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Abstract of “Applications of Discontinuous Galerkin Methods to Computational
General Relativity” by Scott Field, Ph.D., Brown University, May 2011

We discuss a discontinuous Galerkin (dG) method and its application to common

partial differential equations which arise in the context of general relativity. First we

consider extreme mass ratio binary (EMRB) systems. When modeling EMRBs as

perturbations of a Schwarzschild black hole, the metric perturbations are described

by the distributionally forced Regge–Wheeler–Zerilli (RWZ) equation. Despite the

presence of jump discontinuities in the solution, our dG method achieves pointwise

spectral accuracy. Particular attention is given to the common choice of trivial

initial data, and we show such unphysical specification may lead to spurious solutions

which contaminate the physical solution indefinitely. Unintended consequences of the

persistent junk solution are considered as well as a simple prescription for removing

it. Using our code we compute metric perturbations, gravitational waveforms, and

self-force measurements from both circular and eccentric orbits.

Next, we present a dG method for evolving the spherically reduced General-

ized Baumgarte–Shapiro–Shibata–Nakamura (GBSSN) system expressed in terms of

second–order spatial operators. Our multi–domain method achieves global spectral

accuracy and long–time stability on short computational domains. We discuss in

detail both our scheme for the GBSSN system and its implementation. A theoretical

and computational verification of the proposed scheme is given.

We conclude with a preliminary look at reduced basis (RB) methods for param-

eterized binary systems. Our algorithm aims to construct a compact RB space from

which a particular solution can be quickly and accurately recovered. We apply the

algorithm to compress the space of analytic chirp gravitational waveforms. Next,

the RWZ equation is revisited, and we consider extensions of the algorithm to a dG

solver along with numerical evidence that a RB space exists for EMRB waveforms.
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Chapter One

Introduction



2

Numerical general relativity is a young field which has seen tremendous progress in

terms of both code sophistication and algorithm development over the last decade.

During this time the simulation of large astrophysical events which emit gravita-

tional waves have been carried out, leading to new insights of the theory and sup-

porting data analysis efforts at large international experiments such as the Laser

Interferometer Gravitational-Wave Observatory (LIGO), Virgo, and the proposed

Laser Interferometer Space Antenna (LISA).

To date evidence for gravitational waves has been exclusively provided by binary

pulsar systems. The most famous example, leading to a Nobel prize in 1993, comes

from measuring the Hulse–Taylor pulsar’s orbital period over time. It was observed

that the orbital period slowly decreases in agreement with the predicted energy loss

due to gravitational wave emission. Such indirect evidence for gravitational waves

certainly provides an important test of general relativity, but the very nature of the

experiment yields only limited information.

Gravitational wave astrophysics to be carried out at LIGO, Virgo, and LISA

will provide a powerful and unique astronomical tool as Einstein’s equations give

precise predictions for gravitational wave signals. Critical to their success is the

construction of an accurate catalog of gravitational waveform templates to be corre-

lated with collected data through a process known as matched filtering. Thus, one of

the most important goals of numerical relativity is the computation of gravitational

waveforms. Of the many potential generators of gravitational waves, compact binary

coalescences, which consist of a pair of Neutron stars and/or black holes inspiralling

and merging, are considered to be one of the most promising sources. When the

masses are nearly equal it is possible, although computationally expensive, to model

the entire inspiral, merger and ringdown phases with the Einstein equation. The

(generalized) Baumgarte–Shapiro–Shibata–Nakamura ([G]BSSN) system is one nu-



3

merically stable version of the Einstein equation we will consider. For extreme mass

ratio binary (EMRB) systems solving the full system currently impossible. Instead

we consider modeling the dynamics with a linearized Einstein equation in the form

of the Regge–Wheeler–Zerilli (RWZ) equations.

The GBSSN (2.91) and RWZ (2.38,2.45) equations are examples of hyperbolic

partial differential equations (PDEs), a particular classification to be considered in

Sec. 3.2. Although hyperbolic PDEs are frequently encountered throughout science,

there is no ‘one size fits all’ approach for their numerical simulation. An intelligent

choice of numerical scheme may depend on numerous considerations. Are the equa-

tions linear or non–linear? Are the solutions non–smooth, or might a non–smooth

feature develop? Are long time integrations needed? Is the geometry complicated

or simple? Some questions may be more practical. How many months or years will

it take to learn an existing code or develop a new one? With how much accuracy

can the experimental counterpart measure physical quantities of interest? Simply

by inspection, we note that the mathematical character of the GBSSN and RWZ

equation is somewhat different and furthermore these equations are often used to

describe different kinds of astrophysics. Thus we might expect different answers to

the aforementioned questions, and in particular the utility of discontinuous Galerkin

(dG) methods.

State of the art BSSN codes evolve nearly equal mass binary systems through

inspiral, merger and ringdown of the remnant single black hole using finite differ-

ence methods with mesh refinement [53, 26, 52, 119, 82, 206, 49, 160, 86]. While

these methods represent significant, and in fact ground breaking, progress of com-

putational general relativity, dG methods have the potential to offer unique bene-

fits for a wide class of problems. First, the high–order accuracy and robustness in

the presence shocks, a hallmark feature in hydrodynamical simulations, has been



4

extensively demonstrated [70, 121, 224, 240, 187, 139]. Very recently, spherically

symmetric general relativistic benchmark tests were performed and it was concluded

that “discontinuous Galerkin methods could represent a new paradigm for the accu-

rate numerical modeling in relativistic astrophysics” [189]. We wholeheartedly agree,

and the work carried out in Chapter 6 is in part motivated by the advantage of dG

methods to evolve both fluid and metric variables on the same computational grid

with high accuracy. Second, a subset of dG methods known as local discontinuous

Galerkin (LDG) methods provides a natural framework for stable discretization of

second order spatial operators. Einstein’s equations naturally feature second or-

der spatial derivatives, and discretizating an enlarged first order system results in

extra computational overhead associated with the expanded system, and will intro-

duce constraint violating auxiliary fields which may spoil numerical stability [212].

These issues are easily avoided by direly approximating the second-order operators.

Finally, for intermediate and extreme mass ratio systems there is typically a large

computational burden associated with the disparate length scales in the problem. To

date the most ambitious mass ratio attempted has been 1:100 [154], which required

significant computational resources and sampled a mere fraction of the dynamics.

However, this bottleneck is mostly an artificial one. It is well known that there is a

largest stable timestep associated with explicit numerical integration of a system of

equations in time. This is known as the Courant–Friedrichs–Lewy (CFL) condition.

Typically the step size scales with the grid spacing (a finite difference scheme) or

distance between quadrature points (a dG or pseudospectral scheme). The length

scale problem is then one of a stable timestep: if we have a region which needs to

be resolved by a very fine grid, the global stable timestep is set by this particular

region. Thus, when the mass ratios are large, the inefficiency of using a global ex-

plicit timestepping scheme can result in simulations running 102 - 107 times slower!

A typical dG construction offers a novel solution. As each element is evolved nearly
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independently we are free to choose different time integrators in different regions of

the grid, meaning we are no longer tied to a global CFL condition. It has been shown

that significant speedups are achievable with this approach [121, 105, 149].

Modeling EMRB systems with RWZ equations have historically relied on fre-

quency domain codes [201]. A Fourier transform in time results in a system of

ordinary differential equations (ODEs), and the source terms become a sum over

frequencies. Frequency–domain codes are known to be very efficient for circular or-

bits where, for a given spherical harmonic index, only a single frequency appears.

When the frequency spectrum is large (in the case of eccentric orbits) or contin-

uous (realistic inspiral orbits) these codes become increasingly inefficient [177, 24]

(see [125, 5, 23] for a recent revival of frequency–domain codes). Time–domain

codes overcome this difficulty by simultaneously solving for all modes. Yet with

time–domain approaches come a new set of issues such as potentially poor phase

resolution for long integrations, resolving the particle (formally a Dirac delta), and

minimizing artificial reflections from the outer physical boundary. Over the past

decade numerous time–domain schemes have appeared and significant progress has

been made [153, 204, 134, 61, 216, 229, 58]. Low–order methods have notoriously

poor phase resolution properties. In contrast, dG methods typically allow for very

good phase resolution. To treat the delta function some approaches, for example,

may feature replacement by narrowly peaked Gaussian and consequently suffer from

large oscillations and poor accuracy at the particle’s location. DG methods employ

a multi–domain setup and this allows for a domain matching technique to overcome

this difficulty. The key ingredient is that the singular δ-terms are taken into account

as an additional numerical flux term defined at domain interfaces. There is no longer

computational overhead in representing the particle and high accuracy is maintained

at the particle’s location. Boundary conditions, although not part of a method, per
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se, are an essential part of the RWZ initial boundary value problem. Using radiation

outer boundary conditions developed by Lau [143] our code is the first to remove

these artificial reflections.

The dG method is essentially unknown to the numerical general relativity com-

munity, but has been highly successful in the simulation of many other types of wave–

dominated problems, such as electromagnetic scattering [123, 121, 105, 122, 71, 72],

nonlinear hydrodynamics with Euler [70, 121, 224, 240, 187, 189] and Navier–Stokes

equations [121, 25, 150], and magnetohydrodynamics [131, 148, 230, 145]. In par-

ticular, it seems that the computational efficiency, the high-order accuracy, and the

general flexibility and robustness of dG methods could be fruitful for numerically

solving the types of problems one encounters in gravitational wave simulations. Such

simulations are often large and long–time problems, require good phase resolution,

and generically involve different length scales and shock formation. It is the aim of

this dissertation to begin migrating dG methods, which have been rapidly develop-

ing over the last decade in applied mathematics and engineering communities, to

computational general relativity. This dissertation represents initial work towards

this goal, and as such is mostly limited to systems which exhibit symmetries.

DG methods were first proposed by Reed and Hill in 1973 [191]. Nearly 20

years later stability for non–linear and time–dependent problems was demonstrated

in a series of papers by Cockburn and Shu [68, 70, 69]. By the late 1990’s a solid

foundation had been laid, and over the past decade significant theoretical and com-

putational progress has continued. Although dG methods are now well developed,

they are not as mature as more traditional finite difference, finite element, and finite

volume methods. Thus, we have found it necessary to engage in both the design-

ing of schemes as well as in their implementations. In the case of EMRB systems

the main obstacle was rewriting the wave–like equation in first order form and then
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treating a vectorized Dirac delta within a dG framework. Upon doing so we discov-

ered that the enlarged system may admit a persistent distributional “junk” solution

resulting from poor initial data, and Chapter 5 considers some consequences as well

as providing a simple remedy. For the GBSSN system identification of the correct

stabilizing numerical flux term was an essential step.

We begin in Chapter 2 by introducing the relevant differential geometry and nota-

tion needed to understand the physics. Next, perturbation theory of a non–spinning

black hole is developed and the inhomogeneous RWZ equations (2.38,2.38) are mo-

tivated. These equations will be used in modeling EMRB systems. In the remainder

of the chapter we return to the full Einstein equation, using a space+time decom-

position followed by a conformal–traceles decomposition to arrive at the numerically

stable GBSSN (2.6.3) system.

Additional introductory material is given in Chapter 3. We first define and

discuss strongly hyperbolic PDEs. Motivation for well–posedness and stability of

these systems, for both the continuum and semi–discrete problem, is also given.

These concepts play an important role in understanding the properties of a PDE as

well as informing the development of a numerical scheme. A nodal dG scheme is then

proposed for a strongly hyperbolic toy PDE and this procedure is later employed in

the discretization of both the RWZ (see Chapter 4) and GBSSN (see Chapter 6)

systems.

Both Chapters 4 and 5 are concerned with the RWZ equation. Our numerical

scheme, complete with radiation boundary conditions and waveform extraction, for

the RWZ equation is given in Chapter 4. We also provide greater detail on the

distributional source term and describe the RWZ equation as a first order system.

A series of code diagnostics verify the theoretical properties of the method, and
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we conclude the chapter by computing gravitational waveforms from circular and

eccentric orbits. Chapter 5 looks at consequences of commonly chosen trivial initial

data. We show such unphysical specification may lead to spurious solutions which

contaminate the physical solution indefinitely as well as dynamical junk solutions

which degrade accurate self–force computations. Using a new temporal smoothing

technique we demonstrate that both persistent and dynamic junk can be removed.

In Chapter 6 we present a dG method for evolving the spherically reduced GBSSN

system expressed in terms of second-order spatial operators. We discuss in detail

both our scheme for the BSSN system and its implementation. We also consider a

simple system which models the spherically reduced GBSSN system. This system is

crucial for understanding the role of the dG penalty parameters and for the observed

numerical stability, and an analytical proof that the model system is L2 semi-discrete

stable is given. We conclude the chapter by demonstrating our multi-domain method

achieves global spectral accuracy and long-time stability on short computational

domains.

A new opportunity offered by the dG method includes the utilization of a reduced

basis (RB) approach as an efficient tool for high–dimensional parameterized problems

ubiquitous in binary simulations. In Chapter 7 we switch gears a bit by offering a

preliminary report towards the development of dG-RB methods for gravitational

wave problems. In particular, we develop an algorithm that aims to construct a

compact reduced basis space from which a particular solution can be quickly and

accurately reconstructed. We apply the algorithm to compress the solution space of

analytic chirp gravitational waveforms. Our approach has immediate consequences

for gravitational wave searches, and we demonstrate improvement over the standard

approach. We conclude the section by revisiting the RWZ equation, and consider

possible extensions of the RB algorithm to our dG scheme.



Chapter Two

Formulations and Approximations

of General Relativity



10

2.1 Introduction

To motivate our problems of interest with sufficient background material, this chap-

ter introduces the relevant physics and differential geometry utilized throughout the

dissertation. Section 2.2 provides much of the essential differential geometry tools

needed while developing relevant notation and conventions. Einstein’s field equa-

tions are presented with some discussion in section 2.3. These equations admit

wave–like solutions and the basic features of these gravitational waves are outlined.

Historical and technical background of gravitational perturbation theory is given

in section 2.4. Extreme mass ratio binary (EMRB) systems are naturally described

within the perturbative framework and we will use the developed theory, in particular

the inhomogeneous Regge–Wheeler–Zerilli (RWZ) equations (2.38,2.38), to compute

metric perturbations from such systems. Returning to the full Einstein equations,

section 2.5 aims to express these as a Cauchy initial boundary value problem and

culminates in the Arnowitt–Deser–Misner (ADM) formulation. The resulting ADM

system (2.5.3) is poorly suited for numerical evolutions, and section 2.6 carries out a

conformal–traceless decomposition of the ADM variables leading to the generalized

Baumgarte–Shapiro–Shibata–Nakamura (GBSSN) system (2.6.3). Minor differences

between the GBSSN system used in this dissertation and the more common BSSN

system are highlighted throughout the section.

2.2 Differential Geometry and Conventions

LetM be a manifold equipped with a metric gαβ. More specifically, in the context of

general relativity, assume M is a 4–dimensional pseudo–Riemannian spacetime and

g has a (−,+,+,+) signature. Greek indices will range from 0 to 3, and Latin letters
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will range from 1 to 3. Each point p ∈M is endowed with a tangent space TpM and

a dual space T ∗
pM . We will denote vectors and dual vectors by their components,

V α and Vα respectively. Products of vectors, dual vectors, and vector/dual pairs are

preformed in the usual way,

< V,W >≡ g(V,W ) = gαβV
αW β = gαβVαWβ = VαW

α = V αWα. (2.1)

Here Einstein notation is used, that is repeated “dummy” indices are summed over

all possible values.

To ensure a covariant derivative of an arbitrary tensor transforms as a tensor, we

have the following general rule,

∇γT
α...
β... ≡ ∂γT

α...
β... + Γα

δγT
δ...
β... − Γδ

βγT
α...
δ... , (2.2)

and the metric connection coefficients are given in a coordinate basis by

Γα
βγ =

1

2
gαδ (gδβ,γ + gδγ,β − gβγ,δ) . (2.3)

This choice of connection leads to the well–known identities Γα
βδ = Γα

δβ and ∇γgαβ =

0. Comma and semi–colon notation will sometimes be used for partial and covariant

differentiation,

∂γT
α...
β... = T α...

β... ,γ (2.4)

∇γT
α...
β... = T α...

β... ;γ . (2.5)

Along with partial and covariant differentiation, we shall often compute the Lie
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derivative of a tensor field

LXT
α...
β... = Xγ∂γT

α...
β... − T γ...

β...∂γX
α + T α...

γ... ∂βX
γ (2.6)

= Xγ∇γT
α...
β... − T γ...

β...∇γX
α + T α...

γ... ∇βX
γ (2.7)

with respect to some vector field X = Xα∂α.

We will sometimes work with objects which are not tensors, but tensor densities.

A tensor density transforms like a tensor with an overall factor of a Jacobian J =

|∂xα/∂yβ| to some power W . For example, a tensor density of weight W transforms

as

T α...
β... = JW ∂yα

∂xγ
...
∂xδ

∂yβ
...T γ

δ . (2.8)

The covariant and Lie derivative of a tensor density is given by

∇γT
α...
β... = ∂γT

α...
β... + Γα

δγT
δ...
β... − Γδ

βγT
α...
δ... −WΓǫ

ǫγT
α...
β... (2.9)

LXT
α...
β... = Xγ∂γT

α...
β... − T γ...

β...∂γX
α + T α...

γ... ∂βX
γ +WT α...

β... ∂γX
γ (2.10)

= Xγ∇γT
α...
β... − T γ...

β...∇γX
α + T α...

γ... ∇βX
γ +WT α...

β...∇γX
γ . (2.11)

Unlike partial differentiation, covariant derivatives need not commute. The Rie-

mannian curvature tensor is an important quantity characterizing how covariant

derivatives fail to commute at a point p and is defined by 1

[∇α,∇β]Vδ ≡ VγR
γ
δβα ∀ Vδ ∈ T ∗

pM. (2.12)

1An alternative definition is [∇α,∇β ]V
δ ≡ V γRδ

γαβ . Using symmetry properties of the curva-
ture tensor and metric compatibility, these two definitions are identical.
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Rγ
δβα is the only tensor which can be built from no more than two derivatives of the

metric, and is linear in the second derivative [236]. Physically we may think of it as

an expression of the gravitational field, or more precisely the intrinsic curvature of

a manifold M . Noting that

[∇α,∇β]Vδ =
(

Vδ,β − Γγ
δβVγ

)

,α
− Γγ

βα

(

Vδ,γ − Γǫ
δγVǫ

)

− Γγ
δα

(

Vγ,β − Γǫ
γβVǫ

)

− (α ↔ β),

(2.13)

and using the symmetry relationship Γδ
αβ = Γδ

βα, the curvature tensor is given in a

coordinate basis by

Rγ
δβα = Γγ

δα,β − Γγ
δβ,α + Γǫ

δαΓ
γ
ǫβ − Γǫ

δβΓ
γ
ǫα. (2.14)

From the Riemannian curvature tensor, Rα
βδγ, we construct the Ricci tensor Rαβ ≡

Rδ
αδβ and scalar R ≡ gαβRαβ. The curvature tensor may be expressed with explicit

second derivatives of the metric plus lower order terms [236]. Contracting this form

of the curvature tensor in a coordinate basis yields a particularly useful expression

for the Ricci tensor [27]

Rαβ =
1

2
gδǫ (gδβ,αǫ + gαǫ,δβ − gδǫ,αβ − gαβ,δǫ) + gδǫ

(

Γγ
αǫΓγδβ − Γγ

αβΓγδǫ

)

, (2.15)

where Γαβδ ≡ gαǫΓ
ǫ
βδ.
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2.3 General Relativity

2.3.1 Einstein Field Equation

According to the theory of general relativity, in the presence of a stress–energy tensor

Tαβ the metric gαβ on M is given by Einstein’s equation

Gαβ ≡ Rαβ −
1

2
Rgαβ = 8π

G

c4
Tαβ. (2.16)

In 4 dimensions, this is a non–linear system of 16 coupled PDEs, 6 of which are

related by symmetry Gαβ = Gβα. As the Ricci tensor and scalar are built from

the metric, Einstein’s equation is in fact a second order PDE for gαβ and features

nonlinear products of the metric and its derivatives. In mks units the constant

G
c4

∼ 10−44s2m−1kg−1 coupling the stress–energy tensor to the metric suggests that

fast moving massive objects will be required to generate detectable gravitational

wave signals.

Exact solutions of Einstein’s equation have been found, yet typically this is only

possible for an idealized physical system (e.g. Schwarzschild and Kerr solutions being

two prominent examples). It is more common, especially in the context of realistic

astrophysical systems, that an exact solution is not known, and thus finding numer-

ical solutions become important. When an approximate solution has been found,

such as post–Newtonian gravitational waveforms, a numerical solution provides a di-

rect check that the approximations are acceptable. Recently, numerical simulations

have been used to calibrate semi–analytic models in the effective one body approach

[77, 174, 168, 18]. In short, numerical simulations are an important part of modern

research in both theoretical and experimental general relativity.
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The primary goal of numerical general relativity is to find a solution gαβ to

Eq. (2.16) for a given stress–energy tensor Tαβ. One approach, carried out in Sec. 2.4,

linearizes the Einstein equation around a background solution and then one computes

the metric perturbation. Another approach is to directly solve the fully non–linear

PDE. It turns out that Eq. (2.16) is not suitable for numerical implementation,

sections 2.5 and 2.6 are devoted to finding a suitable form.

2.3.2 Gravitational Waves

Regardless of the physical system under consideration or the relevant PDEs, the

motivation is typically the same: what are the emitted gravitational waveforms? To

answer this question we first discuss the general properties of these waves.

Consider weak field radiative solutions far from isolated sources so that, in a

Cartesian coordinate system, we may write

gαβ = ηαβ + hαβ (2.17)

where ηαβ = diag(−1, 1, 1, 1) is the Minkowski metric and hαβ is comparatively small.

Define the trace–reversed perturbation ĥαβ = hαβ − 1
2
ηαβh

µ
µ. One can show [163]

it is always possible to find a coordinate transformation such that ĥαβ is divergence

free ∇αĥ
αβ = 0, and the linearized Einstein equation becomes

∇µ∇µĥαβ = 0 (2.18)

a wave equation for the trace–reversed perturbation.

It is well known that the radiative part of the metric contains precisely two
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degrees of freedom, whereas a generic perturbation hµν has 10 independent compo-

nents. Clearly 8 components must contain unphysical information to be eliminated

by a smart choice of coordinates. The physical significance of the two radiative

modes becomes clear upon enacting a coordinate transformation which puts the per-

turbation hµν into the transverse traceless gauge. This gauge is in fact a sub–gauge

of the divergence free condition, meaning it further restricts the form of hµν while

keeping it divergence free. One can show it is always possible to construct such a

transformation [163] and the resulting tensor is spatial, divergence free, traceless,

and transverse to the direction of propagation [236, 163, 60]

h0ν = 0, hµν ;ν = 0, hµµ = 0, kµhµν = 0, (2.19)

where kµ denotes the direction of propagation. Note that some of these conditions

are redundant, since for radiation we expect hµν ∼ exp(−ikµxµ). Furthermore, as the

perturbation is traceless ĥαβ = hαβ. If k
µ = (1, 0, 0, 1) describes wavelike propagation

in the z direction, the restrictions demanded by (2.19) suggest we write hµν as

hµν =



















0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0



















. (2.20)

The plus h+ and cross h× modes encode fundamental degrees of freedom. A linear

combination

h(t) = F+(θ, φ, ψ)h+ + F×(θ, φ, ψ)h× (2.21)

will be directly measured by gravitational wave detectors, where (θ, φ) depend on the

direction of the source and ψ depends on the orientation of the polarizations [220, 14].
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It would not be an overstatement to suggest that, perhaps, one of the most important

roles of numerical relativity is computing the plus and cross polarizations.

2.4 Gravitational Perturbation Theory for Non–

Spinning Black Holes

The theory of Schwarzschild perturbations is well studied, and begins in 1957 with

pioneering investigations of Regge and Wheeler [192]. Their work focused on the

linear stability of the Schwarzschild solution written in the usual coordinates, which

led them to develop the now standard framework for treating metric perturbations

about a spherically symmetric spacetime. The approach consists of decomposing the

perturbations into tensor spherical harmonics, which naturally split into axial (a.k.a.

odd) and polar (a.k.a. even) parity sectors. A particular linear combination of the

expansion coefficients, known as a master function, is then shown to satisfy a second

order wave equation with an effective potential. Although Regge and Wheeler were

unable to construct a master function for the polar parity sector [192], the technique

proved to work here as well. This seminal work led to generations of research in

gravitational perturbation theory.

The decades following 1957 played host to a series of important developments.

We will now briefly summarize the most important and relevant advances, often fo-

cusing on those works which contributed to the ideas and techniques employed in

this dissertation. Linear stability near the event horizon was conclusively demon-

strated in 1970 by Vishveshwara [225] who worked in horizon penetrating Kruskal

coordinates which were discovered a few years earlier [141]. In the same year, Zerilli

constructed a master function and effective potential for the polar parity pertur-
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bations [238]. Shortly thereafter, a new master function for the polar and axial

perturbations were introduced by Moncrief [164] and Cunningham, Price, and Mon-

crief [73] respectively. These master functions are, up to a normalization constant,

the preferred choice of modern treatments. The general theory was presented in

a gauge–invariant framework by Moncrief in 1974 [164], and extended to a covari-

ant and gauge–invariant formulation in 1980 by Gerlach [103]. Metric perturbations

driven by dynamical matter fields where computed for collapsing stars [73, 74] and

for the radial plunge of a compact object into the Schwarzschild black hole [239].

By considering second order perturbations, investigations into the nonlinear stabil-

ity of the Schwarzschild solution were initiated by Tomita [222, 223]. Within the

perturbation formalism the possibility of constructing a well defined average energy

due to gravitational waves was recognized by Brill and Hartle [39]. Their insight

was placed on a rigorous footing by Isaacson with the introduction of an effective

gravitational wave stress–energy tensor [128, 129]. Thorne [219], Poisson [159, 177],

Martel [157], and Brizuela [40] provided thorough treatments of the radiation field

and associated energy and angular momentum luminosities. Perturbative treatments

of the Kerr and Reissner-Nordström metrics were considered by Moncrief [165, 166]

and Teukolsky [221] respectively.

Recent developments are primarily driven by the community’s goal to compute

gravitational waveforms suitable for gravitational wave data analysis. Such wave-

forms must achieve an accuracy suitable for searching the data for a signal, mean-

ingful parameter estimation, and precision tests of general relativity. It is important

to identify and distinguish two very different sources of error which could lead to

poor waveforms: numerical errors and modeling errors. For the present discussion

we might be concerned that the linearized theory will introduce unacceptably large

model errors. This is indeed the case when dealing with EMRB systems. As energy
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is removed from the system via gravitational wave emission the smaller compact

object will slowly inspiral and merge with the supermassive black hole. This phe-

nomenon, known as radiation reaction, leads to a secular change in the characteristic

frequency of the emitting system. Order of magnitude estimates suggest the phase

slip between a waveform incorporating and neglecting this feature will be large on

timescales of interest [79]. We are forced to conclude that waveforms which do not

account for radiation reaction will result in a significantly reduced signal to noise

ratio when data searches are performed. In the context of EMRB systems, a fully

consistent second order (in perturbation theory) gravitational waveform from EMRB

systems, so–called Capra waveforms, will include radiation reaction as well as other

corrections which occur at second order.

This dissertation makes progress towards accurate and efficient computation of

Capra waveforms by developing novel numerical methods for the physical problem

at hand. Chapters 4 and 5, part of the original work of this dissertation, aims at

reducing the numerical errors which would otherwise corrupt the suitability of Capra

waveforms for data analysis regardless of the model’s accuracy. Numerical errors can

be just as dangerous as modeling errors. Comments about such errors are reserved

for later.

Motivated by considerations above, we note a few recent developments of per-

turbation theory which are important for Capra waveforms. A complete covariant

and gauge invariant formalism within the master function framework was provided

by Sarbach and Tiglio [195]. Their work was later extended by Poisson and Martel

to include covariant source terms arising from a stress–energy tensor [159]. Sec-

ond order perturbations were further studied by Gleiser et al [104], and a gauge–

invariant formalism for arbitrary second–order master functions was presented by

Brizuela, Martin–Garcia, and Tiglio [40]. Barack and Lousto reformulate the theory
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of Schwarzschild black hole perturbations driven by compact objects in the Lorenz

gauge [20], which is advantageous for self–force2 computations. Computing self–force

corrections to a perturbing particle’s geodesic orbit (to be discussed in Sec. 2.4.5) is

an active area of research which comprises a major portion of current developments

in perturbation theory.

The next few sections provide a brief introduction to the historied subject of

Schwarzschild perturbation theory. We will focus on linear perturbations and later

make use of our discussion in Chapters 4 and 5 when we numerically solve for

the gravitational perturbations from EMRB systems. For additional discussion on

Schwarzschild perturbations, we point the reader to any of the above references, in

particular Refs. [192, 159, 204, 157]. The classic monograph by Chandrasekhar [62]

gives a thorough description of gravitational perturbation theory up through the

1990’s.

2.4.1 Problem Setup

In the standard (t, r, θ, φ) coordinates, the Schwarzschild line–element reads

gSchαβ dx
αdxβ = gABdx

AdxB + r2Ωabdx
adxb = −fdt2 + f−1dr2 + r2dΩ2, (2.22)

where f ≡ 1−2M/r and Ωab is the metric of the unit–radius round sphere; explicitly

dΩ2 = dθ2 + sin2 θdφ2. We will use the convention that upper case Latin indices run

over (t, r) whereas lower case run over (θ,φ).

2The self–force is the instantaneous acceleration a compact object experiences due to its own
metric perturbations. Objects experiencing a self–force will not execute geodesic motion of the
background spacetime.
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Assume the total metric may be written as a small perturbation hαβ to the

background metric gSchαβ such that3

gαβ = gSchαβ + hαβ. (2.23)

Equations describing the metric perturbations are found by working to first order in

hαβ. For example, the inverse metric is gαβ = gαβSch − hαβ because to first order in

h we have gαǫgǫβ = (gαǫSch − hαǫ)
(

gSchǫβ + hǫβ
)

= δαβ. In this short computation we

have employed the convention of simply dropping terms proportional to O(h2) when

they arise. As a corollary tensors proportional to hαβ will have their indices raised

and lowered using the unperturbed metric, which suggests we may interpret hαβ as a

tensor field evolving on the background spacetime. Starting with Eqs. (2.3,2.14,2.16),

a straightforward computation yields the perturbed connection, Ricci tensor, and

Einstein tensor

δΓα
βγ =

1

2
gανSch (hβν;γ + hγν;β − hβγ;ν) (2.24)

δRµν = δΓβ
µν;β − δΓβ

µβ;ν (2.25)

δGµν = δRµν −
1

2
gSchµν δR, (2.26)

where δR = gαβSchδRαβ and covariant derivatives are taken with respect to gSchαβ ,

although using gαβ clearly gives the same (first order) result. Although the back-

ground connection is not a tensor its first order variation is, and hence the covariant

derivative of δΓα
βδ is well defined. To derive the perturbed Einstein equation δGµν

we have used the fact that when the background stress–energy tensor vanishes the

3At this stage it is important to realize the theory’s gauge freedom has not yet been fixed even
though the background coordinates have been. Physically equivalent spacetimes are related by
coordinate transformations (xα)new = (xα)old + ǫα obeying ǫα;β ≤ hαβ . This observation is simply
a consequence of covariance, the transformation rule hnew

αβ = hold
αβ −∇αǫβ−∇βǫα, and the condition

that in a new coordinate system the perturbations must remain small. A good discussion of this
topic is found in Ref. [60].
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background Ricci tensor and scalar vanishes as well. As

Gµν

(

gSchαβ + hαβ
)

= Gµν

(

gSchαβ

)

+ δGµν (hαβ) = δGµν (hαβ) , (2.27)

the metric perturbations are determined from δGµν alone.

Assume the perturbing stress-energy tensor T µν is due to the presence of a point

particle of mass mp << M ,

T µν = mp

∫

1
√

−gSch
uµuνδ4(zα − zαp (τ))dτ. (2.28)

In this expression we have introduced the proper time τ , the particle’s path zαp (τ),

the particle’s four-velocity uαp =
dzαp
dτ

, and the coordinate Dirac delta function δ4. The

linearized Einstein field equations for hαβ become

δGµν = 8πTµν (2.29)

and we expect that hαβ ∝ Tαβ ∝ mp, thereby justifying T µν as a source for linear

perturbations when mp << M .

In principle we have our perturbation equations for hαβ, yet further simplifications

are possible. First note that we have not specified a gauge condition. In particular,

working in the Regge-Wheeler gauge allows many components of hαβ to be set to zero.

Furthermore, we will exploit the spacetime’s spherical symmetry by decomposing

the metric perturbations into a complete orthogonal basis of scalar, vector, and

tensor spherical harmonics defined on the two–sphere. These harmonics transform

as either (−1)ℓ (polar parity) or (−1)ℓ+1 (axial parity) under parity transformations,

corresponding to the simultaneous replacements φ→ π+φ and θ → π−θ in spherical

coordinates. Thus, the metric perturbations are naturally organized according to
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their (ℓ,m) and parity family

hℓmαβ = hℓm,P
αβ + hℓm,A

αβ (2.30)

hαβ =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

hℓmαβ . (2.31)

This dissertation focuses on ℓ ≥ 2 metric perturbations4 resulting from a stress–

energy tensor of the form (2.28). Nevertheless, we will not assume that form for T µν

in this section. The perturbation equations of Sec. 2.4.2 and 2.4.3 are general, and

the source terms which arise from a non–zero stress–energy tensor will be left opaque

until Chapter 4. In what follows let x denote the tortoise coordinate

x = r + 2M ln
( r

2M
− 1
)

. (2.32)

For notational brevity, multipole (ℓ,m) labels are suppressed when they are clear

from context.

2.4.2 Polar Perturbations

To decompose the polar perturbations, we first introduce the polar spherical har-

monics

Y ℓm, Y ℓm
a = Y ℓm

:a , Y ℓm
ab = Y ℓmΩab, Zℓm

ab = Y ℓm
:ab +

ℓ(ℓ+ 1)

2
Y ℓmΩab, (2.33)

where Y ℓm(θ, φ) are the ordinary scalar harmonics and a colon indicates covari-

ant differentiation compatible with Ωab. Y ℓm(θ, φ) solves the eigenvalue problem

4The lower multipoles are not radiative and can be treated analytically [239].
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ΩabY ℓm
:ab = −ℓ(ℓ+ 1)Y ℓm, and a discussion of their utility may be found in any book

on analytic solutions to spherically symmetric PDEs, for example [130]. The polar

tensor harmonics are explicitly constructed in [159, 103, 219], and their orthogonality

relations are

∫

Y ℓmȲℓ′m′dΩ = δℓℓ′δmm′ (2.34a)
∫

Y ℓm
a Ȳ a

ℓ′m′dΩ = ℓ(ℓ+ 1)δℓℓ′δmm′ (2.34b)
∫

Y ℓm
ab Ȳ

ab
ℓ′m′dΩ = 2δℓℓ′δmm′ (2.34c)

∫

Zℓm
ab Z̄

ab
ℓ′m′dΩ =

1

2

(ℓ+ 2)!

(ℓ− 2)!
δℓℓ′δmm′ (2.34d)

where the bar denotes complex conjugation.

The polar harmonics form a complete basis for any rank 0, 1, or 2 tensor that

transforms with polar parity. By considering the transformation properties of hℓmαβ

under rotations5 and parity, the polar perturbations are expanded as

hPAB =
∞
∑

ℓ≥2

ℓ
∑

m=−ℓ

pℓmABY
ℓm (2.35a)

hPAb =
∞
∑

ℓ≥2

ℓ
∑

m=−ℓ

pℓmA Y ℓm
b (2.35b)

hPab = r2
∞
∑

ℓ≥2

ℓ
∑

m=−ℓ

KℓmY ℓm
ab +GℓmZℓm

ab , (2.35c)

where the newly defined fields are functions of t and r. It was noticed that a suitable

coordinate (i.e. gauge) transformation, known as the Regge–Wheeler gauge, allows

us to specify pℓmA = Gℓm = 0 [192]. The remaining harmonic coefficients pℓmAB and

Kℓm are recovered by substituting (2.35) into (2.29) and using the orthogonality

5Subject to the assumption of spherical symmetry, the class of rotations under consideration are
of the form θnew = f(θ, φ) and φnew = g(θ, φ) for a suitable choice of f and g.
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relations of the polar harmonics. The result is a system of coupled PDEs for each

(ℓ,m) mode [159]6

Qtt = −K,rr −
3r − 5M

r2f
K,r +

f

r
prr,r +

(λℓ + 2) r + 4M

2r3
prr +

nℓ

r2f
K (2.36a)

Qtr = K,tr +
r − 3M

r2f
K,t −

f

r
prr,t −

λℓ
2r2

ptr (2.36b)

Qrr = −K,tt +
(r −M)f

r2
K,r +

2f

r
ptr,t −

f

r
ptt,r

+
λℓr + 4M

2r3
ptt −

f 2

r2
prr −

nℓf

r2
K (2.36c)

Qt = prr,t − ptr,r +
1

f
K,t −

2M

r2f
ptr (2.36d)

Qr = −ptr,t + ptt,r − fK,r −
r −M

fr2
ptt +

(r −M)f

r2
prr (2.36e)

Q♭ = −prr,tt + 2ptr,tr − ptt,rr −
1

f
K,tt + fK,rr +

2(r −M)

fr2
ptr,t

+
3M − r

fr2
ptt,r +

(M − r)f

r2
prr,r +

2(r −M)

r2
K,r

+
λℓr

2 − 2 (2 + λℓ)Mr + 4M2

2f 2r4
ptt −

λℓr
2 − 4nℓMr − 4M2

2r4
prr (2.36f)

Q♯ =
1

f
ptt − fprr, (2.36g)

where we have defined nℓ = (ℓ+ 2)(ℓ− 1)/2 and λℓ = ℓ(ℓ+ 1) = 2(nℓ + 1), and the

Q’s are projections of the stress-energy tensor onto the polar spherical harmonics

[159].

The metric perturbations are clearly tensorial, nevertheless, they can be recon-

6The linearization (2.23) does not assume a particular gauge, while equations (2.36) hold in the
Regge–Wheeler gauge. It turns out that KRW = K and pRWAB = pAB , and so we will continue using
K and pAB with the understanding that we have chosen the Regge-Wheeler gauge. It is possible
to express the perturbations as gauge invariant combinations, and the result is system (2.36) after

making the replacement K → KGauge−Invariant and pAB → pGauge−Invariant
AB . We do not explore this

freedom here.
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structed from the Zerilli-Moncrief master function

ΨZM =
r

nℓ + 1

(

K +
f 2

Λℓ

prr −
fr

Λℓ

K,r

)

, (2.37)

where Λℓ = nℓ + 3M/r and we continue to suppress (ℓ,m) labels for the fields. One

can show ΨZM is a scalar under general coordinate transformations and gauge invari-

ant under infinitesimal ones [159]. Definition (2.37) agrees, up to minor notational

discrepancies, with modern treatments such as [159, 204, 151, 152, 89], and differs

by a time derivative from Zerilli’s original master function [239] and by an overall

factor from Moncrief’s [164]. Remarkably, the polar master function is governed by

a forced scalar wave equation with the following form

− ∂2tΨ
ZM + ∂2xΨ

ZM − V Z
ℓ Ψ

ZM = SZM
ℓm (t, r), (2.38a)

V Z
ℓ (r) =

2f(r)

(nℓr + 3M)2

[

n2
ℓ

(

1 + nℓ +
3M

r

)

+
9M2

r2

(

nℓ +
M

r

)]

. (2.38b)

The source term’s label highlights its generic dependence. In particular, SZM
ℓm is built

from linear combinations of the Q’s (see Sec. 4.2.2) and crucially depends on the

chosen master function. When the stress–energy tensor’s form is given by Eq. (2.28)

we expect SZM
ℓm to be distributional.

Each modeK, prr, ptt, and prt may be reconstructed from ΨZM and its derivatives,

thus demonstrating that the master function contains all physical information about

the metric perturbations hℓm,P
αβ . Using Eq. (2.37) we express prr and ∂rprr in terms

of ΨZM, K, and their derivatives. Upon substituting these expressions into Qtt, one

discovers that all terms proportional to ∂rK and ∂2rK cancel, leaving behind an

equation for K. Then prr is found from the definition of ΨZM. The Q♯ and Qtr
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components readily give ptt and prt respectively. The result is:

K = fΨZM
,r +

rλℓΛℓ − 6Mf

2Λℓr2
ΨZM − 2r2f 2

λℓΛℓ

Qtt (2.39a)

prr =
Λℓλℓ
2rf 2

ΨZM − Λℓ

f 2
K +

r

f
K,r (2.39b)

ptt = f 2prr + fQ♯ (2.39c)

prt =
2r2

λℓ
K,tr +

2(r − 3M)

fλℓ
K,t −

2fr

λℓ
prr,t −

2r2

λℓ
Qtr. (2.39d)

We refer to Eqs. (2.39) as the polar metric reconstruction equations, and they hold

only in the Regge–Wheeler gauge.

Having an explicit relationship between the master function ΨZM and the metric

perturbations is both satisfying and useful. For example, the reconstruction equa-

tions are needed to compute self–force corrections to the particle’s geodesic motion

and can be used to define waveforms at future null infinity after a suitable gauge

transformation has been enacted. Notice that the metric reconstruction equations

feature ΨZM, ∂tΨ
ZM, and their spatial derivatives. Therefore, any numerical scheme

which promotes ∂tΨ
ZM to an evolutionary variable will not have to compute a cum-

bersome and potentially inaccurate time derivative – which would typically require

saving time histories and performing finite difference operations. Spatial derivatives

are comparatively easy to compute, and for our numerical scheme accurate as well.

2.4.3 Axial Perturbations

To decompose the axial perturbations, we first introduce the axial spherical harmon-

ics. With ǫab the unit–sphere Levi–Civita tensor such that ǫθφ = − sin θ, the axial
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spherical harmonics are

Xℓm
a = ΩbcǫabY

ℓm
:c , Xℓm

ab =
1

2

(

Xℓm
a:b +Xℓm

b:a

)

, (2.40)

where a colon indicates covariant differentiation compatible with Ωab and Y
ℓm(θ, φ)

are discussed in Sec. 2.4.2. The axial tensor harmonics are explicitly constructed in

[159, 103, 219], and their orthogonality relations are

∫

Xℓm
a X̄a

ℓ′m′dΩ = ℓ(ℓ+ 1)δℓℓ′δmm′ (2.41a)

∫

Xℓm
ab X̄

ab
ℓ′m′dΩ =

1

2

(ℓ+ 2)!

(ℓ− 2)!
δℓℓ′δmm′ (2.41b)

where the bar continues to denote complex conjugation.

The axial harmonics form a complete basis for any rank 1 or 2 tensor which

transforms with axial parity. By considering the transformation properties of hℓmαβ

under rotations and parity, the axial perturbations as are expanded as

hABC = 0 (2.42a)

hABc =
∞
∑

ℓ≥2

ℓ
∑

m=−ℓ

qℓmB Xℓm
c (2.42b)

hAbc =
∞
∑

ℓ≥2

ℓ
∑

m=−ℓ

qℓm2 Xℓm
bc , (2.42c)

where the newly defined fields are functions of t and r. It was noticed that a suitable

coordinate (i.e. gauge) transformation will annul the angular hAbc perturbations [192].

