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Abstract: We discuss the Yangian symmetry recently found for superconformal Yang

Mills theory, and contrast it with the Kac-Moody loop algebra that can be defined in

various integrable models.

1. Yangian Symmetry and Kac-Moody Algebras

We describe an infinite-dimensional non-abelian symmetry algebra that is found in planar

superconformal Yang-Mills theory. The generators have a basis J An where J A0 = JA,

J A1 = QA, and J An , n = 0, 1, 2, . . .. We have given the first two generators special names,
since only those occur in the defining relations for the algebra. The higher charges will

arise from commutators of the Q’s. The algebra, called a Yangian Y (G), is an associative

Hopf algebra [1]-[5] that satisfies:

[JA, JB ] = fABC JC , [JA, QB ] = fABC QC , (1.1)

and the Serre relations

[QA, [QB , JC ]] + [QB , [QC , JA]] + [QC , [QA, JB ]]

=
1

24
fADKfBELfCFMfKLM{JD, JE , JF } , (1.2)

[[QA, QB ], [JC , QD]] + [[QC , QD], [JA, QB]] ,

=
1

24
(fAGLfBEMfKFNfLMNf

CD
K

+fCGLfDEMfKFNfLMNf
AB
K ){JG, JE , JF } , (1.3)

for JA taking values in the Lie algebra of an arbitrary semi-simple Lie group G.
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Here {JD, JE , JF } is the totally symmetrized product,

{JD, JE , JF } = JDJEJF + JEJDJF + JFJEJD
+JEJFJD + JDJFJE + JFJDJE . (1.4)

For SU(2) the relation (1.2) is trivial. For other cases such as SU(N) with N ≥ 3, the
relation (1.2) implies the following one (1.3).

In [6] we give the construction of the generators for the free superconformal Yang-Mills

theory, and conjecture that they will exist to all orders of perturbation theory. We then

check that the free generators commute with the planar one-loop anomalous dimension

operator, i.e. the spin chain Hamiltonian [7]-[9]. Our construction is motivated by the

existence of non-local symmetries in the AdS/CFT dual worldsheet theory of the type IIB

superstring on AdS5 × S5, as conjectured [10] and found in [11].
Non-local symmetries in two-dimensional models and their possible role in four-dimensional

gauge theory has a long history. In 1980, Polykov discussed “rings of glue” [12],[13], where

the untraced Wilson loop of ordinary Yang-Mills theory, ψ[ξµ(s)] = Pe
∮
AaµT

adξµ , satisfies

the on-shell functional equation

δ

δξµ
(ψ−1

δ

δξµ
ψ) ∼ DµF aµνT aξ̇ν ∼ 0 , (1.5)

with 0 ≤ µ ≤ 3. He used the similarity of (1.5) to the equations of motions of the two-
dimensional principal chiral model (PCM)

∂µ(g
−1∂µg) = 0 , (1.6)

where g is a matrix valued field talking values in a group G, gij(x, t) ∈ G, and now

0 ≤ µ ≤ 1. In 1978, Lusher and Pohlmeyer [14] had shown that the conserved current of a
PCM Lagrangian L = 1

2Tr∂µg∂
µg, given by jµ(x, t) = g−1∂µg = jAµ (x, t)T

A, which takes

values in the Lie algebra of G, was also a flat connection

∂µjν − ∂νjµ + [jµ, jν ] = 0 . (1.7)

From this they could construct an infinite number of non-local symmetries iteratively,

since in two dimensions the conservation of the ordinary global current, ∂µjµ = 0, implies

jµ = εµν∂
νχ, and this in turn leads to the conservation of the non-local current

j(1)µ ≡ ∂µχ+ g−1∂µg χ . (1.8)

The conserved charges associated with these currents are

JA =
∫∞
−∞ dxj

0A(x, t)

QA = fABC
∫∞
−∞ dx

∫∞
x dyj0B(x, t)j0c(y, t)− 2

∫∞
−∞ dxj

A
1 (x, t) .

(1.9)

A set of infinitesimal field transformations that leave (1.6) invariant

g(x, t)→ g(x, t) + δAn g(x, t), (1.10)
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for m,n ≥ 0, can be used to define generators

MA
n ≡

∫
d2xδAn g(x, t)

δ

δg(x)
(1.11)

which were shown to close a partial Kac-Moody loop algebra [15]

[MA
n ,M

B
m ] = f

AB
C M c

n+m . (1.12)

These transformations are related to those generated via Poisson brackets by the non-local

charges, eg.

