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ABSTRACT

Aspects of Four Dimensional N = 2 Field Theory. (August 2011)

Dan Xie, B.S., Zhejiang University, China

Chair of Advisory Committee: Dr. Dimitri V. Nanopoulos

New four dimensional N = 2 field theories can be engineered from compactifying

six dimensional (2, 0) superconformal field theory on a punctured Riemann surface.

Hitchin’s equation is defined on this Riemann surface, and the fields are singular at

the punctures. Four dimensional theory is entirely determined by the data at the

punctures and theory without lagrangian description can also be constructed.

We first constructed new four dimensional generalized superconformal quiver

gauge theory by putting regular singularity at the puncture. The algorithm of cal-

culating weakly coupled gauge group in any duality frame is developed. The asymp-

totical free theory and Argyres-Douglas theory can also be constructed using six

dimensional method which requires introducing irregular singularity.

Compactifying previous four dimensional theory down to three dimensions, the

corresponding N = 4 theory has the interesting mirror symmetry property. The

mirror theory for the generalized superconformal quiver gauge theory can be derived

using the data at the puncture, too. Motivated by this construction, we studied the

other three dimensional theories deformed from above theory and found their mirrors.

The surprising relation of above four dimensional gauge theory and two dimen-

sional conformal field theory may have some deep implications. The S-duality of

four dimensional theory and the crossing symmetry and modular invariance of two

dimensional theory are naturally related.
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CHAPTER I

INTRODUCTION

The method of solving four dimensional N = 2 SU(2) gauge theories was pro-

posed by Seiberg and Witten [1, 2] more than fifteen years ago. The exact solution

provides tremendous amount of non-perturbative information, which is extremely

valuable in studying dynamics of quantum field theory. A lot of conjectures about

the quantum dynamics of field theory are confirmed for the first time. It also provides

new topological invariant of four manifolds [3]. It has interesting relations with other

branches of physics, e.g. the classical integrable system [4, 5, 6].

Since then, the solutions for many other N = 2 quantum field theories have been

found [7, 8, 9]. It is surprising that a major breakthrough about N = 2 theories has

occurred in last couple years after so many years’ intense study. The breakthrough

begins with the understanding of S duality property of certain superconformal field

theory (SCFT) [10, 11], this opens the door of studying non-lagrangian theories which

are a crucial ingredient for the duality. Then the method of determining the exact

stable BPS spectrum and its wall crossing behavior is discovered [12, 13, 14]. Another

line of development deals with the relation of gauge theory with the quantization of

integrable system: it is found that the Nekrasov partition function [15] of four dimen-

sional theory is related to the quantization of the corresponding integrable system

associated with the gauge theory [16, 17, 18]; The Alday-Gaiotto-Tachikawa (AGT)

conjecture [19] is another quantum relation which relates the Nekrasov partition func-

tion with the conformal block of two dimensional conformal field theory (CFT).

This dissertation follows the style of Journal of High Energy Physics.
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The origin of all these exciting development is the mysterious six dimensional

(2, 0) SCFT [11]. This theory is strongly coupled and has no lagrangian description,

little is known about this theory [20]. However, four dimensional supersymmetric

gauge theory can be engineered by compactifying six dimensional theory on a Rie-

mann surface. If the Riemann surface is a torus, then the four dimensional theory

is the famous N = 4 super Yang-Mills theory. The gauge coupling is simply the

complex structure of the torus, since the six dimensional theory is conformal, the

four dimensional theory only depends on the complex structure moduli of the torus,

therefore, the modular group of the torus is just the S-duality group of the gauge

theory!

Given the beautiful interpretation of the S-duality of four dimensional gauge

theory in terms of the geometric property of the Riemann surface, it is natural to

extend the same analysis to the four dimensional N = 2 SCFT. There must be some

new structures defined on the Riemann surface: first marked points are introduced;

second the Hitchin’s equation is defined on the Riemann surface and the solution

of the Hitchin’s equation is singular at these punctures. Then the S-duality of four

dimensional N = 2 theory is realized as the modular group of the punctured Riemann

surface, moreover, the Seiberg-Witten curve can be constructed from the data at

the puncture. The Hitchin’s moduli space is an integrable system in one of complex

structure, so an integrable system is naturally associated with a four dimensional field

theory. This also provides the motivation for AGT conjecture. The Liouville theory

is defined on the punctured Riemann surface and the AGT conjecture is naturally

studied in this context.

It is then interesting to study in detail this six dimensional construction. New

four dimensional N = 2 field theory can be engineered from compactifying six dimen-

sional (2, 0) superconformal field theory on a punctured Riemann surface. Hitchin’s
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equation is defined on this Riemann surface and the fields in Hitchin’s equation are

singular at the punctures. Four dimensional theory is entirely determined by the data

at the puncture. It is remarkable that theory without lagrangian description can also

be constructed in this way, which leads to a lot of surprising result.

We first construct new four dimensional generalized superconformal quiver gauge

theory by putting regular singularity at the puncture. The Seiberg-Witten curve, S-

duality property of the theory can be easily derived from the geometric property of

the Riemann surface. The algorithm of calculating weakly coupled gauge group in

any duality frame is developed.

The asymptotical free theory and Argyres-Douglas field theory can also be con-

structed using six dimensional method. This requires introducing irregular singularity

of Hithcin’s equation. The specific form of irregular solution is worked out for a large

class of asymptotical free theories.

Compactify four dimensional theory down to three dimension, the corresponding

N = 4 theory has the interesting mirror symmetry behavior. The mirror theory for

the generalized superconformal quiver gauge theory can be derived using the data at

the puncture too. Motivated by this construction, we study other three dimensional

theories deformed from the above theory and find their mirrors.

The surprising relation of four dimensional gauge theory and two dimensional

conformal field theory may have some deep implications. The S-duality of four dimen-

sional theory and the crossing symmetry and modular invariance of two dimensional

theory are naturally related.

This dissertation is organized in the following way. In Chapter II, a brief review

of Seiberg-Witten theory is given, the integrable system approach and the string the-

ory construction is emphasized. In Chapter III, the six dimensional construction is

introduced. In Chapter IV, detailed study of regular singular solution of Hitchin’s
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equation is given; the generalized superconformal quiver gauge theory is discussed and

the gauge group in any weakly coupled frame is worked out. Chapter V studies the

irregular singular solutions to Hithcin’s equation and uses them to describe asymp-

totical free theory and Argyres-Douglas theory. In Chapter VI, the three dimensional

mirror symmetry of the generalized quiver superconformal gauge theory and its ex-

tension is discussed. Chapter VII deals with the relation between four dimensional

gauge theory and two dimensional conformal field theory. We conclude with some

discussion and open problems in Chapter VIII.

Part of the material presented in Chapter III is based on [21]. Chapter IV

is mainly based on the author’s paper [22, 23]. Chapter V is taken from [24] and

Chapter VI is from those two papers [25, 26]. Chapter VII is taken from the paper

[27].
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CHAPTER II

SEIBERG-WITTEN THEORY

In this chapter, we will review the general aspects of four dimensional N = 2 su-

persymmetric field theory. The superalgebra is introduced and its representation is

worked out, the lagrangian for general N = 2 theory is constructed using N = 1 su-

perspace; we also discuss how to derive the four dimensional theory from dimensional

reduction of a six dimensional theory. The Seiberg-Witten solution is reviewed and

its relation to integrable system and three dimensional theory is briefly discussed.

String theory construction of Seiberg-Witten solution is introduced in detail.

A. Generality of four dimensional N = 2 theory

The four dimensional N = 1 supersymmetry algebra consists of the following anti-

commutative relation (this section is based on [28, 29].

{Qα, Q̄β̇} = 2σµ

αβ̇
Pµ,

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0. (2.1)

Here Qβ is a Weyl spinor and Q̄β̇ = Q+
β . There is a U(1)R symmetry which rotates

the supercharge by a phase, this symmetry may or may not be a symmetry in the

quantum theory.

Look at massive representation, we can work on the rest frame with P µ =

(−M, 0, 0, 0), then the superalgebra simplifies as

{Qα, Q̄β̇} = 2Mδαβ̇. (2.2)

Define normalized generator bα = 1√
2M
Qα and b+α = 1√

2M
Q̄α̇, the superalgebra be-
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comes

{bα, b+β } = δα,β, {bα, bβ} = {b+α , b+β } = 0. (2.3)

These are just familiar Clifford algebra. Let |Ω > be the vacua state which has the

property bα|Ω >= 0, the other states are b+1 |Ω >, b+2 |Ω >, b+1 b
+
2 |Ω >. If |Ω > has

spin j, then these other three states have spin j + 1
2
, j, j − 1

2
. If j = 0, its CPT

conjugate forms another set of states with j = 0. These are represented by two Weyl

spinors and one complex scalar. If j = 1
2
, there are four states with spin 1, 1

2
, 1
2
, 0,

its CPT conjugate has states with spin −1,−1
2
,−1

2
, 0. These are represented by

two Weyl spinors and one massive gauge fields. The number of bosonic degree of

freedoms are equal to the fermionic degree of freedoms which are the typical feature

of supersymmetric field theories. One can also take j = 3
2
, etc, in these cases, the

theory includes gravity. I will only consider field theory in the following.

For massless particles, take the rest frame with Pµ = −E,E, 0, 0, thus the SUSY

algebra becomes

{Qα, Q̄β̇} = 4E

 1 0

0 0

 . (2.4)

Define bα = 1
2
√
E
Qα and b+α = 1

2
√
E
Q̄α̇. This time the only nontrivial algebra is

{b1, b+1 } = 1. (2.5)

This time there are only two states for the representation of SUSY algebra with spin

j, j+1
2
. When j = 0, together its CPT conjugate, there are a total of four states with

spin (−1
2
, 0, 0, 1

2
), these are represented by a Weyl spinor and a complex scalar. This

multiplet is called Chiral multiplet. One should be a little bit careful, since the vacua

of the CPT representation maybe the highest states instead of lowest states.

If j = 1
2
, together with its CPT conjugate, there are states (−1,−1

2
, 1
2
, 1), which
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are represented by a massless gauge field and a Weyl spinor, this multiplet is called

vector multiplet. The N = 1 multiplets are summarized as

vector multiplet : (−1,−1

2
) + (

1

2
, 1),

chiral multiplet : (0,
1

2
) + (−1

2
, 0). (2.6)

The four dimensional N = 2 SUSY algebra reads

{QI
α, Q̄

J
β̇
} = 2δIJσµ

αβ̇
Pµ, {Qα, Qβ} = 2ϵαβZ

IJ , {Q̄I
α̇, Q̄

J
β̇
} = 2ϵα̇β̇Z

∗IJ . (2.7)

where I, J = 1, 2, ZIJ is called central charge and is antisymmetric in index I, J .

There is a SU(2)R × U(1)R symmetry and the supercharge transforms as a doublet

under SU(2)R.

Consider first massless representation, we must set Z = 0 from the unitary

requirement. Along the similar line as N = 1 case,(we just have more sets of creation

operators and there are four states in one multiplet), the states has the helicity

j, j + 1
2
, j + 1

2
, j + 1. we have the following SUSY multiplet structure (together with

its CPT conjugate)

vector multiplet : (−1,−1

2

2

, 0) + (0,
1

2

2

, 1),

hypermultiplet : (−1

2
, 02,

1

2
) + (−1

2
, 02,

1

2
). (2.8)

Notice that if the minimal itself is self CPT conjugate (for instance, this happens when

the matter representation is real). we do not need two multiplets, this can happen for

the hypermultiplet. N = 2 vector multiplet consists of a chiral multiplet and a vector

multiplet in the N = 1 language, while N = 2 contains two N = 1 chiral multiplets.

From the transformation of the supercharges under SU(2)R × U(1)R, one can see

that for a hypermultiplet, spin 0 particle transform as a doublet under SU(2)R and
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as a singlet under the U(1)R, while fermions are singlet under SU(2)R have charge

1,−1 under U(1)R. For the vector multiplet, the fermions transform as doublet under

SU(2) and has charge 1 under U(1)R, the scalar is a singlet under SU(2)R and has

charge 2 under U(1)R, the gauge bosons are the singlet under R symmetry.

For massive particles, take the rest frame with Pµ = (−M, 0, 0, 0), the SUSY

algebra takes the simple form

{QI
α, Q̄

J
β̇
} = 2Mδα,β̇δ

IJ , {QI
α, Q

J
β} = Zϵαβϵ

IJ , {Q̄I
α̇, Q̄

J
β̇
} = Zϵα̇β̇ϵ

IJ . (2.9)

Introduce the annihilation operators

b1α =
1√
2
(Q1

α + ϵαβQ̄
2
β), b2α =

1√
2
(Q1

α − ϵαβQ̄
2
β). (2.10)

The only nontrivial anticommutation relations are (Z is assume as real for simplicity)

{b1α, (b1β)+} = δαβ(2M + Z), {b2α, (b2β)+} = δαβ(2M − Z). (2.11)

From this one sees that the BPS bound is 2M ≥ Z. If 2M ̸= Z, there are 4 creation

operators, so the number of states are 16. The helicity content is (−1,−1
2

4
, 06, 1

2

4
, 1).

On the other hand if 2M = Z, there are only 2 creation operators, and the number

of states are just 4, this short multiplet plays an essential role for N = 2 theory.

There are vector multiplet and hypermultiplet as the massless case, we call them

BPS multiplet. One can define second helicity supertrace as

Ω = −1

2
Tr(−1)2J3(2J3)

2, (2.12)

Ω = 0 for the long massive multiplet; Ω = −1 for BPS vector multiplet and Ω = 1

for hypermultiplet (these numbers are counting only particles).

The N = 1 lagrangian can be elegantly written using superspace. Besides the

space time coordinate, we introduce new fermionic coordinates θ, θ̄. The chiral su-
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perfield has the following expansion form

Φ = ϕ(y) +
√
2θψ(y) + θ2F (y), (2.13)

where y = xµ + iθσµθ̄. The vector multiplet is expanded in Wess-Zumino gauge as

Vµ = −θσµθ̄Aµ + iθ2θ̄λ̄− iθ̄2θλ+
1

2
θ2θ̄2D. (2.14)

The general lagrangian is encoded by Kahler potential and the Superpotential

L =
1

4π

∫
d4θK(Φ̄,Φ) +

∫
d2θ[W (Φ) +

1

32πi
τ(Φ)TrW 2

α] + c.c. (2.15)

Here Φ̄ = Φ+e−2V ,Wα is the spinor chiral superfield building from Vµ, and the trace is

taken in the fundamental representation. In general, this action is non-renormalizable,

but it can be used to describe the low energy behavior of a renormalizable theory.

W (ϕ) is a holomorphic function, this homomorphic property is remarkably useful to

study supersymmetric gauge theories.

For the UV renormalizable lagrangian, τ = θ
2π

+ i4π
g2

is constant and the Kahler

potential takes the standard form K(Φ̄,Φ) = Im(τ)Φ̄Φ. A N = 2 vector multiplet

consists of a N = 1 vector multiplet and a chiral multiplet Φ both transforming

in the adjoint representation of the gauge group. The lagrangian should be also of

the form (2.15) with special superpotential and Kahler potential. Since the fermions

in gauge multiplet and fermions in chiral multiplet are the doublet under SU(2)R,

there should be no superpotential for the chiral multiplet. One can show that the

lagrangian indeed has the N = 2 supersymmetry.

The hypermultiplet decomposes into two chiral multiplets (Q, Q̃),which trans-

form in complex conjugate representations of the gauge group.When the hypermulti-
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plets are added, there will be a superpotential term

W =
√
2Q̃ΦQ+mQ̃Q. (2.16)

So for the UV theory with a lagrangian description, the gauge couplings and the mass

terms are all the deformation parameters (for the asymptotical free theory, the gauge

couplings is transmuted to a dimensional dynamical generated scale).

Going back to most general lagrangian, assume we have only a bunch of N = 2

U(1) vector multiplets. Expanding the lagrangian, to have N = 2 supersymmetry, a

necessary condition is to have the same kinetic terms for the fermion in Φ and fermion

in vector multiplet. This is possible only if

Im(τ(ϕ))AB =
∂2K(Φ)

∂ΦA∂Φ̄B

. (2.17)

Since τ is a holomorphic function, the Kahler potential can only be linear dependent

on Φ̄, and it is completely dependent on the the function τ . The function τ is holomor-

phic and we can learn a lot about its quantum behavior just from this property, while

in general the Kahler potential is a general function and there is little tool available

to determine. However, N = 2 supersymmetry connects the kahler potential with the

superpotential, and it is possible we can exact solve it. Introduce the function f(Φ)

so that τAB(Φ) =
∂2F (Φ)
∂ΦA∂ΦB

, then the Kahler potential is K(Φ, Φ̄) = ∂F (Φ)
∂ΦA

Φ̄A, and the

lagrangian can be written as

L =
1

4π
Im[

∫
d4θ

∂F (Φ)

∂ΦA

Φ̄A +

∫
1

2
d2θ

∂2F (Φ)

∂ΦA∂ΦB

WA
α W

Bα]. (2.18)

The function F (Φ) is called prepotential which is what we need to solve for the low

energy theory.

The above construction applies to the theory with lagrangian description, how-

ever, these are only a very small subset of all possible N = 2 theories. There are
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other interesting N = 2 theory for which no lagrangian description is known. Such

theories can be found as the IR limit of those theories with lagrangian description,

etc. Later I will discuss a way of constructing those non-lagrangian theories.

1. Six dimensional construction

The property of lower dimensional quantum field theory sometimes is easily under-

stood from higher dimensional theory. Here we introduce a six dimensional construc-

tion of four dimensional N = 2 theory. Later I will use a different six dimensional

construction. The six dimensional theory we use here is a 6d (1, 0) theory. In six

dimension, a gauge field has 4 degree of freedom and the minimal spinor also has 4

degree of freedom, so it is possible to have a SUSY gauge theory with only gauge

fields AI and minimal spinor λ. The six dimensional lagrangian is

L = Tr(−1

4
FIJF

IJ + iλ̄ΓaDaλ). (2.19)

The R symmetry group is SU(2)R. The SUSY transformation is

δAI = iη̄ΓIλ,

δλ =
1

2
ΓIJFIJη. (2.20)

Do dimensional reduction, namely, take all the fields independent of coordinate

x4, x5. Then in four dimensions, the gauge fields split as a gauge field Aµ, and two

scalar A4, A5, the rotation group SO(2) = U(1) becomes four dimensional U(1)R

symmetry. The complex scalar ϕ = A4 + iA5 has charge 2 under U(1)R. A chiral

spinor decomposes into two Weyl spinor in four dimension which is a doublet under

SU(2)R and carrying charge 1 under U(1)R, so in four dimension the field content

is exactly the same as the four dimensional N = 2 vector multiplet. The action

after dimensional reduction is just the four dimensional N = 2 theory with only
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vector multiplet. The four dimensional SUSY algebra has central terms which are

just the momentum along x4, x5. The particles carrying these central charges are the

Kluza-Klein modes, they do not carry the gauge group charge though.

Six dimensional (1, 0) theory can also has the hypermultiplet which upon dimen-

sional reduction becomes four dimensional hypermultiplet. So we can engineer a lot

of four dimensional N = 2 theory from six dimensional theory. The field content is

quite similar to the four dimensional theory though. Since six dimensional theory has

the same number of supercharges as four dimensional theory, the construction is quite

limited, we can only do the dimensional reduction to get a four dimensional theory.

The symmetry and the origin of the central charge is more clear from six dimensional

theory and the theory is put in a much more compact form.

There are other six dimensional theories which can be realized as the low energy

effective theory of world-volume theory of the branes in string theory. For instance,

there are six dimensional (1, 1) theory which can be derived by dimensional reduction

from 10 dimensional SYM theory. These theories are living on Type IIB D5 branes.

D3 branes can ending on D5 branes and carrying the gauge charge onD5 branes, from

the point of view of gauge theory on D5 branes, D3 branes are monopoles. These are

the interesting BPS states we are interested. There are another six dimensional theory

called (2, 0) theory, this theory is superconformal and does not have a lagrangian

description, however, this theory turns out to be extremely useful to engineer four

dimensional N = 2 gauge theory, we will review these theories in more detail later.

These theories are the world volume theory living on M5 branes of M theory, and

similarly M2 branes can end on M5 branes and it is also possible to extract the BPS

spectrum of four dimensional theory using those brane construction.

Similarly, it is interesting to see if we can also get four dimensional N = 2 theory

from (1, 1) theory and (2, 0) theory. There are more freedoms here and it is possible
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to engineer a lot of other N = 2 theory.

Here we need to break half of supersymmetry down to four dimensions. There

are two ways to preserve some SUSY, the first is to find the Killing spinor on the

compact two dimensional surface. The only choice for the Riemann surface is then the

torus and we are left with N = 4 in four dimension. For the curved Riemann surface,

to preserve some supersymmetry, one can do a R twisting of the higher dimensional

theory. For (2, 0) theory, the R symmetry is SO(5)R, one can use a subgroup to twist

the theory. Use a subgroup SO(3)R × SO(2)R of SO(5), the holonomy group of the

Riemann surface is SO(2), so we can do a partial twist using SO(2)R and we are left a

SU(2)R×U(1)R symmetry which is exactly the R symmetry group of four dimensional

theory. The difficulty is that it is hard to see what is the four dimensional theory.

Later I will show how we can read four dimensional theory from the information on

Riemann surface. For the (1, 1) theory, the R symmetry is just SO(4) and the above

naive twisting would not give the correct symmetry of four dimensional theory.

B. Seiberg-Witten fibration

Consider first four dimensional N = 2 supersymmetric field theories with lagrangian

description. The fields of N = 2 vector supermultiplet decompose into an N = 1

vector multiplet and a chiral multiplet. The N = 1 vector multiplet consists of

fields A = (A, λ,D), while the chiral multiplet has the fields Φ = (ϕ, ψ, F ). The

vector multiplet has a SU(2)R × U(1)R symmetry. (λ, ψ) transforms as a doublet

under SU(2)R symmetry while the other fields are singlet. The gauge field is a

singlet under U(1)R; the fermion doublet has charge 1 and the complex scalar has

charge 2. The U(1)R symmetry is generically anomalous because of quantum effects.

The hypermultiplet decomposes into two chiral multiplets (Q, Q̃), which transform in
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complex conjugate representations of the gauge group.

Let’s look at pure SU(2) theory with only a N = 2 vector multiplet. The beta

function for the gauge coupling is negative and the theory is asymptotical free. The

UV lagrangian is

L =
1

4π

∫
d4xd2θτ0(Λ0)TrWαW

α + c.c.+
1

4π

∫
d4xd4θImτ0(Λ0)TrΦ̄Φ, (2.21)

where τ0(Λ0) =
θ
2π

+ 4πi
g2(Λ0)

is the complex gauge coupling, and Λ0 is the UV cutoff.

There is a dynamical generated scale Λ and the τ(Λ0) can be expressed in terms of

Λ. The potential of this theory is

V ∝
∫
d4xTr([ϕ, ϕ̄]2). (2.22)

This can be most easily seen from above six dimensional construction: on dimensional

reduction, F45 = i[A4, A5], and the kinetic term F 2
45 would give the four dimensional

potential term if we identify ϕ = A4 + iA5.

The moduli space of vacua can be determined by minimizing the potential: the

complex scalar has the expectation value ϕ = aσ3:

ϕ =

 a 0

0 −a

 . (2.23)

The gauge invariant coordinate on the moduli space is u = Trϕ2 = 2a2. At a generic

point of the moduli space, the gauge symmetry is broken to U(1) and this moduli

space is called Coulomb branch (there can be other branch when we add matter).

There is only one massless U(1) vector multiplet in the low energy theory whose

effective interaction is derived by integrating out massive W boson. The low energy
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effective action at generic point is a free field theory and has the lagrangian

L =
1

4π
Im[

∫
d4xd2θ

1

2

∂2F (A)

∂A2
WαW

α +

∫
d4xd4θ

∂F (A)

∂A
Ā]. (2.24)

To solve the low energy theory is equivalent to determine the prepotential F (A). The

effect of integrating out the massive modes is encoded into the gauge coupling τ(a):

τ(a) =
∂2F (a)

∂2a
. (2.25)

The kahler metric on the moduli space is

ds2 = Im(τ(a))dadā, (2.26)

which must be positive definite.

Define the magnetic variable aD = ∂F (a)
∂a

, the kahler metric on the moduli space

becomes

ds2 = − i

2
(dadaD − daDda). (2.27)

The metric shows that the local coordinate is not unique and this simple mathematical

fact has far reaching physical origin as I will describe later.

Besides the massive electric charged W boson, there are also magnetic charged

BPS states whose charges are are given by

Z = nea(u) + nmaD(u). (2.28)

The mass for these BPS particles are M = 2|Z|. The massive W boson has charge

(2, 0) in this normalization. The BPS particle saturates this bound and they are

playing a critical role in determining strongly coupled dynamics.

In the large u region of the moduli space, the gauge coupling is small and the

perturbative calculation is reliable, the prepotential F receives one-loop correction
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and instanton corrections which are in general difficult to determine. In the small u

region which is the strong coupling region, one does not have any tools to calculate

the prepotential. In the semiclassical region, the one-loop result is

a ∼=
√
u/2,

aD ∼= i
1

π
a log

a4

Λ4
, (2.29)

This can not be the whole story since as we approach to the strong coupling region,

the kahler metric is not positive definite, so the non-perturbative effects is needed to

make the kahler metric positive definite.

Seiberg-Witten [1] found the solution by noting the electric-magnetic duality of

the low energy U(1) theory. The essential idea is that the description of the physics

is not unique: different sets of variables and different gauge couplings can be used

to describe same physics. This can already be seen from the semi-classical formula

(2.29): if we go around the infinity, the coordinate change as a → −a, aD → a− 4,

there is a monodromy acting on (a, aD) when goes around infinity. In fact, there is

a SL(2, Z) duality group acting on the theory which is a generalization of electro-

magnetic duality. Under this duality, the gauge coupling τ(u) underwent a SL(2, Z)

transformation and this is the origin of the freedom of using different coordinates

(a, aD) to describe the same physics.

