentum transfers involved and that
it can still be extended off the mass shell to satisfy
the analyticity and mass spectrum conditons. Thus,
useful restrictions involving only quantities at points of
direct physical meaning have not yet been obtained;
to gain such restrictions, the unitarity condition or
some explicit form of causality assumption would be
required.
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1. INTRODUCTION

In this paper, I will present a new reduction tech-
nique that has been developed in collaboration with
S. Aks and K. Chadan at the University of Mary-
land. The check of this technique for two particle
scattering in perturbation theory and the proof that
an arbitrary function on the mass shell can be ex-
tended into a function with the required analyticity
and mass support conditions, has been carried out in
conjunction with Professor Gunnar Killén of the
University of Lund, whose stimulating comments on
other phases of this work are gratefully acknowledged.
We have also benefitted from comments of members
of the University of Colorado Summer 1960 Seminars,
especially A. Bohr, N. Burgoyne, R. Jost, K. Syman-
zik, and A. Wightman, on possible tests and appli-
cations of this reduction proocedure.

Reduction techniques which express the physical
quantities of quantum field theory in terms of integrals
involving vaccum expectation values of products of
the field operators were first introduced by Umezawa
and Kamefuchi ¥ and by Killén #. This work was
extended by many investigators and a general reduction
procedure, depending only on basic axioms of quantum
field theory, including especially the asymptotic
condition, was then formulated by Lehmann, Syman-
zik and Zimmermann ). This work has been the
starting point for most of the proofs of dispersion
relations ¥ in quantum theory, for the proofs of
analyticity of the scattering amplitude as a function
of momentum transfer >, for the Mandelstam con-
jecture on the representation of the scattering
amplitude @, etc.

As a result of the LSZ technique, one can express
any element of the scattering matrix between states
of ingoing and outgoing particles with well-defined
momenta {k;} as multiple fourier transforms of con-
figuration space expressions involving vacuum expec-
tation values of products of field operators. (The
number of field operators in any product and the num-
ber of configuration space 4-vectors x; in this fourier
integral is just equal to the total number of ingoing
plus outgoing particles for this scattering matrix
element.)

LSZ showed that the scattering matrix could be
expressed as a fourier transform involving either the
time-ordered product or the retarded product; the

latter is superior for many applications, for the re-
tarded function r(x) vanishes unless the preferred
co-ordinate (let us call it x,)is in the future of all the
other integration vectors X,..x,. In contrast, the
time-ordered product in general has support dense
in configuration space. This fact that the retarded
product vanishes unless all the x; —x; (j> 1) are in the
future light cone leads immediately to the result that the
S-matrix is the boundary value of an analytic function
in the momentum variables k; in a certain primitive
domain, and this is the first property needed for proofs
of dispersion relations, etc.

It might at first seem curious that a given function,
the S-matrix, can be expressed as the fourier transform
of either of two quite different expressions. The
answer is that the S-matrix has physical meaning
only on the mass shell where the real vectors k; satisfy
k3 =k3,—k; =m}. For almost all other real values
of the k,, the two fourier transforms will differ.

This well-known fact suggests the question:
What other convenient fourier transforms might be
found for the scattering matrix in addition to the
two types of LSZ? In particular, one can ask whether
fourier transforms can be found which have even
smaller supports in configuration space than the
retarded functions and which therefore lead to exten-
sions of the scattering matrix off the mass shell which
have even larger primitive domains of analyticity in
momentum space. We will find in the investigation
below that it is possible to reduce the support in con-
figuration space to a much smaller domain than that
of the retarded function. The retarded function is
non-vanishing when x, is in the future of each of the
other x;, but we find transforms that vanish unless
the x; are in a particular ordered time sequence; e.g.,
the transform can be made to vanish unless each
X;—X;44 is in the future light cone.

Furthermore, this reduction will be accomplished
without assuming that the field operators commute
for space-like separations. (This assumption is essen-
tial in the LSZ reductions in terms of the retarded
function). To many the axiom of local com-
mutativity may appear to be the best way to intro-
duce causality. However, it seems to us desirable
to investigate whether a more intuitive ( and possibly
weaker) form of the causality assumption can be
introduced (in place of local commutativity) which
involves only conditions on the asymptotic signals in
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the distant past and future of the scattering event. The
reduction technique developed in this report is thus
conceived as appropriate for investigating such alter-
native formulations of strict causality ”.

