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1. Introduction 

On the unknown continent that is quantum gravity, the shadowy outlines of 

three major landmarks are barely discernible. The first is the nonrenormaliaabil- 

ity of all unitary local quantum field theories of gravity. ” It seems probable 

that we will have turn to a theory of strings, to discrete space-time, or to some 

other, as yet unimagined, modification of current ideas in order to understand 

the physics of distances less than the Planck length. 

The second landmark, somewhat more shrouded in mist than the first is the 

complex of questions raised by the seminal work of Hawking’ on quantum field 

theory in the vicinity of a black hole. This includes the question of whether the 

topology of space-time (and not just its metric) is a dynamical variable, as well as 

the problem of the apparent loss of quantum coherence in quantum gravitational 

phenomena. The final resolution of these questions may well depend on the 

nature of short distance dynamics. . 

The third major topographical feature of quantum gravity is the question of 

whether it makes sense to say that “the entire universe” is in a pure quantum 

state. This question does not seem to depend on short distance physics. Indeed 

it arises even when we apply ordinary quantum field theory to cosmology. 

We will not attempt to give an answer to this question here. We need a lot 

more practical experience with quantum gravity before we can hope to under- 

stand such a deep conceptual issue. Our aim in the present paper will be to try 

to place cosmology in the context of the formalism of quantum gravity as it is 

presently understood. 

Contemporary cosmalogy is usually formulated in terms of quantum field the- 

ory in a time dependent classical gravitational field. The initial state of the field 

theory is taken to be a thermal density matrix. Presumably this is not supposed 

jl Despite the recent interest in conformally invariant theories of gravitya there is no real 
evidence that the apparent violations of the fundamental principles of quantum mechanics 
that appear in the perturbative solution of these theories can be circumvented. 
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to mean that the universe is not in a pure state, but is only an approximate de- 

scription of a highly excited pure state. We will see that from the point of view 

of quantum gravity there are two puzzling aspects to these initial conditions: 

1. One can show that in the region of gravitational field configuration space 

that describes long wavelength fluctuations in a universe of large volume, 

the semiclassical (WKB) approximation to the quantum gravity wave func- 

tional is valid. There are an infinite number of WKB wave functions, one 

for each classical solution of Einstein’s equations. For any fixed WKB wave 

function the usual picture of quantum field theory in a classical background 

space-time is valid. However, any superposition of WKB wave functions 

also solves the gravitational SchrSdinger equation ( Wheeler-DeWit t equa- 

tion). The correct superposition is determined by matching the WKB wave 

function to a solution which is valid in the small volume region where the 

WKB approximation breaks down. Indeed in this region we do not even be- 

lieve that we know the correct Hamiltonian for quantum gravity (because of 

the problems with nonrenormalizability) Apparently we must make drastic 

assumptions about the nature of short distance physics in order to justify 

the usual procedure of taking a single classical solution. 

2. The Wheeler-Dewitt equation seems to have many solutions. If we are 

discussing the wave function of the universe we must choose one of them 

(see Section 2) and throw the others away. In simple examples2 there is 

always a preferred “simple” solution in which matter fields are minimally 

excited. This does not seem to correspond to the highly excited matter 

state which is the initial condition for all Hot Big Bang cosmologies (even 

new inflationary ones). The justification of conventional cosmology must 

again rely on special properties of unknown short distance physics. 

In the present paper we will present a mechanism which resolves these two 

puzzles within the confines of presently understood physics. Somewhat surpris- 

ingly, it is the same mechanism that was previously introducc.4 to explain the 
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currently observed magnitude of the cosmological constant in a natural way.3 We 

will describe the outlines of a cosmological model based on this mechanism. 

The model explains the choice of a unique classical solution by having the 

universe tunnel from a non-classical region of configuration space with negative 

cosmological constant, to a classical region where the effective cosmological con- 

stant has been made positive by the coherent excitation of a Bose field. Since the 

wave function in the tunneling region is concentrated along a one dimensional 

path in configuration space, the subsequent classical evolution has a unique ini- 

tial condition, thus resolving puzzle #l. Furthermore the penetration into the 

classical region is correlated with the coherent excitation of a matter field q. It is 

the slow relaxation of ?I to its minimum which drives the processes which create 

the part of the universe that we see. 

UAfter” (see Section 3 for an explanation of the quotes) the tunneling event 

the universe can be described as an exponentially expanding classical geometry 

plus a classical matter field whose relaxation slowly decreases the effective cosmo- 

logical constant, coupled to a quantum field theory in a minimally excited state. 

This system can undergo a ‘curvature induced” first order phase transition of the 

type first envisaged by A.Sakharov.n2 The transition generates all the matter 

and entropy that we see around us; it is the origin of the Hot Big Bang. 

The rest of this paper is an explanation of the above (somewhat cryptic) re- 

marks. We begin in Section 2 by recalling the main points of the canonical quan- 

tum theory of gravity. 214 Section 3 describes the semiclassical approximation and 

the thorny problem of boundary conditions for the Wheeler-Dewitt-Schrijdinger 

equation. The two puzzling discrepancies between quantum gravity and conven- 

tional cosmology are explained in Section 4 and the resolution of the first of them 

via tunneling is presented. 

fl2 L. Susskind has informed me that the idea of curvature induced phase transitions originates 
with Sakharov. I have not however been able to find a published versions of Sakharov’s 
work. 
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In Section 5 we describe the classical cosmological model that is suggested 

by our previous considerations. We show that it undergoes a curvature induced 

first order phase transition which produces a myriad of bubble universes, some of 

which resemble our own. We discuss the difficulties of this scenario. In section six 

we discuss several possible incarnations of the cosmic relaxation field q. Appendix 

A describes the details of the WKB approximation for gravity, while Appendix B 

is a statement of religious dogma about spacetime topology and related matters. 

2. The Canonical Formalism for Quantum Gravity 

General relativity is a theory of the dynamics of Riemannian spatial geome- 

tries. Its configuration space is a set of spatial metrics gij(z), modulo time 

independent spatial coordinate transformations: 

(1) 

The Hilbert space for quantum gravity is the space of all coordinate invariant 

functionals of g;j: 

+[gijl = (cl[Rjl (2) 

with the coordinate invariant scalar product:u3 

(3) 

The set of time independent spatial coordinate transformations is thus easily 

incorporated as a symmetry of the theory in the ordinary quantum mechanical 

fl3 This scalar product is the most general one consistent with general covariance which does 
not involve derivatives of the metric. The solution of 2 + 1 dimensional quantum gravity 
seems to indicate that corrections to the measure are necessary when we go beyond the 
semiclassical approximation.6*26 
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sense. Not so the rest of the coordinate transformation group of space time. 

For example, local time translations are generated by the Hamiltonian density 

U(z). General covariance then implies that the only acceptable states are those 

satisfying: 

WIti) = 0 (4) 

which is known as the Wheeler-Dewitt equation.2 It turns out that (2) and (4) 

are sufficient to guarantee full general covariance if U and P,,(z) (the generator 

of (1)) satisfy the Dirac-Schwinger commutator algebraa. 

Although Eq. (4) was derived in the framework of ordinary quantum me- 

chanics, it implies a profound reevaluation of the meaning of the wave function 

and of our notion of time. It seems to imply that the wave function is static. 

How does this correspond to our experience? 

