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Abstract. Collisions between nuclei at ultrarelativistic energies produce a
colour-deconfined plasma that expands explosively and rapidly reverts to the
colour-confined (hadronic) state. In non-central collisions, the zone of hot matter
is transversely anisotropic and may be ‘tilted’ relative to the direction of the
incoming beams. As the matter cools and expands into the vacuum, the evolution
of the system shape depends sensitively on the dynamical response of the plasma
under extreme conditions. Two-pion intensity interferometry performed relative
to the impact parameter can be used to measure the approximate final shape of the
system when pions decouple from the system. We use several transport models
to illustrate the dependence of the final shape on the QCD equation of state and
late-stage hadronic rescattering. The dependence of the final shape on collision
energy may reveal non-trivial structures in the QCD phase diagram. Indeed,
the few measurements published to date show an intriguing behaviour in an
energy region under intense experimental and theoretical scrutiny, as signatures
of a first-order phase transition may appear there. We discuss strong parallels
between shape studies in heavy-ion collisions and those in two other strongly
coupled systems.
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1. Introduction

Colour confinement is the most unique and important feature of quantum chromodynamics
(QCD), believed to be the correct field theory of the Strong Interaction. While the symmetries
and much of the dynamics of the interaction are understood, a complete understanding of
the confinement mechanism is hindered by the difficulty of theoretical calculations in a
non-perturbative regime. Ultra-relativistic heavy-ion collisions serve as an ideal, if fleeting,
laboratory for the study of deconfinement. The system created in such collisions is large relative
to the hadronic scale; it is characterized by energy densities and temperatures sufficient to
generate a deconfined multiparticle state.

Instead of concentrating on the microscopic mechanism of confinement, a fruitful strategy
has been to focus on ‘soft’ (low momentum or large length scale) observables to probe
the properties of the bulk matter itself. Of particular interest is the QCD equation of state
(EoS), quantifying the relationships between intrinsic quantities such as energy density and
temperature. The nature of these relationships depends on the phase, and as in condensed matter
physics, much may be learned by focusing on the transitions between phases.

In nuclear collisions with centre-of-mass energy
√

sNN ∼ 100 GeV, there is considerable
evidence that the matter passes into the deconfined phase during some part of its
evolution [1–5]. Data do not show evidence of a latent heat associated with the transition (e.g.
prolonged lifetime [6, 7] or zero-pressure mixed phase), and there is general agreement that the
transition is a smooth crossover at T ∼ 150 MeV and µB = 30 MeV. Generic considerations [8]
lead to the expectation that a critical point and first-order phase transition will be found
elsewhere—at lower temperatures and larger chemical potentials—on the T –µB plane. Figure 1
shows a schematic diagram of the QCD phase diagram [9].

Locating and studying these landmarks on the landscape of the QCD phase diagram
would reveal much about the interaction, including fundamental quantities such as latent
heats, critical exponents and universality class. Creating a system that samples these more
interesting conditions requires lowering the collision energy. For this reason, experiments at
RHIC have embarked on a major programme to map out the energy dependence of experimental
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Figure 1. Sketch of the QCD phase diagram in the T –µB plane. An estimate
of the critical point and first-order transition line is indicated, as are possible
trajectories of systems created in collisions with energy

√
sNN. Reproduced

from [9], with permission from the STAR collaboration.

observables, under fixed detector and analysis conditions [9]. Ideally, this exercise parallels
that of a condensed matter physicist, precisely controlling the temperature of a material
and measuring its resistance, with a precipitous drop clearly marking the transition to a
superconductor.

However, unlike the condensed matter laboratory sample, the system created in RHIC
collisions is highly dynamic and far from infinite; phase transition signals in heavy ion collisions
will be more subtle. The dynamics of any bulk system are dictated by its EoS, which encodes the
non-trivial landmarks on the phase diagram discussed above. Thus, it is particularly interesting
to identify bulk observables sensitive to the dynamics and EoS.

Two-particle intensity interferometry probes the final-state geometry of a nuclear collision
at the femtometer scale [10]. Detailed measurements of this geometry as a function of transverse
momentum (pT ), rapidity (y) and particle mass have revealed a rich spatial substructure of the
system due to pressure-driven bulk collective flow. It has long been recognized that azimuthally
sensitive studies in non-central collisions generally yield more insights than do azimuthally
integrated measurements. Unfortunately, while momentum-space measurements of azimuthal
anistropies are plentiful at several collision energies, there are very few such measurements in
coordinate space.

In this paper, we compare anisotropic shape measurements in heavy ion collisions with
similar studies in two other strongly interacting systems at very different spatial and thermal
scales. We discuss the physics associated with anisotropic shapes in these collisions and how
these shapes are measured. Several theoretical transport calculations are used to show the
sensitivity of the final shape of the source to the underlying physics, and they are compared
with existing measurements. Particularly interesting is an ‘anomalous’ shape measurement at
about

√
sNN ≈ 20 GeV, an energy region where several threshold-like behaviours have been

reported [11]. Given the extreme paucity of shape measurements, however, it is difficult to
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Table 1. Characteristic scales for three strongly coupled systems. Despite
their widely different scales and matter characteristics, their evolution and the
methods used to study them are strikingly similar. They are prepared in an
anisotropic state and expand hydrodynamically, and their final shape is studied
to determine their underlying physical properties.

System T (K) Length (m) Time (s)

Cold atoms 10−6 10−4 10−3

Electrical plasmas in crystals 105 10−7 10−12

Heavy-ion collisions 1012 10−15 10−24

conclude much from the data at this point. Rather, the present work represents a call for a much
more detailed shape analysis at low RHIC energies.

2. Anisotropic shapes as a probe of three strongly coupled systems

As evidenced by this special volume, there is increasing recognition of connections between
the physics of ultra-relativistic heavy ion collisions and other quite different fields. In this
section, we briefly discuss three systems of vastly different scales and decidedly distinct
physical constituents. These are listed in table 1. Despite their differences, they share a striking
resemblance. In all cases, a strongly interacting system is initially prepared in a spatially
anisotropic state and then allowed to evolve. The shape at a later time reveals important physics
driving the dynamics of the matter.