However we have not been able to complete the
introduction of such a “strict asymptotic causality *’
assumption into this work. Without any explicit
causality assumption or use of the unitarity condition
it is natural to expect that only trivial consequences
will result. Such is indeed the case, for it is proved
that any S-matrix element can be chosen as an arbi-
trary invariant function of the physical variables
(e.g., momentum transfers and energies) on the mass
shell and can still be extended to satisfy both the
required analyticity and appropriate mass spectrum
conditions. Thus this work has as yet led to no useful
restrictions on quantities of direct physical interest.
It should be stressed that this reduction technique
is much more cumbersome than that of LSZ and
clearly inferior to LSZ for most applications. The
main interest of the present work is only to show that
the S-matrix can be reduced without use of local
commutativity and to show the triviality of analyticity
in a tube domain in momentum space.

It is easy to understand why there is such great
freedom possible in the choice of the reduction of any
matrix element between ingoing and outgoing states.
The outgoing (or ingoing) wave packets of particles
are represented as integrals over the field operators
in the distant future (or past). The difference be-
tween the infinite future and past is then represented
as the integral over time of the derivative of any
function which goes to these past and future limits;
the way in which one interpolates between these
asymptotic values is arbitrary. Thus no direct
physical meaning in terms of localized processes
should be attached to the integrands resulting from the
reduction procedure.

2. THE MODIFIED ASYMPTOTIC CONDITION

An essential axiom in the work of LSZ is the asymp-
totic condition, namely for a scalar field A(X):

<>

(DAL 1) = ilim, ., fdsxf*(x)—fj CPIAX) Y
2.1)

Here |¢)> and [) are any two normalizeable states
of the system and A7, is the annihilation operator
for an outgoing particle corresponding to the field 4
with mass m in a state determined by f(x), a normalize-
able positive energy solution of the Klein-Gordon
equation :

f(x) = [d*qo(q> —m*)0(q)e ™" p(q) (2.2)
Here
]
e (2.3)

0xg 0x¢ 0xg

In our work we wish to be able to modify this asymp-
totic condition, when appropriate, to the form:

<>

. 0
(R 19D = ilimy 1oy | dPXf*(x)z—X
(in) 0x,

x {s(£x—y){ QLA P} (2.4)

where y is any fixed space-time point during the integra-
tion and the limit in x and s(x) is any function that we
wish to select which vanishes outside the future light
cone and which approaches 1 as x;—-+ oo for fixed x.
It is normally convenient to choose s(x) to be invariant
under orthochronous homogeneous Lorentz trans-
formations. A possible simple choice is the character-
istic function of the future light cone V., namely
$(x) = 0(x0)0(x*)

1if x is in V,

or: so(x) = 1 0if x is not in ¥,

(2.3)

However, in some applications one may want to
guarantee that s(x) and certain of its derivatives are
all bounded, in which case one can choose within the
future light cone any function of x* which rises
sufficiently smoothly from zero on the light cone to
1 for large x*:

1 N
s(x) = 2—R3Jd4qe_'(”+’”)x6((q +in)?)  (2.6)

Here, 7 is any real vector within the future light cone
(it drops out after the integration) and o(z) is an
analytic function of z in the z-plane cut along the
positive z axis; thus the integrand is an analytic
function of ¢ when Im gisin V, which guarantecs that
s(x) = 0 when x is not in V. For the characteristic
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function s,(x) of Eq. (2-5), 6(z) = z~>. The behav-
ior of s(x) for large x, is determined by the o(z) for
small z and to insure that s(x)—1 as x,—-00 we must set
o(z)z*>—~1 for small z. Otherwise, we need only
require that o(z)z? be bounded for z = (q+in)?
with ¢ varying over all real vectors; and we can choose
any analytic function in the cut plane consistent with
these requirements. For example, one can use

0,(z) =z 2AM (A2 =27 7" (2.7

where n is any non-negative integer chosen so that
the resulting s,(x), which goes as (x%)" for small x?,
(x in V,) is as smooth as desired in the particular
problem. (We find n = 0 is sufficient in all calcula-
tions that we have done so far provided one combines
terms in appropriate manner, but that n>2 may be
required if terms are separated.)

