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Abstract Using approximate symmetry methods for differential equations we
have investigated the exact and approximate symmetries of a Lagrangian for the
geodesic equations in the Kerr spacetime. Taking Minkowski spacetime as the
exact case, it is shown that the symmetry algebra of the Lagrangian is 17 dimen-
sional. This algebra is related to the 15 dimensional Lie algebra of conformal
isometries of Minkowski spacetime. First introducing spin angular momentum
per unit mass as a small parameter we consider first-order approximate symme-
tries of the Kerr metric as a first perturbation of the Schwarzschild metric. We then
consider the second-order approximate symmetries of the Kerr metric as a second
perturbation of the Minkowski metric. The approximate symmetries are recov-
ered for these spacetimes and there are no non- trivial approximate symmetries.
A rescaling of the arc length parameter for consistency of the trivial second-order
approximate symmetries of the geodesic equations indicates that the energy in the
charged-Kerr metric has to be rescaled and the rescaling factor is r-dependent.
This re-scaling factor is compared with that for the Reissner–Nordström metric.

Keywords Kerr, Charged-Kerr spacetimes, Perturbed Lagrangian, First- and
second-order approximate symmetries, Energy

1 Introduction

In general a spacetime may not be stationary (and especially may not be static)
and hence local (global) energy conservation may be lost. Due to this fact there is
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a long standing problem of the definition of energy (or mass) in general relativity
[1]. If the spacetime is static there is a timelike isometry or Killing Vector (KV).
Further energy conservation in a spacetime is guaranteed in the frame using a
timelike KV to define the time direction. However, in the absence of a timelike KV
the energy of a test particle is not defined and hence the energy in the gravitational
field is not well defined (of course, one could use the quasilocal energy defined
for a Lagrangian for a field theory using an ADM foliation see [2; 3]).

If there does not exist a timelike KV, energy is not conserved. Since grav-
itational wave spacetimes are non-static vacuum solutions of the Einstein Field
Equations (EFEs), for which a timelike KV does not exist, the problem of defin-
ing the energy content of gravitational waves is particularly severe. Different peo-
ple have tried different approximate symmetry approaches [4; 5; 6] to define the
energy content of gravitational waves but there is no clear solution to the prob-
lem. We use approximate symmetry methods for differential equations (DEs) [7]
with the hope of finding approximate timelike KVs to look at the solution of
the problem. It is obvious that we need to learn how to physically interpret the
results that will emerge from the approximate symmetry calculations. For this
purpose first the approximate symmetries of the Schwarzschild metric were inves-
tigated [8]; next we studied the Reissner–Nordström (RN) metric [9]; and here
we consider the Kerr metric. We compare our results for the energy with those of
Komar [10] and discuss the difference. In a subsequent paper we plan to inves-
tigate the approximate symmetries of time-varying spacetimes and hence try to
identify what this approach would give as the energy content of gravitational
waves.

The 10 generators of the Poincarè isometry algebra so(1,3)⊕s R4, (where ⊕s
denotes semi-direct sum) for the Minkowski spacetime (which is maximally sym-
metric) [11; 12] gives conservation laws for energy, linear momentum and spin
angular momentum. Going from Minkowski to non flat spacetimes like Schwarzschild,
RN and Kerr spacetimes some of the conservation laws are lost because of the
gravitational field. Using Lie symmetry methods [13], first-order approximate
symmetries of the system of the geodesic equations for the Schwarzschild met-
ric were discussed in [8] and second-order approximate symmetries of the system
of the geodesic equations for the RN metric were given in [9]. For the first-order
and also for the second-order approximate symmetries, the lost conservation laws
of spin angular momentum and linear momentum are recovered as trivial approx-
imate conservation laws. In the case of second-order approximate symmetries of
the RN spacetime one finds that it is necessary to rescale the energy of test parti-
cles.

