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1. Introduction

One of the open questions in the Standard Model of particle physics is the fermion family

puzzle - why the first generation of quarks and leptons are replicated in two other families

of increasing mass. It is not clear how to explain the mass hierarchy of the generations and

the mixing between the families characterized by the Cabbibo-Kobayashi-Maskawa matrix.

Several ideas have been suggested such as a horizontal family symmetry [1].

Recently the brane world idea [2] has been used to find new solutions to old problems

in particle physics and cosmology. A key requirement for theories with extra dimensions is

that the various bulk fields be localized on the brane. Brane solutions with different matter

localization mechanisms have been widely investigated in the scientific literature [3]. A pure

gravitational trapping of zero modes of all bulk fields was given in [4, 5].

The main emphasis of the present paper is to explain some properties of fermion fam-

ilies in the framework of a brane model. For the other attempts using extra dimensions

see [6, 7]. We introduce an extra 2-dimensional compact surface and investigate the prop-

erties of higher dimensional fermions place in this space-time. In 6-dimensional models the

internal compact 2-manifold usually is considered as having rugby (football)-ball shaped

geometry with a deficit angle [8, 9]. As shown in this paper one can address the gener-

ation puzzle using an internal 2-surface with a profuse angle, or having an “apple-like”

geometry. Using the brane solution of [5] we show that for apple-shaped extra dimensions

three fermion generations naturally arise from the zero modes of a single 6-dimensional

spinor field. This gives a purely geometrical mechanism for the origin of three generations

of the Standard Model fermions from one generation in a higher-dimensional theory. The

localized fermions are stuck at different points in the extra space similar to the model [7].

A mass hierarchy and mixings between the three zero modes are obtained by introducing

of a Yukawa-type coupling to a single 6-dimensional scalar field.
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2. Solution of 6-dimensional Einstein equations

In this article we consider 6-dimensional space-time with the signature (+ − − − −−).

Einstein’s equations in this space have the form

RAB − 1

2
gABR =

1

M4
(gABΛ + TAB) , (2.1)

where M and Λ are the 6-dimensional fundamental scale and the cosmological constant.

Capital Latin indices run over A,B, . . . = 0, 1, 2, 3, 5, 6.

To split the space-time into 4-dimensional and 2-dimensional parts we use the metric

ansatz

ds2 = φ2 (θ) gµν (xα) dxµdxν − ε2
(
dθ2 + b2 sin2 θdϕ2

)
, (2.2)

where ε and b are constants. Here the metric of ordinary 4-space-time, gµν (xα), has

the signature (+ − −−) (the Greek indices α, µ, ν . . . = 0, 1, 2, 3 refer to 4-dimensional

coordinates). The extra compact 2-manifold is parameterized by the two spherical angles

θ and ϕ (0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π). We take this 2-surface to be attached to the brane at

the point θ = 0. Thus the geodesic distance into the extra dimensions goes from north to

south pole of the extra 2-spheroid when θ changes from 0 to π.

If in (2.2) the constant b = 1 then the extra 2-surface is exactly a 2-sphere with the

radius ε. If b 6= 1 the extra manifold is a 2-spheroid with either a deficit or profuse angle

ϕ, i.e. its conical sections, θ = const, are either missing some angle, δϕ, or have some extra

angle, δϕ. The metric for this 2-manifold will take usual form with b = 1 if we redefine ϕ

so it ranges from 0 to 2πb. One can think of the extra 2-surface as being of sphere with cut

out (if b < 1), or inserted (if b > 1) the “wedge” having an angle δϕ = 2π(b−1). This gives

a δ-like contribution to the curvature tensor localized at the points with sin θ = 0. These

singularities can be cancelled by introduction of 3-branes at these positions [8]. Usually in

the literature one considers the case b < 1 with the deficit angle leading to rugby(football)-

ball shaped geometry [9]. As it will be clear below we need the case b > 1 which gives a

profuse angle. Thus the extra 2-manifold can be imagined as the apple-like surface.