Therefore, working in the Regge-Wheeler gauge allows us to set qℓm2 = 0. The

remaining harmonic coefficient qℓmB can now be recovered by substituting (2.42) into

(2.29) and using the orthogonality relations of the axial harmonics. The result is a
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system of coupled PDEs for each (ℓ,m) mode [159]7

P t = −qr,tr + qt,rr −
2

r
qr,t −

λℓr − 4M

r3f
qt (2.43a)

P r = qr,tt − qt,tr +
2

r
qt,t +

2nℓf

r2
qr (2.43b)

P = − 1

f
qt,t + fqr,r +

2M

r2
qr, (2.43c)

where the P ’s arise from projections of the stress–energy tensor onto the axial spher-

ical harmonics and are computed in Sec. 4.2.3.

The metric perturbations are clearly tensorial, nevertheless, they can be recon-

structed from the Cunningham-Price-Moncrief master function

ΨCPM =
r

nℓ

(

qt,r − qr,t −
2

r
qt

)

. (2.44)

One can show ΨCPM is a scalar under general coordinate transformations, and gauge

invariant under infinitesimal ones [159]. Definition (2.44) agrees, up to minor nota-

tional discrepancies, with modern treatments such as [133, 159, 204, 151, 89], while

differing from older discussions by either a time derivative [192, 239, 164] or an over-

all factor from Cunningham et al [73]. It was recognized by Tanaka and Jhingan

[133] that ΨCPM is a particularly useful choice when one wishes to reconstruct the

metric perturbations from algebraic combinations of the master function as opposed

to integral relations which arise when using Regge and Wheeler’s original master

function [192]. Although they worked in the frequency domain, their insight proves

useful here as well. Remarkably, the axial master function is governed by a forced

7The linearization (2.23) does not assume any particular gauge choice, while equations (2.43)
hold in the Regge–Wheeler gauge. It turns out that qRWB = qB , and so we will continue using qB
with the understanding that we have chosen the Regge-Wheeler gauge. It is possible to express
the perturbations as gauge invariant combinations, and the result is system (2.43) after making the

replacement qB → qGauge−Invariant
B . We do not explore this freedom here.
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scalar wave equation with the following form

− ∂2tΨ
CPM + ∂2xΨ

CPM − V RW
ℓ ΨCPM = SCPM

ℓm (t, r), (2.45a)

V RW
ℓ (r) =

f(r)

r2

[

ℓ(ℓ+ 1)− 6M

r

]

. (2.45b)

The source term’s label highlights its generic dependence. In particular, SCPM
ℓm is

built from a linear combination of the P ’s (see Sec. 4.2.3) and crucially depends

on the chosen master function. When the stress–energy tensor’s form is given by

Eq. (2.28) we expect SCPM
ℓm to be distributional.

Each mode qr and qt may be reconstructed from ΨCPM and its derivatives, thus

demonstrating that the master function contains all physical information about the

metric perturbations hℓm,A
αβ . To find qr use the P r component of the field equations

and ∂tΨ
CPM. qt can be recovered by using the linear combination rΨCPM

,r +ΨCPM to

change ∂rqt into ∂tqr. The P
t component readily gives qt. The result is:

qr =
r

2f
ΨCPM

,t +
r2

2nℓf
P r (2.46a)

qt =
f

2

(

rΨCPM
,r +ΨCPM

)

− r2f

2nℓ

P t, (2.46b)

where we have made use of the simplifying relation 2nℓr
2f

λℓr−4M−2rf
= rf . We will refer to

Eqs. (2.46) as the axial metric reconstruction equations. Like much of this section,

the utility and applicability of the axial metric reconstruction equations parallels the

polar case which is discussed at the end of Sec. 2.4.2.
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2.4.4 Perturbations at the Event Horizon and Future Null

Infinity

The perturbative framework developed in the proceeding sections can be used to

compute gravitational waveforms expected to be observed at space and ground based

gravitational wave observatories. Consider the gravitational radiation field far from

the isolated sources. In Sec. 2.3.2, we considered the transverse traceless gauge as an

appropriate setting for describing gravitational radiation. In a spherical coordinate

system with waves propagating along a radial direction the corresponding plus h+ ≡

hθθ/r
2 and cross h× ≡ hθφ/

(

r2 sin2 θ
)

modes are defined to have the correct O(r−1)

asymptotic behavior.

Our numerical scheme solves the RWZ wave equations (2.45,2.38) for ΨCPM and

ΨZM, and so we seek h+ and h× in terms of polar and axial master functions. First

notice that the Regge–Wheeler gauge is not appropriate for this task. Harmonic

coefficients of Zab and Xab, which are precisely the traceless part of the radiation

field, are identically set to zero G = q2 = 0. In fact, one can show the harmonic

coefficients do not have the correct asymptotic behavior for radiation in the Regge–

Wheeler gauge [40]. Fortunately, the master functions are gauge invariant and in a

suitable radiation gauge one can deduce the radiative perturbations to be [159, 40]

hℓm,P
ab = rΨZM

ℓm Z
ℓm
ab , hℓm,A

ab = rΨCPM
ℓm Xℓm

ab . (2.47)

This asymptotic result formally holds at future null infinity, although practically we

are not able to evaluate our master functions there. The full metric perturbations
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are then

hab = r
∞
∑

ℓ≥2

ℓ
∑

m=−ℓ

(

ΨZM
ℓm Z

ℓm
ab +ΨCPM

ℓm Xℓm
ab

)

, (2.48)

with plus and cross modes given by

h+ =
1

r

∞
∑

ℓ≥2

ℓ
∑

m=−ℓ

(

ΨZM
ℓm Z

ℓm
θθ +ΨCPM

ℓm Xℓm
θθ

)

(2.49)

h× =
1

r sin2 θ

∞
∑

ℓ≥2

ℓ
∑

m=−ℓ

(

ΨZM
ℓm Z

ℓm
θφ +ΨCPM

ℓm Xℓm
θφ

)

. (2.50)

Notice that Eq. (2.48) implies O(r) asymptotic behavior, corresponding to the ex-

pected O(r−1) fall–off in an asymptotically Cartesian coordinate system.

Gravitational radiation will remove energy and angular momentum from the

system. Where does it go? Some is transferred to the black hole and some escapes to

future null infinity. From the metric perturbations we compute the energy contained

in the gravitational radiation field by using Isaacson’s effective stress–energy tensor

[128, 129], given in the transverse traceless gauge by [163]

TGW
αβ =

1

32π
〈∇αhµν∇βh

µν〉

=
1

32π
〈gǫµSchg

γν
Sch∇αhµν∇βhǫγ〉 . (2.51)

Brackets are a reminder to average ∇αhµν∇βh
µν over a volume of spacetime larger

than the characteristic lengthscale of the wave. TGW
αβ is a perfectly reasonable stress–

energy tensor when the perturbations are small and the characteristic wavelength of

the gravitational radiation λGW is much shorter than the typical lengthscale on which

curvature quantities vary R. We speak of the short wavelength (often known as high

frequency) approximation when λGW << R. A non–vanishing invariant curvature
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scale is provided by the Kretschmann invariant RαβδγR
αβδγ ∝ M2/r6, or in units

of length
(

RαβδγR
αβδγ

)−1/4 ∝ r3/2M−1/2. As a specific example of relevance, when

the background is flat R is infinite. The Schwarzschild solution, the background

considered in this dissertation, is asymptotically flat in the limit r → ∞, thus TGW
αβ

is well motivated in that limit. Intuitively, the short wavelength approximation

is appropriate for radiation; far from isolated sources the gravitational radiation

varies rapidly over typical lengthscales on which the background changes. Under this

assumption and small perturbations one can show TGW
αβ obeys the “conservation” law

[163, 128, 129, 236]

∇αT
αβ
GW = 0, (2.52)

from which we can compute energy and angular momentum luminosities.

At a fixed t we seek the instantaneous energy flux through a two–sphere of large

radius. Assume the two–sphere is the boundary of a hypersurface Σ and define

E∞ =
∫

Σ
T t

t

√

−gSchd3x, where we have temporarily dropped the ‘GW’ label. Let

V α be a Killing vector field. Together Killing’s equation ∇αVβ = −∇βVα and the

symmetry of T αβ imply

Vβ∇αT
αβ = ∇α

(

V βT α
β

)

= 0. (2.53)

If V α = (1, 0, 0, 0) is the timelike Killing field, then by Gauss’ theorem

∫

Σ

∇αT
α
t

√

−gSchd3x =

∫

Σ

∂α

(

√

−gSchT α
t

)

d3x

=

∫

Σ

∂tT
t
t

√

−gSchd3x+ r2
∫

∂Σ

T r
tdΩ. (2.54)
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The time component of conservation law becomes

Ė∞ = −r2
∫

∂Σ

T rtdΩ, (2.55)

where the flat metric is used to raise indices at a large radius. In the distant wavezone

the gravitational radiation is a function of retarded time u = t− r, and thus ∂th =

−∂rh. This insight allows us to trade radial for time derivatives, and the energy

luminosity becomes

Ė∞ = r2
∫

∂Σ

T ttdΩ. (2.56)

Evaluating the time–time component of Eq. (2.51) produces

Ė∞ =
1

32πr2

∫

∂Σ

〈

ΩaeΩbd∂thab∂thed
〉

dΩ

=
1

32π

∫

∂Σ

〈 ∞
∑

ℓ≥2

ℓ
∑

m=−ℓ

(

Ψ̇ZM
ℓm Z

ℓm
ab + Ψ̇CPM

ℓm Xℓm
ab

)

×

∞
∑

ℓ′≥2

ℓ′
∑

m′=−ℓ′

(

˙̄ΨZM
ℓ′m′Z̄ab

ℓ′m′ + ˙̄ΨCPM
ℓ′m′ X̄ab

ℓ′m′

)

〉

dΩ

=
1

64π

∞
∑

ℓ≥2

ℓ
∑

m=−ℓ

(ℓ+ 2)!

(ℓ− 2)!

〈

|Ψ̇ZM
ℓm |2 + |Ψ̇CPM

ℓm |2
〉

=
∞
∑

ℓ≥2

ℓ
∑

m=−ℓ

Ė∞
ℓm, (2.57)

where we have defined the energy in each mode

Ė∞
ℓm =

1

64π

(ℓ+ 2)!

(ℓ− 2)!

〈

|Ψ̇ZM
ℓm |2 + |Ψ̇CPM

ℓm |2
〉

. (2.58)

Ė∞ is the gravitational energy luminosity computed at future null infinity. Bracket

averaging is accomplished by time averaging Ψ at a fixed radial location for long

time intervals. In practice, the averaging is done over some integer multiple of the
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longest timescale associated with the wave. Similarly, one computes the gravitational

angular momentum luminosity in each mode

L̇∞
ℓm =

im

64π

(ℓ+ 2)!

(ℓ− 2)!

〈

Ψ̇ZM
ℓm Ψ̄ZM

ℓm + Ψ̇CPM
ℓm Ψ̄CPM

ℓm

〉

(2.59)

as well as the total

L̇∞ =
∞
∑

ℓ≥2

ℓ
∑

m=−ℓ

L̇∞
ℓm (2.60)

at future null infinity via the master functions [157, 159, 219, 40].

Although gravitational wave experiments are unable to directly access informa-

tion near the event horizon, it is nonetheless interesting and important to compute

the energy and angular momentum transfered to the Schwarzschild black hole. In

the case of EMRB systems this loss contributes to the compact object’s inspiral.

Any radial null geodesic, such as gravitational radiation, will be blueshifted as it

falls into the black hole, λGW → 0 as r → 2M in Schwarzschild coordinates. We

conclude Isaacson’s short wavelength approximation is valid near the event horizon

despite the invariant background lengthscale being O(M). Our discussion at future

null infinity applies, and the final result is identical to those luminosity expressions

ĖBH
ℓm =

1

64π

(ℓ+ 2)!

(ℓ− 2)!

〈

|Ψ̇ZM
ℓm |2 + |Ψ̇CPM

ℓm |2
〉

(2.61a)

L̇BH
ℓm =

im

64π

(ℓ+ 2)!

(ℓ− 2)!

〈

Ψ̇ZM
ℓm Ψ̄ZM

ℓm + Ψ̇CPM
ℓm Ψ̄CPM

ℓm

〉

, (2.61b)

where all quantities are to be evaluated at r = 2M . A rigorous treatment of the event

horizon with Eddington–Finkelstein coordinates is carried out in Ref. [177, 159, 157],

where exactly expressions (2.61a,b) are derived.
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By combining the above formulas, the net energy and angular momentum lumi-

nosity of the gravitational radiation is

ĖGW = ĖBH + Ė∞, L̇GW = L̇BH + L̇∞. (2.62)

Each equation holds for a particular choice of (ℓ,m) mode as well.

2.4.5 Motion of the Compact Object

Timelike Geodesics of Schwarzschild

To complete the problem’s description we specify the stress–energy tensor (2.28) by

fixing the particle’s trajectory zµp (τ), our approach follows the standard arguments

[62, 163, 60]. Recall zµp (τ) = (tp(τ), rp(τ), θp(τ), φp(τ)) is the parameterization of

the particle’s four–trajectory in terms of proper time τ . Owing to the spherical

symmetry of the line–element, we may assume, without loss of generality, that the

particle trajectory lies in the equatorial plane θp(τ) = π/2. Existence of a Killing

vector V α implies a component of the particle’s 4–velocity Vαu
α
p is conserved along

the particle’s path (see problem 10.10 of Ref. [146]). ∂t and ∂φ are two such Killing

vectors, and their associated conserved quantities are interpreted as the particle’s

energy per unit mass, Ep = futp, and angular momentum per unit mass, Lp = r2uφp .

The radial velocity urp is obtained by normalizing the 4–velocity to unity (when

working in unit mass), which is also a constant of geodesic motion. Then the four–

velocity uµp = dzµp /dτ components are:

utp = Ep/f(r),
(

urp
)2

= E2
p − f(r)

(

1 + L2
p/r

2
)

, uθp = 0, uφp = Lp/r
2. (2.63)
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Given appropriate initial conditions and choice for the set (Ep, Lp), these ODEs

may be integrated to give zµp (τ). Details on this procedure as well as conditions for

bounded orbits are provided in Sec. 4.2.1.

Orbits Perturbed by a Self–force

Schwarzschild geodesics correctly describe the small compact object’s motion in the

limitmp/M → 0. However, in the presence of metric perturbations the full spacetime

is gSchαβ + hαβ and thus the particle’s motion will not be given by (2.63). Instead, the

particle will experience a local self–force (i.e. accelerated motion pushing the particle

off of its geodesic path) entirely due to hαβ. The dissipative part of the self–force, in

an averaged sense, is the radiation reaction. This identification can be understood

by an energy–balancing argument: the energy emitted from the system is quadratic

in the perturbations and causes a gradual inspiral which, from the point of view of

the compact object that has no knowledge of future null infinity, is related to first

order corrections of geodesic motion.

Although this effect has been recognized for decades, it was not until 1997 when

two independent derivations of the gravitational self–force were presented by Mino,

Sasaki, and Tanaka [162] and also Wald and Quinn [188]. An alternative, but equiv-

alent, description was purposed by Detweiler and Whiting [81]. In the Detweiler–

Whiting picture the particle follows a geodesic on gSchαβ + hRαβ, where hRαβ is the

suitably regularized piece of hαβ. For a detailed discussion of the theoretical and

computational developments we point the reader to any of these excellent reviews

[179, 21, 217].

Several existing techniques seek to capture self–force effects, thereby incorporat-
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ing more realistic inspiral (and possibly plunge) into the model. Some of these ap-

proaches include effective one body formulations [77, 174, 168], effective field theory

techniques [101, 102], post-Newtonian expansions [31], and adiabatic approximations

[207, 209]. Because the metric perturbations are discontinuous at the particle, di-

rect self–force calculations typically require a regularization technique. Mode–sum

regularization has been carried out in the Lorenz gauge [22], in an approach where

the metric perturbations are described by the full coupled system of 10 PDEs rather

than the simpler master equation description developed in this section. In the Regge-

Wheeler gauge, for which the metric reconstruction equations (2.39,2.46) hold, no

regularization procedure has been proposed for generic orbits; however, direct field-

regularization [228, 229] seems promising. For the restricted case of quasi–circular

orbits8, Detweiler has shown how to calculate certain self–force quantities in the RW

gauge [80]. Results based on this description agree with corresponding Lorenz gauge

computations [193].

Detweiler’s approach obtains the particle’s energy and angular momentum evo-

lution through local self–force calculations performed at the particle,

Ėp = − 1

2utp
uαpu

β
p

∂hαβ
∂t

, L̇p =
1

2utp
uαpu

β
p

∂hαβ
∂φ

, (2.64)

where the perturbation hαβ is reconstructed from (2.39,2.46). These self–force equa-

tions have the desirable property of both being gauge independent and smooth at

the particle, thus avoiding the need to regularize the discontinuity. When hαβ = 0

we recover the Schwarzschild result that Ep and Lp are constants of motion, while

for hαβ 6= 0 neither ∂t nor ∂φ are Killing vectors of gSchαβ + hαβ.

8Circular orbits of the Schwarzschild black hole correspond to the condition ur
p = 0. A quasi–

circular orbit is one which would be circular if not for self–force effects. Section 4.2.1 discusses orbit
classifications in greater detail.



39

Eqs. (2.64) are the dissipative part of the self–force; energy and angular momen-

tum removed from the system through gravitational radiation is experienced by the

particle as an instantaneous force which acts to decrease Ep and Lp. The particle’s

change in energy and angular momentum is related to the energy luminosity ĖGW

and angular momentum luminosity L̇GW simply by [80]

Ėp = ĖGW, L̇p = L̇GW, (2.65)

which also hold for each (ℓ,m) mode of the metric perturbation.

2.5 Splitting Spacetime into Space+Time

This section provides an introductory discussion of the 3+1 decomposition of a 4–

dimensional spacetime and the resulting Arnowitt–Deser–Misner (ADM) formulation

of Einstein’s field equations [16]. The ADM system is the traditional reformulation

of the Einstein equations as an initial boundary value problem, and thus provides

an important starting point for suitable form for numerical treatment. In particular,

the GBSSN system described in Sec. 2.6 is derived directly from the ADM system

in Appendix A. Like Einstein’s equations themselves, the 3+1 decomposition is

naturally geometrical and, thus, this section includes an overview of the important

differential geometry material needed. Much of this section draws from [170, 235,

27, 183, 163].



40

2.5.1 3+1 Decompostion

We begin by assuming our spacetime M admits a foliation into non-intersecting

three–surfaces Σ, and that each hypersurface Σ is a level set of a monotonic function

τ (see chapter 4 of [170]) whose differential 1–form is

Ω ≡ dτ = Ωαdx
α. (2.66)

Although Ω is not normalized to unity

|Ω|2 = gαβΩαΩβ ≡ −α−2, (2.67)

we can build a timelike normal (to the hypersurface) vector

nα ≡ −αgαβΩβ = −αΩα (2.68)

such that nαnα = −1. Our temporal coordinate freedom is encoded by an (as yet)

unspecified function α, known as the lapse. With nα we can form a projection

operator γαβ : TpM → TpΣ,

γαβ ≡ δαβ + nαnβ, (2.69)

which projects a 4–vector’s components onto the hypersurface’s 3 dimensional tan-

gent space. Each hypersurface Σ is a submanifold of M , and thus their tangent

spaces are related by a direct sum decomposition TpM = TpΣ
⊕

(TpΣ)
⊥ [170]. For

V α ∈ TpM we have the unique decomposition,

V α = (V α)|| + (V α)⊥, (2.70)
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where (V α)|| ≡ γαβV
β and (V α)⊥ ≡ −(V βnβ)n

α are the components parallel and

perpendicular to TpΣ. For a general tensor all components are projected, for example

as

(T α...
β... )

|| = γαα′γ
β′

βT
α′...
β′... (2.71)

The metric induced on Σ is simply gαβ restricted to accept vectors from TpΣ. A

convenient expression for the induced spatial metric

γαβ = (gαβ)
|| = gαβ + nαnβ (2.72)

may be found by projecting.

We now look for a timelike vectorfield tα which is dual to the 1–form Ω, that is

for which tαΩα = 1. As any spatial vector βα satisfies βαnα = 0, the most general

dual vector is of the form

tα = αnα + βα. (2.73)

The particular (yet to be) chosen βα appearing in Eq. (2.73) is known as the shift

vector, and it encodes the spatial coordinate degrees of freedom on each hypersurface.

By choosing a set of basis vectors such that the zeroth vector is tα and the others

span TpΣ the components of the normal and shift are

βα = (0, βi), nα =
1

α
(1,−βi), nα = (−α, 0, 0, 0). (2.74)

By appealing to the projection operator γαβ, the effect of our coordinate choice is to

typographically convert the indices of all contravariant spatial vectors from Greek
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letters to Latin letters. For example,

(V α)|| = γαβV
β = V α − αnαV 0 = (0, V i + βiV 0), (2.75)

and so the zeroth component of any spatial contravariant tensor is zero. Hence, we

will frequently write only Latin indices on spatial tensors with the understanding

that the zeroth (time) component of such tensors is zero.

Our discussion and coordinate choice motivates us to write (see [27] for the con-

struction) the metric as

ds2 = gαβdx
αdxβ = −(α2 − γijβ

iβj)dt2 + 2γijβ
jdtdxi + γijdx

idxj, (2.76)

where the lapse α, shift βi, and spatial metric γij are precisely the objects previously

introduced. One may consider (2.76) as the result of the 3+1 decomposition we

have outlined in this subsection. The slices Σ are themselves differential 3–manifolds

equipped with the metric γij. As a well–defined metric, γij is used to raise and lower

the components of spatial tensors.

We are almost in a position to take the parallel and perpendicular components

of the Einstein equation. First we need to determine how Σ lies in M , that is to say

the extrinsic geometry of our foliation.
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2.5.2 Extrinsic Geometry of the Foliation

Induced covariant derivative

If v, w ∈ TpΣ, then in general ∇vw ∈ TpM . Consider the unique decomposition

∇vw = (∇vw)
|| + (∇vw)

⊥. Define

Dvw ≡ (∇vw)
|| , (2.77)

then one can show that D is the induced covariant derivative on Σ [170], where we

now have induced connection coefficients

Γi
jk =

1

2
γil (γlj,k + γlk,j − γjk,l) (2.78)

as well as Dkγij = 0.

Extrinsic curvature

The normal projection (∇vw)
⊥ gives us something new – information about how the

slices are embedded. Using the Leibniz product rule v < n,w >=< ∇vn,w > + <

n,∇vw >= 0 produces

< ∇vw, n >= − < ∇vn,w > . (2.79)
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The Koszul formula for the last term is

2 < ∇vn,w > = v < n,w > +n < w, v > −w < v, n >

− < v, [n,w] > + < n, [w, v] > + < w, [v, n] >

= n < w, v > − < v, [n,w] > − < w, [n, v] > . (2.80)

This expression can be recognized as the Leibniz rule for a Lie derivative of the

metric,

(Lnγ) (v, w) = n < v,w > − < v, [n,w] > − < [n, v], w > . (2.81)

Thus the normal projection of the covariant derivative is

− < ∇vw, n >=
1

2
(Lnγ) (v, w). (2.82)

Plugging the coordinate vector fields, v = ∂i and v = ∂j, into the above expression

results in the usual extrinsic curvature tensor, defined here as

Kij ≡ −1

2
Lnγij. (2.83)

The extrinsic curvature tensor is sometimes referred to as the “velocity of the spatial

metric,” and the tensors γij(Σ) and Kij(Σ) characterize each slice of the foliation

[235]. What remains is how γij and Kij, and thus the slices Σ, evolve.

2.5.3 Arnowitt–Deser–Misner Equations

To facilitate projections of the Einstein equation onto parallel and perpendicular

tangent spaces will require the Gauss, Codazzi, and Ricci equations [235, 27]. These
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equations cover all possible projections of the Riemannian curvature tensor for M

[170], and express the result in terms of the Riemannian curvature tensor for Σ, the

extrinsic curvature, and the extrinsic curvature’s covariant derivative. We simply

state the result (see Refs. [235, 27] for a derivation) in the form of the ADM equa-

tions. These are the metric and extrinsic curvature evolution equations as well as

Hamiltonian and Momentum constraints.

Eq. (2.83) is the evolution equation for the metric, while one for Kij is found by

using Ricci’s equation and Einstein’s equation (2.16) to give

Lnγij = −2Kij (2.84a)

LnKij = − 1

α
DiDjα +

(

Rij − 2KikK
k
j +KKij

)

− 8π

[

Sij −
1

2
γij (S − ρ)

]

.

(2.84b)

We have defined the trace of the extrinsic curvature K ≡ γijKij, the energy density

ρ ≡ nαnβTαβ, the spatial projection of the stress–energy tensor Sij ≡ (Tαβ)
||, and its

trace S ≡ γijSij.

The Hamiltonian (momentum) constraint is found by using the Einstein and

Gauss (Codazzi) equations

H ≡ R−KijK
ij +K2 = 16πρ (2.85a)

Mi ≡ DjK
j
i −DiK = 8πji, (2.85b)

where ji ≡ −γαinβTαβ.

The ADM evolution equations are (2.84), subject to the constraints (2.85). We

have not yet specified the lapse and shift. It is common to prescribe analytic forms
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or evolution equations for these. We return to this issue in Sec. 2.6.3.

2.6 The Generalized BSSN Formulation

Early attempts to evolve the Einstein equations relied on the 3+1 decomposition

developed in section 2.5. The resulting ADM system (2.5.3) proved only weakly

hyperbolic when expressed in first-order form, a fact partly accounting for difficulties

associated with its numerical evolution [136, 51]. Difficulties in evolving black hole

solutions to the Einstein equations also stem from singularities, gauge conditions

within the computational domain, and unstable constraint violation. The goal of

accurate and stable numerical integration of the Einstein equations has continuously

spurred the interest of numericists and theorists alike, leading to a wealth of new

formalisms as in this non-exhaustive list [96, 200, 65, 1, 33, 155, 97, 95, 85, 127, 11,

34, 28, 232, 7, 98, 13, 120, 99, 233, 202, 234, 138, 109, 182, 41, 147, 172].

From the plethora of formalisms, numerical relativists currently use one of the

following versions of the Einstein equations: the generalized harmonic (GH) system

[93, 109, 182, 147], or the BSSN system [200, 28, 41]. Both the GH and BSSN have

had remarkable success thanks to their numerical stability.

Additionally, there are three “flavors” of the BSSN system discussed in the liter-

ature: traditional, conformal, and covariant. As the name suggests, the traditional

BSSN system (referred to simply as ‘the BSSN system’) was the first and most pop-

ular version of the three. Starting with the ADM equations, the BSSN system is

constructed by performing a conformal-traceless decomposition of the metric and

extrinsic curvature. The conformal metric determinant is set to unity. However,
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as discussed in 2.6.2, the traditional system is neither conformal nor covariant, and

many of the variables are tensor density weights.

To correct many of these deficiencies Ref. [41] recently purposed modifying the

traditional BSSN system by relaxing the condition that the conformal metric’s deter-

minant be set to unity. The resulting GBSSN system features conformally invariant

equations, and, besides the conformal connection, no tensor density weights. A

later work considers a conformal and spatially-covariant (but not fully space-time

covariant) BSSN system [43], which evolves BSSN variables relative to a background

spacetime.

Apart from parenthetical remarks, this dissertation focuses exclusively on the

GBSSN system. There are both practical and theoretical motivations for consid-

ering the GBSSN over the traditional system. Our aim is to purpose and study a

new numerical method for evolving Einstein’s equations (in particular a BSSN–like

system), a task most easily accomplished in spherical symmetry. Yet, the traditional

BSSN restricts the conformal metric’s determinant to unity, and reduction to spheri-

cal symmetry is not straightforward (see [64] for a complete derivation). By contrast,

in section 6.2 reduction to spherical symmetry is performed by assuming a particular

anstaz and carrying out straightforward, although tedious, tensor operations.

In this section we discuss the GBSSN system in detail. The GBSSN variables

are introduced with some discussion. Sec. 2.6.3 summarizes the system used in this

dissertation along with our choice for gauge evolution equations. Evolution and

constraint equations are deduced from the ADM system of equations using tensor

analysis in appendix A.
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2.6.1 Conformal–Traceless Decomposition and the GBSSN

Variables

We begin by introducing the new variables. First we define a conformal spatial

metric γ̄ij and a conformal factor χ−n as

γij ≡ χ−nγ̄ij → γij = χnγ̄ij (2.86)

where n is a yet to be specified integer. With this definition the connection coeffi-

cients are expressible as

Γi
jk =

1

2
χnγ̄im

[

(

γ̄mjχ
−n
)

,k
+
(

γ̄mkχ
−n
)

,j
−
(

γ̄jkχ
−n
)

,m

]

= Γ̄i
jk −

n

2
χ−1

(

δi jχ,k + δi kχ,j − γ̄imγ̄jkχ,m

)

(2.87)

where the conformal connection coefficient has been introduced as

Γ̄i
jk ≡

1

2
γ̄im [γ̄mj,k + γ̄mk,j − γ̄jk,m] . (2.88)

Using the conformal connection we define the conformal covariant derivative D̄k, and

note that the conformal metric satisfies D̄kγ̄ij = 0.

Next we decompose the extrinsic curvature Kij into trace K and traceless Āij

parts

Kij = χ−n

(

Āij +
1

3
γ̄ijK

)

, (2.89)

which has been written with the conformal variable Āij ≡ χnAij.
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Finally, we introduce a set of conformal connection functions,

Γ̄i ≡ γ̄jkΓ̄i
jk = −γ̄−1/2

(

γ̄1/2γ̄ij
)

,j
(2.90)

and promote these to system variables. Along with the gauge variables α, βi, and Bi

(to be introduced in sec. 2.6.3), we take γ̄ij, Āij, K, Γ̄i, and χ as the GBSSN system

variables. Indices of conformal variables are raised and lowered with the conformal

metric, for example, Āij = γ̄imγ̄jnĀ
mn.

2.6.2 Interlude: Relationship to Traditional BSSN

We are now in a position to discuss the GBSSN and traditional BSSN systems in

greater detail. The characteristic difference is the tensorial type of χ−n in each

system. Physical variables γij and Aij are rank 2 tensors, whereas the tensorial

properties of the conformal variables γ̄ij and Āij will depend on χ−n.

The traditional BSSN system assumes γ̄ = 1, which is viewed as an additional

constraint. In the case of a unit conformal metric determinant we must have γ̄ij =

(γ)−1/3γij, from which γ̄ = det(γ−1/3γij) = γ−1det(γij) = 1. As γ is a tensor density

of weight 2, γ−1/3 has a weight of -2/3. Thus, in the traditional BSSN system

χ−n = γ1/3 transforms as a scalar density of weight 2/3; γ̄ij and Āij transform as

rank 2 tensors of weight −2/3.

Alternatively, in the GBSSN system χ−n is introduced as an ordinary scalar,

which we solve for by taking the determinant of conformal metric’s definition χ−n =

(γ/γ̄)1/3. This distinction has three import implications. First, it is obvious from this

discussion that both the variables and equations will be (slightly) different. For ex-
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ample, terms proportional to Lnlnγ̄ will appear throughout GBSSN (see Sec. 2.6.3),

but are absent from traditional BSSN. Second, in GBSSN we must decide how γ̄

evolves in time. Two natural choices are “Eulerian” and “Lagrangian” conditions

[42]. Finally, the GBSSN system contains an additional equation and characteristic

field, in particular the principle parts of GBSSN and traditional BSSN are different.

Ref. [43, 42, 41] offers a more detailed discussion of these differences.

Although the traditional BSSN system, having arrived first, is more common,

GBSSN is easier to work with as nearly all system variables are tensors with no den-

sity weight. Furthermore, removing the restriction of a unit conformal determinant

could lead to a more robust system. Modern BSSN codes impose the unity condi-

tion by making the replacement γ̄ij → γ̄ij γ̄
−1/3 throughout the evolution. There are

indications that this brute force approach of imposing constraints could spoil the

numerical stability for spectral codes [167], however, a detailed understanding is still

lacking. In our case, GBSSN is particularly useful as it permits a direct reduction

to “spherical” coordinates.

2.6.3 GBSSN System

The GBSSN evolution equations can be derived by differentiating the system vari-

ables of Sec. 2.6.1 and using the ADM equations (2.84) and constraints (2.85). This

program is carried out in Appendix A. The resulting equations must be supple-

mented with equations which specify how the gauge variables evolve. We will use

the “1+log” and “Γ-driver” conditions [6] which have been employed in nearly all

stable binary black hole evolutions [82, 206, 119, 52, 26, 53]. With this choice in

mind, and setting the conformal factor exponent to n = 1, we will often refer of the
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GBSSN system without ambiguity:

Lnα = −2K (2.91a)

Lnβ
i =

3

4α
Bi (2.91b)

∂̂0B
i = ∂̂0Γ̄

i − ηBi (2.91c)

Lnχ =
χ

3
(Lnlnγ̄ + 2K) , (2.91d)

Lnγ̄ij =
1

3
γ̄ijLnlnγ̄ − 2Āij , (2.91e)

LnK = − 1

α
D2α +

(

ĀijĀ
ij +

1

3
K2

)

+ 4π (S + ρ) , (2.91f)

LnĀij =
1

3
ĀijLnlnγ̄ +KĀij − 2ĀikĀ

k
j + χ

(

Rij −
1

α
DiDjα− 8πSij

)TF

(2.91g)

∂̂0Γ̄
i = −1

3
Γ̄i∂̂0lnγ̄ − 1

6
γ̄ij∂j ∂̂0lnγ̄ − 2Āij∂jα

− 2α

[

8πχ−1ji − ĀjkΓ̄i
jk +

3

2
χ−1Āij∂jχ+

2

3
γ̄ij∂jK

]

, (2.91h)

where ∂̂0 = αLn = ∂t−Lβ. A damping parameter η and auxiliary field Bi have been

introduced. Motivations for these choices are discussed in [6].

Instead of imposing γ̄ = 1 as in the traditional BSSN system, we must specify how

the conformal determinant evolves. Our particular choice, coined the “Lagrangian

condition” in [41], specifies ∂tlnγ̄ = 0. Accordingly, throughout system (2.91) the

following replacements are made ∂̂0lnγ̄ → −2D̄iβ
i.

In addition to the ADM Hamiltonian and momentum constraints (2.85), a new

constraint arises from the introduction of conformal connection functions. System
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(2.91) must satisfy

H = R− ĀijĀ
ij +

2

3
K2 = 16πρ (2.92a)

Mk = DjA
jk − 2

3
γkiDiK = 8πjk (2.92b)

Gi = Γ̄i − γ̄jkΓ̄i
jk. (2.92c)

Along with the GBSSN evolution equations these are derived in Appendix A. Note

that Mk, which features both the physical spatial metric and covariant derivative,

is expressed entirely with GBSSN system variables by Eq. A.9.



Chapter Three

The Discontinuous Galerkin

Method for Hyperbolic PDEs
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3.1 Introduction

In the last chapter we encountered the relevant PDEs to be solved. This chapter

develops the necessary tools to accomplish this task. In particular, we will discuss

properties of hyperbolic PDEs and develop the basic building blocks of a nodal

dG scheme for such systems. We begin by briefly introducing some definitions and

terminology in Sec. 3.1.1. Section 3.2 defines the concept of strongly hyperbolic

systems for a variety of PDEs while commenting on the the hyperbolicity of our RWZ

and GBSSN systems. The importance of well–posedness at both the continuous and

discrete level is noted, and an extended discussion of stability for strongly hyperbolic

systems is given. A nodal dG scheme is then proposed for a strongly hyperbolic toy

PDE system in Sec. 3.3. The model PDE is simple enough as to not obfuscate the dG

construction while also being sufficiently realistic that the discretization procedure

is directly applicable to our problems of interest. Problem specific choices, such as

the numerical flux form and treatment of second order spatial operators, are delayed

for future chapters.

3.1.1 Notation, Norms, and Geometry

We suppose our physical domain Ω is the closed interval [a, b] ∈ R
1. We cover Ω with

K > 1 non–overlapping intervals Dk = [ak, bk], where a = a1, b = bK , and bk−1 = ak

for k = 2, · · · , K. The computational domain Ωh is defined by the union

Ω ≃ Ωh =
K
⋃

k=1

D
k (3.1)
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over subdomains Dk. To succinctly represent the different domains let D be a place-

holder for any of the three regions Ω, Ωh, or D
k.

For any two square integrable functions f, g : D ⊂ R
1 → R

1 define the L2 inner

product and norm on D by

(f, g)D =

∫

D

fgdx, ‖f‖D =
√

(f, f)Ω, (3.2)

and x is a spatial coordinate on D. When D = Ωh these are referred to as the global

broken inner product and norm

(f, g)Ωh
=

K
∑

k=1

∫

Dk

fgdx, ‖f‖Ωh
=
√

(f, f)Ωh
. (3.3)

For any bounded function f : D ⊂ R
1 → R

1 define the L∞ norm

‖f‖∞ = max
x∈D

|f(x)|, (3.4)

which could be measured in L∞ (Ω), L∞
(

D
k
)

, or L∞ (Ωh).

Sometimes we will work with vectors built from scalars. For any two square

integrable column vectors f, g : D ⊂ R
1 → R

n define an inner product and norm on

D componentwise

(f, g)D =

∫

D

fT gdx, ‖f‖D =
√

(f, f)D, (3.5)

where fT denotes the transpose of f .
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3.2 Hyperbolic PDEs and Stability

Perhaps the most prominent example of a hyperbolic PDE is the wave equation

−∂2t u + ∂2xu = 0. The solutions describe information, or energy, moving along a

given direction. For example, according to d’Alembert’s formula, a solution to our

wave equation may always be written as a sum of left and right traveling waves of a

fixed shape u(t, x) = F (x− t) +G(x+ t), where F and G can be expressed in terms

of initial data [113].

A general definition of hyperbolicity can be motivated as follows. Consider the

initial value problem

∂tW = AW ′ + B(t, x)W + S(t, x),

W (0, x) = Ŵ (x), (3.6)

where the prime stands for differentiation with respect to the spatial variable x, W

is a column vector of length n, and A is an n–by–n matrix. Furthermore, assume

the appropriate boundary conditions are supplied. The matrices B and S denote

potential and inhomogeneous source terms respectively, and the principle part of

(3.6) is identified by neglecting exactly these terms. System (3.6) is called strongly

hyperbolic if the eigenvalues λi of A are all real and there exists a complete basis of

eigenvectors [112]. For such systems A is diagonalizable S−1AS = Λ for an invertible

matrix S and diagonal matrix Λ. Now define a column vector of characteristic

variables V ≡ S−1W to express principle part of system (3.6) as

∂tV = ΛV ′,

V (0, x) = V̂ (x) = S−1Ŵ . (3.7)



57

Then, like the usual wave equation, the solution’s components Vi = V̂i(λit + x)

describe traveling waves of a fixed shape.

Extending the definition of strong hyperbolicity to a quasi–linear variable coef-

ficient system is surprisingly straightforward. Consider the following initial value

problem

∂tW = A(t, x,W )W ′ +B(t, x,W )W + S(t, x),

W (0, x) = Ŵ (x), (3.8)

where the matrix A(t, x,W ) and solution W depend smoothly on their arguments,

and appropriate boundary conditions have been supplied. System (3.8) is called

strongly hyperbolic at a fixed (t0, x0) andW0 if the eigenvalues of A(t0, x0,W0(t0, x0))

are all real and there exists a complete basis of eigenvectors [112]. This criteria,

which is employed in our analysis of the GBSSN system, is carried out as linearization

followed by localization. We proceed with an example. SupposeW0(t, x) is a solution

to system (3.8) and write

W (t, x) = W0(t, x) + ǫw(t, x), (3.9)

where ǫ << ‖W0(t, ·)‖∞. Schematically, the perturbations satisfy a linear system

ǫ∂tw = ǫA(t, x,W0)w
′ +O

(

ǫ2
)

+ (Lower Order) , (3.10)

where ‘Lower Order” stands for all terms which are O (ǫ), but do not feature w′.

The principle part

∂tw = A(t, x,W0)w
′, (3.11)
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is then analyzed with a localization principle [196]. Let Â(t, x) = A(t, x,W0) and

perform a coordinate transformation t = t0 + δT and x = x0 + δX such that

wδ(T,X) = w(t0 + δT, x0 + δX),

∂Tw
δ = Â(t0 + δT, x0 + δX)∂Xw

δ, (3.12)

where x0 and t0 are the “frozen” coordinates and δ is a parameter. Taking the

pointwise limit of δ → 0 results in

∂Tw
δ = Â(t0, x0)∂Xw

δ. (3.13)

For a fixed point in space and time the principle part of system (3.8) linearized

around W0 reduces to a constant coefficient system of the form (3.6). Thus, in the

limit (δ, ǫ) → 0 the notion of strong hyperbolicity for a quasi–linear system (3.8)

coincides with the constant coefficient case1. Applying this criteria to a continuous

range of solutions and coordinates identifies a region (t, x,W ) of strong hyperbolicity.

A larger class of problems, which includes the GBSSN system, are given by

∂tW = A(t, x,W )W ′′ + B(t, x,W,W ′)W ′ + C(t, x,W )W + S(t, x),

W (0, x) = Ŵ (x). (3.14)

These are second order in space first order in time PDEs where we continue to assume

all matrices and solutions depend smoothly on their arguments. A straightforward

extension of the aforementioned hyperbolicity discussion to the second order system

(3.14) is achieved by considering possible (non–unique) first order reductions. As an

initial attempt at first order reduction we define new fields Q = W ′, which evolve

1Our definition is sometimes referred to as pointwise strongly hyperbolic (see chapter 3 of
Ref. [140] for a complete discussion).
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according to ∂tQ = (∂tW )′, and study the hyperbolicity of the enlarged system. If

the enlarged (Q,W ) system is strongly hyperbolic according to a previous definition,

then system (3.14) is strongly hyperbolic provided that auxiliary constraints Q = W ′

are satisfied. Refs. [140, 100, 110, 111] further discuss the concept of hyperbolicity

in the context of second order systems.

From the preceding discussion we conclude that the RWZ equations are strongly

hyperbolic, a first order reduction is explicitly presented in Sec. 4.2.6. Although Ein-

stein’s equation is not written in a form which is manifestly hyperbolic, in Chapter 2

we constructed an enlarged first order in time second order in space GBSSN system.

Strong hyperbolicity of the spherically symmetric GBSSN system is demonstrated

in Sec. 6.2.3. Gravitational waves impinging on the Earth are described by a wave

equation for the tensor field perturbation (2.18), another strongly hyperbolic system.

We have defined strong hyperbolicity for constant coefficient, variable coefficient,

quasi–linear, and second order systems. Why is it useful to know if an initial value

problem is strongly hyperbolic2? There are a few important reasons for doing this.