In this paper we start by using symmetries of the Lagrangian, rather than those
of the geodesic equations. In particular we explore first and second-order approx-
imate symmetries of a Lagrangian of the Kerr spacetime. First, we consider the
Kerr metric as a first perturbation of the Schwarzschild metric with spin as a
small parameter, ε . The isometry algebra for the Schwarzschild spacetime [11]
is so(3)⊕R while the symmetry algebra for the Lagrangian is so(3)⊕R⊕ d1
(where d1 is the Lie algebra generated by ∂/∂ s). Retaining terms of first order in
ε and neglecting its higher powers we show that there is no “non-trivial” (in the
technical sense explained in the next section) first-order approximate symmetry
for the Lagrangian of this perturbed Schwarzschild metric. We only recover the
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two symmetry generators of angular momentum as “trivial” first-order approxi-
mate symmetry generators which were lost in going from Schwarzschild to the
Kerr spacetime. We then consider the Kerr metric as a second perturbation of
the Minkowski metric. Taking Minkowski spacetime as an exact case we obtain
a seventeen dimensional Lie algebra, which contains the ten dimensional isome-
try algebra (Poincaré algebra). The significance of the remaining seven symme-
try generators will be discussed in Sect. 3. Regarding mass as a small param-
eter, ε , for the approximate Schwarzschild metric as a first perturbation of the
Minkowski spacetime, we recover all the lost symmetries as “trivial” first-order
approximate symmetries. The isometry algebra of the unperturbed Kerr space-
time is two dimensional [11] and the symmetry algebra of the Lagrangian for this
spacetime is three dimensional, i.e. the two KVs ∂/∂ t, ∂/∂φ and the translation
in the geodetic parameter ∂/∂ s. Now introducing the spin as a small parameter,
ε and retaining terms of order ε2 in the approximate Kerr spacetime as second
perturbation of the Minkowski spacetime we recover all the lost symmetries of
the Lagrangian as “trivial” second-order approximate symmetries.

A problem arises in the search for a scaling factor for the energy of test par-
ticles in the Kerr metric. Whereas, in the RN-case the energy rescaling was by
(1−Q2/2Gm2), there is a simple multiplicative factor for the Kerr metric. In the
absence of the constant (unity in this case), it is not clear what significance to
attach to the rescaling. So as to relate that factor to the factor arising in the RN-
case, we investigate second-order approximate symmetries of the geodesic equa-
tions for the charged-Kerr spacetime. For this purpose we take mass, charge and
angular momentum per unit mass as small parameters, of order ε , and only retain
the second power, neglecting its higher powers. More specifically, in the set of
determining equations for second-order approximate geodesic equations, the coef-
ficient of ∂/∂ s (in the point transformation generator given in Sect. 2) collects a
rescaling factor (given in Sect. 4). Since s is the proper time and energy conserva-
tion is related to time translation, the energy of a test particle in the charged-Kerr
spacetime rescales. This scaling factor consists of two terms, one due to charge
and the other due to the spin of the gravitating source. We then compare this
scaling factor with that of the RN spacetime. We also give a comparison of the
scaling factor obtained here with the already existing expressions in the literature
[14; 15; 16; 17] for the mass (energy) of the charged-Kerr spacetime.

The plan of the paper is as follows. In the next section we briefly review the
definitions of symmetries and approximate symmetries of a Lagrangian. In Sect. 3,
approximate symmetries of the Lagrangian for the Kerr spacetime are considered.
In Sect. 4 we briefly discuss second-order approximate symmetries of the geodesic
equations for the charged-Kerr metric. Finally a summary and discussion are given
in Sect. 5. In Sect. 5 the comparison of the scaling factors is also given.

2 Symmetries and approximate symmetries of a Lagrangian

The significance of variational symmetries is clear from the celebrated Noether’s
theorem [18]. According to this theorem there is a procedure which relates the
constants of the motion of a given Lagrangian system to its symmetry transfor-
mations [7; 19]. Symmetry generators of a Lagrangian of a manifold form a Lie
algebra [20]. Geometrically, KVs characterize the isometries of a manifold [21].
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In general a manifold does not possess any exact symmetry but may do so
approximately. It is worth exploring the approximate symmetries of a manifold,
which form an approximate Lie algebra [22]. Lie symmetries (and approximate
Lie symmetries) of the system of the geodesic equations for a spacetime yield con-
served quantities but there are also non-Noether symmetries that are not related to
conservation laws and therefore are of no interest for our purpose. To calculate
symmetries of a system of geodesic equation is tedious, as it involves the second
prolongation of the symmetry generator. On the other hand the symmetries of a
Lagrangian directly give us the conserved quantities in which we are interested
and here only the first prolongation of the symmetry generator is required. Meth-
ods for obtaining exact symmetries and first-order approximate symmetries of a
Lagrangian are available in the literature [7; 20; 23; 24]. In this paper we extend
the procedure of calculating the approximate symmetries of a Lagrangian to the
second order.