The ansatz for the energy-momentum tensor of the bulk matter fields we take in the

form

Tµν = −gµνE (θ) , Tij = −gijP (θ) , Tiµ = 0 , (2.3)

small Latin indices correspond to the two extra coordinates. The source functions E and

P depend only on the extra coordinate θ.

For these ansätze Einstein’s equations (2.1) take the following form:

3
φ′′

φ
+ 3

φ′2

φ2
+ 3

φ′

φ
cot θ − 1 =

ε2

M4
[E (θ) − Λ] ,

6
φ′2

φ2
+ 4

φ′

φ
cot θ =

ε2

M4
[P (θ) − Λ] , (2.4)

4
φ′′

φ
+ 6

φ′2

φ2
=

ε2

M4
[P (θ)− Λ] ,
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where the prime denotes differentiation d/dθ. For the 4-dimensional space-time we have

assumed zero cosmological constant and Einstein’s equations in the form

R
(4)
αβ − 1

2
gαβR(4) = 0, (2.5)

where R
(4)
αβ and R(4) are 4-dimensional Ricci tensor and scalar curvature.

In [5] a non-singular solution of (2.4) was found for the boundary conditions φ(0) =

1, φ′(0) = 0. The solution was given by

φ (θ) = 1 + (a − 1) sin2(θ/2) , (2.6)

where a is the integration constant. The source terms for this solution are

E(θ) = Λ

[
3(a + 1)

5φ(θ)
− 3a

10φ2(θ)

]
, P (θ) = Λ

[
4(a + 1)

5φ(θ)
− 3a

5φ2(θ)

]
(2.7)

and the radius of the extra 2-spheroid given by ε2 = 10M4/Λ. For simplicity in this paper

we take a = 0 so that below we will use the warp factor

φ (θ) = 1 − sin2(θ/2) = cos2(θ/2) . (2.8)

This warp factor equals one at the brane location (θ = 0) and decreases to zero in the

asymptotic region θ = π, i.e. at the south pole of the extra 2-dimensional spheroid.

The expression for the determinant of our ansatz (2.2), which will be used often in

what follows, is given by
√−g =

√
−g(4)ε2φ4(θ) sin θ , (2.9)

where
√

−g(4) is determinant of 4-dimensional space-time.

3. Fermions in six dimension

Let us consider spinors in the 6-dimensional space-time (2.2), where the warp factor φ(θ)

has the form (2.8). The action integral for the 6-dimensional massless fermions in a curved

background is

SΨ =

∫
d6x

√−g
[
iΨhB

eA
Γ

eADBΨ + h.c.
]

, (3.1)

DA denote covariant derivatives, Γ
eA are the 6-dimensional flat gamma matrices and we

have introduced the sechsbein h
eA
A through the usual definition

gAB = h
eA

A h
eB

B η eA eB , (3.2)

Ã, B̃, . . . are local Lorentz indices.

In six dimensions a spinor

Ψ(xA) =

(
ψ

ξ

)
(3.3)

has eight components and is equivalent to a pair of 4-dimensional Dirac spinors, ψ and ξ.
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In this paper we use the following representation of the flat (8 × 8) gamma-matrices

(for simplicity we drop the tildes on the local Lorentz indices when no confusion will occur)

Γν =

(
γν 0

0 −γν

)
, Γθ =

(
0 −1

1 0

)
, Γϕ =

(
0 i

i 0

)
, (3.4)

where 1 denotes the 4-dimensional unit matrix and γν are ordinary (4×4) gamma-matrices.

It is easy to check that the representation (3.4) gives the correct space-time signature

(+ −−−−−). The 6-dimensional analog of the γ5 matrix in the representation (3.4) has

the form

Γ7 =

(
γ5 0

0 γ5

)
. (3.5)

From (3.3) one finds that the 6-dimensional left-handed (right-handed) particles correspond

to a pair of 4-dimensional particles, ψ and ξ which correspond to the particle (anti-particle)

from the 4-dimensional point of view.