In fact, (4) merely states in equations that the coordinate time that we have 

been using is a figment of our imagination on which no physical result can de- 

pend. Physical time measurements are correlations between two physical objects 

(system and clock) which necessarily interact at least gravitationally. They must 

both be included in the Hamiltonian density . Thus the familiar time dependent 

Schrijdinger equation should appear as an equation for the correlations between 

two variables in the wave function, rather than for the dependence of the wave 

function on coordinate time. We should not expect the Schrijdinger equation to 

take on its usual form unless the variable we choose as a clock is both weakly in- 

teracting and more or less classical. For example if we choose space to be infinite 

then the states of quantum gravity can be classified according to eigenvalues of 

a conserved asymptotic energy H (Arnowitt-Deser-Misner energy4). Time can 

be defined in terms of the unitary transformations exp(-iHt). Physically this 

corresponds to using as a clock a ‘test particle” which is heavy enough to be 

classical, but far enough away to be weakly interacting. 

We will follow Einstein and Wheeler in assuming that the appropriate topol- 

ogy for space in discussions of “the Universe” is compact. Numerous attempts 
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have been made to find a quantum mechanical definition of time which would 

apply to compact topologies 5. These attempts usually founder on the fact that 

the Wheeler-Dewitt equation is second order in all variables including the pu- 

tative time. My conclusion (see also DeWitt2) is that time is a semiclassical 

concept which cannot be extended in any reasonable way into the domain in 

which quantum fluctuations of the gravitational field are important. In the next 

section we will see how the usual Schrzdinger equation arises in the semiclassical 

approximation to the Wheeler-Dewitt equation. 

The interpretation of physical time as a description of correlations in the 

WD wave function $ points up a general property of $ in quantum gravity. It 

is a relative probability amplitude, which describes only correlations between 

physical variables. This interpretation accords very well with the principle of 

general relativity, but it raises a technical question of some importance. What 

significance is there to the absolute norm of $, and indeed, must we require it to 

be normalizable? This question is bound up with the difficult problem of deciding 

what the correct boundary conditions for the Wheeler-Dewitt equation are. The 

question of boundary conditions takes on an importance here which it does not 

have in ordinary quantum mechanics problems. One wave function describes the 

entire history of the universe and everything in it. If there many solutions to the 

WD equation we must choose one of them and throw all the others away. We 

lose predictability if we do not find a compelling physical principle for deciding 

which solution of the equations to use. 

The most attractive resolution of this problem (suggested to me by Ed Wit- 

ten) is that the WD equation of the ‘True and Correct Theory of the World” 

has only one mathematically acceptable solution. The possibility of a unique so- 

lution is not totally unreasonable, although it does not seem to occur in ordinary 

quantum gravity. In supergravity U(z) is the square of a supercharge density 

Q(z) and the WD equation becomes 

Q&)l# = 0 - (5) 
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These are first order equations and certainly have many fewer solutions than the 

typical second order equation. If Witten’s Uone true theory” does not material- 

ize, we will have to find a principle for choosing the right solution. Hawking and 

HarUe (HH) have recently proposed such a principle.7 They suggest that quan- 

tum gravity be described by an Euclidean functional integral and that the correct 

$ is given by the integral over all compact Euclidean space-time geometries that 

have the spatial geometry described by gij as their only boundary. This integral 

can be shown to satisfy the WD equation by formal manipulations.2 The HH 

boundary condition has a certain aesthetic appeal, but the meaning of Euclidean 

functional integrals in general relativity is somewhat obscure. I suspect that this 

issue, as well as the general problem of boundary conditions will only be resolved 

when we understand the correct short distance modifications of Einstein’s theory. 

It is perfectly possible that the solution of the two problems referred to in the 

introduction also depends on these short distance boundary conditions. However, 

it would be more attractive to resolve them on the basis of physics that we un- 

derst and now. To do this we have to understand the semiclassical approximation 

to the WD equation, which we present in the next section. 

3. The Semiclassical Approximation 

The semiclassical approximation to quantum gravity has been extensively 

discussed in the literature.5 Semiclassical gravity in the presence of quantum 

matter fields (quant urn field theory in curved space-time) has also received a 

lot of attention. But to my knowledge, the derivation of this formalism from the 

fully quantized WD equation was first discussed in Ref. 6. In particular, the time 

dependent four metrics of the curved space time formalism seem out of place in 

the static framework of the previous section. 

In order to understand the semiclassical approximation, we will first consider 

the simplest non-trivial system invariant under time reparametrization. A general 

Lagrangian ~5(q,Q) can be made t reparametrization invariant by introducing a 
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1 metric a(t): 

(6) 

In the gauge cr = 1, the equations of motion take on their usual form but are 

supplemented by the constraint 

p+L=H=O. (7) 

In quantum mechanics this becomes a constraint on states 

HlYv =o (8) 

whose interpretation in terms of correlations between system and clock is the 

same as that of Kq. (4). The simplest case is that in which both the system (~1) 

and clock (qz) have a single degree of freedom. Suppose the Hamiltonian is 

H= e p: 
iijij + Mv(Q2) + 2 + U(q1,qa) . (9) 

In general, the choice of the system to be called the clock is arbitrary. However 

when A4 >> 1, q2 behaves classically, and defines a natural time variable which 

conforms to our intuitive notion of time. 

Let us try to solve Kq. (8) up to terms which are zeroth order in A4 as 

M -+ 00. If q1 did not exist the solution for 42 would have the familiar WKB 

form 

$WKB(q2) = @/J(qz) ,*iM /” rndq . (10) 

However, in the presence of q1 this is modified. It is easy to verify that the correct 

9 



solution is 

!%d2) = tiWKB(q2) x(!b t(q2)) 

where 

*@ii+-1 

and 

Note that Eq. (12) is equivalent to 

1 &n 2 
i dt ( > - +V(q2) =o 

(11) 

(12) 

(13) 

which means that q2(t) is a zero energy solution of the classical equations for the 

large part of the Hamiltonian. t(q2) is then the transit time for this solution: 

the time it takes to get from some(as yet unspecified) initial position to q2. 

Equation (13) is th e t ime dependent Schriidinger equation for q1 in the ‘time 

dependent background field” qz(t). It is first order in time. The second order 

time derivatives of x (which arise when both q2 derivatives act on x) contribute 

only at higher orders in l/M. Thus, within the region of configuration space 

where WKB is valid, and in which there is a zero energy classical solution, the 

problems that bedevilled previous attempts to define an intrinsic time disappear. 

There does not seem to be a reasonable notion of time outside of the WKB 

regime. Note that in regions where V(q2) is positive there are no solutions of 

(14) with t(q) real. However there are solutions with imaginary time. These give 

a semiclassical description of tunneling.7 The system variable ~1 is described by 

a Euclidean quantum mechanics in the tunneling region. 

Physically the significance of the time dependent SchrSdinger equation is that 

it predicts the same correlations between qr and q2 that we obtain from the WD 

wave function . If we ask “What is the WD wave function for q1 when q2 takes 
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on the value q . , Tn then up to an irrelevant (92 dependent) factor we get the same 

wave function predicted by the time dependent Schriidinger equation at the time 

that 92(t) = q. Note that the time t(q) plays only a cosmetic role here. It was 

introduced to make the Schriidinger equation look familiar. Any other function 

of q would have predicted the same correlations. 

