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Abstract In the context of the so-called Gauss–Bonnet gravity, where the gravi-
tational action includes function of the Gauss–Bonnet invariant, we study cosmo-
logical solutions, especially the well-known ΛCDM model. It is shown that the
dark energy contribution and even the inflationary epoch can be explained in the
frame of this kind of theories with no need of any other kind of component. Other
cosmological solutions are constructed and the rich properties that this kind of
theories provide are explored.
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1 Introduction

It is widely accepted by the scientific community that our Universe is currently
in an accelerated phase. General Relativity in its standard form can not explain
the accelerated expansion without extra terms or components, which have been
gathered under the name of dark energy. Since the discovery of the acceleration,
a large number of possible mechanisms have been proposed to explain the ori-
gin of the dark energy, from the cosmological constant, scalar fields, to modifi-
cations of general relativity as well as other alternatives (for reviews on unified
inflation-dark energy modified gravities, see Refs. [1; 2], and for comparison with
observational data see Refs. [3; 4]). The most popular idea is represented by the
cosmological constant, whose origin may be explained by means of the vacuum
energy density, although its value does not match the one predicted by quantum
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field theories. Even in such a case, the Equation of State (EoS) parameter is a
constant equal to−1, while some recent observations suggest that the EoS param-
eter is a dynamical variable and it could have crossed the phantom barrier, with
the EoS parameter being less than −1. Such a dynamical behavior of the EoS
could be well explained by scalar fields with quintessence or phantom behavior
(see Ref. [5]). Another alternative is the modification of the gravity law. Several
ways have been suggested to perform such a modification of General Relativity by
means of the modification of the Hilbert-Einstein action, which obviously mod-
ifies the field equations. In this framework, the so-called F(R) gravity has been
explored, which introduces a more complex function of the Ricci scalar in the
action and explains well the cosmic history via cosmological reconstruction (see
Refs. [6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17]).

In this work we study the so-called Gauss–Bonnet gravity, where the grav-
itational action includes functions of the Gauss–Bonnet invariant. This kind of
theories has been investigated and may reproduce the cosmic history (see Refs.
[18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33; 34; 35; 36; 37; 38]).
Here, we show that the ΛCDM model can be well explained with no need of a
cosmological constant but with the inclusion of terms depending on the Gauss–
Bonnet invariant in the action. Even more, it is shown that the extra terms in the
action coming from the modification of gravity could behave relaxing the vacuum
energy density, represented by a cosmological constant, and may resolve the so-
called cosmological constant problem. To study and reconstruct the theory that
reproduces such a model as well as other kind of solutions studied, we shall use a
method proposed in Ref. [10] for f (R) gravity and implemented for f (G) gravity
in Ref. [38], where the FLRW equations are written as functions of the so-called
number of e-foldings instead of the cosmic time. The possible phantom epoch
produced by this kind of theories is also explored, as well as other interesting cos-
mological solutions, where the inclusion of other contributions as perfect fluids
with inhomogeneous EoS are studied.

2 [R+ f (G)] gravity

We consider the following action, which describes General Relativity plus a func-
tion of the Gauss–Bonnet term (see Refs. [18] and [20]):

S =
∫

d4x
√
−g

[
1

2κ2 R+ f (G)+Lm

]
, (1)

where κ2 = 8πGN , GN being the Newton constant, and the Gauss–Bonnet invari-
ant is defined as usual:

G = R2−4Rµν Rµν +Rµνλσ Rµνλσ . (2)
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By varying the action over gµν , the following field equations are obtained:

0 =
1

2k2

(
−Rµν +

1
2

gµν R
)

+T µν +
1
2

gµν f (G)−2 fGRRµν +4 fGRµ

ρ Rνρ

−2 fGRµρστ Rν
ρστ −4 fGRµρσν Rρσ +2(∇µ

∇
ν fG)R−2gµν(∇2 fG)R

−4(∇ρ ∇
µ fG)Rνρ

−4(∇ρ ∇
ν fG)Rµρ +4(∇2 fG)Rµν +4gµν(∇ρ ∇σ fG)Rρσ

−4(∇ρ ∇σ fG)Rµρνσ , (3)

where we made the notations fG = f ′(G) and fGG = f ′′(G). We shall assume
throughout the paper a spatially-flat FLRW Universe, whose metric is given by

ds2 =−dt2 +a(t)2
3

∑
i=1

(
dxi)2

, (4)

where a(t) is the scale factor at cosmological time t. For the metric (4), the field
equations give the FLRW equations, with the form

0 = − 3
κ2 H2 +G fG− f (G)−24ĠH3 fGG +ρm,

(5)
0 = 8H2 f̈G +16H

(
Ḣ +H2) ḟG +

1
κ2

(
2Ḣ +3H2)+ f −G fG + pm.