Before trying to solve an initial value problem it would be useful to know if such

an undertaking makes sense. The problem is well-posed if it does. We say that the

quasi–linear first order spatial system (3.8) is well–posed if [87, 112]:

1. The problem has a solution

2. The solution is unique

3. For constants α and K independent of initial data Ŵ the solution’s norm is

bounded by the norm of the initial data as

2Further classifications of hyperbolicity may play an important role in a rigorous analysis, but
will not be discussed here. As the primary focus of this dissertation is computational, our approach
to hyperbolicity is one of practicality.
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‖W (t, ·)‖Ω ≤ Keαt‖Ŵ (·)‖Ω. (3.15)

We will always assume that a unique solution W exists. Condition (3) is known as

stability and it demands that small changes to the initial data do not lead to large

changes in the solution. Showing an initial value problem is strongly hyperbolic

constitutes significant progress towards a stability bound; 1) a strongly hyperbolic

linear PDE system in 1D is stable [140], and 2) for a non–linear system strong

hyperbolicity at W0 is often a necessary condition [112]. Additionally, the second

order system (3.14) is well–posed if it admits a first order reduction which is well–

posed and auxiliary constraints Q = W ′ are satisfied. A stability bound for second

order systems might feature those auxiliary variables Q which arise from the first

order reduction [111].

Stability bounds play an essential role at both the continuum and discrete level.

When constructing a stable numerical scheme it is important to understand semi–

discrete stability, that is can we find a bound of the form (3.15) where the temporal

coordinate is continuous and the spatial operator has been discretized. For a dG

method the numerical flux, to be introduced in the next section, is intimately linked

to the scheme’s semi–discrete stability. A good choice of numerical flux is often

informed by the system’s characteristic variables and speeds, and for a wide class of

problems the correct choice is known. But for GBSSN system a numerically stable

choice is not obvious, and we rely upon both hyperbolicity and stability arguments

while discretizing the GBSSN system.

Beyond considerations of stability, hyperbolicity may be important in other as-

pects of the numerics too. For example, the largest stable timestep scales with the

maximum wavespeed of the system. When treating the RWZ equations, knowledge of

the characteristic fields at the particle’s location allows the correct jump information
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Figure 3.1: Treatment of the physical geometry for a typical dg scheme. Subdomain
D

k and it’s neighbors are shown.

implied by the δ–like singularity to be enforced.

3.3 A Nodal Discontinuous Galerkin Method

Following Refs. [121, 89, 91], this section develops a nodal discontinuous Galerkin

method. Ultimately, we adopt a method–of–lines strategy, and here describe the

relevant semi–discrete scheme which arises upon spatial approximation by the dG

method. Temporal integration may then be carried out with a suitable ordinary dif-

ferential integrator. DG methods incorporate and build upon finite–element, finite–

volume and spectral methods, and in this section the reader will recognize the fea-

tures our dG approach shares with these more traditional methods. For example, on

each subdomain our approach features an integral formulation of Legendre colloca-

tion, and our technique for coupling subdomains draws on finite–volume methods.

This section will focus on the practical elements which are applicable to both the

GBSSN and RWZ systems, as well as on the properties of the scheme and general

considerations.
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3.3.1 Basic Ingredients of the Scheme

We began building our scheme back in Sec. 3.1.1 by defining a computational do-

main Ωh as a collection of subdomains (sometimes called elements) Dk. Upon closer

inspection, notice that we have significant freedom in choosing each D
k; the only

constraint is that our physical domain is covered and the boundaries of subdomains

overlap. In general, the process of building Ωh from Ω is unstructured.

In what follows let the variable coefficient initial value problem3

∂tW = Λ(t, x)W ′,

W (0, x) = Ŵ (x), (3.16)

serve as a representative example for the nodal dG construction. W is a column

vector of length n and Λ an n–by–n smooth diagonal matrix. Assume the system

is strongly hyperbolic and each diagonal entry λi(t, x) of Λ is real for all spacetime

points considered.

On each subdomain D
k, we approximate each component of the system vector

Wi = Ψ by a local interpolating polynomial of degree N . For example,

Ψk
h(t, x) =

N
∑

j=0

Ψ(t, xkj )ℓ
k
j (x) (3.17)

3Pedagogical treatments of dG often focus on systems in conservative form ∂tW = (Λ(t, x)W )
′
.

However, our problems of interest are given on non–conservative form and so we find this system
to be of greater practical value.
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approximates Ψ, where ℓkj (x) is the jth Lagrange polynomial belonging to D
k,

ℓkj (x) =
N
∏

i=0
i 6=j

x− xki
xkj − xki

. (3.18)

Evidently, the polynomial Ψk
h interpolates Ψ at the xkj . Throughout this dissertation,

approximations are denoted by a subscript h. To define the nodes xkj , consider the

affine mapping from the unit interval [−1, 1] to D
k,

xk(u) = ak + 1
2
(1 + u)(bk − ak), (3.19)

and the N+1 Legendre–Gauss–Lobatto (LGL) nodes uj. The uj are the roots of the

equation

(1− u2)P ′
N(u) = 0, (3.20)

where PN(u) is the Nth degree Legendre polynomial, and the physical nodes are

simply xkj = xk(uj). In vector notation the approximation (3.17) takes the form

Ψk
h(t, x) = Ψk(t)Tℓk(x), (3.21)

in terms of the column vectors

Ψk(t) =
[

Ψ(t, xk0), · · · ,Ψ(t, xkN)
]T
, ℓk(x) =

[

ℓk0(x), · · · , ℓkN(x)
]T
. (3.22)

An approximation W k
h of the full system vector W is achieved by applying the above

construction componentwise, with Ψ being the ith component. Thus the column

vector

W k(t) =
[

W k
1(t)

T , · · · ,W k
n(t)

T
]T

(3.23)
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contains n(N + 1) degrees of freedom for which to be solved. The global solution

Wh(t, x) =
K
⊕

k=1

W k
h (t, x) (3.24)

is obtained by direct sum.

On each open interval (ak, bk) ⊂ D
k and for each component of the equations in

(3.16), we define local residuals measuring the extent to which our approximations

satisfy the original continuum system. Dropping the subdomain label k on the

polynomials and continuing with Ψ as a representative example, the local residual is

(RΨ)
k
h ≡∂tΨh − (λiΨ

′)h . (3.25)

Here, for example, the second term reads4

(λiΨ
′)h = (λi)h ∂xΨh, (3.26)

and derivatives may be analytically computed by Eq. (3.18).

Recall the definition of a local inner product and consider the following expression
(

ℓkj , (RΨ)
k
h

)

Dk . Namely, the inner product between a residual and the jth Lagrange

polynomial on D
k. We call the requirement that this inner product vanish ∀j the

kth Galerkin condition. For each component of the system and for each k there is

a corresponding Galerkin condition. We have achieved a spatial discretization of

system (3.16), and in total there are nK(N + 1) ordinary differential equations to

be solved.

4 At this stage the expression is generically a polynomial of degree 2N − 1. The conventions
adopted in Eq. (3.25) prove useful while working with the residual. However, to obtain the final form
of the numerical approximation we will ultimately replace all terms with degree-N polynomials.
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Enforcement of the Galerkin conditions on each D
k will not recover a meaningful

global solution, since they provide no mechanism for coupling of the individual local

solutions on the different intervals. Borrowing from the finite volume toolbox, we

achieve coupling through integration by parts on x and introduction of the numerical

flux at the interface between subdomains. Using integration by parts, we write

(ℓkj , (RΨ)
k
h)Dk =

∫ bk

ak
dx
[

ℓkj∂tΨ
k
h + ℓkj

′(λiΨ)kh
]

−
[

(λiΨ)kh
]

ℓkj
∣

∣

bk

ak
, (3.27)

where we have suppressed the coordinate dependence in all terms on the righthand

side. In lieu of (3.27) with (ℓkj , (RΨ)
k
h)Dk = 0, we enforce the equation

(ℓkj , (RΨ)
k
h)Dk =

∫ bk

ak
dx
[

ℓkj∂tΨ
k
h + ℓkj

′(λiΨ)kh
]

− (λiΨ)∗ℓkj
∣

∣

bk

ak
. (3.28)

This equation features a numerical flux, (λiΨ)∗, rather than the physical boundary

flux, (λiΨ
k
h). We will often write the numerical flux without labels k and h for

convenience. The numerical fluxes are determined by (as yet not chosen) functions

(λiΨ)∗ = (λiΨ)∗((λiΨ)+h , (λiΨ)−h ) (3.29)

where, for example, (λiΨ)−h is an interior boundary value [either (λiΨ)kh(t, a
k) or

(λiΨ)kh(t, b
k)] of the approximation defined on D

k, and (λiΨ)+h is an exterior boundary

value [either (λiΨ)k−1
h (t, bk−1) or (λiΨ)k+1

h (t, ak+1)] of the approximation defined on

either D
k−1 or D

k+1. Choosing a functional form for (λiΨ)∗ will couple adjacent

subdomains and enforce semi–discrete stability, and is problem specific. Numerical

flux expressions frequently feature the numerical average and jump defined at each

subdomain interface, for example

{{

Ψ
}}

=
1

2
(Ψ+ +Ψ−),

[[

Ψ
]]

n

= n+Ψ+ + n−Ψ−. (3.30)
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Here n−(n+) is the local outward pointing normal to the interior (exterior) subdo-

main and can be ±1. The numerical jump is not a predetermined analytical jump

as defined in Eq. (4.21), and it has a different sign convention.

Returning to Eq. (3.28), we now employ an additional integration by parts to

arrive at the integral statement

∫ bk

ak
dx
[

∂tΨ
k
h − (λiΨ

′)kh
]

ℓkj −
[

(λiΨ)∗ − (λiΨ)h
]

ℓkj
∣

∣

bk

ak
= 0 ∀j. (3.31)

We refer to the dG scheme in weak (3.28) or strong (3.31) form to indicate if one or

two integration by parts have been taken.

Remark: The term ‘nodal discontinuous Galerkin’ should now be clear. We

seek a global discontinuous solution interpolated at nodal points and demand this

solution satisfy a set of integral (Galerkin) conditions.

Let us now write the N+1 equations (3.31) in matrix form. To write down the

matrix form, we first introduce the kth mass and stiffness matrices,

Mk
ij =

∫ bk

ak
dxℓki (x)ℓ

k
j (x), Sk

ij =

∫ bk

ak
dxℓki (x)ℓ

k
j
′(x). (3.32)

These matrices belong to D
k, and the corresponding matrices belonging to the ref-

erence interval [−1, 1] are

Mij =

∫ 1

−1

duℓi(u)ℓj(u), Sij =

∫ 1

−1

duℓi(u)ℓ
′
j(u), (3.33)

where ℓj(u) is the jth Lagrange polynomial determined by the LGL nodes uj on

[−1, 1]. These matrices are related by Mk
ij = 1

2
(bk − ak)Mij and Sk

ij = Sij, whence

only the reference matrices require computation and storage.
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We will use the matrices Mk and Sk in obtaining an ODE system from (3.31).

Towards this end, we first approximate products of polynomials, for example (λiΨ)kh,

by degree-N interpolating polynomials. Such approximations are achieved through

pointwise representations in the following way (cf. footnote 4):

(λiΨ)kh = (λi)
k
hΨ

k
h →

N
∑

j=0

λi(t, x
k
j )Ψ(t, xkj )ℓ

k
j (x). (3.34)

Note that the expressions on the right and left are not equivalent due to aliasing

error [124], and in Sec. 6.3.3 an exponential filter is introduced to control aliasing

driven instability. Vector notation for this replacement will be

(λiΨ)kh → (λiΨ)h (t)
Tℓk(r). (3.35)

The dependence on coordinates has been retained on the right–hand side for clar-

ity, but it is already awkward for this simple expression and will often be omitted.

Operations among bold variables are always performed pointwise.

Carrying out the integrations in (3.31), which bring in Mk and Sk, we arrive at

∂tΨ = λiDΨ+M−1ℓk
[

(λiΨ)∗ − (λiΨ)h
]∣

∣

bk

ak
, (3.36)

where we have again suppressed the superscript k on all terms except ℓk(r), and the

subscript h is dropped on all boldfaced variables. As described in [121], the spectral

collocation derivative matrix

(Dk)ij =
dℓkj
dr

∣

∣

∣

∣

∣

x=xk
i

(3.37)

can also be expressed as Dk = (Mk)−1Sk, which appears in (3.36). The remaining
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semi-discrete evolution equations are similarly obtained.

3.3.2 Properties of the Proposed DG Scheme

Convergence and Error Estimates

To conclude the section we provide theoretical error estimates for our method. First,

we invoke a slight change of viewpoint. Notice that the integral statement (3.31) is

equivalent to finding a Ψk
h ∈ V k

N such that

∫ bk

ak
dx
[

∂tΨ
k
h − (λiΨ

′)kh
]

v −
[

(λiΨ)∗ − (λiΨ)h
]

v
∣

∣

bk

ak
= 0 ∀v ∈ V k

N . (3.38)

Here V k
N is the space of degree N polynomials defined on D

k. Additionally, instead of

approximating Ψ through interpolation (3.17) we now approximate it as a sum over

a collection of Legendre polynomials which spans V k
N . Under an affine mapping of Dk

to the unit reference interval [−1, 1], appropriately normalized Legendre polynomials

Pn(u) form an orthonormal basis and we write

Ψk
Leg(t, u) =

N
∑

i=0

akn(t)Pn(u), akn(t) =

∫ 1

−1

ΨPn(u)du. (3.39)

Appealing to the properties of Pn one can show the approximation error for a suffi-

ciently smooth Ψ is given by [121]

‖Ψ−Ψk
Leg‖Dk ≤ C(t) (hk)

N+1 , (3.40)

where hk is the length of Dk. We see that the error decays exponentially with N , this

property is often referred to as spectral convergence. However, our scheme’s basis
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functions are Lagrange interpolating polynomials. The Lebesque constant

Λ = max
u∈[−1,1]

N
∑

i=0

|ℓj(u)| (3.41)

is a useful measure of interpolation error. If Ψ is the analytic function, Ψk
Leg it’s

expansion in Legendre polynomials, and Ψk
h the interpolation of Ψk

Leg, we can form

a bound [121]

‖Ψ−Ψk
h‖∞ ≤ (1 + Λ) ‖Ψ−Ψk

Leg‖∞. (3.42)

Λ depends only on the chosen set of nodal points through the definition of ℓj (3.18),

and the LGL set (3.20) minimizes Λ [121]. With this choice interpolation error

remains small and we continue to expect convergence like

‖Ψ−Ψk
h‖Dk ≤ Ĉ(t) (hk)

N+1 . (3.43)



Chapter Four

Extreme Mass Ratio Binaries



71

4.1 Introduction

An extreme mass ratio binary (EMRB) is a system comprised of small mass–mp

“particle” (possibly a main sequence star, neutron star, or stellar mass black hole)

orbiting a large mass–M black hole, where the mass ratio µ = mp/M ≪ 1. EMRB

systems are expected to emit gravitational radiation in a low frequency band (10−5

to 10−1 Hz), and therefore offer the promise of detection by the joint NASA–ESA

LISA project [169, 126]. A standard method for studying some EMRBs uses the

perturbation theory of Schwarzschild black holes in an approximation which treats

the particle as point–like and responsible for generating small metric perturbations

which radiate away to infinity. These perturbations influence the trajectory of par-

ticle, resulting in deviation from geodesic motion. Nevertheless, as a first and useful

approximation, one may compute the emitted gravitational radiation, assuming that

the particle worldline is a timelike geodesic in the Schwarzschild spacetime.

For the scenario we consider, simulation of ERMBs entails numerical evolution

of Schwarzschild perturbations. We now give a brief and unified summary of the

main results from Sec. 2.4. Consider a small perturbation hαβ of the background

Schwarzschild metric in standard coordinates, and the perturbation satisfies the lin-

earized Einstein equation. The perturbation naturally decomposes into polar and

axial parity sectors for each (ℓ,m) harmonic mode hℓmαβ = hℓm,P
αβ +hℓm,A

αβ . Each parity

sector can be reconstructed from a collection of scalar master functions. Both the

polar and axial master functions are governed by forced scalar wave equations with
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the following form generic form:1

−∂2tΨℓm + ∂2xΨℓm − Vℓ(r)Ψℓm =

f(r)
[

Gℓm(t, r)δ(r − rp(t)) + Fℓm(t, r)δ
′(r − rp(t))

]

.

(4.1)

The coordinates here are the areal radius r, the Regge–Wheeler tortoise coordinate

x = r + 2M ln(1
2
r/M − 1), the time–dependent radial location rp(t) of the particle,

and f(r) = 1 − 2M/r. In our scenario the stress–energy tensor Tµν given in (2.28)

corresponds to a material point particle, and is therefore a distribution. The distribu-

tional inhomogeneity on the right–hand side of (4.1) stems from Tµν , and it involves

Dirac delta functions, as well as the ordinary functions Fℓm(t, r), Gℓm(t, r). The

polar case corresponds to the Zerilli potential (2.38) and the Zerilli–Moncrief master

function ΨZM (2.37). The axial case corresponds to the Regge–Wheeler potential

(2.45) and the Cunningham–Price–Moncrief master function ΨCPM (2.44).

A number of numerical methods for solving (4.1) as an initial boundary value

problem, and therefore modeling EMRBs in the time–domain, have appeared in the

literature. In particular, we note Lousto’s fourth–order algorithm [153] based on

spacetime integration of (4.1) and careful Taylor series arguments, and Sopuerta

and Laguna’s adaptive finite–element approach [204]. Jung, Khanna, and Nagle

have applied a spectral collocation method to the perturbation equations for head–

on collisions, using spectral filtering to handle the delta function terms [134] and

a finite–difference domain at the outer boundary to reduce artificial boundary re-

flection [61]. To accelerate self–force computations Thornburg has proposed a finite

1 We could instead work with the equation

−∂2
tΨℓm + ∂2

xΨℓm − Vℓ(r)Ψℓm = Gℓm(t)δ(r − rp(t)) + Fℓm(t)δ′(r − rp(t)),

where Gℓm(t) and Fℓm(t) depend only on t, and not on r. The relationships between Gℓm(t) and
Fℓm(t) and our Gℓm(t, r) and Fℓm(t, r) follows from comparison between the right–hand sides of
Eq. B.1 and the last equation.
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difference method with Berger-Oliger adaptive mesh refinement [218, 216], and Vega,

Diener, and Tichy are exploring a full 3+1 finite difference code [229]. Canizares and

Sopuerta have proposed a multidomain spectral collocation method, with the particle

location chosen between spectral elements [56, 58].

Clearly, the key difficulty to overcome is the distributional forcing; however, the

problem should be amenable to a high–order accurate method, since —apart from

possible transients— the solutions we seek to compute are everywhere smooth, except

for jump discontinuities at the particle location. As a suitable high–order scheme for

solving (4.1), we propose a dG method, and our approach shares some similarities

with Refs. [204, 134, 56], in particular we also ensure that the particle always lies

at the interface between domain intervals. Improving upon low–order methods, our

method achieves pointwise spectral accuracy (see also Refs. [56, 58] which consider a

scalar charged particle), in particular at the particle’s location. This work is one of

the first applications of dG methods to the modeling of gravitational waves (see also

[241]), and the first dG computation of gravitational metric perturbations driven by

a point–particle.

Resolving the metric perturbation very close to the particle is paramount when

computing the gravitational self–force. These computations comprise a major cur-

rent effort within with EMRB modeling community, and much progress has already

been made [19, 22, 56, 80, 218] (a representative, but far from exhaustive list). The

major bottleneck towards an accurate and efficient self–force code is treatment of the

delta function. Popular approaches, for example replacement by narrowly peaked

Gaussian, all suffer from large oscillations and poor accuracy at the particle’s loca-

tion making computations of the form (2.64) inaccurate and costly. In this chapter

we describe our domain matching technique to overcome this difficulty, and self–force

computations are presented in Sec. 5.3.4.
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This chapter is organized as follows. Section 4.2 provides further background nec-

essary to understand the physical model. In particular, this section presents ODEs

used to describe the particle’s motion, constructs source terms found on the right

hand side of (4.1), derives jump conditions in the master functions and their deriva-

tives, and constructs a coordinate transformation adapted to the particle history.

This background allows us to rewrite (4.1) as a first–order system which features

only undifferentiated delta-functions in the forcing. Section 4.3 describes our dG

scheme as applied to the first–order system obtained in the previous section. Here

we focus on the numerical flux and on how delta function terms are incorporated into

the numerical flux function. Specification of initial data and boundary conditions

are given Sec. 4.4, along with our procedure for extracting gravitational waveforms

to future null infinity. A series of code performance tests are summarized in section

4.5. Section 4.5 also provides physical results for circular and eccentric orbits.

4.2 RWZ Equations in the Presence of a Perturb-

ing Particle

Throughout, we use an over–dot to denote ∂/∂t differentiation, and sometimes a

prime for differentiation by argument. The labels (ℓ,m,CPM/ZM) are often sup-

pressed.

4.2.1 ODEs of Particle Motion

In Sec. 2.4.5 we derived a system of first order ODEs (2.63) describing the particle’s

orbit for a fixed energy and angular momentum. As an alternative set to (Ep, Lp), we
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may instead work with (e, p), the eccentricity constant e, semi–latus rectum constant

p. These constants of the motion are related to our original set by [75, 157]

L2
p =

p2M2

p− 3− e2
, E2

p =
(p− 2)2 − 4e2

p(p− 3− e2)
. (4.2)

Using the equation of motion tp(τ), set rp(t) = rp(τ(t)) for the radial coordinate

of the particle expressed in terms of coordinate time, with similar expressions for

θp(t) and φp(t). Introducing the parameterization rp(t) = pM/(1 + e cosχ(t)), we

obtain the particle trajectory (rp(t), φp(t)) by integration of the following system

which describes timelike geodesic motion: [62, 204, 75, 157]

dφp

dt
=

(p− 2− 2ecosχ)(1 + ecosχ)2

Mp3/2
[

(p− 2)2 − 4e2
]1/2

(4.3a)

dχ

dt
=

(p− 2− 2ecosχ)(1 + ecosχ)2
[

p− 6− 2ecosχ
]1/2

Mp2
[

(p− 2)2 − 4e2
]1/2

. (4.3b)

We use χ(t) rather than rp(t), since the former increases monotonically through radial

turning points. In our scenario, integration of the system (4.3) is independent of

(4.1). Therefore, we may view the particle path, and so the right–hand side of (4.1),

as predetermined. We shall be interested in the parameter restriction 0 ≤ e < 1, for

which the motion occurs between two turning points and the orbit is bounded. The

rmin and rmax occur respectively at pM/(1 + e) and pM/(1 − e), and for e = 0 the

orbit is circular. Measured in coordinate time t, an eccentric orbit executes a radial

period in time Tr given by [75]

Tr = C

∫ 2π

0

dχ(1 + ecosχ)−2

[

1− 2(3 + ecosχ)

p

]−1/2 [

1− 2(1 + ecosχ)

p

]−1

(4.4)

C = p3/2M

[

(

1− 2

p

)2

−
(

2e

p

)2
]1/2

.
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When e 6= 0, we average physical quantities built from components of Isaacson’s

effective stress–energy tensor (2.51) over 4 radial periods, as defined by Eq. (4.68).

4.2.2 Zerilli–Moncrief (Polar) Source Term

The Zerilli–Moncrief source term is specified by

f(r)F ZM
ℓm (t, r) = eℓ(r)Ȳ

ℓm(t) (4.5a)

f(r)GZM
ℓm (t, r) = aℓ(r)Ȳ

ℓm(t) + bℓ(r)Ȳ
ℓm
φ (t) + cℓ(r)Ȳ

ℓm
φφ (t) + dℓ(r)Z̄

ℓm
φφ (t), (4.5b)

where the polar tensor harmonics are given in Sec. 2.4.2. Here, for example, Ȳ ℓm(t) ≡

Ȳ ℓm(π/2, φp(t)). Moreover, the coefficients in (4.5) are given by [204, 157]

aℓ(r) =
8πmp

(1 + nℓ)

f 2(r)

rΛ2
ℓ(r)

{

6MEp

r
− Λℓ(r)

Ep

[

1 + nℓ −
3M

r
+
L2
p

r2

(

nℓ + 3− 7M

r

)]}

(4.6a)

bℓ(r) =
16πmp

(1 + nℓ)

f 2(r)

r2Λℓ(r)

Lp

Ep

ur (4.6b)

cℓ(r) =
8πmp

(1 + nℓ)

f 3(r)

r3Λℓ(r)

L2
p

Ep

(4.6c)

dℓ(r) = −32πmp
(ℓ− 2)!

(ℓ+ 2)!

f 2(r)

r3
L2
p

Ep

(4.6d)

eℓ(r) =
8πmp

(1 + nℓ)

f 3(r)

Λℓ(r)

1

Ep

(

1 +
L2
p

r2

)

, (4.6e)

where nℓ = (ℓ+2)(ℓ− 1)/2 = Λℓ(r)− 3M/r, and ur is determined by (2.63) and the

sign of ṙp(t). Due to the ur factor, we may not, strictly speaking, interpret bℓ(r) as

solely a function of r, but f(r)ur/Ep could also be reinterpreted as ṙp(t) and paired

with Ȳ ℓm
φ (t).
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4.2.3 Cunningham–Price–Moncrief (Axial) Source Term

The Cunningham–Price–Moncrief source term is specified by

f(r)FCPM
ℓm (t, r) = Cℓ(r)X̄

ℓm
φ (t) (4.7a)

f(r)GCPM
ℓm (t, r) = Aℓ(r)X̄

ℓm
φ (t) +Bℓ(r)X̄

ℓm
φφ (t), (4.7b)

where the axial tensor harmonics are given in Sec. 2.4.3. As before, (t) indicates

evaluation on (θ, φ) = (π/2, φp(t)), and the coefficients in the above expressions are

as follows:

Aℓ(r) = 32πmp
(ℓ− 2)!

(ℓ+ 2)!

f 2(r)

r2
Lp

E2
p

[

f(r)− 2E2
p −

(

1− 5M

r

)(

1 +
L2
p

r2

)]

(4.8a)

Bℓ(r) = 32πmp
(ℓ− 2)!

(ℓ+ 2)!

f 2(r)

r3
L2
p

E2
p

ur (4.8b)

Cℓ(r) = 32πmp
(ℓ− 2)!

(ℓ+ 2)!

f 3(r)

r

Lp

E2
p

(

1 +
L2
p

r2

)

. (4.8c)

As before, we may not truly interpret Bℓ(r) as a function of r, but nevertheless

keep this convenient notation. We note that our Aℓ(r) does not agree with the

corresponding factor uℓ(r) quoted in Ref. [204]; however, we find that uℓ(r) = Aℓ(r)−

C ′
ℓ(r). Due to this discrepancy, we present our derivation of (4.8).

Derivation of the Axial Source Term

Our goal is to establish formulas (4.7,4.8) for the Cunningham–Price–Moncrief source

term,

SCPM = GCPMδ(r − rp(t)) + FCPMδ′(r − rp(t)). (4.9)
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Here and in what follows, we suppress (ℓ,m) indices wherever possible. Our starting

point is Martel and Poisson’s expression for SCPM in (t, r) coordinates,

SCPM =
2r

(ℓ− 1)(ℓ+ 2)

(

f−1∂tP
r + f∂rP

t +
2M

r2
P t

)

. (4.10)

This result appears in Appendix C of their expanded version of [159], where Sodd in

that reference is our SCPM. The vector PA = (P t, P r) is given by Eq. (5.10) of [159],

PA =
16πr2

ℓ(ℓ+ 1)

∫

S2

dΩTAbX̄ℓm
b , (4.11)

but here with our index conventions.

The stress–energy tensor for a point particle (2.28) is

T µν = mp

∫

1
√

−gSch
uµuνδ4(zα − zαp (τ))dτ. (4.12)

here with gSch = −r4 sin2 θ the determinant of the background Schwarzschild metric.

We now change coordinates dτ = (dτ/dt)dt, integrate over t, and use ut = dt/dτ ,

thereby finding

T µν = mp
uµuν

utr2 sin θ
δ(r − rp(t))δ(θ − θp(t))δ(φ− φp(t)). (4.13)

Combination of Eqs. (4.11) and (4.13), with the assumption of equatorial motion,

then gives

PA =
16πmp

ℓ(ℓ+ 1)

uAuφ

ut
X̄φ(π/2, φp(t))δ(r − rp(t)). (4.14)

Because we have not integrated over r, the four–velocity components uµ here may

be viewed either as functions solely of r, or solely of t upon replacing r by rp(t).

Either viewpoint will yield the same derivatives ∂BP
A insofar as integration against
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test functions is concerned, and we view the components uµ as depending on r. The

delta functions of course depend on both r and t. Having identified which terms

depend on r and t, we then calculate

∂rP
t =

16πmp

ℓ(ℓ+ 1)
(∂ru

φ)X̄φδ(r − rp(t)) +
16πmp

ℓ(ℓ+ 1)
uφX̄φ∂rδ(r − rp(t)) (4.15)

∂tP
r =

16πmp

ℓ(ℓ+ 1)

uruφ

ut
×

{[

uφ

ut
(∂φX̄φ)− ∂r

(

ur

ut

)

X̄φ

]

δ(r − rp(t))−
ur

ut
X̄φ∂rδ(r − rp(t))

}

. (4.16)

To reach the last equation, we have replaced φ̇p(t) by u
φ/ut, which is permissible due

to the presence of the accompanying delta function. Moreover, we have also made

the replacement

ṙp(t)δ
′(r − rp(t)) →

ur

ut
δ′(r − rp(t)) +

(

ur

ut

)′
δ(r − rp(t)), (4.17)

where the prime denotes partial r–differentiation. Finally, substitution of the last

two results into Eq. (4.10), along with Eq. (2.63) and the identity

∂r

(

ur

ut

)2

=
2

E2
p

f 2(r)

r

[(

1− 5M

r

)(

1 +
L2
p

r2

)

− f(r)

]

+
4Mf(r)

r2
, (4.18)

yields the desired results (4.7,4.8). We have also used Xφφ(π/2, φ) = ∂φXφ(π/2, φ),

that is ordinary partial differentiation suffices in the equatorial plane.
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4.2.4 Jump Conditions

The forcing (4.1) induces jump conditions on the master function. Derived in Ap-

pendix B, these are the following:

(f 2
p (t)− ṙ2p(t))

[[

Ψ
]]

= fp(t)F (t, rp(t)) (4.19a)

2ṙp(t)∂t
[[

Ψ
]]

+ (r̈p(t)− fp(t)gp(t))
[[

Ψ
]]

+ (f 2
p (t)− ṙ2p(t))

[[

∂rΨ
]]

= fp(t)G(t, rp(t))− gp(t)F (t, rp(t))− fp(t)Fr(t, rp(t)), (4.19b)

where the subscript r in Fr(t, r) denotes partial differentiation with respect to the

second slot, and

fp(t) = f(rp(t)), gp(t) = f ′(rp(t)) 6= ∂tfp(t) (4.20)

are shorthands. In (4.19) our notation for a time–dependent jump is, for example,

[[

Ψ
]]

(t) ≡ lim
ǫ→0+

[

Ψ(t, rp(t) + ǫ)−Ψ(t, rp(t)− ǫ)
]

. (4.21)

Defining the particle velocity as vp(t) = ẋp(t) = ṙp(t)/fp(t), we see that (4.19a) has

the form

fp(t)(1− v2p(t))
[[

Ψ
]]

= F (t, rp(t)), (4.22)

confirming that the jump
[[

Ψ
]]

is well–defined for a subluminal particle speed, |vp| <

1. Therefore, we may safely make the substitution

[[

Ψ
]]

=
fp(t)F (t, rp(t))

f 2
p (t)− ṙ2p(t)

(4.23)
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in all formulas which follow. Differentiation of (4.23) gives

∂t
[[

Ψ
]]

=
2fp(t)ṙp(t)F (t, rp(t)) [r̈p(t)− fp(t)gp(t)]

(f 2
p (t)− ṙ2p(t))

2

+
gp(t)ṙp(t)F (t, rp(t)) + fp(t)Ft(t, rp(t)) + fp(t)ṙp(t)Fr(t, rp(t))

f 2
p (t)− ṙ2p(t)

. (4.24)

Finally, we may express (4.19b) as

[[

∂rΨ
]]

=
[

− 2ṙp(t)∂t
[[

Ψ
]]

− (r̈p(t)− fp(t)gp(t))
[[

Ψ
]]

+ fp(t)G(t, rp(t))− gp(t)F (t, rp(t))− fp(t)Fr(t, rp(t))
]/

(f 2
p (t)− ṙ2p(t)),

(4.25)

with the understanding that here
[[

Ψ
]]

and ∂t
[[

Ψ
]]

respectively stand for (4.23) and

(4.24). Again note that f 2
p (t)− ṙ2p(t) > 1 for a subluminal particle speed, whence the

jumps ∂t
[[

Ψ
]]

and
[[

∂rΨ
]]

given by Eqs. (4.24) and (4.25) are finite. The formulas

[[

∂tΨ
]]

= ∂t
[[

Ψ
]]

− ṙp(t)
[[

∂rΨ
]]

,
[[

∂xΨ
]]

= fp(t)
[[

∂rΨ
]]

(4.26)

prove useful later.

4.2.5 Coordinate Transformation Adapted to Particle His-

tory

Now assume that x ∈ [a, b] specifies the computational domain and the time–

dependent particle location xp = xp(t) obeys a < xp(t) < b, ∀t. We enact the
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coordinate transformation

t = λ (4.27)

x = a+
xp − a

ξp − a
(ξ − a) +

(b− xp)(ξp − a)− (xp − a)(b− ξp)

(ξp − a)(b− ξp)(b− a)
(ξ − a)(ξ − ξp), (4.28)

with the understanding that xp = xp(λ) is explicitly time–dependent. The trans-

formation obeys the following criteria: (i) t and λ label the same time slices; (ii)

x(λ, ξp) = xp(λ), with ξp = constant and a < ξp < b; (iii) x(λ, a) = a and x(λ, b) = b.

We further require (iv) that the transformation is invertible on [a, b]. This will only

hold provided the point

ξcritical =
(ξp + a)(ξp − xp(λ)) + (xp(λ)− a)(b− ξp)

(ξp − xp(λ))
(4.29)

lies outside of the interval [a, b]. This is not a restriction of our method per se, and

a coordinate transformation satisfying conditions (i) through (iv) may always be

found. We have chosen to work with this one only for its simplicity.

Differentiations of (4.28) yield

∂x

∂λ
=

(ξ − a)(b− ξ)x′p(λ)

(ξp − a)(b− ξp)
(4.30)

∂x

∂ξ
=

(2ξ − ξp − a)(ξp − xp(λ)) + (xp(λ)− a)(b− ξp)

(ξp − a)(b− ξp)
(4.31)

∂2x

∂ξ2
=

2(ξp − xp(λ))

(ξp − a)(b− ξp)
, (4.32)

and these expressions appear in later formulas.
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Under the coordinate transformation, the line–element (2.22) acquires a shift

vector,

ds2 = −N2dλ2 + L2(dξ + βξdλ)2 + r2(dθ2 + sin2 θdφ2). (4.33)

Here N = f 1/2, L = f 1/2∂x/∂ξ, with f understood as f(r(x(λ, ξ))). The shift vector

is

βξ =
∂x/∂λ

∂x/∂ξ
=

(ξ − a)(b− ξ)x′p(λ)

(2ξ − ξp − a)(ξp − xp(λ)) + (xp(λ)− a)(b− ξp)
, (4.34)

and we will also need

∂βξ

∂ξ
=

(Aξ2 + Bξ + C)x′p(λ)
[

(2ξ − ξp − a)(ξp − xp(λ)) + (xp(λ)− a)(b− ξp)
]2 , (4.35)

where A = 2(xp(λ) − ξp), B = 2(ab + ξ2p − (a + b)xp(λ)), and C = (a2 + b2)xp(λ) −

a(b− ξp)
2 − b(a2 + ξ2p). The velocity variable v = Lβξ/N = ∂x/∂λ obeys

v(λ, a) = 0, v(λ, ξp) = x′p(λ), v(λ, b) = 0. (4.36)

Since |x′p(λ)| < 1, we have |v(λ, ξ)| < 1 uniformly in ξ, assuming appropriately chosen

ξp, a, and b. The vector field ∂/∂λ is not the Killing direction, and it does not point

orthogonal to the constant–λ slices. To relate the ∂/∂λ direction to the unit–normal2

u of the slicing, first consider gλλ = −N2+L2(βξ)2 = −N2(1−v2) = −(N/γ)2, where

γ = (1− v2)−1/2 is the relativistic factor. Therefore, the vector field

ū = γN−1∂/∂λ (4.37)

is normalized, and one of its integral curves is the particle history. From standard

formulas

N−1(∂/∂λ− βξ∂/∂ξ) = γ−1ū− vL−1∂/∂ξ, (4.38)

2Here we use coordinate–free abstract notation for the vector fields u, ū, and n.
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so that ū = γu + vγn. Here g(n, n) = L−2gξξ = 1, whence n = L−1∂/∂ξ is a

normalized spacelike vector field. These formulas show that the spacetime dependent

parameter v determines a local boost in the tangent space of each spacetime point

in the coordinate domain. At ξ = ξp this boost relates the slice normal u to the

particle direction.

4.2.6 Wave Equation as a First–Order System

Retaining the same letter Ψ to denote the wave field Ψ(λ, r(x(λ, ξ))) in the new co-

ordinates, we introduce the variable Φ which is almost ∂ξΨ. Away from the particle’s

location Φ = ∂ξΨ is the gradient, and at ξp we remove the δ–singularity implied by

the inhomogeneous source term. Notice that ∂xΨ = f∂rΨ in the old system corre-

sponds to (∂x/∂ξ)−1Φ in the new system. The following first–order system in the

(λ, ξ) coordinates corresponds to the original second–order wave equation (4.1):

∂λΨ = βξΦ− Π (4.39a)

∂λΠ = βξ∂ξΠ− (∂x/∂ξ)−1∂ξ[(∂x/∂ξ)
−1Φ] + V (r)Ψ + J1δ(ξ − ξp) (4.39b)

∂λΦ = ∂ξ(β
ξΦ)− ∂ξΠ+ J2δ(ξ − ξp), (4.39c)

where Eq. (4.39a) defines the variable Π. The λ–dependent functions

J1 = −βξ
[[

Π
]]

+ (∂x/∂ξ)−2
[[

Φ
]]

, J2 = −βξ
[[

Φ
]]

+
[[

Π
]]

. (4.40)

implement the jump conditions collected in Section 4.2.4, where in terms of (4.26)

[[

Π
]]

= −
[[

∂tΨ
]]

,
[[

Φ
]]

= (∂x/∂ξ)
[[

∂xΨ
]]

. (4.41)
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The jumps (4.40) can be recovered by integrating (4.39) against a test function over

the region (ξp− ǫ, ξp+ ǫ), performing an integration by parts, and taking the ǫ→ 0+

limit. Smooth terms vanish in the limit. Thus, the system (4.39), with this choice of

J1 and J2, is the first order form of (4.1) provided certain distributional constraints

hold as per the discussion in Sec. 3.2.

Distributional Constraints

The first order reduction (4.39) of the RWZ equations (4.1) involve two new auxiliary

fields Π and Φ and functions J1 and J2. Notice J1 and J2 have been recovered under

the assumption ∂λΦ and ∂λΠ vanished in the limit ǫ→ 0+. Hence, in our approach,

from Φ and Π we have removed delta function terms arising from the distributional

inhomogeneity3.

To make this point clear, consider the case of circular orbits for which βξ = 0,

(∂x/∂ξ) = 1, λ = t and ξ = x. Define Φ̃ = ∂xΨ to hold for distributions, then

Φ = Φ̃−
[[

Ψ
]]

δ(x− xp) is the δ–free piece (Eq. (B.4) gives an explicit construction).

As ∂t is tangential to particle motion, Π = −∂tΨ is already δ–free and the evolution

equations are

∂tΦ̃ = −∂xΠ, (4.42a)

∂tΦ = −∂xΠ−
[[

∂tΨ
]]

δ(x− xp), (4.42b)

where we have used ∂t
[[

Ψ
]]

=
[[

∂tΨ
]]

for circular orbits. Working with Φ leads to

3Because ∂λ is tangential to the particle’s path, ∂λ will not create any δ–singularity at the
particle’s location. Hence, when considering terms like ∂λΦ we only need to look for a Dirac delta
lurking in Φ.
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our system (4.39) and the distributional constraint

Φ = ∂xΨ−
[[

Ψ
]]

δ(x− xp), (4.43)

while a preference for Φ̃ results in system (5.29) and the distributional constraint

Φ̃ = ∂xΨ. (4.44)

In practice the constraint (4.43) is neither enforced nor checked (and for eccentric

orbits it is not even constructed) at ξp. Away from ξp, including points infinitesimally

close, we check Φ = ∂xΨ and convergence to an exact solution.

4.3 A DG Scheme for RWZ with Distributional

Forcing

Our spatial discretization follows the approach and notation of Sec. 3.3, and our

intention here is to apply those techniques to (4.39). Special attention is paid to the

treatment of the distributional source term. In what follows, we use the shorthands

xξ = ∂x/∂ξ and xξξ = ∂2x/∂ξ2.

4.3.1 Discretization of (4.39)

The computational domain Ωh is the closed ξ–interval [a, b]. We cover Ωh with

K > 1 non–overlapping intervals Dk. We further assume that the particle location

ξp = bkp = akp+1 lies at the endpoint shared by D
kp and D

kp+1, with 1 ≤ kp < K. On
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each interval Dk, we approximate each component of the system vector (Ψ,Π,Φ) by

a local Lagrange interpolating polynomial belonging to D
k and interpolating at the

LGL nodal points.

On each interval Dk and for each solution component, we define local residuals,

(RΨ)
k
h = ∂λΨ

k
h − (βξΦ)kh +Πk

h (4.45a)

(RΠ)
k
h = ∂λΠ

k
h − ∂ξ(β

ξΠ)kh + (Π∂ξβ
ξ)kh + ∂ξ(x

−2
ξ Φ)kh + (x−3

ξ xξξΦ)
k
h − (VΨ)kh (4.45b)

(RΦ)
k
h = ∂λΦ

k
h − ∂ξ(β

ξΦ)kh + ∂ξΠ
k
h, (4.45c)

measuring the extent to which our approximations satisfy the original system of

PDE. We define these residuals on open intervals (ak, bk) ⊂ D
k, but have assumed

that the particle location ξp = bkp = akp+1 lies at an endpoint. Therefore, in the

residuals (4.45) we have not yet included the δ–function contributions appearing in

(4.39).

