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PLANCK SCALE EFFECTS IN UNRUH RADIATION
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In this work, we consider the problem of Unruh effect in the framework
of Generalized Uncertainty Principle (GUP) of Quantum Gravity. The
quantum gravitational effects at the Planck scale physics, as a consequence
of GUP, induces the corrections to the Unruh radiation. In this set-up,
we find an energy-dependent effective temperature which leads to a non-
thermal emission in the Unruh radiation spectrum.
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1. Introduction

The theory of quantum fields in curved space-times includes many attrac-
tive and noticeable phenomena. One of them being the radiation that arises
from placing a quantum field in a background metric with a horizon. The
Hawking radiation is the first significant instance of this effect that predicts
the evaporation of black holes [1]. Another instance is Unruh radiation and
affirms that an observer encountering a uniform acceleration experiences the
Minkowski vacuum as a thermal state [2]. There are profound links between
Hawking radiation and the Unruh effect via the principle of equivalence. In
fact, a freely falling observer is locally equivalent to an inertial observer in
flat space-time and also a stationary observer near a black hole is locally
comparable to an accelerated observer in Minkowski space-time. Consider-
ing the close connection of black hole radiation and acceleration radiation it
is justifiable to presume that some of the hardships concerning the Hawking
effect could be reflected on the simpler problem of the Unruh effect.

For both Hawking and Unruh effects, temperature comes into view from
information loss allied with true and accelerated-observer horizons, respec-
tively. Recently, the authors in Ref. [3] have utilized the WKB/tunnelling
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formalism of calculating Hawking temperature to acquire a possible reso-
lution to the information loss paradox taking into account both quantum
corrections to all orders in ~ and back reaction. They have shown that the
quantum corrections alone cannot solve the information loss paradox. How-
ever, by taking both quantum corrections and back reaction into considera-
tion it may be possible under particular conditions to solve the information
paradox by possessing the black hole evaporate entirely with the information
leaked out by the correlations of the outgoing radiation. The tunnelling is
generally applied through two different approaches, the radial null geodesic
approach [4] and the Hamilton–Jacobi approach [5]. The primary work on
the tunnelling formalism was incapable to achieve the thermal essence of
the Hawking radiation. In 2009, Banerjee and Majhi [6] have explained
this shortcoming by acquiring the thermal spectrum for Hawking radiation
utilizing the tunnelling perspective. The results of Ref. [3] shows that the
quantum corrections alone cannot change the thermal nature of the Hawking
black body spectrum, i.e. to all orders in ~ the spectrum still remains ther-
mal. Hence, quantum corrections by themselves cannot find a solution to the
problem of lost information. Corrections to the Hawking temperature stim-
ulates the interesting question as to whether the Unruh temperature would
also have suitable corrections. Quantum corrections to the Unruh temper-
ature, by using a WKB approximation within a Hamilton–Jacobi analysis
in the tunnelling perspective, to all orders in ~ have computed similarly
and a connection of the corrected Unruh temperature with the corrected
Hawking temperature has established in Ref. [7]. Thereby, it is natural to
ask whether these connections can clarify and unify the two Hawking and
Unruh effects.

The resulting anticipation of different models of Quantum Gravity, e.g.
String Theory [8], Non-commutative Quantum Theory [9], Loop Quantum
Gravity [10], Black Hole Physics [11], is the impression of a minimal observ-
able distance on the order of the Planck length that cannot be inspected, for
example in String Theory there exists a constraint to inspect the distances
smaller than the string length. Thereby, Heisenberg Uncertainty Princi-
ple (HUP) should be modified to comprise this confined resolution of the
space-time structure. The consequence of this modification is the so-called
Generalized Uncertainty Principle (GUP) which indeed has the origin on the
quantum fluctuations of the space-time at Planck scale and can be formu-
lated in a more practical form as follows [8, 9, 10,11,12]