2.1. Anisotropic shape evolution in a cold atomic gas

The first connection to the bulk evolution in heavy ion collisions and that of cold atomic systems
was pointed out several years ago [12, 13]. In particular, in measurements by O’Hara et al [14],
a degenerate Fermi gas of ultracold 6Li atoms is held in a spatially anisotropic magnetic trap.
The trap is removed, and the shape of the system is measured at a later time; figure 2 shows the
state of the system at different times after the trap is released. (The measurement of the system
shape actually destroys the cold gas, so the panels of figure 2 are in reality different gas samples
released from identical traps.)

For the system depicted in figure 2, a pumping laser has been used to maximize the
inter-atom interaction cross-section. Thus, like the ultrahot partonic system created at RHIC,
the ultracold degenerate gas is a strongly coupled quantum fluid, starting from an elongated
ellipsoidal configuration and allowed to expand into the surrounding vacuum. As with the QGP
at RHIC, the higher pressure gradients along the short direction of the initial shape (horizontal
in the figure) lead to a stronger expansion in that direction; with the passage of time, the system
becomes more round, and after some time (∼600 µs in the figure), even reverses the sense of
its elongation.

The similarity between these measurements and those of ‘elliptic flow’ in heavy ion
collisions [15] has been noted by others [12, 13]. However, measurements of elliptic flow are
restricted to anisotropies in momentum space; a more direct connection is made in space–time.
Eleven orders of magnitude smaller and 21 orders faster, the heavy-ion analogue is shown in
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Figure 2. Time evolution of spatial anisotropy in two strongly coupled systems.
Left: a degenerate Fermi gas of ultracold Li atoms released from an anisotropic
trap. From [14]. Reprinted with permission from AAAS. Right: hydrodynamical
calculation of the evolution of a Au+Au collision at

√
sNN = 130 GeV. Evolution

on the right corresponds to an EoS for an ideal massless gas. On the left, the EoS
includes a first-order transition between hadronic and QGP phases. From [12],
reprinted with permission.

the hydrodynamical calculations of figure 2 [12]. Here, the initial anisotropy of the system is
generated by the finite impact parameter of the collision. As with the cold atomic gas, the system
rapidly expands preferentially along its shorter axis.

In both systems, the strength of the expansion is driven by pressure gradients, which are,
in turn, determined by the energy density through the EoS and thermodynamic state of the
system. The inversion of the aspect ratio in the cold gas system, seen about 700 µs after its
release, signals a strongly interacting phase, semi-quantitatively understood as a superfluid
state [14, 16]. For the heavy ion case, the calculations on the left and right in figure 2 begin
with identical initial energy distributions; only the EoS is different. If the EoS of a massless gas
is assumed (right column), the pressure is large and the expansion rapid. For an EoS featuring
a first-order phase transition, the pressure gradients are initially large (in the QGP phase), then
very small (as the system passes through the mixed phase) and finally of moderate strength (in
the confined phase). Since different regions of the system pass through these phases at different
times, the flow pattern is complex. What is clear is that the freeze-out shape in coordinate space
is very sensitive both to the EoS of the hot matter of interest and to the timescale over which
its evolution takes place. It is this shape that is extracted by azimuthally dependent femtoscopic
measurements discussed in this paper.
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Figure 3. The anisotropic final state of the evolution of dynamic plasmas. Left:
scanning electron microscope images of the aftermath of a microexplosion in
sapphire produced by a 150 fs, 100 nJ laser pulse. Reprinted with permission
from [17]; copyright (2006) of the American Physical Society. Right: simplified
parameterization of the freeze-out distribution in a heavy ion collision, as an
ellipsoid tilted with respect to the beam axis. Inset: projection of the distribution
in the transverse plane.

2.2. Anisotropic shape evolution in an electrically deconfined plasma

Recently, there has been much activity in the study of dynamic condensed matter systems under
extreme conditions. This work bears even greater similarity to our study of spatial anisotropies
in heavy ion collisions.

The study of condensed matter systems under extreme pressure has a long history;
recently, using diamond anvils, pressures of up to 0.1 TPa (106 atm) could be achieved under
static conditions in the laboratory, resulting in a surprising diversity of new materials [18].
Exploring even more extreme conditions—10 TPa or larger—requires the explosive generation
of a transient system such as is done at the National Ignition Facility [19] or in table-top
experiments in which sub-ps laser pulses generate ‘microexplosions’ under the surface of
sapphire crystals [17] or fused silica [20].

The study of these microexplosions parallels strikingly the study of femtoexplosions in
heavy ion collisions. In the initial state, the matter is in the charge-confined (atomic) state.
Upon the rapid deposition of extreme energy density (1017 J m−3), a charge-deconfined plasma
is generated within a few fs, at temperatures of 105–106 K. The plasma expands rapidly (∼ps),
cooling as it does so, and returns to charge-confined degrees of freedom. Plasma hydrodynamics
and two-component ‘blast-wave’ pictures [21] are used to describe and understand the source
evolution [17].

With huge changes in physical scales and ‘colour charge’ replacing ‘electric charge’,
the above describes the situation for RHIC collisions rather well, down to the blast-wave
parameterizations [22]. In both cases, too, the final-state anisotropy carries important physical
information. The anisotropic final-state geometry of a microexplosion is measured directly
by a scanning electron microscope (cf figure 3). In a heavy ion experiment, it is the final-
state momenta that are directly measured, and azimuthally sensitive two-particle intensity
interferometry must be used to measure the coordinate-space geometry.

Since the first proof-of-principle microexplosion experiments, there has been considerable
activity to extract the EoS of matter—the plasma state, phase transitions, etc. The approach
taken is essentially identical to the one we now propose at RHIC: to measure the final-state
anisotropy as the initial energy of the system is varied, and to compare the results to transport
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calculations with different EoS. Even the cryptic names of the equations of state [23] (QEOS,
SESAME 7387, etc) are reminiscent of those used in RHIC studies.