The treatment of general relativity is so similar to the above that I will 

relegate the technical details to Appendix B. The WD equation is” (we ignore 

ordering problems) 

7; jrct 62 -- 
Mz 6gij( x) bgk.t(x) 

- M2m(R(3) - A) + li,(ht 6) (15) 

where M is the Planck mass and Urn(z) is the Hamiltonian density describing 

a generic matter field C$ and its interaction with gravity. To zeroth order as 

M --) 00 the solution of (15) is 

\i 
det s2s 

6&j b!?kt 

Here S satisfies the Einstein Hamilton Jacobi equations 

6s 6s 
7ijkt - - 

6gij bgkt 
= &(d3) - A) 

and xn satisfies the Tomonaga-Schwinger equation 

(16) 

(17) 

(18) 

which reduces to the time dependent Schrcdinger equation if we consider only 

global time variations. The action of any solution of Einstein’s equations which 

contains the three geometry gij as a spacelike slice, is a solution of (17). Dimen- 

sional arguments suggest that this WKB approximation should be valid when 
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we consider long wavelength gravitational fields in a large volume universe. Note 

however that the classical field which is used in the WKB approximation is a solu- 

tion of the vacuum Einstein equations. If matter fields make large contributions 

to the energy density then the approximation must be refined. 

The above discussion resolves many of my own conceptual confusions about 

the application of quantum mechanics to cosmology, and I hope it will be equally 

helpful to others. In particular, it shows how the usual picture of field theory in 

a time dependent classical vacuum is compatible with the idea that the universe 

is in a stationary state. It also gives some sort of an answer to the question of 

what happened before the Big Bang. At very early times, the size of the universe 

is very small and quantum gravitational fluctuations become important. We do 

not really know the correct theory for describing these short distances but there 

is really no reason to expect that it is ill-defined. The above discussion shows 

that as we enter this regime, the intuitive concept of time loses all meaning. 

Thus there is no content in the question of what happened before the Big Bang, 

not because the universe becomes singular, but because quantum fluctuations 

invalidate the notion of UAbsolute Time . . .“‘. It is very hard to think intuitively 

about the quantum regime of general relativity, but the mathematical formalism 

need not break down. Indeed in low dimensions, where there are no problems with 

renormalization, one can solve the WD equation in the small volume regime even 

when WKB breaks down.6 The solution matches smoothly onto the semiclassical 

picture, although the words that we use to describe the semiclassical regime 

become inadequate. 

4. Boundary Conditions for the Wheeler Dewitt Equation 

We now come to one of the most confusing questions of the whole subject of 

quantum cosmology-boundary conditions. There are several aspects to this - 

first we must make a choice of configuration space, then we must choose a Hilbert 

space of functions on configuration space. Our configuration space is the set of 
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all spatial geometries (and of fields defined on these geometries), but we have 

not yet specified the topology of our manifold. Is it open or closed, connected or 

disconnected, with or without handles. Can the topology of space change with 

time? There are really no good answers to these questions at present, choosing 

between alternatives is basically a religious act. We will try to argue in Appendix 

B that the answers to topological questions depend on details of short distance 

physics which we do not know. Here we will simply choose a religion and hope 

for the best. We take space to be compact and connected, with the topology of 

a 3 sphere or torus, and we do not allow changes in topology. 

The choice of Hilbert space is essentially the question of which solutions 

of the WD equations we should use. The ambiguity is somewhat reduced by 

mathematical considerations: we should only choose solutions from within the 

domain in which the WD operator is Hermitian. In low dimensions, where the 

theory is more or less well defined, this is not sufficient to single out a unique 

solution. It should be remembered that our wave function describes the history 

of the universe, changing boundary conditions changes everything. So it is very 

important to find a principle for choosing the right solution. 

In the semiclassical approximation, the collection of solutions of the WD 

equation is parameterized in the following way: We first choose a solution of the 

vacuum Einstein equations. There is a unique solution connecting a pair of three 

geometries with a given time orientation. Given an initial condition gij we must 

then choose an initial state for the time dependent Schriidinger Eq. (18). In 

general then, the solution of the WD equation in the semiclassical regime has the 

form 

The coefficients C,, [B] are determined by matching the WKB solution to a solution 

of the WD equation valid in the small volume region. They thus depend on all 

the details of short distance physics, of which we are ignorant. 
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Unless the short dist ante dynamics is such that the coefficients C,, [g] are 

peaked around a particular initial condition g*, the wave function (19) will not 

have a simple semiclassical interpretation. In ordinary quantum mechanics we 

can prepare a system in a classical coherent state. Then if the WKB approx- 

imation is valid in some region of configuration space the wave function will 

propagate classically in this region. However there are many multidimensional 

quantum systems whose eigenstates obey the WKB equations in some region of 

configuration space, but are linear superpositions of WKB wave functions corre- 

sponding to different classical trajectories. Their behavior is not at all classical. 

Clearly some solution of this problem must be found if we are to understand 

how to derive conventional cosmology from quantum gravity. A possible way to 

do this is to insist that the semiclassical dynamics lead asymptotically to states 

that are independent of the initial conditions. For example (and this is the only 

example I know) if the cosmological constant is positive then at asymptotically 

large times, expanding solutions of Einstein’s equations probably all approach the 

exponentially expanding branch of DeSitter space. ‘On4 Furthermore any state of 

a quantum field theory in a DeSitter background probably evolves into the unique 

causal, DeSitter invariant state of the field theory.ti5 

The problem with this idea is that it is very hard to get rid of the cosmo- 

logical constant once we have put it in. In standard inflationary cosmologies the 

cosmological constant is a transient phenomenon, a consequence of the universe’s 

temporary sojourn in a metastable state. The state is stabilized by the thermal 

i4 There is a “no-hair” conjecture for Desitter space which states that perturbations of it are 
asymptotically damped at large times. If one starts with generic initial conditions, then 
local regions cay undergo gravitational collapse before inflation dilutes the matter density. 
However, even such metrics will look like DeSitter space almost everywhere (i.e. except at 
the points of collapse) at sufficiently late times. 

/I5 The conjecture that generic states evolve into the DeSitter invariant state is due to Ed 
Witten. It may be verified in free field theory. However it is only true locally. That is, 
only operators which correspond to measurements concentrated in a region of Bnite proper 
volume will have expectation values which are indistinguishable at late times from those in 
the DeSitter invariant state. The point is that differences between the initial state and the 
DeSitter state are not washed out; they are simply inflated to sires which grow with the 
scale factor. 
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fluctuations of a highly excited gas of massless particles which must exist prior 

to the Vacuum dominated” phase. 

In the present context we must ask whether the above scenario describes a 

plausible solution to the WD equation. Certainly there are pure quantum states 

which accurately mimic the relevant effects of a thermal bath. However, the 

question of whether such states are the correct initial conditions for Eq. (18) 

again leads back to the matching conditions for the coefficients &[g]. So the 

justification for standard inflationary scenarios (or any other model in which the 

hot big bang extends back to the edge of the semiclassical region) depends on 

details of the matching to the short distance wave function. In minisuperspace 

models2 and in low dimension@ the natural boundary conditions at short distance 

pick out a matter wave function which is minimally excited (the DeSitter invariant 

state for inflationary backgrounds), rather than the sort of highly excited state 

which could mimic a hot big bang. The requirement of thermal initial conditions 

can be regarded as a (rather stringent u prior;) constraint on the short distance 

dynamics, but then we have not really solved the problem of the Cn[g]. We 

might just as well have assumed that the short distance dynamics fixed CR[g] 

to be peaked around a particular initial condition. Note that if the positive 

cosmological constant is not a thermal effect, but a term in the Lagrangian then 

we get a classically evolving universe, but one that becomes virtually empty after 

a few e foldings. 

