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The theory of pseudo-differential operators on the
noncommutative n-torus

J Tao
Department of Mathematics, Caltech MC 253-37, Pasadena, CA, 91125, USA

E-mail: jtao@caltech.edu

Abstract. The methods of spectral geometry are useful for investigating the metric aspects
of noncommutative geometry and in these contexts require extensive use of pseudo-differential
operators. In a foundational paper, Connes showed that, by direct analogy with the theory
of pseudo-differential operators on finite-dimensional real vector spaces, one may derive a
similar pseudo-differential calculus on noncommutative n-tori, and with the development of
this calculus came many results concerning the local differential geometry of noncommutative
tori for n=2,4, as shown in the groundbreaking paper in which the Gauss—Bonnet theorem on
the noncommutative two-torus is proved and later papers. Certain details of the proofs in the
original derivation of the calculus were omitted, such as the evaluation of oscillatory integrals,
so we make it the objective of this paper to fill in all the details. After reproving in more detail
the formula for the symbol of the adjoint of a pseudo-differential operator and the formula
for the symbol of a product of two pseudo-differential operators, we extend these results to
finitely generated projective right modules over the noncommutative n-torus. Then we define
the corresponding analog of Sobolev spaces and prove equivalents of the Sobolev and Rellich
lemmas.

1. Introduction
The methods of spectral geometry are useful for investigating the metric aspects of non-
commutative geometry [1-4] and in these contexts require extensive use of pseudo-differential
operators. In the foundational paper [5], Connes showed that, by direct analogy with the
theory [6-8] of pseudo-differential operators on R™, one may derive a similar pseudo-differential
calculus on noncommutative n tori Tjy. With the development of this calculus came many
results concerning the local differential geometry of noncommutative tori for n = 2,4, as
shown in the groundbreaking paper [9] in which the Gauss-Bonnet theorem on T3 is proved
and later papers [10-14]. In these papers, the flat geometry of Ty which was studied in [5]
is conformally perturbed using a Weyl factor given by a positive invertible smooth element in
C>°(T}). Connes’ pseudo-differential calculus is critically used to apply heat kernel techniques
to geometric operators on Ty to derive small time heat kernel expansions that encode local
geometric information such as scalar curvature. As discovered in [10, 12, 13|, a purely non-
commutative feature that appears in the computations and in the final formula for the curvature
is the modular automorphism of the state implementing the conformal perturbation of the
metric.

Certain details of the proofs in the derivation of the calculus in [5] were omitted, such as the
evaluation of oscillatory integrals, so we make it the objective of this paper to fill in all the details.
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After reproving in more detail the formula for the symbol of the adjoint of a pseudo-differential
operator and the formula for the symbol of a product of two pseudo-differential operators, we
extend these results to finitely generated projective right modules over the noncommutative
n torus. Then we define the corresponding analog of Sobolev spaces for which we prove the
Sobolev and Rellich lemmas.

We list these results below.

Theorem 1.1. Suppose P is a pseudo-differential operator with symbol o(P) = p = p(§) of order
M. Then the symbol of the adjoint P* is of order M and satisfies o(P*) ~ > cyn 9% (plE))"].

So Ol ly!

Theorem 1.2. Suppose that P is a pseudo-differential operator with symbol o(P) = p = p(§)
of order My, and @Q is a pseudo-differential operator with symbol o(Q) = ¢ = &(&) of
order My. Then the symbol of the product QP is of order My + My and satisfies o(QP) ~

0 4
Zéezgo m(?%({)éep(f), where O° := [1;0; and 6 = [0,

Theorem 1.3. (a) For a pseudo-differential operator P with r X r matriz valued symbol
o(P) = p = p(&), the symbol of the adjoint P* satisfies

(A Zn(sel...éen *
- d,!
(01, ) E(Z50)™
(b) If Q is a pseudo-differential operator with r X r matriz valued symbol o(Q) = p' = p'(§),
then the product PQ is also a pseudo-differential operator and has symbol

O -+ Db (p(£))0y" -+ 8 (0 ()
> : 0l -1en! '

o(PQ) ~

(317“'7ZTL)E(ZZO)H

Theorem 1.4. For s > k+1, H* C (A%)e.

