
Neural Networks in High Energy Physics 

Roberto Odorico 

University of Bologna, Department of Physics 
and 

Istituto Nazionale di Fisica Nucleare, Sezione di Bologna 
Via Irnerio 46, 40126 Bologna, Italy 

(e-mail: odorico@bologna.infn.it) 

ABSTRACT 
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A short survey of the use of Neural Networks and statistical discriminants 

in High Energy Physics is presented. The focus is on classification problems, e.g. 

involving events or jets. After illustrating the various neural and statistical classifiers 

currently used, some assessment of their comparative performance for top and 

bottom jets is made. 
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Neural Networks (NN) are receiving increasing attention for t-quark [ l-3] and b­

quark [ 4] tagging with t, b � jets. Also of interest are other applications like e/rc 

discrimination for improved lepton tagging. Especially used are NN based on Learning 

Vector Quantization [5] to which Training Count can be profitably added (L VQTC) [3,6] and 

Back-Propagation (BP) [7-9]. One should not forget more conventional statistical methods 

like the Fisher linear discriminant [10, 1 1 ]  and the Gaussian classifier [1 1 ]. 

To get some orientation, let me start with the simplest classifier: Fisher's linear 

discriminant [10, 1 1] .  As for all classifiers, one must first encode the event (or whatever 

objects one is classifying, e.g. jets) into a number of feature variables si, s2, . . .  , Sn, which 

can be arranged into a vector, the pattern vector s .  Thus, each event corresponds to a point s 

in the multidimensional pattern space. Let us consider a schematic 2-dimensional example: 

Fig. 1. When projecting the events onto the SJ axis, one gets two overlapping distributions in 

SJ. When trying to discriminate the two classes by a cut in SJ one gets penalized in efficiency 

and purity. The same holds true when projecting onto the s2 axis. But if one projects onto the 

Fisher axis shown in the figure, the two distributions get separated, and thus discrimination 

with 100% purity and efficiency is achieved. That is a dream situation, of course, but in a real 

case one can reduce the overlap between the two distributions to some minimal value in this 

way. The Fisher variable F, associated with the Fisher axis, is a linear combination of the 

feature variables si ,  s2, .. . , Sn, which can be determined by simple mathematics involving the 

the correlation (or covariance) matrices for the two distributions. The physical ingredient one 

is exploiting is the correlation between the variables within each class distribution. In the 

example considered, for each s2 bin SJ ranges over two distinct intervals for the two 

distributions. As the s2 bin moves, the populated SJ intervals change, which means that SJ is 

correlated to s2 within each distribution. The SJ-S2 correlation turns out to be different within 

each distribution, and that is what is exploited in the discrimination. 

The Fisher classifier cannot be outperformed if the two distributions are gaussian and 

have the same correlation matrix, i.e. if they have the same shapes and just distinct centroids. 

In this case, its purity and efficiency of classification are only limited by the amount of 

overlap between the two distributions. If the two distributions have different correlation 

matrices, one can introduce a more general Gaussian classifier, that cannot be outperformed if 
the two distributions are gaussian [ 1 1] .  For that, one considers the probability density 

functions corresponding to the gaussian approximations for the two distributions: 

p(s) '= A exp (-+s-<s>)M-J(s-<s>) } 

where M is the correlation matrix for the distribution and <s> is its centroid. The Gaussian 

classifier for a pattern s is given by the variable G = ln(pA(s)/pa(s)). If G is positive, s is 

classified as A, otherwise as B. The absolute magnitude of G gauges the reliability of the 
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classification. If the two correlation matrices are equal, G identifies with the Fisher variable F 

apart from a constant term: G = F + ln(AA/As). 

If the distributions are not gaussian, in general the Gaussian classifier does not yield 

the best purity and efficiency which are in principle obtainable given the overlap between the 

two distributions (i.e. it no longer reaches the Bayesian limit). That is where Neural 

Networks come to help. 

As an illustration, let us consider the simple 2-dimensional example of Fig. 2, with 

the two distributions. being uniform within the regions they cover. The outer distribution (B) 

is quite far from gaussian. The Gaussian classifier gives a bad performance in this case. 

Let us see how a NN like L VQTC [5,3,6] handles the problem. With this NN 
architecture neurons can be associated with vectors, or points, in pattern space. Their 

positions are fixed by a training procedure in which a sequence of patterns of known class 

s(t), t = 1 ,  2,3 . . .  is presented. For each pattern s(t), one corrects the position of the neuron 

closest to it, me, by moving it closer to the pattern if the two belong to the same class, or 

moving it away from it if they belong to different classes: 

mc(t+ 1) = mc(t) + <X+(t) [s(t)-me(t)] 

mc(t+ 1 )  = mc(t) - CL(t) [s(t)-mc(t)J 

if me and s belong to the same class 

if fie and s belong to different classes 

a+(t) and CL(t) are positive learning parameters decreasing with t. During training the number 

of times each neuron is corrected by patterns of the various classes is counted. From that the 

neuron purity can be calculated, i.e. the fraction of times the neuron is corrected by patterns 

of its own class. The classification of a pattern s of unknown class is made by simply 

assigning the pattern to the class of its closest neuron. The purity of the classification can be 

estimated by the purity of the neuron providing the classification. For the problem of Fig. 2, 

100% purity and efficiency of classification can be achieved with 1 neuron of class A and 16 

neurons of class B.  Their positions in Fig. 2 are those resulting from training. 

