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Chiral equations appear often in theories of gravitation. One reason is that the 
field eq11a.tions of a.n n-dimensiona.l Riemannian Ricci flat manifold possessing n - 2 
Killing vectors reduce to tlie rhira.I equations plus a first order linear differential 
equa.tiou. More explicitly, lei M be an n-dimensional Rima.nnian manifold with n - 2 
Killing vectors. We can then write the metric on M as 

i, ,j = 3, · · ·, n 

The fidd eq11ations R11 H = 0, A, B = 1, · · · , n reduce to 1 

a) (nfJ,zfJ- 1 ).z + (ag,zg- 1 ),z = 0 

b) (l ) (lna) zz l ( 1)2 nf ,z = ' + tr g z9-
( lna ),z 4(lna),z ' 

( 1) 

where the ( n - 2) x ( n - 2) rna.trix g is defined in terms of the metric components 
(g )ij = f/ij and z = p + i( and z = p - i( are null coordinates. The determinant of g 
is given by det g = -a2 . If we take the trace of equation (I.a) this implies that 

CY,zz = 0. 

The genera.I sol11tion if this equation is a= Z1 (z) + Z2(z). The choice a= p defines 
the canonical Weyl coordinates. Equation (1.a) is invariant under the transformation 
g ____,, a.Pg for any real number p. lf M is a manifold without torsion, then g is 
symmetric. 

In any case, the set of a.II matrices g build a group. Because of the invariance 
g ____,, aPg we can write det g = ± 1. Without loss of generality ·we can suppose 
gESL(n - 2, R), if M is a real manifold. On the otber band, the chiral equations 
imply the integrability of ln.f in equations (Lb). We say that ln.f is a superpotential 
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defined by the chiral equation. Then the fields of M are the chiral fields and the 
intregration of their superpotential. 

One example of this construction are the axisymmetric stationary vacuum Ein­
stein's equations (ASVE) which reduce to the system (1) for the matrix gtSL(2, R). 
In four dimensions there is another equivalent formalism for obtaining exact solutions 
by means of the Ernst potential £. It is well known that the ASVE are equivalent to 
the Ernst equations 2 

It is sorprising that the Ernst equations can be cast into a chiral form for a 2 x 2-
matrix gtSU(l, 1 ), where g can be parametrized in terms of the Ernst potential as 
3 

1 ( ££ 
g = ReE -Im£ 

However, the fact that SU(l, 1) is isomorphic to SL(2, R.) tells us that it is also 
possible to write down the Ernst equation in a SL(2, R.) representation, i.e. the 
Ernst equation are equivalent to the chira.l equa.tion for the 2 x 2 matrix gtSL(2, R) 
given by 2 

( = ~ (I2+(:2 -E) 
g f -t 1 

(2) 

where £ = f +it, so we have the ASVE written in two different formalisms as chiral 
equations for the group S L(2, R). 

The extension of tlw Ernst equation to tlw Einstein-Maxwell theory gives rise 
also to another example of chiral equatons in ge1wra.I rela.tivity. In the axisymmetric 
stationary case, the Einstein-Maxwell field equations in the potential formalism are 
given by 2 

f 6. £ 
f 6. <I> 

f 

(9£ + 24> \7 <I>) \7 £ 
(9<I> + 24> \7 <I>) \7 <I> 
ReE + cl><I> 

(3) 

(3) can be also ca.st into chiral form for the group gtSU(2, 1 ). A sutible parametriza­
tion of g in terms of tlw Ernst and the electromagnetic potentials is 3 

g = - -1+££+£-£ 
l ( l + £~ + 2<I><I> -

E + E + 2<I><I> 2i<T>(l - E) 

1 - Et+ E - t 
-1 - Et+ 2<I><l> 

2i<l>(l + E) 

2i<I>(l - £) ) 
-2i~(l + t) 
E + E - 2<I><I> 

Higher dimensional potential formalisms an~ also known. The five-dimensional 
Jorda.n's extent.ion of the Kal11za.-Klein theory admits also a potential formalism. In 
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the stationary ca.se the five-dimensional space possesses two Killing vectors X and 
Y. The first is due to the action of the grup U(l) on the manifold. The second is 
associated with stationarity. In terms of these Killing-vectors we can define the five 
potentials 4 

12 - x1tx - µ, 

x - c \TOI yf3x"'(;O 
,µ - '-C'<{3"'(6µ./\ X ayf3)/"Y;6 

E,µ = Eaf3"Y6µ 

If we write (1) in terms of these five potentials, equation (I.a) reduce to five 
independent second order non-linear differential equations for the five potential 1/JA = 
(!, E, 1p, x, I) 4 . These five differential equations ca.n be cast into chiral form with the 
matrix 5 . 