{QA, g(x, t)} = −δA1 g(x, t) +
1

2
fABCJ

B δC0 (g(x, t)). (1.13)

So in these models, along with the Yangian which the charges satisfy, it is possible to find

non-local transformations that obey the algebra of the partial Kac-Moody algebra. The

infinitesimal transformations generated by the charges are simply linear combinations of

the Kac-Moody transformations (but with field dependent coefficients). The Yangian and

Kac-Moody algebras generate the same equivalence relation even though they are different

algebras. It doesn’t matter which symmetry algebra we use since transformations of one

can be recovered from those of the other by changing the coefficients.

The occurrence of these symmetries in two dimensions led to speculation that four-

dimensional ordinary Yang-Mills theory might carry representations of an infinite-dimensional

algebra [15]-[17]. At the time, this was conjectured to be the Kac-Moody algebra ĝ, for g

given by the gauge group g = SU(N), and later extended to include the classical conformal

group g = SO(2, 4). Restriction to self-dual gauge fields fascilitated the computations.

With the more recent precise AdS/CFT correspondence between four-dimensional

gauge theories and string theories (whose worldsheets are two-dimensional), we have been

able to derive the Yangian generators Y (G), for G = PSU(2, 2|4), in the planar limit of
the superconformal Yang-Mills theory [6].

2. Yangian Symmetry in Superconformal Yang-Mills Theory

Neglecting for the moment the closed string boundary conditions, we will describe how the

non-local charges form an infinite-dimensional extension of PSU(2, 2|4). The AdS/CFT
correspondence implies a realization of the Yangian on a chain of partons. In the four-

dimensional N = 4 superconformal Yang-Mills theory (SYM) with gauge group SU(N),
we will consider the ’t Hooft limit, i.e. largeN (which restricts us to string tree graphs), and

a range of values for the ’t Hooft coupling g2YMN (which is inversely proportional to (α
′)2).

Bena, Polchinski and Roiban displayed worldsheet non-local currents in the supergravity

limit, α′ → 0, using a classical Green-Schwarz formalism. This was generalized to the pure
spinor formulation in ([18]). The symmetries are expected to exist for all values of the

coupling, so we will construct the charges in the AdS/CFT dual gauge theory at the other

end of the parameter space, g2YMN ∼ (α′)−2 → 0, where we can treat the gauge theory
perturbatively.

We consider radial quantization on R × S3 in the superconformal gauge theory. The
Hamiltonian is the dilatation operatorD of PSU(2, 2|4). It can be shown to be conjugate to
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the linear combination of momentum and special conformal generators D ∼ 1
2(P

0+K0). In

this quantization, the states of the conformal gauge theory are in one to one correspondence

with local operators O(x) via lim|x|→0O(x)|0 >∼ |O >.

The local operators in the planar limit are given by a single trace of a product of

“letters”, which are the elementary fields of the gluon supermultiplet and their derivatives,

Φij(x) ∼ φI = φIA(x)T Aij , ψaα = ψaAα (x)T Aij , Fµν = FAµν(x)T Aij . (The indices 1 ≤ I ≤ 6,
1 ≤ a ≤ 4 label the vector and spinor SU(4) R-symmetry representations, and 1 ≤ i, j ≤ N
denote theN -dimensional representation of SU(N).) A single-trace operatorO(x) is said to
be of length L if it is the trace of a product of L letters, O(x) = Φ(1)ij (x)Φ

(2)
jk (x) . . .Φ

(L)
li (x) =

TrΦ(1)Φ(2) . . .Φ(L). This local operator represents a state of a chain of L spins, or partons.

From this description, we can see how a four-dimensional planar theory might be integrable,

since the words are like spin chains. In the correspondence between operators and states,

the letters form a basis for the one-particle states of the free N = 4 vector multiplet on
R× S3.
At g2YMN = 0, the Yangian generators are [6]

JA =
∑
i

JAi ,

QA = fABC
∑
i<j

JBi J
C
j , (2.1)

where at each site [JAi , J
B
j ] = f

AB
C JCj δij, with f

AB
C given by the structure constants of the

supergroup PSU(2, 2|4). The brackets denote either commmutators or anticommutators.
These generators satisfy the defining relations (1.1). When JAi is the in the (4|4) funda-
mental representation of SU(2, 2|4), the generators in (2.1) also satisfy the nesting relation
(1.2) as we have discussed in [19].