The asymptotic condition (2-4) is an intuitively
reasonable modification of the LSZ condition (2-1).
Furthermore, we have checked that it does hold to
lowest order in a perturbation theory example. In
a general theory these asymptotic conditions are just
assumed to be part of the basic axioms, and we will
examine their consequences ®.

3. REDUCTION OF TWO PARTICLE SCATTERING
TERM

The reduction procedures can be applied to arbi-
trary S-matrix elements. We will illustrate our tech-
nique by applying it to the simple case of two incoming
and two outgoing particles. To avoid unnecessary
complications, we will assume all the particles are
uncharged and scalar. Then the scattering matrix
S is defined by :

{p'k' out|pkin) —{p'k" in|pkin) = {p'k'|S—1|pk)
(3.1

(Here the ingoing and outgoing particles are thought
of as given by wave packets which are nearly plane
waves except for a damping modulation at very
large distances; hence the wave packets are assumed
to have appreciable contributions only for momenta
about certain central values of p', k', p, and k, respec-
tively. The scattering process is assumed to depend
continuously on the momenta (within momentum

conservation) and, although the resonances in the
scattering may be very sharp compared with their
central values, the spread in any momentum component
in each wave packet is assumed to be far smaller than
the width of any resonance. For brevity we indicate
the states by only the central momentum of each
packet).

The first step in the reduction procedure gives only
the momentum conservation and is most conveniently
done following LSZ exactly :

p'K'IS—1]pky = {p'| A%, — Al pk in)

S Il
= Jdxoggijde'xfkr*(x)a—%@'lA(X)lpk in) (3.2)
fd xfy *(x) <P [A(x)|pk in) (3.3)

Here we have used that for single particle states :

[pin) = [p’out) = |p) (3.4)

The wave packet f,(x), is a solution of the Klein-
Gordon equation; hence :

2
TR = 6
X0
The wave packet f,.(x), although it is approximately
proportional to exp(—ik'x) for moderate values of x,
is damped by its modulation so that f,.(x)>0 as
|x| becomes very large for any fixed x,. Hence Greens’

theorem can be applied in the integral to transfer

V? into V2 with the boundary terms all zero. Thus
we obtain :

KIS —1Ipky = i | d*of *()| K .(p'| A |pk in

= i [ d*xf, *(x)<p'lj(x)|pk in) (3.6)

where
2

>, _
A(x) = j(x) = (——V +m )A(x) 3.7

If we now let each packet approach a plane wave
fi—»(2m) " exp (—ik'x).) and use that, by trans-
lation invariance of the theory

_](X) __e+lPx (O)e-—th (38)
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where P is the four-momentum operator, we obtain :

(p'K 1S =1]pky—i(2m)26(p’ + k' — p—k){p'] j(0)| pk
(3.9)

Thus, apart from the delta function of momentum
conservation, our S-matrix gives i<{p’[j(0)|pk in)>
which we now reduce further; here we use the same
technique again but diverge from LSZ for the first
time by using the asymptotic condition (2.4) instead
of 2.1):

iKp'|jO)lpk in » = i{p'| OBy |p>

<>

d
= lim,__, _,, J dsxfk(x)gc—{s(——xx p'17(0)B(x)|p)>}
(3.10)
= T= —[d*xf,()K,s(=x){p'|iOBX)p> (3.11)

We can similarly reduce the remaining particles in
terms of their corresponding field operators C and
D to obtain

T=| d*xd*x'd*x"f,, (X VX)XV K Ko K 5(x") X
x s(—x)s(x—x")0]C(x")j(0)B(x)D(x")|0>  (3.12)

where each Klein-Gordon operator K includes the
mass of the corresponding particle. In expressions
(3.11) and (3.12), we can now let the wave packets
approach plane waves (with f;,(x)—(21) ~"2exp(—ikx)),
so that (3.11) becomes :

