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Abstract. The methods of spectral geometry are useful for investigating the metric aspects
of noncommutative geometry and in these contexts require extensive use of pseudo-differential
operators. In a foundational paper, Connes showed that, by direct analogy with the theory
of pseudo-differential operators on finite-dimensional real vector spaces, one may derive a
similar pseudo-differential calculus on noncommutative n-tori, and with the development of
this calculus came many results concerning the local differential geometry of noncommutative
tori for n=2,4, as shown in the groundbreaking paper in which the Gauss–Bonnet theorem on
the noncommutative two-torus is proved and later papers. Certain details of the proofs in the
original derivation of the calculus were omitted, such as the evaluation of oscillatory integrals,
so we make it the objective of this paper to fill in all the details. After reproving in more detail
the formula for the symbol of the adjoint of a pseudo-differential operator and the formula
for the symbol of a product of two pseudo-differential operators, we extend these results to
finitely generated projective right modules over the noncommutative n-torus. Then we define
the corresponding analog of Sobolev spaces and prove equivalents of the Sobolev and Rellich
lemmas.

1. Introduction
The methods of spectral geometry are useful for investigating the metric aspects of non-
commutative geometry [1–4] and in these contexts require extensive use of pseudo-differential
operators. In the foundational paper [5], Connes showed that, by direct analogy with the
theory [6–8] of pseudo-differential operators on Rn, one may derive a similar pseudo-differential
calculus on noncommutative n tori Tnθ . With the development of this calculus came many
results concerning the local differential geometry of noncommutative tori for n = 2, 4, as
shown in the groundbreaking paper [9] in which the Gauss–Bonnet theorem on T2

θ is proved
and later papers [10–14]. In these papers, the flat geometry of Tnθ which was studied in [5]
is conformally perturbed using a Weyl factor given by a positive invertible smooth element in
C∞(Tnθ ). Connes’ pseudo-differential calculus is critically used to apply heat kernel techniques
to geometric operators on Tnθ to derive small time heat kernel expansions that encode local
geometric information such as scalar curvature. As discovered in [10, 12, 13], a purely non-
commutative feature that appears in the computations and in the final formula for the curvature
is the modular automorphism of the state implementing the conformal perturbation of the
metric.

Certain details of the proofs in the derivation of the calculus in [5] were omitted, such as the
evaluation of oscillatory integrals, so we make it the objective of this paper to fill in all the details.

http://creativecommons.org/licenses/by/3.0
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After reproving in more detail the formula for the symbol of the adjoint of a pseudo-differential
operator and the formula for the symbol of a product of two pseudo-differential operators, we
extend these results to finitely generated projective right modules over the noncommutative
n torus. Then we define the corresponding analog of Sobolev spaces for which we prove the
Sobolev and Rellich lemmas.

We list these results below.
Theorem 1.1. Suppose P is a pseudo-differential operator with symbol σ(P ) = ρ = ρ(ξ) of order
M . Then the symbol of the adjoint P ∗ is of order M and satisfies σ(P ∗) ∼

∑
`∈Zn
≥0

∂`δ`[(ρ(ξ))∗]
`1!···`n! .

Theorem 1.2. Suppose that P is a pseudo-differential operator with symbol σ(P ) = ρ = ρ(ξ)
of order M1, and Q is a pseudo-differential operator with symbol σ(Q) = φ = φ(ξ) of
order M2. Then the symbol of the product QP is of order M1 + M2 and satisfies σ(QP ) ∼∑
`∈Zn
≥0

1
`1!···`n!∂

`φ(ξ)δ`ρ(ξ), where ∂` :=
∏
j ∂

`j
j and δ` :=

∏
j δ

`j
j .

Theorem 1.3. (a) For a pseudo-differential operator P with r × r matrix valued symbol
σ(P ) = ρ = ρ(ξ), the symbol of the adjoint P ∗ satisfies

σ(P ∗) ∼
∑

(`1,...,`n)∈(Z≥0)n

∂`11 · · · ∂`nn δ
`1
1 · · · δ`nn (ρ(ξ))∗

`1! · · · `n! .

(b) If Q is a pseudo-differential operator with r × r matrix valued symbol σ(Q) = ρ′ = ρ′(ξ),
then the product PQ is also a pseudo-differential operator and has symbol

σ(PQ) ∼
∑

(`1,...,`n)∈(Z≥0)n

∂`11 · · · ∂`nn (ρ(ξ))δ`11 · · · δ`nn (ρ′(ξ))
`1! · · · `n! .

Theorem 1.4. For s > k + 1, Hs ⊆ (Akθ)re.
Theorem 1.5. Let {~aN} ∈ (A∞θ )re be a sequence. Suppose that there is a constant C so that
||~aN ||s ≤ C for all N . Let s > t. Then there is a subsequence {~aNj} that converges in Ht.

2. Preliminaries
Fix some skew symmetric n×n matrix θ with upper triangular entries in R\Q that are linearly
independent over Q. Consider the irrational rotation C∗-algebra Aθ with n unitary generators
U1, . . . , Un which satisfy UkUj = e2πiθj,kUjUk and U∗j = U−1

j . Let {αs}s∈Rn be a n-parameter
group of automorphisms given by

∏
j U

mj

j 7→ eis·m
∏
j U

mj

j . We define the subset Akθ of Ck

elements of Aθ to be those a ∈ Aθ such that the mapping Rn → Aθ given by s 7→ αs(a) is Ck,
and we define the subalgebra A∞θ of smooth elements of Aθ to be those a ∈ Aθ such that the
mapping Rn → Aθ given by s 7→ αs(a) is smooth. An alternative definition of the subalgebra
A∞θ of smooth elements is the elements in Aθ that can be expressed by an expansion of the
form

∑
m∈Zn am

∏
j U

mj

j , where the sequence {am}m∈Zn is in the Schwartz space S(Zn) in the
sense that, for all α ∈ Zn, supm∈Zn(

