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Abstract

In this thesis, the top-Yukawa-coupling (h;) enhanced two-loop corrections of the
order hf (= O(a?)) to the neutral and charged Higgs-boson masses of the Minimal
Supersymmetric Standard Model (MSSM) with charge—parity (C'P) violation are
calculated and analyzed. These corrections are required for an accurate theoretical
prediction of the Higgs-Boson masses, in view of the experimental precision of the
mass measurement for a Higgs-like particle which has been discovered at the Large
Hadron Collider (LHC).

The O(a?) contributions to the Higgs-boson masses are calculated in the Feynman-
diagrammatic approach. The approximation of the gauge-less limit with the ex-
ternal momentum and the bottom mass set to zero is applied yielding the dom-
inant O(a?) terms. Two-loop renormalization of the tadpoles and self-energies is
performed and all required renormalization constants are derived. The analytical

results of the full computation are documented in this thesis.

For the numerical evaluation, the O(a?) contributions are combined with the pre-
viously known corrections with the help of the public code FeynHiggs. For the
special case of the MSSM with real parameters agreement of our new results with
an earlier computation of the O(a?) corrections in the effective potential approach is
found. The treatment of complex parameters, however, is new and allows especially to
study the dependence of the Higgs-boson masses on the phases of the parameters A,
and p, which induce a shift of 2 GeV on top of a 5 GeV shift for real parameters.
Furthermore, large C'P-mixing of the neutral Higgs bosons can be induced by the
complex parameters. The O(a?) contribution to the self-energy of the charged
Higgs bosons required for renormalization in the complex MSSM and calculated
here for the first time, is exploited for the real MSSM with the A-boson mass as
an input parameter to predict an improved charged Higgs-boson mass, inducing a
shift of —1 GeV.






Kurzdarstellung

In dieser Doktorarbeit werden die durch die Top-Yukawa-Kopplung h; verstarkten
Zweischleifenkorrekturen der Ordnung i} (= O(a?)) zu den neutralen und geladenen
Higgs-Boson-Massen des Minimalen Supersymmetrischen Standard Modells (MSSM)
mit C'P-Verletzung berechnet und ausgewertet. Diese Korrekturen werden fiir eine
genaue theoretische Vorhersage der Higgs-Boson-Massen benotigt, angesichts der ex-
perimentellen Préazision der Massenbestimmung des Higgs-artigen am Large Hadron
Collider (LHC) entdeckten Teilchens.

Die O(a?)-Korrekturen der Higgs-Boson-Massen werden Feynman-diagrammatisch
berechnet. Die Anwendung der eichfreien Naherung mit verschwindendem &ufleren
Impuls und verschwindender Bottom-Masse liefert die dominanten O(a?)-Beitrége.
Die Zweischleifenrenormierung der Tadpole und Selbstenergien wird durchgefiihrt
und alle benotigten Renormierungskonstanten werden bestimmt. Die analytischen

Ergebnisse der kompletten Rechnung sind in dieser Arbeit dokumentiert.

Fiir die numerische Auswertung werden die O(a?)-Beitrige und die zuvor bekannten
Korrekturen mit Hilfe des offentlichen Programms FeynHiggs kombiniert. Fiir den
Spezialfall des MSSM mit reellen Parametern stimmen unsere neuen Ergebnisse
mit denen einer vorhergehenden Berechnung der O(a?)-Korrekturen im Zugang des
effektiven Potentials iiberein. Die Beriicksichtigung komplexer Parameter ist jedoch
neu und erlaubt insbesondere die Abhéngigkeit der Higgs-Boson-Massen von den
Phasen der Parameter A; und p zu untersuchen, welche eine Verschiebung um 2 GeV
zusatzlich zu den 5 GeV im reellen MSSM bewirken. Auflerdem kann durch die
komplexen Parameter starke C'P-Mischung der neutralen Higgs-Bosonen erzeugt wer-
den. Die fiir die Renormierung im komplexen MSSM notwendigen und hier erstmals
berechneten O(a?)-Beitrige zur Selbstenergie der geladenen Higgs-Bosonen werden
im reellen MSSM mit der A-Boson-Masse als Eingabewert fiir eine verbesserte Vorher-
sage der geladenen Higgs-Boson-Masse benutzt, wo sie einen Beitrag von —1 GeV

bewirken.
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1. Introduction

What is a particle’s mass?—this is a very short and clear, but fundamental question
in the past, present and future research of elementary particle physics. Although the
electroweak and strong interactions of the known matter particles are satisfactorily
explained [LEP+04] by the long-time established Standard Model (SM) of particle
physics [Gla61; Wei67; Sal68], the problem of explaining the origin of the mass of
elementary particles persists. Through the recent discovery of a Higgs-like particle
with the Large Hadron Collider (LHC) at the European Organization for Nuclear Re-
search (CERN) by the experiments ATLAS [Aad+12] and CMS [Cha+12a], a big step

towards understanding the mechanism for generating masses becomes accessible.

However, it is clear that the SM has unacceptable deficiencies because of the ab-
sence of a consistent explanation for other fundamental physical concepts like grav-
ity, the strong C'P-problem [Wei75; t H76a; t H76b], neutrino oscillations [Pon57;
Pon68; GMO08], baryon asymmetry, and the existence of dark matter [Zwi33; Zwi37;
Tri87] and dark energy [PRO03]. Furthermore, in comparisons of high-precision mea-
surements and calculations differences of the order of three standard deviations
are found for a few observables, providing hints to possible existence of physics
beyond the Standard Model. The largest deviation is found for the anomalous
magnetic moment of the muon [Ben+06; JN09; Mil+12], followed by the bottom-
quark forward-backward asymmetry [GM13], and the top-quark forward-backward
asymmetry [Aal+08; Aba+08; Pecl2].

For many of these problems various solutions have been proposed. A concept which
has become increasingly popular for the recent decades is supersymmetry (SUSY). A
famous application of SUSY as an extension of the SM is given by the Minimal Super-
symmetric Standard Model (MSSM) [HK85]. Its merits are a dark matter candidate,
the stabilization of the electroweak scale, as well as a symmetry between fermions and
bosons. Moreover, the MSSM has a very high predictive power. Thus, measurements

of current experiments have the ability to check aspects of this model.



1. Introduction

An immediate theoretical consequence of this minimal supersymmetric extension of
the SM is the presence of a larger Higgs-boson sector consisting of two complex scalar
doublets. Besides the Higgs boson of the SM four additional physical scalar bosons
occur; the remaining three degrees of freedom are used by the (would-be) Goldstone
bosons [Nam60; Gol61; GSW62]|. Thus, at lowest order in perturbation theory there
are two neutral C'P-even bosons h and H (one of them being the SM-like Higgs
boson), one neutral C'P-odd boson A, two charged bosons H*, one neutral unphysical
Goldstone bosons G, and two charged unphysical Goldstone bosons G*. The study
of the masses and mixing properties of the physical Higgs bosons with particular
emphasis on higher-order corrections in perturbation theory is the main subject of
this thesis.

The discovery of a new bosonic particle with a mass around 125.5 GeV [Cha+14;
Aad+14] by the experiments ATLAS [Aad+12] and CMS [Cha+12a] at CERN has
triggered an intensive investigation to reveal the nature of this particle as a Higgs
boson from the mechanism of electroweak symmetry breaking. Within the present
experimental uncertainties, which are still considerably large, the measured properties
of the new boson are consistent with the corresponding theoretical predictions for
the SM Higgs boson [Lanl3]. On the other hand, still a large variety of other
interpretations which are connected to physics beyond the SM is possible. The MSSM

is a promising and experimentally accessible candidate.

At lowest order, the masses of the five physical Higgs bosons of the MSSM only
depend on two free parameters, commonly chosen as the A-boson mass m 4 and the
ratio of the two vacuum expectation values tan 8 = vy /v . At this order, the lightest
Higgs-boson mass is constrained from above by the Z-boson mass. Furthermore, C'P-

invariance is preserved in the Higgs sector.

However, the masses and mixings in the neutral Higgs-boson sector are sizeably
influenced by higher-order contributions. Moreover, in the MSSM with complex
parameters, the cMSSM, C'P-violation is induced in the Higgs sector by loop con-
tributions with complex parameters from other SUSY sectors, leading to mixing
between all three neutral Higgs bosons h, H and A [Pil98]. Accordingly, intensive
work has been invested into higher-order calculations of the mass spectrum from
the SUSY parameters, in the case of the real MSSM [HHW98; HHW99b; HHW99a;
Hei+05; Zha99; Bri4+02; Cas+95; Deg+03; HHWO06; All+04; Mar02] as well as the
complex MSSM [Dem99; PW99; Car+00; Hei+07].



The largest loop contributions arise from the Yukawa sector with the large top-
Yukawa coupling h, or ay = h?/(4x), respectively. The full one-loop result [Fra+07]
and the leading O(aya;) terms [Hei+07], both accomplished in the Feynman-dia-
grammatic approach including complex parameters, have been implemented in the
public program FeynHiggs [HHWO99b; Deg+03; Fra+07; HHW00c; Hah+409]. The
class of leading two-loop Yukawa-type corrections of O(a?) has been calculated so
far only in the case of real parameters [Bri+02], applying the effective-potential
method. It is also contained in FeynHiggs, but an evaluation of the O(a?) terms for
the cMSSM has been missing until now. The Feynman-diagrammatic calculation of
the leading O(a?) contributions to the Higgs-boson masses and mixings in the cMSSM

is carried out in this thesis for the first time.

A brief introduction to SUSY is given in Chapter 2, supplemented by some remarks on
the used notation in Appendix A. The particle content of the MSSM as an extension
of those of the SM is illustrated in Chapter 3. Technical issues of loop calculations are
outlined in Chapter 4, where a brief summary of the appearing divergences and their
treatment is given. The used conventions for the arising mathematical expressions
are defined herein, and solutions for the required integrals are given in Appendix B.
Closely entangled with higher-order calculations is the framework of renormalization,
which makes sure that physically meaningful quantities are free of divergences. An

overview on that topic is reported in Chapter 5.

In Chapter 6 the Higgs potential and the lowest-order relations of the mass spectrum
are introduced. On the side, a set of on-shell parameters is introduced. Subsequently,
one-loop and two-loop renormalization of the tadpoles and mass matrices of the Higgs
potential are carried out; various steps are described for the evaluation of the higher-

order Higgs-boson masses. Some of the longer results are listed in Appendix C.

The class of O(a?) contributions extended to the case of complex parameters is
presented in Chapter 7. The detailed expressions in Chapter 6 form the basis for
the evaluation of these corrections. The computation has been carried out in the
Feynman-diagrammatic approach [HP14a; HP14b]. Thereby the gauge-less limit
is introduced and the bottom mass is set equal to zero. Moreover, the external
momentum is set equal to zero in the two-loop self-energies. The application of these
approximations provides the dominant terms of the O(a?) contributions; they also
have been utilized for the evaluation of the O(aya;) corrections before [Hei+07]. The
partially vast mathematical expressions are put together in Appendix D for a better

lucidity.
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For the special case of real parameters an equivalent result to the one in Ref. [Bri+02]
is obtained in an independent way, thus serving as a cross check and as a consolidation
of former spectrum calculations and associated tools. The results for the O(a?) con-
tributions which are derived in this thesis will be included in a public version of the

code FeynHiggs.

Finally, the numerical evaluation of the full spectrum of the MSSM Higgs-boson
masses is carried out in Chapter 8. Therefore, the newly derived O(a?) contributions
are combined with the full one-loop result and the O(a;a;) corrections with the
help of FeynHiggs. At first, the results in the real MSSM are investigated and
compared with the previous result of the O(a?) terms. At second, the influence of
the phases ¢4, and ¢, of the complex trilinear soft-breaking parameter A; and the
complex bilinear superpotential parameter u, respectively, on the Higgs-boson masses
is examined. Large deviations between the previously existing approximation based
on a conjectured interpolation in FeynHiggs and the exact Feynman-diagrammatic
calculation of the O(a?) contributions for the mass prediction of the heavy Higgs
bosons are found. Furthermore, C'P-mixing at higher orders is investigated. At third,
the O(a?) corrections to the correlation between the A-boson mass and the charged
Higgs-boson masses are analyzed in the real MSSM. In the ¢cMSSM the charged
Higgs-boson mass my+ has to be chosen as an input parameter, and in higher-order
corrections it is renormalized on-shell. Thus, the computation of the charged Higgs-
boson self-energy is necessary for renormalization of the Higgs potential with complex
parameters. The corresponding O(a?) contributions to the self-energy of the charged
Higgs bosons are derived in this thesis for the first time. As a side-effect, in the
real MSSM with m4 being an input parameter and renormalized on-shell at higher
orders, the correlation between m,4 and mg+ is obtained and used to determine the

shift in the charged Higgs-boson mass resulting from the O(a?) contributions.

For convenience of the reader a List of Symbols which is subdivided into different
sections corresponding to the chapters of this thesis is appended; its first section
declares symbols that are frequently used throughout this thesis. Thereafter, a List
of Tables and a List of Figures can be found. At the end, a bibliographical section
is attached, with the citations primarily ordered by chapter, and secondarily in an

alphabetical way.



2. Supersymmetry

The idea of a symmetry relation between fermionic and bosonic degrees of freedom
has appeared first in string theory [Ram71]. The earliest application as a graded
Lie algebra is found in Ref. [GL71] and a non-linear realization and the idea of
spontaneous breakdown is described in Ref. [VA73]. The first supersymmetric (SUSY)
field theories appeared in Refs. [WZ74b; WZT74c; SS74] and drew much attention in

both theoretical and experimental physics.

2.1. Motivation

Despite the great success of the Standard Model (SM) of particle physics in predicting
physical observables, it has several drawbacks. Supersymmetric theories can solve

some of these issues straightaway:

e New particles, including the possibility of weakly interacting massive states, are

predicted, thus providing cosmologically stable candidates for dark matter.

e Radiative corrections to the Higgs-boson mass in the Standard Model lead to
quadratic divergences. The Higgs-boson mass my can only be restored at the
electroweak scale by fine tuning. In contrast, supersymmetry introduces new
contributions that automatically cancel quadratic divergences. Moreover, in
exact supersymmetry radiative corrections by fermions and their corresponding

superpartners cancel each other.

e [t is mathematically proven that a quantum field theory may have internal
symmetries and supersymmetry [HES75]. While the former are realized by the
gauge symmetries, only the Poincaré part of the latter is contained in the SM.
An extension to full supersymmetry, including a symmetry between bosons and

fermions, seems to be natural.
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e The supersymmetric particles enter the energy-scale dependence of the gauge
couplings and alter them in a way that leads to a much better consolidation at

the grand unification scale.

2.2. Super-Poincaré group

As described by Coleman and Mandula in Ref. [CM67] physical symmetry groups can
be represented by the direct product of the Poincaré group and additional internal

symmetries. The Standard Model accommodates

e the Lie algebra of the Poincaré group

[P#) PV] =0 ) (21&)
[P, ] = i (P — g ) (21)
[, JP7) = i (=g J¥7 4 g7 THT 4 ghT ] — gt TP (2.1¢)

with the energy-momentum and angular momentum operators P*, J* and the

metric tensor g"”, and

o the SU(3). x SU(2), x U(1)y algebras
G, G| =i feGe (2.2)

with the corresponding structure constants f and generators G which fulfill the

following relations:

[Gaa P#] =0, (2.3&)
Ge, ™) =0 . (2.3D)

A natural, non-trivial extension of this algebra is described by the Haag—Y.opuszanski—
Sohnius theorem in Ref. [HLS75]. It introduces fermionic, anti-commuting gener-
ators Q;, © € {1,..., N} which extend the Lie algebra in the following way (cf.
Refs. [Soh85; MW8&7; DGRO04], the notation is introduced in Appendix A):

{Qi,Ay Qj,B} = 2(5” O'ZB PN s (24&)
{Qi,A7 Qi,B} =0, {Q@Aa Q@B} =0, (2'4b)



2.2. Super-Poincaré group

(Qia. P =0, Qi P =0, (2.4¢)
Qi Ju] = ()4 Qi s [Quds Tw] = =Qi (3,0)"% - (2.4d)

The Minimal Supersymmetric Standard Model (MSSM) is described by the special
case N = 1 where only one pair of supersymmetry generators Q4 and Q ; exists. In
the following, only this special case is investigated and the index ¢ of the supersym-

metry generators is suppressed.

A close relation between supersymmetry and spacetime symmetry is expressed by
Eq. (2.4a): the non-trivial application of two supersymmetry operations yields the

energy—momentum operator.

The Casimir operators of the Poincaré group are the mass-square operator P*P, and
the Pauli-Lubanski pseudo-vector W# = %e,wpa J"? P? squared which is related to
the spin of a particle.! The Super-Poincaré algebra in Egs. (2.4) yields the following

relations:

[Q, PMP/L] =0, (2.5a)
[Q, WHW,] #0. (2.5b)

As can be seen immediately, the operation of () preserves a particle’s mass, but
changes its spin. Eqgs. (2.4d) tell us that the change of the spin is equal to j:% at any
time, which is why supersymmetry relates fermions and bosons to each other. The
number of fermionic and bosonic degrees of freedom in one-particle representations

of supersymmetry are identical [Soh85].

So far no supersymmetric particles have been found, especially not with the same
mass of the Standard Model particles; for this reason an additional mechanism is

necessary to break SUSY. A short description is found in Section 2.6.

In the case N = 1 exactly one additional internal U(1) symmetry group which does
not commute with @) exists; it is called R-symmetry and with its generator R the

following chiral relations hold [Fay75]:
Qu R =Qa, [Q°.R|=-Q", [P,RI=0, [Ju,Rl=0. (26)

The R-symmetry is used to define the R-parity in Section 2.4.

16,“,p0 is the four-dimensional totally antisymmetric Levi-Civita symbol and €1234 = +1.
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2.3. Superfields

Superfields are a convenient way of representing SUSY on the superspace, which is
constructed from the direct product of the Minkowski space with the real-valued
coordinates x, and two two-component spinor spaces with the Grassmann-valued

coordinates 04 and 6.

2.3.1. General superfields

A general superfield F(z*, 4, §;) can be expressed as

F(a", 0%, 04) = f(a")
V20 (") + V201" (")
+ 040, M(2") + 0,164 N (2") + 6465 A p(a") (2.7)
0204 05 \B (") + 0,67 0P Cp(2)
+ ; 040, 6,,0° D (")
with the scalar fields f, M, N, D, the vector field A,; = o', ,A, and the left/right-

chiral Weyl-spinor fields &4, (4, )ZA and M. Sums and products of superfields are
again superfields (cf. Ref. [DGRO4]).

The infinitesimal transformation
T (a“, T4, %A) = exp (z a"P, + iTQa + i%AQA) (2.8)

_\T
translates a superspace element (x“, 64, 6 A) into

't o+ at +iTA 08 + i TP
04| = 04 + 74 , (2.9)
914 0i+T4i

which leads to the following infinitesimal representation of the supersymmetry gen-

erators:

Qa=—i (0a+id,079,) | (2.10a)
Q1 =—i (0" +i6""P050,) . (2.10D)



2.3. Superfields

Consistently, a superfield F' is transformed by
SF =F (x’“, 04, é;-‘) - F (x“, 04, éA)

i (TAQA +7:AQA> r (m“, oA, éA) (2.11)

where each component is transformed independently (cf. Ref. [DGR04]). Since the
derivatives d4 = 0 / 904 and 04 = 0 / 00 ; do not commute with Q4 and QA, the

chiral covariant derivatives

Dy =04 —ic",0%0, (2.12a)
DA =94 — 5" P00, (2.12b)

are introduced.

In total a general superfield contains 32 parameters. However not all of them are
independent from each other; the representation comprises auxiliary fields which can

be reduced.

2.3.2. Chiral superfields

A first irreducible representation of supersymmetry are chiral superfields which are
defined by

DA® =0 for left-chiral superfields, (2.13a)
D ®" =0 for right-chiral superfields. (2.13b)

A solution for the left-chiral superfield is given by (and analogously for the right-chiral
superfield)

o (x“, 64, G_A) = exp (—i HAUZBH_BE?#)¢ (x“, 9‘4) : (2.14a)
6 (29, 07) = Aa") + V20"€4 + 0204 F(2") | (2.14b)

with the scalar fields A, F' and the spinor field &; only eight degrees of freedom remain.
Herein F' is an auxiliary field, which is necessary to describe supersymmetry off-shell.
Sums and products of pure chiral superfields result in pure chiral superfields of the
same kind. The complex conjugate of a left-chiral superfield yields a right-chiral
superfield.



2. Supersymmetry

2.3.3. Vector superfields

A vector superfield V = V1 is another irreducible representation of supersymmetry. It
can be created by the sum (or the product) of one left- and one right-chiral superfield.
From Eq. (2.7) the conditions

f=f", D=D", ¥'=¢&', =M1, N=M", A*=A"  (215)

are derived. In addition the replacements

i .
AA~—>AA——;750Z36L§B7 (2.16a)
XA%XRR%W“@@, (2.16b)

1
D — D~ 09, f (2.16¢)

are conducted, yielding the expression of a general vector superfield

V (2", 0%, 0;) = f(a")
F V204 4(a") + V20,64 ()
0204 M(2") + 0,07 M*(2") + 0705 A, 5(2")

+ 040,40, (xB(w) - ;ﬁ 5#36‘0#50(9;#)) (2.17)
0,04 07 (AB(Q:“) - \;5 ot .0, (ﬂ))
+ ;eAeA 56" <D(x”) _ iauau f(x“)) .
Furthermore, this superfield is invariant under a super-gauge transformation
Vo V+ih+ (@A) (2.18)

with a chiral superfield A. A special gauge-fixing has been presented by Wess and
Zumino in Ref. [WZ74b]; as a consequence f, ¢4 and M disappear and just

Vwz (96”7 04, éA) = HAégAAB(x“)
+ 020, 0505 () + 0,04 0\ (2) (2.19)
+ ; 00,4 056" D(2")

10



2.4. R-parity

remains. The corresponding super-gauge field strength for a general vector super-

field V' is given by
1. _.
Wy = —EDBDBDAV (left-chiral field strength), (2.20a)

— 1 _
W = —ZDBDBDAV (right-chiral field strength). (2.20D)

Applying the following super-gauge transformation to chiral superfields leaves the

interaction term ®'e29V ® invariant:

@ N C—iQQA(D , (221&)
Of - plei29A" (2.21Db)
29V _y o—i29AT 29V ji2gA (2.21¢)

2.4. R-parity

The already introduced R-symmetry can be easily applied to superfields:
0 (;E“, 04, éA) — P (:L’“, €04, e_“‘@_A) = ¢ “fleg (x“, 04, éA) : (2.22)

The components of the superfields have to be charged under R-symmetry in the

following way to keep Eq. (2.14) consistent:
R(A) =Ry, R(")=-R(E;)=Re—1, R(F)=Rp—2. (2.23)

The so called R-charges of products of multiple chiral superfields are summed up.

Therefore, the R-charge of any vector superfield V' is equal to zero and from Eq. (2.17)

it follows
R(A") =0, RM)=-R(\;))=1, RM)=-R(M*)=-2, (224
R(f)=0, R(")=-R() =-1, R(D)=0. |

However, because of the anomalies explained in Ref. [FW83] and required mass terms
for the superpartners of the gauge bosons, R-symmetry cannot be realized globally,
but only for the discret value o = 7. The numbers €™ # for the R-charges of the
component fields within this subgroup are called R-parity Rp [Fay77]. Consistently,

the R-parity of a product of several superfields is evaluated from the product of the

11



2. Supersymmetry

corresponding R-parities of each field. Thereby SM particles acquire Rp = +1, while

their corresponding superpartners (from the same superfield) acquire Rp = —1.

If the R-parity is preserved, only an even number of superparticles is allowed at each
vertex. Since this condition is not necessary, intensive studies on R-parity violation
are performed [Bar+05]. The corresponding couplings are however constrained by

existing bounds on baryon- and lepton-number conservation [Wei82].

2.5. Supersymmetric Lagrangian

Chiral superfields ®;, vector superfields V' and field-strength spinors W are used to
construct supersymmetric Langrangians. As shown in Appendix A.4 only D terms of
general superfields and F' terms of chiral superfields are invariant under supersymme-
try transformations. Thus, the most general supersymmetric, renormalizable [Col88]

Lagrangian is given by

ESUSY - £gauge + 'CW + ﬁmatter

1 (2.25)
_ U 426 (4 (Wetws) + W(<I>i)> +h. c} + /d49 Bl |
with the chiral holomorphic superpotential
1 1

The holomorphy of W becomes manifest by the fact that it contains only left-chiral
fields; it is required to render the action invariant under supersymmetry transforma-

tions.

The Grassmann-variable integrals [ d*0, [ d?6 and [ df act as projectors on the inte-
grands: their application yields the terms proportional to 646, 6 BQ_B , 040, and 0 AG_A,

respectively (cf. Appendix A.2).

2.6. Supersymmetry breaking

As already mentioned before, each SM particle and its corresponding superpartner

would have the same mass, if SUSY was realized in nature as an exact symmetry.

12



2.6. Supersymmetry breaking

However this is excluded by experiment, requiring SUSY to be broken by some

mechanism, which has to be gauge invariant and renormalizable.

Another desired feature is naturalness: in an exactly supersymmetric theory the
renormalized scalar (Higgs) one-loop self-energy contributions by fermions and their
corresponding superpartners cancel each other [DGR04]. As a consequence of the
non-renormalization theorem this property is valid at all orders of perturbation
theory [WZ74a]. If supersymmetry breaking is only allowed for certain parameters?
of the MSSM, the results of the higher-order scalar self-energies yield just logarithmic
divergences. These so-called soft-breaking parameters have to be of the order of a

few TeV to preserve naturalness.

The possibility of using further scalar fields to perform spontaneous SUSY breaking is
described in Ref. [KL04|. The general principle is the assumption that a field acquires
a non-zero vacuum expectation value which breaks the vacuum of the supersymmet-
ric theory. However, two conditions are imposed: the vacuum preserves Lorentz
invariance and it cannot carry a four-momentum. Investigating the components of
chiral superfields in Eq. (2.14) and vector superfields in Eq. (2.17) leaves only two
possibilities: D-type supersymmetry breaking by an abelian auxiliary field D (Fayet—
lliopoulos mechanism [FI74; Fay76]) and F-type supersymmetry breaking by an
auxiliary field F' (O’Raifeartaigh mechanism [ORa75]).

