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1. Introduction

Observational data measuring the rotational curves in some galaxies sit@ephanar orbital
motion of gas in the outer part of galaxies maintains a constant velocity upams@wminous radii
[6, 7, 8,9, 10]. The most accepted explanation for this effect is that tiyasts a spherical halo of
dark matter which surrounds the galaxy and accounts for the missing nessont® produce the
flat behavior of the rotational curves.

It is reasonable to suppose that the halo of the dark matter is symmetric wilcrésghe
rotation axis of the galaxy, so we consider here an axisymmetric spacetimppeevious works a
cosmic string in scalar-tensor gravities were considered [1, 2, 3]. Tinisof source is an example
of axisymmetric spacetime.

This work is organized as follows. In section 2 we impose the trajectory dfesteparticle
in this static axisymmetric space-time to be coplanar and radii independent emalikain its
angular velocity in terms of the coefficients of the metric. In section 3 we e line element
of this region using the Chandrasekhar form and we calculate the targeahdeity of these test
particles. Such calculation leads to a theorem that gives a necessayfacient condition on the
metric coefficients in order to have tangential velocities of equatorial objiciing the galaxy
and whose magnitude is radii independent. In section 4 we apply this theortha case of a
space-time generated by a dilatonic current carrying cosmic string [Eir2dlly, in section 5 we
present some conclusions.

2. The Line Element

The line element of an axially symmetric space-time is given in the form [11]:
d? = —e?¥ (dt+ wdg) + e 2¥ [¢? (dp? + dZ) + pd¢?] (2.1)

wherey, w, y andu are functions ofp, z).
The Lagrangean for a test particle travelling on the static spaceftime 0) described by
(2.1) is given by:

24 = -2 e [ (P2 + 2) + u?dY, (2.2)
thus, the associated canonical momepia— %, are
p=—E = —?¥t,

pp =L = p’e ¥y,
Pp = e—Z(w—V)p7
p, = e 2¥Vz (2.3)

whereE andL are constants of motion for each geodesic, a fact that comes from the syasme
of the space-time analyzed. As there is no explicit dependence on,tilme Hamiltonian, 77 =
paX® — & is another conserved quantity, which we normalize to be equal minus orfertatielike
geodesics. Also, we restrict the motion to be at the equatorial planeztaus 1n this way, we
obtain the following equation for the radial geodesic motion:

p?— VY Et—Lp—1=0. (2.4)
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In order to have stable circular motion, which is the motion we are interestecihave to satisfy
three conditions:

i)p=0
i) 252 = 0, whereV (p) = —€2¥ V) [Et — L — 1],
ii ) a;\;,(f) lextr > 0, in order to have a minimum.

With these conditions, from (2.4), we obtain a set of two equations conisigaime motion to
be circular extrema in the equatorial plane:

Et—-Lp—-1=0, (2.5)
0 .
Z (U Ei—Ld— -
3 <e2 [Ef — L 1]) 0. (2.6)
From (2.3), we can expresand¢ in terms ofE andL, and the metric coefficients as:
{ = e 2VE, (2.7)
e
¢ = ?L- (2.8)

Using these equations in the constraints ones and recalling twadlL are constants for each
circular orbit, after some rearranging, we arrive at the following eqoatio

ple ¥ (1-e2¥E?) +L2 = 0, (2.9)
(%), E2+ (ezf) _o, (2.10)
U=/ p

where the subindex stands for derivative with respegt.t8olving forE andL, we obtain:

(2.11)

The second derivative of the potentiélp) evaluated at the values BfandL which constraint the
motion to be circular and extrema, is given by:

22V o Hop 3 Hp o < Hp > 2
oplextr % oy, < y Yoo == W T AU, =67 U R (2.12)

We can now obtain an expression for the angular velocity of a test paficlapving in a circular
motion in the orbital plane, in terms of the metric coefficients, recalling that:

d¢ _ ¢
Q=—"=2 2.1
thus, using Eqgs. (2.8) and (2.11) in this last equation for the angularityehve obtain that:
y
0. . Yo (2.14)
HA =W
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3. The Tangential Velocity

We now want to express the tangential velocity of the test particles in cirowéon in the
equatorial plane, in terms of the metric coefficients, following [5], we revihiédine element (2.1)
as:

ds? = —edt? + e ¥ 2dp? + e 2¥Ydp? (3.1)
thus, in terms of the proper timér? = —d<’, we have that
2 2
dr? = e¥dt? [1— e 2 <?;f> — eV (?ﬁ) ] . (3.2)

from which we can write

1= [1-7], (3.3)

whereu® = % is the usual time component of the four velocity, and a definition of the spatial
velocity, v2, comes out naturally in this way.