On the u plane, there are two singular points on the strong coupling region of

moduli space around which there is a nontrivial monodromy. The physical explanation

of these singularities is that there are extra massless fields appearing here; these extra

massless particles are the monopoles in the semiclassical region.

The moduli space then looks like that depicted in Figure 1. The complex struc-

ture moduli of the torus is identified with the gauge coupling τ . This automatically
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Fig. 1. The Coulomb branch of pure SU(2) gauge theory. There is an auxiliary torus

attached at each point. Two singularities appear in the strongly coupled re-

gion. There is a circle goes through the singularities representing the marginal

stability wall across which BPS particles can decay.

ensures the positiveness of the kahler metric on the moduli space. The complex struc-

ture of the moduli is not unique but underwent a SL(2, Z) monodromy when goes

around the singularity. At the singularity, the torus degenerates and the generic de-

scription of the physics breaks down: extra massless states appear at the singularity.

The solution is nicely encoded into an Seiberg-Witten fibration equation

y2 = Λ2z3 + 2uz2 + Λ2z. (2.30)

For each fixed u, the above equation defines a torus. At u = ∞,Λ,−Λ, the torus

degenerates. These are just the singular points on the moduli space. The prepotential

is determined by taking a differential λ = ydz
z2

and two one cycle A,B on the torus,

and the coordinate a and aD are defined as

a(u) =

∫
A

λ

aD(u) =

∫
B

λ. (2.31)

There is one more issue I want to stress: the BPS spectrum is only piecewise constant
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on the moduli space. There is a codimension one marginal stability wall across which

some of the BPS states will decay. This kind of decay process is essential for the

consistency of the Seiberg-Witten picture. Recently there are exciting development

in determining the exact BPS spectrum and their wall crossing behaviors [12].

So to describe the IR dynamics of N = 2 gauge theory, one need to specify

a Seiberg-Witten fibration which is described by a algebraic curve, we also need to

specify an Seiberg-Witten differential and the metric can be calculated from this

data. The form of the curve and the differential is not unique though. There are

singularities on the moduli space at which there are new massless particles appearing.

The monodromy around the singularity can also be calculated from the curve, etc.

The above curve (2.36) can be put in another form which is useful for us later. Let’s

define new coordinate x = y/z, then the curve becomes

x2 =
Λ2

z3
+

2u

z2
+

Λ2

z
. (2.32)

with λ = xdz.

The above analysis can be generalized to N = 2 SU(N) gauge theory with Nf

fundamental matters [7, 8]. In this case, the moduli space has complex dimension

N − 1, where N − 1 is the rank of the gauge group. There is a family of Riemann

surface fibred on each point on moduli space with N − 1 pair of one cycles (Ai, Bi).

The Seiberg-Witten curve reads

y2 = PN(x)
2 − Λ2N−Nf

Nf∏
i=1

(x+mi), (2.33)

where PN(x) = xN + u2x
N−2 + u3x

N−3 + ...uN , here u2...uN parameterize Coulomb

branch. The Seiberg-Witten differential is

λ = xd log
PN(x)− y

PN(x) + y
. (2.34)
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I would like to transform it to a convenient form which is useful later. Define PN−y =

ΛN−MQM(x)z, PN+y = ΛN−M
′
QM ′ (x)1

z
, whereM+M

′
= Nf , M

′ ≤M ≤ N . The

polynomial QM(x) and QM ′ (x) satisfy the relation QM(x)QM ′ (x) =
∏Nf

i=1(x + mi).

Change also coordinate x→ xz, the Seiberg-Witten curve becomes

xN +
u2
z2
xN−2 +

u3
z3
xN−3 + ...

uN
zN

=
1

zN
[ΛN−MQM(x)z + ΛN−M

′

QM
′ (x)

1

z
]. (2.35)

The Seiberg-Witten differential is λ = xdz (there is an extra term which gives the

coordinate a, aD a shift of the flavor charge, we can therefore ignore them). In par-

ticular, for the pure SU(N) Yang-Mills theory, G(x) = ΛN This form will make the

direct connection to the integrable system later. It is interesting to write some explicit

Seiberg-Witten curve for the SU(2) gauge theory with Nf ≤ 3:

Nf = 1 : x2 =
Λ2

z3
+
u

z2
+
mΛ

z
+ Λ2,

Nf = 2 M ‘ =M = 1 : x2 =
Λ2

z4
+

Λm1

z3
+
u

z2
+

Λm2

z
+ Λ2,

Nf = 2 M
′
= 0,M = 2 : x2 =

Λ2

z3
+

u

z(z − 1)
+

m2
2

(z − 1)2
+
m2

1

z2
,

Nf = 3 : x2 =
m2

1

z2
+

m2
2

(z − 1)2
+

u

z(z − 1)
+
m3Λ

z
+ Λ2. (2.36)

We have made a shift of x coordinate so that term linear in x is vanishing.

The above curves are derived by some physical considerations and guesswork,

there is no general method to find the Seiberg-Witten curve given a N = 2 field

theories. String theory gives effective methods of constructing Seiberg-Witten curve

given certain class of field theories, I will review this construction in next section.

C. String theory construction

String theory provides powerful way to determine the Seiberg-Witten fibration of

some gauge theories. I will discuss one construction proposed by Witten [9] in this
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a)

NS5

D4

D6

x6

x4, x5

b)

Fig. 2. Left: A Type IIA NS5-D4 brane configuration which gives four dimensional

N = 2 superconformal field theory, there are semi-infinite D4 branes on

both ends which provide the fundamental hypermultiplets. Right: Instead

of semi-infinite D4 branes, D6 branes is used to provide fundamental hyper-

multiplets.

section, since this construction is closed related to recent development of S duality.

A large class of four dimensional N = 2 field theories can be engineered by using

Type IIA NS5-D4-D6 brane configurations (for the introduction to string theory, see

[30, 31, 32]). The NS5 branes which extend in the direction x0, x1, x2, x3, x4, x5, are

sitting at x7, x8, x9 = 0 and at the arbitrary value of x6. The x6 position is only

well defined classically. The D4 branes are stretched between the fivebranes and their

world volume is in x0, x1, x2, x3 direction; These D4 branes have finite length in x6

direction. D6 branes extend in the direction x0, x1, x2, x3, x7, x8, x9 can also be added.

Two typical brane configurations are depicted in Figure 2.

NS5 brane and D6 branes are heavy, so we can treat these branes as classical

object. The dynamics of the system are controlled by the theory on D4 branes,



21

since D4 branes has a finite extent in x6 direction, and the effective theory is a

four dimensional gauge theory. The brane systems preserve four dimensional N = 2

supersymmetry, so this gives an effective way of construction four dimensional N = 2

theory. There is a U(N) gauge group supporting at each D4 brane segment (the U(1)

factor is frozen). Type IIA theory has a hidden coordinate x10 which is invisible

in perturbation theory. In terms of complex coordinate s = (x6 + ix10)/R and v =

x4 + ix5, the complex gauge couplings are

−iτα(v) ∼= sα(v)− sα−1(v), (2.37)

here sα is the position of αth NS5 brane and is a logarithmic function of v, in fact

−iτα(v) ∼= (2kα − kα−1 − kα+1) ln v, (2.38)

here kα are the number of D4 branes between αth and α + 1th NS5 Brane. This

is the familiar picture of running gauge coupling in four dimension. There are bi-

fundamental matter between adjacent gauge groups whose mass parameter are given

by position difference of two stacks of D4 branes. The mass of fundamental matter is

also represented by the v coordinate of D6 branes. All the UV parameters have very

nice geometric interpretation.

There are two different ways to introduce fundamental hypermultiplets to the

gauge groups at both ends: This can be achieved by attaching semi-infinite D4 branes

as in Figure 2a) or adding D6 branes as in Figure 2b). In this section, brane config-

urations with semi infinite D4 branes will not be considered. Let’s consider a brane

configuration with n + 1 NS5 branes and a total of kα D4 branes stretched between

αth and (α+ 1)th NS5 brane, the gauge group is
∏n

α=1 SU(kα), and there are bifun-

damental hypermultiplets transforming in the representation (kα, k̄α+1); The number
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of D6 branes dα is constrained by

dα ≤ 2kα − kα+1 − kα−1, (2.39)

where k0 = kn+1 = 0. The restriction on the number of fundamental matter ensures

that each node of the quiver theory is either superconformal or asymptotical free.

The Seiberg-Witten curve for this theory is derived by lifting the above config-

uration to M theory. NS5 brane becomes a M5 brane located at a fix position at

x10, D4 branes become also the M5 branes but now wrap on x10. The D6 branes are

described by Taub-NUT space with coordinates x4, x5, x6, x10. NS5-D4 brane con-

figurations become a single M5 brane embedded in D6 branes background, and the

Seiberg-Witten curve is just the Riemann surface wrapped by this M5 brane. Define

coordinate v = x4 + ix5 and polynomials:

Js =
is∏

a=is−1+1

(v − ea), (2.40)

where 1 ≤ s ≤ n and dα = iα − iα−1, ea is the constant which represents the position

of D6 brane. The Seiberg-Witten curve is

yn+1 + g1(v)y
n + g2(v)J1(v)y

n−1 + g3(v)J1(v)
2J2(v)y

n−2

+...+ gα

α−1∏
s=1

Jα−s
s yn+1−α + ...+ f

n∏
s=1

Jn+1−s
s = 0, (2.41)

here gα is a degree kα polynomial of variable v. The Seiberg-Witten differential is

given by λ = vdy
y
. The gauge coupling is encoding in the overall coefficient of each

polynomial gα.

The gauge couplings are determined by x6 positions of the NS5 branes. If the

beta functions for all the gauge groups vanish, the asymptotic behaviors of the roots

of Seiberg-Witten curve regarded as a polynomial in y determine the gauge couplings.
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In large v limit, the roots are y ∼ λiv
k1 , where λi are the roots of the polynomial

equation:

xn+1 + h1x
n + h2x

n−1 + ....+ hnx+ f = 0. (2.42)

In x plane, there are n+3 distinguished points, namely 0,∞, and λi. The choice of λi

determines the asymptotic distances in coordinate x6 between fivebranes and hence

the gauge coupling constants. The gauge coupling space is the complex structure

moduli of the sphere with n+ 3 marked points among which 0,∞ are distinguished.

Denote the moduli space as M0,n+3;2, the fundamental group π1(M0,n+3;2) is inter-

preted as the duality group.

Let’s describe one example which illustrates the power of the brane construction.

Consider first the case with only two NS5 branes and no D6 branes. This is just pure

SU(N) gauge theory, the Seiberg-Witten curve from the general formula (5.43) is

fy2 − (vN + u2v
N−2 + ...uN)y + f = 0 (2.43)

with y = es, and I have made a scaling to take this special form. In the large v limit,

there are two solutions of y

y1 =
1

f
vN , y2 = fv−N , (2.44)

then the gauge coupling reads

−iτ(v) = −2Nln
v

f
1
N

, (2.45)

so the dynamical generated scale is ΛN = f . Define y → z, x → xz, the above curve

becomes

xN +
u2
z2
xN−2 +

u3
z3
xN−3 + ...

uN
zN

=
ΛN

zN
(z +

1

z
), (2.46)

with Seiberg-Witten differential λ = xdz. This is exactly the same as (2.35).
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D. Relation to integrable system

Starting with pure SU(2) gauge theory, the low energy effective action is solved by

writing a Seiberg-Witten fibration X → U : there is a torus Xu at each point of the

moduli space. The kahler metric can be solved by specifying a meromorphic one form

λ on Xu. However, λ is not unique: another differential λ
′
= λ+dα will play the same

role. It is natural to define a two form ω = dλ which is unique. ω is holomorphic

and closed as from the definition. The kahler metric on the moduli space is derived

as following: start with (2, 2) form ω ∧ ω̄ and integrate over the fibre, the resulting

(1, 1) form should be positive definite and defines the kahler metric on the moduli

space. Locally if ω = α ∧ du where α is the one form on the torus Xu, then the

metric is positive as long as α ̸= 0 which means that Ω is non-degenerate. Notice

that the restriction of ω on the fibre is zero with this consideration. Therefore, ω

has the following property: ω is a holomorphic and closed (2, 0) form on X, it is

non-degenerate and its restriction on the fibre is zero.

The above characterization of the (2, 0) form ω can be generalized to the solution

of rank r gauge theory. The vanishing restriction on the fibre of ω means that locally

ω =
∑

i dxi ∧ dui where xi are the coordinates on the fibre. Non-degenerate closed

holomorphic (2, 0) ω defines a complex symplectic structure onX, the Poisson bracket

for the holomorphic functions f and g is

{f, g} =
∑
i,j

ωij∂if∂jg. (2.47)

Since locally ω =
∑

i dxi ∧ dui, there are r commuting Hamiltonian ui which satisfy

the relation {ui, uj} = 0. This means that (X,ω) defines an algebraically completely

integrable Hamiltonian system [4]! The inclusion of the mass term in the lagrangian

changes the story a little bit: there are a family integrable systems such that ω
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depends linearly on the mass parameter.

Therefore finding the solution of a given gauge theory is equivalent to identifying

an integrable system. This is another way of finding solutions of gauge theory: finding

an integrable system. However, there is no known explicit way to identify the gauge

theory and integrable system. Still, one need some guesswork. Let me give an example

of how this works.

The integrable system is the so-called periodic Toda chain, it is a non-relativistic

system of n+1 points on a circular complex chain, with expotential nearest neighbor

interactions, given by

H =
1

2

n+1∑
i=1

p2i −M2

n+1∑
i=1

exi+1−xi , (2.48)

with the periodicity condition xn+2 = x1. The Hamiltonia can written in an elegant

way if we recognize the simple roots of lie algebra An and affine lie algebra A
(1)
n ,

An : ei − ei+1 i = 1, ..., n

A(1)
n : ei − ei+1 i = 1, ..., n+ 1, en+2 = e1. (2.49)

Then the interaction term can be written as V = M2
∑

α∈R∗
e−α.x. This is an in-

tegrable system since there is a family of Lax pair by selecting a cartan generators

h = (h1, ...hn)

L(z) = pḣ+
∑
α∈R∗

Me−
1
2
α.x(Eα − E−α) +

1

2
µ2e

1
2
α0.x)(zE−α0 − z−1Eα0)

M(z) =
∑
α∈R∗

Me−
1
2
α.x(Eα − E−α) +

1

2
µ2e

1
2
α0.x(zE−α0 − z−1Eα0), (2.50)

here z is a spectral parameter. The n maximal commuting integral of motions are

Ii = trLi, i = 1, ...n and one can define a spectral curve

det(x− L(z) = 0. (2.51)
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The Seiberg-Witten differential is λ = xdz
z
, change variable to x → xz, the spectral

curve is

xN +
u2
z2
xN−2 + ....uN =

ΛN

zN
(z +

1

z
), (2.52)

with Seiberg-Witten differential λ = xdz, this is exactly the form (2.35).

E. Compactification to three dimensions

The Seiberg-Witten fibration X looks like just a mathematical tool of solving field

theory, however it actually has a physical meaning. Compactify four dimensional

theory on a circle with radius R [33]. The corresponding three dimensional theory has

N = 4 supersymmetry, X is related to the Coulomb branch of this three dimensional

theory.

For the pure three dimensional theory, the effective action on the Coulomb branch

consists of r three dimensional U(1) vector multiplet whose bosonic fields are a gauge

field and three real scalars. In three dimension, a photon is due to a real scalar, so

there are a total of 4 real scalars. The low energy effective theory on the Coulomb

branch is therefore a 4r dimensional hyperkahler manifold.

When the four dimensional theory is compactified on a circle with radius R, the

Coulomb branch is also a hyperkahler manifoldM . One would like to know the metric

of M . In the large R limit, one can borrow the result from four dimensions. The

bosonic part of four dimensional effective action is

L = −[

∫
d4x

1

4e2
FµνF

µν +
iθ

32π2
FµνF̃

µν +
1

4π
Im(τ(u))dudū], (2.53)

where τ(u) = θ
2π

+ 4πi
e2
. In three dimensional terms, A3 = b

πR
component becomes a

real scalar, and the gauge field is also dual to a real scalar σ in three dimension, both

scalars take values in S1, so the target space of the gauge field part is a torus, the
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effective action for the three dimensional massless fields is

L̃ =

∫
d3x(

1

πRe2
|db|2 + e2

πR(8π)2
|dσ − θ

π
db|2 + R

2
Im(τ(u))dudū). (2.54)

So the total space X of Seiberg-Witten fibration is the Coulomb branch of three

dimensional theory at least in the large R limit. However, the Coulomb branch

is a hyperkahler manifold. The Seiberg-Witten fibration only involves one complex

structure of the hyperkahler manifold, and this complex structure does not depend on

the radius R. In general, the exact metric at arbitrary R deviates from our naive form

(2.54), though one of its complex structure does not depend on R. What happens for

arbitrary R is that the four dimensional monopoles wrapped on the circle S become

three dimensional instantons which will correct the naive metric. Those instanton

corrections will resolve the singularity to make the metric smooth. In the large u

limit, the metric is asymptotically of the form of the metric (2.54), the smoothness

of the metric tells us the information of the BPS spectrum as shown in [12].
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CHAPTER III

SIX DIMENSIONAL PERSPECTIVE ∗

As reviewed in last chapter, string theory construction and integrable system are

two main approaches used to derive the Seiberg-Witten curve for four dimensional

N = 2 gauge theories. The string theory construction is quite powerful, since the UV

gauge theory and its deformation is explicitly given and the IR data is nicely derived

by lifting the brane configuration to M theory. The integrable system approach is

rather illuminating and may point to some very deep connections, however, it is fairly

difficult to establish maps between integrable system and gauge theory.

Given the string theory construction, it is interesting to derive the integrable sys-

tem for the gauge theory. This can be done by recognizing the brane construction as

a new six dimensional construction. Once this six dimensional construction is identi-

fied, one can engineer large class of new field theories using this new method. The six

dimensional construction has far-reaching application than just giving the integrable

system. It is very useful in exploring S-duality property for gauge theory, construct-

ing strongly coupled theory, providing the tools for studying wall crossing behavior;

it is also useful to make connections with two dimensional conformal field theory and

three dimensional mirror symmetry, etc. It is rather surprising and amusing that so

much can be done by going to six dimension!

∗Part of the result reported in this chapter is reprinted with permission from N=2
SU quiver with USP ends or SU ends with antisymmetric matter by D. Nanopoulos
and D. Xie, published in JHEP 0908 (2009) 108, Copyright [2009] by SISSA.
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NS5

a)
b)

x6

x4, x5

x3, x6

x4, x5

NS5

Fig. 3. Left: The electric brane configuration of elliptic model. Right: The magnetic

brane configuration of elliptic model.

A. Six dimensional construction from branes: Elliptic model

In fact, the Seiberg-Witten curves derived from the brane construction are quite close

to the form derived from the integrable system approach, and it is possible to build a

direct relation. In the end, a new six dimensional construction is naturally emerging

[34]. This connection to six dimensional theory can be seen by exploring several

dualities of the Type IIA brane construction reviewed in Chapter II. We start with

the elliptic model studied by Witten [9]. The brane configuration is almost the same

as described in last chapter but with x6 to be compact in present case, see Figure 3.

The low energy field theory on this system is a four dimensional N = 2 SCFT called

elliptic model. The gauge group is SU(k)n × U(1). The solution of the low energy

theory is also solved by lifting to M theory.

Now we further compactify coordinate x3 and the system becomes effectively a

three dimensional theory. The Coulomb branch of the three dimensional low energy
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theory is a hyperkahler manifold X with a distinguished complex structure in which it

looks like a fibration π : X → Cr with fibers being abelian varieties Ar with complex

dimension r [33]. The Coulomb branch is quite difficult to calculate since there is lots

of quantum corrections. We want to find a dual theory so that the Coulomb branch

of the original theory can be calculated classically. This can be done using various

string dualities.

Let’s first do a T duality on x3 coordinate and then do a Type IIB S duality,

finally we do another T duality on x3 coordinate. At the end, we come back to Type

IIA configuration. The NS5 brane becomes a IIB NS5 brane under first T duality; S

duality turns it into IIB D5 brane, and the second T duality turns it into a IIA D4

brane located at fixed points in x3, x6, x7, x8, x9 coordinates, we call it D4
′
brane; The

original D4 branes are not changed. The whole brane configuration becomes D4−D4
′

system: D4 brane wrapped on x3, x6 torus and D4
′
is sitting at a fixed point of the

torus. The gauge theory on D4 branes is a U(k) theory with fundamentals coming

from the string stretched between the D4 branes and D4
′
branes. The Coulomb

branch of the original theory is matched to Higgs branch of the dual theory which

does not receive quantum corrections and can be calculated classically. The theory

on D4 branes are five dimensional Super Yang-Mills (SYM) theory and D4
′
branes

are codimension two impurities on this five dimensional theory. We call the original

three dimensional type IIA description electric description and the later type IIA

description as magnetic description.

Consider a single NS5 brane, the four dimensional electric theory is just SU(N)

Yang-Mills with an adjoint, the gauge coupling is

1

g2
=
L

λ
, (3.1)

where L is radius of x6 and λ is the string coupling constant. After a sequence of
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string dualities1, the new constants are λ̃ = R
3
2λ−

1
2 , R̃ = (Rλ)

1
2 , L̃ = L(R

λ
)
1
2 , then

the complex structure moduli of the torus with coordinates (x3, x6) is τ = L̃
R̃

= L
λ
,

which is just the gauge coupling of the original four dimensional theory, and the

gauge coupling of the original four dimensional theory becomes complex structure

parameter of the torus in the magnetic description.

Now the difficult question of calculating Coulomb branch of original 3d theory is

transformed to the calculation of Higgs branch of five dimensional theory compactified

on a torus with several punctures. Since one of the complex structure of the 3d

Coulomb branch is independent of R and is equal to the Seiberg-Witten fibration

of the corresponding four dimensional theory, the job of calculating Seiberg-Witten

curve is reduced to calculate the Higgs branch of Five dimensional theory. The Higgs

branch is just the moduli space of Hitchin equation with specific boundary condition

at the puncture [35](we will discuss Hitchin equation in great detail later). One of

the remarkable property of Hitchin’s moduli space is that it is an integrable system

in one of distinguish complex structure! In fact, one can similarly write an spectral

curve for this integrable system, and this curve is just the Seiberg-Witten curve for

four dimensional theory. So at least for the elliptic model, the integrable system

corresponding to it is a Hitchin system! The boundary condition at the puncture is

due to an extra fundamental matter.

The five dimensional theory living on D4 branes is five dimensional maximal

Yang-Mills, which is not UV complete theory though. It is useful to consider its UV

completion which is the six dimensional (2, 0) theory. (2, 0) theory is a SCFT and

has no lagrangian description. This exotic theory will be explained more later and

the property we need here is that when compactified on a circle, it is five dimensional

1we set α
′
= 1.
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maximal super Yang-Mills theory. (2, 0) theory is the low energy effective theory

living on M5 brane of M theory. The above lift to six dimension has string theory

interpretation.

In the magnetic description, let’s go to type IIA strong coupling and this intro-

duces an extra M theory coordinate x10. In the magnetic description, the D4 and

D4
′
branes become M5 branes wrapped on x10, and the three dimensional theory

is derived by compactifying six dimensional theory on a three torus with coordinate

x10, x6, x3, with another set of M5 branes wrapping on x0, x1, x2, x3, x10 and intersect

transversely on the torus x3, x6.

Now let’s take the radius R → ∞ in the electric description to recover the four

dimensional theory. In the magnetic description, this corresponds to take λ̃ → ∞,

since the Type IIA string coupling is just the radius ofM theory coordinate (by setting

α
′
= 1), this means that we take R10 → ∞ and the complex structure constant of

the torus x3, x6 is the gauge coupling of the original theory. X10 is now non-compact,

and the effective theory is four dimensional and the theory is actually derived by

compactifying six dimensional (2, 0) theory on a punctured torus parameterized by

x3, x6. There is a Hitchin equation defined on the punctured torus which is the

integrable system for the electric gauge theory. The complex structure of the torus is

the gauge coupling constant.

However, the above configuration is really the same as the electric description.

This can be seen by lifting the electric description to M theory by introducing M

theory circle with radius Λ. The NS5 brane becomes a M5 brane with world-volume

x0, x1, x2, x3, x4, x5, and D4 brane becomes M5 branes wrapping x0, x1, x2, x3, x6, x10.

From D4 brane point of view, it is a six dimensional theory (0, 2) theory compactified

on torus x6, x10 whose complex structure is the gauge coupling of the four dimensional

theory. This description is exactly the same as the magnetic description. So for four
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dimensional theory, there is no electric and magnetic description.

The elliptic model example shows that the four dimensional N = 2 gauge the-

ory can be engineered from six dimensional (2, 0) theory on a punctured Riemann

surface. The complex structure of the Riemann surface is the gauge coupling of the

four dimensional theory. The Hitchin integrable system is living on the punctured

Riemann surface which solves the low energy theory of four dimensional theory.

The six dimensional description has an immediate application: since (2, 0) theory

is conformal, the compactification only depends on the complex structure moduli of

the compact space. Two complex structure related by modular group are equivalent.

Four dimensional gauge coupling is realized as the complex structure of Riemann

surface, then S-duality is the modular group of the Riemann surface. The S duality

of N = 4 super Yang-Mills theory is well known and the elliptic model is just mass-

deformed version to N = 4 theory, here we have a geometric understanding. Notice

that for the weakly coupled limit, one take one of the coordinate of the torus to

infinity, the Riemann surface develops a long thin tube. So the weakly coupled limit

corresponds to the degeneration limit of Riemann surface.