A different option is given by the introduction of explicit supersymmetry breaking
terms. The most general gauge invariant and renormalizable terms of mass dimension
less than four are [GG82]

1 1 1
»Cbreaking = —m?j AI Aj — (ai Al -+ 5 bij Al Aj + 6 Cijk Az Aj Ak — 5 M)\ AT\ + h. C.) s
(2.27)

with the conventions introduced by Eq. (2.14) and Eq. (2.17), i.e. A; is the scalar
component of a chiral superfield, and A is a left-chiral Weyl spinor and the coeffi-
cient of A6 inside of a vector superfield. A convenient explanation for generating

these terms is provided by spontaneous symmetry breaking in a hidden sector (e.g.
Ref. [Nil84]).

2All appearing field operators must have a mass dimension less than four, which is however just
a necessary condition. Non-renormalization of the superpotential in the presence of certain
soft-breaking operators has to be proven by an explicit calculation.
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3. The Minimal Supersymmetric
Standard Model

The Standard Model (SM) of particle physics is a Yang—Mills theory [YM54], i.e. a
gauge theory whose interactions are described by (special) unitary groups, on top
of a causal, relativistic, globally Poincaré-invariant (cf. Eq. (2.1)) quantum field
theory [BDJO01; BS59]. The physical motivation is a common description of the
electromagnetic, weak and strong interactions extended by the Higgs mechanism
to arrange for the particles’ masses [Gla61; EB64; Higb4; GHK64; Wei67; Sal68].
The SM incorporates the unitary group U(1)y describing interactions via the hy-
percharge and the special unitary groups SU(2)y, representing the left-chiral weak
interactions [LY56; Wu+57] and SU(3). explaining the strong interactions.

3.1. Fields and particles of the Standard Model

The gauge transformation of a SM matter field f(z) can be described by

A

1) s exp (igy or(0) ) i il0) T~ i) 3 ) S0 (B)

with the gauge couplings gy, gy and g, the local gauge functions wy, w? and w? and
the generators of the gauge groups Y, 7, and ). In the irreducible matrix representa-
tion of each group 7,, a € {1, 2, 3} are the Pauli matrices and Ay, b € {1,...,8} are
the Gell-Mann matrices [Gel62]. The eigenvalues of the generators Y, 73/2 and A, As
are conventionally used as quantum numbers of the field f.3 The electroweak quan-

tum numbers are denoted as hypercharge Y; and isospin T})’.

3The normalized Gell-Mann matrices A3 and Ag commute, thus they have common eigenvalues.
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3. The Minimal Supersymmetric Standard Model

Furthermore, each generator receives a corresponding bosonic vector quantum field
which acts as the messenger of the gauge interaction among the matter fields and, in
the non-abelian case, also has self-interactions; the transformation of these fields is

conducted in the adjoint representation of the corresponding group.

The Higgs boson H enters the SM as the neutral charge—parity (C'P)-even component
of a scalar complex SU(2);, doublet. Via spontaneous electroweak symmetry break-
ing, three degrees of freedom, which would be the Goldstone bosons G, G= [Nam60);
Gol61; GSW62], are used to achieve massive gauge bosons; the last remaining degree
of freedom is interpreted as the physical Higgs boson. The latter acquires a non-
vanishing vacuum expectation value and couples to the fermionic particles via Yukawa
interactions [Yuk35]. The coefficients of these interactions are free parameters and

thus allow for the assignment of the correct value of each particle’s mass.

The particle spectrum of the SM is summarized in Tab. 3.1. The in principal possible
right-handed neutrinos v; g which would not couple to any gauge particles are not
accommodated by the minimal version of the SM. The generation index ¢ runs from
one to three, albeit a fourth generation cannot be excluded definitely [Ber+12];
though strong experimental bounds from the width of the Z boson and the mass
of the Higgs boson on a fourth generation exist [Dec+89; Len13; BJN13]. The color
index 7 € {1, 2, 3} is omitted in the following. The left-handed quarks and leptons
can be combined to the depicted SU(2);, doublets.

Table 3.1.: The particle content of the SM.

. leptons lir = (viv, €¢,L)T, €iR
fermions T
quarks GiLg = (UiLyj, diLj) s Uirg diRr,j
electromagnetic B,
gauge bosons weak Wi, ae{l,2 3}
bosons strong Gioaed{l,... 8}
physical H

Higgs bosons
unphysical G,G*

3.2. Particle content of the MSSM

The Minimal Supersymmetric Standard Model (MSSM) [HK85] is an N = 1 super-

symmetric extension of the SM, which contains exactly one pair of supersymmetry
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3.2. Particle content of the MSSM

generators Q4 and Q. A Weyl spinor of a chiral superfield is assigned to each
fermionic particle of the Standard Model while each SM gauge boson is described
by the vector field inside of a vector superfield. The remaining components of the

superfields are the superpartners of the Standard Model spectrum.

Similar to the Standard Model, electroweak symmetry breaking is carried out by
a Higgs mechanism in the MSSM, too. Since the superpotential which contains the
Yukawa couplings is required to be a holomorphic function to yield a supersymmetry-
invariant action, two distinct scalar SU(2)r, doublets are necessary. At lowest order

they can be decomposed to

v1 + 55 (¢1 — i x1) ong
Hi = V2 . Ho = , 3.2
1 ( —¢r ) ’ (qu + J5 (62 + m)) 32

with their vacuum expectation values v; and vy, respectively; the ratio wvy/v; is

commonly denoted as tan 8 = t3.

Both scalar fields are accommodated by independent superfields H; and H,, and

receive corresponding fermionic SU(2);, superpartners which are named higgsinos:

i Ao N h3
Hi=|-"], Ha=1{2]. (3.3)
(h) (hg)

The hypercharges of both doublets must be opposite to each other to cancel the

anomalies which were otherwise introduced by these additional fermions.

The general supersymmetric Lagrangian of Eq. (2.25) can be specified for the MSSM.
The part of the Higgs fields is given by

2
Ltiggs = /d49 >° Hiexp(gy Y Vo + gu7a Vi) H + (/ d?0 Wussm + h. C.> (3.4)

i=1

with the superpotential

SU SU C SU C SU c
Wussm = ppH1 © Hy — he iy Hy © Li EY — hg i Hi © Q; D} — hy ij Qi © H2 U .
(3.5)

Besides the Yukawa-coupling matrices hy, f € {u, d, e} with their corresponding
elements hy ;;, i, j € {1, 2, 3}, also the bilinear ; term is part of the superpotential

which is required to generate masses for H, and Ho.
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3. The Minimal Supersymmetric Standard Model

The SU(2)y, product of two chiral superfield doublets ®; and @, is defined by
Dy & By = cop DS DL (3.6)
with the doublet indices «, 5 € {1, 2}, the Levi-Civita symbol €,5 and the conven-

tion €12 — —1.

The vector superfields of the MSSM are listed in Tab. 3.2.1, and the left-chiral
superfields in Tab. 3.2.2. The fields for the right-handed particles are displayed as
charge-conjugate left-handed singlets in accordance with Eq. (3.5).

Table 3.2.: The particle content of the MSSM.
3.2.1: The gauge superfields of the MSSM.

Superfield Components Group Index
Vy B,,B U(1l)y

Ve we, we SU©2), a€{l,2,3}
Ve Ge,Ge SU@3). ac{l,...,8

3.2.2: The matter superfields of the MSSM with their corresponding quantum
numbers; generation index ¢ € {1, 2, 3}.

Superfield  Components Y T})’ Isospin  Color

L, Liv, liL —1 +£1/2 Doublet Singlet
EF (eir)®, (Eir)¢ 2 0  Singlet Singlet
Q; 4L, GiL 1/3 41/2 Doublet Triplet
Uf¢ (u;ir)®, (r)¢ —4/3 0  Singlet Triplet
D¢ (d;ir)°, (dir)¢  2/3 0 Singlet Triplet
H, Hy, Hy —1 +1/2 Doublet Singlet
H, Ho, Ho 1 £1/2 Doublet Singlet

3.3. Supersymmetry breaking in the MSSM

The generally valid soft supersymmetry-breaking terms are listed in Eq. (2.27). Their
specification for the MSSM yields

2 ~ o~ ~x o~ 2 T 7
Loneating = — (m3) o i din = (m )Z.j e ) ;; Gin din

2
@
2 %7 2 ~x o~
- (mf)ij lin i — (mé)»ei,R €jR
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3.4. Mass eigenstates

— 2 HI Hy — 2 HI M,

~ [, A, Gin © Haiily
+(hgAg), Hi © Gon dig
+ (he Aoy Hy © g, p +huc)

- (bH1H2 ,qu %] Hg + h. C.)

(3.7)

1 L. L I
—5(MIBB+M2W“W“+mngGb+h.c.) ,

with the generation indices i, j € {1, 2, 3} and the gauge-group indices a € {1, 2, 3}
and b € {1,...,8}.

It is noteworthy that no terms proportional to a single field remain in this expres-
sion. This is an immediate consequence of the absence of a U(1)y—SU(2),—-SU(3).-
invariant scalar field in the MSSM.

Neglecting all flavor-violating interactions® yields flavor-diagonal Yukawa coupling
matrices hy ;; and mixing matrices Ay = Ay 5, f € {u, d, e}. Furthermore, also the
2

mass-breaking matrices (m f')--’ fe {q, a, d, 1, ¢} are flavor-diagonal. In that case
)

the matrix indices ¢ and j are suppressed.

3.4. Mass eigenstates

Different particles with identical values for all their quantum numbers can build
mixed states. In the MSSM this concerns the sfermion sector, the gaugino—higgsino
sector, and the Higgs-boson sector. The former two are described in the following
and the notation for the succeeding chapters is introduced. A detailed derivation of

the Higgs- and Goldstone-boson masses is performed in Chapter 6.

3.4.1. Sfermions

In the following flavor-mixing is disregarded. Therefore the Yukawa couplings hy ;;

and the soft-breaking mass and mixing parameters (m?;) and Ay ,; are flavor-
ij
2

diagonal and denoted as hy, m F

and Ay, respectively.

4This implies the approximation of a diagonal CKM matrix [Cab63; KM73].
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3. The Minimal Supersymmetric Standard Model

Each sfermion mass eigenstate is composed of the superpartners of its corresponding

() () o

with the unitary mixing matrix Uy (f e {u, d, ¢ ¢ 3, i, t,b, 7} if not stated other-

left- and right-chiral fermions:

wise). The transformation U;M fU} diagonalizes the mass matrix

m?;L—i-mfc—i-M%cw (T}”—Qfs@ my X
Mf: * 2 2 2 2 |’ (3.92)
my X} mfR—i—mf—i-MZcQBQfsW
. 1
Xf = Af - IJLK:f ? H;uvc7t - ? ? K;d’s’lLemuﬂT = tﬂ : (3'9b)
B

which is composed of the bilinear field coefficients at the tree level comprising matter
terms, soft breaking terms and gauge terms (f € {u, d, e, ¢, s, u, t, b, 7} if not stated
otherwise).” The eigenvalues are

1
me, - [m}L fmd 2 g M ey T (3.10)

¥ \/(m}L —mi + M7 (Tf’ —2Qs 5@))2 +4m} ]XfP] :

3.4.2. Charginos and neutralinos

Furthermore, higgsinos and gauginos also mix among each other:

(Xf) U ():Ev) Y B

> hr )’ 0 173

X2 ' N (3.11)
+ At s hO

X1 —vI(|w 3 1

X5 hi )\ h

with the unitary mixing matrices N, U, V and the gauginos after electroweak sym-

A4 [ ew Sw B
D e

>The symbols m¢, T ;’ and Q¢ depict the mass, third component of the isospin and charge of the
fermion f, respectively.

metry breaking
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3.4. Mass eigenstates

M) 11 oa (v
(B)-al )

The Dirac spinors of the charginos Y7, i € {1, 2} and neutralinos f(?, je{l, 2 3, 4}

are composed of these Weyl spinors xi and x?:

Neutralinos are identically equal to their antiparticles, thus being Majorana parti-

cles.

The tree-level mass eigenstates of the charginos i are acquired by the singular value
decomposition U*X VT of

X = ( My V2 My 35) (3.14)

V2 My cs H
whose evaluation yields the positive real masses

V2

1=

2

2
mes, = o |1Maf? + |uf? + 2 M F /(Mo + |l + 2 M) - 4|Xg2?|” (3.150)
with
Xyt = Mop—2 My css5 . (3.15b)

For the neutralinos x? just one unitary mixing matrix N is necessary due to their
Majorana character. The mass eigenstates are calculated by applying Takagi’s fac-

torization [Tak27], i.e. the transformation N*YNT', to the symmetric mass matrix

M1 0 —MzsvvC@ Mzsva@
0 M. My cy, Mz cy
Y = 2 Zowp 2O 5P (3.16)
—Mysycg Mzceycp 0 —
My sysg Mzcysg — 0

The four corresponding singular values are lengthy expressions in the most general

case with the complex parameters i, My and M,. They are given by the positive real

21



3. The Minimal Supersymmetric Standard Model

square roots of the zeroes of the following fourth-order polynomial in z:

1 4
0={<2ﬂ@8w8m)-+WFOMHNMQWM2+Mﬁfﬂéfi+mbfﬂés®
1
+ 2| uf* M3 { M €& el My) + [ Mo? 52 Relp My} + 3 |ul? My 53, Re[ My My]
1 2
‘l’ 5 (M%SQBSQW) %@[M ([,LMl M2+M1 M%C?N—f—MQ MéS?}V)]}
2
— T {|N|2 (2 | ML [ M) + Mé) +3 (M% 528 32w) (|M|2 - M%)

2 2
+ (M ([ + M3 )+ [ Mo (Jul” + M s2)
+2 M2 2 (|M? + |uf?) Re[Ma i) + 2 ME 52 (| Maf* + |nf?) Re[M, p]

2 2
+ (M% S2 SQW) S?e[u (Ml + Mg)] + % (M% Cop SQW) %Q[Ml M;]}

ad { (1ML + M3+ |ul®) (1Mo o+ M3+ [0f) + 2 M3 Re[My 52 + Mo o]
4 (M523 500) "+ ML (Inl? + M o) + PP (1f? = M3 cav) }
— 23 {|M1|2 + |Ms* + 2 M5 + 2 |u|2}

4
+xp .

(3.17)

As mentioned above, the mass eigenstates of the Higgs-boson sector are derived in
Chapter 6.
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4. Higher-order calculations

Renormalizable quantum field theories allow precise calculations of observables by
successive evaluation of the corresponding Feynman diagrams with an increasing
number of closed loops. Since the momentum inside a loop is not fixed, all possible
values have to be taken into account, which is realized by integration over the loop

momentum in the respective Feynman diagram.

4.1. One-loop order

At the one-loop level the propagators with their corresponding masses m; appear to-
gether with the external momenta p; and the loop momentum ¢ inside a loop diagram,
leading to an expression fi(q, pj, m;). The evaluated Feynman diagram F (pj, mi)

is obtained by integration:

F1(pj, mz) = / (;:;4 fl(qy by, mz) . (4-1)

As can be verified already for simple integrands, e.g. f(q, pj, mi) = 1/(¢* —m?),
the integration leads to divergent results for |¢| — oo (ultra-violet divergences). To
avoid this problem the divergent parts of the integral have to be controlled by
an additional mechanism which is called regularization. Widely used methods are
dimensional regularization (DREG) [tV72; BG72; CM72; Ash72] or dimensional
reduction (DRED) [Sie79; CIN80]. As described in e.g. Ref. [Wei09] the integration

measure and dimension are modified leading to

dPq
Fl(pj7 mi, D) = / . o D—4 f1<Q7 p]7 mi, D) (42)
p A7 (2mpp)
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4. Higher-order calculations

in D = 4 — 2¢ dimensions with the regularization mass parameter pp; the divergent
part is parametrized by e and manifestly recovered in the limit ¢ — 0. Thereby up
takes care of the necessity to keep the action {3 dPz L(D) dimensionless.
R

In DREG all momenta and fields are treated as D-dimensional objects, changing
the number of degrees of freedom asymmetrically for bosons and fermions and thus
breaking supersymmetry. DRED prevents this issue by only modifying momenta
and integration measures, but keeping other objects, e.g. gamma matrices, four-
dimensional. Alternatively, supersymmetry can also be restored when using DREG
by adding the missing contributions as demonstrated in Refs. [Varl0; SV12]. The
final elimination of the ultra-violet divergent parts is taken care of by renormalization

as described in Chapter 5.

Moreover, infra-red divergences can occur when massless particles are propagating
inside a loop. They can be regularized by introducing a cut-off for the integration or
a pseudo-mass for the particle and they are eliminated by adding the corresponding
Feynman diagrams with real emission of this massless particle. Since infra-red diver-
gences are not important in the context of this thesis, they are not further considered

here.

Besides DREG and DRED several other regularization methods exist like the Pauli—
Villars procedure [PV49], lattice field theory, causal perturbation theory [EG73| and

others.

Depending on the structure of the kernel f; different kinds of loop integrals are
distinguished: if the numerator is a number, a mass parameter or another scale
which is independent on the loop momentum, the integral is denoted as scalar; if
the numerator contains the loop momentum, the integral is called higher-rank or
tensor integral. The methods required for calculating scalar one-loop integrals were
described first in Ref. [tV79]. The reduction of one-loop tensor integrals to scalar
integrals was explained first in Ref. [PV79]. All one-loop n-point functions can be

reduced to a basis of scalar one-loop integrals of up to four-point functions.

If only two-point functions are considered, just one external momentum remains.
Accordingly, only the two different variables ¢ and g + p can appear in the propagators
of the Feynman diagrams. In general, the Feynman integrals for n-point vertex
functions with n > 2, but just one non-zero external momentum, can be decomposed

into the integrals for two-point functions by partial fractioning.
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4.1. One-loop order

O -0

Figure 4.1.: The Feynman diagrams of generic one-loop integrals up to three-
point functions.

The basic topologies for the one-loop integrals of up to three-point functions are
displayed in Fig. 4.1. The following integrals will be used in this thesis, with the

notations given here:

Ao(m?) ;:/W(d d 5 : , (4.3a)

27 up) ¢G> —m?+ié|
dPq 1
Bo(p?, m?, m2) = / . _ , (4.3b)
( L 2> )2 (27T,UD)D 4[q2—m%+i€/] [(q+p)2—m%+i€’}
dPq q
B,.(p, m%, m% ::/ ; D—4 . - . ’
( Rl P e e s e e R

= puDB1 (pQ, m%, mg) ,

qu dndv
D—47 5 9, . 2 2 4 ]
2run)” " g2 = m} + i) [(q+p)* —mi+ie] (4.3d)

B, (p, mi, m5) = [ -
2
(K
RD

= g,WBoo <p27 m%a m%) +pupuBll (an mfv mg) )

Co(pi pg? (pl +p2>27 m%’ m; m?‘)) =

/ dPq 1
S i 2mpn) @ —mi i) [(q+ p)? —mi+ie] [(q+p2)? —mi+ie]
(4.3¢)

with ¢ > 0 being the infinitesimal deviation from the real axis to obtain causal

Feynman propagators. Explicit solutions of the integrals are listed in Appendix B.1.
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4. Higher-order calculations

Two-loop order

For higher precision two-loop calculations are required and the formalism has to be
extended to two-loop Feynman diagrams. Besides the external momenta p;, two
independent loop momenta ¢, and ¢ appear now and both integrations have to be

regularized.

A general two-loop Feynman integral is given by

dPq qu
FQ(p]w m;, D / / . = 3 fz(%, 42, Dj, ™My, D) . (4-4)
"D RD 17?2 (2mpp) )

Possible higher-rank tensor structures of the integrand f, can be reduced to scalar
terms as described in Ref. [WSB94b]. In contrast to the one-loop case, neither a
complete basis of master integrals is known, nor full analytical solutions for all possible
scalar two-loop integrals exist. However, different numerical methods are available
to evaluate these integrals [BCH13; Smil3; Glu+11; BW08; Frel2; UF08].

Regarding only two-point vertex functions, the external momentum and the two loop

momenta form a set of five different kinematic variables:

ki=q, ke=qa+p, ks=@—q, ki=q¢, k=¢p+p. (4'5)

In analogy to the one-loop case, the integrals for n-point vertex functions with n > 2,
but just one non-zero external momentum, can be decomposed into two-loop integrals
with a maximum of five different denominators corresponding to the five different

kinematic variables of Eq. (4.5).

The different topologies of the one-particle irreducible two-point functions and their
corresponding notations are displayed in Fig. 4.2.1. The symbols used for scalar

two-point functions with n propagators are defined as follows:

Ta1...an (pQ; mi, ..., mi) =
/ a7 ! (4.6)
aoro (172 (2mup)P~") [k —miie] o [ —mi 4ie]

with a; € {1, 2, 3, 4, 5} and k,, corresponding to the kinematic variables in Eq. (4.5).
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4.2. Two-loop order

208w

Ti14 Ti134 Ti124 T1245 T34
T1234 T1234 T11234 T12345

4.2.1: Two-point functions.

oD o

Tll4 Tl]34 T]34

4.2.2: One-point functions.

Figure 4.2.: The Feynman diagrams of generic two-loop integrals for one- and
two-point functions.

For the special case of a vanishing external momentum only vacuum diagrams with
the variables k1, k3 and k4 remain and all integrals can be derived analytically. Also
the one-point functions (= tadpole diagrams), which are depicted in Fig. 4.2.2, can
be expressed in terms of these variables. To abbreviate the notation the identity

Tayoan (PP =0; 7, m2) = Tuy g, (M, m2) @i €{1,3,4}, (47

n

is introduced. The necessary explicit expressions that are used in this thesis are

presented in Appendix B.2.
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5. Renormalization

In Chapter 4 higher-order Feynman diagrams have been introduced and their diver-
gences have been parametrized by the dimension D = 4 — 2¢. Physical observables
must not depend on this regulator in the final result; the method used to absorb
the ultra-violet divergent parts of the loop integrals is called renormalization. After

performing this step the limit D — 4 (or ¢ — 0) can be taken without problems.

5.1. Renormalization methods

An important renormalization method, giving wide insights into the mathematical
foundation of renormalization of quantum field theories, is given by the Bogolyubov—
Parasyuk theorem [BP55], which was later completely proven by Hepp and Zimmer-
mann [Hep66; Zim69] and is therefore called BPHZ theorem today. The fundamental
observation is that the divergent parts of each loop integral are just polynomials in
the external momenta at each level of perturbation theory after canceling possible
subdivergences. Thus, renormalization of a divergent loop integral corresponds to
the subtraction of the proper terms in the Taylor series of the integrand (named R-
operation). The general solution of this procedure contains free constants which are

interpreted as counterterms and fixed by a renormalization scheme.

The advantage of BPHZ renormalization is the unnecessity of a preceding regular-
ization of the divergent integrals. However, it is complicated to impose symmetry
relations between different counterterms. The used method of renormalization in
this thesis is the multiplicative renormalization procedure which is explained in the

following sections.
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5. Renormalization

5.2. Renormalization transformation

Multiplicative renormalization can be carried out by the application of the following

transformations:

m—mg:=Znym=1+0Z,)m=m+dm, (5.1a)
9= 90:=299 =(1+0Z)g =g+dg, (5.1b)

for all masses m and all couplings ¢, i.e. all parameters inside the Lagrangian.
Furthermore, all appearing fields i) have to be renormalized to obtain finite vertex

functions:

Y= o =\ Zyp = \[1+ 02,0 . (5.2)

The parameters and fields before the transformation are called bare (depicted by an
index 0), while afterwards there are the renormalization constants (depicted by a 9)
and the renormalized parameters and fields. Each renormalization constant can be

expanded as a series according to increasing loop order.

Having performed this transformation additional interaction terms are described
by the Lagrangian, which are called counterterms. FEach renormalized tree-level
interaction gets assigned a counterterm; however also new vertices which do not exist
at lowest order of perturbation theory could arise. Usually one counterterm consists
of several renormalization constants. In gauge theories, gauge invariance is preserved
by fixing the renormalization constants in a proper way obeying the Slavnov—Taylor
identities [Aok+80; BSH86; Hol+02].

Beyond the one-loop order further complications have to be taken care of. Firstly,

all renormalization transformations need to be expanded to higher orders:

m — mp = Zmm =m+6Vm+5@m + (9(5(3)7%) ) (5. a)
1
Y — Y= \/ZTMb = [1+25 Zy+ = (5(2)Zw ( o )Zw) > +0 5(3)Z¢ }1#
(5.3¢)

where the notation of kth order renormalization constants indicated by §*) is intro-

duced. In the case of field renormalization the expansion of the square root to higher
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5.3. Renormalization schemes

orders has to be taken into account, which implies the occurence of higher powers
of lower-order renormalization constants at a given level of perturbation. Secondly,
products of renormalization constants have to be taken into account as can be seen
in Chapter 6. And thirdly, loop diagrams with insertions of counterterms must be
respected which is shown explicitly in the Feynman-diagrammatic representation in
the main part of this thesis in Chapter 7 and the corresponding analytical results
in Appendix D.4 and Appendix D.5. Only after computing the sum of all possible
diagrams of the same order the resulting vertex functions are free of divergences and

observables are additionally gauge-independent.

5.3. Renormalization schemes

Besides the desired property of canceling the unphysical divergences of a theory, ad-
ditional finite parts can be exchanged between the renormalization constants and the
renormalized parameters. Fixing the finite part of a renormalization constant defines
its renormalization scheme and thus the relation of the renormalized parameter to
physical observables. For practical calculations the most important renormalization

schemes are

e the minimal subtraction (MS) scheme:
the renormalization constant contains only the divergent part of the bare pa-
rameter or field and its finite part is equal to zero; DREG is used to separate

the divergences of the loop integrals,

e the modified minimal subtraction (MS) scheme:
similar to the MS scheme, but the finite part comprises the combination of the

constants (—vyg + log (47)) which emerge from the loop integration, with the

k

Euler—-Mascheroni constant vg := li_>m < S L n n),
" NE=1

e the dimensional reduction (DR) and the modified dimensional reduction (DR)
schemes:
in analogy to the MS and the MS schemes, but DRED is used as regularization
method,
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5. Renormalization

e the on-shell (OS) scheme:
in addition to the divergent parts of the bare parameter the renormalization
constant contains all finite parts that are necessary to render the renormalized
parameter closely connected to a physical observable®. This eliminates the

dependence on the regularization parameter up.

