
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Universal scaling in sports ranking

Weibing Deng1,2,3, Wei Li1,4,5, Xu Cai1, Alain Bulou3

and Qiuping A Wang2,3

1 Complexity Science Center and Institute of Particle Physics, Hua-Zhong
(Central China) Normal University, Wuhan 430079, People’s Republic of China
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Abstract. Ranking is a ubiquitous phenomenon in human society. On the web
pages of Forbes, one may find all kinds of rankings, such as the world’s most
powerful people, the world’s richest people, the highest-earning tennis players,
and so on and so forth. Herewith, we study a specific kind—sports ranking
systems in which players’ scores and/or prize money are accrued based on their
performances in different matches. By investigating 40 data samples which span
12 different sports, we find that the distributions of scores and/or prize money
follow universal power laws, with exponents nearly identical for most sports. In
order to understand the origin of this universal scaling we focus on the tennis
ranking systems. By checking the data we find that, for any pair of players,
the probability that the higher-ranked player tops the lower-ranked opponent is
proportional to the rank difference between the pair. Such a dependence can be
well fitted to a sigmoidal function. By using this feature, we propose a simple
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toy model which can simulate the competition of players in different matches.
The simulations yield results consistent with the empirical findings. Extensive
simulation studies indicate that the model is quite robust with respect to the
modifications of some parameters.

Contents

1. Introduction 2
2. Empirical results of sports ranking systems 3

2.1. Cumulative distribution of scores . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. The Pareto principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3. Dependence of win probability on 1rank . . . . . . . . . . . . . . . . . . . . 8

3. A simple toy model of sports ranking systems 9
4. Simulation results and discussions 11
5. Conclusion 14
Acknowledgments 14
References 14

1. Introduction

As is well known, ranking is a very interesting and ubiquitous phenomenon in human
society [1–5]. On the web pages of Forbes, one can find all kinds of rankings, from the world’s
most powerful people to the world’s richest people, from highest-earning models to America’s
top colleges, etc. Why does everyone want to top the list? The answer is clear. Being in the
top rankings means more power, more wealth and more opportunities. In a ranking system,
individuals are not equal anymore, which was confirmed by the famous 80–20 rule [6], namely
the Pareto principle, which tells us that for many events, roughly 80% of the effects come from
20% of the causes.

Therefore, the quantities in a ranking system could not be well characterized by their
mean values which do not provide any useful information at all. Zipf’s law [7–9] states that
the frequency of the rth largest occurrence of the event is inversely proportional to its rank,
namely f ∼ r−α, with α approaching 1. Representative examples include word frequencies in
text [10–12], people’s annual incomes [13–15] and city sizes [16–18].

Our interest then is whether there are some common patterns in the vastly different ranking
systems. Moreover, if the answer is yes, can we understand the formalism of such patterns,
and unravel some properties of such competition driven systems and human dynamics [19–21]?
In order to facilitate our study we choose a specific kind of ranking system, sports ranking,
in which data are easily accessible and more suitable for quantitative analysis. Here players’
performances in different matches will be used as the basis of their respective rankings, in
terms of scores and/or prize money. Amazingly we find that the distributions of scores and/or
prize money follow universal power laws, with exponents being nearly identical for different
sports. The universal scalings can be reproduced by our toy model in which the key mechanism
is concerned with the win–loss probability distribution for any pair of players. This win–loss
probability distribution has been verified by the empirical data. Our model is found to be robust
with respect to small modifications of minor parts.
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2. Empirical results of sports ranking systems

To understand how a certain sports ranking system works [22–24], let us take tennis as
an example. Association of Tennis Professionals (ATP) and Women’s Tennis Association
(WTA) are the world’s most successful tennis associations for male and female professionals,
respectively. To appear on the ranking systems of ATP or WTA, the number of tournaments a
player has to play each year should reach a minimum, say 10. Tournaments have been divided
into several categories, such as grand slams, premier tournaments, international tournaments
and year-ending tour championships, mainly based on the scale of prize money. For the most
important tournaments such as grand slams, the main draw only consists of 128 players. The
entry rule is that if you are highly ranked, then you have more chance of being accepted. On
the other hand, a player’s good performance will improve their rankings which will in turn
entitle them to a greater chance of playing tournaments. Since there are so many tournaments
each year, for both ATP and WTA, the ranking list of scores and/or prize money may change
very frequently. Here we are not interested in which player is world no. 1 in certain sports, but
instead in the statistical distribution of performance, measured by scores and prize money, of all
the players. What is the form of such a distribution? Is it stable over different time periods? Is it
universal?