The 6-dimensional massless Dirac equation, which follows from the action (3.1), has

the form (
hµ

eB
Γ

eBDµ + hθ
eB
Γ

eBDθ + hϕ
eB
Γ

eBDϕ

)
Ψ(xA) = 0 , (3.6)

with the sechsbein for our background metric (2.2) given by

h B
eA

=

(
1

φ
δB

eµ ,
1

ε
δB

eθ
,

1

bε sin θ
δB

eϕ

)
. (3.7)

From the definition

ω
fM eN
M =

1

2
hN fM

(
∂Mh

eN
N − ∂Nh

eN
M

)
− 1

2
hN eN

(
∂Mh

fM
N − ∂Nh

fM
M

)

−1

2
hP fMhQ eN

(
∂P h

Q eR
− ∂Qh

P eR

)
h

eR
M (3.8)

the non-vanishing components of the spin-connection for the sechsbein (3.7) can be found

ω
eθ eϕ
ϕ = −b cos θ, ω

eθeν
ν = −φ′

ε
=

sin θ

2ε
. (3.9)

The covariant derivatives of the spinor field have the forms

DµΨ(xA) =

[
∂µ +

sin θ

4ε
ΓθΓν

]
Ψ(xA) ,

DθΨ(xA) = ∂θΨ(xA) , (3.10)

DϕΨ(xA) =

(
∂ϕ − b cos θ

2
ΓθΓϕ

)
Ψ(xA) .

Then Dirac’s equation (3.6) takes the form [10, 11]
[

1

φ
Γµ ∂

∂xµ
+

sin θ

4εφ
ΓνΓθΓν +

1

ε
Γθ ∂

∂θ
+

1

bε sin θ
Γϕ ∂

∂ϕ
− cot θ

2ε
ΓϕΓθΓϕ

]
Ψ(xA) =

[
1

φ
Γµ ∂

∂xµ
+

1

ε
Γθ

(
∂

∂θ
− sin θ

φ
+

cot θ

2

)
+

1

bε sin θ
Γϕ ∂

∂ϕ

]
Ψ(xA) = 0 . (3.11)
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This system of first order partial differential equations can be treated using the follow-

ing separation of variables

Ψ(xA) =
∑

l

eilϕ

√
2πφ2(θ)

(
αl(θ)ψl(x

ν)

βl(θ)ξl(x
ν)

)
, (3.12)

where ψl(x
ν) and ξl(x

ν) are 4-dimensional Dirac spinors. Here we note that since dimension

of Ψ(xA) in six dimensions is m5/2 then dimensions of αl(θ), βl(θ) and ψl(x
ν), ξl(x

ν) should

be m and m3/2 respectively.

At the end of the section we note that our case is unlike the model studied in [11],

which examined spin-1/2 particles confined on a 2-sphere. In our case the internal 2-

manifold is only a part of the bulk 6-dimensional space-time and we are looking for spinors

in four dimensions. It is the functions ψl(x
ν) and ξl(x

ν) in (3.12) which must have spinor

representations. So the wave-function given in (3.12) is single-valued for 2π rotations

around the brane by the extra angle ϕ. Thus the quantum number l takes integer values

— l = 0,±1,±2, . . . — and not half-integer values.

4. Fermion generations

We are looking for 4-dimensional fermionic zero modes. To this end we take ψl(x
ν) and

ξl(x
ν) in (3.12) to obey the 4-dimensional, massless Dirac equations

γµ∂µψl(x
ν) = γµ∂µξl(x

ν) = 0 . (4.1)

There will also be very massive KK modes whose masses will go a integer multiples of the

inverse size of the extra 2-dimensional space i.e. as 1/ε. However, we will assume later that

1/ε ≃ 1 TeV. Thus these massive KK modes have a much higher mass and are distinct

from the three fermion generations. For the massless case the 4-spinors ψl(x
ν) and ξl(x