T= —Q2m) [ d*xe™ ™ K s(—x)<p'| {(0)B(x)|p)

(3,13)
and (3.12) becomes :
d4d4,d4”-,,- )
S| EEEEE T e ikmive e K (6 %
(2n) /2
x s(—x)s(x — x")<0]C(x")j(0)B(x)D(x")|0> (3.14)

We will find it convenient to alter the notation by
introducing :

& =x—x" ki=p
$r=—X ky, =
€3 =x' ky=—k'=p'—p—k

ky=—p' = —(k;+ky+kj)
(3.15)

Then (3.14) becomes :

4 4 4
T= jd £ud %d §3ei(61k1+§z(k2+k1)+§3[k3+k2+k1])X
@m)™

x KfsKﬁzKéls(é?:)S(fZ)s(él) )

OIC(E3)/(O)B(—E2)D(=¢, —EpI0y  (3.16)

4. PRIMITIVE ANALYTICITY DOMAIN OF THE
TWO-PARTICLE SCATTERING MATRIX

In the expression 3.16, the integrand vanishes unless
the integration variables ¢, &,, and &, are all within
the future light cone. Thus it follows that the integral
will be an analytic function when each of the vectors
ky, k,+k,, and k;-+k,+k, all have imaginary parts
within the future light cone. This domain in the three
complex vectors is normally called the “tube” in
these three vectors and we will use the following nota-
tion to designate this domain :

T(vy, v9,v3) = T(ky, ky+ky, ky+ky+kq)
= {k|Im ky, Im (k, + k), Im (k3 + k,+k,) are in V, }
4.1)

By a slight alteration of the reduction technique
one can get an even larger domain of analyticity
than the tube mentioned above. For example, when
the function s(y—x) is introduced in the integration
under the variable x to give an incoming field, the
point y can depend in any way we choose on
previous integration variables. Using arbitrary linear
combinations of previous integration variables, it is
possible to show directly by the above technique that
the scattering matrix can be extended into a function
analytic in the tube in the vectors k,, k,+ak,, and
ky-+bk,-ck,, where a, b and ¢ are any three positive
numbers. It should be stressed that the same function
is not analytic in the tubes obtained for all values of
these three constants. One must first choose the
constants @, b and ¢ and then one can find an appro-
priate analytic function which is analytic in this tube
domain (and of course all such domains for smaller
values of a, b and c¢) but this function will not normally
be analytic in the larger tubes obtained as a, b and ¢
increase.
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There is still considerable freedom in the function
that one obtains by the reduction procedure. For
example, the form of the s(x) is still to be chosen as
one wishes and the three functions s in equation
(3.16) can all be different if one desires.

The order in which the various particles are reduced
is obviously arbitrary, and thus one is able to obtain
tube domains in which the roles of the different
momenta are permuted. Hence one can extend the
scattering matrix to be an analytic function in each of
several different tube domains. This situation is
reminiscent of that for the vacuum expectation
values of products of field operators (* Wightman
functions ) as discussed by Killén and Wightman ?.
However, there is one very important difference.
The extension of the S-matrix into each of these
tube domains is obtained by a different analytic
function; these functions do not agree on a dense
set but only agree on the mass shell which is not
of sufficiently high density to permit identification
of the two analytic functions. Thus we are not
able to extend our tube domain into a permuted
tube domain but instead are limited to the primitive
domain of analyticity obtained directly from any
one of the tubes.

In some respects this analyticity domain in momen-
tum space is similar to that obtained from the retarded
function of the LSZ reduction technique. The retarded
function gives a fourier transform 7 which, with
appropriate labeling of the momentum, is analytic
in the tube in the vectors k,, k,, and k5. Obviously
any function which is analytic in this tube domain
of the 7 function is analytic in the larger tube in kj,
k,+ak,, and ky+40bk,+ck, where a, b and c are
positive. However, the contrary is not true. Thus,
as a result of our smaller support in configura-
tion space, we obtained a larger tube of analyticity
in momentum space.