∏
j |mj |αj |am|) < ∞. Define the trace τ : Aθ → C by

τ(
∏
j U

mj

j ) = 0 for mj not all zero and τ(1) = 1 and define an inner product 〈·, ·〉 : Aθ×Aθ → C
by 〈a, b〉 = τ(b∗a) with induced norm || · || : Aθ → R≥0. Let Dj = −i∂j and define derivations
δj by the relations δj(Uj) = Uj and δj(Uk) = 0 for j 6= k. For convenience, denote ∂` :=

∏
j ∂

`j
j ,

δ` :=
∏
j δ

`j
j , D` :=

∏
j D

`j
j , and `! =

∏
j `j ! for multi-indices ` = (`1, . . . , `n) ∈ Zn. We define a

map ψ : ρ 7→ Pρ assigning a pseudo-differential operator on A∞θ to a symbol ρ ∈ C∞(Rn, A∞θ ).
Definition 2.1. For ρ ∈ C∞(Rn, A∞θ ), let Pρ be the pseudo-differential operator sending
arbitrary a ∈ A∞θ to Pρ(a) := 1

(2π)n

∫
Rn

∫
Rne−is·ξρ(ξ)αs(a) dsdξ.
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The integral above does not converge absolutely; it is an oscillatory integral. We define
oscillatory integrals below as in [7].

Definition 2.2. Let q be a nondegenerate real quadratic form on Rn, a be a C∞ complex-valued
function defined on Rn such that the functions (1 + |x|2)−m/2∂αa(x) are bounded on Rn for all
α ∈ Zn≥0, and ϕ be a Schwartz function, i.e. the functions xα∂βϕ(x) are bounded on Rn for
all pairs α, β ∈ Zn≥0. Suppose further that ϕ(0) = 1. Then the limit limε→0

∫
eiq(x)a(x)ϕ(εx) dx

exists, is independent of ϕ (as long as ϕ(0) = 1), and is equal to
∫
eiq(x)a(x) dx when a ∈ L1.

When a 6∈ L1, we continue to denote this limit by
∫
eiq(x)a(x) dx, and have an estimate∣∣∣∫ eiq(x)a(x) dx

∣∣∣ ≤ Cq,m max|α|≤m+n+1 inf{U ∈ R : |(1 + |x|2)−m/2∂αa| ≤ U almost everywhere}
where Cq,m depends only on the quadratic form q and the order m.

As shown in [7], oscillatory integrals behave essentially like absolutely convergent integrals in
that one can still make changes of variables, integrate by parts, differentiate under the integral
sign, and interverse integral signs. Given certain conditions on ρ, Pρ(a) satisfies the conditions
of the oscillatory integral, and we can evaluate Pρ(a).

Definition 2.3. An element ρ = ρ(ξ) = ρ(ξ1, . . . , ξn) of C∞(Rn, A∞θ ) is a symbol of order m
if and only if for all non-negative integers i1, . . . , in, j1, . . . , jn, ||δi11 · · · δinn (∂j11 · · · ∂jnn ρ)(ξ)|| ≤
Cρ(1 + |ξ|)m−|j|.

Example 2.6(i) of [7] gives a convenient formula for evaluating the oscillatory integrals that
appear in our calculation of Pρ(a).

Proposition 2.4. Suppose that, for some m, a is a C∞ complex-valued function defined on
Rn such that the functions (1 + |x|2)−m/2∂αa(x) are bounded on Rn for all α ∈ Zn≥0. Then

1
(2π)n

∫
Rn

∫
Rne−iy·ηa(y) dy dη = 1

(2π)n

∫
Rn

∫
Rne−iy·ηa(η) dy dη = a(0).

We apply Proposition 2.4 to get a basic result.

Lemma 2.5. Let a =
∑
m∈Zn am

∏
j U

mj

j be an arbitrary element of A∞θ and let ρ ∈ C∞(Rn, A∞θ )
be a symbol of order M . Then Pρ(a) =

∑
m∈Zn ρ(m)am

∏n
j=1 U

mj

j .

Proof. First consider the case a =
∏
j U

mj

j . We get

Pρ

 n∏
j=1

U
mj

j

 = 1
(2π)n

∫
Rn

∫
Rn
e−is·ξρ(ξ)αs

 n∏
j=1

U
mj

j

 ds dξ

= 1
(2π)n

∫
Rn

∫
Rn
e−is·ξρ(ξ)eis·m

n∏
j=1

U
mj

j dsdξ

= 1
(2π)n

∫
Rn

∫
Rn
e−is·(ξ−m)ρ(ξ) dsdξ

n∏
j=1

U
mj

j

= 1
(2π)n

∫
Rn

∫
Rn
e−is·ηρ(η +m) ds dη

n∏
j=1

U
mj

j = ρ(m)
n∏
j=1

U
mj

j ,

as desired, having substituted η = ξ − m and applied the result of Proposition 2.4. Now
consider the general case a =

∑
m∈Zn am

∏
j U

mj

j . Since αs is an automorphism on Aθ, we get
Pρ(a) =

∑
m∈Zn ρ(m)am

∏n
j=1 U

mj

j , and we are done.
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3. Asymptotic formula for the symbol of the adjoint of a pseudo-differential
operator
Here we prove the formula for the symbol of the adjoint for the noncommutative n torus, adapting
the proof of Lemma 1.2.3 of [6] to the noncommutative n torus.

Theorem 3.1. Suppose P is a pseudo-differential operator with symbol σ(P ) = ρ = ρ(ξ) of order
M . Then the symbol of the adjoint P ∗ is of order M and satisfies σ(P ∗) ∼

∑
`∈Zn
≥0

∂`δ`[(ρ(ξ))∗]
`1!···`n! .