ν)

are indistinguishable from the 4-dimensional point of view and we can write

ψl(x
ν) = ξl(x

ν) . (4.2)

Inserting (3.12), (4.1) and (4.2) into (3.11) converts the bulk Dirac equation into

[
Γθ

(
∂

∂θ
+

cot θ

2

)
+

il

b sin θ
Γϕ

](
αl(θ)

βl(θ)

)
= 0 . (4.3)

Using the representation for Γθ, Γϕ gives the following system of equations for αl(θ) and

βl(θ)
(

∂

∂θ
+

cot θ

2
− l

b sin θ

)
αl(θ) = 0 ,

(
∂

∂θ
+

cot θ

2
+

l

b sin θ

)
βl(θ) = 0 . (4.4)

The solutions of these equations are

αl(θ) = Al
tanl/b(θ/2)√

sin θ
, βl(θ) = Bl

tan−l/b(θ/2)√
sin θ

, (4.5)
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where Al and Bl are integration constants with the dimension of mass.

The normalizable modes are those for which
∫ √−g d6x Ψ̄Ψ =

∫ √
g(4) d4x

(
ψ̄lψl + ξ̄lξl

)
. (4.6)

In other words we want the integral over the extra coordinates, ϕ and θ, to equal 1. Thus

inserting (3.12), (4.5) and the determinant (2.9) into (4.6) the requirement that the integral

over ϕ and θ equal 1 gives

ε2

∫ π

0
dθ

[
A∗

l Al tan
2l/b(θ/2) + B∗

l Bl tan
−2l/b(θ/2)

]
= 1 , (4.7)

where the integral over ϕ contributes 2π.

Using the formula
∫ π

0
dθ tan2c(θ/2) =

π

cos(cπ)
, − 1 < 2c < 1 (4.8)

we see that (4.7) is convergent only for the case

−b < 2l < b . (4.9)

Recall that the parameter b in (2.2) is an integration constant of Einstein’s equations and

governs the topology of the internal 2-spheroid. If b = 1 the internal 2-surface is exactly a

sphere. For this case, as it clear from (4.9), there exist only one zero mode with l = 0. If

on the other hand 2 < b ≤ 4 we have exactly three fermionic zero modes with the quantum

numbers l = 0 and l = ±1. To be concrete we will set b = 4 in the following. Other

choices of b from this interval will only slightly change the numerical results below. From

the normalization condition (4.7) we now find the following relation for the constants Al

and Bl

πε2(A∗
l Al + B∗

l Bl) = cos
lπ

4
, (4.10)

where l = 0,±1.

Explicitly the expressions for the three normalizable 8-spinors (3.12) that solve the

6-dimensional Dirac equations (3.11) are

Ψ0(x
A) =

1√
2π sin θ φ2(θ)

(
A0

B0

)
ψ0(x

ν) ,

Ψ1(x
A) =

1√
2π sin θ φ2(θ)

eiϕ

(
tan1/4(θ/2)A1

tan−1/4(θ/2)B1

)
ψ1(x

ν) , (4.11)

Ψ−1(x
A) =

1√
2π sin θ φ2(θ)

e−iϕ

(
tan−1/4(θ/2)A−1

tan1/4(θ/2)B−1

)
ψ−1(x

ν) ,

where the constants Al and Bl obey the relations (4.10).

These three normalizable modes all appear as massless 4-dimensional fermions on the

brane. To explain the observed mass spectrum and mixing between these fermions one

needs to couple these particles to a scalar (Higgs) field.
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5. Coupling with Higgs field

In the previous section it was shown that by adjusting the integration constant b in our

gravitational background (2.2) it is possible to get three zero-mass modes on the brane.

To make this model more realistic we have two problems:

a) There is no mixing between the different generations due to the orthogonality of the

angular parts of the higher dimensional wave functions. Overlap integrals like
∫

dϕ ψ̄lψl′ ,

which characterize the mixing between the different states, vanish since
∫ 2π

0
dϕ e−ilϕeil′ϕ = 0 . l 6= l′ (5.1)

b) All the fermionic states (4.11) are massless, whereas the fermions of the real world

have masses that increase with each family.