It should be noted that the physical points of the
mass shell do not lie within this tube. It is easily
shown that the point of the mass shell

ks = m} +i0->m?>0 4.2)
cannot be obtained by vectors k; with imaginary
parts within the future light cone. However, each

of these points on the mass shell is a boundary point
of the analyticity domain.

5. EXAMPLE OF THE VERTEX FUNCTION

Now we will discuss an application of this reduction
technique for the simple case of a vertex function.
For example, let us consider the following matrix

element of a current operator between two
one-particle states :
V={<p'1j0)Ip>
= —[d*xd*x'e®™ T P* K _K,.s(x")s(—x) x
x {0l A(x")j(0)B(x)|0> (.1)

where the reduction has been carried out explicitly
by our technique and it is readily seen that this vertex
function is the boundary value of the analytic function
in the tube of the two momentum vectors p and p’.
By Lorentz invariance this analytic function ¥ can
be expressed in terms of the three inner products :
V="V(zy,2,,25), Where

Zy = PZ: Z; = Plz, Z3 = (P‘"P,)2 (5.2)
On the mass shell,
zy=mi, z,=mi, andz, = x3>(m;+m,)*,

where the function ¥V takes on physical meaning.
Both z; and z, approach definite points on the positive
real axis from above and the physically meaningful
vertex function is a function of only the one real
variable x;. (V actually becomes double-valued on
this boundary, depending on the way in which the
boundary point is approached.)

The analyticity domain in the three variables z,,
Z,, and z; has been thoroughly studied by Kéllén
and Wightman ? and is sketched in Fig. 1.

We see that, as z, and z, approach the mass shell,
the domain of analyticity in z; shrinks into the region
bounded by a small sling above the real axis and
disappears in the limit. Thus the function
V(m?, m3, z5) is not itself analytic in z, in any domain.

The situation discussed above for the vertex function
extends immediately to the general case. For example,
any point in the tube T(k,,k,,..ky) must be such
that k; and k, lie in the tube 7(k;, k,) and thus the
region of analyticity in the variable (k j—l—k,,)2 necessarily
shrinks to zero as k; and k; pass onto the mass shell.
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Fig. 1 Analyticity domain of the vertex function in z;,z ,,
and z; .

6. PROOF THAT ARBITRARY FUNCTIONS ON
THE MASS SHELL EXTEND INTO ANALYTIC
FUNCTIONS IN THE TUBE AND SATISFY
MASS SPECTRUM CONDITIONS

In this section we will show that the analyticity in
tube domains that we have derived is, by itself, no
physical restriction. Let us consider a general
matrix element of any operator j(0) between a state
of M outgoing particles and a state of N ingoing
particles :

F={—k_psy—k_y,0ut]j0)|ky...ky,iny (6.1)

This matrix clement is defined on the mass shell, where

2—
ki~ =

k;isin ¥V, for 1<j<N
mﬁ}an { J * ! 62)

—k;isin V, for —M<j<-—1

(If F came from an S-matrix element; then
N

ko= =)  is also on a mass shell, but we con-

i=-M

Ji(£0)
sider here even the more general case of varying k2 .)

Fis a function of the invariant inner products
b1n=kjkn—knkj,j<n (6.3)

By a technique similar to that leading to equation
(3.16), we can express F as:

- id4xj —ikjx; . e,
F = jl=_I—M (2n)3/2e K. €(j) e=Z_Mcxjexe—xj }

(%0

COJA - (X -pp) - A1 (x - )J(0)A; (x1) ... Ay(xp)[0)
(6.4)

(Here the symbol [IT;E;] designates the formal product

of the expressions E;.) We have reduced the outgoing

particles first and then the ingoing particles and we

have set y; in s(y;—x;) to be an arbitrary real linear

combination of the previous integration variables.