The Hubble rate H is here defined by H = ȧ/a, while the matter energy density
ρm satisfies the standard continuity equation:

ρ̇m +3H(1+w)ρm = 0, (6)

while the Gauss–Bonnet invariant G and the Ricci scalar R can be defined as func-
tions of the Hubble parameter as

G = 24
(
ḢH2 +H4) , R = 6

(
Ḣ +2H2) . (7)

Let us now rewrite Eq. (5) by using a new variable, N = ln a
a0

=− ln(1+z), i.e. the
number of e-foldings, instead of the cosmological time t, where z is the redshift
(this method has been implemented in Ref. [10] for f (R) gravity). The following
expressions are then easily obtained

a = a0eN , H = Ṅ =
dN
dt

,
d
dt

= H
d

dN
,

d2

dt2 = H2 d2

dN2 +HH ′ d
dN

,

H ′ =
dH
dN

. (8)

Equation (5) can thus be expressed as follows

0 = − 3
κ2 H2 +24H3(H ′+H) fG− f −576H6 (

HH ′′+3H ′2 +4HH ′) fGG

+ρm, (9)
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where G and R are now

G = 24
(
H3H ′+H4) , Ġ = 24

(
H4H ′′+3H3H ′2 +4H4H ′) ,

R = 6
(
HH ′+2H2) . (10)

By introducing a new function x as x = H2, we have

H ′ =
1
2

x−1/2x′, H ′′ =−1
4

x−3/2x′2 +
1
2

x−1/2x′′. (11)

Hence, Eq. (9) takes the form

0 =− 3
κ2 x+12x(x′+2x) fG− f −242x

[
1
2

x2x′′+
1
2

xx′2 +2x2x′
]

fGG +ρm,

(12)

where we have used the expressions

G = 12xx′+24x2, Ġ = 12x−1/2 [
x2x′′+xx′2 +4x2x′

]
and R=3x′+12x.

(13)

Then, by using the above reconstruction method, any cosmological solution can
be achieved, by introducing the given Hubble parameter in the FRW equations,
which leads to the corresponding Gauss–Bonnet action.

3 Reconstructing ΛCDM model in R+ f (G) gravity

We are now interested to reconstruct ΛCDM solution in R+ f (G) gravity for dif-
ferent kind of matter contributions. It is well known that such a solution can be
achieved in GR by introducing a cosmological constant (cc) in the action. Nev-
ertheless, we show that in GB gravity there is no need of a cc. The cosmological
models coming from the different versions of modified GB gravity considered
will be carefully investigated with the help of several particular examples where
calculations can be carried out explicitly.

In this paper, we restrict ourself to explore some “classical” modified gravity
models for the ΛCDM case, as well as other interesting and important cosmolog-
ical solutions. For the ΛCDM model, the Hubble rate is given by

H2 =
Λ

3
+

ρ0

3a3 , (14)

where ρ0 is the matter density (which consists of barionic matter and cold dark
matter) and Λ is the cosmological constant. In the rest of this section we put
κ2 = 1.

For the ΛCDM model, described by the Hubble parameter (14), we can write
the derivatives of the scale factor as well as the Hubble parameter in the following
useful way:

ȧ =

√
Λa2

3
+

ρ0

3a
, ä =

2Λa3−ρ0

6a2 ,

Ḣ = − ρ0

2a3 =
3
2

(
Λ

3
−H2

)
, Ḧ =

3ρ0

2a3

√
Λ

3
+

ρ0

3a3 =
9
2

(
H2− Λ

3

)
H. (15)
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Using these formulas we get

R = 4Λ +
ρ0

a3 , G = 24
(

ρ0

3a3 +
Λ

3

)(
Λ

3
− ρ0

6a3

)
,

(16)

Ṙ =
−3ρ0

a3

√
ρ0

3a3 +
Λ

3
, Ġ =

4ρ0

a3

(
2ρ0

a3 −Λ

)√
ρ0

3a3 +
Λ

3
.

Then, the following relation between R and G holds:

G =−4
3

(
R2−9ΛR+18Λ

2) . (17)

Let us recall that x = H2. Then, some of the above formulas take the form:

Ḣ =
1
2
(Λ −3x) Ḧ =

3
2
(3x−Λ)

√
x, R = 3(Λ + x),

(18)
G = 12x(Λ − x), Ṙ = 3(Λ −3x)

√
x, Ġ = 12(3x−Λ)(2x−Λ)

√
x.