Proof. Let a, b ∈ A∞θ . We have

〈Pρ(a), b〉 = τ

(
b∗

1
(2π)n

∫
Rn

∫
Rn
e−is·ξρ(ξ)αs(a) ds dξ

)
= 1

(2π)n
∫
Rn

∫
Rn
e−is·ξτ(b∗ρ(ξ)αs(a)) ds dξ

= 1
(2π)n

∫
Rn

∫
Rn
e−is·ξτ(α−s(ρ(ξ)∗b)∗a) ds dξ

= τ

(( 1
(2π)n

∫
Rn

∫
Rn
e+is·ξα−s(ρ(ξ)∗b) ds dξ

)∗
a

)
= 〈a, P ∗ρ (b)〉

where

P ∗ρ (b) = 1
(2π)n

∫
Rn

∫
Rn
e+is·ξα−s(ρ(ξ)∗b) ds dξ = 1

(2π)n
∫
Rn

∫
Rn
e+is·ξα−s(ρ(ξ)∗)α−s(b) ds dξ

=
∑
m,k

1
(2π)n

∫
Rn

∫
Rn
e+is·ξe+is·mρm(ξ)∗e−is·kbk ds dξ U−mn

n · · ·U−m1
1 Uk1

1 · · ·U
kn
n

=
∑
m,k

1
(2π)n

∫
Rn

∫
Rn
e−is·ηρm((k −m)− η)∗bk ds dη U−mn

n · · ·U−m1
1 Uk1

1 · · ·U
kn
n

=
∑
m,k

ρm(k −m)∗bkU−mn
n · · ·U−m1

1 Uk1
1 · · ·U

kn
n

=
∑
m,k

(ρm(k −m)Um1
1 · · ·Umn

n )∗(bkUk1
1 · · ·U

kn
n ),

so

σ(P ∗ρ )(ξ) =

∑
m

ρm(ξ −m)
n∏
j=1

U
mj

j

∗

=

 1
(2π)n

∫
Rn

∫
Rn
e−ix·y

∑
m

ρm(ξ − y)αx

 n∏
j=1

U
mj

j

 dx dy

∗

=
[ 1

(2π)n
∫
Rn

∫
Rn
e−ix·yαx(ρ(ξ − y)) dx dy

]∗
.

We have ρ(ξ − y) =
∑
|`|<N1

(−y)`

`! (∂`ρ)(ξ) +RN1(ξ, y) and

αx(ρ(ξ − y)) =
∑
|`|<N1

∑
m

(−y)`

`! (∂`ρm)(ξ)eix·m
 n∏
j=1

U
mj

j

+ αx(RN1(ξ, y))
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where RN1(ξ, y) = N1
∑
|`|=N1

(−y)`

`!
∫ 1

0(1− γ)N1−1(∂`ρ)(ξ − yγ) dγ with corresponding symbol

σ(P ∗ρ )(ξ) =

 ∑
|`|<N1

∑
m

(−m)`

`! (∂`ρm)(ξ)
m∏
j=1

U
mj

j + TN1(ξ, y)

∗ =
∑
|`|<N1

∂`δ`[(ρ(ξ))∗]
`! +TN1(ξ, y)∗

where TN1(ξ, y) = 1
(2π)n

∫
Rn

∫
Rn e−ix·yαx(RN1(ξ, y)) dx dy. It remains to show that this symbol is

of order M . Obviously,
∑
N≤`<N1

∂`δ`[(ρ(ξ))∗]
`! ∈ SM−N , so we need to show that the remainder

is of order M −N1. Note that σ(P ∗ρ )(ξ)−
∑
|`|<N1

∂`δ`[(ρ(ξ))∗]
`! = TN1(ξ, y)∗. Integrating by parts,

∫
Rn

∫
Rn
e−ix·y

(−y)`

`! αx

(∫ 1

0
(1− γ)N1−1(∂`ρ)(ξ − yγ) dγ

)
dx dy

= 1
`!

∫
Rn

∫
Rn
e−ix·y(−Dx)`αx

(∫ 1

0
(1− γ)N1−1(∂`ρ)(ξ − yγ) dγ

)
dx dy

= 1
`!

∫
Rn

∫
Rn
e−ix·y(−δ)`αx

(∫ 1

0
(1− γ)N1−1(∂`ρ)(ξ − yγ) dγ

)
dx dy

= 1
`!

∫
Rn

∫
Rn
e−ix·y

∫ 1

0
(1− γ)N1−1(−δ)`αx((∂`ρ)(ξ − yγ)) dγ dx dy

= 1
`!

∫
Rn

∫
Rn
e−ix·y(−1)`

∫ 1

0
(1− γ)N1−1αx((δ`∂`ρ)(ξ − yγ)) dγ dx dy

where, for arbitrary a =
∑
m am

∏
j U

mj

j ,

(−Dx)`αx(a) = (−Dx)`αx

∑
m

am

n∏
j=1

U
mj

j

 = (−Dx)`
∑
m

ame
ix·m

n∏
j=1

U
mj

j

=
∑
m

am(−m)`eix·m
n∏
j=1

U
mj

j = (−δ)`αx(a).

Since ρ ∈ SM and |`| = N1 we have δ`∂`ρ ∈ SM−N1 . We get the boundedness of
`N1−M (ξ)

∫
Rn

∫
Rne−ix·yαx(RN1(ξ, y)) dx dy because ∂`RN1(y, ξ) is the rest of index N1 in the

Taylor expansion of ∂`(ξ − yγ) for which one has ∂`ρ ∈ SM−N1 .

4. Asymptotic formula for the symbol of a product of two pseudo-differential
operators
Next we prove the formula for the product or composition of symbols for the noncommutative
n torus, adapting the proof of Theorem 7.1 of [8].

Theorem 4.1. Suppose that P is a pseudo-differential operator with symbol σ(P ) = ρ = ρ(ξ)
of order M1, and Q is a pseudo-differential operator with symbol σ(Q) = φ = φ(ξ) of
order M2. Then the symbol of the product QP is of order M1 + M2 and satisfies σ(QP ) ∼∑
`∈Zn
≥0

1
`1!···`n!∂

`φ(ξ)δ`ρ(ξ), where ∂` :=
∏
j ∂

`j
j and δ` :=

∏
j δ

`j
j .