Thus the matrix « is an arbitrary real triangular
matrix satisfying the conditions :

< 6.5
{“0‘=O‘j0=0'0 ( )
and defined for —M <j,n<N

The integrand obviously vanishes unless each
x; are in V', where

v, = e(j)<Zozj,,x,,—xj> (6.6)

Because of the simple properties of triangular matrices,
we can easily solve the system (6.6) to obtain

where the matrix B is

B =Y (o), 5= 00 () = {10
=Y (—a"¢), &;=0;:8()), e(j) = ]
P=0 * ! s &Y —1 for j<0
Thus the exponentials in (6.5) involve

N N,

Y k=3 vY,

j=-M n=-M
where
Uy = ijijn (6-8)
J

Here B is also triangular :
B;,, =0 for j<n
B;i=¢(j); B, =By, =0 for n#0 (6.9)
and the other B;,’s can be made any set of real numbers
by changing the a’s.
Thus equation (6.4) obviously defines an extension

of F off the mass shcll which is analytic in the
(N+M) momentum vectors in the tube
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T(U_ppy ooy DqsVpyeeUy) -

The vacuum expectation value in (6.4) must satisfy
certain mass spectrum conditions® in its fourier
transform which are conveniently summarized *®
by the representation in terms of Ay 4 y:

OJA_p(x_pp) - A1 (x 2 )j(0)A((xy) ... A(xy)|0> =
j[l:[.(daij)]A;+M+ (({x,—x, 4 1) {aij})G({aij})

(where x,=0). (6.10)

We will now show that an arbitrary function
F({k;k;}) of the inner products over their range of
variation on the mass shell can be represented in the
form (6.4) and (6.10), where the G({a;;}) weight in
the [(N+M)(N+M+1)/2] masses a;; satisfies the
support conditions appropriate to the mass spectra
for the fields A,(x,). This can be done by choosing
the particular weight function :

N

G({a; )= [T 8(b;—mH2m)* )i |F({bj., j<k})
j=-M
(j==0)

(6.11)

where the a;; are chosen as functions of the b, by the
equations :

Jj

__Q
-
< il
W1 =
’ﬁ[\/]z

i

Here the b, are to represent the inner products of the
vectors k;, k, and hence are assumed to satisfy the
conditions necessary in order that the b; can be

obtained by real vectors on the mass shell. Thus:
le:le, bu=m§,b01=0 (613)
m ;m, <g(jk)b j < oo (6.14)

(Since only four vectors can be linearly independent,
for N+M=>4 obvious linear relations among the
bj’s result, which are assumed to be satisfied, along
with the positivity of the necessary determinants that
guarantee real vectors can give the inner product
values. The weight G can be set equal to zero for
other values.)

From (6.12), we find :

(6.14)

bij=a; j+tairq, je1— Qg1 j—Ajiq,;

The weight function G({a;;}) defined by (6.11) can
be seen to have the support that would result if the

A j(x;) were free fields creating successively free particles
of mass mj, for j>0, and then the fields 4;(x;), for
J <0, destroyed successively quanta of mass m;; the
free field expressions are changed, however, by making
each non-zero contribution arbitrary rather than giving
it the particularly simple value that results when free
fields are used. Thus this weight function auto-
matically satisfies the mass support conditions appro-
priate for the succession of fields.

The equation (6.4), into which (6.10) and (6.11) are
now inserted, will be shown to be an identity, so that
an arbitrary function F(b;,, j<n) on the mass shell is
explicitly extended into an analytic function in the
tube domain. To prove that the integral in (6.12)
does actually reduce to F({b;,}) on the mass shell, it is
convenient to give each of the momentum vectors k;
an appropriate small imaginary part so as to damp
the integral in the time variables; we also note that
each plane wave really represents a wave packet that
decreases in amplitude for fixed time as the spatial
distance becomes very large. Hence we can apply
Green’s theorem so that the Klein-Gordon operators
all act to the left instead of to the right. We can now
choose for s(x) the simplest expression s,(x) of equation
(2.5). (The result would be the same for other
choices). Then we let the imaginary part of each
k; approach zero so that k;—m?, beginning with
J = N, and use repeatedly the identity:

[(k+in)* —m?]8(Q* —m*)0(Q)
inz[(k +in— Q)z]2

lim

=0M(k-0) (6.15)