Following [12] we address both of these issues by introducing a coupling between the

fermions with the bulk scalar field Φp(x
A) (which has dimensions m2) by adding to the

action an interaction term of the form

Sint =
1

F

∫
d4xdϕdθ

√−g ΦpΨ̄lΨl′ , (5.2)

where F is the coupling constant between the scalar and spinor fields and has the dimension

of mass.

For simplicity we take the massless, real scalar field to be of the form

Φp(x
A) = κp Φp(θ) eipϕ , (5.3)

i.e. the scalar field only depends on the bulk coordinates θ, ϕ, not on the brane coordinates

xµ. In (5.3) the angular quantum number p is an integer and κp are the 4-dimensional

constant parts of Φp(x
A) having dimensions of mass.

The equation of motion of a massless real scalar field in six dimensions has the form:

1√−g
DA

[√−g gAB DBΦ(xA)
]

= 0 . (5.4)

Using the form of Laplace operator on our 2-spheroid

∆2 = − 1

ε2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

4φ′

φ

∂

∂θ
+

1

b2 sin2 θ

∂2

∂ϕ2

)
, (5.5)

where φ is given by (2.8), the equation (5.4) can be written as

Φ′′
p +

(
cot θ − 4 sin θ

1 + cos θ

)
Φ′

p −
p2

b2 sin2 θ
Φp = 0 . (5.6)

It is possible to give an exact solution to this equation in quadratures. However, this

solution is a complicated function. In order to make understandable estimates of the

masses and mixings we will use approximate solutions. Close to the origin (θ → 0), when

sin θ → 0 and φ → 1 this equation can be approximated as

Φ′′
p + cot θΦ′

p −
p2

b2 sin2 θ
Φp = 0 . (5.7)
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For p = 0 a solution to this equation is

Φ0(θ) = D0 {1 + ln [tan(θ/2)]} , p = 0 (5.8)

where D0 is an integration constant.

For non-zero p one of the solutions of (5.7) is

Φp(θ) = Dp cosh
{p

b
ln [cot(θ/2)]

}
, p 6= 0 (5.9)

where Dp are integration constants. Note that these solutions (as well as the spinor

fields (3.12) and (4.5)) are singular at sin θ = 0, however, because of the determinant (2.9)

the various integrals done with these fields are finite.

We determine the constants Dp by requiring that the scalar modes are normalized over

the extra coordinates, i.e. using (2.9) we require

2πε2

∫ π

0
dθ sin θ φ4(θ) Φ2

p(θ) = 1 . (5.10)

For the values of a and b used in this paper (a = 0, b = 4) from (5.10) we find

D0 =
1

ε
√

π3

15 − 17π
60

≈ 0.92

ε
,

D±1 =
1

ε

√
2π
5 + 447

√
2π2

4096

≈ 0.60

ε
,

D±2 =
1

ε
√

2π
5 + 35π2

128

≈ 0.50

ε
. (5.11)

Substituting (5.3) and (3.12) into (5.2) we find

Sint = Up
l,l′

∫
d4x

√
−g(4) ψ̄l(x

µ)ψl′(x
µ) , (5.12)

with

Up
l,l′ =

ε2fp

2π

∫ 2π

0
dϕei(p−l+l′)ϕ

∫ π

0
dθ sin θ Φp(θ) [A∗

l Al′αl(θ)αl′(θ) + B∗
l Bl′βl(θ)βl′(θ)] ,

(5.13)

where Dp are expressed by (5.11) and Al, Bl obey the relations (4.10). The constants

fp = κp/F here denote the ratios of the 4-dimensional constant values of Higgs field

from (5.3) and of the coupling constant from (5.1).