Theorem 1.5. Let {dn} € (A3°)"e be a sequence. Suppose that there is a constant C' so that
ldn||s < C for all N. Let s > t. Then there is a subsequence {dn,} that converges in H.

2. Preliminaries

Fix some skew symmetric n x n matrix § with upper triangular entries in R\Q that are linearly
independent over Q. Consider the irrational rotation C*-algebra Ay with n unitary generators
Ui, ..., U, which satisfy UyU; = 205,k U;Uy, and U = Ujl. Let {as}sern be a n-parameter
group of automorphisms given by [[; U ]m T elsm IL; U ]m 7. We define the subset A’g of C*
elements of Ay to be those a € Ay such that the mapping R” — Ay given by s — a(a) is Ck,
and we define the subalgebra Ag° of smooth elements of Ay to be those a € Ay such that the
mapping R™ — Ay given by s — ag(a) is smooth. An alternative definition of the subalgebra
Ag° of smooth elements is the elements in Ay that can be expressed by an expansion of the
form 3, czn am [1; U;-nj , where the sequence {a, }mezn is in the Schwartz space S(Z™) in the
sense that, for all a € Z", sup,,ezn (I1; Im;]*]am|) < co. Define the trace 7 : A9 — C by
(11, U;”j) = 0 for m; not all zero and 7(1) = 1 and define an inner product (-,-) : Ag x Ag = C
by (a,b) = 7(b*a) with induced norm || - || : A9 = R>p. Let D; = —i0; and define derivations
§; by the relations §;(U;) = U; and §;(Uy) = 0 for j # k. For convenience, denote 9* := I1; ij,
8¢ :=1;67, D' :=TI; D, and ! = [[; ¢;! for multi-indices £ = (¢1,...,£,) € Z". We define a
map 1 : p — P, assigning a pseudo-differential operator on Ay° to a symbol p € C°(R"™, A3°).

Definition 2.1. For p € C>(R", A3°), let P, be the pseudo-differential operator sending
arbitrary a € A to P,(a) := (2%)” Jan Jgne ¥ p(€)as(a) ds dE.
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The integral above does not converge absolutely; it is an oscillatory integral. We define
oscillatory integrals below as in [7].

Definition 2.2. Let ¢ be a nondegenerate real quadratic form on R", a be a C*° complex-valued
function defined on R” such that the functions (1 + |z|?)~"/29%(z) are bounded on R” for all
a € 728, and ¢ be a Schwartz function, i.e. the functions 9% p(z) are bounded on R™ for

all pairs o, 8 € Z%,. Suppose further that ¢(0) = 1. Then the limit lim._o [e®)a(x)p(ex) da
exists, is independent of ¢ (as long as ¢(0) = 1), and is equal to [¢“®)qa(z)dz when a € L'.
When ¢ ¢ L', we continue to denote this limit by [e’(*)a(z)dz, and have an estimate
‘feiq(x)a(x) dx‘ < Cygm Max|q | <mint1 DU € R:[(1+ |2|2)~™/20%a| < U almost everywhere}
where Cy ,, depends only on the quadratic form ¢ and the order m.

As shown in [7], oscillatory integrals behave essentially like absolutely convergent integrals in
that one can still make changes of variables, integrate by parts, differentiate under the integral

sign, and interverse integral signs. Given certain conditions on p, P,(a) satisfies the conditions
of the oscillatory integral, and we can evaluate P,(a).

Definition 2.3. An element p = p(§) = p(&1, ..., &) of C®(R", AF®) is a symbol of order m
if and only if for all non-negative integers i1,...,un, j1,. -, jn, ||6’1'1 C Sl (O ) (6)]] <
Cp(L+ [yl

Example 2.6(i) of [7] gives a convenient formula for evaluating the oscillatory integrals that
appear in our calculation of P,(a).