Noether symmetries, or symmetries of a Lagrangian, are defined as follows.
Consider a vector field defined on a real parameter fibre bundle over the manifold
[7]

X = ξ (s,xµ)
∂

∂ s
+η

ν(s,xµ)
∂

∂xν
, (1)

where µ,ν = 0,1,2,3. The first prolongation of the above vector field defined on
the real parameter fibre bundle over the tangent bundle to the manifold, is

X[1] = X+(ην
,s +η

ν
,µ ẋµ −ξ,sẋν −ξ,µ ẋµ ẋν)

∂

∂ ẋν
. (2)

Generally one takes first-order Lagrangians as the corresponding Euler–Lagrange
equations are second-order ordinary differential equations (ODEs). In particular,
we take L(s,xµ , ẋµ), where “·” denotes differentiation with respect to the arc length
parameter s, which yields a set of second-ODEs

ẍµ = g(s,xµ , ẋµ). (3)

Then X is a Noether point symmetry of this Lagrangian if there exists a gauge
function, A(s,xµ), such that

X[1]L+(Dsξ )L = DsA, (4)

where

Ds =
∂

∂ s
+ ẋµ ∂

∂xµ
, (5)

which is defined on the real parameter fibre bundle over the tangent bundle to
the manifold. For more general considerations and a discussion of generalized
symmetries see [7; 25]. The significance of Noether symmetries is clear from the
following theorem [18].
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Theorem 1 If X is a Noether point symmetry corresponding to a Lagrangian
L(s,xµ , ẋµ) of (3), then

I = ξ L+(ηµ − ẋµ
ξ )

∂L
∂ ẋµ

−A, (6)

is a first integral of (3) associated with X. For the proof of this theorem see for
example [26].

For a second-order (in ε) perturbed system of ODEs

E = E0 + εE1 + ε
2E2 = O(ε3), (7)

second-order approximate symmetries of the first-order Lagrangian

L(s,xµ , ẋµ ,ε) = L0(s,xµ , ẋµ)+ εL1(s,xµ , ẋµ)+ ε
2L2(s,xµ , ẋµ)+O(ε3),

(8)

are defined as follows. The functional
∫

V Lds is invariant under the one-parameter
group of transformations with approximate Lie symmetry generator

X = X0 + εX1 + ε
2X2 +O(ε3), (9)

up to gauge

A = A0 + εA1 + ε
2A2, (10)

where

X j = ξ j
∂

∂ s
+η

µ

j
∂

∂xµ
( j = 0,1,2), (11)

X[1]
0 L0 +(Dsξ0)L0 = DsA0, (12)

X[1]
1 L0 +X[1]

0 L1 +(Dsξ1)L0 +(Dsξ0)L1 = DsA1 (13)

and

X[1]
2 L0 +X[1]

1 L1 +X[1]
0 L2 +(Dsξ2)L0 +(Dsξ1)L1 +(Dsξ0)L2 = DsA2. (14)

For the first-order perturbed case (13) corresponding to a single equation, see for
example [24].

Here X0 is the exact symmetry generator, X1 is the first-order approximate
part, X2 is the second-order approximate part of the approximate symmetry gen-
erator, L0 is the exact Lagrangian corresponding to the exact equations E0 = 0,
and L0 + εL1 the first-order approximate Lagrangian corresponding to the first-
order perturbed equations E0 + εE1 = 0. The perturbed equations (13) and (14)
always have the approximate symmetry generators εX0 which are known as “triv-
ial” approximate symmetries and X given by (9) with X0 6= 0 is called a “non-
trivial” approximate symmetry.
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3 Symmetries and approximate symmetries of a Lagrangian for the Kerr
spacetime

The Kerr spacetime is an axially symmetric, stationary solution of the Einstein
vacuum field equations. The line element for this spacetime in Boyer–Lindqust
coordinates is given by [1]

ds2 =
(

1− 2Gmr
ρ2c2

)
c2dt2−

(
ρ2

∆

)
dr2−ρ

2dθ
2−Λ

sin2
θ

ρ2 dφ
2

+
(

2Gmrasin2
θ

ρ2c2

)
dtdφ , (15)

where

ρ
2 = r2 +

a2

c2 cos2
θ , Λ =

(
r2 +

a2

c2

)2

− a2

c2 ∆ sin2
θ , ∆ = r2 +

a2

c2 −
2Gmr

c2 ,

with m the mass and a the angular momentum per unit mass of the gravitating
source. This metric reduces to the Schwarzschild metric when a = 0. This space-
time has two KVs which give the energy and azimuthal angular momentum con-
servation laws. Besides, there is a non-trivial Killing tensor for this spacetime [27]
which yields the square of the total angular momentum [28].

We consider the Lagrangian for minimizing the arc-length (written from the
square of the arc length for convenience) which yields the geodesic equations as
the Euler–Lagrange equations,

L[xµ , ẋµ ] = gµν(xσ )
dxµ

ds
dxν

ds
. (16)

For the metric given by (15) it becomes

L =
(

1− 2Gmr
ρ2c2

)
c2ṫ2− ρ2

∆
ṙ2−ρ

2
θ̇

2−Λ
sin2

θ

ρ2 φ̇
2 +

2Gmrasin2
θ

ρ2c2 ṫφ̇ . (17)

Using (17) in (4) we obtain the 19 determining (partial differential) equations for
6 unknown functions ξ , ηµ and A, where each of these is a function of 5 variables,
i.e. s, t, r, θ and φ . Solving these equations we get the isometries for the Kerr
metric, the geodesic parameter translation and the gauge function, i.e.