Our data sets cover 12 different sports, such as tennis, golf, snooker and volleyball, etc.
All the data are up-to-date to February 2011 (www.atpworldtour.com, www.wtatennis.com,
www.pga.com, www.lpga.com, www.ittf.com, www.fivb.org, www.fifa.com, www.world
snooker.com, www.fie.ch, www.bwfbadminton.org, www.fiba.com, www.ibaf.org, www.fih.ch,
www.ihf.info). We adopt a cumulative distribution due to small system sizes.

2.1. Cumulative distribution of scores

A player’s score or prize money is a direct measure of his/her performance in different matches.
The higher the score, the better the performance. The statistical distribution of scores or
prize money reflects the profile of the performance of all the members belonging to the same
association. Every sport has its own scoring system, hence the orders of magnitude of scores
are usually different. In order to make the distributions of scores or prize money comparable for
different sports, we rescale the quantities of interest. That is,

RS = S/Smax, (1)

where S denotes the values of quantities considered, e.g. scores or prize money, and Smax is the
maximum value of S in the sample, which pertains to the no. 1 player in the ranking list by
using S.

The cumulative distributions of players’ scores or prize money have been shown in figure 1
for 40 data samples of 12 different sports ranking systems. Amazingly, all the distributions
share a very similar trend, and it should also be noticed that for the same field, all the curves
nearly collapse with each other. Therefore, the main task now is to determine which statistical
distribution is favored over the others, or equivalently, which statistical distribution is ruled out
by the observed data, while others are not.

There are several common statistical distributions [25], such as the power law with
exponential decay distribution, p(x) ∼ x−α e−λx , the exponential distribution, p(x) ∼ e−λx , the
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Figure 1. Cumulative distributions of scores and/or prize money for 12 different
sports. (a) Tennis: ATP and WTA. (b) Golf: Professional Golfers’ Association
(PGA) and Ladies Professional Golf Association (LPGA). (c) Table tennis:
International Table Tennis Federation (ITTF). (d) Volleyball: International
Federation of Volleyball (FIVB). (e) Football: International Federation
of Football Association, commonly known as FIFA. (f) Snooker: World
Professional Billiards and Snooker Association (WPBSA). (g) Badminton:
Badminton World Federation (BWF). (h) Basketball: International Basketball
Federation, more commonly known as FIBA. (i) Baseball: International Baseball
Federation (IBAF). (j) Hockey: International Field Hockey Federation (FIH). (k)
Handball: International Handball Federation (IHF). (l) Fencing: International
Fencing Federation (FIE). All the black solid curves in the figures are the
power laws with exponential decay, P>(S) ∝ S−τ exp(−S/Sc), where τ is the
power-law exponent and Sc corresponds to the characteristic turning point of
the exponential decay. The values of τ and Sc for different sports are provided in
table 1.
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stretched exponential distribution, p(x) ∼ xβ−1 e−λxβ

, and the log-normal distribution, p(x) ∼

1
x exp[− (ln x−µ)2

2σ 2 ], etc. Here, we employ the methods of goodness-of-fit tests in reference [25]
to quantify which hypothesis distribution is favored over the others in fitting the data. To do
this, we would first determine the least square fitting to the data. Secondly, we calculate the
corresponding Kolmogorov–Smirnov (KS) statistics for the goodness-of-fit test of the best-fit
hypothesis distribution, then repeat the calculation of the KS statistics for a large number of
synthetic data sets. Lastly, we calculate the p-value as the fraction of the KS statistics for the
synthetic data sets whose value exceeds the KS statistic for the real data. If the p-value is
sufficiently small (say p < 0.1), then the hypothesis distribution can be ruled out.