Proof. We want to show that if ρ : Rn → A∞θ is of order M1 and φ : Rn → A∞θ is of order M2, Pφ◦
Pρ = Pµ where µ is of order M1 +M2 and has asymptotic expansion µ ∼

∑
`

1
`!∂

`φ(ξ)δ`ρ(ξ). Let
{ϕk} be the partition of unity constructed in Theorem 6.1 of [8] and define φk(ξ) := φ(ξ)ϕk(ξ).
We have Pφk

(a) = 1
(2π)n

∫
Rn

∫
Rneis·ξφk(ξ)αs(a) ds dξ. Summing over k from zero to infinity and

applying Fubini’s Theorem, we get
∑∞
k=0 Pφk

(a) = 1
(2π)n

∫
Rn

∫
Rne−is·ξ

∑∞
k=0 φk(ξ)αs(a) ds dξ =
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1
(2π)n

∫
Rn

∫
Rne−is·ξφ(ξ)αs(a) ds dξ, so Pφ(a) =

∑∞
k=0 Pφk

(a) and the convergence of the series is
absolute and uniform for all a ∈ A∞θ . We want to compute the symbol of Pφ ◦ Pρ, but issues
with convergence of integrals make it so we need to compute the symbol of Pφk

◦Pρ. Let a ∈ A∞θ
be arbitrary. Applying Pφk

◦ Pρ we get

Pφk
(Pρ(a)) = 1

(2π)n
∫
Rn

∫
Rn
e−is·ξφk(ξ)αs(Pρ(a)) ds dξ

= 1
(2π)n

∫
Rn

∫
Rn
e−is·ξφk(ξ)αs

( 1
(2π)n

∫
Rn

∫
Rn
e−it·ηρ(η)αt(a) dt dη

)
ds dξ

= 1
(2π)2n

∫
Rn

∫
Rn

{∫
Rn

∫
Rn
e−is·ξ−it·ηφk(ξ)αs(ρ(η))αs+t(a) dt dη

}
ds dξ

= 1
(2π)2n

∫
Rn

∫
Rn

{∫
Rn

∫
Rn
e−ix·ξ−i(y−x)·ηφk(ξ)αx(ρ(η))αy(a) dy dη

}
dx dξ

= 1
(2π)2n

∫
Rn

∫
Rn

{∫
Rn

∫
Rn
e−ix·(ξ−η)−iy·ηφk(ξ)αx(ρ(η))αy(a) dy dη

}
dx dξ

= 1
(2π)2n

∫
Rn

∫
Rn

{∫
Rn

∫
Rn
e−ix·σ−iy·τφk(σ + τ)αx(ρ(τ))αy(a) dy dτ

}
dx dσ

= 1
(2π)n

∫
Rn

∫
Rn
e−iy·τ

{ 1
(2π)n

∫
Rn

∫
Rn
e−ix·σφk(σ + τ)αx(ρ(τ)) dx dσ

}
αy(a) dy dτ

= 1
(2π)n

∫
Rn

∫
Rn
e−iy·τµk(τ)αy(a) dy dτ

where µk(τ) = 1
(2π)n

∫
Rn

∫
Rne−ix·σφk(σ+ τ)αx(ρ(τ))) dx dσ, having done the changes of variables

(x, y) = (s, s + t) and (σ, τ) = (ξ − η, η) and applied Proposition 2.4. This suggests that
Pφ(Pρ(a)) = 1

(2π)n

∫
Rn

∫
Rne−iy·τµ(τ)αy(a) dy dτ where µ(τ) =

∑∞
k=0 µk(τ). We need to show

that µ is a symbol in SM1+M2 and has our desired asymptotic expression. Define µk by µk(ξ) =
1

(2π)2
∫
Rn

∫
Rne−ix·yφk(ξ + y)αx(ρ(ξ)) dx dy for all ξ ∈ Rn. By Taylor’s formula with integral

remainder given in Theorem 6.3 of [8], we get φk(ξ+y) =
∑
|`|<N1

y`

`! (∂`φk)(ξ)+RN1(y, ξ) where
RN1(y, ξ) = N1

∑
|`|=N1

y`

`!
∫ 1

0(1−γ)N1−1(∂`φk)(ξ+γy) dγ for all y, ξ ∈ R2. Substituting back into
our expression for µk(ξ) we get µk(ξ) = 1

(2π)n

∫
Rn

∫
Rne−ix·y

∑
|`|<N1

y`

`! (∂`φk)(ξ)αx(ρ(ξ)) dx dy +
T

(k)
N1

(ξ) where T (k)
N1

(ξ) = 1
(2π)n

∫
Rn

∫
Rne−ix·yRN1(y, ξ)αx(ρ(ξ)) dx dy. Expressing ρ(ξ) as ρ(ξ) =∑

m ρm(ξ)
∏n
j=1 U

mj

j , we see that αx(ρ(ξ)) =
∑
m ρm(ξ)eix·m

∏n
j=1 U

mj

j so

µk(ξ)− T
(k)
N1

(ξ) =
∑
|`|<N1

∑
m

1
(2π)n

∫
Rn

∫
Rn
e−ix·y

y`

`! (∂`φk)(ξ)ρm(ξ)eix·m
n∏
j=1

U
mj

j dx dy

=
∑
|`|<N1

1
`! (∂

`φk)(ξ)
∑
m

ρm(ξ)
n∏
j=1

U
mj

j

1
(2π)n

∫
Rn

∫
Rn
e−ix·(y−m)y` dx dy

=
∑
|`|<N1

1
`! (∂

`φk)(ξ)
∑
m

ρm(ξ)
n∏
j=1

U
mj

j m` =
∑
|`|<N1

1
`! (∂

`φk)(ξ)(δ`ρ)(ξ).