Galerkin conditions arise from the inner products between each residual (4.45)

and all ℓkj (ξ). Integrating once by parts, introducing the numerical fluxes, and re-

calling definitions of the mass and stiffness matrix (3.32) results in a nodal form of

the semi–discrete equations

∂λΨ
k
h − (βξΦ)kh +Πk

h = 0 (4.46a)

∂λΠ
k
h + (Dk

M)T (βξΠ)kh − (Dk
M)T (x−2

ξ Φ)kh + (x−3
ξ xξξΦ)kh − (V Ψ)kh

= (Mk)−1
[ (

βξ(λ, ξ)(Πk
h)

∗ − x−2
ξ (λ, ξ)(Φk

h)
∗) ℓk(ξ)

]∣

∣

bk

ak
(4.46b)

∂λΦ
k
h + (Dk

M)T (βξΦ)kh − (Dk
M)TΠk

h = (Mk)−1
[ (

βξ(λ, ξ)(Φk
h)

∗ − (Πk
h)

∗) ℓk(ξ)
]∣

∣

bk

ak
.

(4.46c)
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The weak (single integration by parts) dG form features the transpose of the operator

Dk
M =MkDk(Mk)−1, (4.47)

instead of the spectral collocation derivative matrix Dk. Using the relationship

(Dk)T = (Sk)T (Mk)−1 we conclude (Dk
M)T = (Mk)−1(Sk)T . All adjacent vectors in

these expressions, e. g. (βξΦ)kh, (V Ψ)kh, and (x−3
ξ xξξΦ)kh, should be interpreted as a

single vector obtained via component–by–component products.

4.3.2 Numerical Flux

To define the vector (fΠ, fΦ)
T of physical fluxes, we write (4.39b,c) as

∂λ







Π

Φ






+ ∂ξ







fΠ

fΦ






= lower order terms. (4.48)

This equation determines the physical and numerical fluxes as follows:







fΠ

fΦ






≡







−βξ x−2
ξ

1 −βξ













Π

Φ






,







(fk
Π)

∗

(fk
Φ)

∗






≡







−βξ x−2
ξ

1 −βξ













(Πk
h)

∗

(Φk
h)

∗






.

(4.49)

The combinations of (Πk
h)

∗ and (Φk
h)

∗ which appear in (4.46b,c) are precisely −(fk
Π)

∗

and −(fk
Φ)

∗, as must be the case since these terms have arisen through integration

by parts. In this subsection we construct the required boundary expressions for

(fk
Π)

∗ and (fk
Φ)

∗. Our numerical flux must be robust, ensure stability, and be capable

of handling the analytic discontinuities at the particle location. Numerical experi-

ments suggest that inclusion of a Dirac delta function renders inadequate otherwise

suitable numerical fluxes, such as the central and Lax–Friedrichs fluxes [121]. How-
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ever, as we will see, a suitably modified upwind numerical flux successfully handles

the delta functions in the system (4.39), recovering optimal convergence. We begin

by constructing the standard upwind flux corresponding to no particle, and then

incorporate the particle’s effect into the flux through the addition of an extra term.

An upwind numerical flux passes information across an interface in the direction

of propagation. To construct the upwind numerical fluxes, we first diagonalize the

matrix appearing in (4.49) as follows:







−βξ x−2
ξ

1 −βξ






= T







−βξ + x−1
ξ 0

0 −βξ − x−1
ξ






T−1, T−1 =







1 x−1
ξ

1 −x−1
ξ






.

(4.50)

Application of T−1 on the system vector (Π,Φ)T of fundamental fields yields the

system vector (Π + Φ/xξ,Π − Φ/xξ)
T of characteristic fields. For our problem, the

first characteristic field Π+Φ/xξ propagates rightward with speed −βξ+x−1
ξ relative

to the ∂/∂λ time axis, while the second characteristic field Π − Φ/xξ propagates

leftward with speed −βξ − x−1
ξ . Respectively, the upwind fluxes at a left endpoint



90

ak (k 6= kp + 1) and at a right endpoint bk (k 6= kp) then take the following forms:







(fk
Π)

∗

(fk
Φ)

∗







left

= T







0 0

0 −βξ − x−1
ξ






T−1







Π−
h

Φ−
h






+

T







−βξ + x−1
ξ 0

0 0






T−1







Π+
h

Φ+
h







(4.51a)







(fk
Π)

∗

(fk
Φ)

∗







right

= T







0 0

0 −βξ − x−1
ξ






T−1







Π+
h

Φ+
h






+

T







−βξ + x−1
ξ 0

0 0






T−1







Π−
h

Φ−
h






.

(4.51b)

Eqs. (4.51a,b) formalize the intuitive concept behind the upwind numerical flux. In

these equations triple–product matrices operate on the interior and exterior solution.

The first matrix operation transforms the fields to characteristic fields, the second

projects out one of the characteristic fields, and the third transforms back to the

fundamental fields. As a result, information from a right–moving field, say, influences

the subdomain to the right, but not the subdomain to the left. One can show the

effect of the upwind choice is to penalize (i.e. add a negative contribution to) the

semi–discrete energy statement, thus ensuring semi–discrete stability for the method.

To achieve succinct expressions for the upwind flux which hold at both left and

right endpoints, recall our definitions (3.30) for the numerical average and jump

{{

Φ
}}

=
1

2
(Φ+ + Φ−),

[[

Φ
]]

n

= n+Φ+ + n−Φ−, (4.52)

where the jump is defined with respect to a local outward–pointing normal n of a

subdomain. These definitions yield the following concise formulas (valid at left or
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right endpoints):

(fk
Π)

∗ =
{{

−βξΠh + x−2
ξ Φh

}}

+
1

2

[[

x−1
ξ Πh − x−1

ξ βξΦh

]]

n

(4.53a)

(fk
Φ)

∗ =
{{

Πh − βξΦh

}}

+
1

2

[[

x−1
ξ Φh − xξβ

ξΠh

]]

n

. (4.53b)

At all interior endpoints (ak for k 6= 1, kp + 1, and bk for k 6= kp, K) we will use

this numerical flux which is determined by the local numerical solutions. We also

use this upwind form at a physical boundary (that is, a1 or bK), but in this case a

boundary condition supplies the exterior solution.

Turning now to the endpoints akp+1 = bkp corresponding to the particle location,

we modify the standard upwind flux (4.53) following the generalized discontinuous

Galerkin method for scalar equations outlined in [88], which we now extend to

the system (4.39). Consider a Dirac delta function located at the interface between

elements D
kp and D

kp+1, and the weak form of the resulting system (4.39). The

relevant new terms to consider have the form

∫

D
kp

dξJ1,2δ(ξ − ξp)ℓ
kp
j (ξ),

∫

D
kp+1

dξJ1,2δ(ξ − ξp)ℓ
kp+1
j (ξ). (4.54)

Upon evaluation, each of these terms appears similar in form to a boundary flux. The

discontinuous Galerkin method method provides a self–consistent way to evaluate

these integrals and then add the results to the numerical flux. We only require

the usual selection property of the delta function when integrated over the union

D
kp ∪ D

kp+1, and we are free to choose how the individual integrals over D
kp and

D
kp+1 contribute to the total integral. In fact, the dynamics of (4.39) suggest a

preferred distributional splitting. To see why, consider the scalar advection equation

(∂λ + v∂ξ)Ψ = J(ξ, λ)δ(ξ − ξp), with v > 0. Since this equation corresponds to

rightward propagation, the natural choice for the associated distributional splitting
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Figure 4.1: Numerical flux for an advection equation away from δ–singularity. At
an interface between D

k and D
k+1 an upwind numerical flux passes information from left to right.

of the delta function term is

∫

D
kp

dξJδ(ξ − ξp)ℓ
kp
j (ξ) = 0,

∫

D
kp+1

dξJδ(ξ − ξp)ℓ
kp+1
j (ξ) = J(ξp, t)δ0,j . (4.55)

For this case, notice that the delta function only “sees” a single Lagrange polynomial,

namely ℓ
kp+1
0 (ξ) on the rightward interval. Figures 4.1 and 4.2 show the upwind

numerical flux for the advection equation with and without a Dirac delta.

To enact an upwind splitting of the delta functions appearing the system (4.39),

we simply use the matrix T−1 already defined in (4.50) to isolate the two propagating

characteristic modes of the system. Consistent with propagation of these modes, at
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Figure 4.2: Numerical flux for an advection equation at δ–singularity. At the inter-
face we continue to use an upwind numerical flux (cf. Fig. 4.1), while only the D

k+1 subdomain
“sees” the Dirac delta.

the particle location we modify the fluxes given in Eqs. (4.51a,b),







(f
kp+1
Π )∗

(f
kp+1
Φ )∗







left, modified

=







(f
kp+1
Π )∗

(f
kp+1
Φ )∗







left

+ T







1 0

0 0






T−1







J1

J2






(4.56a)







(f
kp
Π )∗

(f
kp
Φ )∗







right, modified

=







(f
kp
Π )∗

(f
kp
Φ )∗







right

+ T







0 0

0 −1






T−1







J1

J2






. (4.56b)

The correctness of this prescription can be see as follows. Integration of the system

(4.39) over the union D
kp ∪ D

kp+1 followed by a subsequent integration by parts on

each interval generates the following boundary terms at the particle location (and

on the right–hand side of the equal sign):







fΠ

fΦ







∣

∣

∣

∣

∣

∣

∣

(λ,akp+1)

−







fΠ

fΦ







∣

∣

∣

∣

∣

∣

∣

(λ,bkp )

+







J1

J2






. (4.57)

The two physical fluxes in this equation of course cancel each other out, leaving only
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the vector (J1, J2)
T . Our modifications (4.56a,b) of the numerical flux are tailored

to mimic this result. While the difference of the left/right numerical fluxes at the

particle location will not, in general, cancel each other out (due to numerical error),

notice that by subtracting (4.56b) from (4.56a) we generate precisely the vector

(J1, J2)
T . This argument can be made more rigorous through an analysis based on

integrating the two local numerical solutions on D
kp and D

kp+1 against the Lagrange

polynomials ℓ
kp
N (ξ) and ℓ

kp+1
0 (ξ). Finally, using the general expressions (4.53a,b), we

may likewise succinctly express the modified numerical flux at the particle location

as







(fk
Π)

∗

(fk
Φ)

∗







modified

=







(fk
Π)

∗

(fk
Φ)

∗






+
1

2
T







1− n− 0

0 −1− n−






T−1







J1

J2






, (4.58)

where either k = kp or k = kp + 1 in this equation.

4.4 Treatment of the Initial Boundary Value Prob-

lem

The issues of initial data and boundary conditions are not part of the dG method

per se, but we must, nevertheless, specify both to complete our numerical scheme.

This section also discusses a simple waveform extraction technique to approximate

future null infinity.
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4.4.1 Initial Data with Source Smoothing

We adopt trivial (zero) initial data, and avoid the issue of an impulsively started

problem by smoothly “switching on” the source terms. Precisely, the source terms

are switched on smoothly via the following prescription:

Fℓm(t, r) →











1
2
[erf(

√
δ(t− t0 − τ/2) + 1]Fℓm(t, r) for t0 ≤ t ≤ t0 + τ

Fℓm(t, r) for t > t0 + τ,
(4.59)

and the same for Gℓm(t, r). Typically, the initial time t0 = 0, and the timescale τ is

much shorter than the final time of the run. Choosing suitable τ and δ, one achieves

smooth and consistent start-up to machine precision. Note that this prescription

does initially affect the form of ∂tFℓm(t, r).

The importance of switching on the source terms is crucial. All of the next chapter

is devoted to issues stemming from an impulsively started problem, which appears

to be especially problematic for spectral methods [132, 90]. Delaying the discussion

until then, here we simply assume these issues have been correctly addressed by

temporal source smoothing.

4.4.2 Boundary Conditions

At the boundaries we impose outgoing radiation boundary conditions. Both poten-

tials (2.38,2.45) behave differently in the ξ → −∞ and ξ → ∞ limits, whence we

treat the cases ξ = a and ξ = b differently. Since

1− 2Mr−1 = 2Mr−1 exp(−r/(2M)) exp(x/(2M)) (4.60)
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in the x→ −∞, r → 2M+ limit both potentials are exponentially small. Therefore,

with a being sufficiently negative, |V RW,Z(r)| is zero to machine precision when r

corresponds to ξ ≃ a, and as an excellent approximation we may use the Sommerfeld

boundary condition

(∂tΨ− ∂xΨ)(λ, a) = 0 → Π(λ, a) + Φ(λ, a)/xξ(λ, a) = 0. (4.61)

In the x, r → ∞ limit, both the Zerilli and Regge–Wheeler potentials (2.38,2.45)

behave like V RW,Z = ℓ(ℓ + 1)r−2 + O(r−3). Therefore, were we to adopt a naive

Sommerfeld condition at ξ = b, the slow fall–off of the potential would corrupt the

benefits of our high–order accurate method. Instead, we implement the radiation

boundary condition described in [143],

−Π(λ, b) + Φ(λ, b)/xξ(λ, b) =
f(rb)

rb

∫ λ

0

ΩRW,Z
ℓ (λ− λ′, rb)Ψ(λ′, b)dλ′, (4.62)

where rb = r(x(λ, b)) = r(b) and ΩRW,Z
ℓ is a time–domain boundary kernel. As

indicated, this kernel is different for the Regge–Wheeler (here spin–2) and Zerilli

cases, although we suppress this dependence wherever possible.

We approximate the time–domain boundary kernel Ωℓ ≃ Ξℓ as a sum of expo-

nentials

Ξℓ(t, rb) =
d
∑

k=1

Ξℓ,k(t, rb), Ξℓ,k(t, rb) =
γℓ,k(rb/(2M))

2M
exp

(

tβℓ,k(rb/(2M))

2M

)

.

(4.63)

The parameters γℓ,k(rb/(2M)) and βℓ,k(rb/(2M)) determine the approximation kernel

Ξℓ(t, rb), and they depend on the Regge–Wheeler or Zerilli case, the orbital index ℓ,

and the dimensionless boundary radius rb/(2M). The approximation Ξℓ is designed

so that its Laplace transform agrees with the transform of Ωℓ to relative supremum
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k ReβRW
2,k (500) ImβRW

2,k (500)

1 −1.25849067540E−02 0
2 −8.23918644025E−03 0
3 −5.49064917188E−03 0
4 −3.62410271081E−03 0
5 −2.32805739548E−03 0
6 −1.42584745587E−03 0
7 −8.04688157035E−04 0
8 −3.83719341654E−04 0
9 −2.99532499571E−03 1.73407822255E−03

k ReγRW
2,k (500) ImγRW

2,k (500)

1 −8.36957985819E−09 0
2 −2.95922379193E−07 0
3 −2.97720676842E−06 0
4 −8.13540247121E−06 0
5 −1.40566197350E−06 0
6 −5.02202428400E−08 0
7 −1.01094068265E−09 0
8 −7.70486047714E−12 0
9 −2.99056309897E−03 1.73610608573E−03

k ReβZ
2,k(500) ImβZ

2,k(500)

1 −1.25789030971E−02 0
2 −8.23529461921E−03 0
3 −5.48806353366E−03 0
4 −3.62239165593E−03 0
5 −2.32695433490E−03 0
6 −1.42517041551E−03 0
7 −8.04304980721E−04 0
8 −3.83535015275E−04 0
9 −2.99383340672E−03 1.73321233868E−03

k ReγZ
2,k(500) ImγZ

2,k(500)

1 −8.35513276685E−09 0
2 −2.95425498144E−07 0
3 −2.97239482588E−06 0
4 −8.12342297064E−06 0
5 −1.40379108037E−06 0
6 −5.01539234399E−08 0
7 −1.00959570760E−09 0
8 −7.69439666825E−12 0
9 −2.98758843820E−03 1.73437449497E−03

Table 4.1: Compressed kernels for ℓ = 2, rb/(2M) = 500, ε = 10−10. There are d = 10 poles and
strengths, and complex conjugation of the ninth entries gives the tenth entries. Zeros correspond
to outputs from the compression algorithm which are less than 10−30 in absolute value.

error ε along the axis of imaginary Laplace frequency, and the the parameters γℓ,k and

βℓ,k are the outputs from the Alpert–Greengard–Hagstrom compression algorithm

[10, 143]. Theoretically, ε is a long–time bound on the relative convolution error in

the time domain, and it measures the accuracy of the boundary condition. Table 4.1

collects the ℓ = 2 kernels for rb = 1000M and ε = 10−10. We evolve the constituent

pieces of the approximate convolution via temporal integration of the ODE

d

dλ

∫ λ

0

Ξℓ,k(λ− λ′, rb)Ψ(λ′, b)dλ′ =

βℓ,k
2M

∫ λ

0

Ξℓ,k(λ− λ′, rb)Ψ(λ′, b)dλ′ + Ξℓ,k(0, rb)Ψ(λ, b),

(4.64)

carrying out the integration along side, and coupled with, the numerical evolution

of the system (4.39). With this boundary condition, we are free to choose essentially

any boundary ξ = b, so long as it lies to the right of the source. Our outer radiation

boundary condition is especially useful when studying eccentric orbits, for which one

must average quantities over many periods.
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4.4.3 Waveform Extraction

Practically one must devise a way to extract the waveforms at future null infinity from

the finite computation domain. Formally the luminosity Eqs. (2.58, 2.59) hold there,

and to a good approximation these are the waveforms gravitational wave detectors

measure. This problem has been solved for waves on flat spacetime by Abrahams

and Evans [2, 3]. For ℓ = 2 the procedure is as follows. We record a master

scalar Ψ at the outer boundary x = b as a time series, and then integrate Ψ(t, b) ≃

f̈(t−b)+3ḟ(t−b)b−1+3f(t−b)b−2 as if it were exact, thereby recovering the profile

f(t) and its derivatives. We perform a similar extraction on Π. The Abrahams–Evans

procedure is not exact for the perturbation equations we consider. Nevertheless, upon

substitution of the approximate expansion f̈(t − x) + 3ḟ(t − x)x−1 + 3f(t − x)x−2

into one of the (homogeneous) master equations (4.1), we find a residual which is

O
(

r−3 log(1
2
r/M)

)

.

4.5 Numerical Experiments

Before applying our method to physical problems we perform a series of diagnostic

tests to confirm the expected theoretical properties of the scheme. We are interested

in demonstrating the global spectral convergence of the scheme (especially at the

analytic discontinuity), 4th order convergence of the classic Runge–Kutta integrator,

and the long–time accuracy of our radiation boundary conditions. We conclude the

section by applying our method to circular and eccentric orbits and compare our

results to existing results from the literature.
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Figure 4.3: Ψ–component of the solution. The Π and Φ components are qualitatively
similar.
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4.5.1 Forced Wave Equation with Exact Initial Data

For a fixed velocity v obeying |v| < 1, we consider the model

−∂2tΨ+ ∂2xΨ = cos tδ(x− vt) + i cos tδ′(x− vt). (4.65)

Appendix C shows that

Ψ(t, x) = −1
2
sinϑ+ 1

2
iγ2[v + sgn(x− vt)] cosϑ, ϑ = γ2(t− xv − |x− vt|) (4.66)

is an exact particular solution to (4.65) and we will check the convergence of our

numerically generated solution against these exact solutions. Here γ = (1− v2)−1/2

is the usual relativistic factor. After expressing (4.65) as a first order system and

adopting our dG scheme, we obtain the same equations as in (4.46), except now

with a zero potential vector V . Our domain is comprised of two subdomains: D1 to

the left of the particle location xp(t) = vt, and D
2 to the right of xp(t). At xp(t),

the interface between D
1 and D

2, we use Eq. (4.58) for the numerical fluxes (fk
Π)

∗

and (fk
Φ)

∗. At the physical boundary points we choose fluxes which enforce simple

Sommerfeld boundary conditions,

Π(λ, a) + Φ(λ, a)/xξ(λ, a) = 0, Π(λ, b)− Φ(λ, b)/xξ(λ, b) = 0. (4.67)

Working with the global domain [a, b] = [−5, 5], we choose v = 0.4 and the final

time tF = 3.0. For these choices the critical ξ value (4.29) always lies outside of

the global domain, although clearly the example becomes pathological for a final

time tF near 12.5 (when the particle crosses the outer boundary). Fig. 4.3 shows

the Ψ component of the solution vector, and the Φ and Π components also feature

moving discontinuities. Fig. 4.4 documents the accuracy after several evolutions,
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Figure 4.4: Temporal convergence of the linearly moving particle experiment. Er-
rors have been computed relative to a uniformly spaced x–grid and over all fields. The dotted line
is a least–squares fit of the data points (the round circles).
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Figure 4.5: Spectral convergence of the linearly moving particle experiment.

Again, errors have been computed relative to a uniformly spaced x–grid and over all fields.

each with N = 26 points, performed with decreasing temporal resolution in order

to exhibit the fourth–order accuracy of the temporal Runge–Kutta integration. To

compute errors, we have used the polynomial representations of the two local so-

lutions, each computed with respect to the coordinates (λ, ξ), to interpolate onto

a uniformly spaced x–grid with 256 points where L∞ errors have been calculated.

Fig. 4.5 demonstrates the spectral convergence of our method for this problem, in

particular at the particle’s location. Here N is the number of points on each of the

two subdomains, and for each N we have chosen a ∆t to ensure stability.
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Figure 4.6: Effect of radiation boundary conditions on the solution Ψ. The experi-
ment described in the text produces a solution Ψ whose magnitude is of order 1, thus the boundary
effects are seen to result in very small relative errors.

4.5.2 Longtime Accuracy of Radiation Boundary Conditions

This experiment involves the ℓ = 2, m = 2 polar problem and a circular orbit with

p = 7.9456, M = 1, and mp = 1. We choose trivial initial data at t0 = 0, with a

smoother defined by τ = 10 and δ = 10. Integrating to final time tF = 90, we first

generate an accurate reference solution Ψref on the domain [−100, 100], using 65+55

subdomains (65 to the left of the particle and 55 to the right) with N = 37 nodal

points on each. Here and below, we choose the time step ∆t to ensure stability.

At both endpoints x = ±100 we place Sommerfeld boundary conditions on Ψref , as

physically no radiation reaches the endpoints by the final time.

The experiment is to generate a second numerical solution Ψ on the shorter

domain [−50, b], where b = 30 + 2 log(15− 1) ≃ 35.2. We again evolve to final time

tF = 90, now with the convolution radiation boundary condition (4.62) placed at the

outer endpoint x = b. The relevant Zerilli kernel is defined in Table II of Ref. [143].
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This kernel corresponds to rb/(2M) = 15 and the tolerance ε = 10−10. At the inner

endpoint x = −50 we again adopt a Sommerfeld boundary condition. For 30+15

subdomains with 33 points on each, the corresponding Ψ is then compared against

the reference solution Ψref in the L∞ norm. After interpolation onto a uniformly

spaced grid with 853 points, we have found that ‖Ψ − Ψref‖∞ ≃ 8.2314 × 10−12.

Fig. 4.6 displays a wavelike reflection off of the left boundary, which can be made

arbitrarily small by extending the boundary further to the left, and numerical errors

on the right.

4.5.3 Circular Orbits: Waveforms and Luminosities

This subsection compares our numerical results for circular orbits to those obtained

by other authors. For brevity we restrict ourselves to ℓ = 2, but note that our

method maintains its performance for higher ℓ. For our simulations, we have chosen4

M = 1 = mp, with ξmax = xmax = 1000 + 2 log(500 − 1) ≃ 1012 and ξmin = xmin =

−200 as the outer and inner boundaries. We have used 45+200 subdomains, each

with N = 21 points, and a smoother defined by τ = 1000 and δ = 0.0002. For

these choices, we have integrated to tF = 2500 with time step ∆t = 0.005. With

these parameters we compute waveforms with a relative error of better than 10−8.

Radiation boundary conditions (4.62) have been enforced through Table 4.1. Other

parameters or non–uniformly placed subdomains may prove advantageous, but we

have not explored all possibilities.

We first describe what we have measured. The luminosities of gravitational

energy and angular momentum across an arbitrarily large spherical surface are de-

4By dividing Eq. (4.1) by mp we can solve for the per–particle–mass perturbation Ψ/mp (from
the coding standpoint, this is equivalent to setting mp = 1). Physical waveforms and other quan-
tities can then be recovered via multiplication by appropriate powers of mp.
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Energy luminosity (Ė2m + Ė2,−m)/m2
p

m dG, read off dG, extract FE FR FD
1 8.17530620× 10−7 8.1633× 10−7 8.1662× 10−7 8.1633× 10−7 8.1623× 10−7

2 1.70685914× 10−4 1.7062× 10−4 1.7064× 10−4 1.7063× 10−4 1.7051× 10−4

Angular momentum luminosity (L̇2m + L̇2,−m)/m2
p

m dG, read off dG, extract FE FR FD
1 1.83102416× 10−5 1.8283× 10−5 1.8289× 10−5 1.8283× 10−5 1.8270× 10−5

2 3.82285415× 10−3 3.8215× 10−3 3.8219× 10−3 3.8215× 10−3 3.8164× 10−3

Table 4.2: ℓ = 2 luminosities for a circular orbit with (p, e) = (7.9456, 0).

termined from the master functions ΨCPM
ℓm (u+ x, r) and ΨZ

ℓm(u+ x, r). We view the

retarded time u = t− x as fixed, but with r, x arbitrarily large. Note that x ∼ r, as

r → ∞. In the r → ∞ limit we have the energy and angular momentum luminosities

across an infinite–radius spherical surface given by Eqs. (2.58, 2.59). The individual

multipole contributions (Ėℓm and L̇ℓm) to the total energy and angular momentum

luminosities decay exponentially with ℓ [157, 178, 78]. A few simplifications concern-

ing Ėℓm and L̇ℓm are worth noting. First, due to the fact that the particle moves

in the equatorial plane, the following conditions hold: ℓ +m even =⇒ ΨCPM = 0

and ℓ + m odd =⇒ ΨZM = 0. To establish these conditions, note, for example,

that when ℓ+m is even the axial source terms FCPM
ℓm and GCPM

ℓm are identically zero.

Second, from the behavior of the master functions under the mapping m→ −m, we

have Ėℓ,m = Ėℓ,−m and L̇ℓ,m = L̇ℓ,−m [157].

We will either simply “read off” waveforms at rmax = 1000 or use the extraction

technique. Table 4.2 compares our dG, circular–orbit, and ℓ = 2 energy and angular

momentum luminosities to results obtained by other numerical methods described in

the literature. Such a comparison is not straightforward as the finite–element (FE)

results of Sopuerta and Laguna [204] involved reading off the master functions at

x = 2000, while the finite–difference (FD) results of Martel [157] involved read–off

at x = 1500 (here we always assume M = 1). The frequency–domain (FR) results of
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Total ℓ = 2 energy luminosity m−2
p

∑2

m=−2〈Ė2m〉
Orbit parameters dG, read off dG, extract FR

e = 0.18891539, p = 7.50477840 2.59367× 10−4 2.59296× 10−4 2.59296× 10−4

e = 0.76412402, p = 8.75456059 1.57146× 10−4 1.57120× 10−4 1.57131× 10−4

Total ℓ = 2 angular momentum luminosity m−2
p

∑2

m=−2〈L̇2m〉
Orbit parameters dG, read off dG, extract FR

e = 0.18891539, p = 7.50477840 4.91165× 10−3 4.91018× 10−3 4.91016× 10−3

e = 0.76412402, p = 8.75456059 2.09297× 10−3 2.09220× 10−3 2.09221× 10−3

Table 4.3: Total ℓ = 2 luminosities for eccentric orbits.

Poisson, as reported in [157], for the wave forms at infinity rely on the appropriate

boundary value problems in the frequency domain, and of the three should afford

the most direct comparisons.

4.5.4 Eccentric Orbits: Waveforms and Luminosities

This subsection compares our numerical results for eccentric orbits to the frequency

(FR) domain results of Tanaka et al [201] (rather than Poisson’s frequency domain

results). We again choose 45+200 subdomains, each with N = 21 points, and

∆t ≃ 0.01. Due to the incommensurate radial Tr and azimuthal Tφ periods, we

encounter the standard difficulty in obtaining measurements from eccentric–orbit

simulations. Ideally, we would average measured luminosities over an infinite time,

but will content ourselves with averaging over 4 radial cycles. Given a time series

A(t), we compute its corresponding average as

〈A〉 ≡ 1

T2 − T1

∫ T2

T1

dtA(t), T2 − T1 = 4Tr. (4.68)

Table 4.3 compares our total ℓ = 2 angular momentum and energy luminosities

to the frequency (FR) domain results of Ref. [201]. In that reference the authors
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Figure 4.7: Orbital paths. The left panel shows one orbital period for (e, p) =
(0.18891539, 7.50477840). The right panel shows two orbital periods for (e, p) =
(0.76412402, 8.75456059). In each case the dark inner circle is the horizon. We have used the
(r, φ) system to construct these polar plots.

claim a relative numerical error of better than 10−4, which we have confirmed. We

have retained enough significant digits in (e, p) to match the parameters (Ep, Lp)

chosen in that reference. While we achieve relative errors of better than 10−4 for

our averaged and extracted luminosities, we achieve single precision accuracy for our

waveforms as a time series at x = b. Figure 4.7 exhibits the orbital paths for the two

cases considered in this subsection, and Fig. 4.8 shows the corresponding waveforms.
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Figure 4.8: Waveforms for ℓ = 2, m = 2. The top panel shows the
(e, p) = (0.76412402, 8.75456059) extracted waveform, and the bottom panel the (e, p) =
(0.18891539, 7.50477840) extracted waveform. Solid blue lines and dashed red lines respectively
correspond to real and imaginary parts.



Chapter Five

Junk Solutions Seeded by Trivial

Initial Data
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5.1 Introduction

A common approach for computing EMRB waveforms is to numerically solve Eq. (4.1)

as a time-domain initial boundary value problem with prescribed initial data. This

was carried out in the previous chapter with a nodal dG method. In our discus-

sion of initial data we briefly alluded to unintended consequences which have been

appropriately handled. We now return to this issue with our full attention.

The exact initial data for generic point-particle trajectories is non-trivial, and the

most common choice is therefore to set both Ψ and its time derivative to zero. (See

Refs. [158, 184, 54, 55] for the construction of more realistic data.) Inspection of (4.1)

shows that trivial data is inconsistent with the jump conditions stemming from the

delta function terms in the inhomogeneity. Thus, trivial data results in an impulsive

(i. e. discontinuous in time) start-up. This chapter addresses the main question of

if, and when, a physical solution eventually emerges from such trivial initial data.

Ideally, we would have both the correct source terms and initial conditions. Without

the exact initial data, we consider modifying the source terms according to the

procedure outlined in Sec. 4.4.1 such that they are consistent with the choice of

trivial initial data.

To appreciate some of the issues associated with the main question above, con-

sider a particle in a fixed circular orbit. The energy Ė∞ and angular momentum L̇∞

luminosities for gravitational waves at future null infinity are then constant in time

and obey the relation Ė∞ = ΩL̇∞, where Ω is the angular orbital velocity of the par-

ticle. However, verification of this relationship is limited by a finite computational

domain, leading to an O(r−1) error (see Ref. [237] for a recent suggestion towards

overcoming this limitation). Therefore, numerical verification of Ė∞ = ΩL̇∞ is a
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useful diagnostic only in the distant wave-zone. In the near-zone we might also test

“Ė = ΩL̇”, now constructing the luminosities with self-force quantities via Eq. 2.64;

however, because Ψ is discontinuous at the particle location, self-force measurements

will involve large errors unless due care is taken. For generic quasi-periodic orbits,

selection of a meaningful set of diagnostics is not straightforward. In particular, we

can neither infer steady-state behavior throughout the computational domain, nor

can we claim to have a solution which solves the hypothetical “true” initial value

boundary problem. These difficulties are due to the inconsistent initial conditions.

That is, we are really solving a problem different from the physical one. As a partial

resolution of these issues, we examine a direct test condition which is necessary to

claim that a physically correct solution has been achieved everywhere in the com-

putational domain. This is a simple self-consistency condition relating ΨCPM and

the Regge-Wheeler (RW) ΨRW master functions. Each master function describes the

same physical axial perturbations, and violations of this relationship are necessarily

due to numerical errors and/or incorrect initial conditions.

We will refer to errors seeded by the initial conditions as “junk”. One type of junk

either propagates off the computational domain or decays away. We collectively refer

to such junk radiation, junk quasi-normal ringing, and junk Price tails as dynamical

junk. The key observation of this chapter is that trivial initial conditions may also

give rise to a static distributional junk solution ΨJost, which we refer to as Jost

junk. In terms of the “Schrödinger operator” H = −∂2x + V , a Jost solution satisfies

HΨ±
Jost = ν2Ψ±

Jost, with Ψ±
Jost ∼ exp(±iνx) as x → ∞ [83]. In this chapter, we are

exclusively interested in “zero-energy” Jost solutions for which ν = 0, in which case

ΨJost does not behave exponentially at infinity (see below). Therefore, in what follows

a Jost function satisfies a “zero-energy”, time-independent, Schrödinger equation

(−∂2x + V )ΨJost = 0 to the left and right of the particle, and, as it turns out,
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is discontinuous at the particle location. We find that ΨJost has a non-negligible

effect in the wave-zone, yet is often small enough to be buried into the O(r−1) error

associated with a waveform “read-off” in the far-field.

We will adopt trivial initial conditions throughout, but allow for temporally

smoothed source terms according to (4.59). Our chief goal is to study the properties

of the numerical solutions computed with and without smoothed source terms, es-

pecially in the context of the Jost solution. To carry out numerical simulations, we

have primarily used the nodal Legendre discontinuous Galerkin method described

in Chapter. 4. In addition, some of our results have independently verified with a

nodal Chebyshev method (similar to the one described in Refs. [56, 57]), which also

features multiple subdomains and upwinding1. Our nodal Chebyshev method treats

the jump discontinuities at the particle location in the same fashion as outlined in

Ref. [89] for the nodal dG method. Both our dG and Chebyshev methods solve a

first order system representing (4.39). Most of this chapter considers circular orbits,

for which λ = t, ξ = x, and the shift vector βξ = 0. Thus, for circular orbits, our

system (4.39) becomes

∂tΨ = −Π

∂tΠ = −∂xΦ + V (r)Ψ + J1δ(x− xp)

∂tΦ = −∂xΠ+ J2δ(x− xp),

(5.1)

where the time-dependent jump factors are J1 = [[∂xΨ]] and J2 = −[[∂tΨ]]. Also, in

the case of circular orbits, the variables Π and Φ are −∂tΨ and ∂xΨ, respectively.

This Chapter is organized as follows. Section 5.2 focuses on the Jost solution,

from both empirical and analytical standpoints. Here we present analytic formulas

1Comments towards the generality of our observations will be addressed, but in general the
central issue is how the δ-singularity is handled and not the underlying numerical scheme.
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Figure 5.1: Dependence of C on smoothing parameters. We have empirically determined
that |CL| = 1

2
= |CR| for an impulsive start-up, corresponding to C = 1 at the leftmost point. The

parameter δ is different for each τ ; δ = 2 for τ = 10 and δ = 0.0058 for τ = 150.

for Jost solutions and compare them with numerical results. Section 5.3 considers

several practical consequences of impulsive start-up for EMRB modeling with circu-

lar orbits: violation of the axial consistency condition, contamination of waveform

luminosities, and influence on self-force measurements. This section also gives a pre-

liminary report on consequences for eccentric orbits. Universality of our results are

considered in Sec. 5.4, where we touch upon finite-difference methods and alternative

first order reductions. Longer calculations appear in Appendix D.

5.2 Jost Solution

To better explain the origin of the Jost junk solution, we first consider a toy model:

the ordinary 1+1 wave equation with distributional forcing. We then examine the

Jost solution for the master wave equations, with a forcing determined by a circular

orbit.
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a, b: Endpoint of computational domain [a, b].
SL, SR: Number of subdomains to left and right of particle.

N : Number of points on each subdomain.
τ, δ: Smoothing parameters introduced in Eq. (4.59).

∆t, tF : Timestep and final time.
M = 1: Schwarzschild mass parameter.
mp = 1: Particle mass.

Table 5.1: Basic set of parameters for a numerical simulation. This set is not complete,
but in what follows we often refer to these variables. For all simulations we continue to set M =
1 = mp, where the choice mp = 1 is equivalent to working with per-particle-mass perturbations
Ψ/mp.

5.2.1 Forced 1+1 Wave Equation

We return to the forced wave equation model (4.65), written as a first order system

(5.1) with V = 0, for which an exact particular solution is known. For this model,

junk radiation propagates off the computational domain with speeds ±1. However,

when numerically solving this equation subject to (incorrect) trivial initial conditions,

we observe that the numerical solution no longer converges to the particular solution.

For simulations involving (5.1), we have used the dG method with (cf. Table 5.1)

a = −100, b = 100, SL = 10, SR = 10, N = 27, and ∆t = 0.01. To compute errors

relative to the exact solution, we have first interpolated onto a uniformly spaced

x–grid with 5121 points. Furthermore, to better model the circular orbit scenario

for EMRBs, we have taken v = 0.

With the exact solution used to generate initial conditions at t = 0, the nodal

dG method exhibits spectral convergence throughout the computational domain (see

Sec. 4.5.1). However, with trivial initial conditions, only the corresponding numerical

derivatives, Πnumerical and Φnumerical, converge to the correct values, whereas Ψnumerical

itself is off by a constant value on each subdomain. Let us write

Ψnumerical = (ΨL + CL)Θ(−x) + (ΨR + CR)Θ(x), (5.2)
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where Θ(x) is the Heaviside function and the exact solution from (4.66) is

ΨL = −1
2
sin(t+ x)− 1

2
i cos(t+ x)

ΨR = −1
2
sin(t− x) + 1

2
i cos(t− x).

(5.3)

We introduce the time-independent 1+1 Jost junk solution

ΨJost = CLΘ(−x) + CRΘ(x), (5.4)

in order to express the numerical solution as Ψnumerical = Ψexact +ΨJost.

We examine the dependence of C = |CL| + |CR| on the smoothing parameters

(τ, δ), defined analogously to those in (4.59), but here introduced to smooth our toy

source term cos tδ(x)+ i cos tδ′(x). We restrict the parameter space by first choosing

τ , and then finding the smallest δ such that 1
2
[erf(

√
δ(t− t0 − τ/2) + 1] is less than

10−16 when t = 0 and greater than 1−10−16 when t = τ . These requirements ensure

that the start-up phase is smooth to machine precision, while providing the most

gradual rate at which the distributional source terms are turned-on. Figure 5.1 shows

that the troublesome constant term is arbitrarily well suppressed by the smoothing

procedure. However, we find that the value of C remains fixed when varying the

timestep. The final run time for each data point in the plot is tF = τ + 150. No

essential difference exists between the v = 0 and v 6= 0 cases, except that for the

latter case we must ensure that the particle does not get too close to the boundary.

Let Ψsmooth represent Ψnumerical obtained with smoothing, and Ψimpulsive represent

Ψnumerical obtained without smoothing. Then we have shown Ψsmooth ≃ Ψexact, so

that

ΨJost ≃ Ψimpulsive −Ψsmooth (5.5)

is another expression for the Jost solution, valid up to method error.
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Jost Junk as a Time–dependent Constraint Violating Solution

The Jost junk solution does not instantaneously appear during our scheme’s first

timestep 0 → ∆t, nor can it be found in our (trivial) initial conditions. Instead, we

must wait a finite time for it to have completely developed, although it may seem

counterintuitive to speak of a developing static solution. To confront this paradox,

consider a natural time–dependent generalization of the static Jost junk solution

(5.4):

ΨJost = CLΘ(−x)Θ(t+ x) + CRΘ(x)Θ(t− x), (5.6)

which solves the second order wave equation

(

−∂2t + ∂2x
)

ΨJost = [[ΨJost]]Θ(t)δ′(x). (5.7)

Numerical evidence indicates (5.6) is the generate time–dependent Jost junk. At late

times, after which the advecting Heaviside propagates off the numerical grid, (5.6)

agrees with the time–independent Jost junk solution (5.4) from the previous section.

Observe that:

1. ΨJost = 0 for t ≤ 0, and thus compatible with trivial initial data for Ψ.

2. Ψexact +ΨJost does not solve the 2nd order 1+1 wave equation (4.65) at x = 0.

3. At sufficiently late times ∂tΨJost = 0 and ∂xΨJost = [[ΨJost]]δ(x).

Our second and third observations suggest ΨJost may act to violate the distributional

constraint discussed in Sec. 4.2.6, although a complete understanding is still lacking.

For the remainder of the chapter we will continue to focus on time–independent Jost

junk and it’s consequence without identifying the generating mechanism.
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5.2.2 Master Wave Equations

The first numerical experiment in this subsection involves the axial sector with V RW

given by (2.45) and assumes CPM source terms (4.7). To empirically verify that

an impulsive start-up also leads to a Jost solution in this setting, we will form and

plot the expression (5.5). Later on, we will give analytic expressions for static Jost

solutions. Our smoothing parameters are τ = 150 and δ = 0.0058. We compute

the (ℓ,m) = (3, 2) metric perturbations for a particle in circular orbit initially at

(r, φ) = (7.9456, 0). Other parameters (cf. Table 5.1) are a ≃ −202.16, b = 60 +

2 log(29) ≃ 66.73, SL = 30, SR = 8, N = 26, ∆t ≃ 0.03, and tF = 600. Figure 5.2

shows the result. The plots suggest that the Jost junk solution affects ΨCPM
impulsive and

its spatial derivatives.

For both axial and polar perturbations generated by circular orbits, we now

present the analytic form of the Jost solution, suppressing throughout the analy-

sis both orbital ℓ and azimuthal m indices. For circular orbits we have observed

empirically that the Jost junk solution can be written as

Ψ
axial/polar
Jost = CLv

axial/polar
L Θ(−x) + CRv

axial/polar
R Θ(x), (5.8)

where CL and CR are complex constants. The functions v
axial/polar
L,R satisfy a Schrödinger

equation Hv = 0 defined by the operator

Haxial/polar = −∂2x + V RW/Z, (5.9)

where V RW is given in Eq. (2.45) and V Z is given in Eq. (2.38). The functions

v
axial/polar
L satisfy the Schrödinger equation to the left of the particle, and the functions

v
Axial/Polar
R the equation to the right. The relevant solutions to Hv = 0 decay either
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as r → 2M+ or r → ∞.

We derive expressions for all four functions v
axial/polar
L,R in Appendix D, adopting

the dimensionless radius ρ = (2M)−1r as the basic variable. Here we record the set

of axial functions,

vaxialL (ρ) = ρ−ℓ
2F1(ℓ+ + 1, ℓ− + 1; 1; (ρ− 1)/ρ) (5.10a)

vaxialR (ρ) = ρ−ℓ
2F1(ℓ+ + 1, ℓ− + 1; 2(ℓ+ 1); ρ−1), (5.10b)

where for gravitational perturbations the spin  = 2. Evidently, up to transfor-

mations of the dependent and independent variables, the equation Haxialv = 0 is

the hypergeometric equation. The equation Hpolarv = 0 involves an extra regular

singular point, and its normal form is a particular realization of the Heun equation.

Nevertheless, by exploiting certain intertwining relations between the polar and axial

master functions [12], we are likewise able to express vpolarL,R in terms of the classical

Gauss-hypergeometric function 2F1. The Appendix D gives further details.