Proposition 2.4. Suppose that, for some m, a is a C° complex-valued function defined on
R" such that the functions (1 + |z|>)~"/20%(z) are bounded on R™ for all a € Z%,. Then

ﬁ Jrn Jrne™¥a(y) dy dn = ﬁ Jrn Jgne™ " a(n) dy dn = a(0).
We apply Proposition 2.4 to get a basic result.

Lemma 2.5. Leta =}, czn am [; U]mj be an arbitrary element of Ag® and let p € C°(R™, A3°)
be a symbol of order M. Then Py(a) = 3_,,czn p(m)am 17— U;-nj.

Proof. First consider the case a = [[; U. jm 7. We get

- m; | 1 —is-€ - m;
P, (};[1 U; ) = 2o /n/ne p(&)as (Jl;[l U; ) dsd¢
_ (;)n L L e=ep@em [T vy dsd

=1

_ 1 —is-(§—m) - m;
- o7 /n/ne p(€) ds dé jHlU]

1 —ig - m; - m;
@ )n/ / e p(n+m)dsdy [T U™ = p(m) [T U,

as desired, having substituted n = & — m and applied the result of Proposition 2.4. Now
consider the general case a = ), czn am [[; Ujm 7. Since ay is an automorphism on Ay, we get

Pyla) =3 ezn p(m)am [ 17— U]mj, and we are done. O
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3. Asymptotic formula for the symbol of the adjoint of a pseudo-differential
operator

Here we prove the formula for the symbol of the adjoint for the noncommutative n torus, adapting
the proof of Lemma 1.2.3 of [6] to the noncommutative n torus.

Theorem 3.1. Suppose P is a pseudo-differential operator with symbol o(P) = p = p(§) of order
M. Then the symbol of the adjoint P* is of order M and satisfies o(P*) ~ > ,cyn 95 (plE)"].

o Cilln!

Proof. Let a,b € Ag°. We have

o)) =7 (Vs [ e o) dsa
1

e T (b p(€)as(a)) ds dE

n

e T (as(p(€)*b) a) ds dg

n

// e Ca i (p(8)" )dsd£>* >= (a, P (b))

n

n

((

where
eTi5€,y s ) )dsdf— 2 / / +is-€,, 8 )*)a,S(b)dsdf
n n 7T n n
— / / +zs E +1is- m (g)*e—zs-kbk ds d§ Un_m" L. Ul—ml U{cl . U’rlfn
7T n n
_ mirrk1 kn
_Z m(k —m) b U, ™ U™ UM Uk
m,k
= 2 (pmlk = m)UT™ - Uy (b U - U™,
m,k
SO

o0 = | S oute =) 1_1 e

= 277 /n/n ﬂxymef y)a (ﬁ )dxdy]>k

~ lenn //n T (p(€ — y))dxdy]

We have p(¢ —y) = Z|g|<N1 _) (0°p)(€) + Ry, (&, y) and

onlple )= Y Y @y, mm(H )w Ry (6:9))
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where Ry, (§,y) = N1 Z|€\=N1 fo( YM=L(0%p) (€ — yy) dy with corresponding symbol

m * Y «
5>HU;”j+TN1<§,y>] =y LI 7 ey

, 1l
L|<N1 m j=1 || < N1

where T, (§,y) = (% g Jrn Jgn €@ Ya, (R, (€,y)) dz dy. It remains to show that this symbol is

of order M. Obviously, > n<scn, w € SM=N 50 we need to show that the remainder

is of order M — Ny. Note that a(P;)(g) 2ll<Ny W = Tn, (&, y)*. Integrating by parts,

/n/ne—ia»y(—g)"% (/01(1 C M) (€ — ) d’y) dedy
= gll/n/ne_m‘y(—Dz)z% (/01(1 NN P)(E —y) dv) dz dy

=5 [ emeeatan ([0 -a @ - ar) dedy

i L /01“ =DM =8) an(9p)(€ — y7)) dy da dy
= ;!/n/ne—m-y(_l)z /01(1 _,-}/)Nl—lax(((sgaép)(g_y’y))dyd’mdy

where, for arbitrary a = ¥, am [1; U;”,

(7Dx)€ax(a) (;a 1:[ ) :1: Zzameix.m 1:[1 U;nj
_ Z Z mm ﬁ ozx(a)

Since p € SM and [{| = N; we have §t0fp € SM—Ni_ We get the boundedness of
ENEM(E) fon fgne @Yy (R, (€,y)) dr dy because 0°Ry, (y,€) is the rest of index Np in the
Taylor expansion of 9°(¢ — y) for which one has 9‘p € SM—N1, =

4. Asymptotic formula for the symbol of a product of two pseudo-differential
operators

Next we prove the formula for the product or composition of symbols for the noncommutative
n torus, adapting the proof of Theorem 7.1 of [§].