Y0 =
∂

∂ t
, Y3 =

∂

∂φ
, W0 =

∂

∂ s
and A = c (constant). (18)

Thus, here we see that the isometries form a sub-algebra of the symmetries of
the Lagrangian. Use of (18) in (6) will provide the first integrals of the geodesic
equations for the Kerr metric.

For the approximate symmetries of a Lagrangian for the geodesic equations in
the Kerr spacetime we first consider the Kerr metric as a first perturbation of the
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Schwarzschild metric by introducing the spin angular momentum per unit mass
a/c2 as a small parameter ε . This first-order perturbed Lagrangian is given by

L =
(

1− 2Gm
rc2

)
c2ṫ2−

(
1− 2Gm

rc2

)−1

ṙ2− r2(θ̇ 2 + sin2
θφ̇

2)

+ε
2Gm

r
sinθ ṫφ̇ +O(ε2). (19)

For ε = 0 we recover the Lagrangian of the unperturbed Schwarzschild metric.
The symmetry algebra of the Lagrangian is 5 dimensional, given by so(3)⊕R⊕
d1, and it properly contains the isometry algebra. The gauge function A is just a
constant. From this information and (6) one can obtain the first integrals of the
geodesic equations for the Schwarzschild metric. Using the 5 exact symmetry
generators in (13) we get the set of determining equations whose solution gives us
no non-trivial symmetry but only exact symmetries are recovered as trivial first-
order approximate symmetries. Here we have recovered the conservation laws
of angular momentum as trivial first-order approximate conservation laws which
were lost in going from the Schwarzschild to the Kerr spacetime.

Next we take the Kerr spacetime as a second perturbation of the Minkowski
spacetime. For this purpose we set

m = εµ, a = εα, (20)

where µ = c2/2G and α = c
√

k1. For the Kerr black hole (see, e.g. [29]) we have
0 < k1 ≤ 1/4. Here the second-order perturbed Lagrangian is given by

L = ṫ2− ṙ2− r2
θ̇

2− r2 sin2
θφ̇

2− 1
r

ε(ṫ2 + ṙ2)− ε
2
[

1
r2

(
1− k2

1
4

sin2
θ

)
ṙ2

+k2
1 cos2

θθ̇
2 + k2

1 sin2
θφ̇

2−
√

k1

r
sin2

θ ṫφ̇
]
+O(ε3). (21)

For the exact case, ε = 0, i.e. no mass or angular momentum per unit mass, the
Lagrangian (21) reduces to that of the Minkowski spacetime. It has a 17 dimen-
sional Lie algebra spanned by the symmetry generators: 10 Yi’s, which are gener-
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ators of the Poincaré algebra so(1,3)⊕s R4,

Y0 =
∂

∂ t
, Y1 = cosφ

∂

∂θ
− cotθ sinφ

∂

∂φ
, (22)

Y2 = sinφ
∂

∂θ
+ cotθ cosφ

∂

∂φ
, Y3 =

∂

∂φ
, (23)

Y4 = sinθ cosφ
∂

∂ r
+

cosθ cosφ

r
∂

∂θ
− cscθ sinφ

r
∂

∂φ
, (24)

Y5 = sinθ sinφ
∂

∂ r
+

cosθ sinφ

r
∂

∂θ
+

cscθ cosφ

r
∂

∂φ
, (25)

Y6 = cosθ
∂

∂ r
− sinθ

r
∂

∂θ
, (26)

Y7 =
r sinθ cosφ

c
∂

∂ t
+ct

(
sinθ cosφ

∂

∂ r
+

cosθ cosφ

r
∂

∂θ
− cscθ sinφ

r
∂

∂φ

)
, (27)

Y8 =
r sinθ sinφ

c
∂

∂ t
+ct

(
sinθ sinφ

∂

∂ r
+

cosθ sinφ

r
∂

∂θ
+

cscθ cosφ

r
∂

∂φ

)
, (28)

Y9 =
r cosθ

c
∂

∂ t
+ ct

(
cosθ

∂

∂ r
− sinθ

r
∂

∂θ

)
, (29)

and 7 other generators, whose significance is discussed below

W0 =
∂

∂ s
, W1 = s

∂

∂ s
+

1
2

(
t

∂

∂ t
+ r

∂

∂ r

)
, (30)

Z0 = sY0, Z1 = sY4, Z2 = sY5, Z3 = sY6, (31)