To complete our analytic expressions for the Jost solutions, we still must de-

termine CL and CR. Recall our notation for a time–dependent jump for circular

orbits,

[[

Ψ
]]

(t) = lim
ǫ→0+

[

Ψ(t, rp + ǫ)−Ψ(t, rp − ǫ)
]

. (5.11)

For trivial data (that is Ψ = 0) the analytic jump (4.23)

[[

Ψanalytic

]]

(t) =
F (t, rp)

fp
(5.12)

will in general not be satisfied at t = 0. We find empirically that the jump in ΨJost

exactly cancels
[[

Ψanalytic

]]

(0), while the jump in ∂xΨJost is zero. The system of
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Figure 5.3: Comparison between analytic and numerical Jost solutions. CPM and
ZM modes respectively correspond to (ℓ,m) = (3, 2) and (ℓ,m) = (3, 1), (3, 3).

equations used to determine our constants is therefore

vR(rp)CR − vL(rp)CL = −F (0, rp)
fp

v′R(rp)CR − v′L(rp)CL = 0,

(5.13)

which has a solution

CR = −F (0, rp)
fp

(

v′L
vRv′L − vLv′R

)

p

CL = CR

(

v′R
v′L

)

p

.

(5.14)

Recall that ΨJost may be numerically approximated as Ψimpulsive−Ψsmooth [cf. Eq. (5.5)].

Figure 5.3 depicts the relative error
∣

∣(ΨJost − (Ψimpulsive − Ψsmooth))/ΨJost

∣

∣ for ℓ = 3

perturbations, with ΨJost given by (5.8). To generate this figure, we have used

nearly the same set-up as described for Fig. 5.2, but with the outer boundary

b = 240 + 2 log(119) and final time tF = 3100.
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5.2.3 Jost Solution and Radiation Boundary Conditions

We wish to examine the extent to which the right analytic Jost solutions v
axial/polar
R

satisfy radiation boundary conditions adopted for our numerical simulations. Un-

fortunately, for blackhole perturbations the issue would seem difficult to address

analytically. Therefore, we consider the analogous issue for the flatspace radial wave

equation.

Consider a flatspace multipole solution r−1Ψ(t, r)Yℓm(θ, φ) to the ordinary 3+1

wave equation, and assume the multipole is initially of compact support in radius

r. Exact non-reflecting boundary conditions relative to a sufficiently large outer

boundary radius b then take the form [10]

(

∂Ψ

∂t
+
∂Ψ

∂r

)∣

∣

∣

∣

r=b

=
1

b2

ℓ
∑

j=1

kℓ,j

∫ t

0

exp
(

b−1kℓ,j(t− t′)
)

Ψ(t′, b)dt′. (5.15)

Here {kℓ,j : j = 1, . . . , ℓ} are the roots of the modified cylindrical Bessel function

Kℓ+1/2(x), also known as MacDonald’s function. All kℓ,j lie in the left-half plane.

Moreover, the scaled roots kℓ,j/(ℓ+1/2) accumulate on a fixed transcendental curve

as ℓ grows [10, 143], so the exponentials exp
(

b−1kℓ,jt
)

tend to decay more quickly in

time t > 0 for larger ℓ.

For the flatspace setting at hand, the Jost solution satisfies

v′′ − ℓ(ℓ+ 1)

r2
v = 0, (5.16)

and two appropriate linearly independent solutions are the following:

vL(r) = rℓ+1, vR(r) = r−ℓ. (5.17)
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We therefore examine to what extent vR(r) satisfies (5.15). Straightforward calcula-

tion yields

(

∂vR
∂r

)∣

∣

∣

∣

r=b

= −b−1vR(b)
ℓ
∑

j=1

exp
(

b−1kℓ,jt
)

+
1

b2

ℓ
∑

j=1

kℓ,j

∫ t

0

exp
(

b−1kℓ,j(t− t′)
)

vR(b)dt
′.

(5.18)

The function vR(r) does not satisfy the non-reflecting condition (5.15); however,

the violation of (5.15) decays exponentially fast. For blackhole perturbations we

likewise expect that v
axial/polar
R (ρ) violates our radiation boundary conditions only by

exponentially decaying terms, and have seen some evidence of this behavior in our

numerical simulations.

We have also observed persistent junk solutions when adopting the Sommerfeld

condition at the outer boundary b along with impulsive start-up. We differentiate

between two scenarios: the first involving a detector which is not in causal contact

with the outer boundary b during the simulation, and a second with the detector

located at b. For the first scenario, the static junk solution which develops and

persists around the detector is precisely ΨJost. For the second, we also observe a

persistent junk solution, but one which is distorted from ΨJost in a boundary layer

near b. Such distortion presumably arises since ΨJost satisfies the outer Sommerfeld

condition only up to an O(r−ℓ−1) error term.
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5.3 Consequences of Impulsive Starting Conditions

5.3.1 Loss of Temporal Convergence

In this scenario we again consider the forced wave equation (4.65) with v = 0 and

trivial initial data Ψ = Π = Φ = 0. We will compute errors over all fields, after

interpolation onto a reference grid, and against the exact solution. Before computing

errors for the Ψ variable when adopting trivial initial data we first subtract off the

analytic Jost junk solution (5.4).

Our first test involves the minimal two domain set up with smoother parameters

given by t0 = 0, τ = 3, and δ = 10. For these choices, the source is switched on

(to machine precision) and is fully on by t = 3. Resolution of the transition requires

relatively many points, and we have chosen N = 61 on each subdomain. For the

final time tF = 10, we demonstrate the anticipated 4th order temporal convergence

in the left panel of Fig. 5.4. We note that, as indicated in the figure, convergence

is abruptly lost without the smoother. However, even without the smoother, by

adopting multiple subdomains we also recover convergence to the exact solution (of

course assuming tF > 5, so that the initial incorrect profiles can fully propagate off

the domain). Indeed, the right panel of Fig. 5.4 documents the results for the same

problem, but now without smoothing and 20 subdomains, each with N = 7 points.

We explain this observation by noting that for N = 1 our dG method formally be-

comes a finite–volume method. Therefore, many low–order elements corresponds to

a more dissipative numerical flux, and the extra dissipation smooths the oscillations

stemming from our impulsively started problem.
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Figure 5.4: Temporal convergence with trivial initial data. The left panel compares
the two–domain experiment run with and without the smoother, denoted by circles and crosses
respectively. The right panel corresponds to multiple subdomains and no smoother. As described
in the text, on each subdomain the Jost junk solution is subtracted off before computing errors.
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5.3.2 Inconsistent Modeling of the Axial Sector

Thus far we have studied axial perturbations by solving for ΨCPM. Axial perturba-

tions are equally well described by the Regge–Wheeler master function [157]

ΨRW = −f
r
qr. (5.19)

In fact both ΨCPM and ΨRW solve the generic wave equation (4.1) with potential

V RW. However, the wave equations for ΨCPM and ΨRW have different distributional

source terms [159, 89, 157]. As shown in [159], these master functions obey

ΨRW + 1
2
ΠCPM = 0, r 6= rp(t), (5.20)

and we refer to this formula as the axial consistency condition. For circular orbits this

condition becomes ΨRW − 1
2
∂tΨ

CPM = 0, r 6= rp. We now numerically examine the

extent to which the axial consistency condition is violated when the master functions

ΨRW,CPM are obtained with and without smoothing.

For all experiments we again enforce Sommerfeld boundary conditions at the left

physical boundary, and radiation outer boundary conditions on the right boundary.

Now our smoothing parameters are t0 = 0, τ = 100, and δ = 0.05. We compute

the (ℓ,m) = (2, 1) metric perturbations for a particle in circular orbit initially at

(r, φ) = (7.9456, 0). Other parameters (cf. Table 5.1) are a = −200, b = 30 +

2 log(14) ≃ 35.28, SL = 22, SR = 3, N = 31, ∆t = 0.01, and tF = 800. We first

plot |ΨRW + 1
2
ΠCPM| at various times. The left panels in Fig. 5.5 show results with

smoothing. Although the consistency condition is initially violated, the expression

eventually relaxes to a small value once the dynamical junk has propagated off the

domain. The right panels in Fig. 5.5 show result without smoothing. Even at late
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Figure 5.5: Snapshots of |ΨRW + 1
2
ΠCPM| with and without smoothing. The left three

panels correspond to smooth start-up and the right three to impulsive start-up. The times at the
far left correspond to both sets of panels. ΨRW is of order 10−2 near rp.
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Figure 5.6: Time series at x = −200 for |ΨRW + 1
2
ΠCPM| with and without smoothing.

ΨRW is of order 10−4 at x = −200.

times violation in the axial consistency condition is now evident. The plots in Fig. 5.6

depict |ΨRW + 1
2
ΠCPM| recorded as a time series at x = −200. The plot for smooth

start-up indicates that quasinormal ringing and Price decay tails characterize the

late-stage dynamical junk, although this ringing is suppressed with more smoothing

(e. g. with τ = 150, δ = 0.0058). The plot for impulsive start-up suggests that a

static Jost junk solution ΨRW
impulsive −ΨRW

smooth persists indefinitely (as ΠCPM should be

unaffected by a similar Jost solution in ΨCPM).

5.3.3 Contamination of Waveforms

For a given (ℓ,m) multipole either read off at a finite radius or measured at null infin-

ity through an approximate extraction, we can apply standard formulas to estimate
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the energy and angular momentum carried away by the gravitational waves. We

continue to work with the axial perturbations, with formulas featuring only CPM

and RW master functions. The energy and angular momentum luminosities are

computable from ΨCPM by Eqs. (2.58, 2.59), or ΨRW [159, 204, 157] by

ĖRW
ℓm =

1

16π

(ℓ+ 2)!

(ℓ− 2)!

∣

∣ΨRW
ℓm

∣

∣

2
, L̇RW

ℓm =
im

16π

(ℓ+ 2)!

(ℓ− 2)!
ΨRW

ℓm

∫

Ψ̄RW
ℓm dt. (5.21)

In the distant wave-zone we expect ĖCPM
ℓm = ĖRW

ℓm and L̇CPM
ℓm = L̇RW

ℓm . However,

Sec. 5.3.2 has shown that impulsive start-up can result in violation of the axial con-

sistency condition (5.20), and such violation in turn results in discrepancies between

the above luminosity formulas. As seen in Sec. 5.2.2, whether simulations are based

on ΨCPM or ΨRW, an impulsive start-up generates a Jost junk solution, even at long

distances from the source. Although dynamical junk is also present, its effect is

negligible in the wave-zone at late times.

Table 5.2 collects summed luminosities for (ℓ,m) = (2,±1) waveforms. The top

set of numbers are unaveraged and recorded at time tF = 2750, while the bottom

set have been averaged between t = 2500 and tF = 2500+4Tφ, where Tφ = 2πp3/2 ≃

140.7246. Other parameters (cf. Table 5.1) are a ≃ −190.34, b = 1000+2 log(499) ≃

1012.43, SL = 30, SR = 150, N = 26, and ∆t = 0.038. For smoothing we use τ = 150

and δ = 0.0058. For circular orbits we expect 〈Q̇smooth〉 = Q̇smooth, where brackets

denote time averaging for a generic luminosity Q̇. Relative errors are computed by

Q̇error =

∣

∣Q̇smooth − Q̇impulsive

∣

∣

∣

∣Q̇smooth

∣

∣

. (5.22)

For the CPM luminosities computed with smoothing, time averaging has little ef-

fect. However, it does enhance the accuracy of the RW luminosities computed with

smoothing. Indeed, inspection of the bottom section of Table 5.2 shows that the



129

Q̇ Q̇smooth Q̇impulsive Q̇error

ĖCPM 8.17530620× 10−7 8.17530623× 10−7 3.466× 10−9

ĖRW 8.17530652× 10−7 8.18248752× 10−7 8.783× 10−4

L̇CPM 1.83102415× 10−5 + i3.2× 10−14 1.82972897× 10−5 − i1.2× 10−8 9.968× 10−4

L̇RW 1.83047467× 10−5 − i2.1× 10−8 1.66825388× 10−5 + i8.1× 10−7 9.969× 10−2

〈ĖCPM〉 8.17530620× 10−7 8.17530620× 10−7 2.837× 10−10

〈ĖRW〉 8.17530617× 10−7 8.17531431× 10−7 9.966× 10−7

〈L̇CPM〉 1.83102416× 10−5 − i1.4× 10−15 1.83102416× 10−5 + i3.4× 10−14 2.073× 10−9

〈L̇RW〉 1.83102415× 10−5 + i4.1× 10−13 1.82927679× 10−5 + i7.0× 10−9 1.029× 10−3

Table 5.2: ℓ = 2 luminosities recorded at r = 1000. Entries result from addition of m = 1
and m = −1 luminosities, and they correspond to a circular orbit with (r, φ) = (7.9456, 0) initially.
Q̇error as been computed with more precision than reported for the table entries.

CPM and RW entries in the Q̇smooth column are in excellent agreement.

Relative to the true luminosity which would be recorded at null infinity, even

the exact ĖCPM read off at r = 1000 would have an O(r−1) error, but here we have

viewed the read-off value as the true one. Because ĖCPM is unaffected by the Jost

junk solution, ĖCPM
error estimates error stemming from both the method and any resid-

ual dynamical junk. The other luminosities are affected by the Jost junk solution;

however, as shown in the Appendix, errors which stem from the Jost solution decay

faster than 1/r. Therefore, these errors should be smaller than the O(r−1) errors

associated with using the read-off luminosities as approximations to the ones at null

infinity.

5.3.4 Self–Force Measurements

Incorporation of self-force effects constitutes an important approach towards mod-

eling realistic gravitational waveforms. For quasi–circular orbits the dissipative part

of the self–force is given by (2.64). For perturbations described by the CPM mas-

terfuntion and with the Regge-Wheeler gauge, the non-zero contributions (for each
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Figure 5.7: Ėp time series for summation of ℓ = 2 and m = ±1 modes. In the right panel
the curve corresponding to impulsive start-up has the larger amplitude (due to small fluctuations
this curve does not appear dashed as indicated in the legend).

mode) involve the axial metric reconstruction Eqs. (2.46)

∂htφ
∂t

=
f

2

(

r
∂2Ψ

∂t∂r
+
∂Ψ

∂t

)

Xφ

∂htφ
∂φ

=
f

2

(

r
∂Ψ

∂r
+Ψ

)

Xφφ

(5.23)

in a source free region. When numerically forming these expressions, we replace ∂tΨ

and ∂rΨ by −Π and f−1Φ.

We now fix τ = 100 and δ = 0.014 to achieve a smooth start-up, run to the final

time tF = 800, and pick ∆t = 0.005. Other parameters are the same as those in

Sec. 5.3.2. We compute Ėp and L̇p for (ℓ,m) = (2,±1) perturbations. Because Ėp

is computed with time derivatives of ΨCPM, the static Jost junk solution does not

impact its measurement. We therefore expect that

Ėp

(

Ψℓm
impulsive

)

≃ Ėp

(

Ψℓm
smooth

)

. (5.24)
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However, an impulsive start-up appears to generate more dynamical junk at late

times. Figure 5.7 depicts Ėp, recorded as a time series, for both impulsive and smooth

start-ups. A separate experiment based on waveform read-off near the blackhole and

waveform extraction at the outer boundary determines that the energy carried away

by the gravitational waves is ĖGW ≃ 8.3163 × 10−7. The relative errors in the

left panel of Fig. 5.7 are computed as |Ėp − ĖGW|/ĖGW , and are limited by the

accuracy of ĖGW . We therefore do not expect agreement beyond a relative error of

10−5, although clearly such error will settle to a constant value. The time series for

both the impulsive and smooth start-up exhibit large oscillations which persist until

about t = 400. However, beyond t = 400 the impulsive start-up series shows larger

oscillations.

L̇p depends on both ΨCPM and its spatial derivative ΦCPM, whence the Jost junk

solution will impact its self force measurement. With smoothing, the time series plot

for L̇p looks similar to one for Ėp in Fig. 5.7, and is not shown. We note that our

self-force L̇p measurement agrees with a separate experiment which finds that the

angular momentum carried away by gravitational waves is L̇GW ≃ 1.8626 × 10−5.

Figure 5.8 shows that L̇p is typically discontinuous at the particle for an impulsive

start-up. Even with an impulsive start-up, the L̇p measurement yields the correct

value when averaged over an orbital period Tφ, and it is continuous across the particle

(with the correct value) when the particle returns to its initial orbital angle.

These phenomena are a consequence of the axial Jost junk solution (5.8). For

t fixed, Eq. (2.64) shows that L̇p(Ψ) depends linearly on Ψ. Therefore, L̇p

(

Ψℓm
Jost +

Ψℓm
smooth

)

= L̇p

(

Ψℓm
Jost

)

+ L̇p

(

Ψℓm
smooth

)

, so we can focus on L̇p

(

Ψℓm
Jost

)

alone. The ex-

pressions (5.14) for CL,R are linear in F (0, rp), which is in turn proportional to

the conjugate of an axial vector spherical harmonic Xφ . Motivated by this obser-

vation, we “factor off” the conjugate, writing Ψℓm
Jost = ηℓ(x)X̄

ℓm
φ (φ0), where φ0 is
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Figure 5.8: t = 800 snapshot of real part of L̇p for ℓ = 2 and m = 1. The particle is
located at the interface between the two subdomains.

the particle’s initial orbital angle and ηℓ(x) is a real discontinuous function solely

of x. The expression (2.64) for L̇p involves ∂htφ/∂φ, which by (5.23) is propor-

tional to Xφφ. In the equatorial plane Xℓm
φφ = ∂φX

ℓm
φ = imXℓm

φ , and we con-

clude that L̇p

(

Ψℓm
Jost

)

= imξℓ(x)X̄
ℓm
φ (φ0)X

ℓm
φ (φp(t)), where ξℓ(x) is a real discon-

tinuous function solely of x. Therefore, when the particle returns to its initial po-

sition (that is, when φp(t) = φ0), the value of L̇p

(

Ψℓm
Jost

)

is pure imaginary and

L̇p

(

Ψℓm
Jost

)

+ L̇p

(

Ψℓ,−m
Jost

)

= 0. For perturbations generated by a particle in circular

orbit, we have seen that Ψℓm
impulsive ≃ Ψℓm

Jost + Ψℓm
smooth to high accuracy. Combination

of this expression and the above arguments for axial perturbations then gives

∑

|m|≤ℓ

L̇p

(

Ψℓm
impulsive

)

≃
∑

|m|≤ℓ

L̇p

(

Ψℓm
smooth

)

, (5.25)

when φp(t) = φ0. Moreover, one finds
〈

L̇p

(

Ψℓm
Jost

)〉

= 0 for time averaging over an

orbital period Tφ.
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Figure 5.9: Difference between CPM fields with and without smoothing for an

eccentric orbit. Here we plot both real (dashed) and imaginary (solid) parts at tF = 3000.

5.3.5 Consequences for Eccentric Orbits: Preliminary Re-

sults

This section considers a particle in an eccentric orbit using the full moving particle

setup developed in Chapter 4. The orbit’s eccentricity and semi-latus rectum are

(e = 0.76412402, p = 8.75456059), and we choose χ = 0.2 and φ = π/4 to fix the

particle’s initial position. We simulate the resulting (ℓ,m) = (2, 1) perturbation with

(cf. Table 5.1) a = −200, b = 1012.43, SL = 22, SR = 100, N = 31, ∆t = 0.02,
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and tF = 3000. We again take τ = 150, δ = 0.0058 as the smoothing parameters.

A coordinate transformation is used to keep the particle at a fixed location between

subdomains. Thus, before making comparisons, we first interpolate all fields onto a

uniform x–grid (tortoise coordinate) with 6063 points.

Fig. 5.9 shows the difference between fields for smooth and impulsive start-ups.

The two numerical solutions are clearly different, although for the case of eccentric

orbits we have no analytical understanding of the resulting “junk solution”2 presum-

ably seeded by impulsive start-up. Empirically, we find that this solution satisfies

[[

Ψjunk

]]

(t) = −
[[

Ψanalytic

]]

(0) (5.26a)

[[

Φjunk

]]

(t) = 0 (5.26b)

[[

Πjunk

]]

(t) = 0, (5.26c)

where
[[

Ψanalytic

]]

(t) = fp(t)F (t, rp(t))/(f
2
p (t)− ṙ2p(t)) is derived in Sec. 4.2.4. These

time independent jump conditions are the same as for the circular orbit ΨJost solution.

With our choice of numerical parameters the axial consistency condition is satisfied

to better than a 1 × 10−6 relative error throughout the entire domain for a smooth

start-up. For an impulsive start-up the condition is violated to the order of the

solution itself. We conclude that, as for circular orbits, the junk solution generated

by an impulsive start-up leads to an inconsistent modeling of the axial sector.

Table 5.3 collects energy and angular momentum luminosities. These luminosities

have been averaged from t = 1700 to tF = 1700 + 4Tr, where Tr ≃ 780.6256 is the

radial period from (4.4). Unlike the circular orbit case, the discrepancy between

2At present, we are uncertain if the generated junk solution fulfills the formal definition of a
Jost solution. Thus, in the context of eccentric orbits we simply refer to the persistent solution as
the “junk solution”.
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Q̇ Q̇smooth Q̇impulsive Q̇error

〈ĖZM
2,2 〉 1.559917× 10−4 1.559484× 10−4 2.775789× 10−4

〈ĖCPM
2,1 〉 1.153983× 10−6 1.236758× 10−6 7.172983× 10−2

〈ĖRW
2,1 〉 1.153983× 10−6 1.872073× 10−6 6.222709× 10−1

〈ĖCPM
2,1 〉+ 〈ĖZM

2,2 〉 1.571457× 10−4 1.571852× 10−4 2.512000× 10−4

Re〈L̇ZM
2,2 〉 2.078556× 10−3 2.076811× 10−3 8.395251× 10−4

Re〈L̇CPM
2,1 〉 1.441737× 10−5 1.537876× 10−5 6.668276× 10−2

Re〈L̇RW
2,1 〉 1.441749× 10−5 1.662726× 10−5 1.532701× 10−1

Re〈L̇CPM
2,1 〉+Re〈L̇ZM

2,2 〉 2.092973× 10−3 2.092190× 10−3 3.744004× 10−4

Table 5.3: ℓ = 2 luminosities for a particle with an orbit given by (e = 0.76412402, p =
8.75456059). Entries result from the addition of |m| and −|m| luminosities.

waveforms corresponding to smoothly and impulsively started fields may be larger

than usual O(1/r) error associated with read-off at a finite radial location rather than

infinity. Moreover, the junk solution would seem determined by the initial orbital

parameters. Indeed, the values Q̇impulsive and errors quoted in our table strongly

depend upon such choices.

5.4 Comments on the Generality of Jost Junk

A number of time-domain methods exist for solving Eq. (4.1) as an initial bound-

ary value problem, including those described in [21, 157, 153, 204, 134, 56, 57].

These methods vary in both the underlying numerical scheme (e.g. finite difference,

finite element, pseudospectral, and spectral) as well as their treatment of the dis-

tributional source terms (e.g. Gaussian representation, analytic integration, domain

matching). Numerical simulation of metric perturbations may also involve other

choices (e.g. gauge, number of spatial dimensions, choice of numerical variables).

Moreover, similar time-domain methods exist for solving the forced Teukolsky equa-

tion describing particle-driven perturbations of the Kerr geometry (see for example
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Figure 5.10: Difference between smoothly and impulsively started fields using a

finite-difference method. As in Subsection 5.2.2, we consider ΨCPM for ℓ = 3 and m = 2.
The bottom plot depicts the relative error between the numerical and analytical Jost solutions.

Refs. [8, 207, 209]). For all of these methods, the issue of impulsive start-up would

seem pertinent, although clearly we cannot examine each method. Nevertheless,

we now attempt to provide at least partial insight into the ubiquity of static junk

solutions.

As mentioned earlier, the results and observations of this chapter have been in-

dependently confirmed with each of our two numerical methods: the nodal Legendre

dG and Chebyshev schemes. However, as these schemes are rather similar, we now

briefly consider a finite-difference scheme for solving (4.39), based on fourth, sixth,

and eighth order stencils for the spatial derivatives. To stabilize sixth and eighth

order stencils, we have followed Ref. [114]. Furthermore, we replace the Dirac delta
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functions in (5.1) by narrow Gaussians. Precisely, for σ = 0.1 we make the replace-

ment

J(x, t)δ(x− xp) → J(x, t)
1√
2πσ

exp

(

−(x− xp)
2

2σ2

)

(5.27)

for both the J1 and J2 terms in (5.1). With essentially the same experimental set-

up described in Subsection 5.2.2, we repeat that experiment using 4000 points and

sixth order spatial differences. The results, shown in Fig. 5.10, clearly indicate the

presence of a static “Jost junk” solution. A larger choice for σ gives rise to a rounder

transition near the particle. However, the following shows that such contamination

is not a generic feature. We introduce a variable Φ̃ obeying

Φ = Φ̃− [[Ψ]]δ(x− xp), (5.28)

so that the system formally becomes

∂tΨ = −Π

∂tΠ = −∂xΦ̃ + V (r)Ψ + J1δ(x− xp) + J3δ
′(x− xp)

∂tΦ̃ = −∂xΠ,

(5.29)

where J3 = [[Ψ]] = F (t, rp)/fp. If we now replace the δ,δ′ terms in the new system by

appropriate Gaussians, then we do not observe a persistent Jost junk solution when

trivial initial conditions are supplied (neither in finite-difference nor dG simulations).

Persistent junk solutions arise from the combination of inconsistent initial data

and the distributional forcing terms which define the EMRB model. In particular,

we observe that development of a Jost junk solution depends on how the distribu-

tional forcing is treated rather than the underlying numerical method. Therefore,

whether or not they contaminate simulations should be considered on a case-by-case

basis. Domain matching approaches which enforce jump conditions without approx-
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imation (considered in this chapter) exhibit a Jost junk solution in the absence of

smooth start-up. With first order variables such approaches correspond to system

(5.1) rather than (5.29). Treatment of system (5.29) with Gaussian representations

for δ,δ′ exhibits no persistent junk solution, although such an approach necessarily

introduces large method error relative to the exact distributional model and features

variables with δ-like behavior near the “particle” (Gaussian peak). The issue of

a static junk solution for schemes which discretize the second order equation (4.1)

deserves further consideration, although, if present, then the particular Jost junk

solution observed in this chapter would likely be of relevance.3

3For a static solution to have gone unnoticed, it would seem reasonable to expect decay as
either r → 2M+ or r → ∞. Such solutions will necessarily be discontinuous, and presumably
such discontinuities could only “hide” at the particle, requirements that fix the form of the static
solution up to the constants CL and CR introduced in Section 5.2.2.



Chapter Six

GBSSN System in Spherical

Symmetry
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6.1 Introduction

This chapter details a discontinuous Galerkin method for the GBSSN system, which

is a close cousin of the traditional BSSN system currently used by numerical relativity

groups. A full discussion of both systems is given in 2.6, and we remind the reader

that the essential difference is that GBSSN does not require the conformal metric’s

determinant be set to unity.

To provide context we briefly consider the generalized harmonic (GH) system

[93, 109, 182, 147] and the traditional BSSN system [200, 28, 41], these are the

two most widely used systems to evolve comparable mass binary black hole sys-

tems. Using a finite-difference approach with adaptive mesh refinement, Preto-

rius [180, 182, 181] used a constraint-suppressing second-order form of the GH system

(suggested by Gundlach et al. [109]) to evolve a binary through inspiral, merger and

ringdown. Lindblom et al. [147] recast the second-order GH system into a first-order

symmetric-hyperbolic evolution system with constraint suppression comparable to

that of the second-order system. This first-order GH system has been used to suc-

cessfully simulate binary black holes evolution with nodal spectral (pseudospectral)

methods [35, 198, 205]. More recently, Ref. [212] has introduced a new penalty

method for nodal spectral evolutions of spatially second-order wave equations. This

work provides a foundation for solution of the second-order GH system via spectral

methods, and has been used to evolve the Kerr solution [213] and the inspiral of

binaries. Typically written in a spatially second-order form, the BSSN system [28]

has seen widespread use by numerical relativity groups that employ finite-difference

techniques to evolve binaries. Ref. [214] presented a nodal spectral code to evolve

the BSSN system in second-order form. The system proved unstable when tested

on a single black hole. In more recent work [215], longer evolutions were obtained
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through the adoption of better gauge conditions, filtering methods, and more distant

outer boundaries. The BSSN system has also been evolved in a first-order strongly-

hyperbolic formulation for a single black hole with nodal spectral methods [167].

Such evolutions of a single black hole exhibited instabilities similar to those reported

in Ref. [215].

Corresponding to the two versions of the Einstein equations discussed in the last

paragraph are two distinct techniques for the treatment of singularities in numer-

ical relativity. Evolutions based on the GH system have used black hole excision,

whereby the interior of an apparent horizon is removed (excised) from the compu-

tational domain. This technique relies on horizon-tracking and gauge conditions

which ensure that inner boundaries of the computational domain are pure out-flow,

whence no inner boundary conditions are needed. Evolutions based on the BSSN

system have relied on the moving-punctures technique [53, 26], also coined “nat-

ural excision.” Technically much easier to implement than excision, this technique

features mild central singularities which evolve freely in the computational domain.

Initially these puncture points may represent either asymptotically flat regions or

“trumpets.” Hannam et al. first discussed cylindrical asymptotics in moving punc-

ture evolutions [115, 116], see also [42, 29, 117, 45, 46].

Relative to the alternative systems previously discussed, the (G)BSSN system in

second order form affords an easier treatment of singularities and features a relatively

small number of geometric variables directly related to the foliation of spacetime

into spacelike hypersurfaces. However, to date, spectral methods for black hole

binaries have been successfully implemented only for the first-order GH system. The

binary black hole problem is essentially a smooth one (singularities reside on sets of

measure zero censored by horizons), and spectral methods exhibit well-established

advantages over finite-difference methods for long-time simulation of such problems
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[124]. Therefore, the development and analysis of a stable spectral implementation of

the full BSSN system is a worthwhile goal in numerical relativity, and the motivation

behind the pioneering investigations reported in Refs. [214, 215, 167].

In Refs. [41, 42], Brown introduced the spherically reduced GBSSN system as a

test bed for tractable examination of theoretical and computational issues involved

in solving this system. Indeed, appealing to the simplicity of this system, he offered

geometrical and physical insights into the nature of the moving-puncture technique

and its finite-difference implementation [42, 45, 46] (see also [29, 117]). Here, we

exploit this system to a similar end, using it as a simplified setting in which to de-

velop spectral methods for the stable integration of the GBSSN system. Precisely,

we develop and test a nodal discontinuous Galerkin method [121] for integration of

the spherically reduced GBSSN system. While Brown’s chief focus lay with moving

punctures, for further simplicity we adopt the excision technique. Clearly, the prob-

lem we consider is not as daunting as the one confronted by both Tichy and Mroue

[214, 215, 167]. Nevertheless, our method is robustly stable, and therefore might

serve as a stepping stone toward a stable dG-based formulation for the full (G)BSSN

system.

Nodal dG schemes are both well-suited and well-developed for hyperbolic prob-

lems [121]. Although mostly used for hyperbolic problems expressed as first-order

systems, dG methods have also been applied to systems involving second-order spa-

tial operators, typically via dG interior penalty (IP) methods [208, 63, 107, 108,

122, 199]. (Refs. [100, 110, 111] discuss the concept of hyperbolicity [140] in the

context of such systems.) Penalty methods of a different type were exploited in

Ref. [212] for the wave equation written in second order form. Local discontinuous

Galerkin (LDG) schemes, developed initially by Shu and coworkers [67, 226, 227],

constitute an alternate approach for integration of spatially second-order systems.
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LDG schemes feature essentially the same auxiliary variables as those appearing in

traditional first-order reductions, however in LDG schemes such variables are not

evolved and arise only as local variables. The basic difference between dG–IP and

LDG methods is the manner in which subdomains are coupled. The method we

described for the spherically reduced GBSSN system is essentially an LDG scheme.

This chapter is organized as follows. Section 6.2 collects the relevant equations

and develops some further notation useful for expressing the spherically reduced

GBSSN system in various abstract forms. This section also considers a discussion of

hyperbolicity and constructs the relevant initial data. Section 6.3 presents our nodal

dG scheme in detail and considers a simple system which models the spherically

reduced GBSSN system, giving an analytical proof that the model system is L2 stable

in the semi-discrete sense. Section 6.4 documents the results of several numerical

simulations testing our scheme. Appendix F details the reduction of the 3+1 GBSSN

to spherical symmetry, and appendix E constructs the characteristic fields and speeds

of our system.
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6.2 Spherically Symmetric GBSSN Equations

6.2.1 Basic Variables and Spherically Reduced System

Consider a general spherically symmetric line element1,

ds2 = −α2dt2 + χ−1grr(dr + βrdt)2 + χ−1gθθ(dθ
2 + sin2 θdφ2), (6.1)

along with the spherically symmetric Ansatz:

Γa =













Γr

− cos θ/(gθθ sin θ)

0













, Aab = Arr













1 0 0

0 −gθθ/(2grr) 0

0 0 −gθθ sin2 θ/(2grr)













.

(6.2)

The ansatz Aab is motivated by the line element (6.1) and definition K̄ij = −1
2
Lnḡij.

Notice that K̄ij contains two pieces of information, namely K̄rr and K̄θθ, and upon a

conformal traceless decomposition these become K and Arr. Of course we could have

chosen Aθθ as our preferred variable, which is related to Arr through the trace-free

condition2.

Section 2.6.3 presented the full 3+1 GBSSN system with 1+log and Γ-driver

gauge conditions. Appendix F derives the spherically symmetry version of this sys-

1 Two potentially confusing notational changes are made in this chapter. First, we deviate
from the convention of Chapter 2 by now using gαβ for the spatial metric. Second, we now denote
physical tensors, for example ḡrr, with a ‘bar’ and conformal tensors, for example grr, without a
‘bar’. This switch will reduce the notational burden when we discretize the GBSSN system. Also,
our notation changes agree with Refs. [42, 91].

2Aij is traceless by virtue of the ansatz, and at the analytic level is traceless by definition.
However, suppose we abandon our ansatz by permitting both Arr and Aθθ as system variables.
Numerical errors would then result in Ai

i 6= 0. Thus an advantage of the ansatz is seen to exactly
enforce the trace-free constraint, although in principle this does not need to be done.
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tem given our ansatz, although not with the notational conventions of this chapter

(cf. footnote 1). There it is found that the basic GBSSN variables χ, grr, gθθ, Arr,

K, Γr, α, βr, and Br satisfy the (Lagrangian-form) GBSSN system:

∂tα = βrα′ − 2αK − (∂tα)0 (6.3a)

∂tβ
r = βrβr ′ +

3

4
Br − (∂tβ

r)0 (6.3b)

∂tB
r = βrBr ′ + λ(∂tΓ

r − βrΓr ′)− ηBr − (∂tB
r)0 (6.3c)

∂tχ = βrχ′ +
2

3
Kαχ− βrg′rrχ

3grr
− 2βrg′θθχ

3gθθ
− 2

3
βr ′χ (6.3d)

∂tgrr =
2

3
βrg′rr +

4

3
grrβ

r ′ − 2Arrα− 2grrβ
rg′θθ

3gθθ
(6.3e)

∂tgθθ =
1

3
βrg′θθ +

Arrgθθα

grr
− gθθβ

rg′rr
3grr

− 2

3
gθθβ

r ′ (6.3f)

∂tArr = βrA′
rr +

4

3
Arrβ

r ′ − βrg′rrArr

3grr
− 2βrg′θθArr

3gθθ
+

2αχ(g′rr)
2

3g2rr
− αχ(g′θθ)

2

3g2θθ

− α(χ′)2

6χ
+

2

3
grrαχΓ

r ′ − αχg′rrg
′
θθ

2grrgθθ
+
χg′rrα

′

3grr
+
χg′θθα

′

3gθθ
− αg′rrχ

′

6grr
− αg′θθχ

′

6gθθ

− 2

3
α′χ′ +

αχ′′

3
− 2

3
χα′′ − αχg′′rr

3grr
+
αχg′′θθ
3gθθ

− 2αA2
rr

grr
+KαArr −

2grrαχ

3gθθ

(6.3g)

∂tK = βrK ′ +
χg′rrα

′

2g2rr
− χg′θθα

′

grrgθθ
+
α′χ′

2grr
− χα′′

grr
+

3αA2
rr

2g2rr
+

1

3
αK2 (6.3h)

∂tΓ
r = βrΓr ′ +

Arrαg
′
θθ

g2rrgθθ
+

2βr ′g′θθ
3grrgθθ

+
Arrαg

′
rr

g3rr
− 4αK ′

3grr
− 2Arrα

′

g2rr
− 3Arrαχ

′

g2rrχ

+
4βr ′′

3grr
− βr(g′θθ)

2

grr(gθθ)2
+

βrg′′rr
6(grr)2

+
βrg′′θθ
3gθθgrr

, (6.3i)

where the prime stands for partial r-differentiation. Eqs. (6.3) have been specialized

to matter–free regions of spacetime by setting jr = STF
ij = S = ρ = 0 in the

more general version of Sec. F.4.3. Throughout this chapter we refer to Eqs. (6.3)

as the GBSSN system, although some minor modifications (beyond the vacuum

condition) have been introduced3. First, (∂tα)0 designates a constant term which

3All modifications take place in the gauge evolution equations, whence the physics is unaffected.
Such freedom is simply a reflection of our ability to choose coordinates as we wish.
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ensures that the right-hand side of the α evolution equation (6.3a) vanishes at the

initial time. This source term as well as the analogous terms appearing in the

evolution equations (6.3b,c) for βr and Br are needed to enable a static evolution

of the Schwarzschild solution in Kerr-Schild coordinates. Second, the parameter λ

(perhaps with functional dependence) modifies the hyperbolicity of the first-order

system [6], allowing for an “adjustable” excision surface. For this GBSSN system,

we have three constraints: the Hamiltonian constraint H, the momentum constraint

Mr, and the conformal connection constraint Gr resulting from the definition of the

conformal connection Γr. These constraints are given in Appendix F.3, reproduced

here for convenience:

H = −3A2
rr

2g2rr
+

2K2

3
− 5(χ′)2

2χgrr
+

2χ′′

grr
+

2χ

gθθ

− 2χg′′θθ
grrgθθ

+
2χ′g′θθ
grrgθθ

+
χg′rrg

′
θθ

g2rrgθθ
− χ′g′rr

g2rr
+
χ(g′θθ)

2

2grrg2θθ

(6.4a)

Mr =
A′

rr

grr
− 2K ′

3
− 3Arrχ

′

2χgrr
+

3Arrg
′
θθ

2grrgθθ
− Arrg

′
rr

g2rr
(6.4b)

Gr = − g′rr
2g2rr

+
g′θθ
grrgθθ

+ Γr. (6.4c)

Eqs. (6.3e,f) also ensure that the determinant factor g/ sin2 θ = grr(gθθ)
2 remains

fixed throughout an evolution.
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6.2.2 Abstract Expressions of the System

We define the following vectors built with system variables:

u =

























χ

grr

gθθ

α

βr

























, v =



















Br

Arr

K

Γr



















, Q =

























χ′

g′rr

g′θθ

α′

βr ′

























. (6.5)

Introduction of Q might seem unnecessary at this stage, but proves useful in the

construction of our discontinuous Galerkin scheme. In terms of the vectors u, v, and

Q we further define

Wu:v =







u

v






, Wv:Q =







v

Q






, W = Wu:Q =













u

v

Q













. (6.6)

Here we now have introduced “colon notation” [106] to represent (sub)vectors and

(sub)matrices4, although we employ the notation over block rather than individual

elements. In the first-order version of the system (6.3) the components of Q are pro-

moted to independent fields, in which case the corresponding principal part features

4This should not be confused with our earlier usage of a colon for covariant derivative on the
two–sphere.
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∂tB
r = βrBr ′ − 4λα

3grr
K ′ +

4λ

3grr
Q′

βr +
λβr

6(grr)2
Q′

grr +
λβr

3gθθgrr
Q′

gθθ
(6.7a)

∂tArr = βrA′
rr +

2

3
grrαχΓ

r ′ +
1

3
αQ′

χ −
2

3
χQ′

α − αχ

3grr
Q′

grr +
αχ

3gθθ
Q′

gθθ
(6.7b)

∂tK = βrK ′ − χ

grr
Q′

α (6.7c)

∂tΓ
r = βrΓr ′ − 4αK ′

3grr
+

4

3grr
Q′

βr +
βr

6(grr)2
Q′

grr +
βr

3gθθgrr
Q′

gθθ
(6.7d)

∂tQχ = βrQ′
χ +

2

3
αχK ′ − βrχ

3grr
Q′

grr −
2βrχ

3gθθ
Q′

gθθ
− 2

3
χQ′

βr (6.7e)

∂tQgrr =
2

3
βrQ′

grr +
4

3
grrQ

′
βr − 2αA′

rr −
2grrβ

r

3gθθ
Q′

gθθ
(6.7f)

∂tQgθθ =
1

3
βrQ′

gθθ
+
gθθα

grr
A′

rr −
gθθβ

r

3grr
Q′

grr −
2

3
gθθQ

′
βr (6.7g)

∂tQα = βrQ′
α − 2αK ′ (6.7h)

∂tQβr = βrQ′
βr +

3

4
Br ′, (6.7i)

where all lower-order terms on the right-hand side have been dropped. This sector

of principal parts of the first-order system has the form

∂tWv:Q + Ã(u)W ′
v:Q = 0, (6.8)

where (minus) the explicit form of the 9-by-9 matrix Ã(u) is given in (E.1). The

first-order version of (6.3) takes the nonconservative form

∂tW +A(u)W ′ = S(W ), A(u) =







05×5 05×9

09×5 Ã(u)






, (6.9)
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where S(W ) is a vector of lower order terms built with all components of W . Parti-

tion of Ã(u) = A(u)v:Q,v:Q into blocks corresponding to the v and Q sectors yields

Ã(u) =







Ã(u)vv Ã(u)vQ

Ã(u)Qv Ã(u)QQ






. (6.10)

Using these blocks, we then define the 9-by-9 matrix

A(u) = A(u)u:v,v:Q =







05×4 05×5

Ã(u)vv Ã(u)vQ






, (6.11)

and express (6.3) as

∂tWu:v + A(u)W ′
v:Q = S(W ) (6.12a)

Q = u′, (6.12b)

where S(W ) = S(W )u:v.

6.2.3 Hyperbolicity and Characteristic Fields

Although our numerical scheme deals directly with the second-order spatial operators

appearing in (6.3), we first consider the hyperbolicity of the corresponding first-order

system (6.9). Our definitions and method for analysis directly follows the discussion

in Sec. 3.2. The characteristic fields and their speeds are found by instantaneously

“freezing” the fields u in A(u) to some value u0, corresponding to a linearization

around a uniform state. Below we continue to write u for simplicity with the un-

derstanding that u is really the background solution u0. Of primary interest is the

range of u0 for which the system is strongly hyperbolic [100, 110, 111, 140].
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field speed

X1 µ1 = 0
X2,3 µ2,3 = −βr

X±
4 µ±

4 = −βr ±
√

2αχ/grr
X±

5 µ±
5 = −βr ± α

√

χ/grr
X±

6 µ±
6 = −βr ±

√

λ/grr

Table 6.1: Characteristic speeds. These speeds are the coordinate speeds, measured with
respect to ∂/∂t and to be distinguished from proper speeds measured by observers who are at rest
in the space-like hypersurface (for a discussion see Ref. [45]). These coordinate speeds are the
eigenvalues listed in E.2.