2.3. Anisotropic shape evolution in hot quantum chromodynamics (QCD) matter

The case on which we shall focus henceforth is the anisotropic evolution of the hot matter
generated in the overlap zone of two colliding heavy nuclei; this is indicated in the right panels of
figure 2. Here, we introduce the anisotropies of interest and the physics driving their evolution.
The situation with heavy ion collisions bears more resemblance to that of the microexplosions of
section 2.2 than to the cold atoms discussed in 2.1, since the experimenter cannot freely choose
the time to measure the system anisotropy. When particles decouple from the medium created
in a heavy ion collision, they are said to ‘freeze out’. Only the final state of the system—after
it has expanded and frozen out—is available for examination; its temporal evolution must be
modelled.

The anisotropy of the hot zone in a heavy ion collision has two sources. Firstly, the beam
direction (ẑ) is clearly special; both in momentum space and coordinate space, the hot source
is extended in the ẑ. Collisions at finite impact parameter break the remaining symmetry in the
azimuthal variable around the beam direction. The so-called reaction plane is the plane spanned
by the impact parameter (oriented in the x̂-direction in this work) and the beam direction.
Figure 3 shows a plausible if simplistic sketch of the hot matter produced in a non-central
heavy ion collision, containing the minimal set of possible anisotropies—different length scales
in each direction, and a tilt of the source away from the beam axis.

Of particular interest is the transverse eccentricity of the source, mentioned already in
section 2.1. This eccentricity may be quantified by ε ≡ (σ 2

y − σ 2
x )/(σ 2

y + σ 2
x ), where σx,y are

characteristic scales of the system in and out of the reaction plane, respectively, and will
be discussed in more detail shortly. As discussed there, and seen in figure 2, the final state
eccentricity is determined by both the anisotropic pressure gradient and the system lifetime;
increasing either or both of these leads to a lower (possibly negative) ε.

The other major feature of the freeze-out distribution is the tilt of its major axis, relative to
the beam direction. Such tilts are ubiquitously produced in three-dimensional (3D) simulations
of heavy ion collisions. At low energies (

√
sNN ≈ 4 GeV), θs ≈ 30◦ [24]; its sign discriminated

between competing explanations of momentum-space anisotropies for charged pions [25].
No tilt measurements have yet been made at ultrarelativistic energies, but several theorists

have pointed to its importance. In what they have termed the ‘twisted sQGP’, Adil and
collaborators [26, 27] emphasize the importance of the tilt of the strongly coupled quark-gluon
plasma created in non-central collisions (cf figure 4). In particular, the source of hard partonic
scatterings (leading to jets) will have a different tilt than that of the plasma itself. The interplay
between the two tilts is crucial to obtain fully 3D jet tomography [27]. The hard-partonic tilt
depends on the initial-state model, while the tilt (or ‘twist’) of the sQGP can be measured by
techniques discussed in the next section.

The tilt of the sQGP leads to important signals in the bulk sector as well. In 3D fluid
dynamic calculations, a tilted hot zone generates a collective structure known as the third
flow [28, 29] or anti-flow [30], as it expands preferentially along its shortened axis (cf figure 4).
This tilt or ‘torque’ can arise naturally in a wounded nucleon initial condition [31, 32]. This
third flow component combines non-trivially with ‘normal’ directed flow, leading to partial
cancelation at low energies [30], as suggested in the right panel of figure 4, while the third
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Figure 4. Important aspects of a tilted QGP. Left: the tilt of the bulk ‘twisted
sQGP’ in general will not coincide with that of the hard partonic collisions.
The interplay between the two can distinguish different initial-state scenarios
and strongly affects jet quenching signals. Reprinted with permission from [26];
copyright (2006) of the American Physical Society. Right: the ‘anti-’ (or third)
flow component (blue arrows) arises from the expansion of the tilted source along
its short axis and partially cancels the normal flow (red arrows). Reprinted with
permission from [30]; copyright (2000) of the American Physical Society.

flow dominates at the LHC [33]. Directed or first-order flow signals in momentum space [15]
are among the most important bulk phenomena, sensitive to the earliest, densest stages of the
collision [34], which may or may not be thermalized. Spatial tilt measurements—even if only
of the freeze-out distribution—will need to be combined with momentum-only analyses to
disentangle the dynamics of this crucial stage of the collision.

Generic expectations for the collision energy dependence of freeze-out shapes seem
straightforward. The eccentricity, ε, is affected by pressure and timescale. One expects both
the lifetime and the energy density of the system to increase with increasing

√
sNN. Thus—

if the relationship between pressure and energy density (the EoS) remains fixed—it is natural
to expect ε to decrease monotonically with

√
sNN. The tilt is a manifestly non-boost-invariant

aspect of the QGP created in the collision. Directed flow measurements at all energies confirm
that the dynamics of heavy ion collisions are never, strictly speaking, boost invariant. Even the
hope that the system is ‘essentially’ boost invariant at mid-rapidity may be easily shattered if
a finite tilt angle is measured there. Nevertheless, due to the increased elongation of dynamics
along the beam direction, it is natural to expect a monotonic decrease in θs with

√
sNN as well.

3. Measuring source anisotropy in heavy ion collisions

In the two parallel cases discussed in section 2, the final spatial source anisotropy is measured
directly. Of course, the spatial and temporal scales involved in a heavy ion collision render
such measurements impossible. Instead, spatial sizes and shapes are extracted via two-particle
femtoscopy [10]. This technique exploits the connection between the measured two-particle
relative momentum correlation function C(Eq) and the spatial separation distribution S(Er),
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according to the Koonin–Pratt equation [35],

C(Eq) =

∫
d3r ′S(Er ′)|φ(Eq ′, Er ′)|2, (1)

where φ( Eq, Er) is the two-particle wavefunction as a function of the relative momentum and
separation in the pair centre-of-mass system, Eq ≡ Ep1 − Ep2, Er ′

≡ Ex ′

1 − Ex ′

2. Femtoscopy has been
used extensively to map the space–time structure of heavy ion collisions for a quarter of a
century; details of the method and the physics learned have been discussed elsewhere (e.g. [10]).