Therefore, from (2.1), we can construct the entire set of Yangian generators J An where
J A0 = JA, J A1 = QA, and J An , n = 0, 1, 2, . . ., for the free superconformal Yang-Mills
theory, g2YMN = 0. We consider the exact generators as an expansion in g

2
YMN ,

J̃A = JA + (g2N)δJA +O((g2N)2) for n = 0 ,

J̃ An = J An + (g2N)δJ An +O((g2N)2) , (2.2)

where δJ An are corrections to the Yangian generators to one-loop in the ’t Hooft coupling.
We will assume that N = 4 SYM has a Yangian symmetry in the planar limit for all

g2YMN :

[J̃A, J̃B ] = fABC J̃C , [J̃A, Q̃B ] = fABC Q̃C , (2.3)

and likewise for the Serre relations. Then the right-hand equation expanded to one-loop is

[δJA, QB ] + [JA, δQB ] = fABCδQC . (2.4)

For JA = D, (2.4) becomes

[δD,QB ] + [D, δQB ] = λBδQB , (2.5)
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where λB is the bare conformal dimension, and δD is the one-loop planar (spin chain)

Hamiltonian. Note that the structure constants are given by the algebra, i.e. they do not

receive quantum corrections. Since [D, δQB ] = λBδQB , we must have

[δD,QB ] = 0 . (2.6)

Our requirement parallels one verified by Beisert [9], that

[δD, JB ] + [D, δJB ] = λBδJB , (2.7)

implies

[δD, JB ] = 0 . (2.8)

Therefore, δD must commute with the g2YMN = 0 limit of all the Yangian generators.

The operator δD is a sum of operators local along the chain. Its eigenvalues are the (one-

loop) anomalous dimensions [7]-[9], [20]-[22]. Operators like this that commute with the

(g2Y MN = 0) Yangian are called the Hamiltonians of the integrable spin chain.

So, from our construction of the free field limit (g2YMN = 0) of the Yangian generators

(which was motivated by the non-local symmetries found by Bena, Polchinski, and Roiban)

and their commutation with δD, we have deduced the conclusion of Beisert and Staudacher

[8], shown earlier in a special case by Minahan and Zarembo, that δD is a Hamiltonian of

an integrable spin chain.

For the remainder of the talk, we verify this picture by using formulas from [8],[9] to

argue that [δD,QA] = 0. We compute the commutation of QA with the planar one-loop

Hamiltonian as follows. First, define

H ≡ δD

H =

L−1∑
i=1

Hi,i+1 , (2.9)

which is a sum of operators acting on nearest neighbors. We introduce the lattice version

of a total derivative,

qA =
L−1∑
i=1

(
JAi − JAi+1

)
= JA1 − JAL . (2.10)

Then, using the specific form of H determined in [9], we will be able to show

[H,QA] = qA . (2.11)

So, for an infinite chain, assuming we can drop terms at infinity, then [H,QA] = 0. For a

finite chain with periodic boundary conditions, where a total derivative will sum to zero,

then we have [H, C(QA)] = 0, when C(QA) are the Yangian Casimir opertators which can
be defined for periodic boundary conditions.

To show [H,QA] = qA, we consider the commutator [H12, Q
A
12] of quantities acting on

a two-particle system,

QA12 = f
A
BCJ

B
1 J
C
2 ,
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J212 =
∑
A

(JA1 + J
A
2 )(J

A
1 + J

A
2 ) ,

qA12 = J
A
1 − JA2 . (2.12)

H12 acts on the two-particle system VF ⊗ VF = ⊕∞j=oVj, where VF is the space of one-
particle states in the free superconformal gauge theory on R× S3. The decomposition of
the two-site system in terms of single-site states is discussed in [9],[6], where it is also shown

how J212Vj = j(j +1)Vj . The direct sum of modules ⊕∞j=oVj can be thought of as towers of
PSU(2, 2|4) representations, with the towers labelled by j = 0, 1, 2, . . .. The highest weight
of each tower, νj is annihilated by the supergroup charges Kµνj = Sανj = 0. In a given

tower, states are raised and lowered by the ordinary charges JA12. States can be moved from

tower to tower by the non-local charges QA12. In [6] we also prove that q
A
12Vj ∈ Vj−1⊕Vj+1.