The p-values of the goodness-of-fit tests for the above hypothesis distributions are given in
table 1. As one can see, with the hypothesis distribution being the power law with exponential
decay, the p-values are all much larger than 0.1. Whereas for the exponential distribution, the
p-values are all smaller than 0.1, so the exponential distribution is ruled out. While for the
stretched exponential distribution and the log-normal distribution, the majority of p-values are
smaller than 0.1, yet a few of them are a little bit larger than 0.1, which implies these two
alternative distributions are just good fits in the very rare cases. Therefore, we can conclude that
the case of the power law with exponential decay in its favor is strengthened. With the form

P>(S) ∝ S−τ exp(−S/Sc), (2)

where τ and Sc are exponents of the power law and the exponential decay, respectively, values
are shown in table 1, with 0.016 τ 6 0.39 and 0.126 Sc 6 0.28. Therefore, by using the
goodness-of-fit test and checking the values of the fitting parameters, we can observe the shared
feature in the sports systems. The evidence of the power laws in the sports ranking indicates that
there is still a significant probability having supermen such as Roger Federer in tennis or Tiger
Woods in golf. But the prevalent probability is still players who do not play at the top level.
Unlike the human height system, it seems there is no typical player who plays at an average
level.

Such distributions have also been widely found in a number of different systems, such as
the distribution of wealth, city-sizes, word-frequencies, family names, species and degrees of
metabolic networks, etc. In [26–28], it is proposed that the shared feature in these systems could
be well characterized by the random group formation (RGF), from which a Bayesian estimate
is obtained based on the minimal information cost, given the sole a priori knowledge of the
total number of elements, groups and the number of elements in the largest group. This estimate
predicts a unique distribution of the system, with the form

P(k) = A
exp(−bk)

kγ
, (3)

where k denotes the elements of the system, and values of A, b and γ are obtained directly from
a set of self-consistent equations, while γ usually takes values in the range of 16 γ 6 2 [27].
According to the detailed explanations and calculation processes in [27], we applied the RGF
predictions to sports systems, with a priori knowledge being the total scores of the system M ,
the number of players N and the highest scores in the system kmax. Table 2 gives the values of M ,
N and kmax of 19 sports systems described above, which are needed for uniquely determining
the RGF prediction for each case. By using the same calculation method in [27], we could obtain
the values of A, b and γ of the RGF predictions for each sports system (table 2).

Now, we employ the Kolmogorov–Smirnov test [29] (KS test) to compare the RGF
predictions with the original probability distributions of scores in sports systems, in order to
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Table 1. System sizes of 40 samples in the 12 different sports ranking systems,
p-values for the statistical hypothesis test, values of the exponents τ and Sc in
the power law with exponential decay, and the ratio of the Pareto principle test.