The first integral in (5.13) for the quantities Up
ll′ will be non-zero if

p − l + l′ = 0 . (5.14)

When l = l′ and p = 0 this gives a mass term; when l 6= l′ and p 6= 0 this gives mixings

between the l and l′ modes.

– 8 –
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6. Masses and mixings

To find mass terms appearing because of coupling of the three fermionic zero modes (4.11)

with the Higgs field (5.3) for the angular momentum quantum numbers in (5.13) we should

use the values, p = 0 , l = l′, or calculate only the components of the matrix (5.13) with

the zero upper index. Using (4.5) and (5.8) from (5.13) we get

U0
0,0 = f0D0ε

2π (A∗
0A0 + B∗

0B0)

= f0D0 ,

U0
1,1 = f0

D0ε
2π√
2

[(2 + π)A∗
1A1 + (2 − π)B∗

1B1]

= f0D0

(
2 − π

2
+

√
2ε2π2|A1|2

)
, (6.1)

U0
−1,−1 = f0

D0ε
2π√
2

[
(2 − π)A∗

−1A−1 + (2 + π)B∗
−1B−1

]

= f0D0

(
2 + π

2
−

√
2ε2π2|A−1|2

)
.

To obtain the last equality in each term above we have used (4.10) to eliminate |B±1|2 in

favor of |A±1|2.
As a concrete example of how the realistic mass hierarchy can arise let us take 1/ε ≃

1 TeV so that from (5.11) we have D0 ≃ 1 TeV. This choice is made so that the massive

KK modes (whose mass ≃ 1/ε) will be much heavier than the three zero mass modes, even

after they are given a mass via the Higgs mechanism. Next let us examine three quarks

from the “down” sector, i.e. d, s and b quarks. This is meant as a toy model since we do

not have an “up” sector and we do not have three generations of leptons. Our aim here is

just to show that it is possible to generate a realistic fermion mass hierarchy from an extra

dimensional model.

Making the association that d-quark → l = +1, s-quark → l = −1 and b-quark

→ l = 0, we get the following conditions on U0
l,l from (6.1)

U0
1,1 = md ≈ 5 MeV , U0

−1,−1 = ms ≈ 100MeV , U0
0,0 = mb ≈ 4200 MeV , (6.2)

where we have taken average values of the quark masses from [13]. Solving the system (6.1)

and (6.2) gives

f0 ≈ 4.2 × 10−3 , |A1| ≈ 0.202/ε , |A−1| ≈ 0.427/ε . (6.3)

Note these values of |A±1| are consistent with the condition in (4.10) which requires

|A±1|, |B±1| < 0.474
ε . The largest mass corresponds to the l = 0 quantum number. This can

be understood from the point of view that this state has a non-zero effective wavefunction

near the brane, θ = 0, and thus has a large overlap with the scalar field (5.8). (By effective

wavefunction we mean the combination of the wavefunctions from (4.11) and the square

root of the determinant from (2.9). In this way the singular sin θ term cancels out). The
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d and s quarks, which correspond to the l = +1,−1 states, have effective wavefunctions

which are zero at θ = 0 and thus have a smaller overlap with the scalar field.

For mixings between the different families, characterized by different angular momen-

tum l, the selection rule (5.14) indicates that we must consider components of the ma-

trix (5.13), which have a nonzero upper index p. There are three independent components

whose indices are given by

U1
1,0 = U−1

0,1

= f1ε
2D1

(1 +
√

2)π

2
(A∗

1A0 + B∗
1B0)

= f1ε
2D−1

(1 +
√

2)π

2
(A∗

0A1 + B∗
0B1) ,

U1
0,−1 = U−1

−1,0

= f1ε
2D1

(1 +
√

2)π

2
(A∗

0A−1 + B∗
0B−1)

= f1ε
2D−1

(1 +
√

2)π

2
(A∗

−1A0 + B∗
−1B0) , (6.4)

U2
1,−1 = U−2

−1,1

= f2ε
2D2

√
2π(A∗

1A−1 + B∗
1B−1)

= f2ε
2D−2

√
2π(A∗

−1A1 + B∗
−1B1) .