This spatial velocity is the 3-velocity of a particle measured with respect tathormrmal
reference system, thus has components:

_ay, 2 (49 ? _ay ((dp 2
VV=e %y <dt> +ee w(dt) . (3.4)

The orthogonal velocity is the 3-velocity of a particle measured with redpesh orthonormal
reference system, thus has components:

=97 yle)?, (3.5)
From these last two expressions we obtain forgheomponent the spatial velocity:
v®) —e Q0 (3.6)

and replacingQ from Eq. (2.14), we finally obtain an expression for the tangential veladfity
test particle in stable circular motion, in terms of the metric coefficients of theadires element
given by Eg. (2.1), such tangential velocity has the form:

vi9) = L (3.7)

It was our goal to obtain this expression for the tangential velocity forreeiged axisymmetric
static space-time, and to be able to describe it in terms of the metric coefficients blcause
now we can impose conditions on this tangential velocity, and deduce aaiohsguation among
the metric coefficients, which has to be satisfied in order to fulfill the conditiorogag on the
velocity. In particular, the tangential velocity for a trajectories in each asbionstant, that is
v,(,‘p) =0, thusvi?) = v<c¢), with v((;‘p) a constant, representing the value of the velocity, from Eq.
(3.7), we have that:

2
14

3.8
u NOE Yo 38
C
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Theorem: The tangential velocity of circular stable equatorial orbits is constant iffabeffi-
cient metric are related as |
e — (“) (3.9)
Ho
with | = cte

We can see that this isreecessary and sufficient conditiorior the velocitw((;‘p) to be the same for
2 2
two orbits at different radii at the equatorial plane, provided that(véd’)) / <1+ (vé‘p)) > .

In order to have tangential velocities of equatorial objects circling the gaderd whose mag-
nitude is radii independent, the form of the line element in the equatorial ps® be

ds = - (;‘;)z dt’ + (:;)z [/dp? + p*dg?] (3.10)

4. Stable Circular Geodesics Around a Dilatonic Electricaly Charged Cosmic
String

The metric of a electrically charged cosmic string is [1, 2]:

d2 — (r >2|22nw2(r)(dr2+dzz)+ <rr> 7an2(r)Bzr2d92

o 0

r\" 1
— (m) Wz(r)dtz (4.1)

where

( r 2n k

=)+

I‘o)

W)= —~+—

(r) 1+k

The constantsn, n, k andB will be determined after the inclusion of matter fields. Our objective
in this section will be to derive the geodesic equations in the equatorial ftan®), where dot
stands for “derivative with respect to the proper tirfieFirst of all, let us re-write the metric (4.1)
in a more compact way:

d$ = A(r) [dr®+dZ] + B(r)d6? — C(r)dt?, (4.2)

with
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The Lagrangian for a test particle moving in this space-time is given by:

2% = Ar) [i2+2] +B(r)6? —C(r)? (4.3)

The associated canonical momenia,= %%, are:

Pt = -E= _C(t)t>

pe = L=B(r)6,
pr = A(r)r7
Pz = Ar)z (4.4)

Because of the symmetries of this particular space-time, the quartitesiL are constants for
each geodesic and, because this space-time is static, the Hamiltéflianp,x® — &, is a con-
stant. Combining this information with the restriction of a motion in an equatorial ple@earrive
to the following equation for the radial geodesic:

i2-Al[El-LO-1] =0 (4.5)

In this work, we will concentrate on stable circular motion. Therefore, aneho satisfy three
conditions simultaneously. Namely:

e =0;

o MU — 0, wherev(r) = —A1[Et-LO-1] ;

o2V (r)
ar2

lext > 0, in order to have a minimum.
Consequently, we have:

Et—LO—-1=0 (4.6)
%{A‘l [Et-L6-1]} =0

Expressing and 6 in terms of the constant guantiti&sandL respectively, we can re-write the
above equations as:
1 1
Z)E2— (2 |L2—1=
(c)E=(5) 20
1\’ 1\’
Z)E2-(Z) 2= 4.7
(c)e=(s) e @)
where prime means “derivative with respect to the coordinatehich finally gives us expressions
for E andL:
B/
E=C{/o—x
¢ BC-BC’
C/
L=By/-——-= 4.8
B'C—-BC (4.8)
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Recalling that the angular velocity of a test particle moving in a circular motion wrhital

de
/C/

plane isQ = 9 = £, we have:

We are now in position to compute the tangential velocity of the motion in an orbieplarom
now on, we will follow the prescription established by Chandrasekhadms ee-express the metric
(4.2) in terms of the proper timg asd7? = —ds*:

A/dr\? B /dB\?
2 _ 21412 _b
dr“=C(r)dt“ |1 c (dt) e (dt) ] (4.10)
and comparing with the expression
1=C(r) (u)?[1-V?], (4.11)

whereu” = g, we can easily obtain the spatial velooiy

2 (v<f>)2+ <V<e>)2’ (4.12)

whose components are, respectively:

A /dr
o _ JA(dr
v \/;<dt>’
B /d6 B
NOR \fc<dt) - /2 (4.13)

In order to have stable circular orbits, the tangential velogfy must be constant at different
radii at the equatorial plane. Therefore, we can impose:

BC
v = 50 = v = const (4.14)

Applying the theorem to this case, we get

cl2_ <r>|’ (4.15)

o

. () . - . . ,
provided| = % This theorem implies that the line element in the equatorial plane must be:

r 2l r -2l r 2m?
d? = — () dt® + () [() dr? + Bzr2d62] (4.16)
fo o o

This form is clearly not asymptotically flat and also does not describecagpae corresponding to
a central black hole. Therefore, we can infer that it describes sokelsetfion where the tangential
velocity of the test particles is constant, being probably joined in the intertbeaterior regions
with other metrics, suitably chosen in order to ensure regularity in the asymimuti:
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Let us notice, however, that this metric has the form which has been fmewdbusly [1, 2],
after identifyingl with the appropriate constant parameters which depend on the microsespic d
tails of the model. The calculations are straightforward but length. For thisglar configuration,
consisting of an electrically charged dilatonic string, we have:

| = 2Goar (@) [U + T +17], (4.17)

whereU, T andl? are the energy per unit length, the tension per unit length and the cofréet
string, respectivelya (@) measures the coupling of the dilaton to the matter fields.

5. Conclusion

We found the conditions on the metric coefficients of a static axisymmetric sjpaeeto
admit a test particle with a coplanar circular orbit radii independent up/eraduminous radii. A
remarkably fact is that the results presented in sections 2 and 3 are magepef the type of the
energy-matter tensor present in the space-time and curving it. It is a geeigetric analysis. A
possible example of this kind of space-time is the one generated by a dilatarirocaléy charged
cosmic string.

Considering cosmic strings formed @UT scales,Go [U + T +1%] ~ 3x 1075, and for a
couplinga (@) which is compatible with present experimental datég,) < 10-3, the parameter
| (and thus the tangential velociq@) seems to be too small. The observed magnitude of the
tangential velocity being((;e) > 3 x 10~ cannot be explained by a single dilatonic current-carrying
cosmic string in this case. As argued by Lee [4], if a bundl®& afosmic strings formed at GUT
scales seeded one galaxy, then the total magnitude of the tangential vekmiWheNvée). In our
case, to be compatible with astronomical observations, one must havela btiNc~ 10° strings
seeding a galaxy. With such a density, a cosmic string network would be diimgitize universe,
and its dynamics would be completely different. The only situation where shdganumber of
strings could be possible is at much lower energy scales (electrowdaksag but then of course
the energy scale is far too low to have any relevance for structure formatio
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