Sports ranking systems Sizes p1
a p2 p3 p4 τ Sc Ratiob

ATP single 1763 0.65 0.00 0.03 0.06 0.31 0.12 0.79
ATP double 1516 0.52 0.01 0.02 0.03 0.32 0.18 0.78
ATP prize money 1636 0.56 0.02 0.05 0.03 0.33 0.13 0.79
WTA single 1523 0.62 0.00 0.23 0.18 0.39 0.15 0.78
WTA double 1028 0.75 0.00 0.18 0.20 0.38 0.19 0.80
WTA prize money 1388 0.81 0.00 0.21 0.16 0.39 0.12 0.81
PGA score 1323 0.85 0.00 0.00 0.00 0.16 0.18 0.82
LPGA score 734 0.82 0.00 0.00 0.00 0.18 0.19 0.78
PGA average score 1323 0.76 0.00 0.00 0.00 0.16 0.19 0.79
LPGA average score 734 0.82 0.00 0.00 0.00 0.17 0.20 0.82
ITTF prize money men 1717 0.85 0.00 0.02 0.03 0.32 0.17 0.83
ITTF prize money women 1288 0.73 0.00 0.01 0.02 0.32 0.18 0.82
FIVA junior men 105 0.86 0.00 0.00 0.00 0.16 0.21 0.76
FIVA junior women 95 0.68 0.00 0.00 0.00 0.14 0.20 0.79
FIVA senior men 138 0.69 0.01 0.00 0.00 0.13 0.16 0.78
FIVA senior women 127 0.92 0.00 0.00 0.00 0.11 0.18 0.82
FIFA men 209 0.59 0.01 0.00 0.00 0.01 0.19 0.77
WPBSA total score 97 0.69 0.00 0.00 0.00 0.11 0.27 0.83
WPBSA average score 97 0.58 0.00 0.00 0.00 0.13 0.25 0.78
BWF women single 548 0.68 0.00 0.00 0.00 0.12 0.16 0.80
BWF women double 295 0.53 0.00 0.00 0.00 0.13 0.18 0.78
BWF men single 833 0.62 0.00 0.00 0.00 0.06 0.17 0.82
BWF men double 429 0.75 0.00 0.00 0.00 0.08 0.13 0.81
BWF mixed double 407 0.63 0.00 0.00 0.00 0.07 0.14 0.79
FIBA men 79 0.86 0.00 0.00 0.00 0.19 0.20 0.81
FIBA women 72 0.98 0.00 0.00 0.00 0.18 0.21 0.83
FIBA boys 77 0.62 0.00 0.00 0.00 0.18 0.23 0.82
FIBA girls 72 0.85 0.00 0.01 0.01 0.26 0.22 0.76
FIBA combined 115 0.52 0.01 0.00 0.00 0.23 0.20 0.81
IBAF men 78 0.96 0.00 0.00 0.00 0.20 0.28 0.79
FIH men 73 0.86 0.00 0.00 0.00 0.23 0.26 0.78
FIH women 68 0.83 0.00 0.00 0.00 0.21 0.27 0.81
IHF men 52 0.68 0.00 0.00 0.00 0.16 0.25 0.79
IHF women 46 0.69 0.00 0.00 0.00 0.15 0.27 0.76
FIE sabre senior women 371 0.56 0.00 0.12 0.08 0.34 0.25 0.81
FIE foil senior women 260 0.65 0.00 0.03 0.00 0.32 0.23 0.78
FIE epee senior women 293 0.53 0.01 0.16 0.17 0.36 0.24 0.83
FIE sabre senior men 319 0.67 0.00 0.00 0.02 0.32 0.23 0.78
FIE foil senior men 337 0.56 0.00 0.00 0.00 0.30 0.21 0.82
FIE epee senior men 442 0.72 0.00 0.01 0.00 0.28 0.25 0.81

a P-values of goodness-of-fit tests [25], with the hypothesized distribution being the power law
with the exponential decay distribution (p1), the exponential distribution (p2), the stretched
exponential distribution (p3) and the log-normal distribution (p4).
b Values of the ratio for the test of the Pareto principle.
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Table 2. Basic quantities in the RGF predictions of the sports systems. M : the
total score of the system; N : the total number of players; kmax: the highest score;
k0: the lowest score. A, γ , b and kc refer to four parameters in the procedure
of the RGF prediction [27]. D and p denote the maximum differences D and
p-values in the KS tests, while ‘BWF M’ and ‘BWF W’ mean ‘BWF Men’ and
‘BWF Women’, respectively.

Sports M N kmax k0 A γ b kc D p

ATP 227 193 1763 7965 6 1.044 1.44 3.91 × 10−4 6138 0.5098 0.000
WTA 276 279 1523 8835 10 1.261 1.42 3.68 × 10−4 6864 0.6667 0.000
BWF M 4 777 609 548 81 706 110 0.0018 0.363 7.72 × 10−5 69 345 0.9048 0.000
BWF W 5 191 108 833 89 002 40 0.0169 0.661 6.37 × 10−5 74 812 0.7619 0.000
PGA 30 690 1323 384 1 0.158 0.793 0.014 9 325 0.6190 0.000
LPGA 22 779 734 590 1 0.174 0.919 0.007 9 483 0.7143 0.000
ITTF M 195 176 1717 2706 20 3.045 1.501 0.001 5 2193 0.8095 0.000
ITTF W 180 106 1288 2728 23 1.942 1 1.373 0.001 5 2225 0.7097 0.000
FIVA M 2626 138 210 1 0.180 0.826 0.017 6 163 0.5238 0.004
FIVA W 2411 127 200 1 0.174 0.803 0.018 5 155 0.4516 0.002
FIBA M 6921 79 892 1 0.090 0.755 0.003 7 665 0.4762 0.011
FIBA W 6976 72 940 1 0.082 0.733 0.003 5 699 0.5161 0.000
FIH M 36 964 73 2620 30 0.0030 0.058 0.002 0 2122 0.6153 0.000
FIH W 36 079 68 2700 35 0.0029 0.065 0.001 9 2180 0.8571 0.000
IHF M 2 600 52 286 1 0.0381 0.265 0.015 2 224 0.7095 0.000
IHF W 2 326 46 261 1 0.028 3 0.141 0.017 3 205 0.8182 0.000
FIE M 8 593 319 290 1 0.1137 0.622 0.017 4 239 0.5806 0.000
FIE W 9 149 371 294 1 0.1336 0.696 0.016 8 242 0.6364 0.012
IBAF M 7 377 78 986 1 0.091 0.771 0.003 3 731 0.7273 0.000