Significantly complicating any femtoscopic analysis is the fact that, in equation (1), C( Eq)

and S(Er) may—and in reality always do—depend on the pair momentum EK ≡
1
2( Ep1 + Ep2). This

is a consequence of space-momentum correlations that arise from collective flow and means
that particles emitted with a given velocity measure only part of the source. Reconstructing the
‘whole’ source from the various fragments is highly non-trivial and ultimately model dependent.
For the moment, we ignore this fact and assume that the pion emission probability from any
space–time point of the source is independent of its momentum. We return to the issue of
position–momentum correlations at the end of the section.

The most common femtoscopic analysis in heavy ion collisions correlates identical pions.
Often, the separation distribution is assumed to be Gaussian; in this case, ignoring Coulomb and
other complications [10], the correlation function itself is Gaussian, and fitted with

C ( Eq) = 1 + λ exp

−

∑
i, j=o,s,l

qiq j R2
i, j

 . (2)

The indices indicate the components of the relative momentum vector in the Bertsch–Pratt
‘outside-long’ coordinate system, in which the ‘long’ direction is parallel to the colliding
beams, ‘out’ is parallel to the pair transverse momentum EK T ≡

1
2( EpT,1 + EpT,2), and ‘side’ is

perpendicular to ‘out’ and ‘long’. The use of this coordinate system is motivated by the fact
that spatial and temporal aspects of the source are more easily disentangled [6, 36]. The fit
parameters R2

i, j are squared ‘HBT radii’ that characterize the 3D size and shape of the separation
distribution.

In an azimuthally sensitive femtoscopic study, these HBT radii are measured as a function
of the pair angle φp ≡ 6 ( EK T , Eb). Since the ‘out’ and ‘side’ directions rotated relative to the
x- and y-directions by φp, even in the simplest case of figure 3, one expects oscillations in
the R2

i, j(φp). Indeed, such oscillations in non-central collisions have been clearly observed;
figure 5 shows HBT radii measured at the lowest (

√
sNN = 2.2 GeV) [24] and highest (

√
sNN =

200 GeV) [37] energy collisions explored by these analyses. Suppression of oscillations due
to the finite reaction-plane resolution may be corrected for [38]. Similar to the analysis of
momentum flow, Fourier moments of the oscillating radii are extracted,

R2
µ,n =

{
〈R2

µ(φp) cos(nφp)〉(µ = o, s, l, ol) 〈R2
µ(φp) sin(nφp)〉(µ = os, sl). (3)

Very few femtoscopic studies to date have been performed relative to the event-wise
reaction plane; instead, the direction of the impact parameter is ignored, and the resulting length
scales represent an azimuthal average of all collisions. In this case, the pair emission angle φp is
meaningless, and no oscillations are measured. Furthermore, the ‘cross-term’ radii R2

i, j 6=i vanish
by symmetry [38] in these analyses.

A Gaussian functional form is the most commonly used parameterization of the pion-
emitting source in heavy ion collisions; it is characterized by three scales: a lifetime and
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Figure 5. Oscillating HBT radii at the lowest and highest measured energies.
Left:

√
sNN = 2.35 GeV Au + Au collisions with impact parameter b ≈ 5 fm [24].

Right:
√

sNN = 200 GeV Au + Au collisions of varying centrality. Reprinted with
permission from [37]; copyright (2004) of the American Physical Society.

spatial scales in the longitudinal and transverse directions. The minimal generalization in the
azimuthally sensitive case is a Gaussian ellipsoid with three principal axis lengths σx,y,z, a
timescale σt and a tilt angle θs relative to the beam direction,

f (x, y, z, t) ∼ exp

(
−

(x cos θs − z sin θs)
2

2σ 2
x ′

−
y2

2σ 2
y

−
(x sin θs + z cos θs)

2

2σ 2
z′

−
t2

2σ 2
t

)
. (4)

The primes on σx ′ and σx ′ indicate that these are the lengths of the primary axes of the ellipse,
the source widths in the tilted coordinate system (cf figure 3).

In the simplest case in which equation (4) describes the pion-emitting source, its anisotropy
parameters are simply related to the measured HBT radii. The spatial eccentricity along the
beam axis is given by [22]

ε ≡
σ 2

y − σ 2
x

σ 2
y + σ 2

x

= 2 ·
R2

s,2

R2
s,0

. (5)

Here, σx (without the prime) denotes the width of the source in the x-direction, as seen along
the beam direction, not along the (tilted) major axis of the ellipse.

If the first-order oscillations in R2
sl is measured, the tilt angle is estimated by combining

several Fourier coefficients [25, 39],

θs =
1
2 tan−1

(
−4R2

sl,1

R2
l,0−R2

s,0+2R2
s,2

)
, (6)

and the transverse eccentricity in the ‘natural’ frame tilted relative to the beam axis is [39]

ε ′
≡

σ 2
y − σ 2

x ′

σ 2
y + σ 2

x ′

=
2R2

s,2

(
1 + cos2 θs

)
+

(
R2

s,0 − R2
l,0

)
sin2 θs − 2R2

sl,1 sin 2θs

R2
s,0

(
1 + cos2 θs

)
+

(
2R2

s,2 + R2
l,0

)
sin2 θs + 2R2

sl,1 sin 2θs

. (7)
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Table 2. Measurements of the anisotropic shapes from heavy ion collisions. The
third column indicates which centrality bins were averaged to obtain the shape
parameters of figures 6 and 7. See the text for details.