5.4. Renormalization group

The previous section clarifies that each renormalized parameter depends on the
regularization parameter pp unless it is renormalized in the on-shell scheme. Further-
more, up appears as coefficient of all couplings and fields in the Lagrangian to keep
the action dimensionless (cf. Chapter 4). Therefore, the up-invariant quantitites are

given by

g8 = 15 go = 1%\ Zy(un) g(pn) = (g(un) +3 5(’“)9(/@)) , (5.4a)
k—

v = i o = "\ Zy () () - (5.4b)

Thereby «(go) and a(1)y) are the appropriate and consistent numbers to keep the
action dimensionless. The independence of the left-hand sides of Eqgs. (5.4) on the
regularization parameter is used to define running couplings g(up) whose values

depend on the scale up:

_ . 0
0 = 1p"™ ) pup B 98

(o) \/79+<MD9>\r+[ (uDaM )(aagi\/?gﬂg (5.5)
olgo) €/ Zy 9+ B(g) \r+<2691 gl\r>g,

with the notation 0,, = 0/0g; and the beta functions

Blo) = 59 = 3. A (5.6)

k=0

6This can be a pole mass in the case of a mass parameter, but it also can be a coupling at a fixed
scale.
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5.4. Renormalization group

The last term on the right-hand side of Eq. (5.5) takes care of possible further running
couplings inside of Z,. The symbol B*) denotes the part of kth order of the beta

function.

The extension of this relation to the higher-order one-particle-irreducible bare n-point
vertex functions I'y, ., (¢; being the interacting fields) yields the renormalization
group equations. With the additional constraint of a diagonal matrix for the field-
renormalization constants” for the investigated theory (in the MSSM realized by the

Peccei-Quinn symmetry [PQ77]) the renormalized vertex functions are given by

Ly = 11 Vi Lt - (5.7)

i=1
The bare vertex functions are independent on the regularization parameter up:

0 !
—TI =0. 0.8
/’LD aﬂD Y1, %n ( )

Consistently with the above definitions it follows

o ({5 ) 25

=1

- 0 -1 n R
i Z; (MD O VZu ) ITVZ, || Torn (5.9)

j=1
JAi

(o S ot )

=1 i=1

with the anomalous dimension of the field 1; given by

R — oo
Vi = (MD % \/ Zdli ) \V Z¢i = Z rYz(k) : (510)
k=0

The symbols %-(k) depict the part of kth order of the anomalous dimension.

The renormalized quantity f%,m,wn and all its derivatives are finite in the limit € — 0.

Thus also ((g;) and +;, the beta functions and the anomalous dimensions, are finite.

"In general the field-renormalization transformation 1, — Y b/ Zpary, Yo is valid. The theories
which are considered here possess some additional symmetry (besides gauge symmetries) that
allows for the choice of a diagonal field-renormalization matrix Zy,y, = Zy, dab, i.€. the off-
diagonal entries are not required to absorb divergences.
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6. Higgs bosons in the MSSM

The Higgs fields of the MSSM have been introduced in Section 3.2. In the following a
detailed derivation of the required tree-level and higher-order relations is performed.
The presentation of Sections 6.1-6.4 follows Ref. [Fra+07].

6.1. Higgs potential

The non-derivative terms of the Lagrangian that only depend on the Higgs fields are
combined to the Higgs potential (cf. Eq. (3.4) and Eq. (3.7)):

VH _ V}II_HggS + V}k}reaking 7 (61&)
s 1 2 1

v disss S (g7 +92) (HiHo — ML) + 59@ (HiH2) (HiHL) | (6.1b)

Vi — m2 1M, + mE HIH, + (mé H, © Ha + L. c.) : (6.1c)

where m? = m? 4 |u|? are real and m?, = by, 1t = |m%,|€'¢" can be complex. The
Higgs fields given in Eq. (3.2) are tree-level states. In the most general case an

additional C'P-violating relative phase ( appears in one of the doublets:

v+ 5 (61 —ix1) ; b3
Hi = V2 . My =€ . 6.2
1 ( —¢1 ) 2 (Uz + % (¢2 + iX2)) 62

Herein the vacuum expectation values are chosen as real and positive since any
imaginary part could either be absorbed in the phase ( or by redefining the Higgs

fields using the gauge invariance of the Lagrangian.

To abbreviate the notation the following symbols are used:

Sy =sinx, c¢,=cosx, t,=tanx. (6.3)
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6. Higgs bosons in the MSSM

Inserting the Higgs doublets of Eq. (6.2) explicitly in the potential of Eq. (6.1) and

collecting powers of the field components yields

Vi = constant — Ty, ¢1 — Ty, ¢2 — T, X1 — T\, X2 + triple + quartic

b1
1 b o o (6.4)
+ ) (¢17 P2, X1, Xz) Mo, pax1xz Xj + (¢1 ; 92 ) M(ﬁ@t ((b;) )
X2

with the coefficients of the linear terms (the tadpole coefficients)

Ty, = —V2 [miv = bl vaccre + % (gF +92) (v —2d)w] . (650)
Ty, = —V2 [mg vy — [miy|vr ceper — 5 (91% + 9v2v> (“% - “§> Uz] ’ (6.5b)
T, = \/§|m%2| V2 S¢+¢ (6.5¢)
T = —or T = =V2lmhy v s (6.5d)

and the coefficients of the quadratic terms (the mass matrices)

M M
M¢>1¢>2X1X2 = ( 1\/;1@ M X ) ) (66&)
dx X1X2
My, 4, = mi+ (g% +95) Buf —v3)  —Imblece =5 (98 +95) vivs
192 )
—|miy| cerer — 3 (g% + g2)vive mi+ 5 (93 + g2) (Bvs —v})
(6.6b)
0 2 ,
My, = il e (6.6¢)
—[m3,| S¢+¢! 0
N (M (e g (] ) —|m2,| cere 660
X1x2 — , .
—|mis| e m3+ 1 (g2 + g2) (v —v3)
2 2 . , 9
Mot m? 4+ 2 (v} — v3) + L= (v} 4 v3) _|T§2|ez(<+<>_%wvw2
- . / 2 2 .
. Bl ) — B, m3 4 (0F — o)+ % (0 4 03)
(6.6¢)

The matrices Mgy, 4, and M,,,, are real and symmetric. The constant, triple and
quartic terms of Vi are not considered in the following since they are not needed for
the calculation in this thesis. However, it is worth mentioning that the triple and

quartic couplings are determined by the positive real gauge couplings gy and g,,.
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6.2. Minimization conditions

6.2. Minimization conditions

The minimum of the Higgs potential is located at the vacuum described by the

vacuum expectation values v; and vy in Eq. (6.2), i.e.

in !
VIfInln: VH‘¢1:01¢2:07X1:07X2:0 ' (6'7)

The necessary conditions for V" being a minimum are

oV;
- =0, (6.8a)
8¢1 ¢1=0,02=0,x1 =0,x2 =0
aV,
- =0, (6.8b)
O ¢1=0,¢2 =0,x1 =0,x2 =0
aV,
a—H =0, (6.8¢)
X1 ¢1=0,92=0,x1 =0,x2 =0
oV;
- ~0. (6.8d)
aXZ ¢>1 :Oz¢2 :val = O7X2 =0
Their evaluation leads to the relations
2 22 Ll 2 2 2 6.9
my = [mi,| o €+ T (QY Jrgw) (Ul 02) ; (6.9a)
v 1
mi = el ccvo + 5 (gF +00) (v = 05) (6.90)
S¢q¢r = 0 s (69C)

which are equivalent to vanishing tadpole coefficients in Eq. (6.5). By the use of a
Peccei-Quinn transformation [PQ77] the parameters p and m2, = |m?,|e’¢’ can be
redefined such that ¢’ = 0, hence Eq. (6.9¢) implies ( = 0. As a consequence of this
result, the mass matrices in Eqs. (6.6) simplify: My, =0 and Myz4+ is real and
symmetric like the other mass matrices. Since the triple and quartic couplings of
the Higgs potential are determined by the real gauge couplings the Higgs sector of
the MSSM is C P-conserving at lowest order.

However C'P-violation can occur at higher orders in perturbation theory. The de-
pendence on ( is kept since it has to be renormalized and acquires independent
renormalization constants. In contrast, by using a Peccei-Quinn transformation ¢’
can always be set to zero. Hence, the parameter m?, is treated as a real quantity

from now on.
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6. Higgs bosons in the MSSM

6.3. Tree-level mass-eigenstate basis

The Higgs potential in Eq. (6.1) can be expressed in terms of a new basis which
yields the mass eigenstates at lowest order. The necessary transformations of the

Higgs fields are given by

h A H:I: 4
_p, () =D, (], .| =Dy d)i , (6.10)
H ¢2 G X2 G ng
with the notation ¢] = (gbf)T , Oy = (¢;)T and the mixing matrices D, = (Z‘ff ng)’

writing s, = sinx and ¢, = cos .

The mixing angles «, §, and (. are not renormalized, but used as tree-level pa-
rameters at all orders of perturbation theory. Their explicit occurrence is kept in
the following expressions in order to derive the correct counterterms for the Higgs

potential.

Applying the transformations of Eq. (6.10) to the Higgs potential in Eq. (6.1) yields

Vg = constant — T, h — Ty H — Ty A — T G + triple 4+ quartic

h
+ 3 (h, H, A, G) Murac Z (1 6) My (gi) (6.11)
e

with the corresponding tadpole coefficients Ty, Ty, T4 and Tg and the mass matri-

ces

2 2 2 2
my Mg Mpa  Mya

2 2 2 2 2 2
m m m m m M-
hH H HA HG H+ H-G+
Migag = , Mpyztgs = ( 9 ) . (612)

2 2 2 2 2
Mpa Mg My Myg Meg-g+ Mg=

2 2 2 2
Myg Mg Mag Mg

It should be noted that the mass matrix of the neutral Higgs bosons is real and

symmetric whereas the one of the charged bosons is complex and hermitian.

Before presenting the explicit expressions of the entries in Eq. (6.11) also the set of
the eight independent parameters gy, gy, mi2, My, Ma, v1, Vo and ( is substituted

by the set of the on-shell parameters e, My, Sy, my= (or ma), Ty, Ty, Ta and ts.
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6.3. 'Tree-level mass-eigenstate basis

Thereby the gauge couplings fulfill the following relations:

gy = —, (6.13a)
CW
Sw
M

Cow = FVZV: 1—s2 . (6.13c)

According to electroweak symmetry breaking the gauge-boson masses are connected

to the vacuum expectation values as follows,

My =1 (g% + gfv) (vf + v%) , (6.14a)
My, =1g2 (Uf + vg) : (6.14Db)

In addition, the following quantity is defined:

tan () = t5 = 2 . (6.15)

U1

The tadpole coefficients in the basis of lowest-order mass eigenstates are derived
as follows by applying the rotations in Egs. (6.10) with the angles «, /3, and (.
to Egs. (6.5):

T, = V2 M3} U1 8o — M3 Uy Co —|—m%QCC (V1 Co — V2 S4)
- (6.16a)
+ i (g%/ + gfv) (U% — U;) (V1 S + U2 ca)} ,
_ [ 2 2 2
Ty =2 — M V1 Co — M Vg So + M7y Cc (V1 S + V2 Ca)
: (6.16b)
—1 (g% + gfv) (U% - v%) (V1 o — V2 sa)} ,
Ta = —V2m2ys¢ (v cs, +1253,) (6.16¢)
Ta = —tg_p, Ty, (616d)

where now Tg is linearly dependent on T)4. Similarly, the relations of m 4 and mpg=

to the previous set of parameters can be computed:

i = mi s, el 4 sas, mby e — e, L (67 4 2) (1 —03) L (617a)

My =m3 s5 + m5ch 4 S28, My Cc — Cop, 1 (9§ + g@) (”% B ”g) (6.17b)
+ %gfv (v1 cp, + Vo S,BC)2
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6. Higgs bosons in the MSSM

For the substitution of the original parameters, the relations of Eqgs. (6.13)—(6.17) are
used, yielding the following identities:

B ﬁcﬁstW

T e (6.18a)
2 w M
vy = V2505w My -
e
1 52
2 9 ) 3
my = —5 MzcCpp+ My 5
2 C5—pn
T2, ;iincg 5 {Th [sa cs s, + 55 (Cacp, +25a58,)] (6.18¢)
— Ty (Ca+ﬁ Cg, + 2¢, s Sﬁn) } ’
1 2
2 2 9 5
my = - My Cop + My —5——
2 C5—pn
+ 2 Sy ](\Bfiincgﬁn {TH [_Sa 5553, + Cp (ca 58, — 2 54 Cﬁn)] (6.18d)
—Th (5a+5 88, +2cq Cﬁn) } ’
S92 e
o ) o 6.18e
+ TH (SﬁJra — S8—a CZ,Bn) } ,
2 GTA
o ’ 6.18f
Mys 8¢ 25y Mw cs_p, ( )

Therein m 4 is used instead of mpy=; as can be seen in Eqs. (6.17) only one of both

masses can be used as an independent parameter.

The new set of parameters is now utilized to display the full form of the bilinear
expressions of Eq. (6.11). It is convenient to parametrize Mpgac in terms of ma

and Mpy+g+ in terms of my+. The results are given by

2
mh = M s+
8, 6.19a
€ SQ_B"Q [TH Ca—B Sa—p, + 11 : (c2a-p-p, + 3 Cﬁﬁn)] ’ ( |
28y My cj_g. 2
Miyg = —M3 St Cars +m5 S(lc_fﬂ
) B—Bn (6.19Db)

_|_

2 2
25y My 4, [TH Sa=p Sa=p ~ Th Ca—p Caﬁ”] !
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6.4. Lowest-order relations

2
my = My 0a+/3+m§xczaiﬂ
e B=bn . (6.19¢)
a_/Bn
—Th Sa—p Ca—p, + T = (Con—p—p, —3Cs-5,)|
2ow My &, 8 Ca—p 5 (C2a—p—p 5-6n)
2 2 € Sa—pBn
= = T 6.19d
Mg = Myg 2 59 My A Chg, ) ( )
2 2 € Ca—Bn
= — = T 6.19¢
My Mpa 2 5 My A Chg. ) ( )
2 2 €
Mmics = —m45ts_g — Ty Sa—p, — T}, Co— , 6.19f
AG A t6-p, 2(,SWMW%_&L( H Sa—pn — Th Ca—p,) (6.19f)
e
m?; = mix t%—ﬁn + (=TH carp—2p, + Th Satp—28,) (6.19g)

2 SW MW C%*,Bn

2 2 € Sa—p. Ca—p.
My — = —m it—c_ TH —|—T +ZTA ) s 619h
et MR 2 sy My < CB—B. CB-B. BBy, ( )

M-+ = (Mi-g+)" (6.19i)

6 .
MGs = My t5_g + (=Th Catp-28. + Th Sarp-28.) - (6.19j)

2 8 My, C%—ﬂc

6.4. Lowest-order relations

At lowest order, the minimization conditions for the Higgs potential (cf. Section 6.2)

impose vanishing tadpole coefficients
7O =0, ie{h H, A G}. (6.20)
Accordingly, the relative complex phase of the Higgs doublets is equal to zero,
¢(=0. (6.21)
Furthermore all couplings of the Higgs potential are real, rendering the Higgs sec-
tor C'P-conserving at lowest order.

6.4.1. Masses and mixing angles

The tree-level mass matrices of Eq. (6.12) in the chosen mass-eigenstate basis are

diagonal, thus the lowest-order Higgs-boson masses are given by

MhHAG’ = diag (m%u m%[? m?Aa m?}’) ) Mg)igi = diag (mzi, méi) . (622)
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6. Higgs bosons in the MSSM

Applying these relations to Eq. (6.19f) and Eq. (6.19h) leads to

0=mie=-m2tsg, = B=8, (6.23a)

0 < mJQLI*GJr = —m?{i tg—p. = 8 =p.. (623b)

As an immediate consequence the masses of the unphysical Goldstone bosons G
and G* given in Eq. (6.19g) and Eq. (6.19j), respectively, are zero. Furthermore,
Eq. (6.18e) simplifies to a condition for the mass of the C'P-odd A boson:

2
5 2mi,
my = .

6.24
o (624)

For the charged Higgs boson H* a similar relation is obtained by using Egs. (6.17)
in Eq. (6.18e):

2 2
mZe = —12 4 g2 (6.25)
S22
Thus, the following mass relation holds:
mye =m4 + M7, . (6.26)

The tree-level masses of the neutral C'P-even Higgs bosons are more easily acquired
by diagonalizing the matrix in Eq. (6.6b). The application of Eqgs. (6.18) and the
usage of the lowest-order relations of Eq. (6.20) and Eq. (6.21) yields

MR\ A ME)ss mE A ME4 (M- Mey)
The eigenvalues of this matrix are
2 1 2 2 2 22 2 N2 .2
especially yielding the relation mj +m?% = m? + M3 .
Furthermore, an upper limit on the lightest Higgs-boson mass is obtained,
m; < M} cgﬁ : (6.29)

although higher-order corrections shift this bound significantly.
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6.4. Lowest-order relations

Utilizing the properties of the C'P-even Higgs-boson mass matrix to be real and

symmetric, the following rules for the mixing angle o are derived:

mi; + m, mj —my m3 +my
S92 — s 3 528 , C2q = NG EY) Ca3 t2a =5 5 tQﬁ . (630)
My — My My — My mqg —myz

Without loss of generality, 5 can be defined in the range between 0 and /2 [CHO3].
For this choice, Egs. (6.30) constrain « to be in the intervall —7/2 < a < 0. The
third equation of Egs. (6.30) depends only on the input parameters m, and tg.

As can be seen from Egs. (6.23)—(6.30), the masses and mixing angles of the Higgs
sector at lowest order are determined by the two parameters mu (or mpy=+) and tg.
At higher orders of perturbation theory, mixing of the A boson and the other neutral
states is induced by C'P-violating couplings from other sectors of the MSSM. In that
case A is not a mass eigenstate anymore; instead, the mass of the charged Higgs

boson will be used as an input parameter.

6.4.2. Gauge fixing

The Lagrangian of the MSSM at the quantum level incorporates a gauge-fixing part,

1
ﬁﬁxz——F,L;FA——FZF;—f o Fy (6.31)
w

The gauge-fixing functions can be chosen in the R¢ gauge as in Ref. [SSV13],

Fy=0"A, , (6.32a)
FZ:a‘uZH—Ffzf/ZMzG , (632b)
Fyy = 0"W £i&w&y My G* . (6.32¢)

Thus L, introduces additional terms that are bilinear in the Goldstone fields G

and GT and hence contribute to their masses. At the tree level they arise as

mé; = E2€5 M (6.33a)
M = Ewid My (6.33b)
For the following analysis the 't Hooft-Feynman gauge is used which is an R, gauge

with gauge-fixing parameters {; = 1 and & = 1, i € {4, Z, W}. Thus, the tree-level

values of the Goldstone-boson masses are equal to the gauge-boson masses.
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6. Higgs bosons in the MSSM

6.5. Higher-order relations for masses and mixings

At higher orders the one-point and two-point functions are dressed by loop contri-
butions and have to be renormalized. They are related to higher-order corrections of

the tadpole coefficients and masses in Eq. (6.11).

The renormalized one-point functions are equivalent to the renormalized tadpoles.
At j-loop order (j > 1) they are denoted as ng), i € {h, H, A, G}. The lowest-order
tadpole coefficients in Eq. (6.20) receive loop contributions up to the kth order (k > 1)

according to

k .
T =10+ 19| ie{h H A G} (6.34)

K
j=1

The renormalized two-point vertex functions are given by

f‘g?mc (pQ) =1 {p21 - MEEAG (ﬁ)} ) (6.35a)
f‘gﬁai (p2) =1 [p21 - Mglai (pZ)} : (6.35b)

In Eq. (6.22) the lowest-order mass matrices are listed. The higher-order corrections

up to the kth order (k > 1) are then given by

k .
M) ac (pQ) = Mg — > Sihac (pQ) ; (6.36a)
i=1
k .
Mo () = M0 — 3 S0 (7). (6.360)
j=1

Therein, the matrices of self-energies at j-loop order (j > 1) are denoted as

S0 S T Dee?)
£ () = | D) ZH0) T Sie?) (6.378)
AT T80 62 29,07 5900 SR | o
et SH6e?) S0 BP0
o $20) (p2> $206) 2
$9. () = [ g () (6.37h)
o) =\ o)

They include j-loop Feynman diagrams and counterterms and are momentum depen-

dent.
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6.5. Higher-order relations for masses and mixings

The masses of the Higgs bosons are achieved as the real parts of the poles of the
corresponding dressed propagator matrices which are related to the inverse of the
irreducible two-point vertex functions in Eq. (6.35a) and Eq. (6.35b), respectively.

As soon as f];f}, 1c(p?) contains non-vanishing off-diagonal entries at any loop order 7,

in general also f‘;ﬁz, 1c(p?) has off-diagonal entries at a loop order k > j.
Thus, the higher-order corrected masses my,,, mp, and my,, of the neutral Higgs bosons
are gained as the real parts of the roots of the determinant of fg’?, AGH 1-€.

det [T (1?)] =0, mp, =Rela?], ie{l,23}. (6.38)

2 — .2
p? = ;

This is clearly a non-trivial task since the dependence of the self-energies in M,(Z}z, AC
on the external momentum p? is a complicated function. The fourth solution of
Eq. (6.38) belongs to the Goldstone boson, whose mass remains at zero also at higher
orders [Hol+02].

Analogously, the mass of the charged Higgs bosons H*, at higher orders denoted

as mp+, is given by the real part of the root of the determinant of f‘gﬂ Gt 1€
& (k
MﬁgﬁwmkﬂﬂLnﬁz%wy (6.39)

Again, the second solution of Eq. (6.39) is equal to zero, corresponding to the
mass of the charged Goldstone bosons which do not receive higher-order contribu-
tions [Hol+02].

In the most general case, also mixings with the longitudinal Z and W* have to be
considered in Eq. (6.37a) and Eq. (6.37b), respectively. They are correlated with the
mixings of G and G* by Slavnov—Taylor identities [BBS08; WRW11; Hol+02], thus
required to maintain gauge invariance. However, the relevant contributions appear

the first time in the gauge parts of two-loop corrections, which are neglected here.

The mixing angles «, 3, and . are not renormalized, but kept at their tree-level
values. Since the self-energies which contribute to Eq. (6.35a) and Eq. (6.35b) at
higher orders are non-diagonal and momentum dependent, mixing angles generally

cannot be defined anymore at higher orders.

Moreover, the gauge-fixing sector is not renormalized, i. e. the gauge-boson masses My,
and My as well as the gauge-fixing parameters & and £ in Eqs. (6.33) are kept at

their tree-level values.
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6. Higgs bosons in the MSSM

6.6. Renormalization of the Higgs potential
The quantities T Ehg, 4 and 3} HiGi which have been introduced in Eq. (6.34)
and Egs. (6.36) are all renormalized quantities.
The tadpoles can be decomposed according to
YE” _ TZ(J') + 5(j>TiZ, ie{h, H, A, G}, (6.40)

with the jth order unrenormalized tadpoles TV and the corresponding tadpole

7

counterterms §V)TZ.

Analogously, the self-energy matrices are decomposed according to

2532(14@ (pQ) = EEL]?{AG(pZ) - 5(j)MizzHAG(P2> J (6.41a)
D)0 () = 5D (1) — 6MZ e (57) (6.41b)

The unrenormalized j-loop order self-energy matrices are denoted as

S0 SR S Siee?)

S0 () = | 0 TR D) Bie?) (6.422)
RHAG\P ) = L 50) 2y w@) 2y w@ 2y n0) p2) | e
hA(p ) HA(p ) A (p ) AG(p )

SR She?) S9LeY )

A Z(j)(2) »U) (2)
(4) 2\ _ =P H-g+\P

Sk () = [ o) LN E (6.42b)
Yol Bea(p?)

For the corresponding counterterms of jth order the following notation is used:

5“ mf(p?)  dVmiy(p?) 6UmE,(p?)  6Vmi(p?)
GNAZ 2\ _ th( %) 5(J)m%(172) 5(])7”%,4(172) mIZ{G(pz)
J MhHAG<p)_ 4) 2 DNy Z (2 D Z (2 zZ 2\ |
5 mhA( ) 0 mHA(P) 0 mA(I?) o mAG(P)
Z:?) 0UmE (%) dVmE(p?)  dDmE(p?)
(6.43a)
SOmZ . (p? S@mz 2
SN (42) = [ O W) 0 e (7)) (6.43D)
(s(J)mG_H+ (p ) (5(J)mGi (p )

The counterterms include parameter and field-renormalization constants and are

dependent on the external momentum.
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6.6. Renormalization of the Higgs potential

The independent renormalization constants for the parameters of the Higgs potential

are introduced by the renormalization transformations

k k k
6—)6+Z(5(j)6, t5—>t5+25(j)t5, Mw—>Mw+Z(5(j)Mw,
j=1 j=1 ji=1
k k

My — My + Z U M, or Sw — Sw + Z 6Wsy, |
j=1 j=1

mi — mi%— Z 5(J)m?4 or m?{i —>m§{i + Z (5(3)qui ,
j=1 j=1

k k k
Th—>Th—|— Z(S(j)Th, TH—>TH+ Zé(j)TH, TA—>TA+ Z5<j)TA.

j=1 j=1 j=1

(6.44)

Therein "or" means that the parameters of jth order on the left- and right-hand
side are not independent, thus only one of them can be fixed by an independent
renormalization condition; My and s, are related to each other by Eq. (6.13), and
the masses m4 and my+ have to respect Eq. (6.26). The tadpole counterterms o DT
are not appearing in Eq. (6.44), since they are already fixed by 6T via the linear
relation between T4 and T in Eq. (6.16d).

The parameter tg = vy/v; is renormalized since it originates from the vacuum ex-
pectation values of the Higgs fields. On the other hand, the mixing angles ,, (.
and also «, although related to ¢ at lowest order, are not renormalized; they do not
absorb divergences. As a consequence of keeping the mixing angles at their tree-level
values, the self-energy counterterms can be evaluated in the basis of the lowest-order

mass eigenstates.

In addition to parameter renormalization, also renormalization of the Higgs fields
as described in Egs. (5.3) is required in order to achieve finite self-energies for an

arbitrary external momentum.

In our choice, each doublet acquires one field-renormalization constant:

k
Hi — HIN/Z'Hl s Zq.[l: 1+ Z 5(])27.[1 s (645&)
j=1
k
Ho — HQ\/ZHQ s ZHQZ 1+ Z 5(3)27.[2 . (645b)
j=1

47



6. Higgs bosons in the MSSM

Since the Higgs fields are transformed into mass eigenstates according to Eq. (6.10),
also the field-renormalization constants are transformed to the new basis. Using the

rotation matrices D, = (‘Cff gg) yields

(h) D, (VZ 0 ) D! (h) T (h) , (6463
H 0 VAR H H

Fome (B 2ol nafl) om
(Hi) — Dg, (\/Ziyl 0 ) Dgl (Hi) =: Ziy+tg+ (Hi) . (6.46¢)
G* 0 Iy, c\G* G*

Thereby the new objects Zny, Zac and Zpg+g+ are introduced. They are field-
renormalization matrices for the Higgs fields in the basis of lowest-order mass eigen-

states, but depend on the original field-renormalization constants in Eq. (6.45).