We use this, together with the identity

QAij =
1

4
[J2ij , q

A
ij] (2.13)

and the expression for H12 derived from Feynman graphs [9],

H12 =
∞∑
j=0

2h(j)P12,j , (2.14)

where h(j) =
∑j
n=1

1
n are the harmonic numbers. Then we can show

[H12, Q
A
12]|λ(j)〉

=
1

4
[H12, [J

2
12, q

A
12]]|λ(j)〉

=
1

4
(H12J

2
12 − j(j + 1)H12 − 2h(j)J212 + 2h(j)j(j + 1))qA12|λ(j)〉

= j (h(j) − h(j − 1)) |χA(j − 1)〉 + (j + 1)(h(j + 1)− h(j)) |ρA(j + 1)〉
= |χA(j − 1)〉 + |ρA(j + 1)〉
= qA12|λ(j)〉 . (2.15)

We can extend this proof [6] to deduce [H,QA] = qA from [H12, Q
A
12] = q

A
12.

3. Non-local Currents as Noether Currents

To interpret our construction of the non-local symmetry charges in the gauge theory from

a field theory point of view [6], we consider the super Yang-Mills Lagrangian

L = 1

g2YM
Tr

(
1

2
FµνF

µν +Dµφ
IDµφI − 1

2
[φI , φJ ][φI , φJ ] + fermions

)
. (3.1)

For simplicity, we will discuss the charges for A ∈ so(2, 4). Classically, we have

jAµ(x) = κAν θ
µν(x) (3.2)

where κAµ are the conformal Killing vectors, and

θµν = 2TrFµρF νρ+2TrD
µφIDνφI−gµνL−1

3
Tr(DµDν−gµνDρDρ)φIφI + fermions . (3.3)
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The currents (3.2) are conserved at any g2YMN using the classical interacting equations of

motion. If we set g2YMN = 0, we note that the untraced matrix

(θµν) ji = F
µρF νρ + F

νρFµρ + ∂
µφI∂νφI + ∂νφI∂µφI − gµν(1

2
FρσF

ρσ + ∂µφ
I∂µφI)

−1
3
(∂µ∂ν − gµν∂ρ∂ρ)φIφI + fermions , (3.4)

is also conserved, as is κAν (θ
µν) ji . Here i, j are the matrix labels of the gauge group

generators (TA) ji . Thus we can construct non-local conserved charges by

QAB...0 =

∫
M

κAν (θ
0ν) ji

∫
M

κBρ (θ
0ρ) kj . . . , (3.5)

whereM is an initial value surface in spacetime. In the free gauge field theory, this acts on

a chain of partons in a similar fashion as (2.1) does, but it is not apparent how to extend

the definition to g2YMN 6= 0.

4. Conclusions

We have described a non-local set of symmetry charges in four-dimensional planar super-

conformal Yang-Mills theory. They form a Yangian algebra, which generates the same

equivalence relation as a partial Kac-Moody loop algebra [6]. The existence of a Hamilto-

nian that commutes with this Yangian depends on expanding the dilation operator to first

order near g2N = 0. In the exact theory (at nonzero g2YMN), the exact dilatation operator

D (which depends on g2YMN) is one of the Yangian generators. In the exact theory it not
the case that we have a Yangian algebra and a dilatation operator that commutes with

it. Furthermore, in string theory, or SYM, we want to compactify the string (or the spin

chain) with periodic boundary conditions, since the string is closed. Periodic boundary

conditions make it impossible to define the Yangian, because the restriction to the integra-

tion region x < y in (1.9) does not make sense. The global PSU(2, 2|4) generators JA still
make sense, as do the traces of holonomies (which are like Casimir operators of the Yan-

gian). These Casimirs, which commute with PSU(2, 2|4) may be useful in computing the
spectrum of the superconformal Yang-Mills theory in the planar limit. Some of them are

odd under charge conjugation (the symmetry that reverses the order of the spin chain), so

their commutation with PSU(2, 2|4) leads to denegeracies among states of opposite charge
conjugation properties, as found by [21].

In this talk, we have made contact between the integrability of perturbative planar

SYM with its interpretation of the anomalous dimensions as a spin chain Hamiltonian, and

the existence of non-local worldsheet symmetry currents closing an infinite-dimensional

symmetry algebra generic to non-linear sigma models with a target coset space. We did

this by giving a construction of the non-local charges to lowest order in the gauge cou-

pling constant, and then showing that they commuted with the planar one-loop ordinary

dilatation charge.
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