Experiment
√

sNN (GeV) Centrality (%) Rapidity

AGS/E895 [24] 2.35, 3.04, 3.61 (7.4–29.7) |y| < 0.6
SPS/CERES [41] 17.3 (7.5–10)⊕(10–15)⊕(15–25) −1 < y < −0.5

and (10–15)⊕(15–25)
RHIC/STAR [37] 200 (5–10)⊕(10–20)⊕(20–30) |y| < 0.5

and (10–20)⊕(20–30)

As suggested in the inset of figure 3, σx ′ < σx for a simple tilted elongated ellipsoid. Hence,
if the final-state emitting source retains its initial out-of-plane extension (σy > σx ′), as indicated
by measurements so far, the eccentricity measured about the beam axis will be smaller than that
measured about the tilted axis: ε < ε ′.

At low energies, the direction of the impact parameter Eb can be estimated easily, thanks to
a relatively strong first-order anisotropy in momentum-space—the so-called ‘directed flow’; in
this case, φp has a meaningful range [0, 2π ]. At RHIC energies, on the other hand, the first-order
momentum-space anisotropy is weak, while the second-order momentum-space anisotropy
(‘elliptic flow’) is much easier to measure. Thus, at the higher energies, only the plane that
contains Eb is defined, but not the direction of Eb itself; this corresponds, in figure 3, to identifying
the yellow reaction plane, but not distinguishing ±x̂ . In this case, φp is measured only modulo
π and first order oscillations like R2

sl,1 cannot be measured. Spatial information about the
source tilt θs and eccentricity in the source’s natural coordinate system ε ′ are inaccessible in
such analyses. Similarly, 2D transport calculations such as (2 + 1)-dimensional boost-invariant
hydrodynamics [12] are implicitly blind to any tilt structure.

As mentioned at the beginning of this section, strong position–momentum correlations,
due to collective flow or other sources, imply that pion pairs measured at a given φp do
not sample the entire pion-emitting zone, but only a selected ‘homogeneity region’ [40].
In principle, the correspondence between the homogeneity regions and the ‘whole’ source
can be almost arbitrary, so that extracting the shape of the latter through measurement of
the former is necessarily model dependent. However, studies with reasonable blast-wave
parameterizations [22] and realistic transport calculations [39]—both of which feature strong
flow and non-trivial correspondence between homogeneity regions and the entire source—
indicate that equations (5)–(7) are good to a model-dependent systematic uncertainty of ∼30%.

4. Compilation of experimental results

Three experiments, listed in table 2, have published azimuthally sensitive pion HBT radii. All
of them estimated the impact parameter of the collision based on charged particle multiplicity.
Since system anisotropy clearly depends on the impact parameter, it is important to compare
collisions with similar centrality. In order to best compare results from the 7.4–29.7% centrality
cut of E895 (corresponding to b = 4–8 fm), several centrality cuts were combined, for the
higher-energy measurements.

New Journal of Physics 13 (2011) 065006 (http://www.njp.org/)

http://www.njp.org/


12

Figure 6. Source tilt relative to the beam direction versus energy for mid-central
heavy ion collisions. See sections 4 and 5 for a discussion about the experimental
data and model calculations, respectively.

It is worthwhile to describe in detail how centrality bins were merged, since the comparison
between shapes from different collision energies is important for our message. The most relevant
centrality bins reported by the STAR Collaboration are for 5–10, 10–20 and 20–30% of the total
cross section. We combine data from these three bins as

εSTAR
(5−10)⊕(10−20)⊕(20−30) ≡

1 × εSTAR
(5−10) + 2 × εSTAR

(10−20) + 2 × εSTAR
(20−30)

1 + 2 + 2
. (8)

Here, the weighting factors (1,2,2) account for the fact that the 5–10% bin contains half the
number of events as either of the other two bins listed. This selection includes more central
events—in particular, events in the 5–7.4% centrality range—than are included in the E895
cuts. Therefore, the value εSTAR

(5−10)⊕(10−20)⊕(20−30) = 0.081 ± 0.006 should be considered a lower
bound on the shape compared with E895. An upper bound may be obtained by combining only
the two more peripheral bins: εSTAR

(10−20)⊕(20–30) = 0.094 ± 0.007.
The relevant centrality ranges reported by CERES are 7.5–10, 10–15 and 15–25% of the

total cross section. A fair range to use in our comparison is between εCERES
(7.5−10)⊕(10−15)⊕(15−25) =

0.035 ± 0.018 and εCERES
⊕(10−15)⊕(15−25) = 0.043 ± 0.020.

All measurements focused on low-momentum pions (pT ≈ 0.25 GeV c−1), for which
formulae (5)–(7) work best [22]. STAR and E895 measurements centre on mid-rapidity, where
participant contributions should be maximal, while the CERES measurement is somewhat
backwards in the centre of mass frame. Since HBT measurements typically vary slowly with
rapidity, this difference is unlikely to affect CERES’ shape estimation, but a measurement at
mid-rapidity would provide a better comparison with the other experiments.

E895 measured HBT radii relative to the first-order event plane (i.e. the direction of the
impact parameter); the results for

√
sNN = 2.35 GeV are shown in the left panel of figure 5. The

spatial tilt is shown in figure 6. The tilt is strikingly large at these low energies and drops
with energy, consistent with the expectation [42] that collisions become increasingly boost
invariant (at least near mid-rapidity) with increasing energy. It will be important to extend tilt
measurements to higher energies, since a finite θs is manifestly ‘boost variant’, even at y = 0.
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Figure 7. Source eccentricity versus energy for mid-central heavy ion collisions.
See sections 4 and 5 for a discussion about the experimental data and model
calculations, respectively.

If θs is more than a few degrees, boost-invariant models may not be valid and would at least
require double-checking with true 3D calculations.

Figure 7 shows the measurements from the experiments listed in table 2. Filled symbols
indicate ε, the eccentricity relative to the beam axis (cf equation (5)), while open symbols
indicate the eccentricity in the natural frame of the source (equation (7)), measured only by
E895. For the CERES and STAR data points, the average of the upper and lower bounds
discussed above is plotted, with the difference between the bounds and the statistical error bars
added, to be conservative. The non-monotonic behaviour of ε(

√
sNN) is intriguing. As discussed

in section 2.3, rather general considerations lead to the expectation of a monotonic decrease
of ε with energy. The unexpected dip in figure 7 occurs in the energy region in which phase
transition ‘threshold’ effects have been reported [11] and around which some speculate that
heavy ion collisions sample the non-trivial features sketched in figure 1 (cf [9]).