- 

Our arguments for rejecting the standard Hot Big Bang scenario are far from 

airtight. Nonetheless, there seems to be a definite difficulty in making a hot 

classical universe compatible with quantum gravity without making assumptions 

about physics in regions which we do not presently understand. We will now 

present a model which resolves these questions within the domain in which semi- 

classical physics is valid. Our basic asumption is that the cosmological constant 

-A(A > 0) in the Einstein Lagrangian is large (O(@))tis and negative. It is 

$6 Of course, in a theory with global supersymmetry, it may be natural to have a value of A 
which is much less than Ma. 
. 
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worth noting that if A is this large then we do not have to worry about renormal- 

ization effects changing its value. In particular we do not have to discriminate 

between the bare A (renormalized at scale M) and the renormalized A at some 

low energy scale. They are of the same order of magnitude. 

In pure quantum gravity, the introduction of a large negative cosmological 

constant is disastrous. The piece of the WD operator which depends only on the 

volume u of the spatial geometry is 

1 a2 
K,=j-p~~-M~“v. (20) 

While a solution of U, = 0 is not a solution of the full WD equation, it is the 

first term in the formal asymptotic solution of WD in powers of l/u. The only 

solution of U = 0 which allows integration by parts so that the WD operator is 

Hermit ian is 

,j = e-M9& . (21) 

It is exponentially damped in the large u region and does not have the oscillatory 

behavior of the WKB wave function for a real classical motion. This is not 

surprising. Einstein’s equations with no matter and a negative cosmological 

constant have no solutions in which the spatial geometry is compact. The WD 

equation has a solution but it cannot be described in classical terms. 

The situation is improved if we add matter fields. Let us add a scalar field 

with potential U(Q). We choose U to have a unique minimum at q = 0 and 

to satisfy U(0) = 0 so that -A is the full cosmological constant of the model. 

Keeping only u and the spatially constant mode of q we get a Wheeler-Dewitt 

operator: 

1 a2 
XPat? ---Mzh.+U(&-‘y. (22) 

If U(q) > A for some values of q then there is a region of configuration space where 

classical solutions exist. The wave function is concentrated near q = u = 0, but 
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there is some amplitude to tunnel out to the classically allowed region. Since we 

can only observe regions where u is large and the universe is behaving classically, 

and since the wave function only describes correlations between variables, we 

need not be concerned that the bulk of the wave function is concentrated near 

the origin. We care only that the tunneling amplitude to a large u, classical 

region is non-zero. We learn that large v classical regions are correlated with the 

displacement of q from its minimum into a region where U(q) > Ai@. 

This correlation between large volume and the excitation of a field away from 

its minimum is extremely important. We will see in the next section that the 

classical relaxation of q might drive the processes which create our universe. 

Equally important is that the %tarting point” for the classical evolution is a 

tunneling process. To see the significance of this fact let us recall some features 

of multidimensional tunneling processes. If the barrier to be tunneled through is 

high and wide enough, tunneling can always be described in the WKB approxi- 

mation. The wave function in the tunneling region is concentrated along a one 

dimensional path in configuration space called the most probable escape path 

[MPEP17. The MPEP can be parametrized in such a way that it is a solution 

of the Euclidean classical equations of motion. (after which it is usually called 

an instanton). It pierces the barrier and penetrates into the classically allowed 

region at a particular point in configuration space &. If the WKB approximation 

remains valid in the classically allowed region, the wave function in this region is 

a WKB function based on the classical solution whose initial position is $0 and 

initial velocity zero. L17 The higher order corrections to the WKB wave function 

are dependent on the nature of the state inside the barrier (they are determined 

by matching), as are the parameters of the MPEP, but the fact that a unique 

initial condition is picked out is not. Thus tunneling solves the problem of the un- 

known coefficients &[g]. The “tunnelled” wave function is concentrated around 

fl7 Actually’ the tunneling wave function becomes less concentrated as the instanton nears 
the point of penetration into the classical region. Consequently, there will still be a small 
spread in the distribution of initial values for qo and &,. 
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a particular classical initial condition. Whatever the nature of the wave function 

at small v, a universe which tunnels from a regime with negative cosmological 

constant will be described by a single classical solution. The initial conditions 

for the time dependent Schrijdinger Eq. (18) will depend on the state at small v, 

as will the initial configuration of the gravitational field. This is not a source of 

worry. The classical equations on the large v side of the barrier have a large pos- 

itive value of the effective cosmological constant. If q has a flat enough potential 

(see Section 5) this situation will continue for a long time, and the exponential 

expansion of the universe will inflate all traces of the initial conditions to a size 

much bigger than the horizon scale. 

This section was entitled boundary conditions. We have spent most of it 

trying to avoid talking about the boundary conditions at all. To be complete 

we will discuss the one attempt that has been made to fix the WD boundary 

conditions: the ansatz of Hawking and Hartle. 

HH propose that the correct solution of the WD equation is given by a Eu- 

clidean path integral over compact spacetime metrics and matter fields which 

are regular on the compact space. The boundary of the compact manifold is 

identified with the spatial geometry which appears in the WD wave function. In 

minisuperspace models in which all but a single mode of the gravitational field 

are suppressed, there is generally a special solution of the equations in which the 

matter fields are in a minimally excited state. HH show that in this case (and 

in the semiclassical approximation) their path integral definition gives the min- 

imally excited state. I believe that there is something correct about this ansatz 

but there are several points that I find obscure. Firstly, due to the indefiniteness 

of the Euclidean Einstein action, it is not clear whether the functional integral is 

well defined outside of the semiclassical approximation. Numerous inconclusive 

discussions of this have appeared in the literature and I have nothing to add. Sec- 

ondly, it is clear that the HH ansatz is saying something about the small volume 

region. Their wave function is the amplitude to find a given spatial geometry, 

starting from an initial state with zero volume. It seems a bit premature to make 
. 
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an ansatz about the zero volume behavior of the wave function when we do not 

yet have the correct Hamiltonian for the system in this region. The final confus- 

ing point about the HH wave function is related to time reversal invariance. The 

WKB solution related to a particular classical motion with action S is exp(iS), 

while that for the time reversed motion is exp( -4s). The HH wave function is 

real and in the classical regime it looks like the sum of these two. HH interpret 

this as representing the two branches of a classical cosmological model in which 

contraction is followed by expansion (e.g. DeSitter space). This interpretation 

seems rather problematical when applied to the real world. Even if our present 

universe does recollapse, we believe that a lot of entropy was created during its 

expansion. The collapsing phase should not at all look like the time reverse of the 

expansion. For example if the universe underwent a first order phase transition 

during the course of expansion, we expect to experience the other branch of a 

hysteresis loop when it recontracts. 

An alternative idea of what to do with time reversed solutions was suggested 

in Ref. (2). One should consider only the wave functional corresponding to the 

forward motion and say that TCP is spontaneously broken. Physics described by 

the reversed wave function is identical to that described by the forward motion 

but there are no correlations between the two. As is usual when a symmetry 

is spontaneously broken, one can use the symmetric superposition of the two 

time reversed wave functions if one is sufficiently careful about the operators one 

computes the expectation value of. Thus there is nothing wrong with the HH 

prescription, but it may lead to confusion if we try to study the wrong quantities. 