Theorem 4.1. Suppose that P is a pseudo-differential operator with symbol o(P) = p = p(§)
of order My, and Q is a pseudo-differential operator with symbol o(Q) = ¢ = ¢(&)
order Ms. Then the symbol of the product QP is of order My + My and satisfies o(QP)

£ l
Z€€Z>O T Zn 0 p(€)6p(€), where 8 := [1;0; and 5t = [L; 0,

Proof. We want to show that if p : R™ — Ap® is of order M7 and ¢ : R™ — Ag°® 1s of order My, Pyo
P, = P, where p is of order My + M> and has asymptotic expansion p ~ Ze Lotp(€)6%p(8). Let
{ka} be the partition of unity constructed in Theorem 6.1 of [8] and define ¢k(§) d(&)er(§).
We have Py, (a) = ﬁ Jan Jrn€or(€)as(a) dsdé. Summing over k from zero to infinity and

applying Fubini’s Theorem, we get S50 Py, () = ghye o Jane € S0 d(E)ors(a) ds dé =
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@ Jgn Jgne 5 d(€)as(a) dsdE, so Pyla) = Y32 Py, (a) and the convergence of the series is
absolute and uniform for all a € Ap°. We want to compute the symbol of Py o P,, but issues
with convergence of integrals make it so we need to compute the symbol of Py, o P,. Let a € Ag°
be arbitrary. Applying Py, o P, we get

P¢k(

L e on()as(Pp(a) ds g

_(27r)n/ S ey f o) e s
1 L LI L eesmmoea (p(n))as+t(a)dtdn}d8d£

{

- ( )2 /R"/]R"{/R/n TG (g (p(n))a y(a)dydn} dz dé
{
{

[ e € ol o o) dycn )z

= 2n)en /Rn/R /n/n O T g (0 + 7)o (p(T))a y(a)dydT}dxdo'
// ~i7 4 (0 + T)aa(p (T))dxda} ay(a) dydr
n/ eﬂy'TMk() y(a)dydr

where p1,(7) = ﬁ Jzn Jgne ¢y (0 + 7)az(p(1))) dz do, having done the changes of variables
(z,y) = (s,s +t) and (o,7) = (§ — n,n) and applied Proposition 2.4. This suggests that
Py(Py(a)) = @ﬁfRnfRneﬂy'Tu(T)ay(a) dydr where p(r) = Y52, pk(7). We need to show
that p is a symbol in SMi+Mz and has our desired asymptotic expression. Define py, by px(€) =
27r oy o Jgn€ TV OR(E + y)aw(p(€))dzdy for all £ € R™. By Taylor’s formula with integral

remainder given in Theorem 6.3 of [8], we get ¢x({+y) = X j<n, %(8%@({) + Ry, (y,&) where
Ry (y,6) = N1 2=, % fol(l—’y)Nl_l((‘)e(sz)(f—i—’yy) dry for all y, £ € R%. Substituting back into
our expression for p(€) we get 14(€) = b fun fune Y gy % (0'68)(E)ara (0(6)) da dy +
T () where T\)(€) = i fan Jane "V By, (4, €0 (p(€)) dar dy. Expressing p(€) as p(€) =
(&) TTj=1 U, we see that ag(p(€)) = S, pr()e™ ™ [Tj—1 U™ s0