quantify whether the RGF prediction could characterize the sports data. With the null hypothesis
being the sports data that follows the RGF prediction, we calculated the maximum differences
D and p-values in the KS tests for the 19 sports systems. From table 2, one can find that all the
p-values are much smaller than 0.05, which suggests all the KS tests reject the null hypothesis
at the 5% significance level. Therefore, we can draw the conclusion that the RGF predictions
could not be used to characterize the sports data.

The possible reason is that the data samples of the sports systems are quite small, which
might lead to large uncertainty. We also conjecture that the differences between the two kinds of
systems might be caused by different mechanisms of formation. For sports systems, competition
is the main driving force. Whether a player’s rank will be raised or lowered, depends not only
on his own performance but also on the other player’s. In sports there is very little of the ‘rich-
gets-richer’ mechanism which is dominant in city sizes, human wealth, etc.

2.2. The Pareto principle

The Pareto principle [6], also known as the 80–20 rule, states that, for many events, roughly
80% of the effects come from 20% of the causes. Pareto noticed that, 80% of Italy’s land was
owned by 20% of the population. He carried out such surveys on a variety of other countries,
and to his surprise, the rule was also found to be true.
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The 80–20 rule has also been used to attribute the widening economic inequality, which
showed the distribution of global income to be very uneven, with the richest 20% of the world’s
population controlling 82.7% of the world’s income. The 80–20 rule could be applied to many
systems, from the science of management to the physical world.

We also check this rule in relation to sports ranking systems. It is interesting to find that
20% of players indeed possess approximately 80% of the scores or prize money of the whole
system. The ratios obtained from different sports ranking systems are shown in table 1, the
values of the ratios all being very close to 0.8.

2.3. Dependence of win probability on 1rank

Here we employ the concept of ‘win probability’ to describe the chances that a player or a team
will win when encountering an opponent. For instance, what are the odds that a no. 1 player will
beat a no. 100 player? And what are the odds against a no. 2 player? Theoretically, the chance
is much higher in the former case than it is in the latter. But the result of a competition is not
known until it is over, which mainly depends on how the player performs at that specific match.
However, the win probability could be solely based on the previous performance of a player
against a certain opponent, which then can be used to predict her future performance against
the same opponent. This might have some applications in betting on the result of a match. To
simplify the case without loss of generality, we relate the win probability solely to the ranking
difference of a pair of players. Suppose we now have two players A and B, with A having a
higher rank. We will then need to know how likely it is that A can beat B when they meet.
This quantity is related to, but different from, the win percentage we usually refer to. The win
percentage depicts the percentage of wins over all previous encounters. We assume that the
win probability only depends on the rank difference between two players. This means that the
probability that no. 1 beats no. 100 is the same as that for no. 100 beats no. 200. Hence, we have
the following definition:

Pwin(1r) =
Nwin(1r)

Ntotal(1r)
, (4)

where 1r denotes the rank difference (integer), Nwin(1r) is the total number of wins for the
higher-ranked player when the rank difference is 1r , and Ntotal(1r) is the total number of
matches in which the rank difference between the pair is 1r . We here emphasize again that
the win probability is the probability that the higher-ranked player will win when two players
meet. When 1r is small, say 1, it is difficult to judge which player will win, and in this case
Pwin might approximately equal 0.5. When 1r is large, for instance 100, Pwin might approach 1,
which means the higher-ranked player is very likely to win.