For example, taken literally it would imply that the wave function vanishes at 

certain values of the volume in the classical regime. Of course, it is possible that 

wave functions that have a pure exp(iS) behavior in the classical regime are not 

valid solutions of the WD equation. Examples of this behavior are found both 

in 1 + 1 dimensions when gravity is coupled to matte? and in 2 + 1 dimensions 

for spaces with spherical topology and a positive cosmological constant6 They 

seem to occur when the classical equations predict a time symmetric bounce 
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cosmology with contraction followed by expansion. One of the quantum wave 

functions decreases as it penetrates the classically forbidden region with small 

volumes while the other increases. The WD operator is not Hermitian when 

applied to the increasing wave function because one is not able to integrate by 

parts at v = 0. The good wave function is real in the classically allowed region. It 

is not clear whether one can make a sensible interpretation of this superposition 

of states describing two different parts of the classical motion. 

One should note that in the real world one may not be able to throw out 

the “bad” wave function. Its pathology occurs at small volumes where we expect 

the theory to be cut-off, and the true boundary conditions at small volume may 

allow a pure exp(iS) behavior in the classical region. It is clear however that it 

is much easier to interpret the quantum wave function when the classical motion 

is time asymmetric. 

To summarize this section we can say that although short distance boundary 

conditions can profoundly affect the question of whether quantum gravity is 

compatible with conventional cosmology, it is possible to find a set of models in 

which one can derive semiclassical cosmology without making special assumptions 

about the short distance behavior of the theory. These models all have a negative 

“bare” cosmological constant and a Bose matter field with an extremely flat 

potential. The universe tunnels out of the nonclassical region where most of 

its wave function is concentrated, into a classically allowed region where the 

Bose field is coherently excited so as to produce a positive value for the effective 

cosmological constant. The semiclassical history of the universe is driven by the 

slow classical relaxation of the Bose field to its minimum. In the next section 

we will see whether models of this sort can produce cosmological scenarios which 

agree with what we know of cosmic history. 

5. The Classical Regime 

The scalar field that we introduced in Section 4 will be called the isichon 



(qaxev) because it relaxes the cosmological constant. We will assume that its 

Lagrangian is such that it can be treated classically after it crosses the barrier. 

Thus we must solve the classical equations for q coupled to the gravitational 

field. 

The initial conditions for these equations are obtained by solving the tunnel- 

ing problem described in the last section. As usual’ + = 0 and most of the i;i 

are determined from gij and q by the constraint equations 

U=P,=O. (23) 

Since the potential for t] is very flat and U(n) > A, we know that the homogeneous 

mode of q is very large. The non-homogeneous components are probably much 

smaller as may be seen by the following argument. The tunneling process is 

controlled by the minimum action solution of the Euclidean field equations. At 

any Euclidean time t we can expand q in eigen modes of the Laplacian of the 

instantaneous spatial geometry. Since all these geometries have volumes of order 

MV3 the nonhomogeneous modes contribute quadratic terms to the action which 

will be large if r]o > M. Thus for nonzero n q,, is bounded by .M. Similar 

arguments indicate that there is no reason for the initial values for gij and iij 

to be larger than simple dimensional estimates. On the other hand 90 must be 

much larger than A4 in order to have U(q) > Aw. Finally, the initial value for 

U(Q) - Ah@ should also be given by dimensional considerations. It is a positive 

number of order Aw . 

The classical evolution of the universe thus begins with a large positive value 

for the effective cosmological constant. Since U is very flat and i is zero initially, 

the cosmological constant will remain large for a long time and most aspects 

of the initial values of Q and g will be inflated away. We can approximate the 

metric by a closed Robertson-Walker geometry, and q by its homogeneous mode. 

(This is not really a crucial assumption at present. Inhomogeneities would not 

significantly alter the qualitative conclusions that we will come to.) In units in 
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I 

which the Planck mass is one the classical equations are: 

(24) 

(25) 

Initially H is positive and O(a). 

As the universe expands the energy in the q field red shifts to zero and H 

decreases. However if U is very flat the decrease is very slow. To see this compute: 

(we have taken k = 0 for simplicity). rj starts at zero; even if it did not, the 

large frictional term in (25) would soon bring it down to a value for which the 

frictional force 3Hrj is of the order of magnitude of the restoring force ilU/aq. 

To see what sort of a potential is needed we note that if U(q) = tp2q2. then we 

must have p2q2 N A to cancel the negative cosmological constant The restoring 

force is -p2v so we find 6 N p@3H. Thus & will be small for sufficiently 

small j.4. 

A flat potential will thus lead to a long period of inflation with a slowly 

decreasing cosmological constant. Eventually H will reach zero but unfortunately 

it does not stop there. rj will be nonvanishing when H = 0 unless the initial 

conditions are fine tuned so that 4 is zero there. Even if this is done the third 

derivative of H will be 18U/aq)2. S’ mce the point U = A is not a minimum of the 

potential (to insist that it be so is the usual fine tuning), H will pass through 

zero to negative values and the universe will collapse. 

Clearly the potential must be flat enough for at least the entire “known” 

history of the universe to fit into the time interval in which the cosmological 

constant is small but H has not yet reached zero. To see what this entails let 
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us again consider the case U = i p2q2, k = 0 and add a nonrelativistic matter 

density p to Einstein’s equations. 

g gq2 
,+,+p=A (27) 

/j= -3Hp. (29) 

We are interested now in the period of universal history described by classical 

cosmology.11 Thus p << A as is H. Define new variables by 

rj--\/2osin8/2. (31) 

Then 

I$=--3sin26/2 (H2+A-P,-ip (32) 

L/4 -3Hsi1.18 . (33) 

In order for these equations to resemble the F’riedmann cosmologies, 6 must 

be small throughout the period under discussion (lo-20 billion years). We can 

therefore approximate Eq. (33) by 

d=p-3HB (34) 

whose solution is 

[0(t) - f?(to)] = pj dze-3mr)da . (35) 
to 

A bound on 0 can now be obtained by replacing H(t) by its value at the beginning 

of the evolution (e.g. at a time when the temperature of the universe was 0(1 
. 
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GeV)). This gives 

1 _ ,-3i%#--to) . 1 
Since H(to)(t - to) is O(l), we find that we need 

p2 < H2(to)~ w 10-24” (37) 

in order to ret ain the Priedmann form of the Hq. (32). This would appear to be 

more fine tuning than is necessary to simply cancel the cosmological constant by 

hand. However, we will describe several scenarios in the next section in which 

the smallness of p is at least technically natural. 

Now that we know what values of the parameters are necessary in order 

to be at least compatible with the last ten billion years or so of history, we 

must go back to much earlier times and try to come up with a scenario which 

can naturally explain the initial conditions at the time that the temperature 

of the universe was 100 MeV. This of course means that we must resolve the 

usual puzzles about flatness, horizons, etc., but first we must do something much 

more basic than that. We must explain where all the matter in the universe 

came from. In our model the universe goes through a long period of exponential 

expansion with a Planck scale cosmological constant. Whatever the initial state 

of the matter, it will quickly settle down into a state which locally resembles 

the DeSitter invariant state of whatever quantum field theory describes it.b5 The 

effective cosmological constant changes much more slowly than the interaction 

time scales of the quantum field theory, so once settling into its DeSitter invariant 

state, the theory will move adiabatically from the DeSitter vacuum with one value 

of A to the vacuum with another. Unless some violent paroxysm intervenes, it will 

end up in the Minkowski vacuum when the cosmological constant gets to zero. 

It is clear that we need some sort of a first order phase transition to generate 

the required energy. At first sight however, this does not seem to be enough. We 

must also guarantee that the cosmological constant at the time the transition 
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occurs be small. Otherwise inflation will dilute the energy density to zero long 

before the cosmological constant reaches zero. 