Let µ(ξ) =
∑∞
k=0 µk(ξ). It remains to show that µ is of order M1 + M2. Obviously,∑

N≤|`|<N1
y`

`! (∂`φ)(ξ)(δ`ρ)(ξ) ∈ SM1+M2−N , so we just need to show that the remainder
is of order M1 + M2 − N1. Note that µ(ξ) −

∑
|`|<N1

y`

`! (∂`φ)(ξ)(δ`ρ)(ξ) =
∑∞
k=0 T

(k)
N1

(ξ)
where T (k)

N1
(ξ) = 1

(2π)n

∫
Rn

∫
Rne−ix·yRN1(y, ξ)αx(ρ(ξ)) dx dy and RN1(y, ξ) = N1

∑
|`|=N1

y`

`!
∫ 1

0(1−
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γ)N1−1(∂`φk)(ξ + γy) dγ. Integrating by parts,∫
Rn

∫
Rn
e−ix·y

y`

`!

∫ 1

0
(1− γ)N1−1(∂`φk)(ξ + γy) dγαx(ρ(ξ)) dx dy

= 1
`!

∫
Rn

∫
Rn
e−ix·yy`

∫ 1

0
(1− γ)N1−1(∂`(φk)(ξ + γy) dγαx(ρ(ξ)) dx dy

= 1
`!

∫
Rn

∫
Rn
e−ix·y

∫ 1

0
(1− γ)N1−1(∂`(φk)(ξ + γy) dγD`

xαx(ρ(ξ)) dx dy

= 1
`!

∫
Rn

∫
Rn
e−ix·y

∫ 1

0
(1− γ)N1−1(∂`(φk)(ξ + γy) dγδ`αx(ρ(ξ)) dx dy

= 1
`!

∫
Rn

∫
Rn
e−ix·y

∫ 1

0
(1− γ)N1−1(∂`(φk)(ξ + γy) dγαx((δ`ρ)(ξ)) dx dy

where for arbitrary a =
∑
m am

∏
j U

mj

j we have

(Dx)`αx(a) = (Dx)`αx

∑
m

am

n∏
j=1

U
mj

j

 = (Dx)`
∑
m

ame
ix·m

n∏
j=1

U
mj

j

=
∑
m

amm
`eix·m

n∏
j=1

U
mj

j = δ`αx(a).

Since |`| = N1, we have ∂`(φk) ∈ SM2−N1 and δ`ρ ∈ SM1 . We get the boundedness of
µN1−M1−M2(ξ)

∫
Rn

∫
Rne−ix·yRN1(y, ξ)αx(ρ(ξ)) dx dy since δ`ρ ∈ SM1 and ∂`RN1(y, ξ) is the rest

of index N1 in Taylor’s expansion of ∂`φk(ξ + γy) for which on has ∂`φk ∈ SM2−N1 .

5. The pseudo-differential calculus on finitely generated projective modules over
the noncommutative n torus
We can generalize these results to arbitrary finitely generated projective right modules over the
noncommutative n torus following p. 553 of [2], which considers finitely generated projective
modules over an arbitrary unital ∗-algebra. Let E be a finitely generated projective right A∞θ -
module. Since E is a finitely generated projective right A∞θ -module, we can write E as a direct
summand E = (A∞θ )re of a free module (A∞θ )r with direct complement F = (A∞θ )r(id−e), where
the idempotent e ∈ Mr(A∞θ ) is self-adjoint. Consider an r × r matrix valued symbol ρ = (ρj,k)
where ρj,k : Rn → A∞θ are scalar symbols and ρj,k ∈ Sd. Define the operator Pρ : E → E as
follows: Pρ(~a) := (2π)−n

∫
Rn

∫
Rne−is·ξρ(ξ)αs(~a) ds dξ. Define the inner product 〈~a,~b〉 : E × E →

C sending (~a,~b) 7→ τ(~b∗~a). Since Pρ(~a)j = (2π)−n
∫
Rn

∫
Rne−is·ξ

∑r
k=1 ρj,k(ξ)αs(ak) ds dξ,

Lemma 2.5 generalizes to E as follows after applying it to each component: Pρ(~a) =∑
m ρ(m)~am

∏n
j=1 U

mj

j . Theorems 3.1 and 4.1 generalize as follows.
Theorem 5.1. (a) For a pseudo-differential operator P with r × r matrix valued symbol

σ(P ) = ρ = ρ(ξ), the symbol of the adjoint P ∗ satisfies

σ(P ∗) ∼
∑

(`1,...,`n)∈(Z≥0)n

∂`11 · · · ∂`nn δ
`1
1 · · · δ`nn (ρ(ξ))∗

`1! · · · `n! .

(b) If Q is a pseudo-differential operator with r × r matrix valued symbol σ(Q) = ρ′ = ρ′(ξ),
then the product PQ is also a pseudo-differential operator and has symbol

σ(PQ) ∼
∑

(`1,...,`n)∈(Z≥0)n

∂`11 · · · ∂`nn (ρ(ξ))δ`11 · · · δ`nn (ρ′(ξ))
`1! · · · `n! .
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Proof. First let’s prove part (a). Let ρ be an r×r matrix valued symbol of order M and ~a,~b ∈ E.
We have

〈Pρ(~a),~b〉 = τ

(
~b∗

1
(2π)n

∫
Rn

∫
Rn
e−is·ξρ(ξ)αs(~a) ds dξ

)
= τ

(( 1
(2π)n

∫
Rn

∫
Rn
e+is·ξα−s(ρ(ξ)∗~b) ds dξ

)∗
~a

)
= 〈~a, P ∗ρ (~b)〉

where

P ∗ρ (~b)j = 1
(2π)n

∫
Rn

∫
Rn
e+is·ξ

r∑
k=1

α−s(ρ(ξ)∗j,kbk) ds dξ

= 1
(2π)n

∫
Rn

∫
Rn
e+is·ξ

r∑
k=1

α−s(ρ(ξ)∗j,k)α−s(bk) ds dξ

=
∑
m,p

[
ρm(p−m)

n∏
h=1

Umh
h

]∗(
bp

n∏
h=1

Uph
h

)

so

σ(P ∗ρ )(ξ) =
[∑
m

ρm(ξ −m)
n∏
h=1

Umh
h

]∗

=
[

1
(2π)n

∫
Rn

∫
Rn
e−ix·y

∑
m

ρm(ξ − y)αx

(
n∏
h=1

Umh
h

)
dx dy

]∗

=
[ 1

(2π)n
∫
Rn

∫
Rn
e−ix·yαx(ρ(ξ − y)) dx dy

]∗
.