For a four dimensional N = 2 SCFT, it is interesting to explore its S duality

property. However, it is not known whether the S-dual theory even for the simplest

Superconformal field theory, this is rather different from the N = 4 case for which

the S-dual theory is known (though it is hard to check). A remarkable result about

the S-duality of N = 2 theory is proposed by Argyres and Seiberg. They showed that

for SU(3) with six flavors, the dual theory involves a strongly coupled matter along

with a weakly coupled SU(2) gauge group. This remarkable observation can actually

be realized geometrically as the above elliptic model.
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B. The information at the puncture: General case

It is definitely interesting to extend the six dimensional construction to other models

engineered using branes. The natural starting point is a linear superconformal quiver

gauge theory. There will be D6 branes in the original type IIA description. D6 branes

are sitting at fixed positions in x6 coordinate, however, the Seiberg-Witten curve does

not depend on those positions so we can move all the D6 branes to infinity. There

will be new D4 branes creating when D6 branes cross NS5 branes. This so-called

Hanany-Witten effect can be understood by doing a T duality on x3 and going to

type IIB theory; In type IIB theory, such effect has been studied in great detail.

The effects of these D6 branes at infinity can be thought of as providing boundary

conditions at infinity. When lift to M theory, the D4 branes becomesM5 branes wrap

on a cylinder and NS5 branes becomes M5 brane intersecting on a single point on

the cylinder, the property of this puncture should be the same as the elliptic model

case simply from locality consideration. Now we conjecture that there are two extra

singularity at two ends of the cylinder and effectively, the theory is engineered by

compactifying six dimensional theory (2, 0) on a punctured sphere.

There is a Hitchin system defined on Riemann sphere which solves the low energy

effective field description. The complex structure of the Riemann surface is the gauge

coupling. The weakly coupled description corresponds to the degeneration limit of

punctured Riemann surface.

In the six dimensional construction, all the important information is now encoded

in the punctures. So how do we know the information on the punctures? The clue

is the relation between the integrable system and the Seiberg-Witten curve. One can

read the information on the puncture from the Seiberg-Witten curve by using the
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following identification

det(x− Φdz) = Seiber-Witten curve from brane construction = 0. (3.2)

The left-hand side is the spectral curve of Hitchin’s integrable system which is deter-

mined by the information on the puncture. Seiberg-Witten differential in Hitchin’s

integrable system description is λ = xdz.

We consider a four dimensional N = 2 linear quiver gauge theory with a chain

of SU groups

SU(n1)× SU(n2)× ...× SU(nn−1)× SU(nn) (3.3)

and bifundamental hypermultiplets between the adjacent gauge groups and ka extra

fundamental hypermultiplets for SU(na) to make the gauge couplings marginal. The

marginality of gauge couplings imposes the constraints on the number of fundamen-

tals:

da = (na − na−1)− (na+1 − na), (3.4)

we define n0 = 0, nn+1 = 0. Since ka is nonnegative, we have

n1 < n2 < ...nr = .. = nl > nl+1 > ... > nn. (3.5)

We take nr = ... = nl = N .

The Seiberg-Witten curve is of the general form

tn+1 + g1(v)t
n + g2(v)J1(v)t

n−1 + g3(v)J1(v)
2J2(v)t

n−2

+...+ gα

α−1∏
s=1

Jα−s
s tn+1−α + ...+ f

n∏
s=1

Jn+1−s
s = 0, (3.6)

the Seiberg-Witten differential is λ = vdt
t
, and

Js =
is∏

a=is−1+1

(v − ea), (3.7)
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where 1 ≤ s ≤ n and dα = iα − iα−1, ea is the constant which represents the position

of D6 brane. In the large v limit, all n+ 1 roots t approach to

t→ vn1 , (3.8)

which means the theory is conformal.

We will identify t = z, v = xt to match Hithcin’s integrable system description.

The above form is not good for our purpose; if we want to realize it as the spectral

curve of a SU(N) Hitchin system, the Seiberg-Witten curve should be of the form

ϕ0(t)v
N + ϕ2(t)v

N−2 + ...ϕN(t) = 0. (3.9)

where ϕ1(t) is a degree n+1 polynomial in t and in the large v limit, t is approaching

constant which are the roots of ϕ1(t). In fact, we have already done some experience

transforming Seiberg-Witten curve to form appropriate for the integrable system, see

for instance the formula (2.35). The solution appears to redefine t coordinate so

that t = t
′ ∏n

i=1 JiL(x), where we split the fundamental matter on each gauge group

into the left part and right part Ji(v) = JiL(v)JiR(v), this would not change the

Seiberg-Witten differential in an essential way. Substituting this formula into the

Seiberg-Witten curve (3.6), after factoring out a common factor, the Seiberg-Witten

curve becomes

c0(v)t
n+1 +

n∑
α=1

cα(v)t
n−α+1 + ...cn+1(v) = 0, (3.10)
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we use t for t
′
and the new coefficient reads

c0 =
n∏

β=1

jββL(v),

cα = gα

α∏
β=1

Jα−β
βR (v)

n∏
β=α+1

Jβ−α
βL (v), α = 1, ...n− 1,

cn = gn(v)
n∏

β=1

Jn−β
βR (v),

cn+1 =
n∏

β=1

Jn+1−β
βR (v). (3.11)

Now the degree of cα is

kα = nα +
α∑

β=1

(α− β)dβR +
n∑

β=α+1

(β − α)dβL, (3.12)

we then have

kα+1 − kα = nα+1 − nα +
α∑

β=1

dβR −
n∑

β=α+1

dβL. (3.13)

The above analysis is general and now we focus on the conformal quiver, using the

relation dα = dαL+dαR = (2nα−nα−1−nα+1), so nα+1−nα = −dαL−dαR+nα−nα−1,

then (3.13) simplifies

kα+1 − kα = n1 −
n∑

β=1

dβL. (3.14)

The difference is a constant and does not depend on α, now to have the generic form

(3.9), we must impose the relation n1 =
∑n

β=1 dβL. The degree kα = k0, interestingly,

k0 = N , we indeed can have a SU(N) Hitchin system! (Since the above result does

not depend how we separate the D6 branes into left and right part, a canonical choice

is to move all the D6 branes with α ≤ r, since there is a relation
∑

left dα = n1, then

one can show that k0 = N).
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With the canonical choice, the Seiberg-Witten curve becomes the form

ϕ0(t)v
N + ϕ1(t)v

N−1 + ....ϕn(t) = 0, (3.15)

ϕ0(t) has the form

tn+1 + f1t
n + ...fαt

n+1−α + ..f = 0, (3.16)

here fα is the overall coefficient of the polynomial gα(v). The Roots ti of ϕ0(t) and

and, 0,∞ determine the gauge couplings. From the form of the SW curve, v = xt

is singular only at those special points, which means the Higgs field is singular at

those points, therefore, the number of punctures are exactly n + 3 and we can form

n invariants which are the gauge couplings of the gauge theory. This confirms our

previous conjecture that the gauge coupling constants are the complex structure of

punctured Riemann sphere.

Let’s look at the form of Higgs field Φ at the puncture. We have ϕ1(t) =∑
miLt

n+1 +
∑n

j=1mjt
n+1−j +

∑
miR, by shifting v → v − 1

N
ϕ1(t)
ϕ0(t)

, we can elimi-

nate the vN−1 term in (3.15). After shifting, the solution of v near the points ti

is

v ∼ 1

(t− ti)
(M,M, ...− (n− 1)M). (3.17)

Notice that M is only a complicated function of mi. To study the solution of v in

the limit t → ∞, new coordinate t
′
= 1

t
is needed. Then introduce new coordinate

v = xt
′
, near t

′
= 0, the solution of x has a regular singularity and the eigenvalue

has the form: for the fist d1 mass parameters, the degeneracy is 1, for the βth mass

parameters, the degeneracy is α, we have a total of N roots, since
∑

left βdβ = N ,

finally, the sum of eigenvalues are zero. Similarly, one find that the Higgs field is

singular at t = 0 and the form of the roots is determined by the right tail.

From above calculation, we show that there are a total of n + 3 singularities on



39

SU(2) SU(4) SU(4) SU(3) SU(2)1 1

12

a)

b)

Fig. 4. Top: A N = 2 linear quiver with N = 4. Bottom: The Young Tableaux

associated with left and right tail.

the sphere. n + 1 has the simple eigenvalues for the Higgs field, while the other two

have generic eigenvalues determined by the shape of the quiver. One can label the

generic puncture using Young Tableaux.

Let’s first consider the left tail. Let us denote N = nr = ... = nl, so that the

non-increasing number (na−na−1), a ≤ r satisfies the relation
∑a=r

a=1(na−na−1) = N .

For the right tail, the non-decreasing number na − na+1 starting from a = n also

satisfies the relation
∑a=n

a=l (na − na+1) = N . So we associate a Young Tableaux with

total boxes N for each tail (see Figure 4). The flavor symmetry of this linear quiver is

U(1)n+1×
∑r

a=1 SU(ka)×
∑n

a=l SU(ka), which can be read explicitly from the quiver

diagram. The degeneracy of the eigenvalue of the generic puncture at 0 at ∞ can also

be read from Young Tableaux. Notice that there are there are 2n1 − n2 column with

height 1 and (2ni − ni−1 − ni+1) column with height i. Since di = 2ni − ni−1 − ni+1,

so we conclude that there is one mass parameter for each column and its degeneracy

is the height of that column.
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n1

n2 − n1

a)
b)

1 2 3

4

Fig. 5. Left: Young Tableaux associated with the tail in a linear quiver gauge theory

with N = 4, p1 = 1− 1 = 0, p2 = 2− 1 = 1, p3 = 3− 1 = 2, p4 = 4− 2 = 2, the

flavor symmetry is SU(2). Right: The punctured sphere for (0, 2) A3 theory

compactification, each puncture is labeled by a Young Tableaux.

Actually, given a regular puncture, the flavor symmetry is

S(
∏
lh>0

U(lh)). (3.18)

where lh is the number of columns with height h. There is also a natural massless

limit for the same puncture, expanding the spectral curve as

xN +
N∑
i=2

ϕi(z)x
N−i = 0, (3.19)

where x is the coordinate on a sphere; and the Seiberg-Witten differential is simply

λ = xdz, here ϕi(z) is the meromorphic differential.

The orders of the poles are determined from the Young Tableaux by using the

formula pi = i− s, where i is the label of the ith box and s is the height of ith box in

the Young Tableaux (see Figure 5). The dimension of the space of these meromorphic

differentials is given by

dimension of ϕi =
n+3∑

punctures d=1

p
(i)
d + 1− 2i. (3.20)
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The parameters of these differential are identified with dimension i operators of the

four dimensional theory, i.e. the parameters for the Coulomb branch.

A nature question is if we can put other type of regular singularity at the punc-

ture, it is a little bit surprising that the above situation exhausted all the regular

singularity, we will prove this starting from solution of Hitchin’s equation.

C. N = 2 SU quiver with USP ends or SU ends with antisymmetric matter

1. Six dimensional construction from orientifold

In the above example, only SU gauge group and fundamental are considered, it is

natural to see if the above construction is applicable to other gauge groups and

matter contents.

Four dimensional N = 2 superconformal SU field theory with USp ends or SU

ends with antisymmetric representations can be derived by adding orientifold six

planes to Type IIA D4-NS5 brane system [36]. The solution of the model [37] can be

found after lifting the above brane configuration to M theory along the similar line

as in [9].

We first consider D4 and NS5 branes system in type IIA theory; We also in-

clude two orientifold six planes and 8 D6 branes so that the net RR charges cancels.

The k four branes lie along the directions x0, x1, x2, x3, x6; we take x6 coordinate

compact. The NS5 branes lie along x0, x1, x2, x3, x4, x5 directions. The orientifold six

planes extend along x0, x1, x2, x3, x7, x8x9 directions. It corresponds to the space time

transformation

h : (x4, x5, x6) → (−x4,−x5,−x6), (3.21)

together with the world sheet parity Ω and (−1)FL . The D6 branes are parallel to

O6 planes.
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O6−

a)
O6− b)

O6−

O6−

4, 5

6

c)

O6−

O6−

Fig. 6. The tree families of brane configurations in the background of two negatively

charged O6-planes. The short vertical lines represent the NS branes, the crossed

circles are the orientifold planes. The D6 branes is put in between the NS

branes, we omit them in the picture.

There are three main families of N = 2 quiver gauge theory with these brane

configurations, depending on the positions of the NS branes:

i) The number of NS branes is odd, N = 2r + 1. Only one NS5 brane intersect

with the orientifold plane. One typical brane configuration is depicted in Figure 6a.

The quiver gauge theory is

USp(k)× SU(k)r−1 × SU(k) (3.22)

k must be even since for USp group the rank must be even. We have the bifundamental

matter fields between the adjacent group. Two fundamentals are attached at the USp

node and we have two fundamentals and one antisymmetric hypermultiplet at the last

SU(k) node. The flavor symmetry is SO(4)×U(1)r×SU(2)×U(1). The SO(4) flavor

symmetry is from the two fundamentals of USp node, and the last SU(2) × U(1) is
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from the two fundamentals of the SU ends.

Note that the antisymmetric representation of SU(k) is real, so the flavor sym-

metry of this representation is USp(2) = SU(2). In this paper, however, we do not

consider the mass deformation of antisymmetric matter, so we do not include the

flavor symmetry associated with it. Use the isomorphism SO(4) = SU(2) × SU(2),

the total flavor symmetry is SU(2)× SU(2)× U(1)r × SU(2)× U(1).

ii) The number of NS branes is even. N = 2r, and there are no NS branes

intersecting the O6-planes. One example is shown in Figure 6b). The quiver gauge

theory is

USp(k)× SU(k)r−1 × USp(k) (3.23)

We have the bifundamentals between the adjacent group and two fundamentals at

the first and last USp gauge factor. The flavor symmetry is SU(2)× SU(2)×U(1)r ×

SU(2)× SU(2).

iii) The number of NS branes is even N = 2r. There are two NS branes inter-

secting with the O6-planes. One configuration is shown in Figure 6c). The quiver

gauge theory is

SU(k)× SU(k)r−1 × SU(k) (3.24)

Besides the bifundamental matters, we have two fundamentals and one antisymmetric

at the first and the last SU factor. The flavor symmetry is U(1) × SU(2) × U(1)r ×

SU(2)× U(1).

When r = 0, the above theories are degenerate as

i) USp(k) with a traceless-antisymmetric and 4 fundamentals.

ii) Also a USp(k) with traceless-antisymmetric and 4 fundamentals, this is only

for the massless antisymmetric matter, the mass deformation for this matter is not

allowed.
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iii) SU(k) with 2 antisymmetric hypermultiplets and 4 fundamentals.

The Seiberg-Witten curves for those theories are derived by lifting the Type IIA

configuration to M theory [37]. Here we briefly review the derivation. The NS5-D4

brane configuration is lifted to a single M5 brane wrapped on a Riemann surface in

O6−D6 background. In lifting to M theory, we grow a circular dimension x10 with

radius R. Define the variables

v = x4 + ix5, s = (x10 + ix6)/(2πR). (3.25)

Before orbifolding, the background space is Q̃ = C ×T 2. The Z2 identification of the

orientifold is (v, s) ≃ (−v,−s). The M theory background is therefore the orbifold

space Q = Q̃/Z2.

We only need the complex structure of this orbifold background. To do this, we

first write an algebraic equation of torus. The torus can be written as an complex

curve in the weighted projective space CP 2
(1,1,2). CP 2

(1,1,2) is defined as the space

(w, x, y)/(0, 0, 0) modulo the identification

(λω, λx, λ2η) ≃ (ω, x, y), λ ∈ C∗. (3.26)

The torus is represented as

η2 =
4∏

i=1

(x− eiω), (3.27)

where the numbers ei encode the complex structure τ of the torus in usual way.

The Z2 automorphism of the torus is η → −η with ω and x fixed. The Z2

identification of the orientifold background becomes (v, ω, x, η) ≃ (−v, ω, x− η). The

fixed points are

(0, 1, ei, 0) i = 1, 2, 3, 4, (3.28)

we write it in ω = 1 patch.
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Let us define Z2 invariant variables

y ≡ ηv, z = v2, (3.29)

the orbifolded background Q (without mass deformation for the fundamental matter)

is

y2 = z

4∏
i=1

(x− eiω). (3.30)

In the following, we write all the formulas in the patch ω = 1, so the orbifold equation

is

y2 = z
4∏

i=1

(x− ei). (3.31)

The mass deformed (which corresponds to mass deformation to four fundamental

matters induced by D6 branes) background is

y2 = z
4∏

i=1

(x− ei) +Q(x), (3.32)

and

Q(x) =
4∑

j=1

µ2
j

∏
k ̸=j

[(x− ek)(ej − ek)]. (3.33)

The Seiberg Witten curve for those field theories is a Riemann surface embedded

into above background. We can first write the Seiberg Witten curve for the brane

configuration before orbifolding, which is just the elliptic model in [9], and then

require the curve invariant under the Z2 transformation. For the elliptic model, the

bifundamental masses satisfy the relation
∑

αmα = 0, so to get the most generic mass-

deformed theory, the background is not simply C × T2 but an affine model. There is

no such problem for our model; before orbifolding, the relation
∑

αmα still applies,

however, after orbifolding, the bi-fundamental masses are all independent(the orbifold

images of D4 branes have opposite v coordinates, so the bi-fundamental mass for two

images are opposite). We do not need to change the background to an affine bundle
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to allow most generic mass deformation for the bifundamental matters. The situation

is different if we want to turn on mass deformation for anti-symmetric matter, the

background is an affine bundle. We will not discuss this complication in this paper.

The Seiberg-Witten curve of the above quiver gauge theories without mass de-

formation is

zn + A(z) +
r∑

s=1

Bs(z) + yCs(z)

x− xs
+

q∑
p=1

yDp(z)

x− ep
= 0, k = 2n, (3.34)

here xs are positions of NS5 branes which don’t intersect with the orientifold; q is the

number of NS branes which intersect with the orientifold planes and ep are positions

of NS5 branes stuck at orientifold. This is natural since ep are fixed points under the

orbifold action. A(z) and Bs(z) are polynomials in z

A(z) =
n∑

l=1

Alz
n−l, Bs(z) =

n∑
l=1

Bslz
n−l, (3.35)

and Cs and Dp are polynomials in z

Cs(z) =
n∑

l=2

Cslz
n−l Dp(z) =

n∑
l=2

Dplz
n−l. (3.36)

We also have the constraint:

r∑
s=1

Cs(z) +

q∑
p=1

Dp(z) = 0. (3.37)

This curve can be derived by first write the Seiberg-Witten curve of elliptic model,

and then impose the orbifold invariance and finally express it in terms of orbifold

invariant variable. The mass-deformed Seiberg-Witten curve is

zn + A(z) +
r∑

s=1

Bs(z) + yCs(z)

x− xs
+

q∑
p=1

(y − yp)Dp(z)

x− ep
= 0, (3.38)

where yp =
√
Q(ep). A(z), B(z), C(z), D(z) are polynomials in z of order n− 1.
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The Seiberg-Witten differential is given by

λ =
ydx∏4

i=1(x− ei)
. (3.39)

We will rewrite the above curve in a form along the way in [11]. Let’s first

consider case ii) with two USp ends, which corresponds to q = 0. We rewrite the

Seiberg-Witten curve in a form which makes the interpretation with the A2n−1 theory

compactification on a punctured sphere manifest. Expanding the Seiberg-Witten

curve in terms of polynomial of z, we have

zn +
n∑

l=1

plr(x)

∆′ zn−l +
n∑

l=2

ypl(r−2)(x)

∆′ zn−l = 0, (3.40)

here ∆
′
= (x− x1)....(x− xr) and p

l
r(x) are polynomials with order r; pl(r−2) are r− 2

order polynomials. Define z =
∏4

i=1(x− ei)t
2, then

y = t

4∏
i=1

(x− ei) (3.41)

The Seiberg-Witten differential becomes

λ = tdx, (3.42)

and the Seiberg-Witten curve is

t2n +
n∑

l=1

plr(x)

∆′ ∏4
i=1(x− ei)l

t2n−2l +
n∑

l=2

plr−2(x)

∆′ ∏4
i=1(x− ei)l−1

t2n−2l+1 = 0. (3.43)

With this form, we conclude that this theory can be realized as the six dimensional

A2n−1 theory compactified on a sphere with r basic punctures x1, ...xr (see Figure 7a)

for the Young Tableaux and 4 generic punctures ei, i = 1, ..4 with Young Tableaux in

Figure 7b). We turn on the surface operators with poles at the punctures:

ϕ2l =
plr(x)

∆′ ∏4
i=1(x− ei)l

dx2l, ϕ2l−1 =
plr−2(x)

∆′ ∏4
i=1(x− ei)l−1

dx(2l−1). (3.44)
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a)
b) c)

Fig. 7. Young-Tableaux of various punctures. Left: Puncture with pi = 1. Center:

puncture with pl =
l
2
for even l, pl =

(l−1)
2

for odd l. Right: Puncture with

pl =
l
2
for even l, pl =

(l+1)
2

for odd l.

To clarify one point, x is a coordinate on C, and since we do not put any singu-

larity at ∞, we can add a point at ∞ to C and compactify it to a sphere. This does

not change the Seiberg-Witten differential and other properties of our model.

Several checks can be made about this conclusion:

a) The moduli space of the sphere with r+4 punctures has dimension r+1 which

can be identified with the coupling constant of gauge groups in the quiver.

b)The various differentials have pole pi = 1 at punctures at xs , which can be

associated with the flavor symmetry U(1), where the Young Tableaux is shown in

Figure 7a). The punctures ei has order pl =
l
2
when l is even, pl =

l−1
2

when l is odd.

This puncture can be represented as a Young Tableaux with two columns of height

n in Figure 7b). These poles correspond to SU(2) flavor symmetry. The total flavor

symmetry is then SU(2)4 × U(1)r, which matches the flavor symmetries read from

the quiver diagram.

c) For the differential ϕ2l, the dimension is 4l + r − 2(2l) + 1 = r + 1, which

matches the dimension of the polynomials plr. For differential ϕ2l−1, the dimension is

r − 1, which also matches the parameters needed for the polynomial plr−2.
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d) When the mass deformation is turned on, we have the t2n−1 term. Do a linear

transformation on t = t
′
+ α to eliminate this term. And keep the Seiberg-Witten

differential as λ = t
′
dx. One can check the residuals of the punctures xs and ep have

the same patter as determined by the Young Tableaux.

Next, we consider case i) for which only one NS5 brane intersects with the O6

plane. The Seiberg-Witten curve is

zn + A(z) +
r∑

s=1

Bs(z) + yCs(z)

x− xs
+
yD1(z)

x− e1
= 0, k = 2n. (3.45)

Expand the curve in the polynomial of z and define z =
∏4

i=1(x − ei)t
2, the curve

becomes

t2n+
n∑

l=1

plr(x)

∆′ ∏4
i=1(x− ei)l

t2n−2l+
n∑

l=2

plr−1(x)

∆′ ∏4
i=2(x− ei)l−1(x− e1)l

t2n−2l+1 = 0. (3.46)

Similarly, we conclude that this theory can be realized as the six dimensional A2n−1

compactified on a sphere with r punctures at xs and 3 punctures at ei, i = 2, 3, 4, we

also have a different puncture at e1 with Young Tableaux in Figure 7c). The surface

operators we turn on are

ϕ2l =
plr(x)

∆′ ∏4
i=1(x− ei)l

dx2l, ϕ2l−1 =
plr−1(x)

∆′ ∏4
i=2(x− ei)l−1(x− e1)l

dx(2l−1). (3.47)

Similar checks can be made:

a) The dimension of moduli space of the punctured sphere is r + 1 which is

identified with the r + 1 coupling constants of gauge groups.

b) The flavor symmetries correspond to xs are U(1), while ei, i = 2, 3, 4 represent

flavor symmetry SU(2). The e1 puncture has pole pl =
l
2
for l even, and pl =

(l+1)
2

for odd l. This can be represented by the Young Tableaux in Figure 7c). The

flavor symmetry of this puncture is U(1). Therefore, the total flavor symmetry is
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U(1)r × SU(2)3 × U(1), Which matches our counting from the quiver diagram. Note

that the Young Tableaux for the U(1) from the two fundamentals on the SU ends is

different from the U(1) punctures for the bi-fundamental matter.

c) The dimension of ϕ2l is r + 1, and ϕ2l−1 has dimension r, which matches the

parameters needed for the polynomial plr(x) and p
l
r−1(x).

d) The flavor symmetry can be checked from the mass deformed theory.

Finally, let’s consider the quiver in case iii); the Seiberg-Witten curve can be

written as

t2n+
n∑

l=1

plr(x)

∆′ ∏4
i=1(x− ei)l

t2n−2l+
n∑

l=2

plr−1(x)

∆′ ∏4
i=3(x− ei)l−1(x− e1)l(x− e2)l

t2n−2l+1 = 0.

(3.48)

Similarly, this theory can be written as the six dimensional A2n−1 theory com-

pactified on Riemann surface with punctures ei and xs. The surface operators we

turn on are

ϕ2l =
plr(x)

∆′ ∏4
i=1(x− ei)l

dx2l, ϕ2l−1 =
plr−1(x)

∆′ ∏4
i=3(x− ei)l−1(x− e1)l(x− e2)l

dx(2l−1).

(3.49)

One can check along the similar line that this is the correct interpretation.

2. Some special examples

We want to mention some special examples which are of later interest for us. We

first analyze SU(2n) with two-antisymmetric matter and four fundamentals, this cor-

responds to r = 0, q = 2. The Seiberg-Witten curve is

0 = t2n +
n∑

l=1

Al∑4
i=1(x− ei)l

t2n−2l +
n∑

l=2

Dl∑4
i=3(x− ei)l−1(x− e1)l(x− e2)l

t2n−2l+1.