An expansion of these (2 x 2) matrices to loop order k defines the terms

k ‘ , 1(6WzZ,, 97,4
Zon =1+ S 69Zy , N2y == , , 6.47a
" jz1 " SRV Zun 69 Zyy ( )

k ‘ , 1 (6WZ44 69DZ4c
Zac =1+ 6UVZ,q , dDNZae == . : 6.47b
o jzl Ae T2 \60 264 09 Zgq ( )

koo : 1 (6D Zysps 09 Zy-cr
_ 6)) €)) _ - H*H H-G

ZH:I:GH: 1+ Z ) ZH:l:Gzi: s ) ZH:I:Gzt 9 6(j)ZG7H+ 5(j)ZGiGi . (647(3)

j=1

It is noteworthy that no field-renormalization constant for the transition between
the tree-level C'P-even and C'P-odd states exist at all orders in perturbation theory,

which is an immediate consequence of C'P-conservation at the tree level.

For the following general formulas of the tadpole counterterms in Eq. (6.40) and the

self-energy counterterms in Eqs. (6.43) some conventions are introduced:

00Z, =1, 69Ze=1, 69Zyic:=1, (6.48a)
SOMyprac = M%AG , 0OMpege = Mg)iaﬂ: , (6.48b)
sOT, =1 ie{h H, A G} . (6.48¢)
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6.6. Renormalization of the Higgs potential

The tadpole counterterms in Eq. (6.40) can be expressed as the sum of the ma-
trix products of the tadpole renormalization constants in Eq. (6.44) and the field-
renormalization constants in Eq. (6.47). At each loop order k the separate counter-

terms of various orders j; and j, are combined:

5(k)Thz 5l
5(k)TI—ZI k 5(j1)ZhH 0 80Ty

= . A 6.49
sorz| = 2\ o sunzag) | s, (6.49)
SMTE o=k 56T,

Similarly, the mass counterterms in Eqs. (6.43) can be achieved from sums of matrix
products of the field and genuine mass counterterms. Again, the separate counter-

terms of various orders ji, j» (and j3) are combined:

k s zT 0 , 5037 0
I NMZ — hH (J2) hi

Ji, j2, J3 =0
Jj1+i2+is =k

k . .
s 7T 0 5U2)7, 0
- X Mg | (1) R !
Ji, g2 =0 0 0 ZAG 0 d ZAG
Jj1+ij2=k
(6.50a)
k
5(k)MgiGi = Z 5(j1)ZJI;iGi (S(jQ)MHigi 5(j3)ZHigi

Ji, j2, 43 =0
Jj1+i2+is =k

k
_ Z 5(]’1)Z§iGi <p21) LR/

ji, 32 =0
j1+i2=k

(6.50D)

In this representation of the counterterms the momentum-dependent parts are sepa-

rated from the momentum-independent parts.

The matrices of the genuine j-loop mass counterterms are denoted as

§Om2  6Wm2, §Um2, §Um2,

50) 5(j)m%H 5(j)m§{ 5(j)m12mx 5(j)m%]G
Musrac = §Dm2, §Om2, §Om%  Dmi. | (6.51a)
§Dm2, 0Wm2, sVm%, 6UIm2
)2 )y 2
SIMpzge = om0V (6.51b)
=G 5 m2 5 m2 '
G—H*+ G*
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6. Higgs bosons in the MSSM

6.7. One-loop renormalization

To demonstrate renormalization and to introduce the notation for Chapter 7 the
counterterms are derived at the one-loop order in the following. Furthermore, at
higher orders the one-loop counterterms are necessary for the evaluation of the tadpole

and mass counterterms in Eq. (6.49) and Eq. (6.50), respectively.

6.7.1. Field renormalization

Expanding Eqgs. (6.44) and Eqs. (6.47) to the order k = 1 and comparing the entries
in Eq. (6.46) yields

oW Zp = (Sié(l)Zyl + cié(l)Z%) , (6.52a)

00 Ziy = (20" Zog, + 5200 Zy,) (6.52b)
00 Znr = 0N Zugn = casa (00 Zn, — 0V 2y, ) (6.52¢)
SV Z 40 = (sgnémzﬂl + cgn(i(l)ZHz) , (6.52d)
0 Zaa = (c3,60 Zyy, + 53,01 Zu,) (6.52e)

0 Zag =W Zaa = cg,55, (01 Zn, — 6V 23y, (6.52f)
O Z s e = (s%cé(l)Z% + 0%65(1)2}[2) , (6.52g)
0 Zgzge = (3,00 Zoy, + 53,00 Zny, ) (6.52h)
0 Zy-e = 0 Zg-pv = cp.55, (00 Zn, — 0V 2, ) (6.52i)

The two independent renormalization constants 6 Z;,, and §( Z, have to be de-
termined. This is done by imposing DR conditions to avoid potentially large con-
tributions from the finite parts [Bri92; Fra+02; FS02]. Using Eq. (6.10), they can

be obtained from the self-energies in the basis of lowest-order interaction or mass

eigenstates:
(950 ()] oxy| 0P
Wz — | 2\ T =0 6.53
e ‘| o2 i ) op* ’ .
L ddiv L 4 div
(o5 ()] oy 0P
Wz — | 22\ T a=0 . 6.53b
Ha ¢ i apQ | ¢ (9]92 ) ( )
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6.7. One-loop renormalization

6.7.2. Mass and tadpole renormalization

The tadpole counterterms of Eq. (6.49) at the one-loop order yield

sOTZ 7% ST,
ST 8WZyy 0 7y s Ty
Wz |~ (1) o | T sr |- (6.54)
sOTZ T sOTg

With the lowest-order tadpoles T,” = 0, i € {h, H, A, G} (cf. Eq. (6.20)) the explicit
form of Eq. (6.54) is given by

sWT? =0T, . ic{h H A G}. (6.55)

The tadpole counterterms §V7;, i € {h, H, A} are fixed by requiring the minimum
of the Higgs potential not to be shifted by the renormalized one-loop tadpoles,
ie. T =0. Thus, Eq. (6.40) with j =1, and Eq. (6.55) provide the tadpole

counterterms according to

0=TW =W sz s — " je{n H A}. (6.56)

3 3 (3 3

The fourth tadpole counterterm §M 7y is fixed by 6(VT, via the linear dependence
of Tg on Ty in Eq. (6.16d), i.e.

VT = -1, . (6.57)

The evaluation of the mass counterterms of Egs. (6.50) for k£ = 1 leads to

SWZT 0
S My ac = ( " (MSZAG - p21)

o sWzh,
507 0 (6.58a)
0 2 hH
o= (")
+ 6P Mypac

6(1)M%{igi - (5(1)Z7]_}igi (M(HOZtgd: _p21) + (MthGj: _p21) (5(1)ZHigi

6.58b
+ 5(1)MHigi : ( )
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6. Higgs bosons in the MSSM

The usage of the lowest-order mass matrices which are listed in Eq. (6.22) results

in the following expressions for the components of Y MZ%, ,~ and 5(1)MIZ—IiGi in
Egs. (6.58) with the same notation as in Eq. (6.43):

sWmZ = (m,% — p2) oM Zyp +6Wm (6.59a)
dWm% = (m?q - p2> 6 Zyp +06Wm?, | (6.59Db)
sWm2 = (mi - p2) SV Zya+6Wm? | (6.59¢)
sWmZ = (mé - p2) W Zaa + 6Wmd, | (6.59d)
sWmz, = (mi;m?{ — p2> oW Zm + 6Wm?,, (6.59)
sWmZ, =5Wm2 (6.59f)
SWm#, = sWm?, | (6.59g)
sWmz = 6Wm?, , | (6.59h)
sWm%,, =oWm?, | (6.591)
§0mi = (MhEmE — ) 80 Zsg + 6 md (6.59))
oWmZ, = (mzi - p2> 6 Zye e +0Wm2. | (6.59k)
sWms, = (mQGi —p2> oW Zgrgr + 6Wmie | (6.591)
oWm% . = (mi’i;méi —p2) OV Zy-cr +6Wm2_ .y, (6.59m)
SOmZ_ L — (’”Gi;mffi _ p2> 50 Zg e+ 60mi s (6.59m)

Furthermore, depending on the chosen input parameter being m4 or mpy+, the

appropriate renormalization condition has to be imposed.

52

e If m, is chosen as an input parameter, then the on-shell condition for the

renormalized self-energy reads
(1) _
%e[EA (p2)}p2 , =0. (6.60)
Applying this relation to Eq. (6.41a) with j = 1, and using Eq. (6.59¢) yields
0Wm? = Re[SY (m3)] - (6.61)

This option is not available in the case of C'P-violation, since m% is not an

on-shell parameter anymore.



6.7. One-loop renormalization

e On the other hand, if the charged Higgs-boson mass myg+ is chosen as an input

parameter, the condition
R[S0, =0 (6.62)
HE

is imposed on Eq. (6.41b). With the additional result of Eq. (6.59k), the

renormalization constant §(Vm?2.. is fixed by

0Wmie = Re[ L4k (mie )] - (6.63)

For either choice the other counterterm is determined by Eq. (6.26) yielding
SWm2 . = 6Wm? + sW M2, (6.64)

The other genuine mass counterterms follow from applying the renormalization trans-
formations in Eq. (6.44) with & = 1 to the expressions in Eqs. (6.19). Having inserted
the lowest-order relations of Eq. (6.20) and Egs. (6.22) they are given by

sWm? = sWm? ci_ﬁ +oWM3 siw

QZic}_in [5(1)TH Ca—B Sa—p T (5(1)Th (1 + Ci_ﬂ)} (6653)

+ 5(1)t6 C% (Tn?4 52(a—p) T M% 82(a+5)) ,

dWm2 = sWm? so_g+ S M2 s

_ G850 2 (1)
7ot 9T (1+55p) + 00Tk sag o] (6.65b)
—0Wtg cj (mi sa(a—p) + M 52(a+ﬂ)) ;
W2 — ¢ (50 (1)
o = 5 (=0T cap+ 00T 50-p) (6.65¢)
1
dWmj = 3 (60m2 30 g) = 0V M3 830015
€
_ ¢ 0.3 5O 3
ity [P -0 ] o)
— 60ty (M eatamp) + M3 Coat))
e
5(1)771%“4 = ma(l)TA Sa—p8 (665@)
(&
5(1)m%G - mé(l)TA Ca_ﬁ 9 (665f)
dWmiy = —0Wmie | (6.65g)
SWm% e, =oWm?, (6.65h)
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6. Higgs bosons in the MSSM

5(1)m?4G = 2<5‘W6]WW [—5(1)TH Sa—p — 5T, ca_B] — 5(1)155 m c% , (6.651)

§Mm2. = 28W€MW (60T o+ 60Ty 50-s] (6.659)
§Dm,_ gy = _25W6MW (60T s0cp + 60Ty e +i60Ta] = 6ty miye &,

(6.65K)

0Wm e = (60mi o) (6.651)

As can be seen, renormalization of e is not necessary for the one-loop Higgs-mass
counterterms. This is due to the fact that §Me would only appear as a factor of a

tree-level tadpole which are however equal to zero.

The TW-boson mass is an input parameter for Eq. (6.64) and has to be renormalized.
Together with the renormalization constant for the Z-boson mass it is fixed by the

on-shell conditions

0 ; Jte i%/Ilf)W (p2>L,2 = M2, ’ (666&)
= Re E%}W p2> + <p2 - Mgv) 0N Zww — 5(1)M5V:|p2 =M2
L - w
0= Re :2% (pQ)]pz 2 (6.66b)
e[zl (p2) N <p2 N M;) sV Z,, — 5(1)M§L2 e
L Z
leading to
s, = %[Z%)W (Mv2v>] : (6.67a)
SONM2 = Re [E(ZI)Z (M%)] 7 (6.67Db)

with the one-loop self-energy diagrams ZS)W and Z(Zl)Z for the W and Z boson respec-

tively. In this scheme 0 s, is a dependent quantity which is fixed by Eqs. (6.13),

i.e.
2 1 2 1 2
sV, = v UM SV My (6.68)
25y \ M2 M,

6.7.3. Renormalization of tan(f3)

The last remaining renormalization constant is 5(1)t5. It originates from the renor-

malization of Eq. (6.15) where the property of the vacuum expectation values of
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6.7. One-loop renormalization

acting like fields as well as parameters is respected, i.e.
1
Vi — Z’HI (UZ‘ + 5(1)Ui) =v; + (5(1)%‘ + 5 (% (5(1)27.[1 s 1€ {17 2} s (669&)

1 1
5 (“2) _ B [5( v 00, 41 (5(1>ZH2 - (5(1)27-[1)

(%1 (%1 (%) (%1 2

(6.69D)

Conveniently 61t is fixed in the DR scheme which has emerged as the best choice in
Ref. [FS02]; different process-dependent renormalization schemes have been applied
in Ref. [BBS08]. With the additional observation [CPR92; Dab95] of

S S
P (6.70a)
U1 iy V2 giv
it follows that
1
5(1)t5 = 5 (2?) . = 575/3 (5(1)ZH2 — 6(1)ZH1) ) (6.70Db)

Thereby Eq. (6.70a) follows from H; and Hs having the same SU(2)r, and U(1)y quan-
tum numbers, up to a sign. The field-renormalization constants have already been
determined in Egs. (6.53) by DR conditions.

The divergence in Eq. (6.70b) is related to the beta function for ¢4 at the one-loop

order:

5(;:5 _ ﬁ<;>t(;5)1 : (41@21 [NeTr (h,h}) — N T (hh) — Tr (hohf)]

(6.71)

which solely depends on the Yukawa-coupling matrices h,, hy and h, that are intro-
duced in Eq. (3.5). The constant N, = 3 denotes the number of colors. For a detailed
study on the evaluation of the beta function of t5 refer to [SSV13]. Some general
remarks on the origin of the beta function of {5 and its relation to renormalization

of tg are given at the end of this chapter.

Having set up full one-loop renormalization of the linear and bilinear terms in the
Higgs potential leaves the evaluation of all necessary self-energy and tadpole Feynman
diagrams, which can be expressed by the standard scalar one-loop functions as defined
in Chapter 4. Latest results of the full one-loop calculation have been presented in

Ref. [Fra407].
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6.8. Two-loop renormalization

As the formal basis for the concrete two-loop calculation in Chapter 7 the results
for two-loop renormalization of the Higgs tadpoles and masses are presented in this

section.

6.8.1. Field renormalization

The field-renormalization transformation introduced by Egs. (6.45) has to be ex-

panded to the second order, leading to

Hi = Hir/ Zo, = HiyJ1 + 00 Zyy, + 6@ Zy,
] ] (6.72a)
=H; (1 + 55“)2% + QA(Q)ZHZ) ,

with the abbreviation
1
A® 2y, = 6D 2y, — (61 2,)" . (6.72b)

The full two-loop content of |/ Zy, is contained in A® Zy, i€ {1, 2}.

According to Egs. (6.46) the two-loop field-renormalization constants in the basis of

lowest-order mass eigenstates are given by

00 Zn = (LA Zyy, + 2 AP Z3y,) (6.73a)
00 Ziy = (AP Zy, + 2 AP Zyy, ) (6.73b)
02 Zyp = 0P Ziy = ca 50 (AP Zay, = AP Z3,,) (6.73¢)
00 Zan = (53, AP Zy, + &, AP Zy,) (6.73d)
00 Zge = (b, AP Zy, + 53, AP Zy,) (6.73¢)
00 Zag = 02 Zaa = cp, 55, (AP Zay, — AP Z3,,) (6.73f)
00 Zireps = (53, AP Zyy, + 3, AP 23y, ) (6.73g)
00 Zgzge = (3, AP Zyy, + 53, AP 2y, ) (6.73h)
0 Ziree = 0@ Zgrps = cp, 55, (AP Zyy, — AP 2y, ) (6.73i)
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6.8. Two-loop renormalization

Two independent renormalization conditions are required for ¢ . In analogy to
Egs. (6.53), they are determined by the DR conditions

x| 07
2 a =
6D 7y = —Re 8p20 ) , (6.74a)
os?| )]
2 o=
6 Zy, = —Re ap20 ) : (6.74b)

6.8.2. Mass and tadpole renormalization

For k = 2 the tadpole counterterms in Egs. (6.49) amount to

§ATEZ 7" ST,
5<2>TZ (09Zy 0 Ty 0VZyy 0 dOTy
@7z | = @) o F M 0
§ATE Ty sOT,
(6.75)
5T,
N 5Ty
0T,
§AT,

The evaluation of the mass counterterms in Eqgs. (6.50) for k = 2 yields

s@ZL 0
) N2 _ hH o 2
0 Mjpac ( 0 57T (MhHAG p 1)

§DZu 0
+ (MhHAG ) ( 0 5(2)ZAG

( s z;jG

5 Z?;H (0) 5(1)ZhH 0
M —p1
ZEG ( hHAG ) 0 5(1)ZAG

+ 0P Mppac

+

(1)
5(1)MhHAG + 5(1)MhHAG

(6.76a)
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6. Higgs bosons in the MSSM

0OME s = 02 (Mighgs — 1) + (MG gs — p°1) 0@ Zigacs
+ oW HiGi(s MHigi + (S(l)MHiGi(S(l)ZHigi (6.76b)

+ oW HiGi (Mg)ici — p21> 5(1)ZHigi + (5(2)MHigi ,

By expanding the matrix products and applying the lowest-order and symmetry
relations the expressions for each component can be achieved; the explicit results are

listed in Appendix C.

Besides the genuine two-loop mass and tadpole counterterms, the results of Egs. (6.76)
contain also products of the genuine one-loop mass and tadpole counterterms with
one-loop field-renormalization constants; in addition, products of different field-re-
normalization constants occur, too. Again, the explicit expressions of the genuine

two-loop mass counterterms are recorded in Appendix C.

The independent renormalization constants can be fixed in the same way as at the

one-loop order, i. e.

e the tadpoles do not shift the minimum of the Higgs potential:

§OTZ = —v® e {n H, A} ; (6.77)

e the gauge-boson masses are renormalized on-shell:

0OMF, = Re[S Dy (M3)] (6.78a)
0O ME = Re[2F) (MZ)] ; (6.78D)

e and either the A-boson mass or the H*-boson mass is on-shell, depending on

the chosen input parameter m4 or my=+:

00m? = Re[SF (m3)] | (6.79a)
0@mY. = Re[Sh (miy)] - (6.79D)

Again, m 4 cannot be chosen as an input parameter in the case of C'P-violation.

The mass counterterms are correlated via

0Pmie = 6®Pm? + 6P M2, (6.80)
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6.8. Two-loop renormalization

At the two-loop level also (Ve is appearing for the first time. It occurs always in
combination with 6s, and 6" My, as can be seen in the explicit expressions in
Appendix C.2.

The relation

5 1 w
. e_ - (5(”ZAA _ ié“)ZZA) (6.81a)

determines 6(Ve by the field-renormalization constants of the photon,

SWZyp = —Re (6.81b)

op?

az%(p?)]
p2=0

and photon-Z mixing,

oM Z,0 = —Re (6.81c)

1
255 (0)
M?2 ’

as in the Standard Model [Den93].

6.8.3. Renormalization of tan(p3)

Renormalization of ¢ at the two-loop order is more involved. Applying the renor-

malization transformation

1 1 1
V; — UV + (5(1)’01‘ -+ §v15(1)ZH2 + 5(2)%‘ —+ = |:6(2)ZH, — Z ((5(1)27.[1)2] , 1 E {1, 2} R

2
(6.82)
at Eq. (6.15) renders the two-loop part
2 2
5@ (“2) _ 0P P 1 (62 Zy, — 62y,
U1 U1 V2 U1 2
6(1)1}2 5(1)1)1 (5(1)?)1 1
_ _ V7, — 507
+<U2 v1>< ot (092 )
1 1

— 5 (692, - 6973, (4 (602, =60 23,,) + 6(1)ZH1>

(6.83)
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6. Higgs bosons in the MSSM

Again, 6t is defined in the DR scheme. The renormalization condition

dWay dW oy

U1 V2

(6.84)

is an extension of Eq. (6.70a) and simplifies Eq. (6.83). Furthermore, the one-

loop relation for renormalization of ¢3 in the DR scheme in Eq. (6.70b) is utilized,

5(2)@2 5(2)1,1
=tg —
div U2 U1 div

1[(6Wtg\* sy
‘2< o B
B B

yielding

5@, = 50 (“2) 1

+35 (6@ 2y, — 6@ 2Zy,)  (6.85)

Thereby the field-renormalization constants are fixed by Eqgs. (6.74).

The divergent part of the combination (5(2)1)2 / vy — 0@y, / vl) is in general not equal
to zero and even gauge-dependent as can be seen in the following result of the two-loop

beta function of #g.

In addition to the one-loop beta function of t5 given in Eq. (6.71) the correspond-

ing two-loop function is necessary to determine (5(2)755. Its full form is taken from
Ref. [SSV14]:

LAt 1
g) { — ({5393 + %g2) N Tr (hyh},)

tg (47r)4 (
+(—22g3 +8¢2) No Tr (hah}) + 8363 Tr (hehg)}
+ o [N (bl < N (b))
e
1)
€€ (et + 34) =2,

(6.86)

wherein £ = ¢&; and ¢ =&/, i € {A, Z, W} are universal gauge-fixing parameters of

an R¢ gauge function (cf. Section 6.4.2) and g is the strong gauge coupling.

The last term on the right-hand side of Eq. (6.86) is gauge-dependent. It purely
originates from parameter renormalization of the vacuum expectation values v;. All
other terms on the right-hand side of Eq. (6.86) are induced by the anomalous

dimensions of H; and Hs.
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6.8. Two-loop renormalization

The connection between the beta functions (i. e. the running) and the renormalization

constants for g can be derived as follows:

e the beta function of t3 at kth order (cf. Section 5.4) is defined by the relation

ﬁ(k)(t) k k) | (k) Ak
tﬁﬁzfyé)—%’jwé)—%) (6.87)

where a similar notation as in Ref. [SSV13] is used, i.e. yék) and 7£k) are the
anomalous dimensions of Hy and H; at kth order (cf. Section 5.4), and 4k

and %k) are the analogous quantities for parameter renormalization of vy and v;.

e the beta function of a given order k is directly related to the coefficient of
the % pole of §®tg,

e the higher-order poles in € for each §*)¢5 can be achieved by products of lower-

order vs and 4s (e.g. Ref. [Spel3]).

In Ref. [Spel3] the following equations can be found (here specified for the field-
renormalization constants of the Higgs doublets in the MSSM):®

1
0 Zyy, =4V 2, (6.88a)
€
1 o1 1 11 1\?
§@Zy = =42 2+ 25 W (g0, 1V = < '(1)> : .88b
H= 5 €+4§5 (9) 0,7 5 +5 (7m0 - (6.88b)

The second term on the right-hand side of Eq. (6.88b) sums all contributions by the

beta functions of the gauge couplings and other running couplings g; inside of %-(1).

®Different conventions for the definition of §(?) Z4, are used in Ref. [Spel3] and in this thesis.
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7. Two-loop top-Yukawa-coupling

corrections

Following the general discussions of the mass shifts for the Higgs bosons at higher
orders in Section 6.5, the focus is set on the irreducible O(a?) terms for the neutral and
charged physical Higgs bosons now. Thereby mixings of all neutral, physical tree-level
mass eigenstates h, H and A are in general possible as can be seen in Eqgs. (6.36);

consequently all contributing self-energies to 2;2 4, including transitions, must be

evaluated. The self-energy matrix 252 4 denotes the upper left submatrix with rank
three of Eﬁ% ac defined in Eq. (6.42a). Mixing with the Goldstone boson G yields sub-
leading two-loop contributions; also G—Z mixing occurs in principle, which is related
to the other mixings of the Goldstone boson by Slavnov-Taylor identities [BBSO0S;
WRW11] and of subleading type as well [Hol+02]. However, A-G mixing has to be
taken into account in intermediate steps for consistent renormalization. Analogously,
only the upper left entry of the charged Higgs-boson mass matrix Eg)iai given
in Eq. (6.42b) is considered and mixings with the charged Goldstone bosons are

neglected. The H*~G* mixing only enters in the renormalization procedure.

7.1. Outline of the calculation

The considered class of two-loop Feynman diagrams is created with the help of the
Mathematica package FeynArts [HahO1] using the model file of Ref. [Fri413] and an
additional add-on model file to introduce unique symbols for the Goldstone-boson
masses (cf. Section 7.2); Fig. 7.1 shows all contributing diagrams. As can be seen
each diagram contains top particles ¢ and/or stop/sbottom particles #;, #,, b, which
are connected to the external Higgs bosons. In addition bottoms b, charginos Y=,
neutralinos ¥° and all Higgs and unphysical Goldstone bosons appear in internal

lines.
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7. Two-loop top-Yukawa-coupling corrections
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Figure 7.1.: Full list of two-loop self-energy diagrams for the neutral Higgs

bosons. The crosses denote one-loop counterterm insertions.
O, =h,H, A, °=h, H, A, G; & =H,G".

Those two-loop diagrams which are composed of an one-loop diagram and a counter-
term insertion are part of E%( ac; they are referred to as subrenormalization dia-
grams. The genuine two-loop counterterms and required renormalization constants
are presented in detail in Section 7.4. The couplings and one-loop counterterms
for each interaction vertex are depicted in Section 7.7 with their corresponding
analytical expressions. Thereby some approximations are used; they are explained
in Section 7.2. Since these simplifications also affect the MSSM sectors of the other
internally appearing particles mentioned above, they are revisited in Section 7.5 and
Section 7.6.

For the reduction of the subrenormalization diagrams and the one-loop renormali-
zation constants to the set of one-loop functions presented in Appendix B.1 the
Mathematica package FormCalc [HP99] is used. The appearing two-loop diagrams
are reduced to the scalar integrals which are displayed in Appendix B.2 with the help
of the Mathematica package TwoCalc [WSB94a]. The subsequent evaluation of all
loop functions is done completely analytically, with the help of Mathematica. All
Feynman diagrams are created with the help of FeynEdit [HLOS].
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7.2. Approximations

7.2. Approximations

The dominant parts of the O(a?) contributions are enhanced by an additional fac-

tor m?. Thus, the following approximations are applied to their evaluation:?

e The external momentum is set to zero, i.e. the two-loop self-energies in 2,(12]3, AG

are calculated at p? = 0. Furthermore also the counterterms §®¥MZ%, , » which
are introduced in Eq. (6.41a) are calculated at p*> = 0. As an immediate conse-
quence all appearing two-loop integrals are independent of p? leading to vacuum
diagrams that are known analytically (cf. Section 4.2); all two-loop integrals

can be reduced to T34 or factorized into a product of two one-loop integrals.

e The gauge-less limit is applied. It is an approximation where pure gauge
couplings are neglected, i.e. gy =0, g = 0. Furthermore, the strong gauge
coupling is neglected, g; = 0. Within this scenario, gauge bosons do not receive
any mass terms, i.e. My, = 0 and Mz = 0. However the weak mixing angle 6,
which appears in s, and ¢, keeps its original tree-level value. Caution has to
be taken when applying this limit to the used FeynArts model file since all cou-
plings, especially the Yukawa couplings, are expressed in terms of e, sy, ¢y, My

and My (gs is the only coupling that occurs directly).

e The bottom-quark mass mj, is set to zero. Thus, the O(azap) and O(a}) con-
tributions are neglected and the O(a?) contributions build a supersymmetric

and gauge-invariant class of two-loop corrections to the Higgs-boson masses.