Note that the variable x can be expressed in terms of R or G as

x =
R
3
−Λ or x =

3Λ ±
√

9Λ 2−3G
6

, (19)

respectively. The above formulas will be useful to reconstruct the ΛCDM model
as well as other cosmological solutions in the context of Gauss–Bonnet gravity, as
it is shown below.

We write the first Friedmann Eq. (5) in the form

0=−3H2 +12H2(Λ −H2) fG− f −288H4 (
3H2−Λ

)(
2H2−Λ

)
fGG+ρm,

(20)

or

0 =−3x+12x(Λ − x) fG− f −288x2(3x−Λ)(2x−Λ) fGG +ρm. (21)

For further algebra more convenient is the following form of this equation

0 = (ρm−3x− f )(Λ −2x)+
[
48x2(3x−Λ)+ x(Λ − x)

]
fx

+24x2(3x−Λ)(Λ −2x) fxx. (22)

Now we wish to construct some particular exact solutions of this equation.
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3.1 Case I: ρm = 0

First of all, let us consider the simple case in absence of matter, ρm = 0. Then, the
Eq. (22) takes the form

0 = −(3x+ f )(Λ −2x)+
[
48x2(3x−Λ)+ x(Λ − x)

]
fx

+24x2(3x−Λ)(Λ −2x) fxx. (23)

We can analyze the cases where the cosmological constant term in the solution
(14) vanishes and where it is non-zero.

– Let Λ = 0. Then Eq. (23) reads as

0 =−2(3x+ f )− x(144x−1) fx +144x3 fxx. (24)

The general solution of (24) is given by

f (x) = C2x2 +C1x(144x−1)e
1

144x + v1(x), (25)

where

v1(x) =−864x
[

1
144x

+ x lnx+
(

1
144x

− x
)

Ei
(

1,
1

144x

)
e

1
144x

]
. (26)

Here

Ei(a,z) = za−1
Γ (1−a,z) =

∞∫
1

e−zss−ads. (27)

The two integrals of motion are

I1 =
144

x

[
x(1−144x)( fx− v1x)+

(
288x−2+

1
144x

)
( f − v1)

]
, (28)

I2 =
1

x(144x−1)e
1

144x

{
f − v1−144 [x(1−144x)( fx− v1x)

+
(

288x−2+
1

144x

)
( f − v1)

]}
. (29)

– Let Λ 6= 0. Then Eq. (23) has a complex solution, which has no physical mean-
ing as it gives a complex action.

Hence, it appears that the ΛCDM model (14) can not be reproduced by R+ f (G)
gravity in the absence of matter. The only solution found restricts the Hubble rate
to give a decelerated Universe.

3.2 Case II: ρm 6= 0 and iLambda = 0

We now explore the case when some kind of matter with a particular EoS is present
in the Universe, but with no cosmological constant term in the Hubble parameter
described in (14). We explore several examples where different kind of matter
contributions are considered.
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3.2.1 Example 1

Let us now consider the case when Λ = 0 and the evolution of the matter density
behaves as

ρm = 3H2 = 3x. (30)

In this case the modified Friedmann Eq. (5) reads as

0 = 2 f + x(144x−1) fx−144x3 fxx. (31)

This equation has two integrals of motion

I1 =
144

x

[
x(1−144x) fx +

(
288x−2+

1
144x

)
f
]
, (32)

I2 =
1

x(144x−1)e
1

144x

{
f −144

[
x(1−144x) fx +

(
288x−2+

1
144x

)
f
]}

.

(33)

The general solution of the Eq. (31) is given by

f (x) = C1x2 +C2x(144x−1)e
1

144x . (34)

This function reproduces the solution (14) under the conditions imposed above.

3.2.2 Example 2

Now we consider a more general case, where the energy density is given by,

ρm = u(x), (35)

where u(x) is some function of x. In this case the modified Friedmann Eq. (5)
reads as

0 = 2[3x−u(x)+ f ]+ x(144x−1) fx−144x3 fxx. (36)

Its general solution is

f (x) = C1x2 +C2x(144x−1)e
1

144x + v2(x), (37)

with

v2(x) = 288x
[(

x− 1
144

)
e

1
144x J1−

x
144

J2

]
, (38)

where

J1 =
∫ 3x−u

x2 e
1

144x dx, J2 =
∫ (3x−u)(144x−1)

x3 dx. (39)
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Note that the two integrals of motion are

I1 =
144

x

[
x(1−144x)( fx− v2x)+

(
288x−2+

1
144x

)
( f − v2)

]
, (40)

I2 =
1

x(144x−1)e
1

144x

{
f − v2−144 [x(1−144x)( fx− v2x)

+
(

288x−2+
1

144x

)
( f − v2)

]}
. (41)

In fact, we can directly verify that

I1x = I2x = 0. (42)

Then, the solution (37) gives the function of the Gauss–Bonnet invariant that
reproduces this model for any kind of EoS matter fluid.