(3.50)
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So this theory can be represented as the A2n−1 theory compactified on a sphere with

four punctures, two of which have the form as Figure 7a), and two of which have the

form as Figure 7b).

We then study the quiver gauge theory corresponding to r = 1, q = 0, the

quiver gauge theory is USp(2n) × USp(2n). The flavor symmetry in this case is

SU(2)4 × SU(2). The last SU(2) comes from the bifundamental matter which now

furnish a real representation of quiver theory. Naively, we identify this theory as

A2n−1 compactified on a sphere with four punctures ei and one basic puncture x1.

The manifest flavor symmetry from this representation is SU(2)4 × U(1).

Finally, we consider the quiver corresponding to r = 0, q = 1, this is a USp(2n)

theory with four fundamental and one-antisymmetric hypermultiplet. The Seiberg-

Witten curve is

t2n +
∑
l

pl∏4
i=1(x− ei)l

t2n−2l = 0. (3.51)

This theory is represented as A2n−1 theory compactified on sphere with four identical

puncture with SU(2) flavor symmetry. Combined with the permutation symmetry

of this four identical punctures, we expect that this theory has the SL(2, Z) duality.

Notice that the above curve can be written as

(t2 +
q∏4

i=1(x− ei)
)n = 0. (3.52)

It is amusing to note that for SU(2) theory with four foundamentals, the Seiberg

Witten curve is

t2 +
q∏4

i=1(x− xi)
= 0. (3.53)

So the Seiberg-Witten curve for USp(2n) theory with four fundamentals and one

traceless anti-symmetric representation is tensor product of that of SU(2) theory

with four fundamentals.
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CHAPTER IV

GENERALIZED SUPERCONFORMAL QUIVER GAUGE THEORY: REGULAR

SINGULARITY ∗

In this part, we take the six dimensional (2, 0) theory as a starting point and define our

theory as the compactification this 6d theory on a Riemann surface with punctures

and try to learn as much as we can: gauge group and matter content, S-duality, etc.

The Hitchin’s equation can be derived by a five dimensional description as derived

in last chapter. There is actually another way to see the appearance of Hitchin’s

equation: The manifold six dimensional field theory living is Σ×M4, where M4 is a

four manifold and usually taken as R4. We can actually study N = 2 theory on more

general manifold like M4 = T 2 × C, and get an effective field theory on C. On the

other hand, the same system can be seen as first compactifying on T 2 and then on Σ.

In the first step, we get a N = 4 theory, and in the second step, surface operators of

N = 4 theory are inserted at the puncture. One need twist N = 4 theory to define a

supersymmetric theory on a curved Σ. There are actually more than one way to twist

the theory; For the twist needed to describe N = 2 gauge theory, we get Hitchin’s

equation on Σ. The twisting is well studied in the context of gauge theory description

of Geometric Langlands GL program [38]. I will explain why this so-called GL twist

is the correct one for our use.

One starts with a six dimensional (2, 0) SCFT. This exotic theory has no la-

grangian description. It is the low energy effective field theory living on M5 brane.

∗Part of the result reported in this chapter is reprinted with permission from
Hitchin equation, singularity, and N=2 superconformal field theories by D. Nanopou-
los and D. Xie, published in JHEP 1003 (2010) 043, Copyright [2010] by SISSA;
N=2 generalized superconformal quiver gauge theory by D. Nanopoulos and D. Xie
which is currently under review by Phys. Rev. D. with manuscript number DU10721,
Copyright[2010] by American Physical Society.
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There are three characteristic properties of this theory: 1) It has a ADE classification;

2) When compactified on a circle, it becomes five dimensional maximal supersymmet-

ric theory; 3) It has a Coulomb branch. The second property is used in our derivation

of the six dimensional construction. For the An type 6d theory, it is just the world-

volume of M5 brane on the flat space-time. The bosonic content is a self-dual two

form and five scalars, those five scalars parameterize the motion in the 5 transverse

dimension in M theory. The R symmetry is SO(5) which rotates five scalars in a

standard way, while the two form fields are singlet.

The important symmetry group is then SO(1, 5)×SO(5)R, the supercharge and

scalar transform as

Q = 4
⊗

4, Φ = 1
⊗

5. (4.1)

To get a four dimensional supersymmetric theory, one need to twist the theory on

the Riemann surface Σ. The twisting is really combining spin connection SO(2)s Σ

and SO(2)R to define a new spin connection SO(2)
′
s. So we split the R symmetry as

SO(3)R×SO(2)R and take the diagonal embedding. Before twisting, the supercharge

transforming under SO(1, 3)× SO(2)s × SO(3)R × SO(2)R as

Q = (2 1
2
+ 2

′

− 1
2
)
⊗

(2 1
2
+ 2− 1

2
). (4.2)

We twist the theory using SO(2)
′
s = SO(2)s − SO(2)R, then the supercharge trans-

forms under the symmetry SO(1, 3)× SO(2)
′
s × SO(3)R as

(2
⊗

2)0 + (2
⊗

2)1 + (2
′ ⊗

2)−1 + (2
′ ⊗

2)0, (4.3)

where the subscript is the charge under SO(2)
′
s, The preserved supercharge is (2

⊗
2)0

and its conjugate (2
′ ⊗

2)0, which is exactly four dimensional N = 2 Supersymmetry.
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For the scalar, it transforms under SO(1, 3)× SO(2)s × SO(3)R × SO(2)R as

1
⊗

5 = 10
⊗

(30 + 11 + 1−1). (4.4)

After twisting, it transforms under SO(1, 3)× SO(2)
′
s × SO(3)R as

(1
⊗

3)0 + (1
⊗

1)1 + (1
⊗

1)−1, (4.5)

so there is a complex one form living at the Riemann surface. One also get gauge

fields on Σ from the two form.

Now let’s look at the same system fromN = 4 point of view. There are more than

one way to twist the theory on Σ, however, to get a one form scalar on the Riemann

surface. The natural choice is the twist appearing in the context of Geometrical

Langlands problem. The BPS equation on the Riemann surface is the Hitchin’s

equation.

A. Review of Hitchin’s equation

The four dimensional theory is constructed by compactifying six dimensional theory

on a punctured Riemann surface and flowing to IR. The Hitchin’s equation is defined

on this Riemann surface

FA − ϕ ∧ ϕ = 0,

dAϕ = 0, dA ∗ ϕ = 0, (4.6)

where ϕµ and Aµ are two vector fields defined on Riemann surface [39, 40]. The moduli

space of solutions of Hitchin’s equation MH is a Hyperkahler manifold, which can be

proved by using hyperkahler quotient method. The moduli space has dimension 6g−6.

A hyperkahler manifold has three complex structures I, J,K satisfying the quater-
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nion relation I2 = J2 = K2 = 1, IJ = −JI, etc. There are three kahler forms

ωp = −(gI, gJ, gK), p = I, J,K. ωI is a (1, 1) form in complex structure I. Define the

complex symplectic form ΩI = ωK + iωK , etc, it is a (2, 0) form in complex structure

I. An isometry G is said to be triholomorphic if LXωp = 0, where X is the vector

field generating the symmetry and LX is the Lie derivative. The momentum map µ⃗X

with respect to ωp is defined as X iω⃗ij = µ⃗X
,j .

Given a hypekahler manifold with triholomorphic isometry, one can perform the

hyperkahler quotient and the quotient space is µ⃗−1(0)/G. In general, one can choose

a triplet of central elements ζ⃗, and take the quotient µ⃗−1(ζ⃗)/G.

Let M denote the space of all the fields A and ϕ, one can define a flat metric on

it

ds2 = − 1

4π

∫
Σ

d2zTr(δAz

⊗
δAz̄ + δAz̄

⊗
δAz + δϕz

⊗
δϕz̄ + δϕz̄

⊗
δϕz), (4.7)

by choosing a complex structure on Σ, we write A = dzAz + dz̄Az̄, ϕ = dzϕz + dz̄ϕz̄.

The three complex structures are defined on M as (here their action are written on

the one form)

I t(δAz̄) = iδAz̄, I t(δϕz) = iδϕz, I t(δAz) = −iδAz, I t(δϕz̄) = −iδϕz̄,

J t(δAz̄) = −δϕz̄, J t(δAz) = −δϕz, J t(δϕz̄) = δAz̄, J t(δϕz) = δAz,

Kt(δAz̄) = −iδϕz̄, Kt(δϕz̄) = −iδAz̄, Kt(δAz) = iδϕz, Kt(δϕz) = iδAz. (4.8)

Choose a complex structure on Σ, we have fields Az, Az̄, ϕz, ϕz̄. The kahler form



56

have the similar form:

ωI =
i

2

∫
dz2Tr(δϕz̄ ∧ δϕz − δAz̄ ∧ δAz),

ωJ =
1

2

∫
dz2Tr(δϕz̄ ∧ δAz + δϕz ∧ δAz̄),

ωK =
i

2

∫
dz2Tr(δϕz̄ ∧ δAz − δϕz ∧ δAz̄). (4.9)

The gauge transformation acts as δA = −Dϵ, δϕ = [ϵ, ϕ], where A and ϕ is the one

form on Riemann surface. The momentum map can be derived similarly:

µI = Fz̄z + [ϕz, ϕz̄] = 0. (4.10)

The complex moment map is

νI =
∂ϕz

∂z̄
+ [Az̄, ϕz] = 0. (4.11)

These are just the Hitchin’s equation. We also define ΩI = ωJ + iωK and its permu-

tation they have the following form

ΩI =
1

π

∫
dz2Trδϕz ∧ δAz̄,

ΩJ = − i

4π

∫
c

TrδA ∧ A,

ΩK = − i

2π

∫
d2zTr(deltaAz̄ ∧ δAz − δϕz̄ ∧ δϕz − δϕz̄ ∧ δAz − δϕz ∧ δAz̄). (4.12)

Complex structure J does not depend on the complex structure of the Riemann

surface! We now explain one of the main result of Hitchin that in complex structure

I, the moduli space MH is an integrable system. First, there is a Hitchin’s fibration,

for the case SU(2), the base is defined as the quadratic Casmiir operator ω = Trϕ2.

The space of quadratic differential on the genus g Riemann surface has dimension

3g−3. The Hitchin fibration is defined as the map π :MH → B obtained as mapping
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(E, ϕ) to ω = Trϕ2. The Hamiltonian is defined as the linear function and has

number 3g − 3 on B which is the correct number for an integrable system (for a 2n

dimensional complex symplectic space, there are n commuting Hamiltonian to make

it an integrable system). Moreover, one can define a spectral curve as we did for some

of the integrable system as

det(x− Φdz) = 0. (4.13)

where Φ is the holomorphic part of the Higgs field.

It is worth pointing out that in complex structure I, each point on the moduli

space parameterizes a higgs bundle, while in complex structure J, each point repre-

sents a complex flat connection on Riemann surface.

B. Regular singular solution to Hitchin’s equation

We have just considered moduli space of smooth solution to Hitcin’s equation. There

are also singular solutions which are very useful to us. The most general scale-

invariant and rotation-invariant singular solution [41, 42] is

A = a(r)dθ + f(r)
dr

r
,

ϕ = b(r)
dr

r
− c(r)dθ. (4.14)

f(r) can be set to zero by a gauge transformation and after introducing a new variable

s = − ln r, Hitchin’s equation becomes Nahm’s equations:

da

ds
= [b, c],

db

ds
= [c, a],

dc

ds
= [a, b]. (4.15)

Let’s first take SU(2) gauge group. These equations are solved by setting a, b, c
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to constant α, β, γ of the Lie algebra of SU(2), and they must commute and we can

conjugate them to lie algebra of a maximal torus of SU(2). The resulting solution is

A = αdθ + ...,

ϕ = β
dr

r
− γdθ + .... (4.16)

We ignore possible terms which are less singular than the terms presented above.

The moduli spca of Hitchin’s equation with these boundary conditions are basically

the same as the smooth case: the moduli space is a hyperkahler manifold, it is an

integrable system in complex structure I, etc. In particular, one can define an spectral

curve in complex structure I.

We also want to know the behavior of the solution when α, β, γ → 0. One may

think that there is no singularity at all. This is not the case if we note that we may

have less singular terms to the equation. When α, β, γ → 0, those less singular terms

play dominant role.

Indeed, we do have less singular solution to Hitchin’s equation, the Nahm’s equa-

tions can be solved by:

a = − t1
s+ 1/f

, b = − t2
s+ 1/f

, c = − t3
s+ 1/f

, (4.17)

where s = − ln r and [t1, t2] = t3 and cyclic permutation thereof which are the usual

commutation relations for SU(2) lie algebra. A convenient basis for SU(2) is

e1 =

 − i
2

0

0 i
2

 , e2 =

 0 i
2

i
2

0

 , e3 =

 0 − 1
2

1
2

0

 . (4.18)

The choice of f spoils conformal invariance, but it is not natural to make a

choice, since then the derivative of A and ϕ with respect to f is square-integrable.

So this solution with f allowed to fluctuate is conformal invariant. The advantage of
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including this parameter is that when f = ∞, we get the trivial solution. Combined

the previous discussion, the second type of solution can be thought of the zero limit

of the first type.

The fact that the second type of solution is a limit of the first type of solution can

also be seen by studying moduli space of Hitchin’s equation in complex structure J . In

complex structure J , solution of Hitchin’s equation describes a flat SL(2, C) bundle.

It is important to study the monodromy of the flat connection. Define complex-

valued flat connection A = A + iϕ taking value in SL(2, C), the monodromy is U =

P exp(−
∫
l
A) where l is the contour surrounding the singularity. This monodromy

characterizes the singular behavior of the solution. The curvature F defined as F =

dA+A∧A is equal to zero due to Hitchin’s equation, so the monodromy calculates

as above is independent of the contour we choose. Define ζ = α− iγ, the monodromy

for our first set of solutions (4.16) is

U = exp(−2πζ). (4.19)

The monodromy of another solution (4.17) is

U
′
= exp(−2π(t1 − it3)/(s1 + 1/f)). (4.20)

The conjugacy class of this matrix is independent of s1 due to the property that

(t1 − it3) can be taken as up triangular form. We choose a basis in which t2 = e1,

t1 = e3, and t3 = e2.

Indeed, what’s relevant is the conjugacy class for the monodromy. Let’s denote

the conjugacy class for U as Cζ , and the conjugacy class for U
′
is a union of C0 and

C
′
, where C0 is the conjugacy class for identity and C

′
is the conjugacy class for

unipotent orbit. It can be shown that as ζ → 0, Cζ approaches the union of C0 and

C
′
. This also indicates that the second set of solutions is a limit of the first set of



60

solutions.

The physical interpretation is that the α, β, γ → 0 is the massless limit of the

gauge theory. These facts are in agreement with our analysis of Seiberg-Witten curve

in last chapter. The mass term is the eigenvalue of β + iγ. There is an important

check for this fact. As pointed out by Seiberg-Witten, when mass are included,

the symplectic form should depend linearly on the mass term. In our case, the

symplectic form in complex structure I indeed depend linearly on β+ iγ, this justifies

the identification of the mass term with the eigenvalue of matrices β + iγ.

For the SU(N) case, let’s first give a short introduction to relevant mathematical

results on lie algebra structure, an readable book for physicists is [43]. Since the pole

of holomorphic part of the Higgs field is taking value in sln, we need to consider the

structure of sln instead of su(n).

If G is a reductive group over C, g its Lie algebra, we study the adjoint action

of G on g:

OX := Gad.X = {ϕ(X)|ϕ ∈ Gad}. (4.21)

The orbits of this action are the conjugacy classes or adjoint orbits.

A semisimple element U of the lie algebra is an element which is diagonizable,

a nilpotent element U
′
is satisfying the relation U

′n
= 0, where n is an integer. A

conjugacy class OX is semisimple if and only if OX = OU ; while a conjugacy class

OX is nilpotent if and only if OX = OU ′ .

A regular semisimple element in Lie algebra can be defined as follows. The

characteristic polynomial of a matrix X in sln is

Ω(X) = det(t−X). (4.22)
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We can expand it as

Ω(X) =
∑

0≤i≤m

(−1)ipi(X)tn−i. (4.23)

p1 is zero since trX = 0. A semisimple element is called regular semisimple if pl ̸=

0, l ≥ 2. In particular, this meas that the diagonal elements are all different. For sl2

case , we only have the regular semi-simple orbit while for sln case other options are

possible.

There are infinite number of semisimple conjugacy classes and we have only finite

number of nilpotent conjugacy classes in sln algebra. The nilpotent elements of the

sln lie algebra are labeled by partitions of n and can be put into standard form.

Introduce a partition of n satisfy the conditions:

d1 ≥ d2 ≥ .. ≥ dk > 0 and d1 + d2 + ...+ dk = n. (4.24)

We label this partition as d = [d1, d2, ..dk]. We can construct Young Tableaux as-

sociated with this partition as shown in Figure 8b). We can also construct a dual

partition dt of d. The first row of dt is the first column of d, and the second row of dt

is the second column of d, and so on. There is another characterization for the dual

partition: the parts of dt is given by the following formula:

si = {j|dj ≥ i}, (4.25)

si equals the maximal index j so that dj ≥ i. We also draw a Young Tableaux of the

dual partition in Figure 8b).

Each nilpotent element is labeled by a partition of n. It can be put into a form

using only Jordan block. The Jordan block is defined as: given a positive integer i,
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a) b)

Fig. 8. Left: Young Tableaux of one partition [4, 3, 1] of sl8. Right: The Young

Tableaux for transpose partition [3,2,1,1] of (a).

we construct the i× i matrix

Ji =



0 1 0 ... 0 0

0 0 1 ... 0 0

. . . . . .

. . . . . .

. . . . . .

0 0 0 ... 0 1

0 0 0 ... 0 0



. (4.26)

This matrix is called the elementary Jordan block of type i.

Now the nilpotent element of partition d has the following form:

n =



Jd1 0 0 ... 0

0 Jd2 0 ... 0

. . . . .

. . . . .

. . . . .

0 0 0 ... Jdk


, (4.27)

where Jdi is the Jordan block with dimension di. The dimension of this nilpotent
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orbits is given by

dim(OX) = n2 −
∑
i

s2i = n2 − 1− (
∑
i

s2i − 1). (4.28)

Using the formula dim(OX) = dim(g)−dim(gX), we have dim(gX) = (
∑

i s
2
i −1) and

gX is the centralizer of X, namely the set of elements of lie algebra which commute

with g. The maximal dimension occurs when the partition is d = [n], and we call it

principal orbit; when n = [2, 1, 1, ...1], the nilpotent orbit has the minimal dimension,

we call it minimal orbit.

1. Massless theory

After introducing those mathematical results, let’s go back to Hitchin’s equation and

try to find singular solutions to the equation so that the holomorphic part of the Higgs

field has simple pole at the singularity and the residue is an sln nilpotent element.

In sl2 case, such a solution is found 4.17; A similar solution for sln is constructed

using homomorphism between sl2 and sln which involves a nilpotent element of the

sln algebra.

We introduce a different basis for sl2 lie algebra:

H =

 1 0

0 − 1

 , X =

 0 1

0 0

 , Y =

 0 0

1 0

 . (4.29)

In this basis the nilpotent element is given by X, they satisfy the commutation

relation:

[H,X] = 2X, [H, Y ] = −2Y, and [X, Y ] = H. (4.30)

For an integer r ≥ 0, we can define a map

ρr : sl2 → slr+1, (4.31)
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via

ρr(H) =



r 0 0 ... 0 0

0 r − 2 0 ... 0 0

. . . . . .

. . . . . .

. . . . . .

0 0 0 ... −r + 2 0

0 0 0 ... 0 −r



,

ρr(X) =



0 1 0 ... 0 0

0 0 1 ... 0 0

. . . . . .

. . . . . .

. . . . . .

0 0 0 ... 0 1

0 0 0 ... 0 0



,

ρr(Y ) =



0 0 0 ... 0 0

µ1 0 0 ... 0 0

. . . . . .

. . . . . .

. . . . . .

0 0 0 ... 0 1

0 0 0 ... µr 0



, (4.32)

where µi = i(r + 1− i) for 1 ≤ i ≤ r. The homomorphism for the nilpotent element
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labeled by d is

Φd : sl2 → sln, via Φd =
⊕
1≤i≤k

ρdi−1. (4.33)

We can also find the commutator in SLn of this homomorphism. Assume the nilpotent

element associated with this homomorphism has the partition d = [d1, d2, ..., dk], let

ri = |{j|dj = i}|, namely, ri is the number of rows with parts i. The commutant is

given by

Gcommu = S(
∏
i

(GLri)). (4.34)

Using this homomorphism, we can construct the singular solution: replacing

t1, t2, t3 by Φd{t1, t2, t3}. The holomorphic part of the Higgs field has a simple pole

at the singularity and the residue is the nilpotent element labeled by d. We want to

associate these kind of solutions with four dimensional massless N = 2 SCFT. The

first discovery is: The singularity is labeled by partition of n for N = 2 SU(n) SCFT.

We next study the behavior of spectral curve near the singularity to further

confirm our conjecture. First consider the solution associated with the partition

[2, 1, ...1], We add regular terms to the solution so that the holomorphic part of the

Higgs field is a regular semisimple element and looks like

Φ(z)dz =



∗ (1
z
+ ∗) ∗ ... ∗ ∗

∗ ∗ ∗ ... ∗ ∗

. . . . . .

. . . . . .

. . . . . .

∗ ∗ ∗ ... ∗ ∗

∗ ∗ ∗ ... ∗ ∗



dz +O(z)dz, (4.35)

where ∗ is the generic numbers so that this matrix is regular semisimple. We calculate
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1 2

3

4

5a) b)

1 2 3 4 5

Fig. 9. Left: Young Tableaux with partition [2, 1, 1, 1], the order of poles are

p1 = 1− 1 = 0, p2 = 2− 1 = 1, p3 = 3− 2 = 1, p4 = 4− 3 = 1, p5 = 5− 4 = 1.

Right: Young Tableaux with partition [5], the order of poles are

p1 = 1− 1 = 0, p2 = 2− 1 = 1, p3 = 3− 1 = 2, p4 = 4− 1 = 3, p5 = 5− 1 = 4.

the determinant and expand it as a polynomial in x:

det(x− Φ(z)) =
∑
i=2

(−1)ipi(z)x
n−i. (4.36)

The coefficient p1 is zero since the matrix is traceless, pi, i ≥ 2 has simple pole at z = 0

as we can see from calculating the determinant. Let’s recall the rule of calculating

the determinant: each term in determinant is derived by selecting numbers from the

matrix, the rule is that there is only one item selected from one row and one column,

we multiple those n selected terms.

For plx
n−l term in our determinant, we select n − l diagonal elements from the

{(x−Φ)22...(x−Φ)nn}, we also select 1
z
+∗ term from first row and a proper constant

term from the second row of (x − ϕ(z)). We see that the coefficient pl is of order
1
z
.

The result can be summarized from the corresponding Young Tableaux if we label

the boxes as in Figure 9a), the pole of the coefficient is given by pi = i− si, where si

is the height of the ith box.

Next let’s consider the solution labeled by the partition [n], the matrix Ω =
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(x− Φ(z))dz (including the constant regular term)

(x−Φ(z))dz =



(x+ ∗) )(1
z
+ ∗) ∗ ... ∗ ∗

∗ (x+ ∗) (1
z
+ ∗) ... ∗ ∗

. . . . . .

. . . . . .

. . . . . .

∗ ∗ ∗ ... (x+ ∗) (1
z
+ ∗)

∗ ∗ ∗ ... ∗ (x+ ∗)



dz+O(z)dz.

(4.37)

Calculate the characteristic polynomial of this matrix and leave only the singular

terms in z, we find that pi has pole of order (i− 1). To show this, we simply expand

the determinant and find the most singular term for the coefficient. For term pix
n−i,

we select (i − 1) (1
z
+ ∗) terms just above the diagonal terms, and then select the

remaining n − i diagonal terms, this is the maximal pole we can get at z = 0. The

order of pole can be read from the Young Tableaux, namely pi = i − si, see Figure

9b).

For general partition, the matrix (x− Φ(z)) has the form:

(x− Φ(z))dz =



Id1 ∗ ∗ ... ∗

∗ Id2 ∗ ... ∗

. . . . .

. . . . .

. . . . .

∗ ∗ ∗ ... Idk


dz +O(z)dz. (4.38)



68

where Idi takes the form

Idi =



x+ ∗ (1
z
+ ∗) ∗ ... ∗

∗ x+ ∗ (1
z
+ ∗) ... ∗

. . . . .

. . . . .

. . . . (1
z
+ ∗)

∗ ∗ ∗ ... x+ ∗


(4.39)

The orders of pole for the coefficients pi, 2 ≤ i ≤ d1 are calculated as follows: we

choose the diagonal terms from the other blocks except the first block Id1 , then we do

the same analysis on the first block as we do on the partition [n]; the order of pole is

given by i− 1 when i ≤ d1. To calculate term pd1+1x
n−d1−1, We select d1− 1 terms of

form 1
z
and a constant term from first block Id1 ; We can not choose another 1

z
term,

since if we choose a 1
z
term say coming from the first row from the second block, we

can not choose the two diagonal terms adjacent to it in calculating the determinant,

the maximal order of x we can get is n−d1−2. Therefore, the order of pole is d1−1,

or d1 +1− 2. The order of poles for other terms pi, d1 < I ≤ d2 is given by i− 2. We

do the same analysis when we jump from di to di+1, in general, the order of pole is

read from the Young Tableaux and given by i − si, where si is the height of the ith

box.