To contribute our own speculation, we note that such non-monotonic behaviour could arise
from one of two effects, both related to a first-order phase transition. Firstly, an extended lifetime
due to the transition would allow the system to evolve further towards a round shape (cf figure 2),
causing a dip just around the threshold energy. Using this simplistic scenario to explain the
data, the CERES data point at

√
sNN ≈ 17 GeV lies near the threshold energy. Alternatively,

we may fix the lifetime and consider the effects of the stiffness of the EoS, quantified by the
speed of sound in the medium, c2

s =
∂ P
∂e , where P and e are the pressure and energy density,

respectively. At low energies, the system is in the hadronic phase, and c2
s ∼

1
6 ; as

√
sNN increases,

pressure gradients increase in proportion to the energy deposited in the system; here, ε would
fall with

√
sNN. Near the threshold energy, the system may spend much of its time in the mixed

phase, for which c2
s = 0; here, the system shape would evolve little from its initial, large value.

As the energy increased still further, the system spends most of its time in the deconfined
plasma phase, for which c2

s ∼ 1/3, and ε(
√

sNN) again falls monotonically. Using this second
simplistic scenario to explain the data, the STAR data point at

√
sNN = 200 GeV lies just above

the threshold energy.
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However, such simplistic considerations only serve to stimulate more sophisticated
treatment with theoretical tools. We consider such tools in the next section.

5. Transport model calculations

Transport models are commonly used to simulate the dynamics of a heavy ion collision.
They fall into two broad categories—hydrodynamical calculations and Boltzmann transport
models.

As the name implies, hydrodyanmic calculations model the nuclear matter in terms of one
or more fluids, each fluid cell characterized by thermodynamically intensive quantities, such
as temperature, chemical potential and pressure. Particles per se play no role in the dynamics;
rather, they appear at the end of the simulation, as the fluid cells produce final-state particles
according to an approximate prescription [43]. A major advantage of hydrodynamic calculations
is that the EoS must be explicitly defined. The relationships between bulk quantities—
pressure, energy density, temperature, baryon number, etc—close the set of hydrodynamic
equations, which are otherwise ‘trivial’ continuity and conservation laws. These relationships
characterize and quantify the state of matter under different conditions and are the mathematical
implementation of phase diagrams, such as that in figure 1.

While hydro-calculations focus explicitly on bulk quantities, microscopic Boltzmann
transport calculations take the opposite tack: the creation, scatterings and demise of each
particle is followed. Such calculations offer several advantages over hydrodynamic ones:
they are manifestly three-dimensional (3D) (important in the present context); assumptions of
thermalization and equilibrium, justified or not, are not required; event-by-event fluctuations—
potentially large in such finite systems and of increasing interest in the field—are implicitly
included; bulk and shear viscosity are automatically included in the calculation; finally, the
final state of the system—freeze-out—occurs ‘naturally’ on a particle-by-particle basis, without
recourse to arbitrary criteria (e.g. a fixed local temperature) setting the freeze-out hypersurface.
The chief drawback of Boltzmann transport calculations is their complexity; the dynamics are
influenced by the decay and reaction details of several thousands of hadron species, as well as
the string phenomenology needed to describe non-hadronic degrees of freedom in the ultra-high
density limit at which 2 → 2 scattering simulations break down.

We use several transport calculations to simulate the evolution of a heavy-ion collision
from its initial out-of-plane-deformed shape to the final shape probed by femtoscopy.

5.1. Two-dimensional (2D) boost-invariant hydrodynamics

Among the earliest and most exciting successes in the RHIC programme was the degree to
which ideal hydrodynamic calculations predicted the magnitude and details (mass and pT

dependence) of bulk collective behaviour in non-central heavy-ion collisions [12, 15, 44].
Here, we use one of the most successful models—AZHYDRO [45], a (2 + 1)-dimensional ideal
hydrodynamic model. This model uses a common simplifying assumption [42, 46] that the
initial conditions and subsequent dynamics are boost invariant; all interesting physics takes
place in the transverse plane. For our purposes, this means that the model assumes a non-tilted
source (θs = 0), and only ε is calculable.

It is by now rather clear that boost-invariant ideal hydrodynamic calculations are invalid at
energies below about

√
sNN ≈ 20 GeV [12] as (i) the densities achieved are inconsistent with a
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zero-mean-free-path approximation, and (ii) the system is not boost invariant. Nevertheless, we
will perform calculations over a wide range of energies, including very low ones, to map the
excitation function and explore the EoS dependence of the shape parameters.

In order to extend the model to both the LHC high-energy regime and the low-energy
heavy-ion collisions, the initialization routine must be tuned to the appropriate collision
energies. The initial temperature distribution was parameterized through the initial transverse
entropy profile geometrically using an optical Glauber calculation discussed in [12].

Within the optical Glauber model calculation, the densities of wounded nucleons (Nw)
and binary nucleon–nucleon collisions (Nbin) are estimated in the transverse plane. The total
entropy density is then a superposition of the ‘soft’ wounded nucleon density and the ‘hard’
binary collision density, appropriately scaled [47, 48] to match both the charged hadron
multiplicity and centrality dependence observed in experiments (25% hard contribution). The
multiplicity is simply the momentum integrated particle distribution at a given rapidity y
(typically at mid-rapidity, y = 0) [12, 47]. Furthermore, for consistency, as the initial entropy
density (and consequently the initial temperature) changes for each collision, the thermalization
time τ0 is correspondingly changed in order to keep the ‘uncertainty relationship’ (τ0T0 ≈ 1)
constant [12, 49]. The multiplicity is then matched to the expected charged multiplicity of each
collision energy.