∆x ≥ ~
∆p

+
αl2P
~

∆p , (1)

where α is a dimensionless constant of the order of unity that depends on the
details of the Quantum Gravity proposals. In the standard limit, ∆x� lP,
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it yields the HUP, ∆x∆p ≥ ~. The second term in r.h.s. of GUP relation
plays an important role when the momentum and distance scales are in the
vicinity of the Planck scale. In a heuristic way, by using the HUP, the ther-
modynamic quantities for a spherical black hole can be obtained [13]. Also,
the application of the GUP to black hole thermodynamics in the same way,
modifies the consequences by inclusion of Quantum Gravity influences at
the ultimate phases of evaporation process with a rich phenomenology [14].
Lately, the modifications of the Hawking radiation via the GUP and the
tunnelling process has investigated by the authors of Refs. [15,16]. By using
the GUP-corrected de Broglie wavelength, the squeezing of the fundamen-
tal momentum cell, and accordingly a GUP-corrected energy, they found
the non-thermal effects in the black hole radiation spectrum. These fea-
tures of the Planck-scale corrections are capable to clarify the information
problem in black hole evaporation. In fact, information can be recovered as
non-thermal GUP correlations between tunnelling probabilities of different
modes [15,16].

In this article, we study the thermal properties of Unruh radiation in-
cluding the corrections both due to quantum effects to all orders in ~ and
due to gravitational uncertainty. Here, we use a WKB approximation within
a Hamilton–Jacobi analysis in the tunnelling formalism to explore the quan-
tum inspection at the level of semiclassical Quantum Gravity.

2. Quantum gravitational corrections

In this section, we briefly investigate the quantum corrections to all or-
ders in ~ in the tunnelling formalism. In this way, the GUP corrections is
included to our problem. Firstly, we incorporate the minimal length scale
from Quantum Gravity via the GUP which motivates modification of the
standard dispersion relation [17, 18, 19]. Amelino-Camelia et al. [17] in-
vestigated the black hole evaporation procedure after an analysis of the
GUP-induced modification of the black body radiation spectrum. If GUP
is fundamental concept to Quantum Gravity, it should emerge in de Broglie
relation as follows

λ ' ~
p

[
1 + α

(
lPp

~

)2
]
, (2)

or

E ' E

[
1 + α

(
lPE

~

)2
]
, (3)

where we have kept only the first GUP-induced term of order O(α). There
are other convincing reasons from Non-commutative Geometry and Loop
Quantum Gravity that support these relations (see for instance [18,20] and
references therein).
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We are now ready to commence the Unruh effect by considering the
specific form (Schwarzschild-like) of the Rindler metric

ds2 = −(1 + 2ax)dt2 + (1 + 2ax)−1dx2 + dy2 + dz2 , (4)

where a is the constant acceleration in the instantaneous rest frame of the
Rindler observer. This kind of the metric is more appropriate because it
has the suitable coordinates system for the accelerated observer which cover
the entire Minkowski plane in four separate coordinate pieces. In addition,
the determinant of the metric is 1 everywhere. These coordinates have been
used in Hamilton–Jacobi method to study a thermal spectrum of particles in
the traditional Minkowski vacuum state. Consider the massless scalar field
φ in the Rindler metric, which obey the Klein–Gordon equation

− ~2

√
−g

∂µ
(
gµν
√
−g∂ν

)
φ = 0 . (5)

In the tunnelling formalism we are concerned about the radial path, so that
only the x − t sector of the metric (4) is relevant. For a two-dimensional
theory, particle’s tunnelling from a black hole can be considered as a two-
dimensional quantum procedure in the x–t sector. As can be seen from
Eq. (5), this equation cannot be solved exactly, therefore we express the
standard WKB ansatz for the wave function φ as

φ(x, t) = exp
[
i

~
I(x, t)

]
. (6)

The single particle action I(x, t) can be expanded in powers of ~ as

I(x, t) = I0(x, t) +
∞∑
j=1

~jIj(x, t) , (7)

where I0(x, t) is the semiclassical action and the other terms are quantum
corrections. According to the method of which has been developed to inves-
tigate quantum corrections to all orders in ~ in the tunnelling approach [21],
Ij(x, t) are proportional to I0(x, t), we have

I(x, t) = I0(x, t)