Appendix E shows that the characteristic fields corresponding to (6.3) are as

follows: (i) all components of u (each with speed 0), and (ii) the fields

X1 = gθθQgrr + 2grrQgθθ (6.13a)

X2 = grrΓ
r +

2

χ
Qχ −

1

2grr
Qgrr −

1

gθθ
Qgθθ (6.13b)

X3 =
grr
λ
Br +

2

χ
Qχ −

1

2grr
Qgrr −

1

gθθ
Qgθθ (6.13c)

X±
4 = ±

√

2αgrr
χ

K +Qα (6.13d)

X±
5 = ∓ 3√

grrχ
Arr ± 2

√

grr
χ
K + 2grrΓ

r +
1

χ
Qχ −

1

grr
Qgrr +

1

gθθ
Qgθθ (6.13e)

X±
6 = −3

4

grr
λ
Br ± α

√
λgrr

(2αχ− λ)
K − βr

8(βrgrr ∓
√
λgrr)

Qgrr

− βrgrr

4gθθ(βrgrr ∓
√
λgrr)

Qgθθ +
αχ

(2αχ− λ)
Qα ±

√

grr
λ
Qβr , (6.13f)

with the speeds listed in Table 6.1. To ensure strong hyperbolicity we must neces-

sarily require

λ > 0, (βr)2grr − λ 6= 0, 2αχ− λ 6= 0, (6.14)

as shown in in Appendix E where further conditions are also given. When λ = 1

the hyperbolicity condition of Ref. [42] is recovered. In fact, the system could be

recast as symmetric hyperbolic. Indeed, as it involves one spatial dimension, the
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relevant symmetrizer can be constructed via polar decomposition of the diagonalizing

similarity transformation. However, we will not exploit this possibility.

This system admits an inner excision boundary provided

βr ≥ max

(

√

2αχ

grr
,

√

α2χ

grr
,

√

λ

grr

)

(6.15)

holds at the inner boundary. This condition ensures each characteristic field has a

nonpositive speed at the inner boundary, and therefore the inner boundary is an

excision boundary at which no boundary conditions are needed. The extra flexibil-

ity afforded by the parameter λ could be used to maintain rigorous hyperbolicity

by moving the points at which the conditions in (6.14) are violated outside of the

computational domain. Furthermore, for λ = 1 Eq. (6.15) conceivably fails or is only

satisfied close to r = 0 where field gradients are prohibitively large. The troublesome

X+
6 gauge mode has a positive speed −βr +

√

λ/grr. Indeed, for the conformally

flat Kerr-Schild system considered in section 6.4.3 an inner excision boundary is only

possible provided λ is small enough.

The transformation (6.13) can be inverted in order to express the fundamental
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fields in terms of the characteristic fields:

Br = −1

6

λ

grrgθθ

[

(βr)2

(βr)2grr − λ

]

X1 +
2

3

λαχ

grr(2αχ− λ)
(X+

4 +X−
4 )−

2

3

λ

grr
(X+

6 +X−
6 )

(6.16a)

Arr =
1

3

√

grrχ

2α
(X+

4 −X−
4 )−

√
grrχ

6
(X+

5 −X−
5 ) (6.16b)

K =

√

χ

8αgrr
(X+

4 −X−
4 ) (6.16c)

Γr = −1

6

1

grrgθθ

[

(βr)2

(βr)2grr − λ

]

X1 +
1

grr
(X2 −X3) +

2

3

αχ

grr(2αχ− λ)
(X+

4 +X−
4 )

− 2

3

1

grr
(X+

6 +X−
6 ) (6.16d)

Qχ =
1

12

χ

grrgθθ

[

4(βr)2grr − 3λ

(βr)2grr − λ

]

X1 +
χ

2
X3 −

1

3

αχ2

(2αχ− λ)
(X+

4 +X−
4 )

+
χ

3
(X+

6 +X−
6 ) (6.16e)

Qgrr =
2(βr)2grr − 3λ

6gθθ((βr)2grr − λ)
X1 +

4

3
grrX2 − grrX3 +

2

3

αχgrr
(2αχ− λ)

(X+
4 +X−

4 )

− 1

3
grr(X

+
5 +X−

5 )−
2

3
grr(X

+
6 +X−

6 ) (6.16f)

Qgθθ =

[

1

4grr
+

(βr)2

12((βr)2grr − λ)

]

X1 −
2

3
gθθX2 +

1

2
gθθX3 −

1

3

αχgθθ
(2αχ− λ)

(X+
4 +X−

4 )

+
1

6
gθθ(X

+
5 +X−

5 ) +
1

3
gθθ(X

+
6 +X−

6 ) (6.16g)

Qα =
1

2
(X+

4 +X−
4 ) (6.16h)

Qβr =
βrλ

8grrgθθ((βr)2grr − λ)
X1 −

λ

(2αχ− λ)

√

αχ

8grr
(X+

4 −X−
4 )

+
1

2

√

λ

grr
(X+

6 −X−
6 ). (6.16i)

We will refer to this inverse transformation when discussing outer boundary condi-

tions for our numerical simulations in Sec. 6.4.3.
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6.2.4 Construction of Initial Data

We now construct initial data which is well suited for testing the nodal dG scheme.

At a minimum the initial data should be spherically symmetric, and additionally we

focus on solutions which are analytically known for all times. With such solutions

we can preform straightforward and unambiguous convergence tests in addition to

monitoring constraint violations. We wish to treat the singularity via excision, thus

we further demand that for some region of the spacetime the excision conditions

(6.15) are satisfied. Here we consider the classic Kerr-Schild solution, although many

others are possible [137].

Schwarzschild Solution in Conformal Kerr-Schild Coordinates

In Kerr-Schild coordinates, here the system directly related to incoming Eddington-

Finkelstein null coordinates, the line element for the Schwarzschild solution reads

ds2 = −α2dt2 + (1 + 2M/R)(dR + βRdt)2 +R2dθ2 +R2 sin2 θdφ2, (6.17)

where R is the area radius, α = (1+2M/R)−1/2 is the lapse, and βR = 2M/(R+2M)

is the shift vector. The physical spatial metric5 ḡab is the spatial part of this line

element.

To define the corresponding solution to the GBSSN system, we use equation

gab = χḡab to define the following relationship between line elements:

dr2 + r2(dθ2 + sin2 θdφ2) = χ[(1 + 2M/R)dR2 +R2dθ2 +R2 sin2 θdφ2], (6.18)

5We remind the reader that throughout this chapter physical quantities have a ‘bar’ while
conformal ones have no ‘bar’ (cf. footnote 1).
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so that

χ

(

1 +
2M

R

)(

dR

dr

)2

= 1, χR2 = r2. (6.19)

Then we have
(

1 +
2M

R

)1/2
dR

R
=
dr

r
, (6.20)

with integration yielding

r =
R

4

(

1 +

√

1 +
2M

R

)2

e2−2
√

1+2M/R, (6.21)

where the constant of integration has been chosen so that the R, r → ∞ limits are

consistent. The second relation in (6.19) shows that

χ =
1

16

(

1 +

√

1 +
2M

R

)4

e4−4
√

1+2M/R, χ−4 =
2e
√

1+2M/R−1

1 +
√

1 + 2M/R
. (6.22)

The extrinsic curvature tensor is specified by the expression for K given in (6.25h),

the identity K = KR
R + 2Kθ

θ , and

Kθ
θ =

(

1 +
2M

R

)−1/2
2M

R2
. (6.23)

Since KR
R = Kr

r , we compute that

Kr
r = K − 2Kθ

θ = −
(

1 +
2M

R

)−1/2(
R +M

R + 2M

)

2M

R2
. (6.24)

Next, since Krr = ḡrrK
r
r = χ−1Kr

r , we have Kr
r = Arr +

1
3
grrK. This implies
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Arr = Kr
r − 1

3
K, from which we get (6.25g). In all we have

α =

(

1 +
2M

R

)−1/2

(6.25a)

βr = βR dr

dR
= χ1/2

(

1 +
2M

R

)−1/2
2M

R
(6.25b)

grr = 1 (6.25c)

gθθ = r2 = χR2 (6.25d)

χ =
1

16

(

1 +

√

1 +
2M

R

)4

e4−4
√

1+2M/R (6.25e)

Br = 0 (6.25f)

Arr = −
(

1 +
2M

R

)−1/2
4M

3R2

(

2R + 3M

R + 2M

)

(6.25g)

K =

(

1 +
2M

R

)−3/2(

1 +
3M

R

)

2M

R2
(6.25h)

Γr = −2

r
= − 2

χ1/2R
. (6.25i)

To differentiate these expressions with respect to r, we use the identity

dR

dr
= χ−1/2

(

1 +
2M

R

)−1/2

(6.26)

along with the chain rule.

6.3 A DG Scheme for the GBSSN System

This section describes the nodal discontinuous Galerkin method used to numerically

solve (6.3), and builds upon the basic dG scheme ingredients of Sec. 3.3. To ap-

proximate (6.3), we follow the general procedure first introduced in Ref. [25]. Our

approach defines local auxiliary variables Q = u′, and rewrites the spatially second-
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order system (6.3) as the first-order system (6.12a). Once we use (6.12b) to elimi-

nate Q from (6.12a), we recover the primal equations (6.3). The auxiliary variable

approach was later generalized and coined the local discontinuous Galkerin (LDG)

method in Ref. [67]. We may refer to our particular scheme as an LDG method, but

note that many variations exist in the literature. We stress that in LDG methods

Q is not evolved and is introduced primarily to assist in the construction of a stable

scheme.

Equations (6.11) and (6.12a) imply that the physical flux function is

F (W ) =







Fu(W )

Fv(W )






≡ A(u)Wv:Q =







05×1

f(W )






, f =



















fBr

fArr

fK

fΓ



















. (6.27)

Only the evolution equations for Br, Arr, K, and Γr give rise to non-zero components

in F , and we have collected these non-zero components into a smaller vector f = Fv.

Inspection of (6.7) determines these components. For example, from (6.7c) we find

fK = −βrK +
χ

grr
Qα. (6.28)

6.3.1 Discretization of the System (6.12)

The computational domain Ωh is the closed r–interval [a, b]. We cover Ωh withK > 1

non–overlapping intervals Dk. On each interval Dk, we approximate each component

of the system vector W by an interpolating polynomial of degree N belonging to D
k

and interpolating at the LGL nodal points. Notice that although Q = u′, Qh and u′h
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are not necessarily the same.

On each open interval (ak, bk) ⊂ D
k and for each component of the equations in

(6.12), we define local residuals measuring the extent to which our approximations

satisfy the original continuum system. Dropping the subdomain label k on the

polynomials and focusing on the K equation as a representative example, the local

residual corresponding to (6.3h) is6

−(RK)
k
h ≡− ∂tKh + (βrK ′)h −

(

χQ′
α

grr

)

h

+

(

χQgrrQα

2g2rr

)

h

−
(

χQgθθQα

grrgθθ

)

h

+

(

QαQχ

2grr

)

h

+

(

3αA2
rr

2g2rr

)

h

+

(

1

3
αK2

)

h

. (6.29)

We similarly construct the remaining eight residuals, e.g. (Rgrr)h and (RΓr)h, as well

as five residuals corresponding to (6.12b). For example, one of these remaining five

is

(RQα)
k
h ≡ −Qα,h + α′

h. (6.30)

The Galerkin conditions give rise to 9K(N + 1) coupled ODES for (6.12a) and

5K(N + 1) for for (6.12b). Integrating twice by parts, introducing the numerical

fluxes, and recalling definitions of the mass and stiffness matrix (3.32) we arrive at

a nodal form of the semi–discrete equation

∂tK = βrDK − χDQα

grr

+
1

2

χQgrrQα

g2
rr

−
χQgθθ

Qα

grrgθθ

+
1

2

QαQχ

grr

+
3

2

αA2
rr

g2
rr

+
1

3
αK2 +M−1ℓk (fK,h − f ∗

K)
∣

∣

∣

bk

ak
. (6.31)

The superscript k is suppressed on all terms except ℓk(r) and the subscript h is

dropped on all boldfaced variables. Eq. (6.31) features a component f ∗
K of the nu-

6Non–linear products and quotients of polynomials are discussed in Sec. 3.3.
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merical flux. The numerical flux is determined by (as yet not chosen) functions7

f ∗ = f ∗(W+,W−), (6.32)

where, recall, W− is an interior boundary value of the approximation defined on D
k,

and W+ is an exterior boundary value of the approximation defined on either Dk−1

or Dk+1. Eight other semi-discrete evolution equations are similarly obtained, with

nine in total (one for each component of Wu:v). Additionally, we have

Qα = Dα+M−1ℓk(α∗ −αh)
∣

∣

∣

bk

ak
, (6.33)

which again features a component α∗ of the numerical flux. Four other auxiliary

equations are similarly obtained, with five in total (one for each component of Q =

WQ:Q). The auxiliary variables are constructed and used at each stage of temporal

integration, but are not evolved variables.

6.3.2 Numerical Flux

To complete our dG scheme we must specify functional forms for the components of

the numerical flux introduced in the previous section. We distinguish between the

physical fluxes (components of f) and the auxiliary fluxes (components of u) arising

from the definition of the auxiliary variables. These choices are not independent as

the resulting scheme must be stable and consistent. Our choice follows [37] which

considered diffusion problems. Additional analysis of this flux choice appears in

[15, 121].

7 In the context of the dG method here, + and − denote “exterior” and “interior”, and have no
relation to the ± using to denote the characteristic fields and speeds in Table 6.1. For characteristic
fields and speeds, + and − mean “right-moving” and “left-moving”.
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Let us first consider the numerical fluxes corresponding to the physical fluxes

and of the form (6.32). The numerical flux vector is a function of the system and

auxiliary variables interior and exterior to a subdomain. A common choice for f ∗ is

f ∗ = {{fh}}+
τ

2

[[

vh
]]

n

, K-component of f ∗: f ∗
K = {{fK,h}}+

τ

2

[[

Kh

]]

n

, (6.34)

where, as an example, we have also shown the component of f ∗ corresponding to

the analysis above. The numerical average {{fK,h}} and jump
[[

Kh

]]

n

across a local

outward–pointing normal n to a subdomain is defined in Eq. (3.30). Here τ is a

position dependent penalty parameter (fixed below). The role of τ is to “penalize”

(i. e. yield a negative contribution to the L2 energy norm) jumps across an interface.

An appropriate choice of τ will ensure stability, and we now provide some motivation

for the choice (6.36) of τ we make below.

Were we treating the fully first-order system (6.9), the local Lax-Friedrichs flux

would often be a preferred choice due to its simplicity [121]. In this case, the

constant ω in the numerical flux formula F∗ = {{Fh}} + 1
2
ω
[[

Wh

]]

n

obeys ω ≥

max
∣

∣µ(∇WF(W ))
∣

∣. Here, F(W ) = A(u)W , the notation µ(·) indicates the spectral

radius of the matrix within, and the max is taken over interior W− and exterior W+

states. Motivated by (6.8), we adopt a similar but simpler prescription, substituting

the field gradient

∇Wv:Q
Ã(u)Wv:Q = Ã(u) (6.35)

for ∇WF(W ). Precisely, we assume the scaling

τ(bk) = τ(ak+1) = τ k+1/2 ≡ C ·max
∣

∣µ
(

Ã(u)
)∣

∣, (6.36)

where C = O(1) is a constant chosen for stability. Larger values of C will result

in schemes with better stability properties, whereas too large a value will impact
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the CFL condition. At the interface point I
k+1/2 ≡ D

k ∩ D
k+1, the vector uh has

two representations: u− at bk and u+ at ak+1. The max in (6.36) is taken over the

corresponding two sets of field speeds. More precisely, the speeds in Table 6.1 are

computed for both u− and u+, and the maximum taken over all resulting speeds.

For the auxiliary variables, a penalized central flux is used. The definition with one

representative component is

u∗ = {{uh}} −
1

2

[[

uh
]]

n

, α-component of u∗: α∗ = {{αh}} −
1

2

[[

αh

]]

n

, (6.37)

with similar expressions for the remaining components.

We stress the following point. Since the interior coupling between subdomains

is achieved through the numerical flux forms (6.36) and (6.37), the inverse transfor-

mation (6.16) expressing the fundamental fields in terms of the characteristic fields

is not required to achieve this coupling. On the other hand, imposition of physical

boundary conditions may still rely on (6.16), since this transformation allows one to

fix only incoming characteristic modes.

6.3.3 Filtering

Like other nodal (pseudospectral) methods, our scheme may suffer from instabilities

driven by aliasing error [124]. Filtering is a simple, yet robust remedy. To filter a

solution component, such as χ, we use the modal (as opposed to nodal) representation

of the solution:

χk
h(t, r) =

N
∑

j=0

χ(t, rkj )ℓ
k
j (r) =

N
∑

j=0

χ̂k
j (t)Pj(r), (6.38)
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where Pj(r) is the jth Legendre polynomial. Let ηj = j/N , and define the filter

function

σ(ηj) =











1 for 0 ≤ ηj ≤ Nc/N

exp
(

− ǫ
(

ηj−Nc/N

1−Nc/N

)2s)

for Nc/N ≤ ηj ≤ 1.
(6.39)

At each timestep we modify our solution component according to

χk
h →

(

χk
h

)filtered
=

N
∑

j=0

σ(ηj)χ̂
k
j (t)Pj(r). (6.40)

Evidently, the modification only affects the top N − Nc modes, and is sufficient

to control the type of weak instability driven by aliasing [121]. The numerical pa-

rameters Nc and ǫ are problem dependent. For our simulations, we have taken

ǫ ≃ −log(εmach) = 36, where εmach is machine accuracy in double precision.

6.3.4 Model System

To better illustrate the basic properties of our method, we consider a toy model.

Namely, the following spatially second-order system:

∂tu = u′ + av − u3 + g(t, x) (6.41a)

∂tv = u′′ + v′ − (u+ v)(u′)2 + v2u2 + h(t, x), (6.41b)

where a ≥ 1 is constant and g and h are analytic source terms to be specified.

In contrast to (6.5), here u, v, and Q = u′ are scalars rather than vectors. System

(6.41) admits a first-order reduction in which u′ is defined as an extra variable. Since

this first-order reduction is strongly hyperbolic, the spatially second-order system

(6.41) is also strongly hyperbolic by one of the definitions considered in [111]. The
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characteristic fields X± and speeds µ± are

X+ =
√
av − u′, µ+ =

√
a− 1; X− =

√
av + u′, µ− = −(

√
a+ 1). (6.42)

To construct a local dG scheme for this system, we first rewrite it as

∂tu = Q+ av − u3 + g(t, x) (6.43a)

∂tv = Q′ + v′ − (u+ v)Q2 + v2u2 + h(t, x) (6.43b)

Q = u′. (6.43c)

Evidently, f = −(Q+ v) is the v-component of the physical flux vector

F (v,Q) ≡







Fu

Fv






=







0

f






. (6.44)

Note that F has the same structure as (u, v)T . Borrowing from the presentation for

the GBSSN system, we write the analogous semidiscrete scheme on each subdomain

D
k for the model system:

∂tu = Q+ av − u3 + g(t) (6.45a)

∂tv = DQ+Dv − (u+ v)Q2 + v2u2 + h(t) +M−1ℓk(fh − f ∗)
∣

∣

∣

bk

ak
, (6.45b)

Q = Du+M−1ℓk(u∗ − uh)
∣

∣

∣

bk

ak
. (6.45c)

Here, we have suppressed the subinterval label k from all variables except for the

vector ℓk of Lagrange polynomial values. Moreover, following the guidelines discussed

above, the numerical fluxes are given by

f ∗ = {{fh}}+
1 +

√
a

2

[[

vh
]]

n

, u∗ = {{uh}} −
1

2

[[

uh
]]

n

. (6.46)
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Next we will analyze the stability of our scheme, for a more general numerical flux

choice, as applied to (6.41) with the nonlinear and source terms dropped.

6.3.5 Stability of the Model System

The following stability analysis for the model system (6.41) has been inspired by

[226, 227]. After dropping all nonlinear source terms, the system (6.41) becomes

∂tu = u′ + av (6.47a)

∂tv = u′′ + v′. (6.47b)

This section analyzes the stability of (6.47), considering both the continuum system

itself as well as its semi-discrete dG approximation. The latter analysis offers some

insight into the empirically observed stability of our dG scheme for the spherically

reduced GBSSN equations. For the nonlinear systems (6.3) and (6.41), we do not

attempt a formal stability proof. Nevertheless, the results of this proof have served as

a guide for our choices of penalty parameters (i.e. numerical flux). Chapter 3 offers

an extended discussion of stability, and Sec. 3.1.1 introduces much of the notation

used here. Integration measures are suppressed throughout.

Analysis for a Single Interval

For the continuum model we will establish the following estimate:

‖u′(T, ·)‖2
D
+ a‖v(T, ·)‖2

D
≤ C(T )

(

‖u′(0, ·)‖2
D
+ a‖v(0, ·)‖2

D

)

, (6.48)
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where the time-dependent constant C(T ) is determined solely by the choice of bound-

ary conditions. To show (6.48), we first change variables with v̂ =
√
av, thereby

rewriting (6.47) in the following symmetric form:

∂tu = u′ +
√
av̂ (6.49a)

∂tv̂ =
√
au′′ + v̂′. (6.49b)

Equations (6.49a,b) then imply

1

2
∂t

∫

D

(u′)2 =

∫

D

u′(u′′ +
√
av̂′) =

∫

D

√
au′v̂′ +

1

2

∫

∂D

(u′)2 (6.50a)

1

2
∂t

∫

D

(v̂)2 =

∫

D

v̂(
√
au′′ + v̂′) = −

∫

D

√
au′v̂′ +

1

2

∫

∂D

(v̂2 + 2
√
au′v̂). (6.50b)

Here v̂v̂′ and u′u′′ have been expressed as exact derivatives and then integrated to

boundary terms, the second equation employs an extra integration by parts, and with

only one space dimension
∫

∂D
denotes a difference of endpoint evaluations. Addition

of Eqs. (6.50a,b) gives

1

2
∂t

∫

D

[

v̂2 + (u′)2
]

=
1

2

∫

∂D

[

v̂2 + (u′)2 + 2
√
au′v̂

]

. (6.51)

Substitutions with the identities

[

v̂2 + (u′)2
]

=
1

2

[

(v̂ + u′)2 + (v̂ − u′)2
]

, 2u′v̂ =
1

2

[

(v̂ + u′)2 − (v̂ − u′)2
]

(6.52)

and replacements to recover the original variable v = v̂/
√
a yield

1

2
∂t

∫

D

[

av2 + (u′)2
]

=
1 +

√
a

4

∫

∂D

(
√
av + u′)2 +

1−√
a

4

∫

∂D

(
√
av − u′)2. (6.53)
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From (6.53) we deduce that the time-dependent constant C(T ) in (6.48) must satisfy

∣

∣

∣

∣

∣

∣

1 +

∫ T

0

[

1+
√
a

2

∫

∂D
(
√
av + u′)2 + 1−√

a
2

∫

∂D
(
√
av − u′)2

]

dt

‖u′(0, ·)‖2 + a‖v(0, ·)‖2

∣

∣

∣

∣

∣

∣

≤ C(T ). (6.54)

For periodic boundary conditions, we may choose C(T ) = 1. Moreover, if a ≥ 1 and

u′ = −√
av is specified at ∂D+, then ‖u′(t, ·)‖2 + a‖v(t, ·)‖2 decays.

Still working on a single interval (subdomain), we now consider the semi-discrete

scheme for (6.49), i. e. (6.45) with all nonlinear source terms dropped, and with v

replaced by v̂/
√
a. Derivation of a formula analogous to (6.53) is our first step toward

establishing L2 stability of the semi-discrete scheme. While (6.45) features vectors,

for example u(t), taking values at the Legendre-Gauss-Lobatto nodal points, here

we work with the numerical solution as a polynomial, for example uh(t, x). These

two representations are related by the Lagrange interpolating polynomials for the

nodal set, here taken to span both the space of test functions and the space of basis

functions. Our scheme is

∫

Dk

ψ∂tuh =

∫

Dk

ψ(Qh +
√
av̂h) (6.55a)

∫

Dk

ξ∂tv̂h = −
∫

Dk

ξ′(
√
aQh + v̂h) +

∫

∂Dk

ξ(
√
aQ∗ + v̂∗) (6.55b)

∫

Dk

ϕQh =

∫

Dk

ϕu′h +

∫

∂Dk

ϕ (u∗ − uh) , (6.55c)

where ψ, ξ, and ϕ are polynomial test functions. These test functions are arbitrary,

except that they must be degree-N polynomials. In (6.55) the variables uh, v̂h and

Qh should also carry a superscript k, but we have suppressed this. Derivation of

a formula analogous to (6.53) is complicated by the fact that Qh is not evolved.

Nevertheless, at a given instant t we can assemble Qh from (6.55c).
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Mimicking the calculation (6.50b) from the continuum case, we first use (6.55b)

with ξ = v̂h to write

1

2
∂t

∫

Dk

v̂2h = −
∫

Dk

(
√
aQh + v̂h)v̂

′
h +

∫

∂Dk

(
√
aQ∗ + v̂∗)v̂h

= −
∫

Dk

√
aQhv̂

′
h +

1

2

∫

∂Dk

[

2(
√
aQ∗ + v̂∗)v̂h − v̂2h

]

.

(6.56)

The right-hand side of (6.50a) is analogous to

1

2
∂t

∫

Dk

Q2
h =

∫

Dk

Qh∂tQh. (6.57)

However, since Qh is not evolved, the term ∂tQh must be given a suitable interpre-

tation. On the right hand side of (6.55c) only uh, u
′
h, and u∗ necessarily depend

on time, since the test function ϕ need not be time-dependent. Furthermore, u∗ is

explicitly given as a linear combination of uh, as seen in Eq. (6.66c) below. Choosing

ϕ = ℓj, taking the time derivative of (6.55c), and appealing to the commutivity of

mixed partial derivatives, we therefore arrive at

∫

Dk

ℓj∂tQh =

∫

Dk

ℓj(∂tuh)
′ +

∫

∂Dk

ℓj
(

(∂tu)
∗ − ∂tuh

)

, (6.58)

where (∂tu)
∗ depends on ∂tuh in precisely the same way that u∗ depends on uh. We

have written ℓj rather than ϕ in the last equation to emphasize that the result also

holds for any linear combination of ℓj (for example ϕ), and even for time-dependent

combinations. Since Qh is itself such a combination, we obtain

1

2
∂t

∫

Dk

Q2
h =

∫

Dk

Qh(∂tuh)
′ +

∫

∂Dk

(

(∂tu)
∗ − ∂tuh

)

Qh

=

∫

Dk

Qh(Q
′
h +

√
av̂′h) +

∫

∂Dk

(

(∂tu)
∗ − ∂tuh

)

Qh

=

∫

Dk

√
aQhv̂

′
h +

1

2

∫

∂Dk

[

2((∂tu)
∗ − ∂tuh)Qh +Q2

h

]

.

(6.59)
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Addition of (6.56) and (6.59) gives

1

2
∂t

∫

Dk

(Q2
h + v̂2h) =

1

2

∫

∂Dk

[

Q2
h − v̂2h + 2(

√
aQ∗ + v̂∗)v̂h + 2((∂tu)

∗ − ∂tuh)Qh

]

,

(6.60)

the aforementioned analog of (6.53). This formula holds on a single subdomain D
k,

and we now combine multiple copies of it, one for each value of k.

Analysis for Multiple Intervals

To facilitate combination of (6.60) over all k, we change notation. At every sub-

domain interface I
k+1/2 ≡ ∂Dk ∩ ∂Dk+1, let the superscripts L and R denote field

values respectively taken from the left and right. Then the fields evaluated at Ik+1/2

which belong to D
k will be uLk+1/2, v̂

L
k+1/2, and Q

L
k+1/2, while those belonging to D

k+1

will be uRk+1/2, v̂
R
k+1/2, and Q

R
k+1/2. However, at Ik−1/2 the values taken from D

k are

uRk−1/2, v̂
R
k−1/2, and Q

R
k−1/2. Note that we have also replaced the subscript h, denoting

a numerical solution, with k ± 1/2, denoting the location of the endpoint value of

the numerical solution. With this notation, we define

∆L
α =

1

2

[

(QL
α)

2 − (v̂Lα)
2
]

+
(√

aQ∗
α + v̂∗α

)

v̂Lα +
[

(∂tuα)
∗ − ∂tu

L
α

]

QL
α, (6.61)

and similarly for ∆R
α . The same numerical fluxes appear in both ∆L

α and ∆R
α (i.e. each

numerical flux takes the same value on either side of an interface), whence fluxes like

Q∗
α do not carry an L or R superscript. In terms of these definitions (6.60) becomes

1

2
∂t

∫

Dk

(Q2
h + v̂2h) = ∆L

k+1/2 −∆R
k−1/2. (6.62)
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Summation over all Dk yields

1

2
∂t

K
∑

k=1

∫

Dk

(Q2
h + v̂2h) =

K−1
∑

k=1

(

∆L
k+1/2 −∆R

k+1/2

)

+∆L
K+1/2 −∆R

1/2

=
K−1
∑

k=1

(

∆L
h −∆R

h

)∣

∣

Ik+1/2 +∆L
K+1/2 −∆R

1/2. (6.63)

We have reverted to h-notation denoting the numerical solution, since the L,R su-

perscripts indicate unambiguously the relevant domain used for evaluation at Ik+1/2.

We again seek an estimate of the form

K
∑

k=1

(

‖Qh(T, ·)‖2Dk + a‖vh(T, ·)‖2Dk

)

≤ C(T )
K
∑

k=1

(

‖Qh(0, ·)‖2Dk + a‖vh(0, ·)‖2Dk

)

,

(6.64)

that is essentially the same as the one (6.48) considered in the continuum case.

Assume that the chosen boundary conditions ensure ∆L
K+1/2 −∆R

1/2 is bounded by a

time-dependent constant which does not depend on the numerical parameters N and

h (subdomain width). Establishment of stability then amounts to showing that the

remaining sum over interface terms in (6.63) is non-positive; whence this remaining

sum is consistent with C(T ) ≤ 1, although the boundary conditions may give rise

to a different bound. In fact, we will choose the numerical fluxes such that each

individual interface term is non-positive. At interface I
k+1/2 and in L,R notation,

the jump and average of v̂h, for example, are

1

2

(

v̂+ + v̂−
)

≡ {{v̂h}} =
1

2

(

v̂Lk+1/2 + v̂Rk+1/2

)

(6.65a)

n−v̂− + n+v̂+ ≡
[[

v̂h
]]

n

= v̂Lk+1/2 − v̂Rk+1/2. (6.65b)
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Consider numerical fluxes of the form

Q∗ = {{Qh}} −
τQ
2

[[

Qh

]]

n

(6.66a)

v̂∗ = {{v̂h}} −
τv
2

[[

v̂h
]]

n

(6.66b)

u∗ = {{uh}} −
τu
2

[[

uh
]]

n

(6.66c)

(∂tu)
∗ = {{∂tuh}} −

τu
2

[[

∂tuh
]]

n

, (6.66d)

where (6.66c) induces (6.66d) and where the penalty parameters τu, τv, and τQ are

real numbers. The fluxes defined in (6.46) correspond to τu = 1, τv = 1 +
√
a, and

τQ = 0. In terms of these quantities the kth interface contribution in (6.63) is

(∆L
h −∆R

h )
∣

∣

Ik+1/2 =
1

2

([[

Q2
h

]]

n

−
[[

v̂2h
]]

n

)

+ {{v̂h}}
[[

v̂h
]]

n

− τv
2

[[

v̂h
]]2

n

+
√
a{{Qh}}

[[

v̂h
]]

n

−
√
aτQ
2

[[

Qh

]]

n

[[

v̂h
]]

n

− {{Qh}}
[[

∂tuh
]]

n

− τu
2

[[

∂tuh
]]

n

[[

Qh

]]

n

,

(6.67)

where we have suppressed the k dependence of the right-hand side. Now consider

the term
[[

∂tuh
]]

n

. Because ∂tuh and Qh +
√
av̂h are both polynomials of degree N ,

Eq. (6.55a) implies the vector equation ∂tu = Q+
√
av̂, that is pointwise equivalence

on the nodal points of Dk, which in turn implies
[[

∂tuh
]]

n

=
[[

Qh +
√
av̂h
]]

n

. Upon

substituting this identity into the last equation, we arrive at an expression which

features only v̂h and Qh,

(∆L
h −∆R

h )
∣

∣

Ik+1/2 =
1

2

([[

Q2
h

]]

n

−
[[

v̂2h
]]

n

)

+ {{v̂h}}
[[

v̂h
]]

n

− τv
2

[[

v̂h
]]2

n

+
√
a{{Qh}}

[[

v̂h
]]

n

−
√
aτQ
2

[[

Qh

]]

n

[[

v̂h
]]

n

− {{Qh}}
[[

Qh +
√
av̂h
]]

n

− τu
2

[[

Qh +
√
av̂h
]]

n

[[

Qh

]]

n

.

(6.68)

The identities {{v̂h}}
[[

v̂h
]]

n

= 1
2

[[

v̂2h
]]

n

and
[[

Qh +
√
av̂h
]]

n

=
[[

Qh

]]

n

+
√
a
[[

v̂h
]]

n
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then simplify (6.68) to

(∆L
h −∆R

h )
∣

∣

Ik+1/2 = −τv
2

[[

v̂h
]]2

n

−
√
a(τu + τQ)

2

[[

Qh

]]

n

[[

v̂h
]]

n

− τu
2

[[

Qh

]]2

n

. (6.69)

The role of a penalty parameter is now clear. Positive values of τv penalize jumps in v̂h

through a negative contribution to the energy. Likewise, positive values of τu penalize

jumps in Qh through a negative contribution to the energy. However, because the

sign of
[[

Qh

]]

n

[[

v̂h
]]

n

can be positive or negative, only the choice τQ = −τu yields an

expression for (∆L
h −∆R

h )|Ik+1/2 which is manifestly negative for τu ≥ 0 and τv ≥ 0.

A simple estimate based on Young’s inequality with ε (that is, 2αβ ≤ ε−1α2 + εβ2,

where α, β ≥ 0 and ε > 0) shows that for τQ = 0 the choice τv ≥ aτu/4 also yields

stability. Numerical verification of (6.69) is provided in Sec. 6.4.2.

For the GBSSN system (6.3), u, v, and Q are block indices [cf. Eq. (6.5)]. Similar

to the model problem, we have penalized Q with τu = 1, with τv chosen large enough

to heuristically overcome the cross-terms of indefinite size that arise from τQ = 0 (we

interpret equations like τu = 1 componentwise). An analogous choice “τQ = −τu” for

the GBSSN system might be possible, but would be considerably more complicated.

Indeed, such a choice likely entails a matrix of penalty parameters, but we do not

give the details here.

6.4 Results from Numerical Simulations

This section presents results found by numerically solving both the model system

(6.41) and GBSSN system (6.3) with the dG scheme presented in the previous section.
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Figure 6.1: Spectral convergence of fields for model PDE. Respectively, for N =
3, 6, 9, 12, a timestep of ∆t = 0.0578, 0.0178, 0.0084, 0.0049 has been chosen for stability and accu-
racy. In the title headings, for example, ∆u ≡ unumer − uexact.
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6.4.1 Simulations of the Model System

The semi-discrete scheme (6.45) has been integrated with the classical fourth-order

Runge-Kutta method. When integrating this system, we have first constructed Q at

each Runge-Kutta stage, and then substituted into the evolution equations (6.45a,b)

for u and v. The problem has been solved on a computational domain [0, 4π] com-

prised of two subdomains with a timestep chosen small enough for stability. The

initial data has been taken from the following exact solution to (6.41):

u′exact(t, x) =
1

2

[

sin(x− µ−t)− sin(x− µ+t)
]

(6.70a)

vexact(t, x) =
1

2
√
a

[

sin(x− µ−t) + sin(x− µ+t)
]

(6.70b)

g(t, x) = u3exact (6.70c)

h(t, x) = (uexact + vexact)(u
′
exact)

2 − v2exactu
2
exact, (6.70d)

where the speeds µ± are found in (6.42). Specification of the boundary condition at

a physical endpoint amounts to choosing the external state at that point. We have

considered two possibilities: (i) the analytic state (Q+, v+) = (Qexact, vexact) and (ii)

an upwind state. For example, at x = 4π the upwind state is8

Q+ = Qupwind =
1

2

[

(X−)exact − (X+)numer

]

,

v+ = vupwind =
1

2
√
a

[

(X−)exact + (X+)numer

]

.
(6.71)

Either choice of (Q+, v+) leads to similar results, and the plots here correspond to

the analytic state. Figure 6.1 clearly shows spectral convergence with increasing

polynomial order N across all fields for the case a = 2. Other values of a, including

a = 1 for which X+ is a static characteristic field, have also been considered with

8We remind the reader that, unfortunately, the ± on X± means something different than the ±
indicating exterior/interior dG states [cf. footnote 7].
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Figure 6.2: Scaling of maximum stable ∆t with N for model PDE.

similar results.

Section 6.3.5 demonstrates that our proposed scheme for the system (6.45) with

nonlinear and source terms dropped is stable in a semi-discrete sense. Nevertheless,

the fully discrete scheme, obtained via temporal discretization by the fourth-order

Runge-Kutta method, is still subject to the standard absolute stability requirement.

Namely, if µh is any eigenvalue corresponding to the (linearized) discrete spatial

operator, then a necessary condition for stability is that µh∆t lies in absolute stability

region for Runge-Kutta 4. Here, we empirically show that the associated timestep

restriction scales like N−2, i.e. ∆t = O(N−2) for stability. We note that such scaling

is welcome in light of the second-order spatial operators which appear in the system,

and suggest a possible worse scaling like N−4. Fig. 6.2 plots the maximum stable

timestep for a range of N , demonstrating the N−2 scaling, in line with behavior

known from analysis of first-order systems [121]. This scaling also holds for the
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Figure 6.3: Stable evolutions for the model system. For fixed τv = 10−6 and τv = 1+
√
2

respectively, the left and right plots depict stable choices (determined empirically) of τu and τQ for
the linear model system (6.47). The stable regions are colored black, but the jagged edges result
from the discretization of the (τu, τQ)-plane.

GBSSN system.

6.4.2 Semi–Discrete Stability of Model PDE

We now verify the theoretical stability result (6.69) given in Sec. 6.3.5. Figure 6.3

depicts certain choices of stable penalty parameters for the linear model system

evolved to tfinal = 1000 (with a = 2, N = 10, and ∆t ≃ 0.0553), as determined

empirically with simulations similar to those described in Sec. 6.4.1. The left plot

corresponds to a small τv = 10−6, for which the choice τu = 1, τQ = 0 is not stable,

as expected from the theoretical analysis. However, the right plot corresponds to

τv = 1 +
√
a, for which τu = 1, τQ = 0 is stable. Motivated by the numerical flux

choices (6.34,6.37) used for the GBSSN system (6.3), we have (as mentioned above)

set τu = 1, τv = 1 +
√
a, and τQ = 0 in simulations of the nonlinear model (6.41).

For the nonlinear model system (6.41), the theoretically motivated choice τQ = −τu
also yields numerically stable evolutions when τu ≥ 0 and τv ≥ 0.
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6.4.3 Simulations of the GBSSN System

This subsection documents results for simulations of the unit-mass-parameter (M =

1) Schwarzschild solution (6.2.4) expressed in terms of ingoing Kerr-Schild coordi-

nates. Since the solution is stationary, temporal integration of the semi-discrete

scheme has been carried out with the forward Euler method which the dissipa-

tion in our method allows. The r-coordinate domain [0.4, 3.4] has been split into

three equally spaced subdomains, and we have set η = 10, λ = 0.1, and C = 2

[cf. Eq. (6.36)]. For all simulations ∆t has been chosen for stability. With the chosen

λ, the inner physical boundary rmin = 0.4 is an excision surface. At each timestep we

have applied an (order 2s = 20) exponential filter on the top two-thirds of the modal

coefficient set for all fields except for grr and gθθ. For stability, we have empirically

observed that grr and gθθ must not be filtered. A detailed understanding of this is

still lacking.

Issues related to physical boundary conditions are similar to the one encoun-

tered in Sec. 6.4.1 for the model problem. Similar to before, we have retained

Eqs. (6.34,6.37) as the choice of numerical flux even at the endpoints. Therefore, at

an endpoint the specification of the boundary condition amounts to the choice W+

of external state. We have typically chosen the inner boundary of the radial domain

as an excision boundary, and in this caseW+ = W− is enforced at the inner physical

boundary. At the outer physical boundary, for W+ we have again considered two

choices: (i) Wexact and (ii) Wupwind. To enforce choice (ii) the inverse transformation

(6.16) must be used with incoming characteristic fields fixed to their exact values,

similar to (6.71). We have tried various versions of choice (ii), and in all cases the

resulting simulations have been unstable. We therefore present results correspond-

ing to choice (i). Although the choice of an analytical external state Wexact at the
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Figure 6.4: Spectral convergence of constraint violations for M = 1 Kerr-Schild

initial data. Respectively, for N = 11, 14, 17, 19, a timestep of ∆t ≃ 0.0041, 0.0026, 0.0018, 0.0013
has been chosen for stability and accuracy.

outer boundary is stable for our problem, such a boundary condition is unlikely to

generalize to more complicated scenarios involving dynamical fields. Indeed, the

issue of outer boundary conditions for the (G)BSSN system is an active area of re-

search, with a proper treatment requiring fixation of incoming radiation, control of

the constraints, and specification of gauge (see Ref. [171] for a recent analysis).

For GBSSN simulations, our main diagnostic is to monitor the Hamiltonian, mo-

mentum, and conformal connection constraints. Figure 6.4 depicts long-time histo-

ries of constraint violations, whereas Figs. 6.5 and 6.6 depict long-time error histories

for the individual GBSSN field components. From the middle plot in Fig. 6.6, we in-
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Figure 6.5: Spectral convergence of solution for M = 1 Kerr-Schild initial data.

Timestep choices are described in the caption for Fig. 6.4. In the title headings, for example,
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fer that, up to the indicated numerical error, the factor g/ sin2 θ = grr(gθθ)
2 remains

at its initial fixed profile r4 throughout the evolution. These figures indicate that

the proposed scheme is stable for long times, and exhibits spectral converge with

increased polynomial order N . Similar results are recovered from M = 0 Minkowski

initial data. The stability documented in these plots does not appear to rely on inor-

dinate parameter tuning. For example, with the fixed parameters described above,

we obtain similar plots if we individually vary (i) rmin over {0.325, 0.35, 0.4, 0.475}

(values still corresponding to an excision surface for the given choice of λ), (ii) η

over {1, 3, 7, 10}, (iii) s over {8, 9, 10}. With the polynomial order N ranging over

{23, 26, 29, 31}, both stability and qualitatively similar exponential convergence is

achieved with a single subdomain. Likewise, adoption of a larger coordinate domain

with more subdomains does not significantly impact our results. However, for much

larger rmax stability requires a smaller time step or a time stepper better suited for

wave problems (e.g. Runge Kutta 4). Finally, we have considered the addition of

random noise to all field components at the initial time. Precisely, with the system

component χ as an example, we have set

χ(0) 7→ χ(0) + δχ(0), (6.72)

where each component (nodal value) of δχ(0) is 10−5 times a random variable drawn

from a standard normal distribution. Such perturbed initial data also gives rise to

stable evolutions.