To generate the observable momentum distribution of particles, a freeze-out criterion is
needed at the end of the hydrodynamic simulation. The Cooper–Frye formalism [43] postulates
a sudden transition from a perfect local equilibrium to free-streaming for all strongly interacting
particles in a particular fluid cell at a given kinetic freeze-out condition. While this can
be described via a dynamic comparison of scattering rates, here we use a constant energy
density e = 0.075 GeV fm−3, which corresponds to a constant temperature isotherm that varies
depending on the EoS used to describe the matter. For all equations of state used in these
simulations, the freeze-out temperature is Tf ≈ 130 MeV.

In order to study a range of possible phases of matter, three distinct equations of state
were used in the hydrodynamic simulations. These are discussed in [45] and represent a
purely hadronic state of matter (EOS H), a pure quark/gluon gas (EOS I), and a Maxwellian-
constructed EOS Q, which contains a first-order phase transition between EOS I and EOS H.
In [45], EOS Q was used exclusively to describe the matter created at

√
sNN = 130 GeV.

HBT radii were extracted by fitting projections of two-pion correlation functions,
calculated according to the method of [50]. These radii were then used in equation (5) to extract
the final-state eccentricities shown in figure 7. For each EoS used, the eccentricity monotonically
decreases as a function of energy, an effect both of increased system lifetime and pressure as
√

sNN increases, as discussed in section 2.3.
There is considerable sensitivity to the EoS used in the calculation. Using the initialization

procedure discussed above, use of the stiff EoS, EoS-I with c2
s =

1
3 , results in a much more out-

of-plane shape—i.e. one that has not evolved much from the initial overlap shape. The shape
evolves considerably more when using the softer EoS-H (c2

s =
1
6 ). Since, for a given energy

density, pressure gradients are proportional to cs, these results suggest that effects of system
lifetime dominate those of pressure, in these calculations. This conclusion is consistent with
the results when using EoS-Q. These shapes track closely with those of EoS-H for low

√
sNN,

where the system is dominated by the hadronic phase. At around
√

sNN, the threshold effect of
the ‘soft’ mixed phase (c2

s = 0) becomes apparent, increasing the system lifetime and further
decreasing ε.
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It is clear from figure 7 that the phase transition is needed to explain the single RHIC
data point—at least in this model. Extension of the shape excitation function to higher (LHC)
energies will be important to further constrain the EoS. However, many of the most important
features of the EoS may be manifest at lower energies, such as those currently being explored
in the RHIC energy scan. The validity of (2 + 1)-dimensional models breaks down at these
energies, limiting their utility in constraining the EoS with low-energy data.

5.2. Microscopic Boltzmann transport

In this work, we use two related Bolzmann transport codes. The first is the Ultra-Relativistic
Quantum Molecular Dynamics Model (UrQMD 3.3) [51, 52], which includes details of physical
processes relevant over a huge range of energies. For this reason, it is particularly attractive for
the present study. UrQMD is a covariant transport approach to simulate the interactions between
hadrons and nuclei up to relativistic energies. It is based on the propagation of nucleons and
mesons accompanied by string degrees of freedom with interaction probabilities according to
measured and calculated cross sections for the elementary reactions. Hard scatterings with large
momentum transfer are treated via the PYTHIA model [53]. For detailed comparisons of this
version to experimental data, see [54].

An earlier incarnation of this model, Relativistic Quantum Molecular Dynamics
(RQMD) [55], was widely used over the more limited energy range of the AGS and SPS,
√

sNN ∼ 3–20 GeV. It is satisfying to see good consistency between the older and newer versions
of the model, in terms of predicted shapes.

For the UrQMD calculations, ε, ε ′ and θs were extracted by directly fitting the freeze-out
distribution with the functional form of equation (4). For the older RQMD calculations, the
model output was processed through equation (1) to generate correlation functions, which were
fitted with equation (2) to extract HBT radii. These radii were then used to calculate shape
parameters according to equations (5)–(7). For these models, the shape parameters extracted
using these two methods should be consistent to ∼30% [39].

The simulations reproduce the very large tilt angles measured at low
√

sNN and predict a
sharp fall-off with energy. The RQMD model features the possibility of including the effects
of a medium-induced mean field on the trajectories of the hadrons during the collision; θs

is significantly sensitive to this mean-field effect. In particular, the spatial tilt measurements
are best described when the effects of the mean field are ignored (‘cascade mode’). This is
interesting in light of the fact that reproducing the momentum-space tilt (‘directed flow’ or
v1 [15]) demands the inclusion of mean-field effects [56]. While the measurement of spatial
shapes already constrains the EoS of hot nuclear matter, combining both the coordinate- and
momentum-space shapes places even stricter constraints on the dynamics.

The final-state eccentricity, plotted in figure 7, reproduces the large ε (and ε ′) values
measured at the AGS, with little dependence on the nuclear mean field. At SPS energies
(
√

sNN ≈ 17 GeV), tilt angles of the order of 10◦ are predicted by UrQMD. This is just about the
point at which the effect of the tilt on the measured eccentricity (cf the inset of figure 3) vanishes;
i.e. ε ≈ ε ′ for

√
sNN > 17 GeV in this model. The monotonic decrease predicted by the model

is not nearly strong enough to reproduce the CERES measurement, but falls rather smoothly to
closely approach the shape measured at top RHIC energy. At still higher energies (e.g. LHC),
the model predicts a continued out-of-plane final eccentricity with little

√
sNN dependence.
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5.3. Hybrid hydrodynamic-Boltzmann calculation

Combined microscopic + macroscopic approaches are among the most successful ideas for the
modelling of the bulk properties of HICs [57–59]. The approach that we are using here has
recently been developed and is based on the UrQMD hadronic transport approach including a
(3 + 1)-dimensional one-fluid ideal hydrodynamic evolution [60, 61] for the hot and dense stage
of the reaction [62, 63]. To mimic experimental conditions as realistically as possible, the initial
conditions and the final hadronic freeze-out are calculated using the UrQMD approach. The non-
equilibrium dynamics in the very early stage of the collision and the final state interactions are
properly taken into account on an event-by-event basis. Furthermore, the hybrid model allows
for a dynamical coupling between hydrodynamics and transport calculation in such a way that
one can compare calculations with various EoS during the hydrodynamic evolution and with
the pure cascade calculations within the same framework.