-E 

1 
l v 

272"-

(4) 

Matrix (4) belongs to the group SL(3, R). Then the situation in four-dimensional 
gravity repeats in five dimensions, i.e. the Ricci flat field equations can be cast into 
chiral form in spacetime and in the potential space formalisms for the same group. 
Note that if we make 1/J = x = 0, I= 1 in ( 4) this matrix reduces just to matrix (2) 
which is in agreement with the fact that Ka.luza-l\lein theory reduces to the Einstein 
theory in vacuum for vanishing electromagnetic and scalar fields. In genera.I it 
is possible to write potentials in d-dimensional gravity if the d-dimensiona.l space 
posseses n = d - 3 Killing vectors. Let 9ab be the components of a d-dimensional 
space and ~a - ~~ EJ~c the n-Killing vectors, one can define the n x n projections 
matrix 

and for the Ricci flat case, the curl-free twists 

In terms of the matrix,\ and the column vector w = (wi) the field equations (1.a) 
can be cast into chiral form for the matrix 6 

g = ~ (-~ ,\r + :wT) (5) 

where T = det).. T_his matrix is symmetric and belongs to the group SL(d - 2, R). It 
is easy to check that matrix (5) is matrix (4) and matrix (2) for d = 5 and d = 4 
respectively after an apropriate rotation. So we have the general situation that the 
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Ricci field equations in a d-dimensional Riemannian space can be cast into a chiral 
form in the spacctime formalism (equation (1)) and in the potential space formalism 
(with matrix (.5)) for the same group SL(d - 2, R). 

Another interesting example are the field equations derived from the action 

(6) 

This action reduces to the low energy string action for a 2 = l 7, to the Kaluza-Klein 
four dimensional action for a 2 = 3, and to the Einstein-Maxwell action for a = 0. 
The field equations of action (6) can be also cast into a chiral form for a matrix 
gtSL(3, R) x R for a 2 > 3, gtSL(3, R) for a 2 = 3 and gtSL(3, R) x U(I) for 
a 2 < 3. To end this part we want to mention that Chern Simons equations reduce 
to a. chiral form as well (see Ref. [8]). 

Now we outline briefly a method for solving the chiral equations for any n­
dimensional Lie group G. Let gtD a matrix which depends on z and z, i.e. g = g(z, z) 
and fulfills the chiral equations (I .a.). Let VP be a p-dimensional Riemannian space 
with p :Sn. We will suppose that the manifold pis well-known. Let { ,Xi}i=I, .. ·,p be a 
set of Harmonic maps on Vp,, i.e. 

We make use of the following ansa.tz 3 . Suppose that g can be parametrized by 
_xi, i.e. g = g(Ai) = g(.Xi(z, z)). Then the chiral equations transform into a Killing 
equation on VP for the elements of the matrix A; = ( 0>.;9 )g-1 . The matrices A; 
belongs to the corresponding Lie algebra g of G because they are the Maurer-Cartan 
forms of 9 on G. So we can write Ai in terms of a basis { aj} of the Lie algebra of 
Q and a basis {~i} of the Killing vector space of VP, i.e. A;= ~f aj. We know VP so, 
we know its Killing vectors. We known G so we know g and therefore a basis for it. 
Then we can obtain A; from the linear combination of a; and ~j· We map Aii:Q into 
the group G by exponentiation or by direct integration of the relation A; = ( 0>.•9 )g-1 . 

(For details see Ref. [9]). 
This method has been used for obtaining exact solutions of the chiral equations 

for the group S L(N, R). Explicit results for S L(2, R) and S L(3, R) are given in Ref. 
[10], and for SL(4, R) in Ref. [11). The application of the method for SU(l, 1) and 
SU(2, 1) is found in Ref. [3]. 

The results of the S L(2, R) chiral fields can be used for the vacuum Einstein equa­
tions when spacetime possesses two Killing vectors. The method separates naturally 
the exact solutions in classes 12 . There exist three solutions of the chiral equations 
for a Vi space and one for a V2 . In the spacetime the Vi classes are the Weyl's 
class (with the Von Stockum class as limit), the Lewis and the degenerated classes 
respectivelly. In the potential space only one class ha.s det g = + 1, and corresponds 
to the Papapetrmi cla.ss. The Vi class in spacetime is, as far as we know, not studied 
and in the potential space corresponds to the Tomimatsu-Sato class. 
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The results of the S L(3, n) chiral fields has been used for obtaining exact solutions 
of the five-dimensional Einstein equations when the spacetime possessess three Killing 
vectors, one for the U(l) symmetry, one for stationarity and one for axisymmetry 13

• 

In this case we obtain six different classes for a Vi space and two for a Vi space. These 
results have been applied to the potential space and to the spacetime formalism 14 . 

To conclude, I want to say that the presence of Dr. Plebanski in our Department 
of Physics has been very stimulating to carry out our work. 
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