. nin V-0
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This yields the general identity :
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kj2om;2 LU ==0)
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(G40 (k0

(6.16)
Using this result it is easily verified that the integral in

(6.4) does indeed reduce to F({k k,, j<n}) on the mass
shell.
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7. DIFFICULTIES OF THIS REDUCTION PROCE-
DURE

It is interesting to compare this reduction procedure
with that of LSZ, and to see why the LSZ technique
i1s superior. In our procedure we obtain a larger
primitive domain of analyticity in momentum space.
However, a direct copy of the further techniques used
in the usual retarded function scheme is not possible
in our case; in the usual approach the imaginary
part of the scattering amplitude is directly a fourier
transform of the expectation value of a commutator,
and the Jost-Lehmann-Dyson representation ') gives
a summary of the mutual support in both x and
p-space of the commutator and leads to a direct
proof of the extension of analyticity needed to prove
dispersion relations . However, our multiplication
by the factor s(x) leads to a convolution with its
transform which is analytic in p-space, hence extends

all over the p-space and thus destroys any momentum
support properties. The introduction of the mass
spectrum properties in our case led to no enlargement
of the domain of analyticity, yet in the case of the
usual retarded function one does get an enlarged
domain in this way, which includes physical points and
therefore leads to proofs of dispersion relations, etc.
This illustrates the great power of the strict micro-
causality assumption (local commutativity). Never-
theless, the situation is not entirely hopeless in our
approach; it may be possible to derive some real
restrictions on physical quantities when further con-
ditions on the weight G({a;;}) are imposed by the
unitarity condition; however, the difficulties of com-
pleting such a program are too well known to discuss it
further here. The application of the strict asymptotic
causality requirement, along with the mass spectrum
conditions, is the problem that we are concentrating
on at the present %,
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DISCUSSION

LeaMANN : I entirely agree with your last statement.
The question really is one of having a convenient tech-
nique to further analyze and put in the mass spectrum.
The only tool which we have been able to design for

that is a function which vanishes both in some part
of x space and in some part of p space and this is the
commutator. Now you must find some substitute
for such a procedure. You need not work with a
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function having such properties but so far there is
simply no way of keeping track of the smearing out
with the s function. Isn’t this a “very unsolved ”
problem in your whole approach?

OPPENHEIMER : If you were unscrupulous about the
s function and did not take the smearing into account,
what would you get then?

ToLL: Even the s function which is of the simplest
form, namely the characteristic function of the light
cone, still smears the support over all of momentum
space.

LEHMANN : Another point that you stressed is that
the primitive domain that you get here is larger than
the one for the retarded function. That is, of course,
true, but on the mass shell you certainly get no more
properties than by using the retarded function because
on the mass shell the functions are identical. What
is not known is how much stronger your asymptotic
condition really is in comparison with the usual one.
Does it incorporate part of the locality or does it not?

ToLL: T agree completely with Lehmann’s first
point that indeed the problem is to incorporate the
mass restrictions and a causality assumption simul-
taneously, that this is solved in the usual case by
the Jost-Lehmann-Dyson representation and that it
is very difficult to find any equally good approach for
our case where local commutativity is not assumed.
However, there are still some representations that do
not utilize local commutativity. Killén and I have
studied representations in terms of the Bergmann-
Weil technique, as well as the A, function technique,
and we are trying to use these now. These representa-
tions conveniently summarize the information that
is known about the mass spectrum and we hope to
utilize these to find out just what the restrictions on the
mass shell boundary values are. We do assume less
than the usual procedure and we will get out less.
In fact, the motivation in this whole research was to
see if we could not relax slightly the causality asump-
tion. Itstarted out of an attempt to use a wave packet
formulation in quantum ficld theory for the causality
assumption and therefore it is of intcrest to see if we
can get anything at all. We do not claim that we will
get as much as the local commutativity assumption
might imply.