Z4 =
1
2

s
(

s
∂

∂ s
+ t

∂

∂ t
+ r

∂

∂ r

)
. (32)

As before, the generator W0 gives translation in s and always exists for a Lagrangian
of the type (16) [30], W1 = [W0,Z4] which is a scaling symmetry in s, t,r that can
be used to get rid of the s dependence in the generators given by (31) and (32).
This is reasonable as symmetries of a Lagrangian always form a sub-algebra of
the symmetries of the Euler–Lagrange (geodesic) equations [31] and the algebra
of the Euler–Lagrange equations for Minkowski spacetime is sl(6,R) which is 35
dimensional [32]. As mentioned above, using W1, we can write s = t2 or s = r2

and

Z4 =
r2

4

[
1
t
(r2 +2t2)

∂

∂ t
+3r

∂

∂ r

]
. (33)

Now, every flat spacetime is conformally flat, i.e. for which all components of
the Weyl tensor are zero [21]. The Lie algebra of the Conformal Killing Vectors
(CKVs) for a conformally flat spacetime is 15 dimensional [33]. Therefore for the
Minkowski spacetime we already know that there are 15 CKVs. The 5 symmetry
generators, i.e. Zi for i = 0, . . . ,4 given by (31) and (32), are proper CKVs with
conformal factor ψ = (c0t2 +c1)/2. Thus we see that not only the KVs but also the
CKVs form a sub-algebra of the symmetries of the Lagrangian for the Minkowski



Approximate Noether symmetries of the geodesic equations 9

spacetime. The extra 2 generators, W0,W1, essentially provide the translation and
appropriate scaling in the geodetic parameter.

The gauge function is

A=
1
2

c0(t2− r2)+2tc3+c4−2r(c14 sinθ cosφ+c15 sinθ sinφ+c16 sinθ), (34)

where c0, . . . ,c16 are the arbitrary constants of integration associated with the sym-
metry generators.

Retaining terms of first-order in ε and neglecting O(ε2), the Lagrangian (21)
becomes a first-order perturbed Lagrangian for the Schwarzschild metric consid-
ered as a first perturbation of the Minkowski metric. Using (13) and the exact
symmetry generators given by (22)–(32) we get a new set of determining equa-
tions. In these equations only 12 of the 17 exact symmetry generators appear.
These 12 generators of the exact symmetry have to be eliminated for consistency
of these determining equations, making them homogeneous. The resulting system
is the same as for the Minkowski spacetime, yielding 17 first-order approximate
symmetry generators given by (22)–(32). Thus for the Schwarzschild metric as a
first-order approximate case, we recover all the lost conservation laws as trivial
first-order approximate conservation laws. Beside energy and angular momentum
which always remain conserved for the Schwarzschild metric (for both the exact
and perturbed cases) we see approximate conservation of linear momentum and
spin angular momentum. This was also observed for the first-order approximate
symmetries of the geodesic equations for the Schwarzschild metric [8].

Going from Minkowski to the Kerr spacetime we are left with only two KVs
which give conservation of energy and azimuthal angular momentum. For the
Lagrangian of the geodesic equations for exact (unperturbed) Kerr metric there
are only three symmetry generators given by (18). We see that there is no non-
trivial approximate symmetry in the first-order approximation. To check whether
we can see non-trivial approximate symmetries from the definition of second-
order approximate symmetries of a Lagrangian, which will hopefully give us a
non-trivial conservation law, we take the Kerr metric as a second-order perturba-
tion of the Minkowski spacetime. In the second approximation, that is when we
retain terms quadratic in ε , we have the Lagrangian given by (21). From (14) we
have a new system of 19 determining equations. In these equations now 14 of
the 17 exact (also first-order approximate) symmetry generators appear. The two
symmetry generators that arise here, which did not occur in the set of determin-
ing equations for first-order approximation, are Y1 and Y2 given in (22) and (23).
At first sight it seems that these two new symmetry generators may yield some
non-trivial second-order approximate symmetries. But for the consistency of the
determining equations all the 14 constants have to be eliminated and the system
again becomes homogeneous. The resulting system is once more the same as for
the Minkowski spacetime, yielding 17 second-order approximate symmetry gen-
erators given by (22)–(32). Thus there is no non-trivial second-order approximate
symmetry generator. In the second-order approximation we recover all the lost
conservation laws as trivial second-order approximate conservation laws for the
Kerr spacetime. Hence we have recovered the Lorentz covariance using approxi-
mate symmetries of the Lagrangian.
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4 Second-order approximate symmetries of the geodesic equations for the
charged-Kerr metric and rescaling of energy of a test particle