1k (§) — = > Y — Qﬂ /n/n *“yy 8f¢k)(§) ”mHU’”ﬂ dz dy

[l|<N; ™

= 4 a%k me ey e dy
|Z|<N1

= Y @ zpm<f>HU?fmf= > L@ o)),
IZI<N1 m j=1 lel<Ny

Let p(§) = >izomk(§). It remains to show that p is of order My + Ms. Obviously,

NI <Ny %(8%)(5)(5%)(5) € SMiHM2=N" g5 we just need to show that the remainder

. £

i of order My + My — Ny, Note that () ~ Tyex, 0D = Tite Ty, ()
k 'l

where T\ () = b fin Jane ™V B, (4, §) e (p(€)) dardy and Ry, (5,€) = Ni Sjen, % Jo1
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N1 (0 ) (€ + vy) dy. Integrating by parts,
/n/n ¥ / (1 =)™ 10 1) (€ +y) dyas(p(€)) dz dy
- / . / K / PN (1) (€ + vy) dyas (p(€)) da dy
=7 / § / e /0 (1= )™M (d) (€ + vy) dyDhag(p(€)) dz dy
= gl;/n/ne_my /01(1 — M0 (r) (€ + vy) dydtaa(p(€)) du dy
- % / . / e /0 1(1 — MO (k) (€ + yy) dyon((6°p) (€)) du dy

where for arbitrary a =3, an [[; U. ]m 7 we have
(D) ag(a) = (Dy) ey (Z am [ [ U;-nj) = (D,)* > ame™™ ] U;nj
ji= m j=1

—Za mee”mHUmJ —640@( ).

7j=1
Since |€\ = Np, we have 9%(¢y) € SM2=M and 6‘p € SMi. We get the boundedness of
p MM () o fgme Y RN, (y, €)aw (p(€)) dx dy since 6°p € SM1and 8 Ry, (y,€) is the rest
of index Nj in Taylor’s expansion of 9°¢y (& + vy) for which on has 9‘¢;, € SM2=N1, O

5. The pseudo-differential calculus on finitely generated projective modules over
the noncommutative n torus

We can generalize these results to arbitrary finitely generated projective right modules over the
noncommutative n torus following p. 553 of [2], which considers finitely generated projective
modules over an arbitrary unital *-algebra. Let E be a finitely generated projective right Ag°-
module. Since F is a finitely generated projective right Ag°-module, we can write E as a direct
summand E = (A3°)"e of a free module (A3°)" with direct complement F' = (Ag°)"(id—e), where
the idempotent e € M, (Ag°) is self-adjoint. Consider an 7 x r matrix valued symbol p = (p; 1)
where p; 1 : R" — Ag® are scalar symbols and p;; € S?. Define the operator P,: E — FE as
follows: P,(@) := (27) ™" [gn Jane™ € p(€)as (@) ds €. Define the inner product (@, b): Ex E —
C sending (@,5) — 7(b°@). Since Py(@); = (27)" o fone ¢ Shoy pya(§)ars(ay) dsde,
Lemma 2.5 generahzes to E as follows after applying it to each component: P,(d) =
> om P(m)am [T, Uj 7. Theorems 3.1 and 4.1 generalize as follows.

Theorem 5.1. (a) For a pseudo-differential operator P with r X r matriz valued symbol
o(P) = p = p(&), the symbol of the adjoint P* satisfies

i O 9l gt (p(€))*
o(P*) ~ 3 1 61!1“'6”! (p(€))"

(l15esln)€(Zz0)"

(b) If Q is a pseudo-differential operator with r X r matriz valued symbol o(Q) = p' = p/(£),
then the product PQ is also a pseudo-differential operator and has symbol

Oy - Ol (p(€))81 - - 85 (0 (£))
00! ’

oPQ~ >

(51,...7571)6(220)”
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Proof. First let’s prove part (a). Let p be an r x r matrix valued symbol of order M and @, beE.
We have