2. Mass deformed theory

In this subsection, we are going to study what kind of singular solutions correspond to

mass-deformed theory. Let’s recall what we learned about SU(2) theory. The massless

theory is associated with Higgs field whose residue is a nilpotent element Y1 labeled

by the partition d = [2]; what is actually important is the moduli space of solutions
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with appropriate boundary conditions so that the residue is living in the conjugacy

class of Y1. There is an isomorphism between this moduli space and nilpotent orbit

itself. On the other hand, the mass deformed theory is described by a solution to

Hitchin’s equation so that the residue of the Higgs field is a semisimple element (which

is also regular for su(2)). We also are concerned about the moduli space of solutions

and there is also an isomorphism between the space of solutions and the semi-simple

orbit itself. Both nilpotent orbit and semi-simple orbit are hyper-Kahler manifolds

and the closure of nilpotent orbit is singular and semi-simple orbit can be thought of

the deformation of nilpotent orbit. The basic requirement for this understanding is

that they must have the same complex dimensions.

Generalizing above considerations of SU(2) to SU(N), we need to find certain

kinds of solutions of Nahm’s equation whose moduli space is a deformation of the

moduli space of solutions we are studying in the last subsection. In general, given a

triple (τ1, τ2, τ3), let σ1, σ2, σ3 be elements of g which commute with τj and satisfy the

su(2) relations, a solution to the equation is

a = τ1 +
σ1
2s
, b = τ2 +

σ2
2s
, a = τ1 +

σ3
2s
, s→ ∞. (4.40)

These conditions mean that the residue of the Higgs field takes value in τ2 + iτ3 + σc,

where σc is the nilpotent element we can get from su(2) algebra σ1, σ2, σ3. There is a

one-to-one correspondence between the solution space with this boundary conditions

and the adjoint orbit which contains τ2 + iτ3 + σc (see appendix I for more details),

it is also proved that this space is a hyper-Kahler manifold.

Since the nilpotent orbit is identified with the massless theory, we are led to

think that the mass-deformed theory corresponds to semisimple orbit. The question

is to identify the semi-simple orbit, we will call those semi-simple orbits as the mass-

deformed orbits. The closure of the nilpotent orbit is singular and we can think of
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the mass-deformed orbit as the deformation of the nilpotent closure. The necessary

condition for this is that the mass-deformed orbit has the same dimension as the

closure of the nilpotent orbit.

The dimension for a nilpotent orbit is given by (4.28). The following lemma can

be used to calculate dimension of a semi-simple orbit:

Let g be a reductive lie algebra and X is element in a semisimple orbit, its

centralizer gX is reductive and there exists a Cartan subalgebra h containing X. If

Φ denotes the roots for the pair (g, h), then gX = h
⊕∑

α∈ΦX
gα, where ϕX = {α ∈

ϕ|α(X) = 0}.

We study sl3 as an example to show how to use the above lemma to calculate

the dimension of a semisimple orbit. The traceless diagonal matrices in sl3, denoted

as h, form a three dimensional Cartan subalgebra. For each 1 ≤ i ≤ 3, define a linear

functional in the dual space h∗ by

ei


h1 0 0

0 h2 0

0 0 h3

 = hi. (4.41)

The standard choices of positive and simple roots are

Φ+ = {ei − ej|1 ≤ i < j ≤ 3} and △ = {ei − ei+1|1 ≤ i ≤ 2}. (4.42)

Consider the following matrices

X1 =


m1 0 0

0 m2 0

0 0 −(m1 +m2)

 , X2 =


m1 0 0

0 m1 0

0 0 −2m1)

 , X3 =


0 0 0

0 0 0

0 0 0

 .

(4.43)

We now describe how to calculate dimension of semi-simple orbit OXk
for 1 ≤ k ≤ 3.
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For case X1, since α(X1) ̸= 0 for any simple roots α ∈ △, gX
1
is a Cartan

subalgebra using our lemma. The dimension for X1 is

dim(OX1) = dim(g)− dim(gX
1

) = 8− 2 = 6. (4.44)

For caseX2, α(X2) = 0 if and only if α = ±(e1−e2), so gX2 = h
⊕

ge1−e2

⊕
ge2−e1

and dim(OX2) = 8− 4 = 4.

For case X3, ΦX3 = {±(e1 − e2),±(e2 − e3),±(e1 − e3)}, then dim(gX3) = 8, and

dim(OX3) = 0.

Let’s study the semi-simple orbits for general sln algebra. We want to study

semi-simple elements labeled by a partition d = [d1, d2, ...dk] of n. It has the form

Xd = diag(m1, ..m1,m2...m2, ....mk..mk), where the first d1 diagonal terms have the

same value, etc. It is interesting that we can also label semi-simple orbits by partitions

of n. The dimension of the orbit OXd
can be calculated by using the lemma we

introduced above.

Let h be traceless diagonal n × n matrices; Define the linear functional ei ∈ h∗

by ei(H) = ith diagonal entry of H, here 1 ≤ i ≤ n. The root system is {ei − ej|1 ≤

i, j ≤ n, i ̸= j} in this representation. Elements in ϕ(Xd) from first block are

Φ1(Xd) = {±(e1−e2),±(e1−e3), .±(e1−ed1),±(e2−e3)±(e2−e4)..±(e2−ed1)...±(ed1−1−ed1)}

(4.45)

For the other block we can similarly find the other roots which satisfy the condition

α(Xd) = 0.

The dimension of the centralizer of Xd is

dim(gXd) = n−1+2(d1−1+d1−2+...+1)+2(d2−1+d2−2+..+1)+...+(2dk−1+...+1),

(4.46)
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sum them up, we have

dim(gXd) = n− 1 +
k∑
i

di(di − 1) = n− 1 +
k∑
i

d2i − n =
k∑
i

d2i − 1. (4.47)

where the condition
∑k

i di = n is used. The dimension of the semisimple orbit is

dim(OXd
) = n2 − 1−

k∑
i

d2i + 1 = n2 −
k∑
i

d2i . (4.48)

Recall the dimension (4.28) of a nilpotent orbit with the partition d1: dim(OXd1
) =

n2 −
∑

i s
2
i , here s

i is the rows of the dual partition of d1.

Comparing the dimension of the nilpotent orbits and that of the semi-simple

orbits, the property of puncture with the partition d for the mass deformed theory is:

It is described by the singular solution of Hitchin’s equation and the Higgs field has

simple pole at the singularity, whose residue is a semisimple element with the form

labeled by the dual partition dt = [dt1, d
t
2, ...d

t
k] of d:

Φ(z)dz =
dz

z
diag(m1, ..m1,m2, ..m2, ....mk...mk) + ..., (4.49)

where Φ has d1 m1 eigenvalues, d2 m2 eigenvalues and so on. The Seiberg- Witten

curve is the spectral curve of the Hitchin’s system.

The flavor symmetry can be read from the dual partition dt directly. For this

partition, a sl2 homomorphism is defined and the commutant of this homomorphism

in sln is given by

Gcommu = S(
∏
i

(GLri), (4.50)

where ri is the number of rows of dt with boxes i. This number ri is also the number

of columns of d with heights i. The real form of this group is the flavor symmetry

associated with the puncture and this agrees with Gaiotto’s result. See [44] for the

relevant discussion.
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C. Generalized superconformal quiver gauge theory

In last section, we considered local behavior of Hitchin’s equation near the regular

punctures. Now we want to study some global properties.

In last chapter, we reconstructed known linear superconformal quiver gauge the-

ory from six dimensional perspective and we found the local behavior of the singularity

of the Hitchin equation from the known Seiberg-Witten curve. Surprisingly, these lo-

cal behaviors are the only allowed behavior as derived from studying regular singular

solutions from Hitchin equation.

Now nothing will prevent us from putting any number of punctures and any

type of punctures on the Riemann surface. This will define a four dimensional N = 2

theory. In brane’s construction, the gauge theory is known first and we are trying to

find its Seiberg-Witten curve. Here the situation is opposite, we know the Seiberg-

Witten curve of a theory without knowing what the theory is. We also know the

dimension of Coulomb branch which is calculated from dimension of Hitchin’s moduli

space with these specific boundary conditions at the puncture. The problem is to

find what the gauge theory is. In fact, we would like to find its weakly coupled limit

form.

Let’s first discuss the UV deformations of gauge theory. The mass parameter is

encoded in the local behavior of regular solution. The gauge couplings are realized as

the complex structure of punctured Riemann surface. Then all the UV deformations

are known. The question is to determine the gauge group and matter content. Of

course, this depends on the duality frame. Happily, different weakly coupled duality

frame is realized as the degeneration limits of the punctured Riemann surface.
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1. The shape of generalized quiver from nodal curve

In the previous section, we argue that gauge coupling constants of four dimensional

N = 2 SCFT are identified as the complex structure of a Riemann surface with

punctures. In this part, we show that we can determine the structure of quiver with

weakly coupled gauge groups from studying the compactification of moduli space.

Consider a two dimensional topological surface Σ with g handles and n marked

points. This manifold can be made into a complex manifold by defining a complex

structure J on it. A complex structure J is a local linear map on the tangent bundle

that satisfies J2 = −1 and the integrability condition. Two complex structures are

considered equivalent if they are related by a diffeomorphism. The moduli spaceMg,n

is the space of all the inequivalent complex structure on the surface. By Riemann-

Roch this is a space of complex dimension

dimMg,n = 3g − 3 + n. (4.51)

Mg,n is a noncompact complex space with singularities. It arises as the quotient of

a covering space known as Teichmuller space Tg,n, by a discrete group, conformal

mapping class group MCg,n:

Mg,n =
Tg,n
MCg,n

. (4.52)

This action typically has fixed points, and the moduli space has orbifold singularities.

There is another useful way to think about the complex structure on Σ. We can

think of the point on the moduli space as the conformal class of a metric gµν . Indeed,

a metric defined a complex structure through

J ν
µ =

√
hϵµλh

λν , (4.53)

with ϵµν the Levi-Civita symbol. The definition of the complex structure does not
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Fig. 10. Left: A nodal curve. Right: The normalization of a.

depend on the local resealing of the metric gµν , so we can think of the moduli space

as the spaces of metric modulo local rescalings and diffeomorphisms.

The moduli space Mg,n is noncompact and has a boundary. The boundary

points can be intuitively represented as degenerate surfaces. The degeneration can

be thought in two ways; the surface can either form a node-or equivalently a long

neck- or two marked points can collide. The process in which two points x1 and x2

collide if q = x1 − x2 tends to zero can alternatively be described as a process in

which a sphere, that contains x1 and x2 at fixed distance, pinches off the surface by

forming a neck of length log q. So the degeneration limit can be thought of the nodal

curve. The boundary points can be thought of as in the infinity and we would like

to compactify this space. The Deligne-Mumford compactification of Mg,n is achieved

by adding some points which represent stable nodal curves.

In the following, we will introduce some basic concepts about the nodal curve.

Singular objects play an important role in algebraic geometry. The simplest singular-

ity a complex curve can have is a node. A nodal point of a curve is a point that can

be described locally by the equation xy = 0 in C2. An example is shown in Figure

10a).

We also find the following description of nodal curve very useful. On a surface

with node, the node separates the surface into two components, on the neighborhood
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of each node, we can choose local coordinate disks {zi : |zi| < 1}, i = 1, 2. The

two disks are glued together at the origin z1, z2 = 0 to form the node. We can

open the node by introducing one of complex coordinate q of the moduli space Mg,n.

Remove the sub-disks |zi| < |q| 12 and attach the resulting pair of annuli at their inner

boundaries |zi| = |q| 12 by identifying z2 = q/z1. This coordinate neighborhood on the

surface is mapped to a single annulus |q| 12 < |z| < |q|−1
2 , by

z = q1/2/z2, if |q|1/2 < |z| ≤ 1,

z = q1/2/z2, if 1 ≤ |z| < |q|−1/2. (4.54)

As q = 0, we recover the node. A further transformation ω = (2πi)−1lnz pictures the

opened node as a long tube. Writing q = e2πiτ , the length and width is determined

by τ . The node corresponds to a tube of infinite length. In this description, we see

that the moduli is localized on the long tube, and since we identify the moduli with

the gauge coupling constant, we can think that the gauge group is represented by the

long tube.

We define the normalization of the nodal curve as unglueing its nodes, and add

a marked points to each of the components on which the nodes belong to. See Figure

10b) for an example. Each component Σi after the normalization is an irreducible

component of Σ.

There is another convenient way of describing the nodal curve by drawing a dual

graph. The vertices of the dual graph of Σ corresponds to components of Σ (and

are labeled by their genus), and the edge correspond to node, we use labeled tails to

represent the marked points. An example is shown in Figure 11.

A stable nodal curve is a connected nodal curve such that:

(i) Every irreducible component of geometric genus 0 has at least three special
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Fig. 11. A dual graph for the nodal curve in Figure 10.

points (including the marked points and the nodal points after the normalization).

ii) Every irreducible component of geometric genus 1 has at least one special

point.

Deligne-Mumford compactification M̄g,n includes the points corresponding to the

stable curve to moduli space Mg,n.

Let’s define an irreducible nodal curve as a curve whose irreducible components

are all genus 0 curve with three special points. See Figure 12 for an example, The

dual graph for this particular nodal curve is depicted in Figure 13a.

Let’s consider another genus one example, in this case, the two nodes belong to

the same irreducible component after normalization. The degeneration limit and the

dual graph are shown in Figure 14.

It is time now to connect the nodal curve to the weakly coupled four dimensional

N = 2 quiver we are studying in last section. As we reviewed in last section, each

puncture is associated with certain flavor symmetry, and the node or the long neck is

identified with the weakly coupled gauge group, we have the following identification:

A generalized quiver with weakly coupled gauge group associates with the stable

nodal curve and the quiver with all gauge group weakly coupled is the irreducible
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a) b)

Fig. 12. Left: A torus with four marked points. Right: An irreducible nodal curve of

a.

1 2

3 4

N N

NN

1

1

1

1

Fig. 13. Left: The dual graph for the irreducible nodal curve of Figure 12, we omit

the genus 0 on each vertex for simplicity, since for irreducible nodal curve, all

components have genus zero. Right: Four dimensional gauge theory, we put

a gauge group on the internal line, external lines represent the U(1) flavor

symmetries.
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a) b)

Fig. 14. Left: Degeneration limit of torus with one marked point. Right: The dual

graph of a), there is only one irreducible component and the nodes are in the

same component so the nodes is represented by a loop connecting to the same

vertex.

nodal curve.

In fact, we can read the quiver structure from the dual graph in Figure 13a; Let’s

assume that we compactify AN−1 theory on the Riemann surface, and the punctures

are simple punctures. We consider the weakly coupled gauge theory corresponding to

irreducible nodal curve. The line ending on only one vertex is the original puncture

and represent the flavor symmetry, we call them external line; The line between the

nodes represent the gauge groups, we call them internal line. There are three lines

connecting each node. In this particular example, for each node, there are two internal

lines connecting it and one external line representing a U(1) flavor symmetry, the

gauge theory interpretation is that the two gauge groups connecting to a single node

are adjacent and there are bi-fundamental fields connecting them, and the quiver is of

the form in Figure 13b. In general, we can read the shape of the generalized quiver in

any duality frame from the dual graph of the corresponding nodal curve, the difference

is that the matter fields between the adjacent gauge group is not necessarily bi-

fundamental fields, it maybe a strongly coupled isolated superconformal field theory

like E6 SCFT.
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Since for an irreducible nodal curve, each irreducible component is a genus 0

Riemann sphere with three punctures, we may think that each three punctured rep-

resents a matter either conventional bi-fundamental fields or strongly coupled isolated

SCFT matter. The whole generalized quiver is derived by gluing the matter fields.

The gluing process is to gauge the diagonal flavor symmetry of two punctures on two

different irreducible components or one component, in the latter case, we add a handle

to the Riemann surface. This is true for generalized quiver gauge theory defined by

six dimensional A1 theory with any number of punctures; For AN theory, in certain

duality frame (for certain irreducible nodal curve) this is true, but generically this is

not the case, since some of the three punctured sphere does not represent a matter,

we will discuss this more in later sections.

Let’s summarize what we learn about the relation between the stable nodal curve

and the four dimensional N = 2 weakly coupled quiver gauge theory. For each stable

nodal curve, there is a four dimensional gauge theory for which one or more than one

gauge groups become weakly coupled, and the gauge couplings are taking value at

the boundary of the moduli space Mg,n. The four dimensional quiver for which all

the gauge groups are weakly coupled corresponds to the irreducible nodal curve. In

another words, the four dimensional N = 2 SCFT gauge coupling space is M̄g,n.

It is illuminating to note that M̄g,n also plays an important role in 2d conformal

field theory. Let’s consider a two dimensional conformal field theory defined on a

Riemann surface. We usually want to calculate the correlation functions with several

insertions on the Riemann surface, and the correlation function can be calculated in

different channels, say s, t channels. Recently, AGT [19] found an interesting relation

between the partition function of N = 2 SU(2) four dimensional gauge theory and the

correlation function of the Liouville theory based on the six dimensional realization.

The primary fields at the insertion can be read from the information of the puncture
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a) b)

Fig. 15. Left: A nodal curve with 5 marked points and two vertices. Right: The

dual graph which resembles the conformal field theory conformal block with

5 external states.

used to describe the gauge theory. It is interesting to note that the different channels

for two dimensional correlation function are also in one-to-one correspondence with

the nodal curve. The different channels are exactly represented by the dual graph

of the nodal curve, the external states are represented as the external line while the

intermediate states are represented by the internal line . The intermediate states can

be determined by using familiar operator product expansion technics based on the

fixed external states. See Figure 15 for an example.

Using the nodal curve, we now establish a one-to-one correspondence between

four dimensional gauge theory and two dimensional CFT correlation function. The

external lines on dual graph determine the flavor symmetry of the gauge theory and

the external states of the two dimensional correlation function, the classification of

punctures is given in last section and this leads to the determination of physical

states in 2d CFT. The internal lines represent gauge group of gauge theory and the

intermediate state of the 2d CFT. We need to determine the gauge group and then

we can identify the intermediate state in 2d CFT.
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2. The gauge group

In last subsection, we established a relation between N = 2 weakly coupled SCFT

and the nodal curve and the shape of the quiver is determined. The remaining task

is to determine what is the weakly coupled gauge group or find the representation of

the quiver. There is a Hithcin’s system defined on the punctured Riemann surface

whose moduli space is identified with the Seiberg-Witten fibration. The decoupled

gauge group is by taking the complete degeneration limit of the Riemann surface and

comparing the dimension of Hitchin’s moduli space.

Let’s first consider degeneration limit of punctured Riemann sphere. After de-

generation, the original Riemann surface decomposes into two punctured Riemann

spheres. From gauge theory point of view, one of the gauge group is decoupled, and

there are two subquivers are left (sometimes there is no clear meaning for one or two

components). We assume that the decoupled gauge group is a simple gauge group

with the form SU(k), k ≤ N or USp(2k), k ≤ [N
2
]. This assumption is confirmed in

all known example. The form of the decoupled gauge group is derived by matching

the Coulomb branch moduli after decoupling with the original quiver.

It is useful to define irreducible rank N theory on punctured Riemann sphere.

The Seiberg-Witten curve for theory from punctured sphere is

xN + ϕix
N−i = 0. (4.55)

Here ϕidz
i is a degree i meromorphic differential defined on Riemann sphere, the

dimension di of this differential is

di =
∑
j

p
(j)
i − 2i+ 1, (4.56)

here pji is the order of pole at the jth puncture. p
(j)
i can be read from the Young
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Tableaux:

p
(j)
i = i− si, (4.57)

where si is the height of ith box in the Young Tableaux. Consider the degree N

differential, if the number dN ≤ 0, then the Seiberg-Witten curve degenerates as (we

consider massless theory here)

x(xN−1 − ϕix
N−1−i) = 0, (4.58)

so actually this theory can be realized as a rank (N − 1) theory if dN−1 > 0. We call

a theory defined by AN−1 compactified on a punctured Riemann surface irreducible

if dN > 0.

In fact, only the case with two punctures colliding is needed to consider. We

assume that the new appearing puncture has the same local behavior as other singu-

larities. Then we can consider collision of this new appearing puncture with another

puncture, in this way, the decoupled gauge group can be found when any number of

punctures are colliding.

Let’s consider an irreducible rank N theory derived from a Riemann sphere with

n punctures. When two punctures are colliding, we are left with a three punctured

sphere called part 1 and a n − 1 punctured part called part 2. The new punctures

on two parts are the same. An important relation between the new puncture and the

decoupled gauge group is that: the decoupled gauge group is a subgroup of the flavor

group associated with the new puncture. Physically, this means the original gauge

theory is formed by gauging the subgroup of the new puncture. There might be some

more fundamentals decoupled too.

It is enough to specify the Young Tableaux associated with the new puncture.

This is equivalent to determine the order of pole of degree i differential at this new
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puncture. This is achieved by matching the number of moduli with the original

quiver. Consider the degree i moduli, assume the two colliding punctures contribute

to δ1i = p
(1)
i + p

(2)
i , and the other n− 2 punctures contribute to δ2i. Let’s first assume

that both components have zero or non-zero degree i moduli, this puts the constraint

on δ1i and δ2i

(1) : δ1i ≥ i and δ2i ≥ i. (4.59)

There are two options to consider. First if the decoupled gauge group does not have

a degree i operator, then we have

(δ1i + pi − 2i+ 1) + (δ2i + pi − 2i+ 1) = δ1i + δ2i − 2i+ 1, (4.60)

where pi is the contribution from the new puncture to the ith degree moduli. The

left is the contribution of part 1 and part 2 to degree i moduli. On the other hand, if

the decoupled gauge group carry just one degree i moduli (this is the only choice by

our assumption of the decoupled gauge group)

(δ1i + pi − 2i+ 1) + (δ2i + pi − 2i+ 1) + 1 = δ1i + δ2i − 2i+ 1. (4.61)

The first option gives 2pi − 2i − 1 = 0 which is inconsistent since pi and i are both

integer. For the second option, we have pi = i − 1. So we conclude that pi = i − 1

with constraint (1).

Next let’s consider only one component has degree i moduli, this implies

(2) : δ1i ≥ i and δ2i < i; or (3) : δ1i < i and δ2i ≥ i. (4.62)

For case (2), part 2 does not have a degree i operator since the maximal contri-

bution of the new appearing puncture to degree i differential is pi = i − 1, and the

maximal number of degree i operator is d
(2)
i ≤ δ2i+(i−1)−2i+1 < 0. There are also
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two options, if decoupled gauge group does not carry a degree i operator, we have

(δ1i + pi − 2i+ 1) = δ1i + δ2i − 2i+ 1. (4.63)

If the decoupled gauge group has a degree i operator, the equation is

(δ1i + pi − 2i+ 1) + 1 = δ1i + δ2i − 2i+ 1, (4.64)

Here pi is the contribution to the degree i operators of the new appearing puncture.

Solving the equations, the solution is pi = δ2i or pi = δ2i − 1. The same analysis can

be applied to case (3), we have pi = δ1i in the first case and pi = δ1i− 1 in the second

option. The second option is not possible by further analysis on the relation of the

decoupled gauge group and the flavor group of the new puncture.

Let’s just consider the case (3). Since δ1i ≤ i, write δ1i = i− a with a ≥ 1.

If pi = δ1i − 1 = i − (a+ 1), then the ith box is at the level (a + 1) ≥ 2 in the

Young Tableaux of the new puncture. Since the decoupled gauge group has a degree

i operator, so the decoupled gauge group is at least SU(i) or USp(i) (USp(i) is

possible with even i ). However, for the new puncture n1 < i since ith box is not

in the first row, the maximal simple subgroup of the flavor symmetry is less than

SU(i). Therefore, the decoupled gauge group is large than the flavor group of the

new puncture which contradicts our assumption.

The case δ1i < i and δ2i < i is excluded since this implies the original quiver has

negative number of degree i operator.

Combining all the analysis above, we can give a concise formula for pi

pi = min(δ1i, δ2i, i− 1). (4.65)

and if min(δ1i, δ2i) ≥ i, there is a degree i operator for the decoupled gauge group.

Indeed, in the derivation of the above formula, the assumption that only two punctures
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are colliding is not used, so this formula is true for colliding any number of punctures.

To determine the fundamental fields on the decoupled gauge group, we need to match

the dimension of Higgs branch. This can be done in a similar way as the Coulomb

branch.

We next consider the degeneration limit of higher genus theory. Let’s study

Riemann surface with genus g and n marked points; there are now three kinds of

degeneration: the genus reduces by one, or two marked points collide and there are

a genus g component and a genus zero component left; Finally there are a genus g1

and genus g2 components with g1 and g2 are nonzero.

In the first case, there is only a genus g − 1 surface with n + 2 marked points

left. Denote the local dimension of the new puncture as d, we have

1

2

∑
di +

1

2
(2d) + (g − 1− 1)(N2 − 1) + r =

1

2

∑
di + (g − 1)(N2 − 1), (4.66)

where r is the rank of the decoupled gauge group and di is the dimension of nilpotent

orbit associated with the puncture i, (The total dimension of Hitchin’s moduli space

on a genus g Riemann surface is
∑
di + 2(g − 1)(N2 − 1), half of this number is the

dimension of the Coulomb branch). Solving the above equation, we have

d = N2 − (r + 1). (4.67)

the maximal dimension of d is the dimension of regular nilpotent orbit and has the

dimension d = N2 −N , this implies that the minimal value of r is N − 1. However,

the maximal rank of the decoupled gauge group is (N − 1). We conclude that the

decoupled gauge group is SU(N) and the new puncture is a full puncture. The

original theory is assumed to be irreducible and we can check genus (g− 1) theory is
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also irreducible. The irreducibility of the original theory implies

dg =
1

2

∑
i

di + (g − 1)(N2 − 1) > 0, (4.68)

This condition is automatically good if g ≥ 2, there is no constraint on the number

of punctures. In the case g = 1, we need to have at least one puncture.