The rest of the proof reduces to the r = 1 case, applying it to each entry in ρ = (ρj,k).
We proceed to part (b). Let ρ be an r × r matrix valued symbol of order m1 and φ be

an r × r matrix valued symbol of order m2. Let {ϕk} be a partition of unity and define
φk(ξ) := φ(ξ)ϕk(ξ). Let ~a ∈ E. We have

Pφk
(Pρ(~a)) = 1

(2π)n
∫
Rn

∫
Rn
e−is·ξφk(ξ)αs(Pρ(~a)) dsdξ

= 1
(2π)n

∫
Rn

∫
Rn
e−is·ξφk(ξ)αs

( 1
(2π)n

∫
Rn

∫
Rn
e−it·ηρ(η)αt(~a) dt dη

)
dsdξ

= 1
(2π)2n

∫
Rn

∫
Rn

{∫
Rn

∫
Rn
e−is·ξ−it·ηφk(ξ)αs(ρ(η))αs+t(~a) dtdη

}
ds dξ

= 1
(2π)2n

∫
Rn

∫
Rn

{∫
Rn

∫
Rn
e−ix·ξ−i(y−x)·ηφk(ξ)αx(ρ(η))αy(~a) dy dη

}
dx dξ

= 1
(2π)2n

∫
Rn

∫
Rn

{∫
Rn

∫
Rn
e−ix·(ξ−η)−iy·ηφk(ξ)αx(ρ(η))αy(~a) dy dη

}
dx dξ

= 1
(2π)2n

∫
Rn

∫
Rn

{∫
Rn

∫
Rn
e−ix·σ−iy·ηφk(σ + τ)αx(ρ(τ))αy(~a) dy dτ

}
dx dσ

= 1
(2π)2n

∫
Rn

∫
Rn
e−iy·τ

{∫
Rn

∫
Rn
e−ix·σφk(σ + τ)αx(ρ(τ)) dx dσ

}
αy(~a) dy dτ

= 1
(2π)n

∫
Rn

∫
Rn
e−iy·τλk(τ)αy(~a) dy dτ
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where λk(τ) = 1
(2π)n

∫
Rn

∫
Rne−ix·σφk(σ + τ)αx(ρ(τ)) dx dσ so

Pφ(Pρ(~a)) = 1
(2π)n

∫
Rn

∫
Rn
e−iy·τλ(τ)αy(~a) dy dτ

where λ(τ) =
∑∞
k=0 λk(τ). Let λk(ξ) := 1

(2π)n

∫
Rn

∫
Rne−ix·yφk(ξ + y)αx(ρ(ξ)) dx dy. Since

λk(ξ)α,γ = 1
(2π)n

∫
Rn

∫
Rn
e−ix·y

r∑
β=1

φk(ξ + y)α,βαx(ρ(ξ)β,γ) dx dy

=
r∑

β=1

1
(2π)n

∫
Rn

∫
Rn
e−ix·yφk(ξ + y)α,βαx(ρ(ξ)β,γ) dx dy,

the rest of the proof reduces to the r = 1 case, applying it to each summand in the above
sum.

6. Sobolev spaces on finitely generated projective modules over the
noncommutative n torus
Let λ(ξ) = (1 + ξ2

1 + · · ·+ ξ2
n)1/2idE . Consider the following inner product on E.

Definition 6.1. Define the Sobolev inner product 〈·, ·〉s : E × E → C by 〈~a,~b〉s :=
〈Pλs(~a), Pλs(~b)〉 =

∑
j,m(1 + |m1|2 + · · ·+ |mn|2)sbj,maj,m.

Note that for s = 0 this agrees with 〈·, ·〉. This inner product induces the following norm.
Definition 6.2. Define the Sobolev norm || · ||s : E → R≥0 by ||~a||2s := 〈Pλs(~a), Pλs(~a)〉 =∑
j,m(1 + |m1|2 + · · ·+ |mn|2)s|aj,m|2.
Using this norm, we can define the analog of Sobolev spaces on E.

Definition 6.3. Define the Sobolev space Hs to be the completion of E with respect to || · ||s.
We can prove that a pseudo-differential operator of order d ∈ R continuously maps Hs into

Hs−d. However we must first prove the case where s = d.
Theorem 6.4. Suppose ρ is a matrix valued symbol of order d. Then, for any ~a ∈ E,
||Pρ(~a)||0 ≤ C||~a||d for some constant C > 0 and Pρ defines a bounded operator Pρ : Hd → H0.

Proof. Let F be an orthogonal eigenbasis of e normalized with respect to 〈·, ·〉, and let F1 := {fh :
1 ≤ h ≤ r1} be the subset of eigenvectors with eigenvalue 1. Note that {

∏
g U

mg
g fj : m ∈ Zn, 1 ≤

j ≤ r1} is an orthogonal basis of E considered as a C-vector space, with respect to 〈·, ·〉s. We have
||
∏
g U

mg
g fj ||20 = 1, ||ρm(ξ)h,j

∏
g U

mg
g fj ||20 = |ρm(ξ)h,j |2, and ||ρ(ξ)h,jfj ||20 =

∑
m |ρm(ξ)h,j |2.