Chapter Seven

Reduced Basis Methods and

Parameterized Problems
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This dissertation should provide the groundwork for exploring genuinely new oppor-

tunities dG methods offer. Here we consider reduced basis methods as an efficient

means of dealing with the high–dimensional parameterized problems ubiquitous in

binary simulations. This chapter should be viewed as a preliminary report, and

as such it will combine both work we have carried out as well as speculation and

discussion.

Matched filtering, the main tool used in gravitational wave searches, requires

a (typically large) catalog of waveform templates to search over. In section 7.1

we motivate the large catalog problem as the main hurdle we hope to overcome,

discussing the standard catalog construction technique and suggest reduced basis

methods as a novel approach to the problem. We introduce a reduced basis approach

for post–Newtonian (PN) waveforms in section 7.2 and construct catalogs which

are orders of magnitude smaller than those produced by standard methods. In this

setting the waveforms are analytically given, yet the greedy algorithm and functional

space framework transfers to a dG scheme. Section 7.3 begins with discussion on

how to adapt the algorithm of sec. 7.2 to a dG scheme for time–dependent problems.

We report on preliminary work towards this goal and highlight the challenges as well

as potential benefits. We conclude with numerical evidence for the existence of a

compact reduced basis space for an EMRB problem considered.
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7.1 Gravitational Wave Searches and Catalogs

7.1.1 Generic Bottlenecks of High Dimensional Systems

Astrophysical binary systems constitute a parameterized problem. Most of the rel-

evant parameters have been introduced in previous chapters: orbital eccentricity,

orbital semi–latus rectum, and masses of the compact objects. For a continuous

range of parameters let H be the space of all waveforms generated by a binary sys-

tem, where any plausible model1 could be used to generate these waveforms. From

H we select a discrete number of waveform templates h (or equivalently parameter

points) to populate a catalog C. The catalog must be a robust approximation to H

for successful gravitational wave searches using matched filtering.

Matched filtering is employed to extract weak signals buried in detector noise,

but assumes we have a priori knowledge of the signal’s shape. A known gravita-

tional waveform template h ∈ C is correlated with the detector’s data s through the

matched filtering statistic

< h, s >MF= 4Re

∫ fU

fL

h(f)s̄(f)

Sn(f)
df, (7.1)

where h normalized, f is the frequency, s̄ is the complex conjugate of s, and Sn(f) is

the power spectral density (PSD) of the detector’s expected noise [76]. Initial LIGO

[4], advanced LIGO [4], and advanced Virgo [190] are three PSDs considered in

this chapter. A “detection” occurs when < h, s >MF is greater than some threshold

value, although in realistic searches this is just one of many triggers [9]. The minimal

1These might be post-Newtonian waveforms, effective one body waveforms, phenomenological
waveforms, solutions to Einstein’s equation, or even an alternative theory of gravity. The point
being that whatever mechanism we choose to map parameters to waveforms will result in some
space H that is presently under consideration.
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match measures the closeness of a catalog C with respect to the continuum H

MM ≡ min
s∈H

max
h∈C

< h, s >MF ≤ 1, (7.2)

where we assume normalized waveforms < h, h >MF= 1, and robust catalogs will

typically have MM > .97.

Current techniques for generating a catalog result in tens or hundreds of thou-

sands of templates to achieve a MM > .97 when the relevant parameters are the

binary’s massesm1 andm2 [17]. Furthermore, the number of templates needed grows

rapidly with the dimension P of the parameter space (as (1 −MM)−P/2 [173]). In

addition to the burden of computing thousands of templates (when solving PDEs),

once a catalog is constructed, there is a significant computational cost in performing

an actual search (i.e. matched filtering integrations) for gravitational waves due to

the size of the catalog. This could adversely affect the physics one performs, for

example, real-time analysis of the data is critical to generate alerts to search for

electromagnetic counterparts and enable multimessenger astronomy [135, 50].

The template metric approach [173, 17] is currently used by LIGO for template

placement [17]. The following example highlights how the algorithm works. Suppose

we model gravitational waves by a restricted post-Newtonian waveform at 2nd order.

The parameter space is two-dimensional, the binary’s masses m1 and m2, and the

inspiral gravitational waveform is [9],

h(f) = Af−7/6exp

(

−iπ/4 +
3i

128η

[

v−5 +

(

3715

756
+

55

9
η

)

v−3

−16πv−2 +

(

15293365

508032
+

27145

504
η +

3085

72
η2
)

v−1

])

,

(7.3)

v =

(

GM

c3
πf

)1/3
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Figure 7.1: The points show the parameter values chosen by the template metric method for the
catalog of BNS and Initial LIGO. The density of parameter values is shown using a coloramp as
well as histograms. The algorithm selects templates from outside of the parameter range to cover
signals near the boundary.

Here A depends on the distance and orientation of the source and we have defined

the total mass M = m1 +m2 and symmetric mass ratio η = m1m2/M
2. A Taylor

expansion of (7.3) in η and M is carried out and in each local region of param-

eter space we ensure MM > .97 by plugging Taylor expansions of infinitesimally

separated waveforms into the matched filtering inner product (7.1). The algorithm

outputs a set of selected parameter values such that the resulting catalog’s minimal

match is above a set threshold, the details are found in Ref. [17]. For binary neutron

star (BNS) inspirals, with which we always assume mass components in the range

[1-3]M⊙, Fig. 7.1 shows the chosen parameter values in the chirp mass vs. symmetric

mass ratio plane and a density plot of the number of templates, where the chirp mass

is Mc = η3/5M .
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7.1.2 A Reduced Basis to the Rescue

The RB framework [186] constructs a global basis rather than using local methods

and can be seen as an application-specific spectral expansion. In such an approach

one seeks to enable a rapid online evaluation of the reduced model at the expense of

having to build the basis prior to the application. It has the following advantageous

features over standard model reduction techniques such as Singular Value Decom-

position (SVD) (see [185] for a general review of these methods and [118, 59] for

applications to GWs, see also [36]):

1. It is applicable to situations in which one must choose the most relevant pa-

rameters on the fly.

2. It yields nested, hierarchically constructed catalogs2 which can be easily ex-

tended. If CN = {h1, . . . , hN} is a catalog from the RB method then adding

additional waveforms for higher accuracy implies that the resulting catalogs

contain the previous ones, CN ⊂ CN+1 ⊂ CN+2 · · · .

3. It is computationally efficient. The cost of adding a new member to an existing

catalog of size N is independent of N . Hence, the total cost of generating a

catalog of size N scales linearly with N , in contrast to many other approaches.

4. It yields catalogs that are nearly optimal in terms of the error in approximating

the whole spectrum of GWs by a compact set of basis elements. Furthermore,

this error ensures a strict upper bound over the entire parameter space.

2The term catalog has a slightly different meaning in the context of reduced basis and template
metric methods. In both settings, the elements of a catalog are used for matched filtering integrals.
In the template metric approach the members of a catalog are the waveforms and the matched
filtering integral has physical meaning. For a reduced basis approach the members of a catalog are
basis functions of the reduced basis space WN = span(CN ), thus only specific linear combinations
of the basis functions correspond to physical waveforms. The distinction should become clear
throughout the Chapter.
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To introduce the RBM we consider two cases. First, we work with analytic

waveforms given by the PN approximation (7.3) and compare with existing results.

There are no equations to solve, and our task is the construction of a compact

linear reduced basis space which accurately approximates H and is of low dimension3.

We must decide how to build this space and relatedly how to select points in the

parameter space which are optimal in a suitable sense. Our approach has immediate

consequences for searches, and in fact we demonstrate improvement over the standard

template metric approach. Second, we consider gravitational waveforms as solutions

to a PDE, and discuss approaches to accelerate a dG scheme when faced with a

parameterized PDE.

7.2 A Reduced Basis Method for PN Waveforms

7.2.1 Theoretical Description

Suppose our frequency dependent gravitational wave template is a function of the P

parameters ~µ = {µ1, . . . , µP} associated with the source. We denote each of them

simply by h~µ and do not explicitly write the time or frequency dependence. Although

H is a not a linear space, we show that it can be represented by a linear reduced

basis space with arbitrarily high accuracy.

We are interested in approximatingH by the best linear combinations of members

Ψi ≡ h~µ=~µi
of a catalog CN = {Ψi}Ni=1. All such linear combinations form the reduced

basis space WN = span (CN). The waveforms that make up this catalog could be

optimally chosen so that the error in representing H with WN is minimized over the

3The dimension is simply the number of basis functions in CN .
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choice of N catalog members. Such an optimal error is given by the Kolmogorov

N -width [176],

dN(H) = min
CN

max
~µ

min
u∈WN

||u− h~µ||. (7.4)

That is, one computes the error in the best approximation of h~µ by a member

of WN , then finds the parameter ~µ yielding the largest error, and lastly finds the

smallest such error for all possible N -member catalogs. Here, the norm in Eq. (7.4)

is calculated from the weighted complex inner product 〈·, ·〉, which is related to the

matched filtering integral by 4ℜ[〈·, ·〉], such that for two waveforms F and G in

Fourier space,

〈F,G〉 ≡
∫ fU

fL

F̄ (f)G(f)

Sn(f)
df. (7.5)

Finding a catalog that exactly achieves the N -width is a computationally de-

manding optimization problem. Instead, we use a greedy approach, which is an in-

expensive and practical procedure for hierarchically generating catalogs that nearly

satisfy the N -width [30].

One constructs a catalog by first choosing a waveform for an arbitrary parameter

value. A basis vector e1 is then identified with this waveform, e1 = h~µ1
, and the

catalog is C1 = {Ψ1 = h~µ1
}. To add another waveform to the catalog, one seeks the

parameter value ~µ2 that maximizes ||h~µ − P1(h~µ)|| where P1(h~µ) = e1〈e1, h~µ〉 is the

(orthogonal) projection of h~µ onto W1. We call this step a greedy sweep. The wave-

form corresponding to ~µ2 is added to the catalog so that C2 = {Ψ1,Ψ2}. The new

basis vector e2 is then constructed via Gram-Schmidt orthonormalization. Notice

that C1 ⊂ C2, which demonstrates the hierarchical nature of the catalogs generated.
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Additional members of the reduced basis catalog are generated by mathematical

induction.

It can be shown [30] that if the decay of the N -width with N can be bounded by

an exponential,

dN(H) ≤ Ae−cNα

(7.6)

then the decay of the maximum error for a catalog CN generated by this approach,

which we call the greedy error εN , is also exponential,

εN ≡ max
~µ

||h~µ − PN(h~µ)|| ≤ Ãe−dNβ

. (7.7)

where PN(h~µ) =
∑N

i=1〈ei, h~µ〉ei. Note that εN is a bound on the error between a

waveform and its representation, and that

ε2N = max
~µ

(1−ℜ[〈h~µ, PN(h~µ)〉]) , (7.8)

so that ε2N is an error comparable to (1−MM). Given that GWs appear to depend

smoothly on the parameters ~µ, we expect dN(H), and hence the greedy error εN , to

decay rapidly (in fact exponentially) with N , which is a key feature of this method.

Notice that (7.7) implies that any waveform can be represented as h~µ = PN(h~µ)+δh~µ

where ||δh~µ|| ≤ εN . Therefore, if εN is of the order of numerical round-off then, in

practice, the projection of h~µ onto WN equals the waveform itself. In addition,

the number of RBs needed to represent any h~µ is comparatively small (see below).

In any greedy approach, the maximum over ~µ is searched for, in practice, using a

training space Ξ of samples ~µ. However, since this is done as part of the offline

process, the training space can be finely sampled and one can take advantage of



189

the observation that evaluations for different parameters values are decoupled and,

hence, embarrassingly parallel. Algorithm (1) highlights the essential steps.

Algorithm 1 Greedy algorithm for building a reduced basis space

1: Input: training space Ξ and waveforms sampled at training space HΞ

2: Randomly select some ~µ1 ∈ Ξ
3: C1 = {h~µ1

}
4: N = 1
5: ε = 1 ⊲ We use normalized waveforms
6: while ε ≥ Tolerance do
7: for ~µ ∈ Ξ do
8: Compute Err(~µ) = ||h~µ − PN(h~µ)||
9: end for

10: Choose ~µN+1 = argmax~µ∈Ξ Err(~µ)
11: CN+1 = {h~µ1

, ..., h~µN
, h~µN+1

}
12: ε = Err(~µN+1)
13: N = N + 1
14: end while
15: εN = ε
16: Output: Greedy error εN , CN , representations PN(h~µ) ∈ WN = span (CN)

If one attempted a matched filter search with a RB catalog CN by filtering each

basis function against the data and maximizing over arbitrary linear combinations of

these filter outputs, one would of course get a very high false alarm rate. Instead, it is

important to allow only linear combinations that correspond to physical waveforms.

In fact, the coefficients of these combinations, 〈ei, hµj
〉, are directly provided by the

greedy algorithm. In this way, the RB can compute the overlap between the data

and every member of the training space with many fewer inner product integrals and

no increase in the false alarm rate.
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Figure 7.2: Error in approximating the space of waveforms by a discrete catalog for BNS inspirals
with Initial LIGO. For reduced basis, the overlap error is the square of the greedy error (7.7) while
for metric placement the error is (1−MM) with MM the minimal match. The lower panel shows
the extrapolation of the maximum number of RBs generated for an infinitely large training space.
The fit shown (red) excludes the two points with largest x, which change the asymptotic value by
0.2.
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7.2.2 Results for PN Waveforms

We discuss our results for constructing reduced bases for “chirp” gravitational wave-

forms for binary inspirals without spins [32, 231]. We use the 2nd order post-

Newtonian waveforms (7.3) normalized to satisfy 〈h, h〉 = 1.

Fig. 7.2 shows results for the greedy error using a reduced basis model for inspirals

of BNS (for Initial LIGO with a lower frequency cutoff at fL = 40 Hz) compared

with the standard metric template placement method [173]. After a slowly decaying

region, the reduced basis model gives very fast exponential convergence decay, which

can be fitted by ε2N = ae−bNp
with a = 9.65 × 10−4, b = 0.598, p = 1.25. The

metric method yields approximately linear decay for a two-dimensional parameter

space. As already mentioned, this decay becomes slower as the dimensionality P

of the parameter space increases. The fast decay of the reduced basis model allows

a representation of the whole set of gravitational waves for these sources and mass

ranges to within machine precision. We have found the same feature in all mass

ranges that we have explored. This leads to the rather remarkable finding that for all

practical purposes the set of relevant gravitational waveforms in compact parameter

regions appears to be finite dimensional. When increasing the number of samples

x in the training set we find the following fit for the number of RB for machine

precision error, N = a+ bx−1/2 + cx−1 with a = 921, b = −2090, c = −9.18× 105 for

the case of Fig. 7.2. In particular, in the limit x→ ∞ only 921 bases are needed to

represent, within numerical accuracy, the full space of waveforms H for this range of

masses for BNS inspirals.

Fig. 7.3 shows the chosen parameter values in the chirp mass vs. symmetric mass

ratio plane and a density plot of the number of RBs. The histograms highlight that

most values are picked for (nearly) equal mass systems of low chirp mass, which
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Figure 7.3: The points show the parameter values chosen for the catalog of BNS and Initial LIGO.
The density of parameter values is shown using a colormap as well as histograms.

is qualitatively different from the values picked by the template metric algorithm

shown in Fig. 7.1.

Tab. 7.1 shows the number of RB that we need to represent inspirals of BNS and

stellar size binary black holes (BBH) with mass components in the range [3-30]M⊙.

The limit x→ ∞ is not taken here for simplicity so the RB values listed in Tab. 7.1

are slightly underestimated.
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Detector
Overlap BBH BNS
Error RB TM RB TM

InitLIGO
10−2 165 2, 450 898 10, 028
10−5 170 1.2× 106 904 4.3× 106

2.5× 10−13 182 5.9× 1012 917 1.4× 1013

AdvLIGO
10−2 1, 058 19, 336 5, 395 72, 790
10−5 1, 687 1.5× 107 8, 958 4.9× 107

2.5× 10−13 1, 700 2.3× 1014 8, 976 5.6× 1014

AdvVirgo
10−2 1, 395 42, 496 7, 482 156, 127
10−5 1, 690 3.1× 107 8, 960 8.3× 107

2.5× 10−13 1, 703 4.8× 1014 8, 977 6.0× 1014

Table 7.1: Number of reduced bases/templates for different target accuracies with the reduced
basis (RB) and template metric (TM) approaches for binary neutron stars (BNS) and binary black
holes (BBH), using spin-less chirp waveforms. We assume a lower frequency cutoff of 40 Hz for
Initial LIGO and 10 Hz for Advanced LIGO and Virgo. The overlap error is given by ε2N for RB
and (1−MM) for TM.

7.3 Preliminary Look at RBM for RWZ Equations

Gravitational waveforms (7.3) considered in Sec. 7.2 were given as the Fourier trans-

form of a time series recorded at some a fixed spatial location. Let us now consider

solutions to a dG scheme at a fixed time t. Recall (see Sec. 3.3.2) that our dG

scheme seeks a numerical solution Ψk
h ∈ V k

N , where V
k
N is the space of degree N

polynomials defined on D
k. Let V dG =

⊕K
k=1 V

k
N be the global solution space of the

dG solver, and thus a solution Ψh ∈ V dG at a fixed t is given by a linear combina-

tion of basis element of V dG. In this setting the reduced basis space we seek is a

carefully constructed subspace V RB ⊂ V dG such that at a fixed t a reduced basis so-

lution ΨRB
h ∈ V RB can be quickly recovered. The trade off is a less accurate solution

‖Ψ− Ψh‖ ≤ ‖Ψ−ΨRB
h ‖, and for the method to be worthwhile the accuracy should

not be significantly reduced ‖Ψh −ΨRB
h ‖ < εN .

Adapting the PN algorithm (1) to this scenario will require two new ingredients.

First, to build V RB we must be able to find an accurate error estimate for ‖Ψh−ΨRB
h ‖.

By assumption ΨRB
h can be quickly found, but solving for Ψh is an expensive process
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Figure 7.4: The magnitude of the singular value decomposition as a function of the rank of the
singular values, which corresponds to the number of templates one would use. The plot shows the
rapid exponential fall-off in the singular values.

to be avoided. Yet its precisely ‖ΨRB
h −Ψh‖ which we evaluate in our greedy selection

algorithm for all parameters, and so we instead estimate ‖ΨRB
h − Ψh‖ with some

numerical residual that does not require Ψh [156, 186, 175]. Second, after V RB has

been identified we solve for ΨRB
h simply by making the replacement V dG → V RB (in

both the test and basis space) in our dG solver. Recall a typical dG scheme (3.38):

find a Ψk
h ∈ V k

N such that

∫ bk

ak
dx
[

∂tΨ
k
h − (λiΨ

′)kh
]

v −
[

(λiΨ)∗ − (λiΨ)h
]

v
∣

∣

bk

ak
= 0 ∀v ∈ V k

N . (7.9)

Now let the RB-dG scheme be: find a ΨRB
h ∈ V RB such that

∫ bk

ak
dx
[

∂tΨ
RB
h − (λiΨ

RB′)h
]

v −
[

(λiΨ
RB)∗ − (λiΨ

RB)h
]

v
∣

∣

bk

ak
= 0 ∀v ∈ V RB.

(7.10)
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Perhaps here the parameter is λi, for the RWZ equations they explicitly appear on

the right hand side of Eq. (4.1).

Although formulating a RB method for say finite difference or finite volume

methods could be done, existing RB tools have been primarily developed for dG

and finite element solvers. For time–dependent problems the typical approach uses a

greedy–SVD strategy where the solution’s time history is compressed with an SVD

and the aim is to find a RB space which minimizes spacial degrees of freedom in the

scheme [84]. For long–time problems, as in the case for EMRBs, what we really would

like is a spacetime reduced basis and developing a RB method in this setting could

prove useful. Nevertheless, for the time–dependent problem we envision RBMs are

still in their infancy, and applying this potentially powerful approach to gravitational

wave problems may require new ideas.

We concluded this chapter by providing numerical evidence of a reduced space,

indicating the potential utility of a RB-dG scheme. The power of a RB approach

requires that solutions for a continuous set of parameters live in a low dimensional

space. We have empirically demonstrated this for the analytic PN waveforms, but the

computationally intensive nature of a PDE solver may preclude a direct approach.

Instead we sample a sliver of the parameter space and then perform an SVD analysis

to judge the applicability of the RB technique. The rate at which the singular

values decay indicates the degree of linear dependence between solutions over a

range of parameters. Fig. 7.4 shows the results of an SVD of the dominate (ℓ =

2,m = 2) waveform template space using the EMRB solver from chapter 4. The

orbital parameters are varied over a range of eccentricity e ∈ [0, 0.25] and semi-latus

rectum p ∈ [7.0, 9.2]. Since the number of templates needed corresponds to the

SVD magnitude rank, the exponential fall-off of the singular values implies that the

solution space can be spanned by significantly fewer templates, if carefully chosen.



Chapter Eight

Conclusions
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Our work has been motivated by the need for efficient computation of accurate gravi-

tational waves generated from compact binary systems. Throughout this dissertation

we have considered a nodal discontinuous Galerkin method for the GBSSN and RWZ

equations, two PDEs typically called upon for such computations. Like any scientific

undertaking, we confronted unexpected observations (e.g. Jost junk solutions) and

challenges (e.g. construction of a stable numerical flux for the discretized GBSSN

system) along the way. We also considered reduced basis methods as a new approach

for parameterized waveforms, both in the context of constructing matched filtering

catalogs as well as hybrid dG-RB schemes.

We now summarize the main contributions which have been made along with

potential future work:

• Extreme mass ratio binaries and the Regge-Wheller-Zerilli equation:

We have presented a high–order accurate dG method for computing gravita-

tional waveforms from EMRBs. Time–domain approaches for computing such

waveforms have been hampered by the presence of distributional source terms

(which include both a moving Dirac delta function and its derivative) in the

governing master equations. By writing a distributional master equation as a

first order system, we have treated the source term physically through an ap-

propriate modification to the numerical flux function. Our method maintains

spectral convergence without requiring additional procedures (e.g. filtering),

even pointwise in the immediate vicinity of the moving discontinuity. Through

the use of convolution radiation boundary conditions, we have read–off wave-

forms at outer boundaries, thereby reducing computational cost without spoil-

ing the high–order accuracy of our method. Accurate (read–off) waveforms,

often with a relative error of better than 10−8, have been routinely observed
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in the course of our simulations. Although we have not computed self–force

corrected trajectories, we have demonstrated that our method allows very ac-

curate self–force computations to be carried out.

We believe that the central ideas of our approach might apply to many of these

more sophisticated models. In particular, we hope to use our method in tandem

with self–force corrections based on regularization of gauge–invariant quanti-

ties, at least for quasi–circular orbits. Finally, we remark on the applicability

of our dG method to perturbations of the Kerr metric. Now the relevant wave

equation, the forced Teukolsky equation, is inherently 2+1 dimensional in the

time–domain. In this case we would need to ensure that the particle always

lies on an edge between adjacent subdomains (in this case triangles). Clearly,

this is a geometrically different problem, but Fan et al [88] have also considered

2+1 problems, and one might pursue the Kerr problem along similar lines.

• Trivial initial data and Jost junk solutions: We have shown that impul-

sive starting conditions are inadequate for time-domain modeling of EMRBs.

Such conditions result in more dynamical junk, evident in self-force calcula-

tions, and potentially a static Jost junk solution which persists indefinitely.

Although each effect is small compared to the physical solution, such sys-

tematic errors will corrupt studies which require high accuracy. For example,

computation of waveforms accurate to second order in the mass ratio requires

reconstruction of the first order perturbations. Since these first order terms

act as sources for the wave equations describing the second order masterfunc-

tions, the presence of a Jost junk solution will affect second order waveforms.

When studying eccentric orbits, errors arising from the persistent junk solu-

tion appear to corrupt studies requiring even modest accuracy. Minimization

of dynamical and Jost junk by smoothing the source terms during start-up will

improve waveform templates and self-force techniques with minimal computa-
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tional and human effort.

• GBSSN system with second order operators: We have introduced a dG

method for solving the spherically reduced GBSSN system with second-order

spatial operators. The key ingredient of a stable dG scheme is an appropriate

choice of numerical flux, and our particular choice has been motivated by the

analysis presented in Sec. 6.3.5. When used to evolve the Schwarzschild solu-

tion in Kerr-Schild coordinates, our numerical implementation of the GBSSN

system (6.3) is robustly stable and converges to the analytic solution expo-

nentially with increased polynomial order. By approximating the spatially

second-order form of the GBSSN system, we have not introduced extra fields

which are evolved. Evolved auxiliary fields result in new constraints which may

spoil stability. Our main goal has been stable evolution of the spherically re-

duced GBSSN system as a first step towards understanding how a dG method

might be applied to the full BSSN system. Towards that goal, we now discuss

treatment of singularities and generalization of the described dG method to

higher space dimension.

To deal with the fixed Schwarzschild singularity, we have used excision which is

easy in the context of the spherically reduced BSSN system. However, excision

for the binary black hole problem in full general relativity requires attention

to the technical challenge of horizon tracking. State-of-the-art BSSN codes

avoid such complication, relying instead on the moving-puncture technique.

While the moving-puncture technique does involve mild central singularities,

it may still prove amenable to spectral methods. Indeed, spectral methods for

non-smooth problems is well-developed in both theory and for complex appli-

cations. Since the moving-puncture technique can be performed in spherical

symmetry [42], a first-step toward a spectral moving-puncture code would be

to implement a moving puncture with the nodal dG method described here.
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Such an implementation may adopt Legendre-Gauss-Radau nodes on the in-

nermost subdomain, thereby ensuring that the physical singularity does not lie

on a nodal point (in much the same way finite difference codes use a staggered

grid). Beyond traditional excision and moving punctures, one might construct

smooth initial data via the turducken approach to singularities. However, in

combination with 1+log slicing and the Gamma-driver shift condition, tur-

duckened initial data will evolve towards a “trumpet” geometry [48, 47].

DG methods for hyperbolic problems in two and three space dimensions are

well-developed. A generalization of the method described here to three dimen-

sions and the full BSSN system would likely rely on an unstructured mesh. Ap-

propriate local polynomial expansions for the subdomains are well-understood,

as are choices for the numerical fluxes which would now live on two-dimensional

faces rather than single points. Whether or not it would ultimately prove suc-

cessful, generalization of our dG method to a higher dimension would rely

on an established conceptual framework. Further computational advances of

relevance to a generalization of our dG method to the full BSSN system (pos-

sibly including matter) may include mesh hp-adaptivity, local timestepping,

shock capturing and slope limiting techniques [121]. Moreover, recent work

[38] indicates that enhanced performance would be expected were our scheme

implemented on graphics processor units.

• Reduced basis approach for parameterized problems: We have consid-

ered the development and use of a reduced basis method to template catalog

construction and found rapid exponential convergence of the waveform catalog

over the full parameter space. The catalog is computationally cheap to derive,

hierarchical (i.e. if a more accurate catalog is required, elements can be added),

can be extended for a computational cost that is independent of N , and one

can show it is robust under changes in a detector’s noise [92]. Currently, the
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computational and mathematical framework for generating a catalog entirely

from numerical waveforms is absent. Using a combined dG–RB approach could

allow for such catalogs, and we have pointed out some approaches and chal-

lenges towards this goal. Additionally, we have found that the space of PN

gravitational waveforms considered are essentially finite-dimensional for any

finite range of physical parameters. We conjecture that it is in general the case

and provide corroborating evidence from EMRB systems.
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Appendix One

Derivation of the GBSSN System
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A.1 Outline of Approach

The GBSSN system is relatively new, having been first derived in 2005 [41] by an

action principle, and presented in spherical symmetry for a vanishing stress–energy

tensor in 2008 [42]. The derivation given in this appendix will employ straightforward

but tedious tensor operations, and for a non–zero stress–energy tensor. We have

defined the GBSSN variables in Sec. 2.6.1. In this appendix these variables are

differentiated, and using ADM equations (2.84,2.85) results in the GBSSN evolution

and constraint system. The straightforward but tedious approach was also used

by Refs. [43, 44], although for brevity few details were given. To the best of my

knowledge this is the first time these steps have been spelled out in detail.

A.2 GBSSN Evolution and Constraint Equations

We begin by deriving evolution equations for the determinant of the spatial metric,

γ ≡ det(γij), and inverse metric γij. From the ADM equations, γ evolves according

to

Lnln
√
γ =

1

2
γijLnγij = −K (A.1)
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and the inverse metric satisfies

Lnγ
ij =

(

nαγij ;α − γjkni
;k − γiknj

;k

)

= −
(

ni;j + nj;i
)

= 2γimγjnKmn

= 2Kij . (A.2)

These two equations will be used frequently throughout this appendix.

A.2.1 GBSSN Constraints

The ADM Hamiltonian constraint (2.85a) can be expressed with GBSSN variables

after rewriting the term KijK
ij as

KijK
ij =

(

Āij +
1

3
γ̄ijK

)(

Āij +
1

3
γ̄ijK

)

= ĀijĀ
ij +

1

3
K2, (A.3)

which gives

H = R− ĀijĀ
ij +

2

3
K2 = 16πρ. (A.4)
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The contravariant momentum constraint (2.85b) Mk can also be expressed with

GBSSN variables

Mk = 8πγkiji = γkiDjK
j
i − γkiDiK

= DjK
jk − γkiDiK

= Dj

(

Ajk +
1

3
γjkK

)

− γkiDiK

= DjA
jk − 2

3
γkiDiK. (A.5)

Multiplying by χ−n and integrating by parts leads to

8πχ−njk = DjĀ
jk + nĀjkχ−1χ,j −

2

3
γ̄kiDiK. (A.6)

Next the covariant derivative of Ājk is rewritten as

DjĀ
kj = ∂jĀ

kj + Γk
jnĀ

nj + Γj
jnĀ

kn

= ∂jĀ
kj + Ānj

(

Γ̄k
jn −

n

2
χ−1

[

δkjχ,n + δknχ,j − γ̄kmγ̄jnχ,m

]

)

+ Ākn
(

Γ̄j
jn −

n

2
χ−1

[

δj jχ,n + δj nχ,j − γ̄jmγ̄jnχ,m

]

)

= ∂jĀ
kj + ĀnjΓ̄k

jn + ĀknΓ̄j
jn −

n

2
χ−1

(

4Ānkχ,n + 2Ākjχ,j − Ākmχ,m

)

= ∂jĀ
kj + ĀnjΓ̄k

jn + ĀknΓ̄j
jn − n

5

2
χ−1Āknχ,n. (A.7)

Noticing that γ̄jm [γ̄nm,j − γ̄jn,m] = 0, the term ĀknΓ̄j
jn becomes

ĀknΓ̄j
jn = Ākn

[

1

2
γ̄jm (γ̄nm,j + γ̄jm,n − γ̄jn,m)

]

=
1

2
Ākn∂nlnγ̄. (A.8)
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Finally, the momentum constraint is

χ−nMi = 8πχ−nji = ∂jĀ
ij + ĀkjΓ̄i

jk +
1

2
Āij∂jlnγ̄ − n

3

2
χ−1Āij∂jχ− 2

3
γ̄ij∂jK.

(A.9)

Additionally, a new constraint arises from the introduction of conformal connection

functions

Gi = Γ̄i − γ̄jkΓ̄i
jk. (A.10)

A.2.2 Evolution Equation: Trace of the Extrinsic Curvature

First we derive the evolution equation for the extrinsic curvature trace K

LnK =γijLnKij +KijLnγ
ij = I + II. (A.11)

The first part may be found by contracting the components of ADM equation (2.84)

I =− 1

α
D2α +

(

R− 2KijKij +K2
)

+ 4π (S − 3ρ) . (A.12)

Using (A.2) we find

II = 2KijKij. (A.13)

Adding I + II, and using the Hamiltonian constraint (A.4) yields

LnK =− 1

α
D2α + ĀijĀ

ij +
1

3
K2 + 4π (S + ρ) . (A.14)
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A.2.3 Evolution Equation: Conformal Factor

First write χ = (γ̄/γ)1/(3n) (cf. Sec. 2.6.2), then compute the Lie derivative as

Lnlnχ =
1

3n
Lnln (γ̄/γ)

=
1

3n
[Lnlnγ̄ − Lnlnγ]

=
1

3n
[Lnlnγ̄ − 2Lnln

√
γ]

=
1

3n
[Lnlnγ̄ + 2K] , (A.15)

where Eq. (A.1) was used in the last line. Taking a derivation of the natural logarithm

produces the desired equation

Lnχ =
χ

3n
(Lnlnγ̄ + 2K) . (A.16)

A.2.4 Evolution Equation: Conformal Spatial Metric

Using the evolution equations for χ and γij results in

Lnγ̄ij = γijLnχ
n + χnLnγij

= nγijχ
n−1Lnχ− 2χnKij

=
1

3
γ̄ij (Lnlnγ̄ + 2K)− 2

(

Āij +
1

3
γ̄ijK

)

=
1

3
γ̄ijLnlnγ̄ − 2Āij . (A.17)
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A.2.5 Evolution Equation: Traceless Part of the Extrinsic

Curvature

Taking a Lie derivative of Eq. (2.89) with respect to the normalized timelike vector

n produces

LnAij = LnKij −
1

3
(γijLnK +KLnγij)

= − 1

α
DiDjα +Rij − 2KikK

k
j +KKij − 8πSij + 4πγij (S − ρ)

− 1

3

(

γij

[

− 1

α
D2α + ĀmnĀ

mn +
1

3
K2 + 4π (S + ρ)

]

− 2KKij

)

. (A.18)

With the Hamiltonian constraint (A.4) we remove 1
3

(

ĀmnĀ
mn + 16πρ

)

. Many of the

remaining terms group into the trace–free expressions

− 1

α
(DiDjα)

TF = − 1

α
DiDjα +

1

3α
γijD

2α (A.19)

−8πSTF
ij = −8πSij + 8π

1

3
γijS (A.20)

RTF
ij = Rij −

1

3
γijR, (A.21)

which gives

LnAij = − 1

α
(DiDjα)

TF − 8πSTF
ij +RTF

ij − 2KikK
k
j −

1

3
γijK

2 +
5

3
KKij. (A.22)
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Using

KikK
k
j = Kikγ

kmKmj

=

(

Aik +
1

3
γikK

)

γkm
(

Amj +
1

3
γmjK

)

=

(

Aik +
1

3
γikK

)(

Ak
j +

1

3
δkjK

)

= AikA
k
j +

1

3
AijK +

1

3
AijK +

1

9
γijK

2

= AikA
k
j +

2

3
AijK +

1

9
γijK

2 (A.23)

we may write

−2KikK
k
j −

1

3
γijK

2 +
5

3
KKij = −2AikA

k
j +

1

3
AijK. (A.24)

Finally, we arrive at

LnAij =
1

3
KAij − 2AikA

k
j +

(

Rij −
1

α
DiDjα− 8πSij

)TF

. (A.25)

A.2.6 Evolution Equation: Conformal and Traceless Part of

the Extrinsic Curvature

With the evolution equation for Aij at hand, straightforward computation reveals

LnĀij = AijLnχ
n + χnLnAij

= nAijχ
n−1Lnχ+

1

3
KĀij − 2ĀikĀ

k
j + χn

(

Rij −
1

α
DiDjα− 8πSij

)TF

=
1

3
ĀijLnlnγ̄ +KĀij − 2ĀikĀ

k
j + χn

(

Rij −
1

α
DiDjα− 8πSij

)TF

. (A.26)
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A.2.7 Evolution Equation: Conformal Connection Function

Care is required when deriving an evolution equation for Γ̄i which has no definite

tensorial type. Introduce ∂̂0 = αLn = ∂t−Lβ, and note that ∂̂0 and ∂j commute [41].

We now compute ∂̂0Γ̄
i as

−∂̂0Γ̄i = ∂̂0

[

γ̄−1/2
(

γ̄1/2γ̄ij
)

,j

]

= −1

2
γ̄−3/2

(

γ̄1/2γ̄ij
)

,j
∂̂0γ̄ + γ̄−1/2

(

1

2
γ̄−1/2γ̄ij ∂̂0γ̄ + γ̄1/2∂̂0γ̄

ij

)

,j

. (A.27)

The first term simplifies as

−1

2
γ̄−3/2

(

γ̄1/2γ̄ij
)

,j
∂̂0γ̄ = −1

2
γ̄−1/2

(

γ̄1/2γ̄ij
)

,j
∂̂0lnγ̄ =

1

2
Γ̄i∂̂0lnγ̄. (A.28)

Using Lnγ̄
ij = −1

3
γ̄ijLnlnγ̄ + 2Āij, the last two terms are

(

1

2
γ̄−1/2γ̄ij ∂̂0γ̄ + γ̄1/2∂̂0γ̄

ij

)

,j

=

(

1

2
γ̄−1/2γ̄ij ∂̂0γ̄ + γ̄1/2

[

−1

3
γ̄ij ∂̂0lnγ̄ + 2αĀij

])

,j

=

(

1

2
γ̄1/2γ̄ij ∂̂0lnγ̄ − 1

3
γ̄1/2γ̄ij ∂̂0lnγ̄ + 2αγ̄1/2Āij

)

,j

=

(

1

6
γ̄1/2γ̄ij ∂̂0lnγ̄ + 2αγ̄1/2Āij

)

,j

=
1

6
γ̄1/2

(

γ̄ij ∂̂0lnγ̄
)

,j
+

1

6
γ̄
1/2
,j γ̄ij ∂̂0lnγ̄

+ 2αγ̄1/2Āij
,j + 2αγ̄

1/2
,j Āij + 2α,j γ̄

1/2Āij. (A.29)

The divergence of Aij can be removed by using the momentum constraint (A.9)

−∂̂0Γ̄i =
1

2
Γ̄i∂̂0lnγ̄ +

1

6

(

γ̄ij ∂̂0lnγ̄
)

,j

+
1

6
γ̄−1/2γ̄

1/2
,j γ̄ij ∂̂0lnγ̄ + 2αγ̄−1/2γ̄

1/2
,j Āij + 2α,jĀ

ij

+ 2α

[

8πχ−nji − ĀnjΓ̄i
jn −

1

2
Āin∂nlnγ̄ + n

3

2
χ−1Āinχ,n +

2

3
γ̄ji∂jK

]

.

(A.30)
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The fourth and eighth terms cancel while the second and third terms are

1

6

(

γ̄ij ∂̂0lnγ̄
)

,j
+

1

6
γ̄−1/2γ̄

1/2
,j γ̄ij ∂̂0lnγ̄ =

1

6
γ̄ij,j ∂̂0lnγ̄ +

1

6
γ̄ij∂j ∂̂0lnγ̄ + γ̄−1 1

12
γ̄,j γ̄

ij ∂̂0lnγ̄ =

1

6
γ̄ij∂j ∂̂0lnγ̄ − 1

6
Γ̄i∂̂0lnγ̄.

(A.31)

We finally arrive at

∂̂0Γ̄
i = −1

3
Γ̄i∂̂0lnγ̄ − 1

6
γ̄ij∂j ∂̂0lnγ̄ − 2Āij∂jα

− 2α

[

8πχ−nji − ĀjkΓ̄i
jk + n

3

2
χ−1Āij∂jχ+

2

3
γ̄ji∂jK

]

. (A.32)
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Conditions
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The jump conditions’ (4.19) derivation is as follows. Using the selection properties

of δ′(u) as a distribution, we first rewrite (4.1) as

−∂2tΨ+ ∂2xΨ− V (r)Ψ = fp(t)F (t, rp(t))δ
′(r − rp(t))

+
[

fp(t)G(t, rp(t))− gp(t)F (t, rp(t))− fp(t)Fr(t, rp(t))
]

δ(r − rp(t)),

(B.1)

using the shorthand notations from (4.20). Next, with L for “left” and R for “right”,

we let

Ψ(t, r) = ΨL(t, r)θ(rp(t)− r) + ΨR(t, r)θ(r − rp(t)), (B.2)

where the step function θ(u) obeys θ(u) = 0 for u < 0, and θ(u) = 1 for u > 0. We

view the functions ΨL,R as everywhere satisfying the homogeneous PDE

− ∂2tΨ
L,R + ∂2xΨ

L,R − V (r)ΨL,R = 0, (B.3)

even across the particle location rp(t).

To complete our derivation of (4.19), we calculate the distributional derivatives

of Ψ as given in (B.2), insert them into (B.1), and then compare terms. Using

∂/∂x = f∂/∂r, the identity θ′(u) = δ(u), and the argument symmetry of δ(u), we

first compute

∂xΨ = ΨL
xθ(rp(t)− r) +ΨR

x θ(r− rp(t))− fΨLδ(r− rp(t)) + fΨRδ(r− rp(t)), (B.4)

where on the right–hand side we have switched to subscript notation for partial
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derivatives. The second x–derivative of (B.2) is then

∂2xΨ = ΨL
xxθ(rp(t)− r) + ΨR

xxθ(r − rp(t))− 2f 2ΨL
r δ(r − rp(t)) + 2f 2ΨR

r δ(r − rp(t))

− ff ′ΨLδ(r − rp(t)) + ff ′ΨRδ(r − rp(t))− f 2ΨLδ′(r − rp(t)) + f 2ΨRδ′(r − rp(t)).

(B.5)

Expressed compactly, the last formula is

∂2xΨ = ΨL
xxθ(rp(t)− r) + ΨR

xxθ(r − rp(t)) + f 2
p (t)

[[

Ψr

]]

δ(r − rp(t))

− fp(t)gp(t)
[[

Ψ
]]

δ(r − rp(t)) + f 2
p (t)

[[

Ψ
]]

δ′(r − rp(t)), (B.6)

where the definition (4.21) is here
[[

Ψ
]]

(t) ≡ ΨR(t, rp(t)) − ΨL(t, rp(t)). To reach

Eq. (B.6) from the previous line, we have used the selection properties of δ′(u). Next,

we similarly compute

∂2tΨ = ΨL
ttθ(rp(t)− r) + ΨR

ttθ(r − rp(t)) + 2ṙpΨ
L
t δ(r − rp(t))− 2ṙpΨ

R
t δ(r − rp(t))

+ r̈pΨ
Lδ(r − rp(t))− r̈pΨ

Rδ(r − rp(t))− ṙ2pΨ
Lδ′(r − rp(t)) + ṙ2pΨ

Rδ′(r − rp(t)).