The implementation of the vanishing external momentum can be easily introduced
after the evaluation of amplitudes for the Feynman diagrams. As mentioned before
difficulties in assembling the gauge-less limit arise from the parametrization of the
gauge and Yukawa couplings in terms of the same quantities. To avoid this problem at
first M is expressed as My /¢, . Then the routine stated in Tab. 7.1 is applied at each
coupling in the amplitudes created by FeynArts. Therein simprules contains the
simplifications of the MSSM sectors that are explained in Section 7.5 and Section 7.6.
The variable yt = MT/MW = m,/ My is related to the top-Yukawa coupling h;. Suc-
cessively negative powers of My, = MW are parametrized by yt: t1 contains the part
that is proportional to M;;?, t2 adds the term of the order M;;', and t3 further keeps
track of the MY, contribution. At each step higher powers of My, are set to zero,

effectively eliminating all gauge contributions.

9These approximations were also used for the evaluation of the O(a;as) contributions [Hei+07].
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7. Two-loop top-Yukawa-coupling corrections

However another caveat has to be taken care of: in the model file of Ref. [Fri+13] the
tree-level Goldstone-boson masses are explicitly set to mg = Mz and mg+ = My,
thus, the routine above would obliterate them. To have the possibility of identifying
their contributions during the whole calculation they need to acquire unique symbols
for their masses. This is achieved by the FeynArts add-on model file given in Tab. 7.2

that introduces the tree-level mass parameters MGO = m¢ and MGp = mg+.

Table 7.1.: The used function to elimininate all gauge couplings.

nogaugecoupling[term ] :=
Block[{t1l, t2, t3, simprules},
tl = yt~2 (Collect[term*MW~2/MT"2, MW, Simplify] /. MW -> 0);
t2 = t1 + yt (Collect[(term - t1 /. yt -> MT/MW)*MW/MT,
MW, Simplify] /. MW -> 0);
t3 = t2 + Simplify[term - t2 /. yt -> MT/MW] /. MW -> 0;
Simplify[t3 /. GS -> 0 /. MB -> 0 /. simprules]
15

Table 7.2.: The add-on model file for FeynArts to handle Goldstone-boson
masses.

newMass[{field , mass_}] :=
(field == def ) :>
(field == def /. (Mass -> ) -> (Mass -> mass));
M$ClassesDescription =
M$ClassesDescription /.
Map [newMass, {{S[4], MGO}, {S[6], MGp}}];

7.3. Simplified lowest-order relations

Due to the applied approximations as described in Section 7.2 the lowest-order
relations of the Higgs-boson sector which are derived in Section 6.4 are modified;

this comes solely by neglecting all gauge contributions.
Hence, Eq. (6.26) and Eq. (6.28) are simplified to

2 _ 2 _ 2 2 _ 2
my =0, my=my, mpys=mj. (7.1)
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7.4. Renormalization

Furthermore, also the masses of the unphysical Goldstone bosons that are originating

from gauge-fixing terms (cf. Section 6.4.2) are zero in the gauge-less limit:
mg =0, mis =0. (7.2)

The lowest-order relations between the mixing angles 5. and 3, with the ratio of the

vacuum expectation values t5 as derived in Eqgs. (6.23) are still valid:
Be = Pn =P (7.3)
For the third parameter o Eqgs. (6.30) now yield
Soa = —S28 , Coa = —Cog, log =tog, (7.4)

which can be summarized easier in the equation a =  — 7/2.

Thus for the evaluation of the O(a?) contributions with complex parameters the
occuring lowest-order values for the masses of h, G and G are set to zero, the masses

of H, A and H* are set equal to each other and the mixing angle « is substituted
by 5.

7.4. Renormalization

In this section the effects of the approximations which are introduced in Section 7.2
on two-loop renormalization of the Higgs potential of the O(a?) calculation are

discussed.

The tadpoles as defined by Eq. (6.34) for k£ = 2 yield

S SONE SORE RO

3 Y

i€ {h, H, A} . (7.5)

The tadpole Tg) of the unphysical Goldstone boson G is not necessary for the

calculation of the physical Higgs-boson masses at the two-loop level.

The explicit forms of Egs. (6.36) are given by

MELQIZTAG <P2) = Mg})mc ng)m(;(pQ) 2512121,4(;(0) ’ (7.6a)
Mglai( ) MHiGi_ HiG ( ) HiGi 0)- (7-6b)
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7. Two-loop top-Yukawa-coupling corrections

Therein, the dependence on the external momentum is neglected at the two-loop
order, i.e. the computed O(a?) contributions shift the entries of the matrices by a
constant value. However, it is stressed that the momentum-dependent parts of the
one-loop corrections remain; thus, the masses of the Higgs bosons at higher orders
have to be computed with Eq. (6.35a) and Eq. (6.35b), respectively.

7.4.1. Counterterms

The counterterms for the tadpoles and self-energies which are introduced by Eq. (6.40)
and Eqs. (6.41), respectively, are displayed for the two-loop case in matrix notation in
Egs. (6.76) and explicitly in Appendix C. In the following, the formulas are expressed
within the present approximations and choosing my+ as an input quantity, providing

a common mass for the heavy Higgs bosons.

The tadpole counterterms are given by

0T = 4 (6 2y, 6VT + 61 Zpy 60T ) + 6T, (7.7a)
0OTE =3 (60 Zyy 60Ty + 0N Zyy 60T, + 62Ty (7.7b)
5(2)Tf = % (5(1)ZAA (5(1)TA —+ 5(1)ZAG (5(1)Tg) —+ (5(2)TA . (770)

The results for the required self-energy counterterms are

2
00mE = tm¥s (60 Zun ) + 6D Zu, 6Vm} + 60 Zyyy 0miyy + 6Pm? , (7.8a)

(5(2)771[2{ = m%i |:5(2)ZHH + i (5(1)ZHH)2]

(7.8b)
+ 0 Zyy 6Om2 + 60 2,5 6Wm2 , + 6Pm?, |
5Om% — m2, {5@)2&4 +1(50Z44)° -~
+0WZ406Wm2 4 6W Z46 6Wm3, + 6Pm? |
§PmZ, = ! [(5(1)Zhh + 5(1)ZHH> §Om2, + W Z, (5(1)7”!21 + 5(1)m§{)} 75
+ Em2e 60 Zy g 60 Zr + 5= 60 Zyy + 6Pm2,, |
§@mE, = 1 {(&”Zhh + 60 Z40) 60m?, -
.0€

460 Z 6Om2, 4 + 60 Zae 5<1>mi4 4 6@m2,
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7.4. Renormalization

5@k, = L { (69 Zus + 60 Z44) 6Vm3

400 Zy Dm2 4 60 Zag 60m } +5Om2,

2
(5(2)77%%{:‘: = m?{i [5(2)ZH:EH:{: + i (5(1)ZHiHi) :| + (5(1)ZH:tHi 5(1)m§{i

2

+ 100 Zg-o (00m3y- g+ 6Wm i) +6@ma

(7.8f)

(7.8g)

Therein the field-renormalization constants are those from Eqgs. (6.52) and Egs. (6.73)

for the one-loop and two-loop case, respectively. Furthermore, genuine two-loop mass

counterterms appear: for the general case they are listed in Appendix C. Applying the

approximations of Section 7.2 and their consequences on the lowest-order relations

as shown in Section 7.3 yields the expressions

2 (&

_ # 60T, +60T;,602,]
W Sw
5(2)qu =6@m2.
5@ m2 = 5(2)mHi :

2
6(2)th = m3 Ch 20@ts + Ch 20Wm2. 6Wts —m?2. c% s (5(1)755)

e
2Mwsw

§Pm2, = -3 ij - [6(2>TA 46T, 60 ZW] ,

5(2)771%_114 =0 )

507 §We B S My, B dWs,

w
(& MW Sw

[5< Ty +6VTy 5<1>Zw} ,

(7.9¢)

(7.9f)

(7.9g)

The use of 6V 7, underlines that 6Me, WMy, and §Ws,, are always occuring to-

gether in this combination. However in the gauge-less limit §(Ve is equal to zero.

In Egs. (7.8) also several genuine one-loop mass counterterms are needed and applying

the simplifications to the general expressions in Eqs. (6.65) yields

SWm2 = sOT
2 Sw MW ho
5(1 = 5 m%{i s
ot >mA = 6Wm2.
€
Wm?2, = e STy +mie g 6Wty

(7.10a)

(7.10b)
(7.10¢)
(7.10d)
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7. Two-loop top-Yukawa-coupling corrections

e
5(1)miA = —m (5(1)TA > (7106)
sWmi, =0, (7.10f)
sWm2 =0, (7.10g)
sMWmiy e = QSQMW 00Ty — 6 Ta] — mipe ¢ 6Mts (7.10i)
0V e = (60mi i) (7.10§)

7.4.2. Renormalization conditions

The independent renormalization constants are fixed similarly as described in Sec-
tion 6.7 and Section 6.8. Differences are emphasized in the following while redundant

conditions are written again for completeness but in short form:

e The tadpole renormalization constants §*)T;, k € {1, 2} are fixed by requiring

the minimum of the Higgs potential not shifted, i. e.1°
YW 4607 =0, TP 4+5OTZ =0, ie{h H, A}. (7.11)

The 6 TZ are listed in Eqs. (7.7). The two-loop diagrams contributing to 1%
are displayed in Fig. 7.2 and written down in Appendix D.3 and Appendix D.5.

- ~ tk,i)l tr B
! 10 tk{fr\d\ g t :0\\ ~ tk// /(/]>‘\:\ /"A’\ AN él
R “(I’J t7 777’1 “(I)J\Yélv o )fqi7\y§k7 777‘1 t7 ,7,*’?,74@,,;’ ,,,*\/ ¥/ \ybld
b, D7/ b d; N 127, by D; X5/ b1 D; N b ;0 / d; \ PR
f ~-e -7 t -7 £~ \‘~< ’ S - ’ o
tm t ~ =
tl tm

Figure 7.2.: Full list of two-loop tadpole diagrams contributing to TEQ). The
crosses denote one-loop counterterm insertions. ®; = h, H, A;
0 =h H A G, O =H,G".

10The counterterms 6¥) T are not independent and do not need separate renormalization condi-
tions
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7.4. Renormalization

(i)

The charged Higgs-boson mass m g+ is the only independent mass parame-
ter of the Higgs sector with complex parameters and thus used as an input

quantity.

Accordingly, the corresponding mass counterterms are fixed by indepen-
dent renormalization conditions, chosen as on-shell conditions, which in

the p? = 0 approximation are given by

A

Re[SGl(0)] =0 = Wmfe =Re[SGLO0)], ke{l,2}. (712

Imposing this conditions on the general one-loop result in Eq. (6.59k) and

the two-loop result in Eq. (7.8g) yields

dWm?. = Re [ESL(O)} —medW Z ey (7.13a)
2
(5(2)771%11[ — 8%8 {Egz{: (0):| - qui |:5(2)ZHiHi + % (5(1)ZHiHi> :|
— 150 2y e (g(l)qu_m i 5(”m2c—H+) (7.13b)

— (5(1)ZHiHi (5(1)m?{i .

The other required one-loop counterterms are given in Eqs. (7.10) and the

field-renormalization constants are listed in Eqgs. (6.52).

The analytical result for the O(a?) contributions to the charged Higgs-
boson self-energy can be found in Appendix D.2 and Appendix D.4. The
contributing Feynman diagrams to the two-loop self-energy are depicted
in Fig. 7.3.

For the comparison of the O(a?) corrections with the existing result for
real parameters the charged Higgs-boson mass is replaced by the A-boson
mass as the independent mass parameter of the Higgs sector and thus

taken as input quantity.

Hence, the mass counterterms are fixed by independent renormalization
conditions, chosen as on-shell conditions. In the p? = 0 approximation

they yield

Re[SH(0) =0 = 6Pk =Re[sP(0)], ke{1,2}. (7.14)
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7. Two-loop top-Yukawa-coupling corrections

The corresponding counterterms for the A-boson self-energies are given
by Eq. (7.8c) at the two-loop level and by Eq. (6.59¢) with p*> =0 at
the one-loop level. The genuine mass counterterms therein arise from the
renormalization conditions of Eqs. (7.14) for the one-loop and two-loop

cases, respectively:

§Mm? = Re [ES)(O)] - m?45<1>ZAA , (7.15a)

(7.15b)
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Figure 7.3.: Full list of two-loop self-energy diagrams for the charged Higgs
bosons.  The crosses denote one-loop counterterm insertions.
®'=h, H A G, ¥ =H,G".
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7.4. Renormalization

For a quick permutation between my+ and m 4 being an input parameter as well
as the appropriate corresponding renormalization scheme, a switch is introduced
into the evaluation of the self-energies and counterterms. The implementation
in Mathematica is carried out by the commands given in Tab. 7.3: the first
two lines define the two-loop mass counterterms for the charged and C'P-odd
Higgs bosons, respectively. The symbols dMHpsq2 and dMAOsq2 are the two-loop
renormalization constants which are defined in lines three and four with the
switch $MAOInput set to its proper value. The expressions dMCHiggsZ2[5, 5]
and dMNHiggsZ2[3, 3] contain all parts of Eq. (7.13b) and Eq. (7.15b) with
field-renormalization constants. Lines five and six are the definitions for the

one-loop counterterms evaluated by FormCalc.

Table 7.3.: Implementation of a switch for the chosen input parameter being m 4
or my+ and applying the corresponding renormalization condition.

dMCHiggs2[5, 5]
dMNHiggs2[3, 3]
dMHpsq2 := SEHp2
dMAOsq2 := SEAO2

$MAOInput dMAOsq2 + (1 - $MAOInput) dMHpsq2;
$MAOInput dMAOsq2 + (1 - $MAOInput) dMHpsq2;
dMCHiggsZ2[5, 5] /. $MAOInput -> O;
dMNHiggsZ2[3, 3] /. $MAOInput -> 1;

RenConst [dMCHiggs1[5, 5]] :=
$MAOInput (ReTilde[SelfEnergy[S[3] -> S[3], 0]]
- MAO~2 dZNHiggs1[3, 3])
+ (1 - $MAOInput) (ReTilde[SelfEnergy[S[5] -> S[5], 0]]
- MHp~2 dZCHiggs1[5, 51);
RenConst [dMNHiggs1[3, 3]] :=
$MAOInput (ReTilde[SelfEnergy[S[3] -> S[3], 0]]
- MAO™2 dZNHiggs1[3, 3])
+ (1 - $MAOInput) (ReTilde[SelfEnergy[S[5] -> S[5], 0]]
- MHp~2 dZCHiggs1[5, 51);

e The independent field-renormalization constants are fixed in the DR scheme at
the one-loop and the two-loop order as explained by Eqs. (6.53) and Egs. (6.74),
respectively. The relations to the field-renormalization constants in the lowest-

order mass-eigenstate basis are identically equal to Eqs. (6.52) and Egs. (6.73).

However for the present simplifications the result () Z;;, = 0 is obtained. This
arises from the fact that only the p?-dependent divergences of 2((;1) contribute
to 6 Zy,,. The occurrence of these divergences requires the propagation of non-
scalar particles in Zf;l). The only available one which couples to ¢, is the bottom

quark whose mass is set to zero, thus canceling all contributions to 6™ Zy,, .
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7. Two-loop top-Yukawa-coupling corrections

74

e {5 is renormalized in the DR scheme at the one-loop and two-loop order. Within
the top-Yukawa approximation the divergences originating from parameter re-

normalization of the vacuum expectation values cancel, i. e.

(s(lf)v1
(%1

5(16)2,2

. ke{l1,2}. (7.16)

div

div

V2

By imposing the renormalization condition

5(1)@1 (5(1)1,2

7.17
o - (7.17)
the remaining parts of Eq. (6.70b) and Eq. (6.85) simplify to
Wtg 1
=P =5z, (7.18a)
ty 2
§@tg 1 1 2
T = |62, — 622, — 4 (0927 7.18h
tﬁ 9 Ho Ha 4 ( Hz) ( )

On the other hand, the results in terms of beta functions which are presented
by Eq. (6.71) and Eq. (6.86) can be utilized. Applying the approximations to

both expressions yields

BUO(ts)  3h2
R (7.19a)
B(ts) _ Ot _ (5“)(%)) ‘ (7.19b)
tg (4m) ts

As can be derived from the anomalous dimensions of H; and Hs at the two-loop
order, given in Ref. [SSV14], the pure top-Yukawa-coupling term of Eq. (7.19b)
solely stems from 752), whereas %2) is equal to zero (analogously at the one-loop
order). Thus, by the use of Eq. (6.88b) the result 5 Z;, = 0 for the two-loop

field-renormalization constant is found.

For the evaluation of 6 Z,,, by Eq. (6.88b) the one-loop beta function for the
only appearing coupling, the top-Yukawa-coupling, is necessary. The result is
taken from Ref. [CPR94]:

h 1
o 12597 — 30 — o2 + 307 + b + 3 (R + 2+ R)| L (7:20)

hy (47T)2



7.4. Renormalization

Thus, in the top-Yukawa approximation the second term on the right-hand side
of Eq. (6.88b) yields

1 1 oht 1 B\ 1
: Wy, ——_ 2 - _ G2 R 21

Hence, using the relations of Eq. (6.87) and Egs. (6.88) in Egs. (7.18) and
inserting the results of 6§ Z;, and 6§ Z;, yields the following connections

between the renormalization constants and beta functions for ¢4:

oWty Ly, BN (tg) 1 (7.22)
tﬁ 2 2 2255 € ’
6Pty 1[BP(tg)1 1 11 > 1 2
_ 1 1.z Wy 1150 _Lsm
™ 2[ %, ~ 5 B(he) On0 ZH2€+2(5 Zn,) 4(5 ZHQ)]
L (B (80 L (B0 L
2 2t € 25 €2 25 €2
(B9 2(1_31>
B 2t e 2¢
(7.23)

Applying these results to Eq. (7.18b) and using 6 Z3, = 0 allows to derive the

following result:

60D Zyy, =2 (WW)Q (1 1 ) . (7.24)

2t5 € 672

The explicit formulas for §@t5 and §® 73, are just given for completeness; in

the final result of the renormalized self-energies they cancel.

In the on-shell scheme, also the counterterms 6™ M2, /M2, and §(V M2 /M2 are

required for renormalizing the top-Yukawa coupling

my €My
hy=—=———"""—7". 7.25
¢ (%) \/5 S8 Sw M w ( )
Although in the gauge-less limit, the ratios 6" M2, /M2, and 6 M2 /M2 have
remaining finite and divergent contributions arising from the Yukawa couplings,
which have to be included as one-loop quantities ~ h?. They are evaluated

from the W- and Z-boson self-energies whose corresponding Feynman graphs

are depicted in Fig. 7.4.
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7. Two-loop top-Yukawa-coupling corrections
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Figure 7.4.: Feynman diagrams for the renormalization constants 6" My, / My

and 5(1)MZ/MZ of the gauge-boson sector.

The on-shell renormalization conditions in the gauge-less limit are given by!!

& (1 & (1 1
Sow )| _ S0 _ Sww(0) WA (7.26)
7 e T T AT '
p =
(1 (1 1
S|, S0 _ S50 603 (7.26b)
M3 LM M Mz '
p?2=0
resulting in
(D pf2 (1) (1) 72 (1)
W T MG M A '
In this scheme 6(s? is determined by
SMWMz sMM2
2 _ 2 z W
oWs2 =2 ( M Mz > . (7.28)

In the top-Yukawa approximation §(Ys2 is finite.

7.4.3. Parametrization

The appearance of ds2, in the O(a?) terms, as specified above, is a consequence of the
on-shell scheme where the top-Yukawa coupling hy = m;/ve = my/(v sg) is expressed

in terms of

1 W
. S (7.29)

v N \/EMW N \/§SWMW'

Accordingly, the one-loop self-energies have to be parametrized in terms of this

representation for h; when added to the two-loop self-energies in Eq. (7.6).

The field-renormalization constants 5™ Zyy and 61 Z 5 that occur in Egs. (6.66) do not con-
tribute in the gauge-less limit.
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7.5. Neutralino and chargino sectors

On the other hand, if the Fermi constant G is used for parametrization of the one-

loop self-energies, as performed by FeynHiggs, the relation

2

V2Gr = —2— (1+ AWy (7.30)
F 453VM5V( )

has to be applied, which gets loop contributions also in the gauge-less limit, at the

one-loop order given by

2 5(1)M2 5(1)M2 5(1) 2
AWy — G 20 ) 0 Sw (7.31)
sz, Mz My, s%

This finite shift in the one-loop self-energies induces two-loop O(a?) terms and has

to be taken into account, effectively canceling all occurrences of §(s2 .

7.5. Neutralino and chargino sectors

The O(a?) contributions to the Higgs-boson self-energies involve Feynman diagrams

with internal charginos and neutralinos.

7.5.1. Tree-level relations

The mass matrices given in Eq. (3.16) and Eq. (3.14), respectively, are simplified to

0
0 M M, 0
Y = 2 : X:( 2 ) (7.32)

—n 0

according to our approximations explained in Section 7.2. Although X is already
diagonal, the singular-value decomposition U*X VT with the unitary matrices U

and V is performed to gain positive real chargino masses. The choice

et PMy 0
U= ) vt 7.33
( 0 e’d’“) ( )

with the complex phases ¢y, and ¢, of My and p, respectively, satisfies this require-

ment.
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7. Two-loop top-Yukawa-coupling corrections

The deduced singular values (cf. Eq. (3.15a)) are the masses
mee = Mol | s = ] (7.3)

Similarly, the singular-value decomposition N*YNT with the unitary matrix

3o 0

0 e3Py

7.35
o (7.35)
0 ﬁd??“ . .

0
N =

[] (4

is performed. Here, the additional complex phase ¢y, of M; occurs. The singular val-
ues are achieved as solutions of Eq. (3.17) in this special case for our approximations.
They are the masses

mey = M|, mgy = M|, mge = |ul. (7.36)
As a consequence, the charginos and neutralinos x?, ¥J and ¥ do not contribute
to the Higgs-boson self-energies in the top-Yukawa approximation. The remaining
charginos and neutralinos Y3, X} and Y3 are the original higgsinos with degenerate
masses equal to |p| which is also the only independent parameter of this sector in

addition to those of the Higgs sector.

7.5.2. Renormalization

In the O(a?) contributions, Feynman diagrams with higgsinos appear at the two-loop
level for the first time, thus there was no need to renormalize their mass parameter .
However, i also occurs as part of the couplings in the squark sector already at the
one-loop level, hence its renormalization 1 — p + 6y has to be respected in the

calculation of the O(a?) contributions.

A convenient choice to define u, M; and M, at higher orders is given by on-shell
conditions for either both charginos and one neutralino, or one chargino and two
neutralinos [Cha+12b; BB09; Bha+12]. However, since only Wy is required here, it
is sufficient to impose a single renormalization condition, chosen as on-shell condition
for the mass of X3 :

w@ﬁ@

o], =00 R[ERG] = REL] o0
=|u
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7.6. Colored sector

b,t

Figure 7.5.: Feynman diagrams for renormalization of the neutralino—chargino
sector, i.e. for the renormalization constant 6™ .

With the Lorentz decomposition

U (p) =p {T’E%L(ﬁ) + H%E%)R( 2)} + |yl [ (1>S<p ) +7 Z(l)PS( 2)}

2 (7.38)

of the self-energy for the higgsino-like chargino Y3 renormalization of 4 is determined

as follows:

oW = €' §Wpl | (7.39a)
SOl = o) {20 [0 1) + 2] + e[ 530} (7o)

The contributing Feynman diagrams are depicted in Fig. 7.5.

Another option is DR renormalization of p, which defines the counterterm ¢y in
the DR scheme, i.e. by the divergent part of the expression in Eqgs. (7.39). For
the numerical analysis and the comparison with the previous result of Ref. [Bri+02]

the DR scheme is chosen at the renormalization scale my, if not stated otherwise.

7.6. Colored sector

The most important one-loop contributions to the Higgs-boson tadpoles and self-
energies are induced by the top and bottom particles and their superpartners stop
and sbottom, respectively. The O(a?) terms are corrections to this class of Feyn-
man diagrams, hence the stop and sbottom sectors appear again and have to be

renormalized at the one-loop order.

7.6.1. Tree-level relations

The general mass matrix of the squarks given in Eq. (3.9) is simplified by the approx-

imations of the gauge-less limit and the vanishing bottom mass (cf. Section 7.2).
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7. Two-loop top-Yukawa-coupling corrections

In the stop mass matrix the gauge contributions are dropped, resulting in

m2 +m? my X
M;= | & T (7.40a)
my X{ mg +m?

X, =A - 1 (7.40b)
ts
The application of the unitary transformation
U; M; UZ- = diag(m%,mé) (7.41)

yields the stop masses squared as the eigenvalues of Eq. (7.40) in a simplified version

of Eq. (3.10):

1 2
mi, =5 lmgL +m? +2ml F \/ (m2 —m2 )" + 4m?| Xt|21 _ (7.42)

Since A; and p are complex parameters in general, the unitary matrix U; consists of

one mixing angle #; and one phase ¢;:

U; U; _ FPEgy
UE _ Ut11 Ut12 _ _Cf;_ € 7t Sy, . (7.43)
721 22 —€ TSy, Co;

t

The sbottom mass matrix becomes diagonal for m;, — 0:

(v )
M; = * . (7.44)

In the couplings of the used FeynArts model file the sbottom mixing matrix is set
to

U;=1. (7.45)

2
bL

Eq. (7.44). Thus, just one additional independent parameter is introduced by the

The invariance under SU(2);, transformations imposes the condition m: = mtzL in
sbottom sector: m;, . However, all couplings of br are proportional to my, or m? which
are equal to zero within our approximations. Hence bg does not appear and my,, 1s
not needed. Only one sbottom particle b; = by, remains in the Feynman diagrams

and its properties are completely determined by the stop-sector entries.
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7.6. Colored sector

7.6.2. Renormalization

Five independent parameters relevant for our calculation are introduced by the quark—
squark sector: the top mass my, the real soft SUSY-breaking parameters m;, = mg,

and my_, and the complex soft-breaking mixing parameter A, = | A;| ePar

These parameters have to be renormalized at the one-loop level according to

my — my +6Wm, | (7.46a)
mg = mp o+ 6WmE (7.46b)
Ay — A+ 6WA, (7.46¢)

Thus, the stop mass matrix in Eq. (7.40) is renormalized by
M; — M; + 0 M; (7.47)

with the counterterm of the stop mass matrix given by

5(1)M~ _ (5(1)mtgL + 2 my 5(1)mt Xt 5(1)mt -+ my 5(1)Xt (7 483)
! X 6Wmy +my s X 5(1)mth +2m; 6Wm, |’ '
s St
sOx, =smar - H L BT (7.48b)

tg tg ts

The other free parameter p is related to the higgsino sector and its renormalization

constant is already determined in Section 7.5.