Surprisingly, a model can be constructed in which this apparent coincidence 

of the time at which the transition occurs and the time when A,a reaches 0 

does not require finely tuned initial conditions. Our model will consist of the 

q field and another scalar field 4 which represents all the rest of the matter in 

the universe. 4 could be a Higgs field in a grand unified theory. We will assume 

that 4 has a potential of the form shown in Figure 1. The long flat stretch 

between the two local minima of the potential is as unnatural as it is in new 

inflationary universe scenarios. Indeed we will assume that all of the usual fine 

tunings which are necessary to make new inflation work have been done here. 

We will resolve the problem of the cosmological constant but none of the other 

problems of cosmology. This is clearly a defect of the present model, but perhaps 

we may be excused for doing one thing at a time. 

The crucial ingredient in our model will be the quantum corrections to the 

effective potential of the r$ field in curved spacetime. Many papers have been writ- 

ten on this subject l2 The largest single correction is the logarithmically divergent 

renormalization of the Rqt2 term in the potential. (R is the scalar curvature.) 

We will take only this large effect into account, and assume that it comes in with 

the sign necessary to stabilize the minimum at the origin (if the flat space po- 

tential has a very flat maximum near the origin then the R#2 term will produce 

a minimum for sufficiently large R). At early times, when the cosmological con- 

stant is large, the Rgt2 term dominates the potential and the origin is the global 

minimum. As q slowly relaxes, the effective cosmological constant will decrease 

and the origin becomes metastable. We will witness a curvature induced first 

order phase transition. 

Curvature induced phase transitions in cosmology were apparently first dis- 

cussed by A. Sakharov. h2 They allow one to at art from a cold universe and gener- 

ate entropy. However, in conventional models where all fields are in their ground 
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states at zero temperature, there is no way to change the space time curvature. 

The novelty of our approach is the q field whose classical relaxation allows us to 

vary the curvature even at zero temperature. 

We assume that the parameters of the potential are arranged so that the 

kinetics of the phase transition are described by bubble formation. Basically 

this means that the barrier between the metastable and true vacua is high and 

wide enough that the minimum action of paths crossing the barrier is large. 

Bubbles will begin to be nucleated when a is smaller than the scale which 

characterizes the structure in the flat space potential for 4. Presumably this is 

the GUT scale (dXK&) in a realistic model. This is a rather large value of the 

cosmological constant. Thus the first bubbles to be formed will inflate, then “fall 

over the edge”, and then inflate more slowly. Any matter and radiation that is 

produced in falling over the edge, will quickly redshift to zero. These bubbles 

will be large enough to be our universe, but they will be empty. However, all 

is not lost. As first shown by Guth and Weinberg13, bubbles of true vacuum 

in an inflating background, generally do not percolate. The background, with 

larger cosmological constant, expands too fast for the bubble growth to catch 

up. This means that the phase transition does not end with the formation of the 

first bubbles. The false vacuum keeps on nucleating new bubbles of true vacuum 

which float off into the blue. While this is going on the cosmological constant (the 

q field energy) continues to decrease. Inevitably, there will come a time when 

bubbles are nucleated with an effective cosmological constant which is close to 

zero. If the authors of Ref. (14) h ave built their models carefully, these bubbles 

will resemble our universe. 

We have therefore found a class of models which will produce a myriad of 

bubble universes, some of which resemble our own. In particular we easily find 

bubbles with small or zero cosmological constant. However, it may be argued 

that this is insufficient, and that we must find a model in which the typical bubble 

resembles our own universe. To even ask this question we must first decide what 

we mean by typical. Do we count all bubbles, or only those in which intelligent 
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life could develop? It is this point that the infamous anthropic principle enters 

our considerations. I would contend that in the present context, the use of the 

anthropic principle is not quite as ridiculous as (for example) it is in attempts 

to explain the value of the fine structure constant. Our model incorporates a 

physical mechanism which really generates a large number of Sample universes”. 

It makes sense to ignore those in which intelligent life could not develop. This 

principle definitely restricts the values of the effective cosmological constant which 

are allowed. A universe with a large positive value of the cosmological constant 

quickly becomes empty. Non-relativistic matter and radiation energy densities 

are diluted to zero before any interesting structures can form. On the other 

hand a bubble that is nucleated with a large negative cosmological constant will 

collapse on itself in a short period of time. Note that the Coleman-DeLuccia 

mechanism15 which can prevent the nucleation of bubbles with large enough 

negative values of Aeff is not relevant here. The bubble is nucleated on the 

plateau region of Figure 1, so that the cosmological constant which goes into 

the bubble nucleation calculation has nothing to do with the true cosmological 

constant at the bottom of the well. However, bubbles nucleated with negative 

A will live only as long as the radiation energy created in reheating is larger in 

absolute magnitude than A. 

The question of the bounds on A that come from requiring the existence of 

intelligent life is a difficult problem in the interaction of physics with biology. 

It touches on all sorts of questions which evolutionary biology simply has no 

answers to. I believe however that it is conservative to state that a universe with 

intelligent life is inconceivable unless the absolute value of AA4$ is less than ten 

times the critical density: 

PC = H&v (in units where Mpr = 1) . 

If the probability density for A (number of bubbles with cosmological constant 

A/total number of bubbles) is fairly flat in the region between + and -10 pe, 
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then the typical livable bubble is reasonably similar to our own. Traditionally, 

one said that the observed cosmological constant was zero, but recently values of 

order 0.7 or 0.8 , have been invoked to explain the discrepancy between estimates 

of clustered dark matter and the matter density necessary for consistency with 

inflationary cosmologies. l6 This would be a reasonably typical value for a flat 

distribution concentrated between f10 pe. 

Unfortunately the probability distribution for A in our model is far from 

flat. The tunneling amplitude for nucleating bubbles is essentially independent 

of A in the range of interest. However this is a tunneling amplitude per unit 

proper volume, and the volume of false vacuum is exponentially expanding as the 

cosmological constant changes. Since the cosmological constant does not change 

on time scales as long as the age of our universe, and the e folding time for the 

false vacuum is determined by the GUT scale (say 10” GeV). the probability 

distribution for A grows extremely rapidly as A decreases. The number of bubbles 

with A = 0.8 pC is smaller than the number with A = -lop, by a factor greater 

than exp( 10”‘). 

This is a deathblow for the present model. Even the anthropic principle can- 

not save it. It predicts that the typical bubble with intelligent life in it is one 

that has a negative cosmological constant which is on the verge of causing catas- 

trophic gravitational collapse. This is clearly not a description of our universe, 

which if anything has a positive A. Bubbles of our type exist but only in minis- 

cule numbers (the probability of catching one in a random sampling of bubbles is 

much smaller than the probability that all the air in this room will gather itself 

in a corner of the ceiling). 

The reason that I have presented this model despite its glaring fault is that 

I believe that most of its structure is sound. Models with a varying cosmological 

constant can explain the presently observed value in a natural way and they can 

explain the generation of heat in a universe which is initially in its ground state. 