B =7 (F g [ e oo dsa
(&

2 [ L eretanper B dsac) a) = @ ;o)

n

where
P (b); . “852@ )5 kbi) ds dé
. “852@ _s(by) dsd¢
Zl o HUW]*@HW)
m Bt
50

a(P)(€) = | D pm(€ —m) f[ U;Z”h]

o Lo LS (T ) av]

h=1

_ :W/n/ne—ix-yax(p(gy))dxdy]*

The rest of the proof reduces to the r =1 case, applying it to each entry in p = (p; ).
We proceed to part (b). Let p be an r x r matrix valued symbol of order m; and ¢ be
an r X r matrix valued symbol of order my. Let {pr} be a partition of unity and define

or(&) = d(§)pr(&). Let @ € E. We have

Py, (Py(a e~ hp () s (P, (@) ds dg

n

a0k ( 2y /n/n “p(n)ay (d )dtdn) dsde
- 277)2" . / { / . /Rn67”'57”'"%(§)as(p(n))a5+t(a’) dtdn} dsdé

/R"/ n{/ . / e DG () an(p(n)) ey (@) dydn} dz dé
/Rn/Rn{/ n/ e eI Gy (€)a (p(n) ey (@) dydn} dede
/R/R{// TG (0 + T)aa(p(7)) y(ﬁ)dydr} dz do

1
= ST\ (T)ay (@) dy d
2W)n/w/w o(T)ay (@) dy dr

n

)2

3

)2

3

- 27)?

N

21)?2

3
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where \i(7) = @Tl)n Jgn Jgn€” @ ¢p (0 + T)aw(p(7)) dz do so

PoP@) = s [ e A0y (@) dy

where A\(7) = Y720 Ak(7). Let A\g(§) := ﬁ Jan Jgne @ Yor(€ + y)au(p(€)) dz dy. Since

1 —iz-y a
€ ¢ €+ «, Qg 6 KoY d$d
(2r)n /n/n 52:1 k(€ +Y)apas(p(€)p,y) dedy

)\k(f)aﬁ =

T 1 _'.y
- n HYOL(E + Y)apan(p(€)sy) dr dy,
ﬁzzl(zﬂ)/n/ne k(& T Y)a,pe (PG )By) AT AY

the rest of the proof reduces to the » = 1 case, applying it to each summand in the above
sum. O

6. Sobolev spaces on finitely generated projective modules over the
noncommutative n torus
Let AM(€) = (1 + &7 + - + £2)Y/?idp. Consider the following inner product on E.

Definition 6.1. Define the Sobolev inner product (-,-)s : E x E — C by (d,b)s :=
(e (@), Pre (B)) = X2jm (L + [mal® + - 4 |mal?)*Bjmajm.

Note that for s = 0 this agrees with (-,-). This inner product induces the following norm.
Definition 6.2. Define the Sobolev norm || - ||s : E — Rxsq by ||@||? := (P\s(@), P\s(@)) =
S jm (L fma? e ) agm] .

Using this norm, we can define the analog of Sobolev spaces on F.

Definition 6.3. Define the Sobolev space H® to be the completion of E with respect to || - |/s.

We can prove that a pseudo-differential operator of order d € R continuously maps H*® into
H*~4 However we must first prove the case where s = d.

Theorem 6.4. Suppose p is a matriz valued symbol of order d. Then, for any @ € FE,
|Py(@)|o < C||dl||a for some constant C > 0 and P, defines a bounded operator P, : H¢ — HO.

Proof. Let F be an orthogonal eigenbasis of e normalized with respect to (-,-), and let F} := {fj, :
1 < h < r1} be the subset of eigenvectors with eigenvalue 1. Note that {Hg U;ngfj :meZ™ 1<
j < r1}is an orthogonal basis of E considered as a C-vector space, with respect to (-, -)s. We have
m m

NTL, Ug fills = 1, llpm(E)ng [, Ug ? fills = lpm(Engl?s and [[p(E)n s filld = S lom(E)nsl>.
Since pp, j is of order d, we have ||p(&)nillo < Cp(1 + [€])%, and since (1 — [£])? > 0 gives us
(1+[€)* < 2(1 + [€[*), we have [|p()nlls < CH(1+ [€])** < CR29(1 + [€*)". Let k, := 727
Then we have 3., [pm (E)n.;1? < kp(1 4 [€]2)% Let esm = (14 [ma|® + -+ + |my|?) /2 I1,Us"
and Es; := {esm | m € Z}. By definition we have E F; orthonormal with respect to (-, -)s.
It suffices to prove this theorem for the case @ = eg,f; by the orthonormality of E4F; since
1PA@E = 5 m sl Polean F)I3 and 113 = 55 Iz Plleam fi1 13- Since |leqn I3 = 1,
it suffices to show that ||P,(eqmf;)||3 < K for some constant K > 0. We have