For the genus g − 1 theory, we have the dimension of the Coulomb branch

dg−1 =
1

2

∑
i

di+N
2−N+(g−2)(N2−1) =

1

2

∑
i

di+(g−1)(N2−1)−(N−1) (4.69)

In the case g > 2, dg−1 > 0 is always true. In the case of g = 1, since the minimal

dimension of the nilpotent orbit is 2N − 2, we see that dg−1 ≥ 0. This result shows

that the handle of the Riemann surface can only be formed by a SU(N) group.

The result can be confirmed by matching Higgs branch moduli using (5.18). The

matching condition is

∑
i

li + 2l + (1− (g − 1))(N − 1)− n =
∑
i

li + (1− g)(N − 1), (4.70)

where l is the contribution of the new puncture and n is the dimension of the decoupled

gauge group, which is n = (N2 − 1) in our case. The new puncture is a full puncture

and have l = 1
2
(N2−N). One can check the above equation is right. This calculation

also shows that we do not have any fundamental fields on the SU(N) gauge group.

The degeneration limit with genus g1 and g2 parts can be analyzed similarly. The

g1 component has n1 +1 marked points and g2 component has n2 +1 marked points,

according to our previous analysis, these two theories are both irreducible. We have

the following relation for the coulomb branch dimension

∑
k1i +

1

2
d+ (g1 − 1)(N2 − 1) +

∑
k2i +

1

2
d+ (g2 − 1)(N2 − 1)

=
∑

(k1i + k2i) + (g1 − g2 − 1)(N2 − 1)− r. (4.71)
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where r is the rank of the decoupled gauge group and d is the dimension of the

nilpotent orbit associated with the puncture as we defined above. Similar analysis

shows that the decoupled gauge group is SU(N) and the new puncture is a full

puncture.

The last case with a genus g component and genus zero component is a little bit

different. We know that a genus g component is irreducible, there are nonzero moduli

for each degree. Assume the contribution of two punctures to the moduli of degree i

is δ1i, similar analysis with the degeneration limit of genus zero case can be done and

we have the following conclusion about the order of poles of the new puncture

pi = min(δ1i, i− 1). (4.72)

The decoupled gauge group can be derived by noticing that if δ1i ≥ i, the decoupled

gauge group has a degree i operator.

Now let’s discuss what is the intermediate state in AN−1 conformal Toda field

theory side. It is argued in [45], that the primary field corresponding to the simple

puncture labeled by the Young Tableaux [n1, n2, n3, ...ns] has the form

eiβ⃗.ϕ⃗, (4.73)

where
−→
ϕ = (ϕ1, ...ϕN) and

∑
ϕi = 0, and β has the form

β⃗ = p⃗− iQρ⃗, (4.74)

ρ is a fixed vector and p⃗ is a real vector, they are both dictated by the Young Tableaux.

p⃗ has the form:

p⃗ = (p1, ...p1︸ ︷︷ ︸
l1

, p2, ...p2︸ ︷︷ ︸
l2

.... pr, ...pr︸ ︷︷ ︸
lr

), (4.75)

here li is the height of ith column of the Young Tableaux. Notice that in the gauge
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theory, the mass deformation at the puncture has the same form as (4.75), so we

identify the mass parameters with the momentum p⃗ and these numbers are fixed

(they are UV parameters).

The intermediate state also has the form (4.75) and the Young Tableaux of it is

dictated by the new appearing puncture. The physical momentum of the intermediate

state is identified with the Coulomb branch expectation value. For instance, if the

new appearing puncture is the full puncture and the decoupled gauge group is SU(N),

then the intermediate state has the form p⃗ = (a1, a2, ...aN),
∑
ai = 0, here ai, i ≥ 2

parameterizes the Coulomb branch of SU(N). However, in general, not every column

of the new appearing puncture can be deformed since not all flavor symmetry of it

is gauged. The practical rule is: if min(δ1i, δ2i) ≥ i, the decoupled gauge group has

a degree i operator; since pi = i − 1 and the ith box of the new Young Tableaux is

at the first row, we claim that the ith column of the new puncture is deformed (we

always deform first column so that the traceless condition is satisfied).

3. Examples

We apply our formula to calculate the decoupled gauge group for some examples in

this subsection. The six dimensional description of a linear quiver of AN type has

been worked out by Gaiotto [11], it involves two generic puncture, and several basic

punctures.

We decide what happens when a simple puncture is colliding with a generic

puncture with rows n1 ≥ n2... ≥ nk, and the height of the first column is s1. We

assume part 2 is an irreducible rank N theory. Since part2 has a gauge group SU(N)

and has degree i moduli, δ2i ≥ i. Then the new appearing puncture is determined

by pi = min(δ1i, i − 1). The numbers is in the Table I. In the last line of Table

I, we indicate whether decoupled gauge group has a degree i operator. We can see
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i 2 3 4 ... n1 n1 + 1 ... N

p1i 1 1 1 ... 1 1 ... 1

p2i 1 2 3 ... n1 − 1 n1 − 1 ... N − s1

δ1i 2 3 4 ... n1 n1 ... N − s1 + 1

pi 1 2 3 ... n1 − 1 n1 ... N − (s1 − 1)

1 1 1 ... 1 0 ... 0

Table I. The data needed for colliding a generic puncture and a simple puncture.

from the Table I that the decoupled gauge group is SU(n1), and the new puncture

has the feature that the first row and second row are combined and other rows are

unchanged. This agrees with the result by Gaiotto. We can now determine the

fundamentals on the gauge group SU(n1), since the three punctured sphere does

not carry any Coulomb branch moduli and the dimension is negative, there is no

contribution to Higgs branch from it. We have

n∑
i=2

li + l2 + 1 + (N − 1) =
n∑

i=2

li + l2 + n1n2 − (n2
1 − 1) + (N − 1) + x, (4.76)

Here l2 is the contribution of the generic puncture, 1 is the contribution of the simple

puncture; we have used the fact that the new puncture has the contribution to Higgs

branch (l2+n1n2), where x is the contribution from the fundamental fields. Calculate

it, we get x = n1(n1 − n2), so there is n1 − n2 fundamentals on SU(n1), this is in

agreement with the explicit quiver theory.

Next, let’s consider collision of two identical punctures which have two columns

with equal height N, this means that we are considering A2N−1 compactification. We

list the analysis in the Table II: From the Table II, we can see that the new punc-

ture is a full puncture and the decoupled gauge group has only even rank operator,
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i 2 3 4 ... 2k 2k + 1 ... 2N

p1i 1 1 2 ... k k ... N

p2i 1 1 2 ... k k ... N

δ1i 2 2 4 ... 2k 2k ... 2N

pi 1 2 3 ... 2k − 1 2k ... 2N − 1

1 0 1 ... 1 0 ... 1

Table II. The data needed for collision of two identical punctures with equal height N.

the natural decoupled gauge group is USp(2N), one may wonder why USp gauge

group appears when we compactify a A2N−1 theory on a Riemann surface, this can

be done by including a outer automorphism of the gauge group SU(2N) in the com-

pactification, see [46, 47]. Let’s calculate the fundamentals on USp(2N). The three

punctured sphere does not contribute to Higgs branch. The two column puncture has

Higgs dimension N , the full puncture contributes (2N2 −N). we have

n∑
i=2

li + 2N + (2N − 1) =
n∑

i=2

li + (2N2 −N) + (2N − 1)− 2N2 −N + x, (4.77)

solving this equation, we have x = 4N , so we have 2 fundamentals on USp node.

This is just what is found by Gaiotto [11], see also [21].

We also confirm another example which is studied in [21]. One puncture has

partition [2, 2...2], the other puncture has partition [3, 2....2, 1], the data is assembled

in Table III: From the Table III, we conclude that the new puncture is a full puncture

and the decoupled gauge group is a SU(2N) gauge group. The three punctured sphere

does not contribute to higgs branch, we have the equation

n∑
i=2

li+N+(N+1)+(2N−1) =
n∑

i=2

li+(2N2−N)+(2N−1)−((2N)2−1)+x, (4.78)
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i 2 3 4 ... 2k 2k + 1 ... 2N

p1i 1 1 2 ... k k ... N

p2i 1 2 2 ... k k + 1 ... N

δ1i 2 3 4 ... 2k 2k + 1 ... 2N

pi 1 2 3 ... 2k − 1 2k ... 2N − 1

1 1 1 ... 1 1 ... 1

Table III. The data needed for colliding two punctures appearing in SU(N) theory

with antisymmetric matter.

we find x = 2N2 + N , this sounds weird, since no single conventional matter on

SU(N) can give this number for Higgs branch. However, let’s split 2N2 + 3N =

(2N2−N)+4N , that’s an antisymmetric matter and two fundamentals’ contribution,

it splits in this way so that the SU(N) gauge group is conformal.

Next, let’s consider the collision of two generic punctures. First we want to

mention a special case when δ1N ≥ N − 1, this means that pN = N − 1, without

any calculation, we can conclude that the new puncture is a full puncture, since the

maximal value of pN is N −1 and it is possible only if the puncture is a full puncture.

Finally, let’s consider an example of collision of two generic punctures, in some

cases, the new appearing three punctured sphere has nonzero moduli and is an isolated

SCFT. Lets’s consider collision of two identical punctures with partitions [3, 1, 1, 1].

The linear quiver gauge theory with these two punctures is depicted in Figure 16a.

The six dimensional construction is depicted in Figure 16b. We study another weakly

coupled theory corresponding to collide two generic puncture represented by black dot,

the nodal curve is depicted in Figure 16c. We write the corresponding generalized

quiver corresponding in Figure 16d.
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SU(3) SU(4) SU(5) SU(6) SU(5) SU(4) SU(3)

212 1

a)

b)

c)

SU(2)SU(3)SU(4)SU(5)SU(6)SU(5)SU(4)

11 1
SU(2) U(2)

d)

Fig. 16. a): A linear quiver. b): The six dimensional construction corresponding to

quiver in (a), the cross denotes the simple puncture and the black dot denotes

the puncture with partition [3, 1, 1, 1]. c): A different weakly coupled gauge

group description, we collide two generic punctures. d): A generalized quiver

corresponding to (c).
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i 2 3 4 5 6

p1i 1 2 2 2 2

p2i 1 2 2 2 2

δ1i 2 4 4 4 4

pi 1 2 3 4 4

1 1 1 0 0

Table IV. The data needed for colliding two generic punctures.

We do need to know what happened when we collide two generic punctures, we

follow our method and the data we need is in Table IV.

The new appearing puncture has the partition [5, 1], the decoupled gauge group

is SU(4). The decoupled three punctured sphere is reducible but it carries a degree

3 moduli as we can check explicitly. To see what this theory is, we reduce the three

punctured sphere to a rank 3 theory, then all the three puncture now is the full

puncture (we simple delete the extra boxes for each puncture), this theory is the

familiar E6 SCFT. Notice in this case, we use the subgroup SU(2) × U(2) × SU(4)

decomposition of E6 instead of the familiar SU(3) × SU(3) × SU(3) decomposition.

After gauging the SU(4) node, we are left a SU(2)×U(2) flavor symmetry. Combining

the U(1) flavor symmetry on SU(6) node, we have U(2) × U(2) flavor symmetry on

this quiver tail, and these are represented by two generic punctures with partition

[3, 1, 1, 1]. To confirm our identification of E6 theory, we can match the Higgs branch

dimension. According to our rule, the contribution of three punctured sphere should

be calculated using rank 3 theory, and its Higgs branch has dimension 11. The total

dimension of Higgs branch of quiver depicted in Figure 16a) is 19 using our formula

(5.18). The Higgs branch dimension of the quiver in Figure 16d) after the complete
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degeneration is

23 + 11 + x− 15 = 19, (4.79)

where 23 is from the left quiver and x is the contribution from the fundamental fields,

we have x = 0. This result shows that there is no extra fundamentals on SU(4)

node, which means that E6 matter system provides conformal anomaly like the three

fundamentals on SU(4) node, one can check this using the method in [10].

4. Three punctured sphere and sewing SCFT

The punctured Riemann surface can be derived by gluing the three punctured spheres.

In gauge theory terms, we may think that each three puncture corresponds to a matter

system, say a bi-fundamental field or a strongly coupled SCFT like E6 theory [48],

and the whole generalized quiver gauge theory is derived by gauging various flavor

symmetry of the matter system represented by the three punctured sphere. This is

obvious true since the as we saw the three punctured sphere after degeneration has

negative coulomb branch parameter, so these three punctured spheres can not be seen

as the matter system.

In some cases, all the three punctured spheres represent the matter system.

This is true for any generalized SU(2) quiver gauge theory, since this theory has

only one type puncture and one type three punctured sphere, which represents the

bi-fundamental fields with flavor symmetry SU(2) × SU(2) × SU(2), any general-

ized SU(2) quiver gauge theory in any duality frame is derived by gluing the fla-

vor symmetry of the basic three punctured sphere. Another interesting example is

SU(N)− SU(N)− ...− SU(N)︸ ︷︷ ︸
n

gauge theory with N fundamentals at each end, this

theory is described as six dimensional AN−1 theory compactified on a sphere with

n + 1 simple punctures and two full punctures. At one duality frame correspond-
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ing to the conventional description, the six dimensional nodal curve consists of three

punctured sphere with two full punctures and one simple puncture, each three punc-

tured sphere represents the bi-fundamental fields between two SU(N) gauge groups.

However, this same statement is not true in other duality frames. Another example

is the theory derived by compactifying six dimensional theory on a genus g Riemann

surface, as we discussed in previous subsections, in the complete degeneration limit,

all three punctured sphere has three full punctures which is the so-called TN theory,

see [11, 49]. This fact is true in any duality frame.

A three punctured sphere represents a real matter system if the three punctured

sphere is irreducible or the moduli space is just a point. The E6 SCFT theory is

irreducible while the bi-fundamental fields between two SU(N) gauge group has zero-

dimensional moduli space.

Let’s now discuss the interesting relation with conformal field theory. For Li-

ouville theory, the correlation function is decomposed as the product of the three

point functions and the conformal block [50]. This has the nice correspondence in

gauge theory since each three punctured sphere in any duality frame represents a real

matter system.

In the conformal Toda theory, it is shown that generically the correlation function

can not be written as the product of three point function and the conformal block [51,

52, 53], however, in some special cases the correlation function is factorizable. There

is one example shown in [51], the gauge theory is SU(N)− SU(N)− ...− SU(N)︸ ︷︷ ︸
n

we considered previously, and all the three punctured spheres in this weakly cou-

pled duality frame represent real matter system. Notice that in other duality frame,

some of the three punctured sphere does not represent a real matter system and the

correlation function in that channel is not factorizable. We then have this conjecture:
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The correlation function in one channel of two dimensional CFT is factorizable if

all the three punctured sphere for the corresponding weakly coupled gauge description

represents real matter system.

Since each channel of 2d CFT correlation function corresponds to a duality frame

of the gauge theory, this observation makes a completely determination about whether

the correlation function can be written as the product of the three point functions

and the conformal block.
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CHAPTER V

ASYMPTOTICAL FREE THEORY, ARGYRES-DOUGLAS POINT:

IRREGULAR SINGULARITY

The above analysis are all based on four dimensional superconformal field theories. It

is interesting to extend the six dimensional construction to asymptotical free theories.

It seems that in this case the irregular singularity of the Hithcin equation is needed.

There are another class of SCFTs called Argyres-Douglas theory [54, 55]. It

is interesting to see if these theories can also be constructed using six dimensional

construction. Our result indicates that it also involves irregular singularity. In fact,

irregular singularity can also be used to describe the ordinary superconformal field

theory considered in previous chapter.

With this understanding, I hope I can give a fairly complete classification of four

dimensional N = 2 complete quantum field theories.

A. Irregular solutions to Hitchin’s equation

Hitchin’s equation is

F − ϕ ∧ ϕ = 0,

Dϕ = D ∗ ϕ = 0. (5.1)

We want to find local solution to Hitchin’s equation and use it to describe N = 2

asymptotical free theory as we do for the superconformal case.

Before we start to discussing the irregular solutions, let’s discuss the physical

meaning of various parameters for Hitchin’s equation. In the conformal case, all

the gauge coupling constants are dimensionless, they are identified with the complex
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structure moduli of the Riemann surface. The mass parameters do enter into the

description of the Hyperkahler structure, they are the parameters of the coefficient

on regular pole, since the the symplectic form in complex structure I depends linearly

on these coefficients, which is a requirement for the mass parameter.

In the asymptotical free case, there is a dimensional scale Λ, we can not describe it

as the dimensionless complex structure moduli. The dimensional field in the Hitchin’s

system is the Higgs field (use naive scaling), so this coupling should enter into the

definition of the parameter of the Higgs field. The simple pole case is not good since

the parameter has been identified with mass parameter. Then we conclude that we

need higher order singularity: irregular singularity. The converse is not true since it

is still possible to describe superconformal field theory using irregular singularity.

Hitchin’s equation does have solutions with irregular singularities. It is the pur-

pose of this chapter to identify what kind of irregular singularities are needed to

describe four dimensional asymptotical free N = 2 gauge theories. Consider an ir-

regular singularity at the origin, Hitchin’s equation is schematically dΦ + Φ2 = 0 for

Φ = (A, ϕ), so for solutions singular than 1
z
, they are not compatible unless the solu-

tion is abelian, namely, they are taking values in a Cartan subalgebra. The moduli

space has similar structure as the regular singular case: it is a hyperkahler manifold;

it is an integrable system in complex structure I; the symplectic form depends linearly

on the regular pole coefficient, etc. See the detailed explanation in [56], we give a

short review in the below.

Introduce local coordinate z = reiθ, and we let t denote the lie algebra of a

maximal torus T of the compact lie group G (we take G as SU(N) in this chapter)

and tC its complexification. We pick α ∈ t and u1, ...un ∈ tC , and consider the
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solution

A = αdθ + ....,

ϕ =
dz

2
(
un
zn

+
un−1

zn−1
+ ...+

u1
z
) +

dz̄

2
(
ūn
z̄n

+
ūn−1

z̄n−1
+ ...+

ū1
z̄

+ ...). (5.2)

We first assume that un is regular and semi-simple, and u1 = β+ iγ, when n = 1, this

solution is reduced to the simple pole case. We will later relax regular semi-simple

condition for the leading order coefficient.

Let’s denote the moduli space of the solution as MH . The moduli space has the

hyperkahler structure and have three distinguished complex structures. In complex

strucure I, we get a Higgs bundle for each pair of solutions (ϕ,A). The holomorphic

structure of the bundle E is defined by using the (0, 1) part of the gauge field A. The

(1, 0) part Φ of ϕ is a holomorphic section of ad(E)
⊗

KC . Explicitly, do a complex

conjugation using riα, the operator ∂̄A = dz̄(∂z̄ + Az̄) reduces to the standard one

dz̄∂z̄. With this trivialization, The holomorphic part of Higgs field is

Φ =
dz

2
(
un
zn

+
un−1

zn−1
+ ...+

u1
z
). (5.3)

In another complex structure J, the moduli space does not depend on the complex

structure of the Riemann surface, moreover, it is independent of the coefficient in

higher order term. We study the Gc valued complex connection A = A + iϕ, which

is flat by using of Hitchin’s equation. The connection A can be put in the form

Az = (
un
zn

+
un−1

zn−1
+ ...+

u2
z2

)− i
α− iγ

z
. (5.4)

We put the connection in a standard form:

Az =
Tn
zn

+
Tn−1

zn−1
+ ....+

T1
z
. (5.5)
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Ti depends on the coefficient ui in an obvious way. For such irregular connection,

the monodromy is not just determined by T1, we have the famous stokes phenomenon

and the stokes matrix to describe the so-called generalized monodromy. The dimen-

sion of the local moduli space is

dim(MH) = (n)(dim(Gc)− r), (5.6)

we will give another way to calculate the dimension in complex structure using

Hitchin’s fibration. When n = 1, this is reduced to the previous formula for the

regular pole case with regular-semisimple coefficient. We should emphasize that in

defining the moduli space, we fixed the matrices Tn, ...T1. when we apply Hitchin’s

equation to describe four dimensional gauge theory, T1 represents as the mass param-

eters, T2,...Tn are interpreted as the parameters like dynamical generated scale. The

base of the Hitchin’s fibration is identified with the Coloumb branch.

What happens when the leading order coefficient is not regular-semisimple?

When un is semi-simple, the analysis is essentially the same as described in sec-

tion 6 of [56]. In this case, the subleading order terms un−1...u2 has some freedom,

they are constrained by u1 but there still some freedom left.

In general, the leading order coefficient can be decomposed into the direct sum

as B1

⊕
B2...

⊕
Bn, where some of the blocks are nilpotent, some other blocks are

semi-simple, we can then analyze the problem block by block. The semi-simple case

is discussed earlier. When un is nilpotent, we can also reduce to the semi-simple

solution. This is in contrast to the simple pole solution, in that case, when the

residue is nilpotent, we have new solutions to the Hitchin equation.

The case with nilpotent leading order coefficient plays an essential role in de-

scribing gauge theories, we will give a more detailed review below. Let’s consider the

case Az = Tn/z
n + ..., if Tn is nilpotent. We take G = SL(2, C) for an example. Az
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can be written as

Az =

 a z−nb

c − a

 , (5.7)

where a, c have poles at most of order n − 1 at z = 0 and b is regular. Now by a

gauge transformation g =

 1 0

f(z) 1

, we can set a = 0 by choosing appropriate

f(z), the connection becomes

Az =

 0 z−nb

z−kc̃ 0

 , (5.8)

where c̃ is regular and k < n. If n − k > 2, we can make a further gauge transfor-

mation with g =

 z
1
2 0

0 z
−1
2

 and follow a similar gauge transformation to take

the connection back to off-diagonal form. We can reduce n and n− k. The only new

possibility is then n = k or n = k + 1, if n = k, we are back to the case with Tn

regular semi-simple. If n = k + 1, we take a double cover of a neighborhood around

the singular point. We introduce a new coordinate z = t2, then we can reduce to

previous situation with a gauge transformation g =

 t
1
2 0

0 t
−1
2

. Write A = Atdt,

we have Az = At/2t. We have the following form for the connection

At =

 0 t−2nb

t−2nc 0

 . (5.9)

At is even under t → −t, so Atdt is odd under t → −t. So We have the following

singular solution for Hitchin’s equation

A = 0,

ϕ =
dt

2
(
vn−1

t2(n−1)
+

vn−2

t2(n−2)
+ ...+

v1
t2
) + c.c. (5.10)
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Now the leading order coefficient is regular semi-simple. It is useful to transform to

the original coordinate z, we need to be careful for the transformation, we need to

accompany the operation t→ −t with the gauge transformation

M =

 0 1

1 0

 . (5.11)

The local solution is

A = 0,

ϕ =
dz

4
(
vn−1

zn−1/2
+

vn−2

zn−3/2
+ ....+

v1

z
3
2

) + c.c. (5.12)

To make this solution well defined, we need to make a gauge transformation M in

crossing the cut on the z plane. We can also add the regular terms, the regular terms

are of the form vkz
k−1/2, k ≥ 1 to make the solution well defined, the regular singular

term is missing here so this singularity does not encode any mass parameter.

For instance, if n = 2, the holomorphic part of the Higgs field (we will call

the holomorphic part of the Higgs field as Higgs field in later parts of this paper)is

Φz =
v1
z3/2

+ C
z1/2

+ ..., The spectral curve is x2 = ϕ2(z), where ϕ2(z) = Tr(Φz)
2 is the

degree two differential on the Riemann surface. The quadratic differential has the

form

ϕ2(z) = Tr(Φz)
2 =

q2

z3
+
U

z2
+
M

z
+ ..., (5.13)

where we take v1 = diag(q,−q) and C = diag(a,−a). The parameter U depends on

a. This parameter is identified with the coulomb branch of the gauge theory, since

ϕ2(z) is a degree 2 meromorphic connection, according to Riemann roch theorem,

this pole contribute two to the coloumb branch, and so it contributes four to the

Hitchin’s moduli space. The above method shows how to calculate the local dimension

of the moduli space in Hitchin’s equation. We expand the spectral curve around
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the singularity, and find the maximal pole of degree i differential which depends on

regular term, and then sum up the contributions from degree 2 differential to degree

N differential for SU(N) case, this gives the local dimension of the base, the total

dimension of local Hitchin’s moduli space is twice the number we just calculated.

The form of the gauge field and Higgs field can be derived in another straightfor-

ward way, we take n = 2 for an example. Suppose the Higgs field takes the following

form

Φ(z) =
1

z2

 0 1

0 0

 dz +
1

z

 a b

−c d

 dz + ..... (5.14)

One can calculate the eigenvalues of Φ which are 1
z3/2

(Λ,−Λ), and the 1
z
term are

missing because of the monodromy, so we do not have any mass deformation for this

type of singularity, this recovers (5.12). The local dimension of the moduli space can

be derived by noting that the leading order coefficient belongs to nilpotent orbit with

dimension 2 and the regular singularity coefficient is in a semi-simple orbit also with

dimension 2, so the local dimension is 2 + 2 = 4.

More generally, the connection Az is an N × N matrix-valued function with a

possible pole at z = 0. It has N possibly multiple eigenvalues λi. The eigenvalues

behave for small z as z ∼ z−ri , with rational number ri. Tame ramification is the case

that all ri are equal to or less than 1. We call completely wild ramification if ri > 1

for all i. The general case is a mixture of these two possibilities. Following SU(2)

case, we consider the second order irregular singularity with leading order coefficient

nilpotent

Φ(z) =
A1

z2
dz +

A0

z
dz + ...., (5.15)

where A1 is the matrix in the nilpotent orbit O1 labeled by Young Tableaux with

partition [2, 1, 1.., 1], we take A1 as the matrix with standard Jordan form; A0 is in a
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regular semi-simple orbit O0 (the eigenvalues of A0 are all distinct). One can calculate

the eigenvalue of the Higgs field, it has the form

Φ =
1

z1+1/N
diag(1, ω, ω2...ωN−1)dz, (5.16)

where ωN = 1; Similarly as SU(2) case, 1
z
term is missing. The local dimension of the

Hitchin’s moduli space is equal to the sum of the dimension of the orbit O1 and O0,

d = 2N − 2 +N2 −N = N2 +N − 2, (5.17)

Notice that this equals to the contribution of a simple regular singularity and a full

regular singularity with partition [n]. This irregular solution is useful to us since

there is only one parameter in the irregular part and this can be identified with the

dynamical scale and there is no mass deformation, so this irregular singularity is useful

for the pure N = 2 super Yang-Mills theory, we will confirm this in later sections.