The second point is that the asymptotic condition
really in effect does include some elements of asymp-
totic causality. To speak very non-rigorously, why

is the asymptotic condition supposed to be valid?
It is because in the distant past or future the wave
packets, which describe particles in a particular state,
diffuse away from each other and the interaction
is over large space-like distances: hence one hopes
to approach a free particle picture (which includes the
self interactions). But if the interaction did not
decrease for space-like distances, then obviously one
would not expect to have an asymptotic condition;
so implicit in the asymptotic condition is a small
amount of causality already. We do not think that
there is much more in our asymptotic condition than
in the usual one, but there may be a little more.
There may be a theory in which the one asymptotic
condition is satisfied and not the other.

Actually Knight at the University of Maryland
has worked out what are the equivalent of wave
packets in quantum fields theory—what we call
strictly localized states. That is, outside of a region
of localization, all measurements for a system in such
a state give the same result as for the vacuum. The
aim is then to use these states as incoming signal
states, detect them with corresponding outgoing states,
and say that no influence can get beyond its light cone.
This is the “ asymptotic but strict causality condition.”
I cannot report on this today because these localized
states are terribly complicated. They involve an
indefinite number of particles. For any number N,
there is always a non-zero probability that there will
be more than N particles present. To go overto the
regular S matrix one must take a limit of weak signals.
We are in the midst of this and have no result yet.
In other words, one can introduce the causality assump-
tion separately from local commutativity to see
whether it is much weaker or whether it does imply
most of the analytic properties that one desires.

LeaMANN: I am not sure I like these localized
states very much because you yourself stressed in
the beginning that you do not attach any physical
meaning to the interpolation procedure. I would
prefer just to take a non-local field equation which
contains a form factor, do the lowest order perturba-
tion theory on that and analyze it with respect to both
types of asymptotic condition and see whether both
of them hold or whether they hold only for some special
form factors or things like that. I mean a rela-
tivistic non-local form factor theory such as the theories
which were proposed many years ago. In lowest
order perturbation theory one can certainly check that.
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ToLL: We have not done this. For example, we
have not tested the two asymptotic conditions in a
theory of the Mpller-Christensen type. We have only
tested it in standard perturbation theories at present.
My guess is that the theories which Haag calls “almost-
local-theories ” will probably satisfy both asymptotic
conditions.

OPPENHEIMER : There may be also some question
in multi-channel problems about the identity of the
analytic functions for which the S matrices are different
boundary values; for instance the question of crossing
symmetry.

ToLL : Of course we always get the S matrix on the
mass shell. So we satisfy all symmetry properties that are
satisfied there. It is only the extension that is different.
Anything that is built into the S matrix is still there.

OPPENHEIMER : But the connection between the
S matrices for two different processes as different
boundary values of the same analytic function doesnot
seem to me to be implied. And this is a very deep
thing somehow and a very useful one.

TorL : That is right. There is no way of proving
such properties out of this procedure.

OPPENHEIMER: And that does not seem to me to
follow from the mass spectrum. That seems to be
really a special consequence of causality.

ToLL : I stress that this is a clumsy procedure; it has
many defects compared to the usual one.

OPPENHEIMER : It is terribly interesting how much it
gives, but then it is also important to notice what
it does not give.

ToLL: Yes, and it does not give many properties.
The only point was to see what it could give as an
alternative to the usual causality assumption. We
still do not know whether it is trivial. Our expectation
is that this result may not be entirely trivial.

WIGHTMAN : I would just like to make one remark
about what Hardy did that was different. Hardy
expressed the S matrix elements in terms of a function
similar to Toll’s but symmetrized in all the operators.
This is the antithesis of Toll’s procedure because
you get no support properties at all. However, you
get a neat reduction formula for all S matrix elements.
Now, if you look in the old LSZ paper you find that
the matrix element for two particles going into 7 is
very neatly given in terms of one of the retarded
functions, but at the time when Hardy began work
nobody knew how to write in a similar way the matrix
element for three particles going into n for n=3.
Since that time this problem has been solved by Stein-
man and Ruelle, so there is no more need for this
symmetrized thing to give a neat reduction formula
for the general S matrix element. The solution of
Steinman and Ruelle is that you just must add to the
list of retarded functions given by LSZ the ones
given by Steinman and Ruelle. A/l of these are
different boundary values of the same analytic function.