The independent renormalization conditions for the colored sector are formulated as

on-shell conditions in the following way:

e The mass of the top quark is defined on-shell, i. e.!?

e [igl)(p)b -

§0rmy = m Re[ 4 (S0 () + SO (2)) + SO ()], (7.49b)

=0, %N [igl)(mt)} = Re [Zgl)(mt)} —0Wm, ., (7.49a)

according to the Lorentz decomposition (analogously to Eq. (7.38)) of the self-

energy of the top quark whose contributions are depicted in Fig. 7.6.

125 denotes the real part of all loop integrals, but leaves the couplings unaffected.
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7. Two-loop top-Yukawa-coupling corrections
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Figure 7.6.: Feynman diagrams for renormalization of the quark—squark sector.
=h, H A G, & =H,G".

o m? and mi are traded for m7 and mZ, which are then fixed by on-shell

conditions for the top-squarks,

Re[Si0 (07)] o =00 R[5 ()] = Re[ily (m2 )] = 00
Z (7.50a)
0WmZ; = R[S (m2)], ie{1,2}, (7.50b)

involving the diagonal f; and #, self-energies (diagrammatically visualized in
Fig. 7.6). The off-diagonal entry of the top-squark self-energy matrix is used

to impose the renormalization condition

RO, R, 0
R[S0 07)] = R[S0 (7)) - 90, s

as in Ref. [Hei+07]. Its evaluation determines the off-diagonal counterterm for

the stop masses according to

e[Zhr, (md) + T, (md,)] (7.52)

_ (5(1)7”?151 5(1)7"?152) (7.53)

oWmzs, oWmi,

Inverting Eq. (7.53) and using Eqs. (7.48) yields

5(1)m(2§3 = (1)mtgL - ‘Ufll‘zé(l)mtgﬁl + ’Ut~21’2 5(1)m%252

. o " (7.54a)
+2§R€|:U{21 Ufllé m£1£2:| — 2mt5 myg ,
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7.6. Colored sector

e The mixing parameter A, is correlated with the {-mass eigenvalues, tg, and p,
through Eq. (7.41). Exploiting Eq. (7.53), the unitarity of U; and Egs. (7.48)

yields the expression

Xt 5(1)mt + my 5(1)Xt = UE22 U%ll 6(1)mtglt~2 + Ufu U§21 (5(1)771%1{2)
+ U2 Uz (5(1)mt21~ - 50)7"?252) :

t1

(7.55)

By utilizing the definitions of the top-mass and stop-mass counterterms of
Eq. (7.49b), Eq. (7.50b) and Eq. (7.52) the counterterm §(V.X; is determined,;
further using Eq. (7.48b) fixes 6V A,. Actually this yields two separate condi-
tions, one for the absolute value |A;| and one for the phase ¢4,:

61 ¢At

5|4, = %e{
m

[U£22 U;efu 5(1)mt2152 + U£12 Ugm (5(1)77%21{2)

t

+ U Uy (00miy, — 00m2;)) (7.56a)

(1) (1)
X 6, O NW]}
ts  tg tg ’

Eid)At . . "
5(1)¢At = %m{mt’AJ {Ufm [SES 5(1)77%%1{2 + Ui1a Upy (5(1)7"%1{2)
+Upi Ugyy (60mi g, — 6Wmig,) (7.56b)

1 1
— Xt (5(1)77% + 5( ),U — M(S()tﬁ]} .
tg tg ts

The additionally required mass counterterm 6y has already been obtained in
Section 7.5.

e As already mentioned, the relevant sbottom mass is not an independent param-

eter, but determined by SU(2)y, invariance. Hence its counterterm introduced

2 2 1),,2 : : e
by my = mp s )mEL is a derived quantity:
5(1)mgL = (l)més (7.57)

which is already fixed by Eq. (7.54a).
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7. Two-loop top-Yukawa-coupling corrections

7.7. Couplings and counterterm insertions

Having defined all necessary sectors of the MSSM, the required couplings for the two-
loop diagrams including the counterterms for subrenormalization are written down

in the following.

7.7.1. Tree-level vertices

The tree-level vertices contain the top-Yukawa coupling h; = m;/vy. In the case
of the Higgs bosons, their different couplings are accommodated by explicit fac-
tors ¢(...). The symbols ®° and ®* are used as generic expressions for the Higgs
bosons, i.e. ®° € {h, H, A, G} and ®* € {H*, G*}. For fermion couplings, the left-
chiral part is the first and the right-chiral part the second entry of the column.
The approximations mentioned in Section 7.2 have already been applied to this
expressions, leaving only those parts proportional to h; or h?. The mixing matrix U

of the charginos does not appear in the following; V = 1 is already inserted.

AN / = —1 C(@& CI);), fk:a fl)
N 0.7 ‘
<I>0\\ // =1 hf [04 (‘I’?a @?) (Uf Ui + Ugps Uia) |
z AN
2 N ca(h, h) =2,
e N H H 2
p N a(f, H) = s, , (7.58a)
ci(A, A) = cé ,
C4(G, G) = S% N
ca(h, H) = ¢4 Sq
cu(A, G) =cpsp
N y; = —1 C(q)z_, (I);_, Z?k, Ltl)
N 07 . )
A i [ci(q)i L 07) Ul Um} ,
o /’\ ci(H’,H*):c%,
a/ N i (7.58b)
, AN CZ(G_, G+) = 3% ,
ci(H_, G+) =cgss,
Ci(G_, H+> = cgsp
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7.7. Couplings and counterterm insertions

= —i C(®;, ®F, by, by) = —i b} [03@)57 o7)

\\ ; // ] !
NS d(H HY) =2,
TNy bl () _ o2 7.58
o /’\ C~4<G’G>:Sﬁ’ (7.58¢)
N o) e
’ k cZ(G’, H+> = cp sg
. o= C(@°, ®, iy, by) = —i C(@°, &*, iy, by)
wa, K =il {c4(c1>°, o) U:,ﬂ} ,
@//‘\\ i A7) = el ) = (7.580)
. ho o a(hGT) == a(H6) ==
(A H)= TR ale )=
(A, G) =g o(a,6) =00
\\ 7 // . o557
Ek\ tm/ = —1 C(tk, tl? tm, tn)
\Q/ = —i Iy [(U;kl Uiz T Uiio Ugt) (7.58¢)
g / N\
/tl/ ~n\\ (Uzin Ugpa + Ugpy Ufm)] :
N\ /
N\ Bl /
E’“\\ // . ~(F 7T R
Y = i C (i 1, by, Br) = =i 12| Uji Ui (7.581)
N
// ! \\
t — i (@, 1, 1) = —i by [cg(qﬁﬂ (signl(CDO)) ,
R {cs(h), sign(h)} = {%, 1} ,
" {es(H), sign(H)} = {3, 1} | (7.58)
{es(A), sign(A)} = {2, -1} ,
{e3(@), sign(@)} = {2, 1}
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7. Two-loop top-Yukawa-coupling corrections

o i (0 1.8) = —i (o) (‘1)) ,

- (i) =~ (7.58h)
' c;:,(Gf) = —5g .
R ] (1
t —i 0@+, £, b) = —i ht[c?,(CI) )] (0) ,
- - (1) (7.581)
’ E3(G+) = —53 .
L, =i O i, 1)
/tk/ =i ht[cm(q)o) (Uir1 Uin + Ugpp Ui) my
————— .
@ i\ + Cu (q)o) (Sign(q)o) Uio Upn o+ Uz Uggo M*>
SR +a(2%) (sign(2%) Uz Usy 47 + Usyy Upp 4)|
{cm(h), cu(h), ¢ ( ) &gn(h)}:{\/_ C o 1)
{en(H), cu(H), ca(H), sign(H)} = {V2s0, 5. 7 1}
{em(A), cu(A), ca s1gn<A>}:{o 75 i, -
{en(@), cu(G), ea(@), sign(G)} = {0, =22, 2, 1}
(7.58))
. Vi = —Z C((I)i, tNk, 61) = —Z C((I)+, tNk, 61)*

— i [cm(cb) Ul mi + 6, (®7) Upjg + ca(®7) Us A*]
TN ) o)) e )
» {cm(G’>, CN(G’>, CA(G’)} = {—sg, c3, —sp} .

(7.58k)

. Uz  N*
C(X B ) =—i by [ TR ) (7.581)
X N U;EkQNML
%
kN



7.7. Couplings and counterterm insertions

t
~ Ujy N
J =i (X0, t, &) = —i ht< Fh2 “‘). (7.58m)

Xy h Uspi Nog
tNk\\
—>—/
(e T . 0
= i C(Xg, b, tk) =—ihy ( . ) . (7.58n)
X2 \\ _Uka
AN
—>—/
ol T : 0
> = —i C’(x2 , t, bl> =—ihy ( 1) : (7.580)
51\\
J
- —U;
< . =—1 C(f(; b, tk) =—ily ( Otk2) . (7.58p)
2 E\
kN
t
. ~+ 7 7 . -1
~ =—i C(¥f, b by) = —i hy N (7.58q)
X2
5\
1 \

7.7.2. Counterterm vertices

The following one-loop counterterm vertices appear as insertions in the two-loop
diagrams with subrenormalization at one of their vertices. To shorten the notation,
the previously defined tree-level couplings C|( . . .) are re-utilized. Their corresponding
one-loop counterterms are named dMC/(...). Since each of the used vertices con-
tains the top-Yukawa coupling h;, its renormalization is given once as the definition
of 6MWh, and then reused in the coupling counterterms. Also the field-renormalization

constants of the Higgs bosons are considered; all other field-renormalization constants
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7. Two-loop top-Yukawa-coupling corrections

cancel out in the sum of the full set of Feynman diagrams, since the corresponding

particles exclusively appear in internal propagators.

N\ /7 N\ /7
N\ / AN /
N ¢/ AN ¢
a \\ // a \\ //
[ =—iC(a, b, ¢, d), + = —idWC(a, b, ¢, d) ,
/7 AN / N\
b /7 AN b 7/ N\
// d \\ // d \\
(7.59a)
/7 /7
v ,7 v ,7
/ /
i Q: =—iC(a, b, ), ---- —+: = —i 0WC(a, b, c),
AN AN
c \ c \
\\ \\
(7.59b)
1 1 1 1
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7. Two-loop top-Yukawa-coupling corrections

The counterterms of Eq. (7.61j) and Eq. (7.61k) should be emphasized, because
they are the only ones which cannot be simply expressed as a product of a tree-level

coupling and the counterterm of the top-Yukawa coupling and field renormalization.

In addition, also counterterms for two-point vertices are required. The necessary

expressions are given in the following:

—X————— i C(t, t) =i 6Vm, . (7.62a)
___E-—*——Z--- — C(fi, t}) — 5(1)m§i~j _ (7.62b)
B ETe (A T T L T2

7.8. Special aspects of the analytical calculation

The evaluation of the O(a?) contributions to the Higgs-boson masses has been per-
formed completely analytical, which allows for a better control of the divergences
and understanding of the dependence on different MSSM parameters. Some special

aspects that emerged during the computation are mentioned in the following.

7.8.1. One-loop integrals at two-loop order

Products of two one-loop integrals occur in some two-loop diagrams, in diagrams with
subrenormalization, and in genuine two-loop counterterms. Each infra-red finite one-
loop function F} , can be expressed as a Laurent series

R, = %+a0+a16+(9(62> (7.63)

)

around the regulator e of the ultra-violet divergence. Within a one-loop calculation
only the coefficient a_; of the pole and the finite part ay are required; the term a,
and coefficients of higher orders in € vanish in the limit ¢ — 0 after renormalization.
However, in the product of two functions Fy , and Fj; at the two-loop level the

coefficients of higher powers in € are necessary:

a_1 b_l I a_1 b[] + ag b_1 4

Fl,aFl,b: 62

(CL,1 b1 + ap bo + ap bfl> + 0(6) . (764)

€
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7.8. Special aspects of the analytical calculation

The finite part of a two-loop result includes contributions from the O(e) coefficients
of each one-loop integral. The used expressions for the one-loop functions expanded

up to the O(e) are presented in Appendix B.1.

As explained in Section 7.2 only a single type of two-loop integrals remains, denoted
as T134(m3, m3,m3). Tts full form is displayed in Eq. (B.8a); however its ultra-violet
divergent parts and some finite terms are solely given through products of expressions
from the one-loop function
Ao(m?)|1
Ao <m2> =—+ 4 (mQ)

€

R

B e + 0(62) : (7.65)

Here, Ag(m?)|1, Ao(m?)|0 and Ag(m?)|. are the coefficients of 1, €” and €', respec-

tively.

The expansion of Eq. (B.8a) with the usage of Eq. (7.65) yields the following result

which is ordered in powers of e:

3
2 2 2\ _
T34 (mpmz;mg) = Z

s—— + s (7.66)

The function ¢ contains only finite parts and is given in Eqgs. (B.8b)—(B.8e).

By using this form of T34 two advantages emerge:

e the cancelation of the }2 and % poles in the renormalized self-energies of the

Higgs bosons can be checked analytically,
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7. Two-loop top-Yukawa-coupling corrections

e the finite contributions to the self-energies which are induced by the coefficients

of O(e) drop out of the Higgs-boson self-energies.

7.8.2. Real-valued self-energies

Our calculation of the Higgs-boson self-energies takes care of the complex-valued
parameters u, A; and the stop-mixing matrix U; as well as the corresponding renor-

malization constants. However, by replacing the complex parameters with the real

quantities
2 2 2 FIOM sX, ‘5(1)’”%5]. Uiy, Uz,
Uzial™ s [X™ (0], > %[T], Jee e , (7.67a)
2 2 s s x é(l)m?f‘ Uza; Uz,
Url*, [V, SmXp],  Sm[85%], Om|—i . (7.67h)
with the combinations
X, =Ar - 1 (7.68a)
tp
Y, = A+ pnts (7.68b)
5 SM¢
sOx, =smar - O H B0 T8 (7.68¢)
tg tg g

all coefficients of the loop integrals turn out to be real.!® The full expressions are

depicted in Appendix D.

For the applied approximation of a vanishing external momentum, all integrals in the
Higgs-boson self-energies are real. Furthermore, in the definition of the renormaliza-

tion constants only the real parts of the appearing loop integrals are used.

Thus, each computed self-energy generates a real shift to the corresponding Higgs-
boson mass-matrix element. Furthermore, the C P-violating mixings of the lowest-
order mass eigenstates h and H with the lowest-order mass eigenstate A turn out to be
proportional to Sm[X;*], i. e. no C' P-violation is induced by the O(a?) contributions,
if the phases ¢, and ¢x, add up to 0 or %.

13Some more manifestly real combinations of complex parameters appear in the renormalization
constants in Appendix D.6.
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8. Numerical investigation of the

top-Yukawa corrections

The following numerical evaluation of the Higgs-boson masses includes the full one-
loop result, the O(a;as) contributions, and the new O(a?) contributions which are
derived in this thesis. The one-loop results and the O(aia;) terms are obtained
from FeynHiggs, while the O(a?) terms are computed by means of the corresponding
two-loop self-energies specified in the previous chapter. Thereby, the new O(a?) self-
energies are combined with the results of the other available self-energies according to
Eq. (7.6) within FeynHiggs, and the Higgs-boson masses are derived via Eq. (6.38).
For comparison with previous results, Gy is chosen for normalization of the top-

Yukawa corrections, as mentioned at the end of Section 7.4.

The SM parameters are put together in Tab. 8.1, as well as those MSSM parameters
that are kept for the analyses which are performed in this chapter. The residual input
parameters of the MSSM are shown in the figures or their captions. The parame-
ters u, tg and the Higgs field-renormalization constants are defined in the DR scheme

at the scale m, if not stated otherwise.

Table 8.1.: Default input values of the MSSM and SM parameters.

MSSM input SM input
My = 200 GeV, my = 173.2 GeV,
M, = (5s2)/(3c2) My,  my =4.2 GeV,
my, = me, = 2000 GeV, m, = 1.77703 GeV,
mg, = Ma, = mg, = 2000 GeV, My, = 80.385 GeV,
A, =A;=A, =0 GeV, Mz =91.1876 GeV,
my, = M, = 2000 GeV, Gr = 1.16639 - 107,
Mg, = Mg, = Mg, = 2000 GeV, as = 0.118,
A=A, =A4,=0GeV, 1/a = 128.944742392237.
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8. Numerical investigation of the top-Yukawa corrections

8.1. Neutral Higgs masses in the real MSSM

As a first application, the MSSM with real parameters is studied. The A-boson mass
is chosen as an input and renormalized on-shell at higher orders. The only non-
vanishing off-diagonal entries of the renormalized self-energy matrix in Eq. (6.37a)
are the ﬁ,(fl){, j € {1, 2}, thus the lowest-order mass eigenstates h and H mix to new
Higgs bosons at higher orders. The corresponding masses which are calculated via
Eq. (6.38) are sorted in ascending order, i.e. m; < my. However, a diagonalization
of the propagator matrix is not possible anymore because of the p*-dependent mixing
in Eq. (6.35a). Nevertheless, it is convenient to define an effective mixing angle cg
in the approximation £ . .(p?) — U (0), j € {1, 2}. Tt describes the mixing
of ¢1 and ¢y into h and H via the matrix D, in analogy to Eq. (6.10).'

— Mp — My — Mp — My — Sag

— with O(a? === without O(a?)
220 T e
200r ]
180¢
Mi 160r
[GeV] 1401
1201 l‘ﬁ =130
100t 1 u =200 GeV
0.0 ‘ ‘ ‘ ‘ T mg, =my, =m; =1000 GeV
~0.2} 1 mg, = mg, = 1000 GeV
-0.4f 1 mg=1500 GeV
Saeg

_0.6 1 A=Ap=A.=1500GeV

-0.8¢

100 120 140 160 180 200
my [GeV]

-1.0

Figure 8.1.: Up: The dependence of the Higgs masses m;, i € {h, H, A, h*}
on my with the color coding given above the plot is depicted
including the O(a?) terms calculated in the Feynman diagrammatic
approach (straight lines) or discarding this contribution (dashed
lines). Down: The effective mixing angle s, for the approx-
imation p? =0 is shown with (straight) and without (dashed)
the O(a?) contributions.

14This approximation corresponds to the effective potential approach [HHWO0Ob; Hei+01].
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8.1. Neutral Higgs masses in the real MSSM

In Fig. 8.1 the dependence of the Higgs-boson masses my, (blue) and my (red) on
the input value of my4 (depicted in black for your guidance) is visualized. For low
masses, h has a similar mass compared to that of the A boson, and in the high-mass
region H has a similar mass compared to that of the A boson. In both cases the mass
of h or H that is different from the A-boson mass saturates and becomes independent
of ms. Around m4 ~ 125 GeV a transition between these two scenarios takes place.
The contribution of the O(a?) corrections to the Higgs-boson masses is illustrated
by the difference between the dashed and straight lines. The charged Higgs-boson
mass my+ (green) gets only small contributions from the O(a?) corrections in the

depicted parameter region.

Furthermore, the effective mixing angle s,_, is close to zero for large my, i.e. in the
approximation of p? = 0 for the renormalized self-energies h ~ ¢, and H =~ ¢;; also
the couplings of h are similar to the Higgs boson of the SM in this case, whereas H has
suppressed couplings (decoupling limit). In contrast, s, is close to —1 for small m 4,
hence h ~ ¢; and H ~ ¢9 and the heavy Higgs boson H behaves more like the SM
Higgs boson.

my

100 105 110 115 120 125 130
[GeV] ‘ ‘ |

2f = — 1 128y,
1.5¢ B — S ]
i T 126 [GeV]
INT/ max |
X, N - N/ my 124
—_— 0Or ) N B 3 . et .
my o N 128
R 1PN 126
1 N cemneemTTTTTTT my,
~1.5] : . N 1124
-2 e B L2 [GeV]
e ] // mo
11 My 1120
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000

m: [GeV] m; [GeV]

Figure 8.2.: The dependence of the light Higgs-boson mass my on the stop-
sector parameters mj = mg, = mg, and X;. The three specially
marked values of X;/m; are used to define the m** (X; = 2m;)

and mr}?c’d’i scenarios (X; = £1.5m;, respectively). The other

parameters are fixed at: tg = 10, p = 200 GeV, my = 500 GeV,
my, = M =My, = 1000 GeV, Ay = A; = 0, mg = 1500 GeV.
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8. Numerical investigation of the top-Yukawa corrections

The maximal mass of the light Higgs boson h in the region of large m, strongly

depends on the stop-sector parameters m; = mg, = mg, and X, = A, — pu/tg.

The dependence of my, on m; and X;/m; for degenerate soft-breaking parameters
and sufficiently large m4 = 500 GeV, i.e. the light Higgs is SM-like, as depicted in
Fig. 8.2 (the other parameters are given in the caption). For a fixed value of m; the
dependence of the Higgs-boson mass my, on X;/m; has a local minimum at zero,
local maxima at ~ £2 and a steep gradient for larger | X;|/m; (which is also depicted
explicitly in Fig. 8.4). For a rising m; and fixed X;/m; the mass quickly increases to
its maximum value and slowly declines subsequently. This is an effect of the fixed-
order calculation and is not found, if higher-order logarithms of the type log (m;/m;)

are included [Hah+14]. The kinks correspond to thresholds for decays into gluinos.

The case with X; = 2m; is named mj*®* scenario [Sch+06; Car+03; HHWO00al; more

moderate cases for lower values of X; = +1.5m; have been proposed in Ref. [Car+13]
and are named m)°"*

h scenarios, respectively.
—_— TNy — M — g — T —_— M)y — M — g — Ty
— with O(a?) === without O(a?) — with O(a?) === without O(a?)
508F ‘ ‘ ‘ ‘ o 150 ".
506( ] 1400
504/ ]
1300\
502
500r ol T
nm; m;
[GeV] 1% [GeV]
110} ———
120}
115- 100
1107
90[
105;

100~

80~

36 46 56 36 46 56
Ip Ip
Figure 8.3.: The dependence of the Higgs-boson masses m;, i € {h, H, A, h*}
on tz with (straight) and without (dashed) the O(a?) contributions.
Left: m4 = 500 GeV. Right: ms = 110 GeV. The other param-
cters are fixed at: mg, = mg =my = 1000 GeV, p =200 GeV,
mg = 1500 GeV, mg, = mz = 1000 GeV, Ay = Ay = A = 1.5mg,.
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8.1. Neutral Higgs masses in the real MSSM

Another important parameter is ¢z, which affects the values of m;, and mpy already
at the tree level (cf. Eq. (6.28)). But also the loop contributions are influenced by ¢,
e. g. by its appearance inside of the mass matrices of the sfermions in Eq. (3.9). As can
be seen in Fig. 8.3, the influence of ¢3 on the mass predictions for h and H is strong,
especially for low values. The effect on the heavy Higgs mass my is less pronounced
for a larger input of m 4. Depending on the specific parameters the O(a?) terms are

important for a precise prediction of my, or my or both.

Comparison with a previous result

A previous analytic result of the O(a?) contributions to the neutral Higgs-boson
masses in the real MSSM already exists from a calculation making use of the effective-
potential method [Bri4-02]. The version of FeynHiggs for real parameters has this
result included, making thus a direct comparison with the prediction of the new
diagrammatic calculation possible. Thereby all parameters and renormalization have
been adapted to agree with Ref. [Bri+02], i. e. the A-boson mass is used as input quan-
tity and renormalized on-shell as explained in Section 7.4.2, and 6(s,, is absorbed

by the corrections to the Fermi constant G as described in Section 7.4.3.

— effective potential @ Feynman diagrams — without O(a?)

1251
120} tp =30
=200 GeV
ny,

GeV 115¢ ] m,;3=m,~k=m1;R=1OOOGeV
[GeV] mz, = mz, = 1000 GeV
110 m; = 1500 GeV
105" 1 my = 800 GeV

A=Ay = A‘r
100 ‘ ‘ ‘ ‘
—2000 —1000 0 1000 2000
A, [GeV]

Figure 8.4.: Comparison of the results for the light Higgs-boson mass evalu-
ated in the effective potential approach (blue) and the Feynman-
diagrammatic approach (red). For reference the result without
the O(a?) contributions is shown (green). The gray area depicts
the mass range between 124.5 GeV and 126.5 GeV.
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— effective potential @ Feynman diagrams — without O(a?)

799.76f
799.74; 5= 30
1 =200 GeV
799.72F 1 mg, = m; = m; = 1000 GeV
[GeVl mg, = ms, = 1000 GeV
;=1 \%
799.70¢ | mg =1500Ge
ma = 800 GeV
& At = Ab = A‘r
799.68: . . ‘ ‘ ‘
-2000 —1000 0 1000 2000
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Figure 8.5.: Comparison of the results evaluated in the effective potential ap-
proach (blue) and the Feynman-diagrammatic approach (red) for
the heavy Higgs-boson mass. For reference the result without
the O(a?) contributions is shown (green).

Very good agreement is found between the two results that have been obtained in
completely independent ways. As an example, this feature is displayed in Fig. 8.4,
where the shift of the light Higgs-boson mass by the O(a?) terms in the two ap-
proaches is shown on top of the mass prediction without these terms. The gray band
depicts the mass range 125.5 £ 1 GeV around the Higgs signal measured by ATLAS
and CMS. The mass shifts displayed in Fig. 8.4 underline the importance of the
two-loop top-Yukawa contributions for a reliable prediction of the light Higgs boson

mass.

In Fig. 8.5 the mass shift for the heavy Higgs boson is depicted for the same param-
eters. It is in general small and also the variation with A; is below 0.1 GeV which
is an immediate consequence of the suppressed couplings of the heavy Higgs boson
in this region. Nevertheless the very good agreement of the Feynman diagrammatic
and the effective potential approach is emphasized again. The very small deviation

for large | A, is inside the limits of the computational accuracy.