3.3 Case III: ρm 6= 0 and Λ 6= 0

Let us now explore the most general case for the solution (14) in R+ f (G) gravity
with a non vanishing matter fluid with a given EoS parameter.

3.3.1 Example 1

We consider

ρm = 3x+β . (43)

Then Eq. (5) takes the form

0 = (β − f )(Λ −2x)+
[
48x2(3x−Λ)+ x(Λ − x)

]
fx

+24x2(3x−Λ)(Λ −2x) fxx (44)

and has the following particular solution:

f (x) = γx2− γΛx+β . (45)

If Λ = 0, then f (x) = γx2 + β . Also if γ = 0, then the solution takes the form
f = β , which corresponds to the cosmological constant. Note that if β =−Λ then

ρm =
ρ03

a3 = 3x−Λ , f (x) = γx2− γΛx−Λ . (46)

This gives a solution where the cosmological constant is corrected by the contri-
bution from f (G), what may resolve the cosmological constant problem.
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3.3.2 Example 2

Now we consider the density of the energy which is given by

ρm = kx2 +3x+β . (47)

The corresponding first Friedmann equation reads as

0 =
(
kx2 +β − f

)
(Λ −2x)+

[
48x2(3x−Λ)+ x(Λ − x)

]
fx

+24x2(3x−Λ)(Λ −2x) fxx. (48)

This equation has the following particular solution:

f (x) = γx2 +
(

k
72
− γΛ

)
x+β , (49)

where we must have Λ =− 1
24 . As well as in the above example, the given function

f (G) produces a relaxation on the cosmological constant, which can be seen as
the possible resolution of the cc problem.

4 Cosmology in R+ f (G) gravity with the presence of an inhomogeneous
fluid

Let us now consider the theory described by the action (1) in the presence of a
perfect fluid, whose EoS is given by the general expression:

p = w(a)ρ +η(a), (50)

where w(a) and η(a) are arbitrary functions of the scale factor. This kind of EoS
could correspond to a dynamical viscous fluid or possibly the effective EoS that
accounts for the extra terms in the gravitational action, as curvature terms or scalar
and vector fields (see Ref. [15]). Then, the FRW Eq. (5) are written now as

3H2 = ρ +ρ f (G), 2Ḣ +3H2 =−(p+ p f (G)). (51)

Here the energy and pressure densities ρ f (G) and p f (G) are properly defined to
account for the extra terms introduced by the f (G) function in the action (1), and
are given by

ρ f (G) = G fG− f −24ĠH3 fGG,
(52)

p f (G) = 8H2 f̈G +16H(Ḣ +H2) ḟG + f −G fG.

Then, by combining the FRW Eq. (51) and using the EoS (50), we could write the
inhomogeneous term η(a) as a function of the Hubble parameter:

η(a) =−w(a)ρ f (G) + p f (G) +2Ḣ +3H2(1+w(a)). (53)
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Hence, by specifying a cosmic solution H(a), any cosmological history can be
reconstructed in this framework, where the contributions from f (G) and the inho-
mogeneous fluid described by (50) drives the Universe evolution. To show this, let
us consider the example

3H2 = H2
0 +H1am, (54)

where H0, H1 and m are constants. This solution reproduces a Universe domi-
nated by an effective cosmological constant at the current time and which enters
a phantom epoch in the future (as some observations suggest). We could consider
w(a) = 0 and the f (G) function calculated in (25), which reproduces an effec-
tive cosmological constant. Then, the effective fluid (50) describes dust-matter at
the beginning, when the cosmological constant dominates and then it drives the
Universe into a phantom epoch, which probably finishes at the so-called Big Rip
singularity.

5 Cosmological solutions in pure f (G) gravity

We have studied so far a theory described by the action (1), which is given by the
usual Hilbert-Einstein term plus a function of the Gauss–Bonnet invariant, that is
assumed to become important in the dark energy epoch. In this section, we are
interested to investigate some important cosmic solutions in the frame of a theory
described only by the Gauss–Bonnet invariant, and whose action is given by

S =
∫

d4x
√
−g [ f (G)+Lm] . (55)

In this case, the FRW equations are:

0 = G fG− f −24ĠH3 fGG +ρm
(56)

0 = 8H2 f̈G +16H
(
Ḣ +H2) ḟG + f −G fG + pm.