It is now necessary to find a model which will give a reasonably flat probability 
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distribution for bubbles as a function of their cosmological constant.tl8 

6. Models for the q Field 

The flat potential required for the q field must seem extremely unnatural to 

many readers. Numerically, the fine tuning required to obtain such a potential 

in a generic field theory model is much worse than that required to simply cancel 

the cosmological constant by hand. However, the cosmological constant problem 

is not the worst of the hierarchy problems of physics because of the magnitude 

of the fine tuning it requires. It is a disturbing problem because it requires fine 

tuning in a very low energy effective Lagrangian, which describes a regime in 

which we think we know the physics quite well. To see this consider a generic 

field theory and integrate out (in the sense of Wilson and Kadanoff) degrees of 

freedom with momenta greater than 1 MeV. According to Wilson’s renormaliza- 

tion group philosophy, if the underlying theory was local, then physics below 1 

MeV is described to a very good approximation by a local effective Lagrangian 

containing only light degrees of freedom (for renormalizable local field theories 

this claim is the content of the Symanzik- Appelquist-Carrazone theorem.)” The 

effective Lagrangian will contain photons, electrons, gravitons, neutrini, axions 

(?) and any other light particles we may invent. Now suppose that some magical 

symmetry in the underlying theory has enabled us to prove that the cosmological 

constant that appears in the effective Lagrangian is exactly zero. We now proceed 

to integrate out degrees of freedom with momenta between 1 keV and 1 MeV. 

At this point we believe that we know the true Lagrangian and we can actually 

perform the calculation in perturbation theory. The answer is o(1 MeV4) which 

is too large by 36 orders of magnitude. 

There are only two ways out of this dilemma. Either we can assume that the 

1 MeV effective Lagrangian had a non-zero cosmological constant which exactly 

tf8 Susskind has suggested a variant of the present model which has a flat probability distribu- 
tion for A. However a proper analysis of this idea requires extensions of the approximations 
discussed in this paper. 
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cancels the results of integrating out scales between 1 MeV and 0.001 eV, or 

we must assume that the low energy Lagrangians for any scale down to 0.001 

eV have a mechanism in them which can cancel any given value of A. The first 

proposal is contrary to all of our experience with local field theory. Cancellations 

due to symmetries occur momentum scale by momentum scale. The second 

proposal implies that we should be able to construct a mechanism for cancelling 

which does not utilize any fancy symmetries. The spectrum of very low energy 

particles simply does not contain anything even approximately degenerate with 

the electron which could cancel the virtual electron contribution to A. The q 

field is of course such a mechanism. Its virtue is that it shifts the burden of 

explanation from the gravitational field (which interacts with everything) to a 

scalar field which, at least at low energies, need interact only with gravity. We 

know how to produce scalar fields which have no potentials whatsoever. These 

are Goldstone bosons, the explanation for whose masslessness can be a symmetry 

that is spontaneously broken at very high energies. We also know how to give 

such Goldstone bosons extremely small symmetry breaking potentialsPg 

Unfortunately, Goldstone bosons for ordinary compact symmetries will not 

do the job for us. These fields live on compact manifolds and the only way 

we can make the restoring force small is by making the potential very small. 

This means however that it cannot cancel the cosmological constant. Noncom- 

pact global symmetries have recently become popular in discussions of extended 

supergravity. l8 They can certainly be spontaneously broken. What is not clear is 

whether such symmetries can also be explicitly broken by nonperturbative effects 

in weakly coupled field theories. This is a question which merits investigation, for 

the pseudo-Goldstone boson for such a symmetry would be a perfect candidate 

g9 Extend the standard model by adding 3 colorless Weyl fermions in the N +I? representation 
of an SU(N) hypercolor group. Let the hypercolor scale be much larger than 100 GeV, and 
let the Glashow Salam Weinberg gauge bosons couple to the SU(2) x U(1) subgroup of the 
diagonal SU(3) subgroup of the SU(3) x SU(3) flavor group of hypercolor. Spontaneous 
breakdown of SU(3) x SU(3) leads to Goldstone bosons. However, some of the relevant 
currents have SUs x VI anomalies, and the corresponding Goldstone bosons will get mass 
from weak instanton effects. Obviously, many variations of this scenario are possible. 
. 
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for the q field. 

The super-partners of ordinary Goldstone bosons in supersymmetric field the- 

ories are often noncompact fields with flat potentials. In typical models however, 

the flatness does not survive super-symmetry breaking to the extent that would 

be necessary to construct an Q field. It is probably possible to construct models 

with sufficiently many decoupled sectors to construct a very small flat potential, 

but nothing really compelling has emerged from preliminary glances at this idea. 

The final candidate for the q field is the third rank antisymmetric tensor 

gauge field that I discussed in (3) ( see also Ref. 19). If a dynamical Higgs 

mechanism2’ occurs for this field, its dynamics is identical to those of a massive 

scalar field. The dynamical Higgs phenomenon for third rank tensors in four di- 

mensional space is too poorly understood to know whether a mass of the requisite 

(tiny) magnitude is plausible. 

To summarize, there are several possible candidates which might naturally 

give rise to a field with the properties required by the cosmology of Section 5. 

They are all technically natural, but it is not clear whether a sufficiently flat 

potential can be generated. 
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7. Conclusions 

We have shown that the formalism of quantum gravity can tell us interest- 

ing things about cosmology even if we restrict our attention to the semiclassical 

regime in which the short distance pathologies of Einstein’s Lagrangian are not 

important. We have understood the relationship between stationary quantum 

states and time dependent classical solutions of Einstein’s equations (a result 

which goes back to Wheeler and Dewitt) and shown how to rederive the uquan- 

turn field theory in curved spacetime” formalism as a description of correlations 

between gravitational and matter variables in the time independent Wheeler- 

Dewitt wave function. This description, and the classical notion of time make 

sense only within the domain of validity of the semiclassical approximation. We 

have also shown how quantum gravity may lead to spontaneous breakdown of 

TCP invariance, thus making the cosmic arrow of time compatible with TCP. 

These results indicate the compatibility of our conventional picture of cos- 

mology with the (presumably) more fundamental formalism of quantum gravity. 

However, there are two possible points of incompatibility. First, the general 

WD wave function in the semiclassical approximation is a superposition of wave 

functions for different classical trajectories. To understand why we see a classical 

universe, we must argue that all these different wave functions become equivalent 

or orthogonal (in which case we must resort to a reduction of the wave packet of 

the universe) after some time. Alternatively we can search for a reason why the 

correct WKB wave function contains only one classical solution. We showed that 

this occurred in models with a negative cosmological constant which can be com- 

pensated by the classical excitation of a scalar field q. These models also resolve 

the potential conflict between the natural initial conditions for quantum matter 

fields in our formalism, and the initial conditions for the Hot Big Bang. They 

envisage that the classical history of the universe Ubegann with a tunneling event 

from the region of small volume and unexcited q, (where the wave function is 

concentrated) to the classically allowed region where q is excited, the cosmologi- 
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cal constant is positive and the universe can expand. If the classical relaxation of 

q to its minimum is slow enough, it acts like a variable cosmological constant. We 

presented a model in which this variation of the cosmological constant induces a 

“curvature driven” first order phase transition which generates all of the matter 

in the universe, setting up the initial conditions for the Hot Big Bang. Models 
of this type can generate many universes and provide a basis for the application 

of the anthropic principle to the observed value of the cosmological constant. 

Unfortunately in the present version of the model the probability distribution for 

the cosmological constant is rapidly growing as A decreases thru 0. Consequently, 

even if we invoke the anthropic principle, we are led to expect that the universe 

is on the edge of oblivion. The universe should have the largest possible negative 

value of the cosmological constant compatible with the existence of intelligent 

life. This is not a good description of our universe, which probably has a positive 

cosmological constant if it has one at all. Hopefully a model of this type can be 

found which has a flatter probability distribution in the region of interest. In 

addition, it would be encouraging if we could find a model which resolved some 

of the more mundane issues of cosmology, like the flatness problem and galaxy 

formation. At present we have merely mimicked the new inflationary universe 

models with all of their faults. “Of course”, work on these matters is in progress. 