Inverted Higgs-boson mass hierarchy

A possibility to interpret the measured Higgs-like state around 125.5 GeV as the
heavy Higgs boson H has been pointed out in Refs. [HSW12; Ben+12; BFS12].
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8.1. Neutral Higgs masses in the real MSSM

To arrange the mass my in an appropriate intervall, the input parameter m, also
has to be low as can be seen in Fig. 8.1. In that case the charged Higgs boson
becomes light, too; the light C'P-even Higgs-boson mass mj becomes very low,
which introduces the name m°" scenario for this case. Thereby h has strongly
suppressed couplings to gauge bosons thus having been invisible for past experiments.
Despite strong constraints by experimental data on the allowed parameter space of
the MSSM in this scenario [coll3a; coll13b], it cannot be excluded yet as is shown in

the following.

In Ref. [Car+13] this case is labeled differently as "low-Mpy scenario’. Therein two
allowed parameter regions are identified: one for ¢5 ~ 5.5, p ~ 1500 GeV and one
for tg = 7.5, u ~ 2800 GeV. The available range for t5 is constrained from above
by Higgs-to-7+-7~ searches at the LHC and from below by searches for a charged
Higgs boson or the LEP experiment. Furthermore strong experimental bounds exist
in the tg(my) and tgz(mpy+) plane which are however only given for Higgs cross
sections evaluated in the mj;*** scenario. Nevertheless, the A-boson mass is kept
as light as possible to meet the limits of CMS [col13a]. Also the resulting charged
Higgs-boson mass is chosen to be heavier than 140 GeV which is the current limit of
ATLAS [col13b]. For large p the latter requirement becomes more difficult to achieve
due to the negative O(a?) contributions to the charged Higgs-boson mass; this effect

is explained in more detail in Section 8.3.

Both parameter regions which are mentioned above are depicted in Fig. 8.6 with a
degenerate stop soft-breaking value m; = m;, = my, varied at the vertical axis and
the quantity X;/m; varied at the horizontal axis. The red (yellow) band shows
the 125.5 £ 2 (£3) GeV contour for the mass of the heavy C'P-even state my. This
range corresponds to an estimated theoretical uncertainty of the light Higgs-boson
mass due to presently not calculated two-loop and three-loop contributions [Deg+03];
it is assumed to also be valid for my in the mi°" scenario. The blue (light-blue) region
indicates a charged Higgs-boson mass of more than 140 (138) GeV at higher orders
(cf. Section 8.3). The parameter region which fits the constraints best is found in the
intersection of the blue and red regions. As can be seen there are two possibilities
in each case: a very large X; ~ 2.5m; and a moderate negative X;. For the upper
plot in Fig. 8.6 only a narrow band is allowed for m; at the low-A; region due to
the strong gradient for the Higgs mass my at very low 5. In contrast, for the lower
plot of Fig. 8.6 the high-A; region is constrained by the low value of the charged

Higgs-boson mass.
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Figure 8.6.: Contour plots for the dependences of my and mp+ on X;/m;
and m; = mg, = mg, are shown. The red (yellow) band indicates
where H can be interpreted as the experimentally measured
Higgs-like particle with a mass of mpy = 1255+ 2(£3) GeV.
The blue area shows the mass of the charged Higgs boson
with contours at mpx = 140 GeV and myx = 138 GeV. Two
different parameter regions are shown as derived in Ref. [Car+13].
Up: tg=5.5, pn=1500 GeV. Down: tg="7.5, pu= 2800 GeV.
The other parameters are mg= 1500 GeV, A=A, =0,

My, = Mg, = Mz, = 1000 GeV.



8.2. Neutral Higgs masses in the complex MSSM

8.2. Neutral Higgs masses in the complex MSSM

In the following, the MSSM parameters A;, 1t and my are considered as complex-
valued quantities. In this case also 22{2‘ and igh, j € {1, 2} contribute to the
self-energy matrices in Eq. (6.37a), thus all neutral lowest-order Higgs bosons h, H
and A mix at higher orders in general. The resulting masses my,, my, and my, are
acquired from the p?-dependent Eq. (6.38) and sorted in the order my, < mp, < my,;.
Accordingly, the charged Higgs-boson mass myg+ is chosen as an input parameter and

renormalized on-shell at higher orders.

8.2.1. Comparison with a previous interpolation

Until now, the O(a?) terms were not available for complex parameters. Instead, in
the present version of FeynHiggs, the dependence of the O(a?) contributions on the
phases ¢4, and ¢, is approximated by an interpolation between the real results for
the phases 0 and +7 [Hah+07; Hah+09).

A comparison with the full diagrammatic calculation yields deviations that can be
notable, in particular for large |A;| and large p. Fig. 8.7 displays the quality of
the interpolation as a function of ¢4, and shows that the deviations become more
pronounced with rising p, which is kept real. Also the admixture of the C'P-odd part
in hy is increasing with u, but in the depicted parameter range it is in general small,
below 2%. The asymmetric behaviour with respect to ¢4, is caused by the phase of
the gluino mass in the O(aza;) contributions. The shaded area again illustrates the
range from 124.5 GeV to 126.5 GeV.

However a caveat has to be issued: since mpy=+ is used as an input in the case of
complex parameters, it is also renormalized on-shell; in particular, for the O(a?) cor-
rections Eqs. (7.13) have to be used. Accordingly, the counterterms for the A-
boson mass at the one-loop and two-loop level are determined by Eq. (6.64) and
Eq. (6.80), respectively. Particularly, the genuine mass counterterms in Eq. (7.9¢)
and Eq. (7.10c) have to be used as input for Eq. (7.8¢) to renormalize the O(a?) contri-
butions to 2542) in Eq. (7.6a), i.e. the explicit expressions for the O(a?) contributions
to Zg)i are required. However, the previous result of the O(a3) corrections in the
effective potential approach is only available for m, being renormalized on-shell,
especially the contributions to the charged Higgs-boson self-energy are not contained

in FeynHiggs (instead the terms of the A-boson self-energy are used). Thus, by
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— interpolation — calculation
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Figure 8.7.: The result for my, in the diagrammatic calculation (red), in com-
parison with the approximate result from an interpolation between
the phases ¢4, = 0, 7 (blue) for different values of a real u. The
gray area depicts the mass range between 124.5 GeV and 126.5 GeV.

using the interpolation in FeynHiggs the renormalized self-energies are calculated
incorrectly, whenever the O(a2) terms in the difference $§ — Eg)i are large. The
depicted example in Fig. 8.7 is situated in a parameter region where the heavy Higgs
bosons practically do not mix with h, i.e. renormalization of either m 4 or my+ has

a negligible influence on the prediction of my, .

This is not the case for the other two neutral Higgs bosons in this scenario. In Fig. 8.8
the masses my, (red) and my,, (green) are depicted for the Feynman diagrammatic cal-
culation (straight) and for the effective potential interpolation (dashed) on top of the
result without the O(a?) contributions (dotted). A clear deviation between the two
different calculations is visible and even for the case of real parameters at ¢4, = 0, £
big shifts occur, originating from the different renormalization schemes!'® (the size
is controlled by p as is illustrated in Section 8.3); and moreover these deviations
are passed on to the lightest Higgs-boson mass as soon as large mixings between h
and H, A occur. In the present scenario, close to the real values of A, the masses my,
and my, can be identified as the masses of H and A, respectively. For a large
imaginary part of A; the situation is vice versa because of a strong C'P-mixing. This

feature is illustrated in Section 8.2.2.

15Similar effects have been observed in the calculation of the O(a;as) corrections [Fra+13].
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Figure 8.8.: Results for my, (red) and my, (green) in the diagrammatic calcu-
lation (straight) in comparison with the approximate result from
an interpolation between the phases ¢4, = 0, £7 (dashed). For
reference the result without the O(a?) terms is shown (dotted).

8.2.2. CP-mixing

As mentioned before, all three neutral lowest-order Higgs bosons, i.e. the C'P-even h
and H, and the C'P-odd A, in general mix at higher orders. They are no mass
eigenstates and in general C' P-mixed states. Furthermore, the mixing of h, H and A
is p?>-dependent, hence also the C' P-violating mixing features depend on the external

momentum.

A convenient approximation for the discussion of the C'P-mixing is given by as-
suming p? = 0 in the renormalized self-energies of the Higgs bosons. In this case,
Eq. (6.38) simplifies to the eigenvalue equation for the matrix MELQIZ,AG(O) in Eq. (7.6a).
The real mixing matrix which diagonalizes Mfﬁ, 4(0), i. e. the upper-left (3 x 3) sub-
matrix of M%( ¢(0) neglecting mixings with the Goldstone boson, is denoted as Uy

in the following. It allows to define an approximate mass-eigenstate basis according

to
hq h Ui Uni2 Unas
ho|=Ug |H|, Ug=|Ugoa Upoa Upyos|- (8.1)
hs A Un,zi Unse Upb,ss
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Figure 8.9.: The mixing-matrix elements squared UIQ_L i 57 €41, 2, 3} (left)
and masses myp, (right), where i is the index of the row and j is
the index of the column, are illustrated with the phase ¢4, and
the input mass mpy+ being varied. The color coding is explained
in the labels at the top of the figures; for convenience some
contours of the mass plots are signed with their corresponding
mass values. The input parameters are fixed at pu = 2000 GeV,
tg =15, my, =mz =1000 GeV, mg =mz, =my = 1000 GeV,
|A¢| = |Ap| = |Ar| = 2mg,, mg = 1500 GeV.

In general, the h;, i € {1, 2, 3} are no longer C P-eigenstates since they are composed
of the tree-level C'P-even bosons h and H and the tree-level C'P-odd boson A.
The squared elements Uf ;5 of Eq. (8.1) tell the amount of the A boson inside
of hi = Uginh+Upn,is H + Up i3 A.

The dependence of the mixing-matrix elements squared Ufl, ;; and the Higgs-boson
masses my, on the input value of the charged Higgs-boson mass my= and the basically
unconstrained complex phase ¢4, [FO96] is presented in Fig. 8.9. Thereby the tiles on
the left-hand side are ordered according to the matrix form of U%I, ;> tand j being the
indices of the row and the column, respectively. The masses my, on the right-hand

side are in ascending order from the first to the third row.
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8.2. Neutral Higgs masses in the complex MSSM
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Figure 8.10.: The mixing-matrix elements squared U?_I’ i LI € {1, 2,3} (up
left) and masses my, (up right), where i is the index of the
row and j is the index of the column, are illustrated with the
phase ¢4, and the real-valued p being varied. For comparison
the mixing-matrix elements squared UIQJ’ 1y J € {1, 2, 3} (down
left) and mass my, (down right) are depicted without the con-
tributions of the O(a?) terms. The color coding is explained
in the labels at the top of the figures; for convenience some
contours of the mass plots are signed with their corresponding
mass values. The input parameters are fixed at my+ = 140 GeV,
tg =5, my, = mz =1000 GeV, mg, = my, =my = 1000 GeV,
|Ai| = |Ap| = |Ar| = 2myg,, mg = 1500 GeV.
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8. Numerical investigation of the top-Yukawa corrections

Whenever two masses mj, and m,%j are close to each other or even equal, the UI2{7 y
change from zero to one very quickly, i.e. two fields h; and h; interchange their
meaning. For a large charged Higgs mass the lightest Higgs h; is basically equal to h.
In contrast, the heavier Higgs bosons can be composed of H and A in all possible
variations, depending on the phase, thus yielding the possibility of very large CP-
mixing. Especially eye-catching are the nodal points close to the real values of A,
for ¢4, = £m and my+ ~ 205 GeV. They correspond to the parameter points where
the masses of hy and hs are equal; slightly above or below the nodes hy and hs
can exactly be identified as H or A. A similar, but not as strong, effect is visible
close to the real value of A; for ¢4, = 0. Besides this special situations, hjz is mostly
composed of H. At my+ =~ 170 GeV an extreme situation is observed: each h; is
almost equal to h, H or A for any complex phase. However the situation changes for
low input values of my+ where a large admixture of A to the lightest Higgs boson h,
is predicted, depending on the complex phase ¢4,. In the same parameter range the
heaviest state hg is nearly C'P-even for any phase. The strongest gradients for the
mixing of h and A to hy and hy appear at ¢4, ~ £0.4 and my+ ~ 140 GeV; for the
present choice of parameters the masses my, and my, come closest to each other at

this points.

Another interesting feature is the dependence of C'P-mixing on the higgsino-mass
parameter u. For the input value mpy+ = 140 GeV the dependence on a real p is
depicted in Fig. 8.10. Thereby the mixing-matrix elements squared and masses use
the same conventions as in Fig. 8.9. As can be seen, p has to be large to induce varying
mixing effects for different complex phases ¢4,. In the whole depicted parameter
range hg essentially consists of H and the admixture of A to hg is practically negligible.
However big gradients can be seen in the other mixings which have the same origin
as in Fig. 8.9 and which appear again at the phases ¢4, ~ £0.4: here the difference
of the masses my, and my, becomes very small. For a comparison of the result with
and without the O(a?) terms the latter is depicted for the lightest Higgs boson h,
in the lower two tiles of Fig. 8.10. Apparently, the regions with a large gradient in
the mixing are shifted by the O(a?) contributions to lower values of x. Besides that,
the mixing-matrix elements squared without the O(a?) contributions are smaller in
the whole parameter region; this is a consequence of the additional dependence on
the stop sector (and therefore on ¢4,), which is introduced by the O(a?) corrections.
However, the general phase dependence of the mixing-matrix elements squared for
large values of p remains the same, even though their extreme points are shifted to

slightly higher |¢x,| by the new contributions.
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8.2. Neutral Higgs masses in the complex MSSM

8.2.3. Inverted Higgs-boson mass hierarchy
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Figure 8.11.: Contour plots for the dependences of my, and my, on |X¢|/m;
and mj = mg, = my, are shown. The red (yellow) band indi-
cates where my, has a value of mp, = 125.5 & 2(£3) GeV. The
blue (light-blue) area shows the mass my,, of the other heavy Higgs
boson with contours at mp, = 115 (120) GeV. The charged Higgs-
boson mass is an input parameter and fixed at my+ = 140 GeV.
The color coding is given at the top of the figure. Here the
parameter region at tg = 7.5, p = 2800 GeV is shown with the
complex phase of X; varied as indicated at the top of each tile.
The other input parameters are My, =M, = May = 1000 GeV,
Ay = A =0, mg = 1500 GeV.

In analogy to the real MSSM, the ml°™ scenario can also be investigated in the case
of complex parameters. To arrange for low masses of the heavy neutral Higgs bosons,

the input value my+ has to be small.

As has been pointed out in Section 8.2.2 all neutral lowest-order Higgs bosons mix
at higher orders, in general violating C'P-symmetry. The experimentally measured
Higgs-like particle with a mass of &~ 125.5 GeV has been shown to be at most 68% C P-
odd [DM13]. In Fig. 8.9 it can be seen that the Higgs boson hs is the one which
corresponds best to a C' P-even boson for a low input of my+. Thus, the possibility

of my, ~ 125.5 GeV is investigated in the following.

Imposing the additional constraints my, < 120 GeV and my=+ > 140 GeV to fulfill the
current experimental bounds, leaves only one of the two scenarios that were discussed
in the real case: t3 = 7.5 and p =~ 2800 GeV. In the other scenario either my, or my,

is too large in the depicted parameter range.
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8. Numerical investigation of the top-Yukawa corrections

In Fig. 8.11 the dependences of my, and my, on |X;|/m; and m; = mg, = m;, are
illustrated for different phases ¢x,. Compared to the case with real parameters only
the possibility for small values of | X;| remains; the former available large-| X;| region
is shifted to even higher values. However, due to the additional mixing with the third
neutral Higgs boson a larger range for the stop-mass parameter m; = mg, = my, is
allowed now. The regions which agree best with the conditions that are imposed
on my, and my, are the overlapping red and blue areas. Hence, the preferred ¢y, is
found to be close to —37/4. In contrast, phases close to zero result in difficulties to
fulfill both conditions at the same time for the investigated parameter space. The
outer-most tiles are mirrored since the results only depend on |¢x,| for the chosen
parameters. Furthermore, the tiles with a phase difference of 7 are continuous in | X;|
if they were combined at the origin. Also very remarkable are the heavy changes of
the mass predictions between the phases zero and /4 on the one hand and between
the phases —m and —37/4 on the other hand, compared to the small changes among

all the other tiles.

8.2.4. Scenario with a complex-valued u

In this section the dependence of the mass predictions on the complex phase ¢, of
the bilinear superpotential parameter y is investigated. In the O(a?) terms the phase
appears in the mixing matrices of the higgsinos and along with p in the couplings of
top squarks and their mixing matrices. Although strong constraints by electric dipole
moments exist on ¢, [MS97] the regions close to real values are still allowed [BGK99;

Brh+99] and therefore of special interest.

Again, pronounced effects are found in the ml™ scenario; for larger input values

of mpy+ the mass shifts induced by small phases of u are tiny for each neutral Higgs
boson. The investigated parameter range is illustrated in Fig. 8.12 for phases ¢, ~ 0
and in Fig. 8.13 for phases ¢, ~ m. Fig. 8.12 contains contour plots for ¢, =0
and ¢, = 7/5 and Fig. 8.13 contains contour plots for ¢, = m and ¢, = 47/5. The
varied parameters are X;/m;, with m; = mg, = my,, on the horizontal axis, and |u|
on the vertical axis. In each case the complex phase of X, is set equal to zero, i.e.

the parameter A; is modified accordingly.

However, as can be seen in Fig. 8.14, the phase of A; is close to 0 or 7 for any
value of ¢, as long as |X;| is sufficiently large compared to |u|/tg. In contrast, for

comparably low |X;| the phase ¢4, has the opposite sign and a similar size as ¢,,.
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Figure 8.12.: Left:
low ¢, ~ 0 are shown.
bottom in ascending order of the neutral Higgs-boson masses.
The color coding and the value of ¢, is given above the tiles.
The green, red and blue circles define the input parameters for

the plots on the right.
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Figure 8.13.: Left: Contour plots for the scenario with a complex p at
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high ¢, ~ m are shown. The plots are arranged from top to
bottom in ascending order of the neutral Higgs-boson masses.
The color coding and the value of ¢, is given above the tiles.
The green, red and blue circles define the input parameters for
the plots on the right. Right: The colors of the curves agree
with their corresponding points inside the contour plots. The
ordering of the masses is the same. The input parameters are
tg = 7.5, my+ = 140 GeV, m; = mg, = my, = mj,. = 1500 GeV,
my, = mz = 1500 GeV, Ay = Ar =0, mg = 1500 GeV.



8.2. Neutral Higgs masses in the complex MSSM
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Figure 8.14.: The dependence of |4;| and ¢4, on ¢, is depicted for different real
values of X; >0 (left) and X; < 0 (right) with the color coding
corresponding to the legend. Thereby ¢, is varied between —m
and 7 yielding the curves. For your guidance the symbols +, o
and —, which are explained in the caption, are attached to each
line. For some pairs of curves + and — are lying on top of each
other. The cases X; = =+ |u|/tg are special: for ¢, = Fr the
phase of A; jumps to zero. The gray area illustrates the range
of |A¢| > m;. The input parameters are tg = 7.5, |u| = 2500 GeV,
mi = mg, = mg, = 1500 GeV.

The rows of Fig. 8.12 and Fig. 8.13 are sorted from up to down in ascending order of
the Higgs-boson masses my,, with their corresponding values given as indicated by the
color coding in the legend. The dependence of my, and myp, on X;/m; mimics the
result for the real case in Fig. 8.2 with two local maxima at X; ~ 4+2m; and one local
minimum close to X; = 0, whereas my,, shows just a shallow dependence on X;/m; in
the depicted range; only for a large complex u stronger variations are visible. For low
input values of |u| none of the masses is significantly shifted by different phases ¢,,;
however, the situation becomes different for increasing |u|. There is a tendency for
a decreasing my, with rising |u|, while my, is decreasing for ¢, ~ 0 and increasing
for ¢, ~ 7 with rising |x|; as mentioned before, the case of my,, depends on the chosen

phase.
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8. Numerical investigation of the top-Yukawa corrections

Three special points are selected in each contour plot as illustrated by the red, blue
and green spots with the coordinates |u| = 2500 GeV and X; =0, £1.5m;. On the

right-hand sides of both figures the same color coding is used to show the dependence

of the Higgs-boson masses my, on the phase ¢, at these three parameter points.

Thereby the straight lines depict the results which include the O(a?) corrections, in

contrast to the dotted lines. Since no visible shift occurs for X; = 0 (red), but large

shifts appear in the other cases for X; = 1.5m; (blue) and X; = —1.5m; (green), these

effects must be induced by the p-dependence of the stop sector; the contributing ¢,.-

dependence of the higgsino mixing matrices is negligible in the depicted parameter

range. The masses my, and my, are rising with an increasing imaginary part of f,

while my,, is falling.

8.3. Charged Higgs-boson mass in the real MSSM
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Figure 8.15.: In the upper parts of both plots, the prediction for the charged
Higgs-boson mass my,+ including all known contributions (blue),
without the O(a?) contributions (green) and without any two-
loop corrections (black dashed) is depicted. In the lower
parts of both plots, the mass shift Am,+ by the O(a?) con-
tributions is shown (red). Left: tg =4, my =150 GeV.
Right: t5 =10, ma = 500 GeV. The other input parame-
ters are mg, = my, =my, = 1000 GeV, m;, = mz = 1000 GeV,
At = Ab = AT =1.5 Mgs, Mg = 1500 GeV.



8.3. Charged Higgs-boson mass in the real MSSM

For the calculation of the O(a?) contributions to the neutral Higgs-boson masses in
the complex MSSM the charged Higgs-boson mass my+ has to be chosen as an input
parameter and is renormalized on-shell accordingly. Therefore the O(a?) terms of
the charged Higgs-boson self-energy have to be computed. They have been derived
in this thesis and were not known before. In the real MSSM the A-boson mass m4
is conventionally chosen as an input parameter. In this case, the O(a?) self-energies
contribute to the mass matrix of the charged Higgs bosons at higher orders according
to Eq. (7.6b). The corresponding mass my+ is derived via Eq. (6.39). The present
status of the mass prediction for the charged Higgs bosons without the O(a?) con-
tributions is described in Ref. [Fra+413].

The contributions to my+ induced by the O(a?) corrections are small over a large
parameter space. Two typical mi°d scenarios which are compatible with current
exclusion limits are shown in Fig. 8.15. Above the black dashed line which shows
the charged Higgs-boson mass including the one-loop corrections are the curves
for the O(aya;) contributions (green) and both known two-loop contributions com-
prising the O(a?) terms (blue). The sum of both two-loop corrections is lowered,
i.e. the O(a?) corrections are negative (red). However, the total two-loop shift still
yields a higher mass of the charged Higgs-boson compared to the one-loop result.
For large values of p the charged Higgs-boson mass my+ becomes smaller, but the
absolute value of the mass shift Amj« which is induced by the O(a?) contributions
becomes larger. In the scenario with a large m4 (right) the top-Yukawa corrections

are smaller compared to the scenario with a low m4 (left).
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9. Conclusions

The discovery of a Higgs-like particle with a mass around 125.5 GeV [Cha+14;
Aad+14] at the LHC by the experiments ATLAS [Aad+12] and CMS [Cha+12a]
has initiated intensive efforts in improving the theory predictions for the Higgs-boson
mass of various models. Therefore, higher-order corrections in perturbation theory

are an important tool.

The main subject of this thesis is the Feynman-diagrammatic computation and
analysis of the top-Yukawa-coupling enhanced two-loop contributions of O(a?) for the
Higgs-boson spectrum in the Minimal Supersymmetric Standard Model (MSSM) with
complex parameters. Accordingly, two-loop renormalization of the Higgs tadpoles
and self-energies for complex parameters is carried out. So far, these corrections were
only available for real parameters evaluated in the effective-potential approach. The
Higgs-boson sector of the MSSM is C'P-conserving at lowest order and is independent
of complex parameters. However, at higher orders in perturbation theory complex
parameters are introduced from other sectors of the MSSM leading to mixing of
the C'P-even neutral Higgs bosons h and H with the C'P-odd neutral Higgs boson A
at higher orders.

In analogy to the significant phase dependence of the O(a ;) corrections in the
complex MSSM, large contributions by the complex O(a?) terms can occur. For
a precise prediction of the Higgs-boson masses and mixings the exact knowledge of
these corrections is necessary. Following the applied approximations in the evaluation
of the O(ayay) terms, the O(a?) contributions are also calculated in the gauge-less

limit with the external momentum and the bottom-quark mass set equal to zero.

For the numerical analysis of the Higgs-boson masses and mixings the new O(a?) cor-
rections are combined with the other known contributions with the help of FeynHiggs.
It contains the full complex one-loop result and the complex two-loop O(as) terms.
The previously known real O(a?) terms are also contained in FeynHiggs: they are

compared with the O(a?) results of this thesis and replaced by them afterwards.
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9. Conclusions

At first, a comparison of the O(a?) contributions with the previously existing result
for real parameters is carried out. Very good agreement of both results is found
for the masses of the C'P-even Higgs bosons as long as my4 is chosen as an input;
the O(a?) corrections to the neutral Higgs-boson masses can easily amount to a shift
of +5 GeV.

For the O(a?) contributions the significant complex parameters of the MSSM are
the trilinear top-squark coupling A; and the bilinear higgsino-mass parameter p with
the phases ¢4, and ¢,, respectively. For the case of non-zero phases, FeynHiggs
supplies the possibility of an interpolation of the O(a?) terms from the effective-
potential calculation. A comparison with the exact result which is obtained in this
thesis reveals partially large deviations of O(1 GeV), especially for large values of p.
The heavier Higgs-boson masses are in general more affected due to the different

renormalization scheme.

The phase ¢4, has a strong influence on C'P-mixing. As has been clarified, this
mixing always happens either among A and h or among A and H; a region with
simultaneous C'P-mixing of all three Higgs bosons at higher orders could not be
found. Thereby, large mixing between h and A is found for small my+ < 150 GeV
and large p, whereas large mixings of H and A occur at large my+. The mass shifts
in both cases can amount to several GeV when changing the phase ¢4, from 0 or £
to £7/2. Interestingly, there is also the possibility to have just tiny mixing effects,
thus little C' P-violation, in spite of large imaginary parts of A;.

The dependence of the Higgs-boson masses on the phase ¢, is investigated only for
small imaginary parts of . The main effect is induced by the couplings of the
stop sector; the occurence of ¢, in the higgsino mixing matrix has just a negligible
influence. Furthermore, the investigated parameter range at X; = 4+1.5m; is basically
independent of ¢4,. Sizable contributions of O(0.5 GeV) are found for low values

of my+ and large values of |p|.