We also want to describe theory with any number of fundamental fields, and we

are interested in the Higgs field with following eigenvalues (after diagonalization)

Φ =
1

z1+
1

n−k

diag(0, ...0,Λ,Λω, ...Λωn−k−1)dz +

1

z
diag(m1,m2, ..mk,mk+1,mk+1...mk+1)dz + ..., (5.18)

where ω = e
−2πi
n−k and the sum of mass vanishes so we have k independent mass

parameters.

This form needs a small change for k = n − 1, in this case, the Higgs field has

the form

Φ =
1

z2
diag(Λ,Λ, ..,Λ,−(n− 1)Λ)dz +

1

z
diag(m1,m2, ..mn)dz + ..., (5.19)

∑n
i=1mi = 0. A special case is when n = 2, the leading order coefficient is regular
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semisimple.

The solution (5.18) is well defined only when we make a gauge transformation

on crossing the cut on z plane:

M =



0 . . . 0

. 0 . . 0

. . . . 0

. . . 0 0

0 . . . vn−k


, (5.20)

where vn−k is the (n− k)× (n− k) matrix

vn−k =



0 1 0 ... 0 0

0 0 1 ... 0 0

... ... ... ... ... ...

0 0 0 ... 0 1

1 0 0 ... 0 0


. (5.21)

Let’s first consider the simple case k = 0, in which the simple pole term is forbidden.

We can also add the regular term, however, the regular term must take a form so

that the Higgs field is well defined when we cross the cut in the z plane. The Higgs

field takes the following form

Φ =
Λ

z1+1/n
diag(1, ω, ...ωn−1) +

n−1∑
d=1

ad
z1−d/n

diag(1, ω−d..ω−dj, ...) + ... (5.22)

One can check that the Higgs field is well defined using the gauge transformation

(5.21) when we cross the cut. Since (1, ω, ...ωn−1) are the roots of the equation

xn − 1 = 0, the equation factorizes as xn − 1 =
∑n−1

i=0 (x − ωi), expanding the last

equation, we have the relation
∑

iw
i = 0,

∑
i ̸=j ω

iωj = 0,
∑

i ̸=j ̸=k ω
iωjωk = 0, etc,



107

the only nonvanishing combination is
∏
w0w...wn−1 = (−1)n−1. We also have the

relation
∑n−1

j=0 w
−dj = 0 for any d.

Calculating the determinant

det(x− ϕ(z)) = xn −
n∑

i=2

ϕi(z)x
n−i. (5.23)

We want to find the leading singular behavior of the coefficient ϕi(z). For ϕ2, one

may wonder it has the fractional power, but this is not the case, since the coefficient

of 1

z2+
2
k
is

∑
i ̸=j w

iwj = 0, We next calculate the next leading order which depends

on the regular term, it has the form

ϕ2(z) =
1

2

∑
i ̸=j

ωiω−dj 1

z2+(1−d)/n
=

∑
i

ωiω−di 1

z2+(1−d)/n
=

∑
i

ω(1−d)i 1

z2+(1−d)/n
.

(5.24)

This term is nonzero only in the case d = 1. So ϕ2(z) =
c
z2

+ ... The calculation can

be extended to the other coefficient ϕi, there is no term which only depends on the

singular term of the higgs field except for i = n, the leading order terms depending

on the regular terms are

ϕi(z) = C
∑

n1 ̸=n2..ni

ωn1 ...ωni−1ω−dni
1

zi+(i−d)/n
= C

∑
j

ω(i−d)jzi+(i−d)/n. (5.25)

We select n−1 terms from the irregular term and one regular term, the only vanishing

term is when d = i, so ϕi = C 1
zi

+ ...; For the coefficient ϕn(z), there is a term

depending on Λ, it has the form

ϕn(z) =
Λn

zn+1
+ C

1

zn
. (5.26)

The contribution of this singularity to the coulomb branch is

2 + ...n =
n2 + n− 2

2
. (5.27)
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This is the same as we calculate by counting the dimension of the adjoint orbit for

the coefficient on the singular part (5.17).

Let’s define the local covering coordinate z = tn, the higgs field has the form

ϕ(t) =
1

t2
diag(1, ω, ...ωn−1)dt+ .... (5.28)

To make this field well defined, we can not turn on the regular singular term. This has

the same form as the conventional irregular singularity with leading order coefficient

semi-simple.

One can similarly study the spectral curve of the Higgs field (5.18,5.19), the

term depending on the regular term is ϕi(z) =
C
zi
, so the contribution to the coulomb

branch of this singularity is also n2+n−2
2

. The difference with the previous case is that

we also have the higher order terms with coefficient depending on the singular terms.

To summarize, we have studied several types of irregular singularity: for the first

one, the leading order coefficient is regular semi-simple and this kind of singularity

is studied extensively; if the leading order coefficient is semisimple but not regular,

we can study the moduli space similarly as we do in the case of regular semi-simple

leading coefficient; if the leading order singularity is nilpotent, we can also transform it

to the first two cases with leading order coefficient semisimple if we go to the covering

space of local coordinate patch. if we transform back to the original coordinate, the

Higgs field usually has the fractional power in the coordinate.

B. SU(2) theory

In this section, we will identify the corresponding Hitchin system for N = 2 SU(2)

gauge theory. One important clue for the Hitchin system is that its total complex

dimension must be 2, so the base of the Hitchin fibration is 1 and can be matched
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with the dimension of the coloumb branch of N = 2 SU(2) theory.

There are only two types of irregular singularities: The first one with leading

order coefficient semi-simple. The second one has also semi-simple singularity, but it

has the form 1

zn+1
2
. We call them type I and type II singularity:

Φ =
1

zm

 Λ 0

0 −Λ

+
Am−1

zm−1
+ ....+

A1

z
+ ..... (5.29)

Φ =
1

zm−1/2

 Λ 0

0 −Λ

+
Am−1

zm−1−1/2
+ ....+

A2

z3/2
+ ..... (5.30)

The contribution of these two singularities to the Hitchin’s moduli space is 2m. The

total dimension for the Hitchin’s moduli space is the sum of local dimension minus

global contribution 6. We use An denote type I singularity with m = n, and Bn as

type II singularity.

There are four asymptotical free theories with only one Coulomb branch: that’s

SU(2) coupled with Nf = 0, 1, 2, 3. There are Nf mass parameters and one dynamical

scale. To describe these theories, we need Hitchin system with complex dimension 2.

The leading order can not exceed over 2, since there is no explanation for the extra

parameters in the higher order terms. There are following choices:

1 : (A2, B2) one mass,

2 : (A2, A2) two masses,

3 : (B2, B2) no mass,

4 : (A2, A1, A1) three masses,

5 : (B2, A1, A1) two masses,

6 : (A1, A1, A1, A1) four masses. (5.31)
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We recognize the number 6 corresponds to Nf = 4 case. In the other cases, there

are one dynamical scale ( if there are two irregular singularities, one can use scale

transformation to make the leading order coefficient equal).

To describe Nf = 3, case 4 is the only choice. The Seiberg-Witten curve associ-

ated with this Hitchin system is

det(x− Φ(z)) = 0,

x2 =
m2

1

z2
+

m2
2

(z − 1)2
+

U

z(z − 1)
+

2m3Λ

z
+ Λ2. (5.32)

We have used the conformal symmetry to put the simple punctures at z = 0, 1 and

the irregular puncture at z = ∞; U is the Coloumb branch parameter. This is exactly

the form (2.36).

Next, let’s consider Nf = 2 case, case 2 and 5 are possible and we expect them

to be equivalent. For case 5, The spectral curve has the form

det(x− Φ(z)) = 0,

x2 =
m2

1

z2
+

m2
2

(z − 1)2
+

U

z(z − 1)
+

Λ2

z
. (5.33)

We have put two simple singularities at z = 0, 1, and the irregular singularity at

z = ∞. This is the same as listed in (2.36).

For case 2, The spectral curve takes the form

det(x− Φ(z)) = 0,

x2 =
Λ2

z4
+
m1Λ

z3
+
U

z2
+

Λm2

z
+ Λ2. (5.34)

We put the puncture at z = 0,∞. We have put two simple singularities at z = 0, 1,

and the irregular singularity at z = ∞. This is the another curve for Nf = 2 as listed

in (2.36). This proves the equivalence of the above two Hitchin system.
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We next need Nf = 1, the only choice is case 1, The spectral curve is

det(x− Φ(z)) = 0,

x2 =
Λ2

z3
+
U

z2
+

Λm

z
+ Λ2. (5.35)

We also put the puncture at z = 0,∞, which is the same as in (2.36).

We then consider the pure N = 2 SU(2) theory. The only choice is case 3. The

spectral curve is

det(x− ϕ(z)) = 0,

x2 =
Λ2

z3
+
U

z2
+

Λ2

z
. (5.36)

The Seiberg-Witten curve above is the same as in (2.36).

The above analysis exhausted N = 2 SU(2) gauge theories with fundamen-

tal hypermultiplet. We should remark that there are more choices for the Hitchin

moduli space with total dimension 2. For a singularity with regular semi-simple

coefficient, the local dimension is 2n, where n is the order of the singularity, this

includes the regular singularity. If the leading coefficient is nilpotent, as we showed

in last section, the dimension is also 2n, if the leading order singularity has the form

Φ = vn
zn−1/2dz, n = 2... We have the following choices except those we studied in this

section:

i) One 3 order irregular singularity with regular semi-simple coefficient and one

regular singularity, we have two mass parameters associated with the residue of the

regular singularity. This might be related to A2 Argyres-Douglas fixed point [54, 7].

ii) One 3 order irregular singularity with the form (5.12) with n = 3, and a simple

singularity, we suspect this is related to A1 Argyres-Douglas fixe point

iii) One 4 order irregular singularity with regular semi-simple coefficient, we
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suspect this is also related to A1 Argyres-Douglas fixed point.

iv) One 4 order irregular singularity with the form (5.12), we suspect this is

associated with the A0 Argyres-Douglas superconformal fixed point.

There are some clues that the above conjecture might be true. Singular fibre is

classified by Kodaira, and Argyres-Douglas fixed point corresponds to singular fibre of

type A2, A1 and A0. According to the result by Boalch [57], case i) can be associated

with the affine dynkin diagram of A2, case ii) is associated with affine dynkin diagram

of A1 and case iv) is associated with dynkin diagram of A0. There are another hint

about our conjecture, for A2 Argyres-Douglas fixed point, we have two deformation

paramters, we also have two deformation parameters in the Hitchin system i), one

from the order 3 singularity and the other from regular singularity. Case ii) and case

iii) both have one mass parameter and case iv) does not have mass parameter which

match the deformation parameter of A1 and A0 singularity. This conjecture is true

and is proved in Chapter VI.

It is natural to then consider the linear quiver with only SU(2) gauge groups. For

the superconformal case with n SU(2) gauge group, we have a total of n+3 punctures

on the sphere, with n − 1 punctures to account for the flavor symmetry of the bi-

fundamental and 2 puncture for the two fundamentals on the far left, and 2 punctures

to account for the bi-fundamental on the far right. If the quiver is not conformal,

we can only change the number of fundamentals at the end, we need to replace the

two simple punctures with the irregular puncture based on solution (5.18,5.19) with

n = 2, k, where k is the number of fundamentals on the end, see Figure 17 for details.

If k = 2, we still have two simple punctures. We have a total of n+1 punctures on the

sphere if k < 2 on both ends, and we have n− 2 gauge groups which are conformal;

the punctured sphere has a total of n−2 moduli and these moduli are identified with

the UV gauge couplings of the (n− 2) conformal gauge group.
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....... .......

a) b)

Fig. 17. Left: Brane configuration of conformal SU(2) quivers. Right: A brane config-

uration with non-conformal gauge group.

In conclusion, to describe SU(2) linear quiver, besides the regular singularity, we

also need to turn on two types of irregular singularities. One can similarly studied

the different degeneration limits and we will get generalized quiver as in [11]. For

example, let’s consider the quiver in Figure 18a). There are three SU(2) gauge groups

and only the middle one is conformal. The weakly coupled limit of quiver Figure 18a

is described by the degeneration limit of the Riemann sphere with four punctures in

Figure 18b: we have two simple punctures and two irregular punctures described by

boxes. Figure 18c) describes another degeneration limit of the same Riemann sphere,

after the complete degeneration limit, we get a theory which is described by Hitchin’s

equation with two irregular singularities and one regular singularity, this is depicted

in Figure 18d). This theory has two dimension two operators in Coulomb branch and

it is a linear quiver with two SU(2) gauge group. The dual theory is a generalized

quiver.
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SU(2) SU(2) SU(2) 1

a)

b)

c) d)

Fig. 18. a): A nonconformal SU(2) quiver with three gauge groups. b): The degen-

eration limit of the Riemann sphere corresponding to quiver a), the regular

singularity is represented by cross, and the irregular singularity is represented

by box. c): Another degeneration limit of the same Riemann sphere. d): After

complete degeneration, we get a SU(2) theories with two irregular singularity

and a simple singularity.

C. SU(N) theory

1. One SU(N) gauge group

Let’s now generalize the analysis of SU(2) theory to SU(N) case. We first consider a

single SU(N) gauge group with Nf fundamental hypermultiplets. We already know

how to describe Nf = 2N case in six dimensional language. We have four punctures

on the sphere: two simple regular punctures and two full regular punctures. We

can think that one simple puncture and one full puncture are needed to describe

N fundamental on each side. The contribution of these two punctures to Coulomb

branch parameters is N − 1+ 1
2
(N2 −N) = N2+N−2

2
, where N − 1 is the contribution

of the simple regular puncture and 1
2
(N2 −N) is the contribution of the full regular

puncture.
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To describe asymptotical free theories. The total dimension of Hitchin’s moduli

space should be 2(N − 1). We need just one dynamical generated scale and Nf mass

parameters. The Hitchin system is not unique as we can see from SU(2) example

and the Seiberg-Witten curve in the form (2.35) (the decomposition of the mass

terms are not unique and are isomorphic). There can not be more than two irregular

singularities, since there is only one dynamical generated scale. The maximal number

of singularity is three, since there is a marginal coupling for the four singularity case

which is impossible in our case.

The leading order in the irregular singularity should has only one nilpotent block,

and the nilpotent block should have the form (n−k, 1, 1, 1, 1...1), after diagonalization,

the detailed form depends on the subleading term. It turns out that the leading order

eigenvalue has the form 1

z1+
l
k
(1, ω, ...ωn−k−1, 0, 0, 0..0), where 1 ≤ l < k. There are

k mass parameters in this singularity. Let’s first consider two irregular singularities

case. The local contribution to Coulomb’s branch can be calculated, the minimal

number is N2+N−2
2

for l = 1. So the only possibility is l = 1 for two singularities,

and this can be used to describe SU(N) with Nf = k− + k+. Now let’s consider

three singularities, as from the local dimension of irregular singularity, the extra two

singularity must be the regular singularity. Moreover, one can prove that the two

regular singularity must be a regular full and a regular minimal, since only in this

case, there is a new regular full puncture which can be used to couple the SU(N) gauge

theory. Since there are a total of N mass parameters in two regular singularities, the

three singularity cases is only possible for Nf ≥ N .

The above result can be explained using brane construction; In analogy with

SU(2) theories, we first consider 2N > Nf ≥ [1
2
N ], in this case we can put N fun-

damentals on the right and Nf − N fundamentals on the left, and we must have a

simple and a full regular punctures to describe the fundamentals on the right. We
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can only have one irregular punctures to account for the fundamentals on the left as

SU(2) case. To get the correct number of coulomb branch moduli, the contribution

of the irregular singularity to Coulomb moduli space must be 1
2
(N2−N); We do have

a class of irregular singularity with this number in (5.18,5.19). From the analysis

of SU(2) theory, we may want to select the solution with n = N, k = Nf − N , an

important check is that the flavor symmetry on the N − Nf fundamentals on the

left hand side is U(k). The regular singular part of the irregular singularity has the

partition (k + 1, 1, 1, ...1), which do describe U(N) flavor symmetry.

We now have the clue to describe SU(N) theory with any number of funda-

mentals. We can decompose Nf = k− + k+ and k− < k+ ≤ N , namely, we put

k− semi-infinite D4 branes to the left and k+ semi-infinite D4 branes to the right.

See the brane configuration in Figure 19. If k+ < N , we need two irregular singu-

larities, and the local solution is of the form (5.18,5.19) with n = N, k = k− and

n = N, k = k+; if k+ = N , we have two regular punctures and one irregular puncture

with n = N, k = k−. We also need to set the coefficient Λ at the irregular singu-

larities equal. The Seiberg-Witten curve is derived from the spectral curve of the

Hitchin system. Notice that, we have more than one description for the same SU(N)

theory with Nf fundamentals. The different Hitchin moduli spaces corresponding to

different decomposition of Nf are isomorphic! see [13, 58].

Let’s consider pure SU(N) theory for an example. We need to have two irregular

singularities with n = N, k = 0 in (5.18,5.19). The spectral curve is described in

(5.25). We put two singularities at z = 0, z = ∞, and the Seiberg-Witten curve is

xN +
u2
z2
xN−2 +

u3
z3
xN−3 + ....+

uN−1

zN−1
x+

ΛN

zN+1
+
uN
zN

+
ΛN

zN−1
= 0. (5.37)

The Seiberg-Witten differential is λ = xdz.

The solution of pure SU(N) theory is related to another integrable system: peri-
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a) b)

Fig. 19. Left: A brane configuration for SU(5) theory with 7 fundamentals, here

k− = 2, k+ = 5. Right: Another brane configuration for the same theory

as a), here k− = 3, k+ = 4.

odic Toda chain [59]. Here we give another integrable system to describe pure SU(N)

theory using Hitchin’s system, these two integrable systems should be isomorphic.

The specific form of the singularity of the solution to Hitchin’s equation may be

seen from the Brane configuration and Seiberg-Witten curve. The Seiberg-Witten

curve for the brane configuration in Figure 19 is

F (v, t) = c0

k−∏
i=1

(v −mi)t
2 +B(v)t+ c2

k+∏
i=1

(v −mi) = 0, (5.38)

where B(v) = c1(v
N +u2v

N−2+ ...uN), and the Seiberg-Witten differential is λ = v
t
dt.

We regard this curve as the polynomial in v with fixed t, so we have a total of N

roots. In the limit t→ 0, k+ roots are constant, they are m1,m2, ...mk+ , and we have

N − k+ roots which are Λt
1

N−k+ (1, ω, ...ωN−k+−1), where ω is the root of the equation

xN−k+ = 1, and Λ depends on cα.

Now we want to find the Hitchin system description. The Seiberg-Witten curve

is identified with the spectral curve of Hitchin system

det(x− Φ(z)) = 0, (5.39)
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and the Seiberg-Witten differential is λ = xdz. Let’s compare this with (5.38), we

identify z with t, and x = v
t
, we have the equation

det(
v

t
− Φ(t)) = tNdet(v − tϕ(t)) = F (v, t). (5.40)

Now we can read the boundary condition of the Higgs field at the puncture t = 0,

The roots of v at fixed t is identified with the eigenvalue of the function tΦ(t), so the

Higgs field has the following form at t = 0,

Φ =
1

t
1+ 1

N−k+

diag(0, ...0,Λ,Λω, ...ΛωN−k+−1)dt+

1

t
diag(m1,m2, ..mk,mk+1,mk+1...mk+1)dt+ .... (5.41)

We do a little bit manipulation on the simple pole term so that the matrix is

traceless, i.e. they are taking value in the lie algebra of SU(N). This is the exactly

same as (5.18, 5.19). In the case k+ = N , the irregular term is absent and we have

N mass terms, however, the maximal parameter for a regular singularity is N − 1, so

we need to turn on another simple singularity with only one mass parameter. The

analysis can be carried similarly for t = ∞.

2. Asymptotically free quiver gauge theory

a. Review for the conformal case

We next turn to the description of the quiver gauge theory. The simplest case is

a quiver with all SU(N) gauge groups, and only the two SU(N) group at the ends

are not conformal. If we have n SU(N) gauge groups, then there are n − 1 simple

punctures and two irregular punctures depending on the number of fundamentals on

the end SU(N) gauge group. The dimension of the complex structure moduli space
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of this sphere with n + 1 punctures is n − 2, this matches the number of conformal

gauge group and is used to describe the UV conformal gauge coupling constants. If

there are k− fundamental hypermultiplets on the far left SU(N) gauge group and k+

fundamentals on the far right, the two irregular singularity is of the form (5.18, 5.19)

with n = N, k = k±.

Let’s consider the general quiver gauge theory with the gauge group
∏n

i=1 SU(ki),

here k1 < k2... < kr = ...ks > ks+1.. > kn and ks = ..kr = N , the rank of the gauge

group is chosen so that every gauge group is conformal or asymptotically free; we

have the bi-fundamental fields in adjacent gauge groups, we also add di fundamental

hypermultiplets to ith gauge group SU(ki). The r−s−1 middle SU(N) gauge groups

are conformal. The case with all gauge group conformal is studied in [11, 23] we want

to extend to general asymptotical free case. We review the superconformal theory

which will provide us a lot of clues, in this case dα = 2kα − kα−1 − kα+1.

The Seiberg-Witten curve for this theory is derived by lifting the brane configu-

ration to M theory. The D6 branes are described by Taub-NUT space [9]. NS5−D4

brane configurations become a single M5 brane embedded in D6 branes background.

Define coordinate v = x4 + ix5 and polynomials:

Js =
is∏

a=is−1+1

(v −ma), (5.42)

where 1 ≤ s ≤ n and dα = iα − iα−1, ma is the constant which represents the

position of D6 brane in v direction and is identified with the mass of the fundamental

hypermultiplet.



120

The Seiberg-Witten curve is

tn+1 + g1(v)t
n + g2(v)J1(v)t

n−1 + g3(v)J1(v)
2J2(v)t

n−2

+...+ gα

α−1∏
s=1

Jα−s
s tn+1−α + ...+ f

n∏
s=1

Jn+1−s
s = 0, (5.43)

here gα is a degree kα polynomial of variable v. From the study of a single SU(N)

theory, to get a Hitchin description, it is necessary to move all the D6 branes to the

far left and far right. We split Jα as the product of Jα,L and Jα,R, where Jα,L denotes

the D6 branes moving to the left, and Jα,R denotes the D6 branes moving to the

right. We can choose Jα,L and Jα,R arbitrarily. We define the canonical choice by

moving all the fundamental matters for SU(ki), i ≤ r to the far left, and move all the

fundamental matters for SU(ki), i ≥ s to the far right. In the case of r = s, we split

the fundamentals into two parts dr,L = N − kr−1 and dr,R = N − kr+1.

After moving the D6 branes to the infinity, the Seiberg-Witten curve becomes

F (v, t) =
n+1∑
α=0

ĝα(v)t
n+1−α (5.44)

where

ĝα(v) = cαgα(v)
r∏

β=α+1

Jβ−α
β α = 0, 1, ....r − 1. (5.45)

ĝ(v) = cαgα(v), α = r, ....s. (5.46)

ĝ(v) = cαgα(v)
α∏

β=s

Jα−β
β α = s− 1, .....n. (5.47)

Let’s calculate the order of the polynomial ĝα(v). The middle one is not changed.

There are two quiver legs and we study one of them and the other leg can be treated

similarly. Let’s consider the leg SU(k1)−SU(k2)− ...−SU(kr) with kr = N , We can

associate a Young Tableaux to this leg with the rows n1 = k1, n2 = k2 − k1,...,nr =

kr − kr−1, it is easy to see that the total box of the Young Tableaux is N . Then the
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number of fundamentals can be written as dα = 2kα − kα−1 − kα+1 = (kα − kα−1) −

(kα+1−kα) = nα−nα+1. Jα(v) is a order dα polynomial in v. The order of polynomial

ĝα(v) is

d(gα) = kα + dα+1 + 2dα+2 + ...(r − α)dr = N. (5.48)

The same calculation can be applied to the right quiver leg, so the polynomial gα(v)

has the same order N . We want to study the roots of the Seiberg-Witten curve

regarded as a polynomial in v while t is fixed. v have n constant roots at the roots

of the following equation
n+1∑
α=0

cαt
n+1−α = 0. (5.49)

This polynomial is the the coefficient of vN in F (v, t) if we regard it as the polynomial

in v. The singular behavior of the Higgs field of the Hitchin equation can be derived

from the roots as we did for a single SU(N) gauge group theory, the Higgs field has

regular simple singularity at t = tα which is the root of above equation. The Higgs

field has the form

Φ(z) =
1

z
diag(m, ...m︸ ︷︷ ︸

N−1

,−(N − 1)m)dz + ... (5.50)

There are other singularities for the Hitchin system, we study the roots of the

Seiberg-Witten curve at t→ ∞, the n roots of v are dictated by the polynomial g0(v),

v = (md1,1,md1,2, ..md1,d1︸ ︷︷ ︸
d1

md2,1,md2,1, ...md2,d2 ,md2,d2︸ ︷︷ ︸
2d2

, ....). (5.51)

The Higgs field is therefore

Φ(z) =
1

z
diag(md1,1,md1,2, ..md1,d1︸ ︷︷ ︸

d1

md2,1,md2,1, ...md2,d2 ,md2,d2︸ ︷︷ ︸
2d2

, ....)dz + ... (5.52)

It is interesting to note that the mass pattern can be derived from the Young Tableaux.
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Indeed, it can be read from the dual Young Tableaux. To construct dual Young

Tableaux, we simply exchange the rows and columns. More precisely, the dual Young

Tableaux is related to the original Young Tableaux as follows: we have a total of n1

rows, we have n1 − n2 rows with length 1, nk − nk+1 rows with length k, etc; we use

the convention nr+1 = 0. Look at the form of the Higgs field, we see that the residue

is dictated by dual Young Tableaux, we have d1 = n1 − n2 mass parameters with

degeneracy 1, we have d2 = n2 − n3 mass parameters with degeneracy 2, etc. The

same analysis applies to the case t → 0, so the theory is described by a Riemann

sphere with n+ 1 simple punctures and two generic punctures.

b. Irregular puncture for nonconformal theory

When not all di = (2ki − ki−1 − ki+1) are satisfied, the quiver gauge theory is non-

conformal. Let’s first consider the case where there is no fundamentals for the left

tail. The regular singularities describing the middle part and the right tail should not

be changed. There should only have just an order two irregular singularity needed

to describe left-tail, since otherwise there have an extra marginal coupling which is

inconsistent with gauge theory. There are a total of r − 1 mass parameter for the

bi-fundamental, there are r dynamical generated scale. The leading order singularity

should have r nilpotent block and each nilpotent block should be the maximal form,

i.e. whose partition is [ni]. The constraint on this irregular singularity is that its local

dimension should give the correct dimension for the Coulomb branch of this tail.