The coupling between the UrQMD initial state and the hydrodynamical evolution
proceeds when the two Lorentz-contracted nuclei have passed through each other, tstart =

2R/
√

γ 2 − 1 [64]. After that, a full (3 + 1)-dimensional ideal hydrodynamic evolution is
performed using the SHASTA algorithm [60, 61]. Taking into account all three spatial
dimensions explicitly in the evolution is important to be able to study the angular dependence
of HBT radii, since effects like the longitudinal tilt of the event plane can only be consistently
considered in this way [39].

Serving as an input for the hydrodynamical calculation the EoS strongly influences the
dynamics of an expanding system. Two different equations of state are used to exemplify the
differences on the extracted HBT radii due to this external input. One is a hadron gas EoS (HG)
with the same degrees of freedom as in the UrQMD approach [65]. The other one is a bag model
EoS (BM) including a strong first order phase transition to the quark-gluon plasma with a large
latent heat [61]. To see whether fluctuations in the initial state affect the result differently for
different expansion dynamics during the hydrodynamic evolution, these two extreme cases have
been chosen.

The transition from the hydrodynamic evolution to the transport approach when the matter
is diluted in the late stage is treated as a gradual transition on an approximated iso-eigentime
hyper-surface (see [66, 67] for details). The final rescatterings and resonance decays are taken
into account in the hadronic cascade.

As with the UrQMD calculations discussed in section 5.2, shape parameters were extracted
from a direct fit of the freeze-out distribution with equation (4). Large tilts are again predicted at
low collision energies, with significant sensitivity to the EoS used in the calculation. The effect
of the first-order phase transition (Hydro[BM]) is clear: while at

√
sNN even the earliest dense

phase of the collision is below threshold to be affected by the phase transition. However, at larger
energies, the mixed phase reduces the sideward pressure very early in the system evolution,
reducing θs . It would be very interesting indeed to measure tilt angles at SPS energies.

That shapes from Hydro[HG] + UrQMD are not identical to those from ‘pure’ UrQMD is
at first puzzling, given that the EoS in the hydrodynamic phase is that used in the Boltzmann
model. This is likely a technical issue—particles that would be emitted early in the ‘pure’
UrQMD simulation are generally absorbed into the hydro phase in the hybrid model, only to
reappear at the iso-eigentime hyper-surface mentioned above. The details of this discrepancy
are still under investigation. Thus, for now it is best not to compare hybrid calculations to pure
Boltzmann simulations, but to compare one hybrid calculation to the other, concluding that the
EoS sensitively affects the final-state shape of a heavy-ion collision.
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Due to this increased system lifetime, the system eccentricities in the hybrid calculations
are allowed to evolve to much lower values than those predicted by UrQMD. Indeed, the system
in its natural rotated frame is essentially round transversely (ε ′

≈ 0), so the large tilt can even
produce ε < 0—an in-plane extended source, measured about the beam axis; ε then grows with
√

sNN because θs decreases. The eccentricity at SPS energy essentially reproduces the CERES
result, probably an artifact of the extended lifetime effect discussed above.

6. Discussion and summary

Locating and studying non-trivial structures (phase transitions, critical points, etc) in the
phase diagram offers keen insights into the material under consideration. The EoS encodes
these structures into dynamical relationships that determine a system’s response and evolution
from an externally imposed initial state. A major programme is currently under way at the
RHIC facility, to vary the collision energy of heavy-ion collisions with an eye for non-trivial
energy dependence of bulk observables that might signal the presence of structures on the
phase diagram. Several sensitive observables have been proposed and are under study [9]. We
have discussed one such observable here—the final-state anisotropic shape of the system in
coordinate space.

The study of such shapes is strikingly similar to similar studies of strongly coupled
systems at vastly different scales. The parallel between the evolution of a non-central heavy
ion collision and that of a strongly coupled gas of cold atoms released from an anisotropic trap
has been noted before, although more in relation to mometum-space, rather than coordinate-
space, shapes. However, the heavy ion situation bears much more resemblance to the study of
‘micro-explosions’ induced by femtosecond laser pulses on crystals. In both cases, a charged-
confined system is, on very short timescales, raised to an energy density sufficiently high to
generate a charge-deconfined plasma. The plasma responds hydrodynamically—expanding and
cooling until the system returns to its original, charged-confined phase. The EoS is extracted by
comparing the anisotropic shape of the final state with transport calculations with different EoS.
The energy scan programme at RHIC is following the lead of studies of these micro-explosions,
varying the initial energy of the system as a sensitive way to probe the EoS.

Whereas the shapes of cold atomic gases or micro-explosions can be measured directly,
two-particle intensity interferometry is the most direct probe of the space–time structure of
evolving matter on the femtometer scale. We have discussed how system shapes are obtained
from such measurements and the very few measurements that have been made to date.

The shape excitation function, sparse though it is, features an unexpected minimum at
√

sNN = 17 GeV, an energy around which other ‘anomalous’ behaviour has been reported [11].
Based on qualitative arguments, we speculated that a first-order phase transition might cause
the minimum. This minimum is not predicted by any transport model, even those that include
a first-order phase transition. It is good to keep in mind, however, that none of the models we
considered are perfect—the Boltzmann models do not reproduce the large flow seen at RHIC,
and the 2D hydrodynamic models miss one of the prime anisotropies—the source tilt, which is
non-vanishing even at SPS energy. In all cases, the sensitivity of the final shape of the collision
to the EoS driving the system’s evolution was clear.

A careful and systematic set of shape measurements at different energies is clearly
warranted. While some models (e.g. UrQMD and 2D hydro with EoS-Q) predict very similar
shapes at RHIC (both close to the measured shape), their predictions for higher energies diverge
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strongly. At lower energies, excitation functions of tilts and ellipticities form an important part of
the energy scan programme at RHIC to search for structures on the fundamental phase diagram
of QCD.
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