2
1P(eamfi)lI§ = llp(m)eamfill§ =

p(m)(1+ |[ma]? + - + [mu )~V [ UM f
g

0
2

> pulm) [TUGe (Ut a4+ ma )~ TT U521
k g g

0
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2

= (L fmal® + -+ fma) | p(m) [ U7 [T UG S
g g

k

0
2

= (14 |mi|>+---+ |mn\2)_d Zpk(m)w(m, k) H U;“g*mgfj
k g

0
2

= (14 |ma + -+ [ma?) ¢ Zpk m(m)w(m, k —m) Hngf]

0
2

:(1+‘m1’2+...+|mn|2)7d Zpk m(m)p jw(m, k — m)HUggfj

g 0
= (Lt 4+ + ImnIQ)‘dZ [k (m
= (Lt fmal* - fma )™ Lok (m)n
< (L fma - o ) ik (1 [ o+ - o [ma ) = ik,

h k = [T, U7 T, U (T, U - stcc desired tant i
where w(k,m) := [[j—, U; 7 [T}, U; i—1U; € C C so our desired constant is
K =nrik,= rngQd and we are done. O

For the general case s # d we need to prove a lemma saying that || - ||s = || - ||s—¢ © Pxe.

Lemma 6.5. For any @ € E and s,t € R, @ € H® if and only if Pyu(a) € H*' with
lalls = [[Pxe(@)|]s—¢-

Proof. Suppose that @ € H® or Py:(d) € H*"!. Then
1Py (@) 2 =D (14 [mal> + - + [mal*)* 7 N ()] ajm|?
=S+ a4 ) T+ P+ ) agm

=S (14 [ma? 4 -+ ) lagml® = []]]s

so we know that @ € H® and Py:(a@) € H*™ L. O

Then the general case follows quite easily.

Corollary 6.6. Suppose p is a matriz valued symbol of order d. Then HP (@)||s—a < C|ld||s for
some constant C' > 0 and P, defines a bounded operator P, : H® — Hs4,

Proof. By Lemma 6.5, we have ||P,(@)|[s—¢ = ||Pys—a(P,(a@))|lo. By Proposition 5.1(b), the
matrix valued symbol o(Pys—a o P,) is of order d + (s — d) = s, so Theorem 6.4 gives us
|| Pys—a(Pp(a@))]lo < Cld||s for some constant C' > 0. O

We can also define an analog of the C* norm on E.

Definition 6.7. Define the C* norm || ||oot : £ — Rx as follows: [|@||co := 2l<k 1164(@)|
2. :=sup{|\| : @@ — X -1 not invertible}.

C*

where the C* norm || - ||¢+ is given by ||d]

10
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Since, for arbitrary @ =}, ., ajm[I, Ug" fj,
) n
Dﬁas("’ (—1i0s) Ze” " m H U fj = Zméew'maj,m H Ug" fj
Jym g=1

=Y e may, H U f; = 6a(@)

J,m g=1

we have (A%)"e = C*. We can easily prove an analog of the Sobolev lemma on E as follows.

Theorem 6.8. For s >k+1, H* C (A¥)e.