We have studied approximate symmetries of a Lagrangian for the Kerr spacetime
in which we recovered trivial first-order and second-order approximate conservation
laws. The rescaling of energy of test particles was seen from the approximate sym-
metries of the geodesic equations [9]. Therefore we now consider approximate
symmetries of the geodesic equations. In [8] the definition of first-order approxi-
mate symmetries of DEs was used to calculate first-order approximate symmetries
of the geodesic equations for the Schwarzschild metric. There, in the perturbed
equations (given by 40 here), instead of the perturbed system (given as subscript
in 40) the exact system of geodesic equations was used and no energy rescaling
was forthcoming. The interesting result of energy rescaling of test particles for
RN spacetime [9] was seen by application of the definition of the second-order
approximate symmetries of DEs, wherein the perturbed system of geodesic equa-
tions was used. It was further remarked that it should be checked if the result of
rescaling also holds for the Kerr metric. Here we investigate this question.

In the RN metric the charge appears as a second-order perturbation of the
Minkowski metric [9]. The quadratic term in charge appears in the scaling factor.
Hence, here we investigate the charged-Kerr metric to keep the charge up to the
same second-order and relate the scaling factor for this metric with that of the RN
spacetime.

In the charged-Kerr metric we have

g00 = 1− G(2c2mr−Q2)
ρ2c4 , g03 =

a
ρ2c2 G

(
2mr− Q2

c2

)
sin2

θ ,

∆ =
a2

c2 + r2− G
c2

(
2mr− Q2

c2

)
. (35)

Setting Q = εχ , where χ = c2
√

k/G and ε is defined by (20), we have the second-
order approximate geodesic equations for the Kerr metric

ẗ + ε
1
r2 ṫ ṙ + ε

2
[

1
r3 (1−2k)ṫ ṙ− 2

√
k1

r2 sin2
θ ṙφ̇

]
+O(ε)3 = 0, (36)

r̈− r(θ̇ 2 + sin2
θφ̇

2)+ ε

[
1

2r2 (ṫ2− ṙ2)+(θ̇ 2 + sin2
θφ̇

2)
]

−ε
2
[

1
2r3 (1+2k)ṫ2 +

√
k1

r2 sin2
θ ṫφ̇ − 1

r3 (2(k1 sinθ + k)−1)ṙ2

+
k1

r2 sin2
θ ṙθ̇ +

1
r
(k1 sin2

θ + k)(θ̇ 2 + sin2
θφ̇

2)
]
+O(ε)3 = 0, (37)

θ̈ +
2
r

ṙθ̇ − sinθ cosθφ̇
2 + ε

2
[√

k1

r3 sin2θ ṫφ̇ − k1

2r4 sin2θ ṙ2− 2k1

r3 cos2
θ ṙθ̇

− k1

2r2 sin2θ(θ̇ 2 + sin2
θφ̇

2)
]
+O(ε)3 = 0, (38)

φ̈+
2
r

ṙφ̇ +2cotθθ̇ φ̇ + ε
2
[√

k1

r4 ṫ ṙ+
2
√

k1

r3 cotθ ṫθ̇− 2
r3 k1ṙφ̇

]
+O(ε)3 = 0. (39)
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If ε = 0, these equations reduce to those of the Minkowski metric. When we retain
terms only up to order ε and neglect higher orders, they reduce to the first-order
approximate geodesic equation of the Schwarzschild metric. If we put k1 = 0, they
further reduce to those of the RN-metric. We now apply the definition of second-
order approximate symmetries of a system of ODEs,

(X0 + εX1 + ε
2X2) (E0 + εE1 + ε

2E2)
∣∣
E0+εE1+ε2E2=O(ε3) = O(ε3), (40)

(see [9] and references therein) to (36)–(39), where X0 is the exact symmetry
generator, X1, X2 are the first-order and second-order approximate parts of the
approximate symmetry generator respectively, E0 is the exact part, E1 is the first-
order perturbed part and E2 is the second order perturbed part of the system of
ODEs respectively. The exact symmetry algebra includes the generators of the
dilation algebra, ∂/∂ s, s∂/∂ s corresponding to

ξ (s) = c0s+ c1. (41)

In the determining equations for the first-order approximate symmetries [8] the
terms involving ξs = c0 cancel out. Taking the RN metric as a second perturba-
tion of the Minkowski metric [9], it was seen that the terms involving ξs do not
automatically disappear but collect a scaling factor of (1−Q2/2Gm2) in order
to cancel out. In the case of the charged-Kerr spacetime, as a second perturba-
tion of the Minkowski spacetime, the terms involving ξs in the set of determining
equations also do not disappear automatically but collect a scaling factor