Our aim in the present paper has been to try to find models in which the 

classical history of the universe, including initial conditions, could be described 

without reference to the ill-understood short distance behavior of quantum grav- 

ity. From a certain point of view it would be a pity if such a model exists. It 

would mean that there will be no cosmological clues for the construction of the 

correct short dist ante theory. 

33 



Appendix A - Semiclassical Approximation 

Our objective is to solve 

[ 
7; jM 62 

W 6ilij6!7ke 
- M2,/j ( Rt3) - A) + &] $ = 0 

to zeroth order accuracy in A4 as A4 + 00. To this end write 

9 = eiM’S 
$1 (A4 

where S satisfies the Einstein-Hamilton-Jacobi equation 

6s 6s 
- --dXR “jke 6gij 6gkt 

t3) - A) = 0 . 

(A4 

(A-3) 

Terms of zeroth order in M arise when we differentiate S twice, and when we let 

one derivative act on exp[iflS] and the other on $. Thus 

(A.4 

Let qvu be the solution of Eq. (4) when U,,, = 0. It is the generalization of 

the Van-Vleck determinant to quantum gravity, and depends on the operator 

ordering that we have chosen for the kinetic term. The full solution to order p 

is then 

where 
6s 6x 

i 7ijkt - - 
6gij 6gkt 

+u,x=o. 

Now let ~(2; y) be the functional of g;j(z) defined by 

. 

6S WY) 
7i3'ke bgij(z) 6$&t(Z) 

= S(z - y) 
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and assume x depends on gij only through 7. Then 

6X 
t 67(x) 
-- = Um(x)x . (A4 

The solutions of Eq. (3) are parametrized by a spatial metric 9. S[g;g] is 

the action of the solution of Einstein’s equations which interpolates between the 

spatial metrics g and g. Given this classical spacetime, g is simply the induced 

metric on a certain spacelike surface. Under shifts and reparametrizations of this 

spacelike surface, gij transforms as 

6$j(X) = Kij(X)6N(X)+ V(iGNj) (A.9) 

Kij is the extrinsic curvature of the surface. This means that we can change d 

of the degrees of freedom in g by changing surfaces and coordinates within the 

fixed classical space time. The other d(d - 1)/2 can only be varied by changing 

the classical solution. Thus, for a fixed spacetime geometry Eq. (9) defines N 

and Ni as functionals of g. 

Now note that 
6S 

7ijkt - = +Kij 
bkt 

(A.lO) 

so that Eq. (7) reads: 

+Kij(x) 670 = 
6g;j(X) 

dz6!7ijtz) 67(Y) Wx) 
- - = 

- = 6(x - y) 
IN 6Sj(z) 6N(Y) 

(A.ll) 

which has the solution 

dx) = N(Y) * (A.12) 

Equation (8) is thus the Tomonage-Schwinger equation. It describes the change 

in the wave function of the matter fields we make an infinitesimal local change 

in the spacelike surface on which it is defined. The space-time geometry is a 

classical solution of Einstein’s equations. 
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Appendix B 

Questions of topology and change of topology in quantum gravity are a source 

of great controversy, and have been ever since Wheeler introduced the idea of 

space-time foam. The simplest topological issue is the question of whether the 

universe is spatially open or closed. Spatial closure was considered desirable by 

Einstein and Wheeler because it is supposed to incorporate Mach’s principle into 

general relativity. Certainly it seems odd to consider an observer who sits outside 

the universe measuring asymptotic time and defining an absolute reference frame. 

On the other hand, in current cosmologies the question of closure seems to be one 

that must be settled by observation. It seems silly to prejudice an empirically 

resolvable question by what is essentially a philosophical rather than a physical 

argument. In new inflationary cosmologies and models of the type proposed in 

the present paper this question takes on a new aspect. The observable universe in 

these models is the interior of a small bubble in a larger (unobservable?) meta- 

universe. Thus we can indulge our philosophical prejudices without affecting 

the experimentally testable question of whether the universe will re-collapse. It 

really doesn’t matter whether we take the meta-universe to be open or closed. 

As indicated in the text, we will take it to be closed because the formalism is 

simpler. 

The question of the local topology of space, and of changes in it is more 

difficult to resolve. Hawking has argued that topologically non-trivial instantons 

(which change the topology of space) have to be included in the Euclidean func- 

tional integral for quantum gravity. He also argues21 that these instantons will 

violate the unitary time evolution property of quantum mechanics and force us to 

introduce a theory of density matrices in which pure states can evolve into mixed 

states. This proposal has been criticized by several authors.22 It is certain that 

the convent ional canonical formalism for quant urn gravity does not extend simply 

to describe changes in spatial topology. However it is neither clear that this is 

impossible nor that one must really include instantons in the path integral. In- 

deed, the reason one must include instanton contributions in ordinary quantum 

36 



mechanics is to guarantee unitarity. If gravitational instantons violate unitar- 

ity, then what have we gained by including them? More technically, Gross and 

Witten argue that the rationale for introducing instantons in Yang-Mills theory 

is that topologically trivial configurations with widely separated instanton-anti- 

instanton pairs must certainly be included in the path integral. If the dynamics 

allows the instantons to separate, then cluster decomposition requires that we in- 

clude topologically non-trivial sectors as well. On the other hand, gravitational 

instantons which change the space topology carry a CPT invariant quantum 

number, the Euler number. We cannot construct topologically trivial configu- 

rations which consist of two widely separated pieces, each of which has nonzero 

Euler number. Hawking however argues that topologically non-trivial metrics 

can be approximated arbitrarily closely by trivial ones (though not in the same 

clustering manner as Yang-Mills inst antons). 

I believe that these questions cannot be resolved by arguments based on 

continuum field theories. If one goes beyond the semiclassical approximation to 

the path integral, one finds new divergences in topologically non-trivial sectors 

(in marked contrast to Yang-Mills theories). The relative weights of sectors 

with different Euler numbers is infinite in perturbation theory. This seems to 

indicate that the question of whether to include non-trivial topologies is bound 

up with short distance physics. Indeed,topology changes seem to be more easily 

incorporated in discrete theories23 which make definite predictions ‘about short 

distance behavior. 

A final argument about the necessity of including topological changes comes 

from the study of gravity in low dimensions 24 where the short distance behavior 

is controllable. Perfectly consistent theories with Hermitian Hamiltonians can 

be constructed without including topology changes. This again indicates that 

if it is necessary to consider topology changes in the real world this must have 

something to do with the short distance modifications of Einstein’s theory which 

are necessary in four or more dimensions. These low dimensional theories also 

shed some light on the question of what topology to choose for space if the 
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topology cannot change. One can construct sensible quantum theories of 2 + 1 

dimensional pure gravity if space has the topology of a torus or a sphere but not 

if it has a more complicated topology. The Hamiltonians for higher topologies 

have short distance problems. 24 These results motivated our restrict ion of three 

dimensional spatial topology in the text. 

To summarize: there are many indications that topology changes do not 

have to be allowed in quantum gravity in order to construct a consistent theory. 

The consistency of theories which allow topology changes probably cannot be 

determined without a better understanding of what goes on at short distances, 

and it is conceivable that short distance physics will force us to include topology 

changes in four dimensional quantum gravity. 
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Fig. 1. The flat space effective potential for the scalar 
field which generates the energy in the universe in the 
model of Section 5. 