The phenomenological interpretation of scenarios with low input values of m4 or mpy+
is special in the sense that a heavy neutral Higgs boson is identified with the mea-
sured boson at the LHC. Although, the progress of measurements at the exper-
iments ATLAS and CMS in the recent years already excluded wide parts of the
parameter space of the MSSM, for this scenario some regions are still allowed and
investigated. However, if a stricter lower limit on the charged Higgs-boson mass can

be set, this scenario will be ruled out.
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For the evaluation of the O(a?) contributions to the Higgs-boson sector in the
complex MSSM the corresponding corrections of the charged Higgs-boson self-energy
have to be calculated for on-shell renormalization of the charged Higgs-boson mass.
These terms are determined in this thesis and were not known before. As a side effect,
in the MSSM with real parameters and on-shell renormalization of the A-boson mass
they yield a shift of the charged Higgs-boson mass. In general this mass correction

is negative and for large values of u it can exceed a contribution of —1 GeV.

The derived results clearly show the necessity for a precise calculation of the top-
Yukawa-coupling enhanced two-loop corrections including the full dependence on
complex phases. The overall mass shift by these contributions for real parameters is
positive, commonly around 5 GeV for one of the two C'P-even lowest-order states h
and H. Depending on choosing either the A-boson mass or the charged Higgs-boson
mass as an input either m4 or my+ is renormalized on-shell, accordingly. The other
mass receives a negative shift of O(1 GeV), respectively. In the complex MSSM,
the dependence on the phases ¢4, and ¢, of the complex parameters A, and p,
respectively, can add further 1 to 2 GeV to the masses of the predominantly C'P-even
Higgs bosons and a negative shift to the third neutral Higgs-boson mass; the charged
Higgs-boson mass is an input parameter and has to be renormalized on-shell in this

case.

Because of these large contributions, and in the light of a present experimental
accuracy for the mass measurement of the discovered Higgs-like particle at the LHC
of about 0.4 GeV,6 a further reduction of the theory uncertainty for the prediction of
the Higgs-boson masses in the MSSM is desirable, especially the yet missing two-loop

contributions by gauge bosons should be evaluated.

16Currently, the experimental accuracy is predominantly limited by the statistical uncertainty.
The systematic uncertainty is about 0.2 GeV [Cha+14; Aad+14].
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A. Supersymmetry notations

A.1. Conventions

The metric of a four dimensional flat Minkowski spacetime is defined as

1 0 0 0
9" = Guw = 8 ! _01 8 (A1)
0 0 -1
The applications of Lorentz transformations
't = (6", +r*) x” (A.2)
with a second rank antisymmetric constant tensor 7*,, or translations
o' =ttt + 2! (A.3)

with a constant four vector t* on a spacetime element x* leave physical observables
globally invariant. By defining the corresponding unitary operators U(t) = e'tf"
and U(r) = e 2"/" with their respective generators P* and J"’ the Poincaré

algebra of Eqgs. (2.1) is satisfied.

A realization of the Poincaré algebra for spinors is given by the (4 x 4) matri-

ces v, € {0, 1, 2, 3} with the (anti)commutation relations

{7, 1} = 291, (A.4a)

oila

[y, 7] = —4i ( OV 5&) : (A.4b)
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A. Supersymmetry notations

In the Weyl representation they are defined by

M = (JO# 00“) (A.5)

with the four matrices

ot = (1, ol, o2, O'3> , (A.6a)
ot = (1, —ot, =02, —03) , (A.6D)

o', 1 € {1, 2, 3} being the Pauli matrices and

10
5 =" =i7"yy*% = ( 0 1) : (A7)

The spin matrices in that representation are given by

—V

o =i (otc” —oa"), (A.8a)

G =i (Ghe" — Gt (A.8b)

A.2. Grassmann variables

Grassmann variables «; are defined by the anticommutator
{Oéi, Oéj} =0 (Ag)

among each other while they commute with complex variables. Thus, a general

function f of the two Grassmann variables 6 and 6 has the form
£(0.0) = fo+ 10 + f20+ f300. (A.10)

The complex numbers fy, f1, fo and f3 can be evaluated by using the Berezin inte-

gration rules [Ber66]

oz/de, o—/de‘ (A.11a)
1= [d

| = /dee, 66 (A.11D)
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A.3. Two-component spinors

and the identities 2 = 0 and 62 = 0. The extension to more independent Grassmann

variables is obvious.

A.3. Two-component spinors

Massive Dirac four spinors transform as the direct sum of the two fundamental

representations (%, 0) & (O, %) of the groups SU(2), and SU(2)_ respectively, with

SU(2); ® SU(2)_ being homomorphic to the Lorentz group. Two-component Weyl

L ) respec-

spinors {4 and x4 can be constructed which transform as (%, O) and (0, 3

tively. They obey the relations

¢4 = ey, €4 = €apt”, (A.12a)
=g, i = cipy” (A.12b)
with the totally antisymmetric tensor e4? = —e p = (_01 [1)) The relation between

both representations can be expressed by

¢t = (EA)Ta §a= (EA)T, (A.13a)
= () Xi=(xa)'. (A.13b)

The following combinations form covariant and SL(2, C) invariant (being the covering

group of the Lorentz group) bilinear forms:

Ex=¢&"a= (Xg)T : (A.14a)
coty = ot x5 = (xo"€)' (A.14D)
Yoe = 40" Bep = (o) (A1de)

The components of the Weyl spinors are anticommuting. With the additional conju-

gate Grassmann-variable doublets 64 and 64 the following relations are valid:

EoP'Y = —Xoke, (A.15a)
{ox = —xo¢, EoMy = —\oME, (A.15b)
- —;GABee, 0405 = ;eABee, (A.15¢)
GigP — ;EABe‘é, 6.0, — _;%59‘, (A.15d)
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A. Supersymmetry notations

0 8y = —;fx 66, GE 05 = _;gx 79, (A.15¢)
1 - - —— 1- =_

§C X = S€0"X CouT, CXT = 580"y (o, (A.15f)

_ _ 1 __
00"9 00”0 = 5" 0000, (A.15g)
(6 XO'T = —§Cx £"'T + (o™X €0, T, (€ XO'T = —3TE XG'C — ToME X0,
(A.15h)
(0#9) 000 = 60 [39" 0.4 = i (0**6),] . (05)405"9 = 00 [30,39" +i (85 .
(A.15i)

A.4. Superfields

Superfields are functions on the superspace which contains Minkowski spacetime
vectors z* and two additional conjugate Grassmann-valued coordinate doublets 64
and @ ;. The most general expression for superfields is stated by Eq. (2.7). The in-
finitesimal transformation of general superfields is performed in Eq. (2.11). Inserting

the full expression yields the infinitesimal transformations of its components:

0f =V2(rE+7X), (A.16a)
V2
5§A_\/‘TAM+7(J# )4 (—i0.f + A, (A.16D)
ot = V2N - ? ("7)" (10f + Au) (A.16c)
SM =7\ + Mﬁufa i (A.16d)
ON =71¢— \2/57'0“8“)2, (A.16e)
: i \/_ _ o

0A, = To N+ CoWT — —— [10,€ — 0,XT) + V2 [10,,0"¢ — 76,,0"X],  (A.16f)
M =74Dp — §TA8HA —i (@) o.M + (6™7)1 0,A,, (A.16g)
5Cs = 74D + %TAaﬂAH — i (0"7) , 0N — (0"7) , 0, Ay, (A.16h)
0D =i (9,(0"7 + 0, \5"7) (A.161)

Thus, the D term of any superfield transforms solely as a derivative. Similarly it can
be shown, that the F' components of chiral superfields given by Eq. (2.14) transform

as a derivative.
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A.4. Superfields

A supersymmetric Lagrangian density constructed out of these superfields must
remain invariant under each supersymmetry transformation up to a total derivative
to keep the action constant. The only possible contributions are thus the D terms of

superfields and the F' terms of chiral superfields leading to the general form
L= /d@d@dédé@}@i + /d&d@W(CDZ-) + /dédéw(cpj). (A.17)

However, it is noteworthy that covariant derivatives of superfields can create addi-

tional F' term contributions as shown in the special case given by Eq. (2.25).
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B. Loop integrals

The analytical evaluation of the O(a?) contributions requires the following explicit

expressions for one-loop and two-loop integrals.

B.1. One-loop functions

In the following all required one-loop integrals are listed up to O(€'), where ¢ =
(4 — D)/2 parametrizes the divergent parts. D is the dimension of the integrated

momentum and pp depicts the regularization parameter, so that
/d4q — u4D*D/qu : (B.1)

The reduction to scalar integrals as described first by Ref. [PV79] has been used. The
scalar integrals have been re-evaluated by using the technique of Feynman parameters.

Ap(0) =0, (B.2a)

Ag(m?) = "2 2 (L (m?) ) + mie {; P (mz)]Q} , (B.2b)

Bo(p*,0,0) = % +{1+C+1og (—7#25) |

71'2 1 2 (B3a)
_ _ _ _MD
+6{2 g 1O o ()] }
A 2
Bo(0,0,m?) = By(0,m?,0) = % (B.3b)
A()(’ITLQ)
Bo(0,m*,m?) = (1—¢) e (B.3c)
Ao (mi) — Ao(m3)
2 2
By (0,m7,m3) = w2 —m3 , (B.3d)
2 2 _} . 2 12 1 _ 2172
Bo(m,O,m)—€+{1 L(m*)}+e 2+12+2[1 L(m*)] ¢, (B.3e)
Bo(m2,m270) = Bo(m2707m2), (B.3f)
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B. Loop integrals

2 2
Bo(m?,0,m3) = - + {Z% [1-L(m2)] + ™ %m2 [1+C+1og<mz“sz)}}

Bo(mimg’()) :Bo(m%voamg)v (th)
By ((ml + m2)2a m%v mg) =

1+{m1 [1- L ()] £ mo [1—L(m%)]}

€ my £ mo (B.3i)

+6{2+W2+m1[l‘L(m1ﬂ +my [1- L (m} )]2},

12 (m1 + mg)

mi —m3 +p

L (11 )] + " 11 ()]

2p? m2
+£ log (m2+m2—p?+R) +10g ( =35
2 2 g(m1+m27p + ) g 2+m —p 2_R

v efoe e e (o () 2 1 ()

1
BO(p2>m%7mg> - g + {

12 ap?

R
T 4p? { (1 =L (m?)) (log (m3—m3+p*+R) — log (m3—m3—p*+R))

1 =L (m3)) (log (m3-m?+p*+R) = 10g (mf-m3-p"+R))
—1-L(-p?) +2L(R))

mi+ms—p —R

. m?—m2—p?+R . m2—m24+p>4+R
(Lip (gt — g, (mimmpmet ek

+2 (Lip (") — 1y (mf—mzigpazz))} }

(
(
et 20 b ()
2

(B.3j)
2 _ 2
By (0,m},m3) = —%Bo (0,m?,m3) + wB{) (0,m?,m3), (B.4a)
1
B, (p{mf,m%) = 5 55 [Ao(ml) Ao(mg) — (p2 — m% —|—m%) Bo(p2,m%,m§)] , (B.4b)
Buo (% m3m3) = o[ Ao (m3) + 2m3 Bo (62 m?. m3)
2(3 - 2¢) (B.4
Ac)
+ (p2 - m% + m%) B (p%m%,m%)},
B}(0,0,0) = 0, (B.5a)
€ 1
B} (0,0,m?) = +53 {2 —-L (m2)} , (B.5b)
(O,mQ,O) = By (o 0,m?), (B.5¢)
1 €
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B.2. Two-loop functions

1 2
BL(0,m?,m2) = ———M {m4 — m3 4+ 2m3m2log (@)}
0(0,m7, m3) 2(m%—m§)3 1 2 1ma P
€ 4|l 2 } 4 [1 2 }
4+ ——smj|=—L(mi)| —m5 |- —L(m B.5e
2(m%—m§)3{ 1{2 (m3) 212 (m2) ( )

+mimd (L (m)* - (¢ (m3)°] |

€

Co(0,0,0,m*,m*,m?) = —5,3Bo (0,m? m?), (B.6a)
L (m?) = log (T—}j) -C, (B.7a)
C=1-g+log(4rm), (B.7b)

R= \/m‘ll +m3 + p* — 2m3m3 — 2m3p? — 2p>m3. (B.7¢c)

B.2. Two-loop functions

The notation of the two-loop integrals follows the conventions which have been
introduced by Refs. [WSB94b; Wei+95]. After reducing the appearing two-loop
integrals to a set of master integrals and applying the approximation of a vanishing
external momentum, only the following function is left which cannot be completely
expressed in terms of one-loop functions. The result is taken from Ref. [BT94] and
reordered in the given way. Up to O(€) it reads:

1 {[Ao(m%)]2 L [Ao@3)]” | [Ao(mﬁ)]Q}

T34 (m%, m3, m%) = 3

2(1 - 2¢) m m3 mj (B.8a)
+ ©Y°(mf,m3,m3) ,
72
®Y(m?,0,0) =m? 5 (B.8b)
®Y°(m7,m3,0) = mj Lis ( 1mm ) + m3 Liy (m ml) : (B.8c¢)
1 2

@“yc(mf,mg,mQ):——log( )log( 2) 1og( )log( 2) 1og( g)log( 2)

+ B[~ Liog (2 log (23) + log (mizrbmi=r )10 (mimienior)
5 g g g 2m3 ) 2m2

Li (m?—m%m%—R) i, (mg—nz%mg—a)] 7

2m3 2m3

(B.8d)

R= \/m‘l1 +m3 +mi — 2mIm3 — 2m3m3 — 2m3m? . (B.8e)

The function &€ is cyclic in its arguments and contains only finite parts.
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B. Loop integrals

Originally the two-loop Feynman diagrams contain up to five propagators and two
loop momenta. Since the external momentum is set to zero only vacuum integrals
which depend on up to three different kinematic variables remain. The used notation

is introduced in Section 4.2.

During the reduction to master integrals some terms can be expressed as products of
one-loop integrals:

Tap(mi, m3) = Ag(m3) Ao (m3), (B.9a)
-3
Tamby(mf,...,mf,mg,_._,mg):ﬁnﬂby(ma...,mf,mg,...,mg) (B.9b)
1
T Y rz—1 y

forx>1,y>1,

2 22 2 y—3+e€ 2 2 2 2
Tazby<m1,...,m1,m2,...,mz) = WTazbyq mi,...,mj,ms,...,ms (B.9¢)
- 2
T Yy x y—1

forx>1,y>1,
with a # b and a, b € {1, 3, 4}.

All other appearing integrals can be reduced to Eq. (B.8a) or Eq. (B.9) by using the
following formulas:

2
2 2 2 2 2 .2 2 2 2.2 2 2
T11334(m1,m1,m1,m1,0) = m2T1113(m1>m1am1am1) — 2T11134(m1,m1,m1,m1,0), (B.10a)
1

2 2 2 2 2 (7”?_"7“3)2_7”; 2 2 2 2 2
T11334 (m17 m17 m27 m2a mj) - (mQ—m2)2+m4 T11134 (m17 m17 m17 m27 m3)
1 2 3

2,2 2 2 2
+T11134(m23m2am23m1am3):|
m3
2
(mf—mg) +m§

+

2 2 2 2 2 2 2 2
X |:T1134 (m17 my, Mgy, m3) + T1134 (m2a Moy, My, m3):|

3 2 2 2 2
- 7(m%7,;n§3)z+m§T1133 (mi,mi, m3,m3) (B.10Db)
mi (m3—m3+m3)+mi(mi-—mi+m3)

+ 2 [(mf—mg)2+m§}

2,2 2 2 2 2 2 2
T1113(m1,m1,m1,m2) n T1113(m27m2,m2,m1)
1 1
ms mj

2 2 2
my—mj+ms3 T 2 2 2 2

e - m5,my,my,m
(mf—mg) +m§ 1114( 1 751, 1001 3)

_ mf—mg+m§

2 2 2 2
R o ),

128



B.2. Two-loop functions

3
2 2 2 2 _
Ti1134(m3, mi, m3, m?,0) = “Troe
(mg—mf+m§)e

) = [(m1+m2)27m§] [(mlfmz)Qfmg

T (mi, mi, mf, m?,mj), (B.10c)

2 2. 9 2 9
T11134 (m7, m3, m7, m3, m3

]T1134 (m%7 m§> m§7 mg)

mg
[(ma+ma)2—m2][(m1—ma)®—m3]

X T1134(m%;m%7mgam§) + T1134 (mgvmgam%am?’))
o (B.10d)
—m5+
N [(m1+m2)Zlmgf[z(m?imszmg] T1113 (mim%’mimg)
2 2_ 2
_ 277i1+27n2 mi R~ T1114(m%,m?,m%,m§)
[(m1+m2) mS][(ml ms) m3}
1 2 2 2
_ [("L1+7n2)2_7n§] [(Tﬂl—mg)z—"Lg] T113 (ml)m17m2)7
2 2 2 1 2 2 2
Triza(m7, mi, mi,0) = WTHS (mi,mi,mi), (B.10e)
1
m2—m24+m2)(—142¢) 2 2 2
Tussam,m,m md) = [ s ok o )
2 2 2
— mi—m3+ms . 2 2 2
[ty - lims sy =] L 118 (7 71, 72) (B.10f)

mi+m3—m3 2 2 2
B [(m1+m2)2*1m§] [z(mljmz)Q*mg} T114 (ml’ s m3)

2m3 2 2 2
2 T334(m2,m2,m )

+ [(m1+m2)27m§] [(mlfmg)Qfmg}
Integrals with multiple denominators of the same loop-momentum structure and
different masses are simplified by partial fractioning beforehand:

1
Taa'“( §7m§,...) = m [Ta(m%,.) _Ta(m%,.)] (B.ll)

for m? #m3 and a € {1, 3, 4}.

All displayed integrals are symmetric under exchange of different loop-momentum
structures:

2 2,2 2 2 2.2 2
Tambym(ml,...,ml,mQ,...,mQ,...) = Tbmay“_(ml,...,ml,m2,...,m2,...) (B.12)
x y T y

for a, b € {1, 3, 4}.
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C. Two-loop renormalization of the

Higgs tadpoles and self-energies

The two-loop renormalization of the Higgs tadpoles and self-energies is carried out
in Section 6.8 where the counterterms are given in matrix form. In the following the

explicit expressions for all counterterms are listed.

C.1. Two-loop counterterms

The two-loop counterterms for the tadpoles and self-energies appearing in Eqgs. (6.76)
are given in the notation of Egs. (6.43) in components by

§OTE = 1 (6(1)Zhh5(1)Th + 5<1>ZhH5<1>TH) 4T, | (C.1a)
§OTE = 1 (5<1>ZHH5<1>TH n 5(1)ZhH6(1)Th) 6Ty (C.1b)
6OTE = 1 (6024400 + 60 246D T ) + 6T (C.1c)
§OTE = 1 (5<1>ZGG5<1>TG + 5(1>ZAG5<1>TA) 6T (C.1d)

2 2
8Cmit = (mi; — 1) [a@zhh + 4 (6 2u) ] + (my =) § (60 Zun )

(C.2a)
+6WZ, 6Wm2 + 60 2,5 6Wm2 y + 6Pm?
2 2
§m% = (m3; - p?) [5<2>ZHH +4 (69 2Zun) } + (3~ %) (60 Zun ) o)
+ 00 Zg g 6Vm2, + 6W Z gy 6Wm? 4+ 6P m?, |
[ 2 2
§®m% = (m% —p*) |6® Zaa + § (5(1)ZAA) } +(m& —p?) 3 (6(1)ZAG)
L (C.2¢)
+ M Zaa 6Wm2 + 60 Zaq 6Wmis +06Pm?
I 2 2
§®ms = (m¢g —p?) (6% Zac + § (5<1>ZGG) ] + (m% —p?) L (5(1)ZAG) o

+ 5(1)ZGG 5(1)m%; + 5(1)ZAG J(I)mQAG + 5(2)mé y

131



C. Two-loop renormalization of the Higgs tadpoles and self-energies

6@ my = 4 [ (md = p?) 80 Znnd ™ Zyr + (m?{ %) 6" 20" Zyw |

i1 {(6”)2;1;1 L 50 )ZHH) §Om2 1+ 60 Zp (5( Im2 4 5Wm )} (C.2e)
§PmE, =1 [(5(1 Zun + 6 )ZAA> §Wmi 4 +6W Zpy 6P miy 4 + 6 Zuc 5(1)mi0} (C.2f)

+6®mi, |
6@ mEe = 1 |(602Zun + 80 Zaa ) 60 mic + 6D Zun 6Vmir + 60 Zag 60 mi, | (C.29)

+6¥mi, -
§Pm%, =1 [(5( ) Ziy + 60 )ZAA) SWm3 4 + 06 Zyg 6Wmi 4 + 6 Zag 01 )mHG} (C.2h)

+ 5(2)m%{A ) |
dm%, =1 [(5(1 Zip + 6¢ )ZAA> 0Wmbg + 0 Zy 6Wmi g + 6 Z e 60 mHA} (C.2i)

+ 62 )mHG , h

§Pm, =1 [(mA p%) 69244 6W Zag + (m —p*) 6 Zae 5(1)2’44

+3[(0D 244 + 80 Zoa ) 60 m + 60 Zag (8Vmd + 80m )| (C.2))

2 2

+ (mA—;-mG _p2> 6(2)ZAG + 5(2)m?4G ,
2 2

§Pmb, = (m%s— p?) |:5(2)ZHiHi +1 (5(1)ZHiHi> ] + (mZe—p?) L (5(1)ZH*G+)

+ 00 Zgre e 00mips + 500 Zy- o (§0m3 -+ 8Um e ) +8Pms
(C.2K)

2 2
(5(2)méi = (m%;i —pz) |:5(2)Zgj:Gj: + i ((5(1)Zgigj:) :| + (qui—p2) i ((5(1)Z0—H+)

+00 Zgege 6Wm2a + 160 Zg— e (5< ) ++5(1)m%[,G+) +6@m2s
(C.21)

(m%i - p2) (5(1)ZHj:Hj: 6(1)ZH—G+ + (méi - p2> 5(1)Zgigj: (5(1)ZH—G+}

—

Z
e =}

+ [(5(1)ZH:EH:E + 6(1)Zg:tc;:t> 5(1)m%1_G+ + 5(1)ZH*G+ ((5(1)’”’1%{:{: + 6(1)mé:{:>i|

_|_
P

m? m?
# —p2> B Zy-gr +6Pmi_

(C.2m)
52

mG o+ = % mGi— 5(1)Zgigi (5( )ZG H+ + (mHi )5(1)ZHiHi (5(1)Zg—H+}

+ 3 [(69 Za2 s+ 60 Zgs g ) 6Vm2, -y + 80 Zg- g (5Vmie+ 60md )]

1
2
+ ( f*’" ) 0 Zg g +0Pmi_ . .

(C.2n)
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C.2. Genuine two-loop mass counterterms

C.2. Genuine two-loop mass counterterms

The genuine two-loop mass counterterms appearing in the expressions of Eqs. (6.76)
and in Section C.1 are listed in the following. Thereby e, 6V My, and 6(Vs,, always
appear in the combination 6V Z,, = 5(1)6/6 — 5(1)MW/MW — 5(1)sw/swz
0B mi = &5 8®m3 + 55156 my + ¢ 6P ts (sa(ap) mh + 2018 M)
+ C% 5(1)tg (32((1—6) 5(1)m2A + S52(a+p8) 5(1)m2z)
L3y, \? 2 2
+ 3B ((5 tg) [sa,g (35a—28 — Sa) M% + 2 Con+38 mZ}

€Sa—p
2MW Sw

(C.3a)

+ (1+cp) (50T + 007,602,

+ Sa—B Ca—p ((5(2)TH + (5(1)TH 5(1)Zw)

+ Sa—p C% 5(1)tg (CQ,Q 5(1)Th + Sa—p 5(1)TH)

§PmY = s2_56PmA + 2, 50Pm% — ¢ 6Ptg (sa(a—p) mi + So(ats) MmY)
— C% 5(1)755 (Sg(a,g) (5(1)771?4 + S2(a48) (5(1)m22)
1 2
+ 9 C% (5(1)t5) [Ca_g (3 Ca—28 — Ca) m% —2 C2a+38 WZZ]

_ €Cu—p
2MW Sw

1452 ) (6@Ty + 60Ty 6D 7, (C.3b)
B

+ Ca—p Sa—p (5(2)Th + 5(1)Th 5(1)Zw)

— Ca—g C% (5(1)tg (Ca_ﬁ (5(1)Th + Sa—p 5(1)TH)

)

2
5(2)m%~ — c% m3 (5(1)t,8>

e

— | s0_p (6PT, + DT, 5(1)ZW)
e TG

(C.3¢)
— Cap (6(2>TH + 60T, 5(1)ZW)

)

+ C% (5(1)t5 (CQ,B (5(1)Th + Sa—p 5(1)TH>

dPm? = ca_p Sa_pdPm? — C% 5Pty (ca(a—p) m? + C2(at-B) mzz)

— CatfB Sa+p 6(2)mQZ — C% 5(1)t5 (Cz(a,g) (5(1)m124 + C2(atp) 5(1)m22)

1 2
+ 3 C% (5(1)t5) [(=3cs Sa(a—p) + 2 820-8) MA + 2 5204358 M|

e

- [ — &y (09T + 80T, 802, ) (C.3d)

2MW Sw

+ Si—ﬂ (5(2)TH + 5(1)TH 5(1)Zw)

— Ca—f Sa—p C% 5(1)t5 (Ca—,@ (5(1)Th + Sa—p (5(1)TH)
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D. Analytical O(a%) results

The analytical expressions for the leading O(a?) contributions to the Higgs tadpoles

and self-energies that are described in Chapter 7 are listed in the following.

D.1. Symbols and abbreviations

The following symbols and abbreviations are used to express the analytical results
in a compact way. To shorten the notation the absolute-value bars of |X;|?, |V;|?
and |u|? are suppressed in the following terms:
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D.2. Genuine two-loop self-energies

The explicit expressions of the genuine two-loop integrals contributing to the Higgs-
boson self-energies are depicted in the following.
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D.2. Genuine two-loop self-energies
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D.3. Genuine two-loop tadpoles
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D.3. Genuine two-loop tadpoles

The explicit expressions for the genuine two-loop tadpoles of the Higgs bosons are
given by
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D.4. One-loop self-energies with counterterms

The one-loop self-energies with counterterm insertion are part of the full two-loop
self-energies. They are given in the following:
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D.4. One-loop self-energies with counterterms
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D.5. One-loop tadpoles with counterterms

The one-loop tadpoles with counterterm insertion are part of the two-loop tadpoles
of the Higgs bosons. They are given by
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D.6. Renormalization constants for subrenormalization
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D.6. Renormalization constants for

subrenormalization

The required renormalization constants are explicitly expressed in the following:
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