(1/r3)(1−2k)ṫ− (2/r2)(
√

k1 sin2
θ)φ̇ , (42)

so as to cancel out, where k = Q2/4Gm2 and k1 = a2c2/4G2m2. From (1) one
can see that ξ is the coefficient of ∂/∂ s in the point transformations. This scaling
factor involves the derivatives of the coordinates t and φ , which can be replaced
by the first integrals of the geodesic equations and involve constants that are the
mass and the spin. As such, we put them in as m and a. Thus we get (taking G = 1,
c = 1)

Mc−K = m− Q2

2m
+

ma
2r

. (43)

For a = 0, (43) reduces to m-times of the expression for the RN spacetime [9].
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Komar, using his definition of approximate symmetry [4; 5], wrote down an
integral for the mass in a spacetime [10]

M =
1

8π

∫
s2
∗dξ̃ , (44)

where ξ̃ is the time-like Killing 1-form for the exact symmetry, ∗dξ̃ the dual of
the 2-form dξ̃ and s2 is the 2-surface [14; 15; 34]. Using the Komar integral (44)
Cohen and de Felice considered ξ as the stationary Killing 1-form over a charged-
Kerr background metric [14]. They obtained a formula for the effective mass (and
hence energy) for the charged-Kerr spacetime

Mc−K = m− Q2

r
− Q2(r2 +a2)

ar2 tan−1
(a

r

)
. (45)

In the above expression (45) a does not appear explicitly and only appears in a
product with Q. When Q−→ 0 in the above expression (45) the effects of rotation
also disappear. This does not seem reasonable. In the limit of a −→ 0 expression
(45) reduces to that of the RN spacetime given in [35; 36].

Chellathurai and Dadhich modified the Komar integral and obtained an expres-
sion for the effective mass of the charged-Kerr black hole [15]

Mc−K = m− Q2

r
− (12m2 +Q2)a2

3r3 +
14ma2Q2

3r4 + · · · . (46)

This expression (46) reduces to that of the RN spacetime in the limit a−→ 0 and
in the limit Q−→ 0 reduces to that for the Kerr spacetime [37]. However, it is not
clear that this modification satisfactorily adjusts for the approximate symmetry of
Komar.

Qadir and Quamar [16; 17] obtained an expression for the ψN-potential of the
charged-Kerr spacetime,

ϕ =− mr−Q2/2
(r2 +a2 cos2 θ)

. (47)

In the limit a−→ 0 (47) reduces to that for the RN spacetime [38; 39]. This yields
the approximate modification of the mass to be

Mc−K = m− Q2

2r
− ma2 cos2 θ

r2 +
a2Q2 cos2 θ

2r3 + · · · . (48)

The significance and comparison of our expression with (45), (46) and (48) will
be discussed further in the next section.

5 Summary and discussion

In this paper we have discussed exact and approximate symmetries of a Lagrangian
for the geodesic equations in the Kerr spacetime. Minkowski spacetime is max-
imally symmetric having 10 KVs. Going from Minkowski to the Kerr spacetime
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we are left only with two KVs which correspond to energy and azimuthal angu-
lar momentum conservation. The unperturbed Lagrangian for the geodesic equa-
tions in the Kerr spacetime has an additional symmetry ∂/∂ s and the unperturbed
Lagrangian for the Schwarzschild metric has a 5 dimensional algebra which con-
tains the four KVs of this metric and ∂/∂ s. Taking the Kerr spacetime as a first per-
turbation of the Schwarzschild metric with spin as a small parameter we recovered
the conservation laws as trivial first-order approximate conservation laws which
were lost in going from the Schwarzschild spacetime to the Kerr spacetime.

Retaining terms of O(ε2) in the Kerr spacetime we have a second-order per-
turbed Lagrangian given by (21). This Lagrangian reduces to that of Minkowski
spacetime if ε = 0 and if we retain terms of first-order in ε and neglecting O(ε2),
we get a Lagrangian for the perturbed Schwarzschild metric which is a first pertur-
bation of the Minkowski metric. For the exact case (Minkowski spacetime) sym-
metries of the Lagrangian form a 17 dimensional Lie algebra, which also holds in
Cartesian coordinates and thus there is no coordinate dependence. [It may be men-
tioned here that the symmetries of the Minkowski metric Lagrangian were first dis-
cussed in [20], where the metric taken was ds2 = cosh(x/a)dt2−dx2−dy2−dz2,
which is not Minkowski, as it has R0

101 6= 0. The calculation was left incomplete,
giving an impression that the algebra is infinite dimensional, and it was shown
that the isometry algebra is a sub-algebra of the symmetries of the Lagrangian.
We pointed these errors out to the authors. This problem was revisited in [40] with
the correct metric, but the symmetry algebra of the Lagrangian was given as 12
dimensional and the gauge function as zero, which was again erroneous.]