Since ρh,j is of order d, we have ||ρ(ξ)h,j ||0 ≤ Cρ(1 + |ξ|)d, and since (1 − |ξ|)2 ≥ 0 gives us
(1 + |ξ|)2 ≤ 2(1 + |ξ|2), we have ||ρ(ξ)h,j ||20 ≤ C2

ρ(1 + |ξ|)2d ≤ C2
ρ2d(1 + |ξ|2)d. Let kρ := C2

ρ2d.
Then we have

∑
m |ρm(ξ)h,j |2 ≤ kρ(1 + |ξ|2)d. Let es,m := (1 + |m1|2 + · · ·+ |mn|2)−s/2∏

g U
mg
g

and Es := {es,m | m ∈ Z}. By definition we have EsF1 orthonormal with respect to 〈·, ·〉s.
It suffices to prove this theorem for the case ~a = ed,mfj by the orthonormality of EdF1 since
||Pρ(~a)||20 =

∑
j,m |aj,m|2||Pρ(ed,mfj)||20 and ||~a||2d =

∑
j,m |aj,m|2||ed,mfj ||2d. Since ||ed,mfj ||2d = 1,

it suffices to show that ||Pρ(ed,mfj)||20 ≤ K for some constant K > 0. We have

||Pρ(ed,mfj)||20 = ||ρ(m)ed,mfj ||20 =
∣∣∣∣∣
∣∣∣∣∣ρ(m)(1 + |m1|2 + · · ·+ |mn|2)−d/2∏

g

Umg
g fj

∣∣∣∣∣
∣∣∣∣∣
2

0

=
∣∣∣∣∣
∣∣∣∣∣∑
k

ρk(m)
∏
g

Ukg
g (1 + |m1|2 + · · ·+ |mn|2)−d/2∏

g

Umg
g fj

∣∣∣∣∣
∣∣∣∣∣
2

0



10

1234567890 ‘’“”

ISQS25 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 965 (2018) 012042  doi :10.1088/1742-6596/965/1/012042

= (1 + |m1|2 + · · ·+ |mn|2)−d
∣∣∣∣∣
∣∣∣∣∣∑
k

ρk(m)
∏
g

Ukg
g

∏
g

Umg
g fj

∣∣∣∣∣
∣∣∣∣∣
2

0

= (1 + |m1|2 + · · ·+ |mn|2)−d
∣∣∣∣∣
∣∣∣∣∣∑
k

ρk(m)w(m, k)
∏
g

Ukg+mg
g fj

∣∣∣∣∣
∣∣∣∣∣
2

0

= (1 + |m1|2 + · · ·+ |mn|2)−d
∣∣∣∣∣
∣∣∣∣∣∑
k

ρk−m(m)w(m, k −m)
∏
g

Ukg
g fj

∣∣∣∣∣
∣∣∣∣∣
2

0

= (1 + |m1|2 + · · ·+ |mn|2)−d
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
h,k

ρk−m(m)h,jw(m, k −m)
∏
g

Ukg
g fj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

0

= (1 + |m1|2 + · · ·+ |mn|2)−d
∑
h,k

|ρk−m(m)h,j |2

= (1 + |m1|2 + · · ·+ |mn|2)−d
∑
h,k

|ρk(m)h,j |2

≤ (1 + |m1|2 + · · ·+ |mn|2)−dr1kρ(1 + |m1|2 + · · ·+ |mn|2)d = r1kρ

where w(k,m) :=
∏n
j=1 U

mj

j

∏n
j=1 U

kj

j

(∏n
j=1 U

mj+kj

j

)−1
∈ S1 ⊂ C so our desired constant is

K = r1kρ = r1C
2
ρ2d and we are done.

For the general case s 6= d we need to prove a lemma saying that || · ||s = || · ||s−t ◦ Pλt .

Lemma 6.5. For any ~a ∈ E and s, t ∈ R, ~a ∈ Hs if and only if Pλt(~a) ∈ Hs−t with
||~a||s = ||Pλt(~a)||s−t.

Proof. Suppose that ~a ∈ Hs or Pλt(~a) ∈ Hs−t. Then

||Pλt(~a)||2s−t =
∑
j,m

(1 + |m1|2 + · · ·+ |mn|2)s−tλ2t(m)|aj,m|2

=
∑
j,m

(1 + |m1|2 + · · ·+ |mn|2)s−t(1 + |m1|2 + · · ·+ |mn|2)t|aj,m|2

=
∑
j,m

(1 + |m1|2 + · · ·+ |mn|2)s|aj,m|2 = ||~a||s

so we know that ~a ∈ Hs and Pλt(~a) ∈ Hs−t.

Then the general case follows quite easily.

Corollary 6.6. Suppose ρ is a matrix valued symbol of order d. Then ||Pρ(~a)||s−d ≤ C||~a||s for
some constant C > 0 and Pρ defines a bounded operator Pρ : Hs → Hs−d.

Proof. By Lemma 6.5, we have ||Pρ(~a)||s−d = ||Pλs−d(Pρ(~a))||0. By Proposition 5.1(b), the
matrix valued symbol σ(Pλs−d ◦ Pρ) is of order d + (s − d) = s, so Theorem 6.4 gives us
||Pλs−d(Pρ(~a))||0 ≤ C||~a||s for some constant C > 0.

We can also define an analog of the Ck norm on E.

Definition 6.7. Define the Ck norm || · ||∞,k : E → R≥0 as follows: ||~a||∞,k :=
∑
|`|≤k ||δ`(~a)||C∗

where the C∗ norm || · ||C∗ is given by ||~a||2C∗ := sup{|λ| : ~a∗~a− λ · 1 not invertible}.
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Since, for arbitrary ~a =
∑
j,m aj,m

∏
g U

mg
g fj ,

D`
sαs(~a) = (−i∂s)`

∑
j,m

eis·maj,m

n∏
g=1

Umg
g fj =

∑
j,m

m`eis·maj,m

n∏
g=1

Umg
g fj

=
∑
j,m

δ`eis·maj,m

n∏
g=1

Umg
g fj = δ`αs(~a)

we have (Akθ)re = Ck. We can easily prove an analog of the Sobolev lemma on E as follows.

Theorem 6.8. For s > k + 1, Hs ⊆ (Akθ)re.