(B.7)

The last formula may be written in the succinct form

∂2tΨ = ΨL
ttθ(rp(t)− r) + ΨR

ttθ(r − rp(t))− 2ṙp(t)
[[

Ψt

]]

δ(r − rp(t))

− r̈p(t)
[[

Ψ
]]

δ(r − rp(t))− ṙ2p(t)
[[

Ψr

]]

δ(r − rp(t)) + ṙ2p(t)
[[

Ψ
]]

δ′(r − rp(t)),

(B.8)

again by using the properties of δ′(u). Finally, with ∂t
[[

Ψ
]]

=
[[

Ψt

]]

+ ṙp(t)
[[

Ψr

]]

,
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we rewrite the last expression as

∂2tΨ = ΨL
ttθ(rp(t)− r) + ΨR

ttθ(r − rp(t))− 2ṙp(t)
(

∂t
[[

Ψ
]])

δ(r − rp(t))

− r̈p(t)
[[

Ψ
]]

δ(r − rp(t)) + ṙ2p(t)
[[

Ψr

]]

δ(r − rp(t)) + ṙ2p(t)
[[

Ψ
]]

δ′(r − rp(t)).

(B.9)

Substitution of (B.6) and (B.9) into (B.1), along with the fact that ΨR and ΨL solve

the homogeneous PDE (B.3), then yields Eqs. (4.19a) and (4.19b).



Appendix Three

Exact Solutions to the Forced 1+1

Wave Equations
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C.1 Problem Setup

This appendix presents exact solutions to the distributionally forced 1+1 wave equa-

tion. Precisely, we consider the equation

− ∂2tΨ+ ∂2xΨ = G(t)δ(x− vt) + F (t)δ′(x− vt), (C.1)

where either F (t) = 0, G(t) = cos t or F (t) = cos t, G(t) = 0. In analyzing both

cases, we make use of the following distributional identities:

∂u|u| = sgn u, ∂u sgn u = 2δ(u), (sgn u)2 = 1, (C.2)

with sgn u ≡ u/|u| the sign function. Throughout, the particle location xp(t) = vt

has linear time dependence, with corresponding speed |v| < 1.

C.2 Solution for F (t) = 0, G(t) = cos t

Following analysis similar to that presented in Section 4.2.4 [or by substituting the

correspondences xp(t) = rp(t), x = r, f(r) = 1, f ′(r) = 0, and r̈(t) = 0 into the

general jumps (4.19)], we find the jump relations

[[

Ψ
]]

x=vt
= 0,

[[

∂xΨ
]]

x=vt
= γ2 cos t,

[[

∂tΨ
]]

x=vt
= −vγ2 cos t, (C.3)

where γ = (1− v2)−1/2 is the usual relativistic factor. The particular solution

Ψ(t, x) = −1
2
sinϑ, ϑ = γ2(t− xv − |x− vt|) (C.4)
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to Eq. (C.1) possess the jumps listed in (C.3). Using the identities (C.2), let us

verify that (C.4) indeed solves (C.1) for F (t) = 0 and G(t) = cos t. Straightforward

computation of the first and second order t–derivatives yields

∂tΨ = −1
2
γ2[1 + v sgn(x− vt)] cosϑ (C.5)

∂2tΨ = 1
2
γ4[1 + v sgn(x− vt)]2 sinϑ+ v2γ2δ(x− vt) cosϑ. (C.6)

while for the x–derivatives we similarly find

∂xΨ = 1
2
γ2[v + sgn(x− vt)] cosϑ (C.7)

∂2xΨ = 1
2
γ4[v + sgn(x− vt)]2 sinϑ+ γ2δ(x− vt) cosϑ. (C.8)

Forming −∂2tΨ+ ∂2xΨ = δ(x− vt) cosϑ, we then appeal to the selection property of

the delta function in order to reach the desired result, −∂2tΨ+ ∂2xΨ = δ(x− vt) cos t.

C.3 Solution for F (t) = cos t, G(t) = 0

The jump relations for this case are

[[

Ψ
]]

x=vt
= γ2 cos t,

[[

∂xΨ
]]

x=vt
= 2vγ4 sin t,

[[

∂tΨ
]]

x=vt
= −(1 + v2)γ4 sin t.

(C.9)

Now a particular solution to (C.1) is

Ψ(t, x) = 1
2
γ2[v + sgn(x− vt)] cosϑ, ϑ = γ2(t− xv − |x− vt|). (C.10)
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To verify that (C.10) indeed solves (C.1) for F (t) = cos t and G(t) = 0, we first

calculate

∂tΨ = −1
2
γ4[2v + (1 + v2) sgn(x− vt)] sinϑ− vγ2δ(x− vt) cosϑ (C.11)

∂2tΨ = v2γ2δ′(x− vt) cosϑ+ γ4[2v + v3 + v2 sgn(x− vt)]δ(x− vt) sinϑ

− 1
2
γ6[3v + v3 + (3v2 + 1) sgn(x− vt)] cosϑ, (C.12)

and then likewise compute

∂xΨ = γ2δ(x− vt) cosϑ+ 1
2
γ4[1 + v2 + 2v sgn(x− vt)] sinϑ (C.13)

∂2xΨ = γ2δ′(x− vt) cosϑ+ γ4[3v + sgn(x− vt)]δ(x− vt) sinϑ

− 1
2
γ6[3v + v3 + (3v2 + 1) sgn(x− vt)] cosϑ. (C.14)

Combination of Eqs. (C.11) and (C.13) yields

− ∂2tΨ+ ∂2xΨ = δ′(x− vt) cosϑ+ γ2[v + sgn(x− vt)]δ(x− vt) sinϑ. (C.15)

By the selection properties of δ′(u), we have

δ′(x− vt) cosϑ = δ′(x− vt) cos t− γ2[v + sgn(x− vt)]δ(x− vt) sin t. (C.16)

Substituting this result into (C.15), using the selection property of δ(u), and realizing

that δ(u) sgn u = 0 by symmetry, we arrive at the desired result, −∂2tΨ + ∂2xΨ =

δ′(x− vt) cos t.



Appendix Four

Time–Independent Master

Equations
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D.1 Regge-Wheeler Equation

Subject to the Ansatz that the solution v is time-independent and in terms of the

dimensionless variable ρ = (2M)−1r, the homogeneous Regge-Wheeler equation is

[83]

−
(

1− 1

ρ

)

v′′ − 1

ρ2
v′ +

[

ℓ(ℓ+ 1)

ρ2
+
κ

ρ3

]

v = 0, (D.1)

where κ = 1 − 2 in terms of the spin  = 0, 1, 2. For gravitational perturbations

 = 2, but we leave  unspecified for the time being. Expressing the equation in the

form

v′′ + P (ρ)v′ +Q(ρ)v = 0

P (ρ) =
1

ρ(ρ− 1)
, Q(ρ) = −ℓ(ℓ+ 1)ρ+ κ

ρ2(ρ− 1)
,

(D.2)

we find that it has regular singular points at 0, 1, and ∞, as well as the associated

Riemann-Papperitz symbol [161]

v = P























0 1 ∞

1 +  0 −(ℓ+ 1) ; ρ

1−  0 ℓ























. (D.3)

To obtain the standard normal form, we let v = ρ1+u, so that

u = P























0 1 ∞

0 0 −ℓ+  ; ρ

−2 0 ℓ+ + 1























, (D.4)

where u satisfies the hypergeometric equation

ρ(1− ρ)u′′ + [c− (a+ b+ 1)ρ]u′ − abu = 0, (D.5)
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with a = −ℓ+ , b = ℓ+ +1, and c = 1+2. As one of the two linearly independent

solutions based at ρ = ∞ (chosen to be the second), we may take

u2(ρ) = ρ−ℓ−−1
2F1(ℓ+ + 1, ℓ− + 1; 2(ℓ+ 1); ρ−1). (D.6)

Expressed in terms of the original dependent variable, v2 = ρ1+u2, this solution is

our axial/right solution v2(ρ) = vaxialR (ρ) given in (5.10b). To obtain series solutions

based at 1 which are nevertheless valid on (1,∞), we follow Leaver [144] and consider

the transformation η = (ρ− 1)/ρ. Then with w(η) = v(1/(1− η)), we get

w′′ + P(η)w′ +Q(η)w = 0

P(η) =
1− 3η

η(1− η)
, Q(η) = −ℓ(ℓ+ 1) + κ(1− η)

η(1− η)2
,

(D.7)

which has the P -symbol

w = P























0 1 ∞

0 −(ℓ+ 1) 1 +  ; η

0 ℓ 1− 























. (D.8)

Now let w = (η − 1)ℓy so that

y = P























0 1 ∞

0 0 1 + ℓ+  ; η

0 −(2ℓ+ 1) 1 + ℓ− 























(D.9)

solves

η(1− η)y′′ + [C − (A+ B + 1)η]y′ − ABy = 0, (D.10)

with A = ℓ− +1, B = ℓ+ +1, and C = 1. Therefore, we choose v1(ρ) = vaxialL (ρ)

given in (5.10a) as both a first linearly independent solution and the axial/left one
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of interest.

D.2 Zerilli Equation

In dimensionless form, the time–independent Zerilli equation is

−
(

1− 1

ρ

)

v′′ − 1

ρ2
v′ +

[

8n2(n+ 1)ρ3 + 12n2ρ2 + 18nρ+ 9

ρ3(2nρ+ 3)2

]

v = 0, (D.11)

again where n = 1
2
(ℓ− 1)(ℓ+ 2). In standard form, the equation is

v′′ + P (ρ)v′ +Q(ρ)v = 0, P (ρ) =
1

ρ(ρ− 1)

Q(ρ) = −
[

8n2(n+ 1)ρ3 + 12n2ρ2 + 18nρ+ 9

ρ2(ρ− 1)(2nρ+ 3)2

]

.

(D.12)

This equation has regular singular points at 0, 1, ∞, and −3/(2n), with the following

associated pairs of indicial exponents: {1, 1}, {0, 0}, {ℓ,−(ℓ + 1)}, {2,−1}. The

general second order homogeneous ODE with regular singular points at z0, z1, z2,

and ∞ has the form y′′ +R(z)y′ + S(z)y = 0, with

R(z) =
A0

z − z0
+

A1

z − z1
+

A2

z − z2

S(z) =
B0

(z − z0)2
+

B1

(z − z1)2
+

B2

(z − z2)2
+

C0

z − z0
+

C1

z − z1
+

C2

z − z2
,

(D.13)

where the Ai, Bi, and Ci are all constants subject to C0 + C1 + C2 = 0 and the

requirement that for each i = 0, 1, 2 at least one member of the triple Ai, Bi, and

Ci must be non-zero (for otherwise zi would be a ordinary point). By expressing all

constants Ai, Bi, Ci except C0 in terms of the indicial exponents
{

{λk, λ′k} : k =
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0, 1, 2,∞
}

, we find

R(z) =
1− λ0 − λ0

′

z − z0
+

1− λ1 − λ1
′

z − z1
+

1− λ2 − λ2
′

z − z2

S(z) =
λ0λ0

′

(z − z0)2
+

λ1λ1
′

(z − z1)2
+

λ2λ2
′

(z − z2)2

+
λ∞λ∞

′ − λ0λ0
′ − λ1λ1

′ − λ2λ2
′

(z − z1)(z − z2)

+
C0(z0 − z1)(z0 − z2)

(z − z0)(z − z1)(z − z2)
.

(D.14)

Here −C0 is the accessory parameter [203], and the generalized Riemann scheme

[203] associated with the equation is



















1 1 1 1

z0 z1 z2 ∞ ; z

λ0 λ1 λ2 λ∞ ;−C0

λ0
′ λ1

′ λ2
′ λ∞

′



















. (D.15)

The notation is similar to the P -symbol, but also indicates the type of singular points

in the first row (regular singular points are indicated by a 1). We find the scheme



















1 1 1 1

0 1 −3/(2n) ∞ ; ρ

1 0 2 −(ℓ+ 1) ; 0

1 0 −1 ℓ



















. (D.16)

for the specific case of the time–independent Zerilli equation (D.11).

Upon transforming the ODE specified by (D.14) to normal form, we find the new
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accessory parameter

q = −C0 +
λ0(λ1

′ − 1) + λ1(λ0
′ − 1)

z0 − z1
+
λ0(λ2

′ − 1) + λ2(λ0
′ − 1)

z0 − z2
, (D.17)

as well as the transformed scheme



















1 1 1 1

z0 z1 z2 ∞ ; z

0 0 0 λ∞ + λ0 + λ1 + λ2 ; q

λ0
′ − λ0 λ1

′ − λ1 λ2
′ − λ2 λ∞

′ + λ0 + λ1 + λ2



















. (D.18)

With the assumptions z0 = 0 and z1 = 1, this scheme corresponds to the Heun

equation G′′ + P (z)G′ +Q(z)G = 0 in normal form, where

P (z) =
c

z
+

d

z − 1
+

1 + a+ b− c− d

z − z2

Q(z) =
ab

(z − 1)(z − z2)
− qz2
z(z − 1)(z − z2)

.

(D.19)

Here the transformed scheme



















1 1 1 1

0 1 z2 ∞ ; z

0 0 0 a ; q

1− c 1− d c+ d− a− b b



















(D.20)

is expressed in terms of the constants a, b, c, and d which may be related to the
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above exponent pairs {λk, λ′k}. The normal form of (D.11) then has the scheme



















1 1 1 1

0 1 −3/(2n) ∞ ; ρ

0 0 0 2− ℓ ; 1− 4n/3

0 0 −3 ℓ+ 3



















. (D.21)

While the preceding analysis both addresses the structure of the time-independent

Zerilli equation and reveals the asymptotic behavior of the solutions near any given

singular point, it does not provide concrete analytical expressions for the solutions

vpolarL,R considered in the main text. To obtain such expressions, we use the intertwin-

ing operators [12]

D± =

(

1− 1

ρ

)

d

dρ
±
[

2

3
n(n+ 1) +

3(ρ− 1)

ρ2(3 + 2nρ)

]

. (D.22)

Using our earlier solutions vaxialL,R (ρ) to the time-independent Regge-Wheeler equa-

tion, we then get corresponding solutions vpolarL,R (ρ) ≡ D+v
axial
L,R (ρ) to (D.11) by direct

application of D+ and the identity

d

dz
2F1(a, b; c; z) =

ab

c
2F1(a+ 1, b+ 1; c+ 1; z). (D.23)

Therefore, we have also expressed the relevant polar solutions in terms of the Gauss–

hypergeometric function 2F1. The analysis above then shows that we are likewise

able to express solutions to a particular instance of the Heun equation in terms of

hypergeometric functions.



Appendix Five

Hyperbolicity of the First–order

GBSSN System
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This appendix analyzes the matrix A(u) appearing in (6.9) in order to construct the

characteristic fields (6.13). In matrix form the sector (6.7) of the principal part of

(6.9) reads as follows1:

∂t









































































































Br

Arr

K

Γr

Qχ

Qgrr

Qgθθ

Qα

Qβr









































































































=









































































































βr 0 − 4λα
3grr

0 0 λβr

6(grr)2
λβr

3gθθgrr
0 4λ

3grr

0 βr 0 2
3
grrαχ

1
3
α − αχ

3grr

αχ
3gθθ

−2
3
χ 0

0 0 βr 0 0 0 0 − χ
grr

0

0 0 − 4α
3grr

βr 0 βr

6(grr)2
βr

3gθθgrr
0 4

3grr

0 0 2
3
αχ 0 βr − βrχ

3grr
−2βrχ

3gθθ
0 −2

3
χ

0 −2α 0 0 0 2
3
βr −2grrβr

3gθθ
0 4

3
grr

0 gθθα
grr

0 0 0 −gθθβ
r

3grr
1
3
βr 0 −2

3
gθθ

0 0 −2α 0 0 0 0 βr 0

3
4

0 0 0 0 0 0 0 βr

















































































































































































































Br

Arr

K

Γr

Qχ

Qgrr

Qgθθ

Qα

Qβr









































































































′

(E.1)

which defines the matrix Ã(u) appearing in (6.8), and so also the matrixA(u) in (6.9).

Note that in the last equation the matrix within the square brackets is −Ã(u). For

certain configurations of u and λ, the system (6.9) is strongly hyperbolic [140], that is

A(u) has a complete set of eigenvectors and real eigenvalues. Indeed, five eigenpairs

1We remind the reader that in Chapter 6 gαβ is used for the spatial metric and conformal
quantities have no ‘bar’ (cf. footnote 1).
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of A(u) are trivially recovered upon inspection of A(u)’s leading 5×5 diagonal block.

These correspond to eigenvalue 0 and the left eigenspace {ξj = eTj : 1 ≤ j ≤ 5},

where ej are the canonical basis vectors. Since each component of u arises as eTj W ,

each is also a characteristic field.

The remaining nine eigenpairs are determined by Ã(u). The eigenvalues of Ã(u)

are

µ1 = 0, µ2,3 = −βr, µ±
4 = −βr ±

√

2αχ

grr
,

µ±
5 = −βr ± α

√

χ

grr
, µ±

6 = −βr ±
√

λ

grr
,

(E.2)

and the corresponding left eigenvectors are

x1 = (0, 0, 0, 0, 0, gθθ, 2grr, 0, 0) (E.3a)

x2 =

(

0, 0, 0, grr,
2

χ
,− 1

2grr
,− 1

gθθ
, 0, 0

)

(E.3b)

x3 =

(

grr
λ
, 0, 0, 0,

2

χ
,− 1

2grr
,− 1

gθθ
, 0, 0

)

(E.3c)

x±4 =

(

0, 0,±
√

2αgrr
χ

, 0, 0, 0, 0, 1, 0

)

(E.3d)

x±5 =

(

0,∓ 3√
grrχ

,±2

√

grr
χ
, 2grr,

1

χ
,− 1

grr
,
1

gθθ
, 0, 0

)

(E.3e)

x±6 =

(

−3

4

grr
λ
, 0,± α

√
λgrr

(2αχ− λ)
, 0, 0,− βr

8(βrgrr ∓
√
λgrr)

,

− βrgrr

4gθθ(βrgrr ∓
√
λgrr)

,
αχ

(2αχ− λ)
,±
√

grr
λ

)

, (E.3f)

where for example x±5 Ã(u) = µ±
5 x

±
5 . Assuming that grr, gθθ, χ, and α are every-

where strictly positive, the eigenvalues are real and the eigenvectors are linearly

independent provided that (6.14) holds. These eigenvectors are easily extended to

eigenvectors of A(u), e. g. as x±6 → (01×5, x
±
6 ). Then, for example, the characteristic
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field

X±
6 ≡ (01×5, x

±
6 )W = x±6Wv:Q, (E.4)

and similarly X±
j = x±j Wv:Q for j = 4, 5 and Xk = xkWv:Q for k = 1, 2, 3. The

characteristic speeds for these fields are µk and µ±
j . With this convention the speeds

listed in Table 6.1 correspond to the Xk and X±
j in (6.13).



Appendix Six

Reduction of the GBSSN System

to Spherical Symmetry
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F.1 Problem Setup

A conformal–traceless decomposition of each spacelike 3–surface’s geometry is pre-

sented in Section 2.6. Variables associated with this decomposition satisfy the GB-

SSN evolution (2.91) and constraint (2.92) equations. We now carry out a reduction

of the evolution and constraint equations for a spherically symmetric spacetime,

ds2 = −α2dt2 + χ−1γ̄rr(dr + βrdt)2 + χ−1γ̄θθ(dθ
2 + sin2 θdφ2), (F.1)

along with the spherically symmetric Ansatz:

Γ̄a =













Γ̄r

− cos θ/(γ̄θθ sin θ)

0













, Āab = Ārr













1 0 0

0 −γ̄θθ/(2γ̄rr) 0

0 0 −γ̄θθ sin2 θ/(2γ̄rr)













.

(F.2)

for the conformal–traceless extrinsic curvature and conformal connection functions.

The GBSSN system variables are χ, γ̄rr, γ̄θθ, Ārr, K, Γ̄r, α, βr and Br, and all

are functions of t and r. Then the non–zero conformal connection components are

computed as

Γ̄r
rr =

γ̄′rr
2γ̄rr

, Γ̄θ
θr =

γ̄′θθ
2γ̄θθ

, Γ̄φ
φr =

γ̄′θθ
2γ̄θθ

, Γ̄r
θθ = − γ̄′θθ

2γ̄rr
,

Γ̄r
φφ = sin2θΓ̄r

θθ, Γ̄θ
φφ = − sin θ cos θ, Γ̄φ

φθ =
cos θ

sin θ
. (F.3)

Here, and throughout this appendix, the prime stands for partial r-differentiation.

Recall that the conformal metric’s determinant evolves according to a Lagrangian

condition (see Sec. 2.6.3). In spherical symmetry and expressed with the GBSSN
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system variables, this condition is

αLnlnγ̄ = −2D̄aβ
a = −2

(

∂aβ
a + Γ̄a

acβ
c
)

= −2βr ′ − γ̄′rrβ
r

γ̄rr
− 2γ̄′θθβ

r

γ̄θθ
, (F.4)

where the Lagrangian condition ∂t (lnγ̄) = 0 has been used in the first equality.

Eq. (F.4) will be used to replace Lnlnγ̄ throughout the GBSSN system (2.91).

F.2 Physical Ricci Tensor and Scalar

In this subsection we seek expressions for RTF
rr and R with conformal (GBSSN)

variables. To accomplish this task, we first construct expressions built from physical

variables and later substitute for the conformal ones.

Components Rrr and Rθθ are directly computed via the spatial (i.e. Latin index)

version of (2.15):

Rrr = −γ
′′
θθ

γθθ
+ 2

(

Γθ
rθ

)2 − 2
γrr
γθθ

Γr
rrΓ

r
θθ

= −γ
′′
θθ

γθθ
+

(γ′θθ)
2

2γ2θθ
+

γ′rrγ
′
θθ

2γrrγθθ
(F.5)

Rθθ = −1

2
γφφγφφ,θθ −

1

2
γrrγ′′θθ +

γθθ
γrr

(

Γθ
rθ

)2
+
(

Γφ
θφ

)2

− Γr
rrΓ

r
θθ −

γrr
γθθ

(Γr
θθ)

2

= 1− γ′′θθ
2γrr

+
γ′rrγ

′
θθ

4γ2rr
. (F.6)
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Noting Rφφ = sin2 θRθθ, we compute the Ricci scalar as

R =
Rrr

γrr
+ 2

Rθθ

γθθ

= − 2γ′′θθ
γrrγθθ

+
(γ′θθ)

2

2γrrγ2θθ
+
γ′rrγ

′
θθ

γ2rrγθθ
+

2

γθθ
. (F.7)

Comparing (F.7) and (F.5), observe that

Rrr =
1

2
γrrR +

(γ′θθ)
2

4γ2θθ
− γrr
γθθ

, (F.8)

which allows the trace–free component to take on a particularly useful form

RTF
rr =

1

6
γrrR +

(γ′θθ)
2

4γ2θθ
− γrr
γθθ

. (F.9)

Finally, substituting for conformal variables produces the desired result

R = − 2γ̄′′θθχ

γ̄rrγ̄θθ
+

(γ̄′θθ)
2 χ

2γ̄rrγ̄2θθ
+
γ̄′rrγ̄

′
θθχ

γ̄2rrγ̄θθ
+

2χ

γ̄θθ
+

2χ′′

γ̄rr
− 5 (χ′)2

2γ̄rrχ
+ 2

χ′γ̄′θθ
γ̄θθγ̄rr

− χ′γ̄′rr
γ̄2rr

,

(F.10)

χRTF
rr = − γ̄

′′
θθχ

3γ̄θθ
+

(γ̄′θθ)
2 χ

3γ̄2θθ
+
γ̄′rrγ̄

′
θθχ

6γ̄rrγ̄θθ
− 2χγ̄rr

3γ̄θθ
+
χ′′

3
− (χ′)2

6χ
− χ′γ̄′θθ

6γ̄θθ
− χ′γ̄′rr

6γ̄rr
.

(F.11)

These expressions are substituted for the appropriate terms found in the Hamiltonian

constraint equation and the right–hand side of ∂tĀrr.
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F.3 Reduced Constraint Equations

The Hamiltonian constraint (2.92a) is found using an expression for the term

ĀijĀ
ij =

(

γ̄rrĀrr

)2
+
(

γ̄θθĀθθ

)2
+
(

γ̄φφĀφφ

)2
=

3Ā 2
rr

2γ̄ 2
rr

(F.12)

along with the Ricci scalar (F.10). To recover the r-component of the covariant

momentum constraint, first apply χγrr = γ̄rr directly to (A.9). Carrying out the

tensor operations, while noting Āri∂ilnγ̄ = Ārrγ̄jk∂rγ̄jk, gives the desired result.

The conformal connection function constraint is easily computed from the conformal

connection functions’ definition (2.90) and constraints (2.92c). Subject to spherical

symmetry, the GBSSN system constraints are as follows:

H = −3Ā2
rr

2γ̄2rr
+

2K2

3
− 5(χ′)2

2χγ̄rr
+

2χ′′

γ̄rr
+

2χ

γ̄θθ
− 2χγ̄′′θθ
γ̄rrγ̄θθ

+
2χ′γ̄′θθ
γ̄rrγ̄θθ

+
χγ̄′rrγ̄

′
θθ

γ̄2rrγ̄θθ
− χ′γ̄′rr

γ̄2rr
+
χ(γ̄′θθ)

2

2γ̄rrγ̄2θθ

(F.13a)

Mr =
Ā′

rr

γ̄rr
− 2K ′

3
− 3Ārrχ

′

2χγ̄rr
+

3Ārrγ̄
′
θθ

2γ̄rrγ̄θθ
− Ārrγ̄

′
rr

γ̄2rr
(F.13b)

Gr = − γ̄′rr
2γ̄2rr

+
γ̄′θθ
γ̄rrγ̄θθ

+ Γ̄r. (F.13c)

These expressions agree with the ones listed by Brown in [42].
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F.4 Reduced Evolution Equations

F.4.1 Trace of the Extrinsic Curvature

Consider the K component of (2.91). We seek to express

DiDiα = γijDjDiα = γij
[

∂j∂iα− Γk
ij∂kα

]

= γrr∂r∂rα− γijΓr
ij∂rα (F.14)

with GBSSN variables. The relevant connection components are found with the help

of (2.87)

Γr
rr = Γ̄r

rr −
χ′

2χ
, Γr

θθ = Γ̄r
θθ +

χ′γ̄rrγ̄θθ
2χ

, Γr
φφ = sin2 θΓr

θθ, (F.15)

and we have

DiDiα =
χ

γ̄rr
α′′ −

(

χγ̄′rr
2γ̄2rr

− χγ̄′θθ
γ̄θθγ̄rr

+
χ′

2γ̄rr

)

α′. (F.16)

Noting Eq. (F.12), the spherically reduced equation for K is

∂tK =
1

3
αK2 + α

3Ā 2
rr

2γ̄ 2
rr

− χ

γ̄rr
α′′

+

(

χγ̄′rr
2γ̄2rr

− χγ̄′θθ
γ̄θθγ̄rr

+
χ′

2γ̄rr

)

α′ + βrK ′ + 4π (S + ρ) .

(F.17)
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F.4.2 Conformal and Traceless Part of the Extrinsic Curva-

ture

Next, consider the Ārr component of the system (2.91). The first three terms are

straightforward to compute, while the DiDiα piece of the trace–free term

(DrDrα)
TF = DrDrα− 1

3
γrrD

iDiα

= α′′ −
(

γ̄′rr
2γ̄rr

− χ′

2χ

)

α′ − γ̄rr
3χ

[

χ

γ̄rr
α′′ −

(

χγ̄′rr
2γ̄2rr

− χγ̄′θθ
γ̄θθγ̄rr

+
χ′

2γ̄rr

)

α′
]

=
2

3
α′′ +

(

− γ̄′rr
3γ̄rr

− γ̄′θθ
3γ̄θθ

+
2χ′

3χ

)

α′ (F.18)

is expression (F.16). By adding a multiple of the conformal connection constraint’s

derivative (F.13c) to χRTF
rr (given by (F.11)) we may change the principle part. Using

Γ̄r ′ =
γ̄′′rr
2γ̄2rr

− γ̄′′θθ
γ̄rrγ̄θθ

− (γ̄′rr)
2

γ̄3rr
+

(γ̄′θθ)
2

γ̄rrγ̄2θθ
+
γ̄′θθγ̄

′
rr

γ̄2rrγ̄θθ
, (F.19)

χRTF
rr is rewritten as

χRTF
rr =

2χ(γ̄′rr)
2

3γ̄2rr
− χ(γ̄′θθ)

2

3γ̄2θθ
− (χ′)2

6χ
+

2

3
γ̄rrχΓ̄

r ′ − χγ̄′rrγ̄
′
θθ

2γ̄rrγ̄θθ

− γ̄′rrχ
′

6γ̄rr
− γ̄′θθχ

′

6γ̄θθ
− χγ̄′′rr

3γ̄rr
+
χγ̄′′θθ
3γ̄θθ

− 2γ̄rrχ

3γ̄θθ
+
χ′′

3
. (F.20)

Bringing together these results, we arrive at an expression

∂tĀrr = βrĀ′
rr +

4

3
Ārrβ

r ′ − βrγ̄′rrĀrr

3γ̄rr
− 2βrγ̄′θθĀrr

3γ̄θθ
+

2αχ(γ̄′rr)
2

3γ̄2rr
− αχ(γ̄′θθ)

2

3γ̄2θθ

− α(χ′)2

6χ
+

2

3
γ̄rrαχΓ̄

r ′ − αχγ̄′rrγ̄
′
θθ

2γ̄rrγ̄θθ
+
χγ̄′rrα

′

3γ̄rr
+
χγ̄′θθα

′

3γ̄θθ
− αγ̄′rrχ

′

6γ̄rr

− αγ̄′θθχ
′

6γ̄θθ
− 2

3
α′χ′ +

αχ′′

3
− 2

3
χα′′ − αχγ̄′′rr

3γ̄rr
+
αχγ̄′′θθ
3γ̄θθ

− 2αĀ2
rr

γ̄rr

+KαĀrr −
2γ̄rrαχ

3γ̄θθ
− 8παχSTF

ij (F.21)
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which describes the evolution of Ārr.

F.4.3 Spherically Symmetric GBSSN System

The remaining GBSSN equations (Lagrangian choice for Lnlnγ̄) readily reduce to

spherical symmetry using the results of this section, and we arrive at1:

∂tα = βrα′ − 2αK (F.22a)

∂tβ
r = βrβr ′ +

3

4
Br (F.22b)

∂tB
r = βrBr ′ + ∂tΓ̄

r − βrΓ̄r ′ − ηBr (F.22c)

∂tχ = βrχ′ +
2

3
Kαχ− βrγ̄′rrχ

3γ̄rr
− 2βrγ̄′θθχ

3γ̄θθ
− 2

3
βr ′χ (F.22d)

∂tγ̄rr =
2

3
βrγ̄′rr +

4

3
γ̄rrβ

r ′ − 2Ārrα− 2γ̄rrβ
rγ̄′θθ

3γ̄θθ
(F.22e)

∂tγ̄θθ =
1

3
βrγ̄′θθ +

Ārrγ̄θθα

γ̄rr
− γ̄θθβ

rγ̄′rr
3γ̄rr

− 2

3
γ̄θθβ

r ′ (F.22f)

∂tĀrr = βrĀ′
rr +

4

3
Ārrβ

r ′ − βrγ̄′rrĀrr

3γ̄rr
− 2βrγ̄′θθĀrr

3γ̄θθ
+

2αχ(γ̄′rr)
2

3γ̄2rr
− αχ(γ̄′θθ)

2

3γ̄2θθ

− α(χ′)2

6χ
+

2

3
γ̄rrαχΓ̄

r ′ − αχγ̄′rrγ̄
′
θθ

2γ̄rrγ̄θθ
+
χγ̄′rrα

′

3γ̄rr
+
χγ̄′θθα

′

3γ̄θθ
− αγ̄′rrχ

′

6γ̄rr

− αγ̄′θθχ
′

6γ̄θθ
− 2

3
α′χ′ +

αχ′′

3
− 2

3
χα′′ − αχγ̄′′rr

3γ̄rr
+
αχγ̄′′θθ
3γ̄θθ

− 2αĀ2
rr

γ̄rr

+KαĀrr −
2γ̄rrαχ

3γ̄θθ
− 8παχSTF

ij (F.22g)

∂tK = βrK ′ +
χγ̄′rrα

′

2γ̄2rr
− χγ̄′θθα

′

γ̄rrγ̄θθ
+
α′χ′

2γ̄rr
− χα′′

γ̄rr
+

3αĀ2
rr

2γ̄2rr
+

1

3
αK2 + 4π (S + ρ)

(F.22h)

∂tΓ̄
r = βrΓ̄r ′ +

Ārrαγ̄
′
θθ

γ̄2rrγ̄θθ
+

2βr ′γ̄′θθ
3γ̄rrγ̄θθ

+
Ārrαγ̄

′
rr

γ̄3rr
− 4αK ′

3γ̄rr
− 2Ārrα

′

γ̄2rr
− 3Ārrαχ

′

γ̄2rrχ

+
4βr ′′

3γ̄rr
− βr(γ̄′θθ)

2

γ̄rr(γ̄θθ)2
+

βrγ̄′′rr
6(γ̄rr)2

+
βrγ̄′′θθ
3γ̄θθγ̄rr

− 16πα

χ
jr, (F.22i)

1For this system the determinant γ̄ = γ̄rr(γ̄θθ)
2 sin2 θ is not unity.
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To keep with convention, Γ̄r has been removed from the right hand side of the ∂tΓ̄
r

equation using Gr (F.13c). The vacuum Eqs. (F.22d-i) are recovered by the condition

jr = STF
ij = S = ρ = 0, these are precisely Brown’s Eqs. (9a-f) listed in [42] and

subject to the Lagrangian condition (corresponding to v = 1 in Brown’s equations).

The first three equations (F.22a-c) comprise the gauge sector, these are spherically

symmetric versions of the standard 1+log and Γ-driver conditions.
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[58] P. Cañizares, C. F. Sopuerta, and J. L. Jaramillo, Pseudospectral collocation

methods for the computation of the self-force on a charged particle: Generic

orbits around a Schwarzschild black hole, Phys. Rev. D 82, 044023 (2010) (19

pages).

[59] K. Cannon, A. Chapman, C. Hanna, D. Keppel, A. C. Searle, and A. J. We-

instein, Singular value decomposition applied to compact binary coalescence

gravitational-wave signals, Phys. Rev. D 82, 044025 (2010) (6 pages).

[60] S. Carroll, Spacetime and Geometry: An Introduction to Gen-

eral Relativity, (Addison-Wesley, New York, 2003). As available as

http://arxiv.org/abs/gr-qc/9712019

[61] D. Chakraborty, J.-H. Jung, G. Khanna, A multi–domain hy-

brid method for head-on collision of black holes in particle limit,

http://arxiv.org/abs/1103.1551 (2011).

[62] S. Chandrasekhar, The mathematical theory of black holes, (Oxford University

Press, New York, 1992).

[63] Y. Cheng and C.-W. Shu, A discontinuous Galerkin finite element method

for time dependent partial differential equations with higher order derivatives,

Math. Comp. 77, no. 262, 699-730 (2007).

[64] M. Chirvasa, Finite difference methods for 1st Order in time, 2nd

order in space, hyperbolic systems used in numerical relativity,

http://www.scientificcommons.org/57150453.

[65] Y. Choquet-Bruhat and J. W. York, Geometrical well posed systems for the

Einstein equations, C. R. Acad. Sci. Paris, t. 321, Série I, 1089-1095 (1995).

http://arxiv.org/abs/gr-qc/9712019
http://arxiv.org/abs/1103.1551
http://www.scientificcommons.org/57150453


248

[66] P. L. Chrzanowski, Vector potential and metric perturbations of a rotating black

hole, Phys. Rev. D 11, 2042-2062 (1975).

[67] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-

dependent convection-diffusion systems, SIAM J. Numer. Anal. 35, no. 6, 2440-

2463 (1998).

[68] B. Cockburn and C. W. Shu, TVB Runge–Kutta Local Projection Discontinuous

Galerkin Finite Element Method for Conservation Laws II: General Framework,

Math. Comp. 52, 411-435 (1989).

[69] B. Cockburn, S. Hou, and C. W. Shu, The Runge-Kutta local projection discon-

tinuous Galerkin finite element method for conservation laws IV: The multidi-

mensional case, Math. Comp. 54, 545-581 (1990).

[70] B. Cockburn and C. W. Shu, The Runge–Kutta Discontinuous Galerkin Method

for Conservation Laws V: Multidimensional Systems, J. Comp. Phys. 141, Issue

2, 199-224 (1998).

[71] B. Cockburn, F. Li, and C. W. Shu, Locally divergence-free discontinuous

Galerkin methods for the Maxwell equations, J. Comp. Phys. 194, Issue 2, 588-

610 (2004).

[72] G. Cohen, X. Ferrieres, and S. Pernet, A spatial high-order hexahedral dis-

continuous Galerkin method to solve Maxwells equations in time domain

J. Comp. Phys. 217, Issue 2, 340-363 (2006).

[73] C. T. Cunningham, R. H. Price, and V. Moncrief, Radiation from collapsing

relativistic stars. I - Linearized odd-parity radiation Astrophys. J. 224 643-667

(1978).

[74] C. T. Cunningham, R. H. Price, and V. Moncrief, Radiation from collapsing

relativistic stars. II - Linearized even-parity radiation Astrophys. J. 230 870-

892 (1979).



249

[75] C. Cutler, D. Kennefick, and E. Poisson, Gravitational radiation reaction for

bound motion around a Schwarzschild black hole, Phys. Rev. D 50, 3816-3835

(1994).

[76] C. Cutler, E. E. Flanagan, Gravitational radiation reaction for bound motion

around a Schwarzschild black hole, Phys. Rev. D 49, 26582697 (1994).

[77] T. Damour, Gravitational self-force in a Schwarzschild background and the ef-

fective one-body formalism, Phys. Rev. D 81, 024017 (2010) (22 pages).

[78] M. Davis, R. Ruffini, W. H. Press, and R. H. Price, Gravitational Radiation from

a Particle Falling Radially into a Schwarzschild Black Hole, Phys. Rev. Lett. 27,

1466-1469 (1971).

[79] S. Detweiler, Perspective on gravitational self-force analyses, Class. Quantum

Grav. 22, S681 (2005) (39 pages).

[80] S. Detweiler, Consequence of the gravitational self-force for circular orbits of the

Schwarzschild geometry, Phys. Rev. D 77, 124026 (2008) (15 pages).

[81] S. Detweiler and B. F. Whiting, Self-force via a Green’s function decomposition,

Phys. Rev. D 67, 024025 (2003) (5 pages).

[82] P. Diener, F. Herrmann, D. Pollney, E. Schnetter, E. Seidel, R. Takahashi,

J. Thornburg, and J. Ventrella, Accurate Evolution of Orbiting Binary Black

Holes, Phys. Rev. Lett. 96, 121101 (2006) (4 pages).

[83] R. Donninger, W. Schlag, and A. Soffer, A proof of Price’s Law

on Schwarzschild black hole manifolds for all angular momenta,

http://arxiv.org/abs/0908.4292.

[84] J. L. Eftang, A. T. Patera, and E. M. Ronquist, An hp Certified Reduced Ba-

sis Method for Parametrized Parabolic Partial Differential Equations, Spectral

and High Order Methods for Partial Differential Equations, Lecture Notes in

Computational Science and Engineering, 2011, Volume 76, 179-187.

http://arxiv.org/abs/0908.4292


250

[85] F. B. Estabrook, R. S. Robinson, and H. D. Wahlquist, Hyperbolic equations

for vacuum gravity using special orthonormal frames, Class. Quantum Grav. 14,

1237-1247 (1997).

[86] Z. B. Etienne, J. A. Faber, Y. T. Liu, S. L. Shapiro, and T. W. Baumgarte,

Filling the holes: Evolving excised binary black hole initial data with puncture

techniques, Phys. Rev. D 76, 101503(R) (2007) (5 pages).

[87] L. C. Evans, Partial Differential Equations, (American Mathematical Society,

Providence, 1998).

[88] K. Fan, W. Cai, and X. Ji, A generalized discontinuous Galerkin (GDG) method

for Schrödinger equations with nonsmooth solutions, J. Comp. Phys. 227 2387-

2410 (2008).

[89] S. E. Field, J. S. Hesthaven, and S. R. Lau, Discontinuous Galerkin method

for computing gravitational waveforms from extreme mass ratio binaries,

Class. Quantum Grav. 26 165010 (2009) (28 pages).

[90] S. E. Field, J. S. Hesthaven, and S. R. Lau, Persistent junk solutions in time-

domain modeling of extreme mass ratio binaries, Phys. Rev. D 81, 124030 (2010)

(14 pages).

[91] S. E. Field, J. S. Hesthaven, S. R. Lau, and A. H. Mroue, Discontinuous Galerkin

method for the spherically reduced Baumgarte–Shapiro–Shibata–Nakamura sys-

tem with second-order operators, Phys. Rev. D 82, 104051 (2010) (19 pages).

[92] S. E. Field, C. R. Galley, F. Herrmann, J. S. Hesthaven, E. Ochsner,

and M. Tiglio, Reduced basis catalogs for gravitational wave templates,

http://arxiv.org/abs/1101.3765.

[93] V. Fock, The Theory of Space Time and Gravitation (Pergamon Press, New

York, 1959).

[94] G. B. Folland, Introduction to Partial Differential Equations, (Princeton Uni-

versity Press, Princeton, 1995).

http://arxiv.org/abs/1101.3765


251

[95] H. Friedrich, Hyperbolic reductions for Einstein’s equations, Class. Quantum

Grav. 13, 1451-1469 (1996).

[96] S. Frittelli and O. Reula, On the Newtonian Limit of General Relativity, Com-

mun. Math. Phys. 166, 221-235 (1994).

[97] S. Frittelli and O. A. Reula, First-Order Symmetric Hyperbolic Einstein Equa-

tions with Arbitrary Fixed Gauge, Phys. Rev. Lett. 76, 4667-4670 (1996).

[98] S. Frittelli and O. A. Reula, Well-posed forms of the 3+1 conformally-

decomposed Einstein equations J. Math. Phys. 40, 5143-5156 (1999).

[99] H. Friedrich and A. Rendall, The Cauchy problem for the Einstein equa-

tions, in Einstein’s Field Equations and their Physical Implications, edited

by B. G. Schmidt, Springer Lecture Notes in Physics, vol. 540, pp. 127-223

(Springer-Verlag, Berlin, 2000).

[100] H. Friedrich and A. D. Rendall, The Cauchy Problem for the Ein-

stein Equations, Lec. Notes Phys. 540, 127-224 (2000). Also available as

arXiv:gr-qc/0002074v1.

[101] C. R. Galley and B. L. Hu, Self-force on extreme mass ratio inspirals via curved

spacetime effective field theory, Phys. Rev. D 79, 064002 (2009) (18 pages).

[102] C. R. Galley and M. Tiglio, Radiation reaction and gravitational waves in the

effective field theory approach, Phys. Rev. D 79, 124027 (2009) (19 pages).

[103] U. H. Gerlach and U. K. Sengupta, Gauge invariant coupled gravitational,

acoustical, and electromagnetic modes on most general spherical spacetimes,

Phys. Rev. D 22, 1300-1312 (1980).

[104] R. J. Gleiser, C. O. Nicasio, R. H. Price, and J. Pullin, Gravitational radia-

tion from Schwarzschild black holes: The second order perturbation formalism,

Phys. Rept. 325 41-81 (2000).
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