For the first-order approximate case (perturbed Schwarzschild) there is no
non-trivial first-order approximate symmetry of the Lagrangian. However all the
exact 17 symmetry generators are recovered as first-order approximate symme-
try generators. In the second-order approximate case, i.e. when we retain terms
quadratic in ε , which is the second perturbation of the Minkowski metric, we
again have no non-trivial second-order approximate symmetry of the Lagrangian
and only 17 symmetry generators of the exact case are recovered as second-order
approximate symmetry generators. Thus we see that in going from Minkowski to
Schwarzschild and Kerr metrics the conservation laws which were lost are now
recovered as approximate conservation laws. It was shown [30] that a Lagrangian
possesses at least one additional symmetry generator, ∂/∂ s, apart from the isom-
etry algebra. This is verified for the Schwarzschild and Kerr spacetimes. As in the
case of the Minkowski metric the CKVs form a sub-algebra of the symmetries
of the Lagrangian which include ∂/∂ s. We conjecture that the CKVs form a sub-
algebra of the symmetries of the Lagrangian that minimize the arc length, for any
spacetime.

For both the Schwarzschild and Kerr spacetimes the unperturbed Lagrangian
has only the one additional symmetry ∂/∂ s. For both the metrics the gauge func-
tion A is a constant. It remains an open question, whether this is true in general
for all 4 dimensional curved spacetimes. In Minkowski spacetime there are 7 addi-
tional symmetries and the gauge function A is a function of 4 variables t,r,θ and φ

given by (34). In these additional 7 symmetry generators of the Minkowski metric
Lagrangian, which are also recovered as first-order and second-order approximate
symmetries generators for the Schwarzschild and Kerr metrics respectively, W0
is the translation in the geodetic parameter s and W1 is used to replace s by t2 in
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Zi, (i = 0, . . . ,4) to obtain the CKVs. In the exact (unperturbed) case, the sym-
metries of a Lagrangian form a sub-algebra of symmetries of the Euler–Lagrange
equations [31]. Here we conjecture that approximate symmetries of a perturbed
Lagrangian also form a sub-algebra of the approximate symmetries of the per-
turbed Euler–Lagrange equations.

We also looked at the second-order approximate symmetries of the geodesic
equations for the charged-Kerr spacetime to find a rescaling factor. Since the
rescaling comes in the derivative relative to proper time, it was argued [9] that
it gives a rescaling of the energy in this spacetime. In the RN spacetime [9], the
rescaling was independent of r while for the charged-Kerr metric the rescaling
factor given by (43) consists of two parts - one is due to charge and the other is
due to spin of the gravitating source which depends on r. The charge comes in
quadratically compared to unity in one term. The spin comes in linearly. It does
not come with a constant term to compare. However, taken as a whole, we see that
the spin has an effectively lower order effect.

In all three expressions (45), (46) and (48), the charge and spin appear at the
same order (quadratically). The last one comes with a θ -dependent part, which
arises from the θ -dependence of the “force” experienced by a body in the Fermi-
Walker frame [41]. This θ -dependence does not seem reasonable for the defining
the energy in the Kerr spacetime. As mentioned earlier, (45) seems unreason-
able as the rotational effect depends on the presence of a charge! In (43) in the
absence of charge, the effect is to enhance the mass. This seems reasonable as
the frame-dragging effect also appears to lead to an enhanced mass - “friction”
of the rotating mass with the background spacetime, as it were. Recall that one
can extract rotational energy from a rotating black hole and hence the rotation
should add into the mass. As would be expected, this effect decreases with r. The
other three expressions give a reduction of the rotating mass. Also notice that (43)
gives a change in the mass due to charge that is position independent. That this
should be so is not so clear to us. However, nor is it clear to us that it should be
position dependent. The force experience by a particle in the field of a charged
gravitational source would be position dependent, but this does not say that the
mass should be modified by a position dependent expression. It might be that in
(43) the modification is due to the electromagnetic self-energy to the gravitational
self-energy. As such, we conclude that the other three expressions have definite
drawbacks to be considered reliable and that (43) seems to be free of those prob-
lems.

It would be of interest to analyse the Kerr-AdS and other solutions using
approximate Noether symmetries. One could use [42; 43] and those cited therein
for the purpose. In particular, there is no good definition of energy for spacetimes
containing gravitational waves, because of the lack of a timelike KV. There is
a proposal for a definition using superpotentials [44; 45], whose relationship to
the definition using approximate symmetries would be worth exploring. It is of
interest to apply this method of approximate symmetries of a Lagrangian to gravi-
tational waves in the hope of finding an approximate timelike KV which will give
energy conservation up to a certain approximation. This matter will be discussed
in detail elsewhere. A preliminary discussion is given in [9].
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