Proof. First consider the case k = 0. Note that ||-|[oc,0 = ||-||c+ so for arbitrary a;,, [Iy—; Ug™
we have |[|ajm [Tg—y Ug" fill2oo = sup{|A| : lajm|*> — A - 1 not invertible} = |a;m|* and
for arbitrary a = Zj,maj,m HZ:l U;ngfj we have H5|’go,0 < Zj,mHaj,mH Ug f]HooO =
> im lajm|? = ||@||3 by the triangle inequality. We have @ = > jm @im AT (M)A (m) [Ty Ug" f
so by the Cauchy-Schwarz inequality we get [|@]|3 < [|@||? X, (1 + [ma]? + -+ + |mp|?) 7%, Since
25 > 2, (1+|m1 |2+ - -+|my,|?)~* is summable over m € Z™ and j € {1,...,r} so ||a@||3 < C]|d]|s.
Thus we get |[@lloeo < |fallo < Cl[dlls and H* C (A})"e.
Now suppose k > 0. Using what we’ve proven for the previous case, we have

16@lloo0 < ClIE @)l =

Zm a]mHUmgf]

s—e|

n
St fmal) o TL U595

Jm g=1
= CllPyja(@)|]s—j = Cllalls

<C

5=

for |£] < k since s — (| > s — k > 1. Therefore, ||@|oos = Xjg< 16°(@)]loc0 < Xjg<r Clldlls <
Cl|al|s(k + 1)(k +2)/2 and we get H® C (A% e. O

We get the following corollary.
Corollary 6.9. (,cp H® = (A7°)"e

Proof. Suppose a € (),cg H®. Then for any k € Z>o, @ € H**2 so by the theorem we just
proved, @ € (A%)"e. Consequently @ € (A)"e, so Nyer H* C (AP)"e

Suppose a € (Ag°)"e. Then since H* is the completion of (Ag°)"e with respect to || - |5,
(Ag°)"e C H* for all s € R, and (A5°)"e C Nyer H”. O

We can also prove an analog of the Rellich lemma on FE.

Theorem 6.10. Let {dn} € (A3°)"e be a sequence. Suppose that there is a constant C so that
ldn||s < C for all N. Let s > t. Then there is a subsequence {dy,} that converges in H'.

Proof. Let F be an orthogonal eigenbasis of e normalized with respect to (-,-), and let
Fiy == {fn : 1 < h < r;} be the subset of eigenvectors with eigenvalue 1. Let eg,, =
(1 + |[maf> 4 - + |ma|?)~%/? I1, Ug” and Es := {esm | m € Z}. FEsF; is an orthogonal
basis of E considered as a C-vector space normalized with respect to (-,-)s, so we can write
ay = Eh,k an hk€skfrn- Then |aN7h7k\2 < Eh,k ‘aN7h7k|2 < C? and |aN7h,k’ < C. Applying the
Arzela-Ascoli theorem to {ay px} for some fixed (h, k), we can get a subsequence {ay; x} of

11
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{an nk} such that for any e > 0 there exists M(¢) € N such that |an; px — an; k| < € whenever
i,j > M(e). Do this forall 1 < h < rjand |ki|*+ - 4|k, |* < R?, replacing {ay} with {ax;, } each
time. Then we get a subsequence {ay,} of {ay} such that for any e > 0 there exists M(e) € N
such that, forall 1 < h < rand [ki|*+ -4k, [* < R?, |an, hx—an; k| < € whenever i,j > M(e).
Now consider the sum ||an, —an; |7 = Y4 1 lan, ne—an; nil> (1] k1> 4 - 4|k, [?)' 5. Decompose
it into two parts: one where |k1|? + -+ + |k,|? > R? and one where |ki|? + -+ + |k,|? < R2.
On |k1|? + -+ + |kn|®> > R? we estimate (1 + |k1]? + -+ + |ka|?)'™* < (1 + R?)"™* so that
S ok 2t o 25 B2 1N hk = @y k) P (LA TR P 4 4 [kl ?) 7% < (L4 R 2, g an, nk —
aN].,hyk.\Q < 2r1C%(1 + R?)!75. If € > 0 is given, we choose R so that 2r;C?(1 + R?)!™° < e.
The remaining part of the sum is over k1|2 + --- + |k,|*> < R? and can be bounded above by
€ == e—2rC?(1+ RY)1=sifi,j > M(\/€/[r1(2R + 1)"]) because an n-ball of radius R centered
at the origin is contained in an n-cube of side length 2R that has (2R + 1)" lattice points. Then
the total sum is bounded above by €, and we are done. O
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