From [13] one finds that the mixing between the first and second generation is of

order 0.1 (i.e. Vus ≈ 0.224), between the second and third generation of order 0.01 (i.e.

Vcb ≈ 0.04), and between the first and third generation of order 0.001 (i.e. Vub ≈ 0.0036).

We take this “up-down” sector mixing as representing generic inter-family mixing, since in

our model we have only one flavor in each family (the “down” sector and thus only neutral

currents). Then from our previous association of generations (first, second, third) with

the internal quantum number l (+1,−1, 0) we arrive at the following connections for the

mixings from (6.4)

|U2
1,−1| → Vus ≃ 0.1 , |U1

0,−1| → Vcb ≃ 0.01 , |U1
1,0| → Vub ≃ 0.001 . (6.5)

In terms of ratios we want to fix Al, Bl such that from (6.4) we get

|U1
1,0|

|U1
0,−1|

≃ 0.1 ,
|U1

0,−1|
|U2

1,−1|
≃ 0.1 . (6.6)

To simplify the analysis we assume that all Al, Bl are purely real. Then from (4.10)

using (6.3) we have

|B1| ≈ 0.429/ε , |B−1| ≈ 0.206/ε . (6.7)

Also we take B0 = kA0 where k is some real constant, i.e. from (4.10) B0 is determined

once A0 is given.

Applying all this to the first condition from (6.6) we find

|U1
1,0|

|U1
0,−1|

=
0.202 + 0.429k

0.427 + 0.206k
= 0.1 . (6.8)

– 10 –



J
H
E
P
0
8
(
2
0
0
7
)
0
3
3

Solving for k gives k = −0.391. For this value of k we find from (4.10) that

A0 = 0.525/ε , B0 = −0.205/ε . (6.9)

Inserting all these real values for Al, Bl into the second condition from (6.6) we find that

|U1
0,−1|

|U2
1,−1|

= 1.065
f1

f2
. (6.10)

It is clear that if we set f1/f2 ∼ 0.1 (by adjusting κ1 and κ2 in (5.3)) we reproduce the

mixings between the different generations as given by the rough estimate (6.5).

7. Summary and conclusions

We have given a higher dimensional model to address the fermion generation puzzle. Three

zero mass modes arise in an “apple” geometry given by (2.2) and (2.8). Exactly three zero

modes are obtained by adjusting the shape of the internal 2-dimensional space via b giving

a profuse angle rather than the more common case of a deficit angle. We interpret these

three zero mass modes as a toy model for the three generations of fermions. This is a toy

model since we do not reproduce the full flavor structure of the Standard Model fermions.

For example in this paper we took the three zero mass modes as the down quarks, d, s, b

leaving out the up quarks and leptons. The family number in this model was the quantum

number l associated with angular momentum of fermions with respect to the extra 2-space.

To give masses and mixings one had to couple the zero mass modes to a scalar field.

Thus in this model the masses and mixings arose from the same mechanism. We demon-

strated that one could get a realistic mass spectrum and mixings by taking our zero mass

modes to be the family of down quarks. That we are able to reproduce a realistic masses

and mixings is not surprising since there are number of free parameters involved especially

in terms of the normalization constants, κp, Al, Bl for the higher dimensional wavefunc-

tions. The central point of this paper was not so much to obtain a realistic masses and

mixings (since in any case the model does not contain complete set of particles of the

Standard Model) but rather to give a higher dimensional model for the fermion generation

puzzle.

In addition to the zero mass modes there will be massive KK modes whose masses

will be of the order 1/ε. Here, since 1/ε ≃ 1 TeV these massive KK modes would lie well

above the three zero mass modes even after they are given masses. In any of these higher

dimensional models used to address the generation problem the internal space must be of

a small enough size so that the massive KK modes are well separated from the zero mass

modes after they are given a mass.
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