In a BP net [7] the relevant neurons are not associated with points but rather with 

hyperplanes in pattern space. For the 2-dimensional problem of Fig. 2, the hyperplanes 

become just straight lines. In such a net, neurons are arranged in successive layers, the 

excitations of neurons in a layer being determined by the excitations of neurons in the 

previous layer, Fig. 3 (hence the name of Multi-Layered Perceptron more correctly used for 

such a net, the term Back-Propagation referring more properly to the type of training 

algorithm used). The excitations of neurons in the input layer (L=O), one for each pattern 

component, are directly given by the values of the corresponding pattern components. The 

excitation x;(L=l) of a neuron in the next hidden layer is determined by feeding the value of 

the linear expression ai = I:k Wik Sk + 0; into a saturating transfer function: Xj(L=l) = g(ai), 

e.g. g(a;) = tanh(ai). ai can be visualized as the distance of the pattern from a straight line (a 
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hyperplane i n  the general case), whose orientation and position are determined b y  the 

"weight" parameters Wik and the "bias" term 0; associated with the neuron. Several hidden 

layers may be included, but one has been found to be enough in most HEP applications. The 

last, output, layer may consist of several neurons, but one is enough if the classes are just 2. 

Its excitation is determined by iterating the procedure used to calculate the excitations of the 

hidden neurons. The value of the net is due to the existence of a training algorithm (BP) 

which starting from the discrepancies of the output excitations with respect to the desired 

(target) results for each training pattern (of known class) corrects the net parameters (weights 

and bias terms) so as to achieve minimum output discrepancies at the end of training. There is 

no guarantee, though, that the minimum obtained is an " absolute" minimum. For our 

example, 100% purity and efficiency of classification are achieved on an independent test set 

of patterns by using 3 hidden neurons, represented by the 3 straight lines in Fig. 2, and an 

output excitation given by x(L=2) = tanh(l . 5  Li Xi(L=l)  + 4.5) (the distance metric from the 

hidden neurons lines is 4.5 times the Euclidean metric). A pattern is classified as A if x(L=2) 

< 0.5, otherwise as B. 

The example helps to illustrate some important differences in the usage of L VQTC and 

BP nets. 

BP requires a relatively limited number of parameters and thus the training statistics 

can be kept small. The cpu time required for training is typically long, since when correcting 

positions of hyperplanes describing hidden neurons to better accomodate patterns in a given 

region of pattern space, far away patterns can easily get penalized. Optimization must thus be 

handled globally, going through the whole training set. The purity/efficiency trade-off in 

classification can be controlled by cuts on the output excitation. 

L VQTC requires comparatively many more parameters, and therefore the training 

statistics must be much larger than in BP. The hoped for reward is a higher degree of purity 

in classification. The cpu training time is typically short, since in order to better accomodate 

patterns in a region one must correct only neurons in that region, without affecting 

classification performance for far away patterns. The purity/efficiency trade-off can be 

controlled by cuts in the neuron purity. 

Dedicated hardware implementations of BP and L VQTC (e.g. for triggers) also have 

distinct requirements. BP needs vectorization and a realization of the non-linear transfer 

function. L VQTC can profit of massive parallelism of vector processors, the winner-takes-all 

step being implemented by a few cycles of a neural net with lateral inhibitions. 

A typical field of application of statistical and NN classifiers is provided by the 

discrimination of top and bottom jets, originated by t and b quarks decaying into anything 

(i.e. without a rate-reducing lepton tagging). In [2] it has been shown that for ti events 

produced at the Ferrnilab Tevatron collider one can get a signal/background "' 1 .5 with a 

residual cr(tt) "' 2  pb, for m1 = 100 GeV, by using Fisher's discrimination after some 
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preliminary cuts. The utilization of L VQTC [3] or of BP does not improve on this result. 

During the last year a substantial number of contributions have appeared on the utilization of 

NN's for discriminating b jets at LEP [4]. For the sake of illustrating the comparative 

performances of the various classifiers in this case, we have applied them to jets in e+e- 2-jet 

events at LEP, simulated by COJETS [12]. The 25 jet feature variables of Bellantoni et al. [4] 

have been used. The purity versus efficiency results are shown in Fig. 4. In this particular 

case, it appears that the L VQTC, BP and Gaussian classifiers yield comparable results, with 

L VQTC having an edge if one wants to have a high purity sample, at the price of a reduced 

efficiency. 
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Fig. 1 - Classification example illustrating how 
Fisher's linear discrimination works. 
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Fig. 2 - Classification example illustrating the way L VQTC and BP neural nets work. 
Circ:.es represent L VQTC neurons. Straight lines represent BP hidden neurons. 
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Fig. 3 - Architecture of the BP net used for the example of Fig. 2. 

> 
l-

1 

a: 0 . 5  
:::> 
a. 

0 
0 

b/non-b JETS (LEP) 
• LVQTC 
o Back Prop 
x Gaussian 

0 0 

0 . 5  
E FFICI ENCY 

o o o Oo 

517  

1 

Fig. 4 - Purity vs efficiency for b/non-b jets at LEP according to LVQTC, 
BP and Gaussian jet classification. 