By using the Head to Head records of ATP and WTA, we find that the dependence of Pwin

on 1r can be characterized well by the Bradley–Terry model [30] for paired comparisons as
follows:

Pwin =
1

1 + exp (−a ∗ 1r)
, (5)

where a is a parameter dependent on the specific systems. For ATP and WTA, a is 0.021 and
0.032, respectively (figure 2). The existence of fluctuations is quite natural since even Roger
Federer will not win every match. The value of a can still give us some information about how
competitive a certain sport is. The smaller a is, the more competitive the sport will be. Let us
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Figure 2. Dependence of win probability on 1r of the players for ATP and WTA,
which can be well fitted to the sigmoidal function Pwin = 1/(1 + exp (−a ∗ 1r)),
with a = 0.021 and 0.032 for ATP and WTA, respectively.

take WTA and ATP as two examples. When 1r is 30, the win probability for WTA is nearly
0.7, while the counterpart for ATP is 0.65. This means the game is more unpredictable in ATP
than in WTA, which is not strange since the men’s game is more competitive than the women’s.

The competitiveness parameter a plays a key role in both the empirical analysis of the win
probability and the simulations of the toy model, so we explain the differences between the
different systems in two respects.

For the empirical part, we really wish to test the empirical findings by checking data from
different sports, other than in the tennis field of ATP and WTA. The problem is that the data
source for Head to Head records is very limited in other sports, to the best of our knowledge.
Alternatively, we present here the trend of the functional form of the win probability in figure 3,
in which a = 0.01, 0.015 and 0.03 may correspond to three different sports systems. As one can
see, for the same 1rank, the competition becomes stronger when a gets smaller.

3. A simple toy model of sports ranking systems

What is the origin of the universal scaling in different sports systems? Of course, there have been
so many approaches that can explain the origin of power laws. Some mechanisms or theories
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Figure 3. Theoretical curves of the win probability formula, Pwin = 1/(1 +
exp (−a ∗ 1r)), with a = 0.01, 0.015 and 0.03 for three different sports systems,
respectively.

are elegant, e.g. random walks [31] and self-organized criticality [32, 33], etc. It is, however,
difficult to try to apply these frameworks to sports ranking systems. We propose a simple toy
model, inspired by tennis. Of course, the model may not suit any sport but it does have some
general implications. Most importantly, our model can reproduce robust power laws without
having to introduce additional parameters.

The rules of the model are defined in the following way:

1. 2N players are ranked from 1 to 2N , being assigned random scores drawn from a Gaussian
distribution.

2. For each tournament, all the players have entry permission. Therefore the draw will include
2N players and in total N rounds. At each round, half of the players will be eliminated when
they lose. The rest will enter the next round. The losers at round n will gain a score 2(n−1).
The final champion wins a score 2N (figure 4).

3. The key mechanism is to decide which one will lose for a given pair of players. Here our
empirical findings will be employed. Namely, when two players meet, the probability that
the higher-ranked player will beat the lower-ranked opponent is given by 1/(1 + exp(−a ∗

1r)), where 1r is their rank difference, as before.

4. A new tournament opens up and a new draw is made.

In principle, there is only one parameter in our model, that is a. We can simply call it
the competitiveness parameter. Of course, there are some shortcomings in the model. First, in
the actual tournaments not all the players will be accepted. In grand slams there are only 128
players. Second, tournaments can be divided into many categories and may consist of different
players. Third, the scoring systems for different tournaments are a little different. For grand
slams the scores and prize money are much higher than other tournaments, if the players are
eliminated at the same round. We certainly can add these issues into our model in order to test the
resilience of the model. At the moment we do not wish to complicate the model by introducing
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Figure 4. A cartoon of a draw sample. After each round, half the players will be
eliminated, the numbers ‘12, 86 . . . ’ denote the ranks of the players.

additional parameters. What we need here is a skeleton which will allow us to understand some
key features of the specific systems. Namely, if the power laws with exponential decay can be
reproduced through our model, then it is a feasible model. We need not care about other minor
issues.

4. Simulation results and discussions

The most important parameter in our model is a, the so-called competitiveness parameter. The
number of players Np and the number of tournaments Nt only have finite-size effects. It is
natural to check the dependence of the simulation results on these parameters, which can reflect
the resilience of our model.

First of all, we need to test whether the model can reproduce the power laws of the
cumulative distribution of scores. In figure 5, Np equals 2048, and Nt is 128, while the win
probability, Pwin = 1/(1 + exp(−a ∗ 1r)), with a = 0.021 and 0.032, as given by the empirical
data of ATP and WTA, respectively. Here, we also use the same goodness-of-fit test, and p-
value equal to 0.85 and 0.91 for the two distributions, respectively. Therefore, the cumulative
distributions of scores given by the simulations indeed follow the power-law distributions with
exponential decay, P(S) ∝ S−τ exp(−S/Sc), with τ = 0.2, 0.22, Sc = 0.23, 0.19, respectively
for these two samples. Here, we notice that the values of the parameters are very close to what
are obtained from the empirical data.