Proof. First consider the case k = 0. Note that ||·||∞,0 = ||·||C∗ so for arbitrary aj,m
∏n
g=1 U

mg
g fj

we have ||aj,m
∏n
g=1 U

mg
g fj ||2∞,0 = sup{|λ| : |aj,m|2 − λ · 1 not invertible} = |aj,m|2 and

for arbitrary ~a =
∑
j,m aj,m

∏n
g=1 U

mg
g fj we have ||~a||2∞,0 ≤

∑
j,m ||aj,m

∏n
g=1 U

mg
g fj ||2∞,0 =∑

j,m |aj,m|2 = ||~a||20 by the triangle inequality. We have ~a =
∑
j,m aj,mλ

s(m)λ−s(m)
∏n
g=1 U

mg
g fj

so by the Cauchy-Schwarz inequality we get ||~a||20 ≤ ||~a||2s
∑
m(1 + |m1|2 + · · ·+ |mn|2)−s. Since

2s > 2, (1+ |m1|2 + · · ·+ |mn|2)−s is summable over m ∈ Zn and j ∈ {1, . . . , r} so ||~a||20 ≤ C||~a||s.
Thus we get ||~a||∞,0 ≤ ||~a||0 ≤ C||~a||s and Hs ⊆ (A0

θ)re.
Now suppose k > 0. Using what we’ve proven for the previous case, we have

||δ`(~a)||∞,0 ≤ C||δ`(~a)||s−|`| = C

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j,m

m`aj,m

n∏
g=1

Umg
g fj

∣∣∣∣∣∣
∣∣∣∣∣∣
s−|`|

< C

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j,m

(1 + |m1|2 + · · ·+ |mn|2)|`|aj,m
n∏
g=1

Umg
g fj

∣∣∣∣∣∣
∣∣∣∣∣∣
s−|`|

= C||Pλ|`|(~a)||s−|`| = C||~a||s

for |`| ≤ k since s − |`| ≥ s − k > 1. Therefore, ||~a||∞,k =
∑
|`|≤k ||δ`(~a)||∞,0 ≤

∑
|`|≤k C||~a||s ≤

C||~a||s(k + 1)(k + 2)/2 and we get Hs ⊆ (Akθ)re.

We get the following corollary.

Corollary 6.9.
⋂
s∈RH

s = (A∞θ )re.

Proof. Suppose a ∈
⋂
s∈RH

s. Then for any k ∈ Z≥0, ~a ∈ Hk+2, so by the theorem we just
proved, ~a ∈ (Akθ)re. Consequently ~a ∈ (A∞θ )re, so

⋂
s∈RH

s ⊆ (A∞θ )re.
Suppose a ∈ (A∞θ )re. Then since Hs is the completion of (A∞θ )re with respect to || · ||s,

(A∞θ )re ⊆ Hs for all s ∈ R, and (A∞θ )re ⊆
⋂
s∈RH

s.

We can also prove an analog of the Rellich lemma on E.

Theorem 6.10. Let {~aN} ∈ (A∞θ )re be a sequence. Suppose that there is a constant C so that
||~aN ||s ≤ C for all N . Let s > t. Then there is a subsequence {~aNj} that converges in Ht.

Proof. Let F be an orthogonal eigenbasis of e normalized with respect to 〈·, ·〉, and let
F1 := {fh : 1 ≤ h ≤ r1} be the subset of eigenvectors with eigenvalue 1. Let es,m :=
(1 + |m1|2 + · · · + |mn|2)−s/2∏

g U
mg
g and Es := {es,m | m ∈ Z}. EsF1 is an orthogonal

basis of E considered as a C-vector space normalized with respect to 〈·, ·〉s, so we can write
~aN :=

∑
h,k aN,h,kes,kfh. Then |aN,h,k|2 ≤

∑
h,k |aN,h,k|2 ≤ C2 and |aN,h,k| ≤ C. Applying the

Arzela-Ascoli theorem to {aN,h,k} for some fixed (h, k), we can get a subsequence {aNj ,h,k} of
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{aN,h,k} such that for any ε > 0 there exists M(ε) ∈ N such that |aNi,h,k−aNj ,h,k| < ε whenever
i, j ≥M(ε). Do this for all 1 ≤ h ≤ r1 and |k1|2+· · ·+|kn|2 ≤ R2, replacing {aN} with {aNj} each
time. Then we get a subsequence {aNj} of {aN} such that for any ε > 0 there exists M(ε) ∈ N
such that, for all 1 ≤ h ≤ r and |k1|2+· · ·+|kn|2 ≤ R2, |aNi,h,k−aNj ,h,k| < ε whenever i, j ≥M(ε).
Now consider the sum ||aNi−aNj ||2t =

∑
h,k |aNi,h,k−aNj ,h,k|2(1+|k1|2+· · ·+|kn|2)t−s. Decompose

it into two parts: one where |k1|2 + · · · + |kn|2 > R2 and one where |k1|2 + · · · + |kn|2 ≤ R2.
On |k1|2 + · · · + |kn|2 > R2 we estimate (1 + |k1|2 + · · · + |kn|2)t−s < (1 + R2)t−s so that∑
h

∑
|k1|2+···+|kn|2≥R2 |aNi,h,k − aNj ,h,k|2(1 + |k1|2 + · · ·+ |kn|2)t−s < (1 +R2)t−s

∑
h,k |aNi,h,k −

aNj ,h,k|2 ≤ 2r1C
2(1 + R2)t−s. If ε > 0 is given, we choose R so that 2r1C

2(1 + R2)t−s < ε.
The remaining part of the sum is over |k1|2 + · · · + |kn|2 ≤ R2 and can be bounded above by
ε′ := ε− 2r1C

2(1 +R2)t−s if i, j ≥M(
√
ε′/[r1(2R+ 1)n]) because an n-ball of radius R centered

at the origin is contained in an n-cube of side length 2R that has (2R+ 1)n lattice points. Then
the total sum is bounded above by ε, and we are done.
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