1 +
∞∑
j=1

γj~j
 , (8)

where γjs are proportionality constants and have the dimension of inverse
of ~j . Since one sets the units as G = c = kB = 1, therefore the Planck
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constant ~ is of the order of square of the Planck length lP. The solution of
the semiclassical action is given by

I0(x, t) = E

t± x∫
0

dx

1 + 2ax

 , (9)

where E is the GUP-corrected energy of the particle. The − (+) sign indi-
cates to outgoing (ingoing) paths. Utilizing some basic dimensional analysis
it can be exhibited that the coefficients γj have dimension x−2j

H . This leads to

γj =
βj

x2j
H

, (10)

where βjs are dimensionless constants and xH = − 1
2a is the accelerated-

observer horizon. Using Eqs. (8), (9), and (10), we find the wave function as

φ(x, t) = exp

 i
~

1 +
∞∑
j=1

βj
~j

x2j
H

 E
t± x∫

0

dx

1 + 2ax

 . (11)

It should be noted that there is a problem here recognized as “factor 2 prob-
lem” [22]. Recently, in Ref. [23], a solution to this problem was prepared
concerning the overlooked temporal contribution to the tunnelling ampli-
tude. When one comprises this temporal contribution one obtains exact the
correct temperature. Therefore, as shown in [23], for the tunnelling of a
particle across the horizon the nature of the time coordinate changes. This
alteration points out that on crossing the horizon the time coordinate t picks
up an imaginary part. Thereby, the ingoing and outgoing probabilities are
given by

Pin = |φin|2 = exp

2
~

1 +
∞∑
j=1

βj
~j

x2j
H

 E
Im t+ Im

x∫
0

dx

1 + 2ax

 ,
(12)

and

Pout = |φout|2 = exp

2
~

1 +
∞∑
j=1

βj
~j

x2j
H

 E
Im t− Im

x∫
0

dx

1 + 2ax

 .
(13)

In the classical limit, ~ → 0, the ingoing probability has to be unity which
leads to

Im t = −Im
x∫

0

dx

1 + 2ax
= − π

2a
. (14)
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In accordance with the Ref. [23], the above result is exactly the imaginary
part of the transformation t→ t−i π2a when one unites the two regions across
the horizon. Hence, the outgoing probability can be written as

Pout = exp

−2π
~a

1 +
∞∑
j=1

βj
~j

x2j
H

 E
 . (15)

Now, via Detailed Balance Method [5] for ingoing and outgoing probabilities,
we get

Pout = exp
[
− E

Teff

]
Pin . (16)

These probabilities can be utilized to acquire the effective Unruh tempera-
ture as

Teff = TU

(
1− αE2

~ +O
(
α2E4

))(
1 +

∞∑
j=1

βj
~j

x2j
H

) , (17)

where TU = ~a
2π is the semiclassical Unruh temperature and other terms

are corrections due to the higher order quantum effects and gravitational

uncertainty. Note, that we have expanded the relation
(

1 + αE
2

~

)−1
with

neglecting second and higher order terms of α. For all βj = 0 and α = 0 the
effective Unruh temperature boils down to the standard form dictated by
the Unruh result. As expected, due to GUP-induced term (α 6= 0), we find
an energy-dependent effective temperature and, consequently, a non-thermal
spectrum. Appearance of this term originates from the gravitational uncer-
tainty at the Planck scale, thereby accounting for the GUP effects. It can be
concluded easily that once the GUP effects have been included, there is no
longer any reason to expect a purely thermal flux from the static observer
viewpoint when he sees the vacuum state of the freely falling observer.

3. Summary

In summary, new results for corrections to the Unruh effect are presented.
We have utilized a WKB approximation within a Hamilton–Jacobi analysis
in the tunnelling perspective to calculate effective Unruh temperature taking
into account both quantum corrections to all orders in ~ and GUP. This
effective Unruh temperature is equivalent to the usual static value plus a
GUP-corrected term of order O(α) and an infinite power-series expansion
in ~. The GUP-corrected term leads to an energy-dependent temperature
and then the spectrum becomes non-thermal.
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