In the formula of win probability, smaller values of a correspond to more intensive
competition. For instance, when a = 0.0001, Pwin 6 0.525 for 1r 6 1000, which means the
higher-ranked player has only a slightly greater chance than the lower-ranked player of winning
the match between them. While larger values of a suggest that the higher ranked player would
win the match with a much larger probability. For example, when a = 2.0, Pwin > 0.88 for
1rank> 1.

Thus, to analyze the influence of win probability, we simulated our models with different
values of a, 0.00016 a 6 2.0. From figure 6, we can find that, as a gets smaller, the values
of τ will become larger, while those of Sc will become smaller. When a is very small, such as
a = 0.0001, the cumulative score distributions change from the power laws with exponential
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Figure 5. Cumulative distribution of scores from the simulation. For these two
samples, the number of players Np = 2048 and the number of total tournaments
Nt = 128, with Pwin = 1/(1 + exp(−a ∗ 1r)), a = 0.032 and 0.021, respectively.

decay to exponential form. Since, in this case, all players nearly win the match randomly, thus
the cumulative probabilities of the scores approximates 1, 1/2, (1/2)2, . . ., which results in the
exponential distribution.

For a different number of tournaments, Nt = 64, 128 and 256, the cumulative distributions
of scores are shown in figure 7. As seen, all the cumulative distributions of scores are power
laws with exponential decay, values of the exponents τ and Sc being also very close to those of
the empirical results.

In statistical physics, in order to determine the validity of the statistical approach, we often
take the thermodynamic limit, in which the number of components N tends to infinity [34].
However, in real-world networks, the number of vertices or agents can never be that large and
therefore we need to study the finite-size effect. For example, even the largest artificial net,
the World Wide Web, whose size will soon approach 1011, also shows a qualitatively strong
finite-size effect [35].

Therefore, in order to test the influence of the finite-size effect on the final cumulative
distribution of scores, we consider the transformed score distribution P(S) ∗ Sτ versus S/Sc,
where Sc is the characteristic turning point of the exponential decay. For four different system

New Journal of Physics 14 (2012) 093038 (http://www.njp.org/)

http://www.njp.org/


13

Figure 6. Influence of the critical parameter a on the final cumulative score
distributions, values of a ranging from 0.0001 to 2.0.

Figure 7. Simulation result of the cumulative score distributions for a different
number of tournaments, with Nt = 64, 128 and 256.

sizes, such relationships were shown in figure 8, which suggests that the tails of the four curves
almost collapse with each other.

As this model is a simple toy model, the major goal is that it could reproduce the trend
of empirical findings of cumulative score distributions. Therefore the predictive power of the
model is rather modest. We do not think it could be a general framework for all kinds of sports
systems. However, we are planning to enrich the model by considering more ingredients so that
the model could be more powerful. Of course in doing so we might have to consider the cost of
introducing additional parameters. This will be investigated in future work.
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Figure 8. Finite-size effects analysis of the simulation results, with Np = 512,
1024, 2048 and 4096.

5. Conclusion

In summary, to characterize the intrinsic common features and underlying dynamics of ranking
systems, we study sports ranking systems. Our main results are as follows. (i) Universal scaling
is found in the distributions of scores and/or prize money, with values of the power exponents
being close to each other for 40 samples of 12 sports ranking systems. (ii) Players’ scores are
found to obey the Pareto principle, which means approximately 20% of players possess 80% of
the total scores of the whole system. (iii) Win probability is introduced to describe the chance
that a higher-ranked player or team will win when meeting a lower-ranked opponent. We relate
the win probability solely to the rank difference 1r , and for tennis the win probability has
been empirically verified to follow the sigmoid function, Pwin = 1/(1 + exp (−a ∗ 1r)). (iv) By
employing the empirical features of win probability, we propose a simple toy model to simulate
the process of the sports systems, and the universal scaling could be reproduced well by our
model. This result is quite robust when we change the values of parameters in the model.
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