We are interested to explore some important solutions from the cosmological point
of view, as de Sitter and power law expansions.

5.1 De Sitter solutions

De Sitter solutions are described by an exponential expansion of the Universe,
where the Hubble parameter and the scale factor are given by

H(t) = H0 → a(t) = eH0t , (57)

where H0 is a constant. This kind of solutions are very important, as the obser-
vations suggest that the expansion of our Universe behaves approximately as de
Sitter. It has been shown in Ref. [14] that de Sitter points are critical points in
f (R) gravity. It is straightforward to see that this is also the case in f (G) gravity.
We can explore the de Sitter points admitted by a general f (G) by introducing the
solution (57) in the first FRW equations given in (56), which yields

0 = G0 fG(G0)− f (G0). (58)
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Here, G0 = 24H2
0 and we have ignored the contribution of matter. Then, we have

reduced the differential equation (56) to an algebraic equation that can be resolved
by specifying a function f (G). The de Sitter points are given by the positive roots
of this equation, which could explain not just the late-time accelerated epoch but
also the inflationary epoch. The stability of these solutions has to be studied in
order to achieve a grateful exit in the case of inflation, and future predictions for
the current cosmic acceleration.

5.2 Power law solutions

We are now interested to explore power law solutions for a theory described by the
action (55). This kind of solutions are very important during the cosmic history as
the matter/radiation epochs are described by power law expansions, as well as the
possible phantom epoch, which can be seen as a special type of these solutions.
Let us start by studying a Hubble parameter given by

H(t) =
α

t
→ a(t)∼ tα , (59)

where we take α > 1. Then, by introducing the solution (59) into the first FRW
Eq. (56), it yields the differential equation

0 =− f (G)+G fG +
4G2

α−1
fGG, (60)

where we have neglected any contribution of matter for simplicity. The Eq. (60) is
a type of Euler equation, whose solution is

f (G) = C1G+C2G
1−α

4 . (61)

Thus, we have shown that power-law solutions of the type (59) correspond to
actions with powers on the Gauss–Bonnet invariant, in a similar way as in f (R)
gravity, where power-law solutions correspond to an action with powers on the
scalar curvature, R (see Ref. [11]).

Let us now explore another kind of power-law solutions, where the Universe
enters a phantom phase and ends in a Big Rip singularity. This general class of
Hubble parameters may be written as

H(t) =
α

ts− t
, (62)

where ts is the so-called Rip time, i.e. the time when the future singularity will
take place. By inserting the solution (62) into the first FRW Eq. (56), the equation
yields

0 =− f (G)+G fG(G)− 4α2G2

1+α
, (63)

which is also a Euler equation, whose solution is given by,

f (G) = C1G+C2G
1+α

4α2 . (64)

Thus, we have showed that power law solution of the type radiation/matter dom-
inated epochs on one side and phantom epochs on the other, are well reproduced
in pure f (G) gravity, in a similar way as it in f (R) gravity.
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6 Conclusions

We have explored in this paper several cosmological solutions in the frame of
Gauss–Bonnet gravity, considering specially the case of an action composed of
the Hilbert-Einstein action plus a function on the Gauss–Bonnet invariant. Also
pure f (G) gravity has been considered, as well as the possibility of the impli-
cation of inhomogeneous terms in the EoS of a perfect fluid, which could con-
tribute together with modified gravity to the late-time acceleration. We have shown
that the ΛCDM model can well be explained in this kind of theories, which may
give an explanation to the cosmological constant problem as the modified gravity
terms may act relaxing the vacuum energy density. Other kinds of solutions in
f (G) gravity have been reconstructed. It has been shown that f (G) gravity could
explain the dark energy epoch whatever the nature of its EoS, of type quintessence
or phantom, and even the inflationary phase. More complex cosmological solu-
tions would require numerical analysis, but our analysis of a few simple cases
has already shown that f (G) gravity accounts for the accelerated epochs and may
contribute during the radiation/matter dominated eras, and it may explain also the
dark matter contributions to the cosmological evolution, what will be explored in
future works. This kind of modified gravity models which reproduces dark energy
and inflation, can be modeled as an inhomogeneous fluid with a dynamical equa-
tion of state, what would be distinguished from other models with a static EoS.
Even as perturbations in modified gravity behave different than in General Rela-
tivity, it could give a signature of the presence of higher order terms in the gravity
action, as the Gauss–Bonnet invariant, when structure formation is studied and
simulations are performed, what should be explored in the future.
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