Let’s first calculate the dimension for the minimal case, this means that the

eigenvalues for each block are Λi

z
1+ 1

ni

(1, ω, ..ωni−1) with ωni = 1. The spectral curve

around the irregular singularity is

det(x− ϕ(z)) =
r∏
i

(xni +
f(mi)

z
xni−1 +

u2
z2
xni−2 + ....

(Λi)
ni

zni+1
+
un
zni

). (5.53)
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Expanding the spectral curve as xN = ϕi(z)x
N−i, and find the maximal order of pole

of ϕi which do not solely depend on Λ and m, we start with N − n1 < j ≤ N , we

choose the term from n1 factor and constant terms from other factors, the orders of

pole of ϕj are given by

ord(ϕN−n1+1) =
r∑

i=2

ni + r − 1, ord(ϕN−n1+2) =
r∑

i=2

ni + r − 1 + 2, ...

ord(ϕN−1) =
r∑

i=2

ni + r − 1 + nr − 1, ord(ϕN) =
r∑

i=2

ni + r − 1 + nr. (5.54)

The same analysis can also be carried out for N −
∑k

i=1 ni < j ≤ N −
∑k−1

i=1 ni with

1 ≤ k ≤ r, and ϕj has the following orders of pole

r∑
i=k+1

ni + r − k,

r∑
i=k+1

ni + r − k + 2, ...,
r∑

i=k+1

ni + r − k + nk. (5.55)

So the total dimension is

r∑
k=1

[
r∑

i=k+1

ni + r − k +
r∑

i=k+1

ni + r − k + 2 + ....+
r∑

i=k+1

ni + r − k + nk]. (5.56)

After some calculation, the above expression becomes

1

2

r∑
k=1

n2
k +

∑
k<i

nink − r +
r∑

k=1

(r − k +
1

2
)nk. (5.57)

It is interesting to write the Coulomb branch dimension of the quiver tail in terms

of the Young Tableaux. In the conformal case, it is encoded by one generic regular

singularity and r simple regular singularities, the total Coloumb branch dimension

from these punctures is

1

2
[N2 −

∑
i

r2i + r(2N − 2)], (5.58)

where ri is the height of the ith column of Young Tableaux. We would like to express

it in terms of the rows of the Young Tableaux; This can be done by noting that we
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have nk − nk+1 columns with height k, and the above formula becomes

1

2

∑
i

n2
i +

∑
i<j

ninj − r +
∑
i

(r − i+
1

2
)ni. (5.59)

Comparing formula (5.57) and (5.59), we immediately conclude that the irregular

singularity has the same partition as the Young Tableaux of the left quiver tail.

We also need to match the number of dimension i Coulomb branch parameter. An

important difference for irregular singularity is that not all the dimension i Coulomb

branch parameters are encoded in the coefficient ϕi. In fact, there are r − 1 extra

dimension 2 operators encoded in ϕN .

When the fundamental matters are added, the best way to find the irregular

singularity is through the Seiberg-Witten curve which we leave it to later part of this

section.

We need to clarify some of the special cases, we have at least r−s−1 simple sin-

gularities which are used to describe the bi-fundamentals between the SU(N) group.

We may have more simple singularities if some of the gauge groups on the quiver tail

is conformal. If nα−1 −
∑r

i=α−1 di ̸= 0, nα −
∑r

i=α di = 0 for some α, one can show

that all gauge groups SU(ki) with r ≥ i ≥ α are conformal, and only α− 1 blocks in

the Higgs field are irregular, we need to add r − α + 1 more simple singularities to

account for the mass deformation of the bi-fundamental fields; this can also be seen

from the fact that we have more roots for the equation before vN term in F (v, t). If

α = 1 for the above situation, we return to the superconformal case. There is an-

other justification to add more simple singularities, since we only have α dynamical

scale from the irregular singularity from the irregular singularity, but we have extra

r − α + 1 UV dimensionless gauge couplings, these can only be represented by the

complex structure moduli of the Riemann surface, so we need to add r − α simple
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regular punctures. We also lose mass parameters mα for each regular block, these

parameters are now encoded in the simple regular punctures.

What happens if there is a gauge group SU(kβ) which is conformal, but β < α,

where for α,

nα−1 −
r∑

i=α−1

di ̸= 0, nα −
r∑

i=α

di = 0. (5.60)

The above analysis implies that we need an irregular singularity and (r − α + 1)

simple regular singularities to describe the quiver tail. We want to identify UV

gauge couplings for SU(kβ), it is not represented by the complex structure moduli

of the punctured Riemann sphere, it is encoded in the irregular part of the irregular

singularity. The condition for the conformal gauge coupling of SU(kβ) is dβ = nβ −

nβ+1, the number of non-zero entries in irregular part of vnβ
and vnβ=1

are

rβ = nβ −
r∑

i=β

dβ,

rβ+1 = nβ+1 −
r∑

i=β+1

dβ. (5.61)

The conformal condition for SU(kβ) implies rβ = rβ+1. Now the dimensionless gauge

coupling for SU(kβ) is identified with τβ =
Λβ

Λβ+1
=

cβ−1cβ+1

c2β
. This case shows that we

can encode the conformal couplings in the irregular singularity, while in the canon-

ical treatment of superconformal field theory, the gauge coupling is encoded as the

complex structure moduli of the Riemann surface. In fact, one can also encode all

the dimensional gauge couplings of the superconformal field theory into the irregular

singularity.

The form of the irregular puncture can also be derived from the Seiberg-Witten

curve, here the number of fundamentals are arbitrary and constrained by the relation

di ≤ (2ki−ki−1−ki+1). The Seiberg-Witten curve is the same as (5.44), the difference
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is that here cα is dimensional parameters to make every term in F (v, t) have the same

dimension. Similarly, we have the simple singularity for the Higgs field at the points

tα which are the roots of the polynomial of the coefficient of the vN term. There are

other two singularities at t = 0 and t = ∞, these two describe the right quiver tail

and left quiver tail respectively. We focus on the left tail. In the case r = s, there is

no canonical way to split the fundamental matters on the SU(kr) node, but we have

to make sure that drL ≤ N − kr−1, drR ≤ N − kr+1.

The order of coefficient for ĝα(v), α < r is

deg(ĝα(v)) = kα + dα+1 + 2dα+2....(r − α)dr = k̂α, (5.62)

kα is a non-decreasing series and we have

k̂α − k̂α−1 = (kα − kα−1)−
r∑

i=α

di = nα −
r∑

i=α

di. (5.63)

We take k̂α−1 = 0 and we have the condition k̂α − k̂α−1 ≥ 0, notice that k̂r = N .

In the limit of t→ ∞, v have k̂0 constant roots

v = (md1,1,md1,2, ..md1,d1︸ ︷︷ ︸
d1

md2,1,md2,1, ...md2,d2 ,md2,d2︸ ︷︷ ︸
2d2

, ....). (5.64)

Since k̂0 < N , there are other roots besides the constant ones we get above, for any

α ≤ r, we have the k̂α − k̂α−1 roots

v = Λαt
1
m (1, ω, ...ωm−1), (5.65)

where m = k̂α − k̂α−1, ω is the root for xm = 1 and Λα = ( cα−1

cα
)

1
m , one can check

that Λ has dimension 1 from the Seiberg-Witten curve F (v, t), if we require t has

dimension −1 and v has dimension 1.

Based on the roots of v in the limit t → ∞, the Higgs field has the following
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form around the singularity z
′
= ∞ (we change the local coordinate to z = 1

z
′

ϕ(z) =



vn1 0 0 0 0

0 vn2 0 0 0

0 0 ... 0 0

0 0 0 ... 0

0 0 0 0 vnr


dz + ..., (5.66)

where vnα is the diagonal matrix as in (5.18) with n = nα, k =
∑r

i=α di, to make the

Higgs field well defined, we make a gauge transformation of the block diagonal form

(5.21) when we cross the cut. The mass terms in vnα is constrained though, its form

is

1

z
diag(mdα,1,mdα,2, ...,mdα,dα , ....,mdr,1,mdr,2, ...,mdr,dr). (5.67)

Namely, the mass parameter in d1 has degeneracy 1, the mass parameter in d2 has

degeneracy 2, etc.

It is interesting to compare the total mass parameters with the quiver tail. The

mass parameters (m1,m2, ..md1 ...) are used to describe the mass deformation for the

fundamentals, and we have a total of r−1 mass parametermα (One ofmα is eliminated

by traceless condition), and we have a total of (r − 1) bi-fundamental matter fields,

so the mass parameters match the matter contents of the quiver gauge theory.

If n − k = 1 for vnα , we need a little bit modification, the Higgs field is (we

assume nr − k = 1 here for an illustration).

Φ(z) =



vn1 +
1
z2
ΛrIn1×n1 0 0 0

0 vn2 +
1
z2
ΛrIn2×n2 0 0

0 0 ........ 0

0 0 0 −(n−1)
z2

Λr


dz + ... (5.68)
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The coefficient Λi is identified with the dynamical scale of ith gauge group SU(ki).

In summary, for A type N = 2 quiver gauge theory, the six dimensional de-

scription involves several regular singularities and two irregular singularities. In the

superconformal case, the irregular singularity becomes also the regular singularity

and they are of the special type which is dictated completely by the rank of the gauge

group. In the non-conformal cases, the irregular singularities are determined by the

rank of the gauge group and the number of the fundamentals. They can be described

uniformly.

Similarly, for the non-conformal quiver, one can study different degeneration lim-

its and study different dual frame of the same theory. In the completely degeneration

limit, we can find new theories without conventional lagrangian description. There

are a lot more irregular singularities which deserve further study.
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CHAPTER VI

THREE DIMENSIONAL MIRROR SYMMETRY ∗

The moduli space of Hitchin’s equation is a hyperkahler manifold. In one complex

structure, there is a Hitchin’s fibration, and the spectral curve is identified with the

Seiberg-Witten curve. The whole hyperkahler manifold is naturally identified with

the Coulomb branch of the corresponding four dimensional theory on R3 × S.

For three dimensional N = 4 theory, it usually has Coulomb branch and Higgs

branch. There is a remarkable mirror symmetry of three dimensional theory [60]:

for a theory A, there is another theory B whose Higgs branch is identified with the

Coulomb branch of A and vice versa. The theory A I want to study is the compactified

theory of the four dimensional theory studied in last two sections, it is interesting to

find their three dimensional mirror theory B. This would provides new examples of

three dimensional mirror symmetry. If the mirror theory has lagrangian description,

the property of four dimensional theory A which usually does not have a lagrangian

description will be better understood.

Let’s look more closely at our torus example with x3 compact and get a three

dimensional theory. It makes sense to talk about electric description and magnetic

description when we talk about three dimensional theory. The electric description has

dynamical M5 branes (from D4 branes) wrapped on coordinate x3, x6, x10 and other

M5 branes wrapped on x3, x4, x5. In the magnetic description, there are dynamical

M5 branes wrapped on x3, x6, x10 and M5 branes wrapped on x4, x5, x10. So we see

∗Part of the result reported in this chapter is reprinted with permission from
Mirrors of 3d Sicilian theories by F. Benini, Y. Tachikawa and D. Xie, published in
JHEP 1009 (2010) 063, Copyright [2010] by SISSA; More three dimensional mirror
pairs by D. Nanopoulos and D. Xie, published in JHEP 1105 (2011) 071, Copyright
[2011] by SISSA.
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that the magnetic description is derived by exchanging the coordinate x3 and x10.

This is just the 3d mirror symmetry. The mirror is not a 3d gauge theory though, in

fact, we need to take the radius of x3 infinitely small and flow to the IR, we expect

the mirror is a three dimensional theory.

Let’s focus on the dynamical M5 branes, the electric description can be derived

by first compactified on a torus (x3, x10), and we get a four dimensional N = 4 theory,

and then compactify on x6 to get a three dimensional theory, the four dimensional

gauge coupling is the complex structure of the torus (x3, x10). The magnetic descrip-

tion is just exchange x3 and x10, from the gauge theory point of view, this is just the

electric-magnetic duality. Then 3d mirror symmetry is coming from four dimensional

S-duality. The important question is that what happens on the puncture when we do

the electric magnetic duality. Fortunately, this question has been extensively studied

in [61], using these results, we can find a large class of 3d mirror pairs.

A. 3d Mirror for Sicilian theory

1. Rudiments of 3d N = 4 theories

3d N = 4 theories have a constrained moduli space [60]: it can have a Coulomb

branch, parameterized by massless vector multiplets, and a Higgs branch, parameter-

ized by massless hypermultiplets. There can be mixed branches as well, parameterized

by both sets of fields. All branches are hyperkähler. When the theory is superconfor-

mal, it has R-symmetry SO(4)R ≃ SO(3)X ×SO(3)Y : then SO(3)X acts on the lowest

component of vector multiplets, while SO(3)Y acts on that of hypermultiplets.

Both the Coulomb and Higgs branch can support the action of a global non-

R symmetry group: we will call them Coulomb and Higgs symmetries respectively.

When the 3d theory has a Lagrangian description, the Higgs branch is not quantum
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corrected and the Higgs symmetry is easily identified as the action on hypermultiplets.

Coulomb symmetries are subtler. The classic example is a U(1) vector multiplet with

field strength F : then J = ∗F = dϕ is the conserved current of a U(1) Coulomb

symmetry, which shifts the dual photon ϕ. Quantum corrections can enhance the

Abelian Coulomb symmetry to a non-Abelian one.

To both Coulomb and Higgs symmetries are associated conserved currents. We

will often use them to “gauge together” two or more theories. What we mean are the

following two options. Firstly, we can take two theories—each of which has a global

symmetry group G acting on the Higgs branch—then take the current of the diagonal

subgroup and couple it to a G vector multiplet, in a manner which isN = 4 and gauge

invariant. Secondly, we can take two theories—each of which has a global symmetry

group G acting on the Coulomb branch—and couple a G vector field to the diagonal

subgroup. To preserve N = 4 supersymmetry, one needs to use a twisted vector

multiplet whose lowest component is non-trivially acted by SO(3)Y . Twisted vector

multiplets can also be coupled to twisted hypermultiplets, whose lowest component

is non-trivially acted by SO(3)X . The mirror map then relates two theories A and B,

such that the Coulomb branch of B is the Higgs branch of A and vice versa.

We will often consider 5d, 4d and 3d versions of a theory. What we mean is that

a lower dimensional version is obtained by simple compactification on S1. When a

4d N = 2 theory is compactified to 3d there is a close relation between the moduli

spaces of the two versions [33]. The Higgs branches are identical. If the 4d Coulomb

branch has complex dimension n, the 3d Coulomb branch is a fibration of T 2n on the

4d Coulomb branch, and has quaternionic dimension n. The Kähler class of the torus

fiber is inversely proportional to the radius of S1. We often take the small radius

limit and discuss the resulting superconformal theory.
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2. Mirror of triskelions via a brane construction

The objective of this subsection is to find the mirror of the TN theory, and more

generally of triskelion theories. In the next subsection, we will explain how to gauge

them together and construct the mirror of general Sicilian theories.

a. Mirror of TN

The mirrors of a large class of theories have been found by Hanany and Witten by

exploiting a brane construction [62] (see also [63, 64]): one realizes the field theory as

the low energy limit of a system in IIB string theory of D3-branes suspended between

NS5-branes and D5-branes. The mirror theory is obtained by performing an S-duality

on the configuration, and then reading off the new gauge theory. We cannot apply

this program directly to the M-theory brane construction of Sicilian theories, except

for those cases that reduce to a IIA brane construction.

A 3d theory can also be studied by first constructing its 5d version using a web

of 5-branes and then compactifying it on T 2 [65]. In [66] it was shown how to lift the

Sicilian theories to five dimensions, and how to get a brane construction of them in

IIB string theory. That paper focused on the uplift of N M5-branes wrapped on the

sphere with three generic punctures, and this is all we need to start.

Consider a web of semi-infinite 5-branes in IIB string theory, made of N D5-

branes, N NS5-branes and N (1, 1) 5-branes meeting at a point, as summarized in

Figure 20. At the intersection lives a 5d theory which we call the 5d TN theory [66],

and many properties of its Coulomb branch can be read off the brane construction.

Instead of keeping the 5-branes semi-infinite, we can terminate each of them at finite

distance on a 7-brane of the same (p, q)-type as in Figure 20. The distance does not

affect the Coulomb branch of the low energy 5d theory: a (p, q) 5-brane terminating
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0 1 2 3 4 5 6 7 8 9

D5 − − − − − −

NS5 − − − − − −

(1,1) 5-brane − − − − − angle

(p,q) 7-brane − − − − − − − −

Fig. 20. Left: Table of directions spanned by the objects forming the web. Right: The

web of N D5-branes, NS5-branes and (1, 1) 5-branes; here N = 3. In the

figure the D5’s are semi-infinite, while NS5’s and (1, 1) 5-branes terminate

each on a 7-brane ⊗ of the same type. The Coulomb branch of the 5d low

energy theory is not sensitive to this difference.

on a (p, q) 7-brane on one side and on the web on the other side has boundary

conditions that kill all massless modes [62]. However this modification is useful for

three reasons: it displays the Higgs branch as normalizable deformations of the web

along x7,8,9; it admits a generalization where multiple 5-branes end on the same 7-

brane (this configurations are related to generic punctures on the M5-branes, as in

subsection b); upon further compactification to three dimensions, it allows us to read

off the mirror theory.

Our strategy to understand the 3d TN theory is to consider the IIB brane web

on T 2, understand the low energy field theory leaving on each of the three arms

separately, and finally understand how they are coupled together at the junction. We

exploit the brane construction here, and present a different perspective in subsection

4.

Consider, for definiteness, the arm made of N D5-branes ending on N D7-branes.

We first want to consider the arm alone, therefore we will substitute the web junction

with a single D7-brane. Since the brane construction lives on T 2, we can perform two
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Fig. 21. a) Quiver diagram resulting from a configuration of D3-branes suspended

between NS5-branes. b) Quiver diagram of the T [SU(N)] theory. Circles are

U(ra) gauge groups, the square is an SU(N) global symmetry group and lines

are bifundamental hypermultiplets.

T-dualities and one S-duality to map it to a system of D3-branes suspended between

NS5-branes—the familiar Hanany-Witten setup. We identify the SO(3) symmetry

rotating x7,8,9 with SO(3)Y . SO(3)X will only appear in the low-energy limit, rotating

the motion in the x5,6-plane and the Wilson lines around the torus.

The low energy field theory is a linear quiver of unitary gauge groups, as in

Figure 21a. Each stack of r D3-branes leads to a U(r) twisted vector multiplet, while

each NS5-brane leads to a twisted bifundamental hypermultiplet. The other two arms

made of (p, q) 5-branes and 7-branes lead to the same field theory: to read it off, we

perform first an S-duality to map the system to D5-branes and D7-branes, and then

proceed as above.1

To conclude, we need to understand what is the effect of joining the three arms

together, instead of separately ending each of them on a single (p, q) 7-brane. We

look at the effect on the moduli space: In each arm, the motion of the 5-branes

along x7,8,9 is parameterized by the twisted vector multiplet. When the three arms

are joined together, the positions of the 5-branes at the intersection are forced to be

equal, therefore the boundary condition breaks the three U(N) gauge groups to the

1The gauge couplings at intermediate energies will be different, but this will not
affect the common IR fixed point to which the theories flow.
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Fig. 22. Left: (p, q)-web realizing the TN theory, with aligned 7-branes. Right: Quiver

diagram of the mirror of TN , with gauge groups U(r). The group at the center

is taken to be SU, to remove the decoupled overall U(1). Here N = 3.

diagonal one. The resulting low energy field theory is a quiver gauge theory, depicted

in Figure 22, that we will call star-shaped. Notice that the U(1) diagonal to the whole

quiver is decoupled; this can be conveniently implemented by taking the gauge group

at the center to be SU(N). Interestingly, we find that the mirror theory of TN has a

simple Lagrangian description.

In view of the subsequent generalizations, it is useful to give a slightly different

but equivalent definition of the star-shaped quiver: To each maximal puncture we

associate a 3d linear quiver, introduced in [61] and called T [SU(N)].2 Its gauge group

has the structure

SU(N)− U(N − 1)− U(N − 2)− · · · − U(1) , (6.1)

see Figure 21b. The underlined group is a flavor symmetry, and we have bifundamen-

tal hypermultiplets between two groups. The SU(N) Higgs symmetry is manifest,

whilst only the Cartan subgroup of the SU(N) Coulomb symmetry is manifest and

enhancement is due to monopole operators. The star-shaped quiver is then obtained

2Note that this theory is distinct from the TN theory.
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by taking three T [SU(N)] quivers, one for each arm, and gauging together the three

SU(N) Higgs symmetries.

b. Mirror of triskelion

We can generalize the mirror symmetry map to 3d triskelion theories. 4d triskelion

theories are the low energy limit ofN M5-branes wrapped on the Riemann sphere with

three generic punctures. A class of half-BPS punctures is classified by Young diagrams

with N boxes [11]: we will indicate them as ρ = {h1, . . . , hJ} where h1 ≥ · · · ≥ hJ

are the heights of the columns, and J is the number of columns.

Such classification arises naturally in the IIB brane construction [66]: we allow

multiple 5-branes to terminate on the same 7-brane. For each arm, the possible con-

figurations are labeled by partitions of N , that is Young diagrams ρ = {h1, . . . , hJ}.

In our conventions, J is the number of 7-branes and ha is the number of 5-branes

ending on the a-th 7-brane. The maximal puncture considered before is {1, . . . , 1}.

The global symmetry at each arm is easily read off as

Gρ = S
(∏

h
U(Nh)

)
, (6.2)

where Nh is the number of columns of ρ of height h, and the diagonal U(1) has

been removed. The brane construction also makes clear that a triskelion theory with

punctures (ρ1, ρ2, ρ3) arises as the effective theory along the Higgs branch of TN : it can

be obtained by removing 5-branes suspended between 7-branes, and this is achieved

by moving along the Higgs branch.

To construct the mirror of the 3d triskelion theory we proceed as before. We

consider the three arms separately, substituting the junction with a single 7-brane.

We perform an S-T2-S duality on each arm, to map it to a system of D3-branes

suspended between NS5-branes; the field theory is read off to be a 3d linear quiver
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Fig. 23. Mirror theory of a generic puncture. Left: Young diagram of the puncture

{3, 2, 2, 1}. Its global symmetry is U(2)× U(1). Center: Corresponding con-

figuration of 5-branes and 7-branes ⊗. Right: The same configuration, with

the 7-branes aligned. The ranks are then read off to be 8, 5, 3, 1.

Fig. 24. Tρ[SU(N)] theory, for ρ = {3, 2, 2, 1}. All gauge groups are U(r).

with unitary gauge groups. These steps are summarized in Figure 23. Finally we

glue together the three arms, which corresponds to setting boundary conditions that

break the three U(N) factors to the diagonal U(N); the overall U(1) is decoupled and

removed, thus making the gauge group at the center to be SU(N).

As before, we can construct the 3d star-shaped quiver in an equivalent way. To

each puncture3 ρ = {h1, . . . , hJ} we associate a linear quiver Tρ[SU(N)] [61]: it has

the structure

SU(r0)− U(r1)− U(r2)− . . .− U(rJ−1) , (6.3)

where the underlined group is a flavor Higgs symmetry and the others are gauge

groups. We have hypermultiplets in the bifundamental representation of U(ri) ×

U(ri+1). Here ra is given by

ra =
J∑

b=a+1

hb . (6.4)

3We indicate both a Young diagram and the corresponding puncture with the
same symbol ρ.
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This quiver has SU(N) symmetry on the Higgs branch and (6.2) on the Coulomb

branch. An example is in Figure 24. The theory T [SU(N)] introduced in subsection

a is Tρ[SU(N)] with ρ = {1, 1, . . . , 1}, i.e. the maximal puncture. The 3d star-shaped

quiver can be obtained by gauging together the three SU(N) Higgs symmetries of

Tρi [SU(N)] for i = 1, 2, 3.

Before continuing, let us recall the structure of the Higgs and Coulomb branches

of this theory [61]. To a Young diagram ρ = {h1, . . . , hJ}, one associates a represen-

tation ρ of SU(2) given by

ρ = h1 ⊕ h2 ⊕ · · · ⊕ hJ (6.5)

where ha is the irreducible ha-dimensional representation. Let the generators of SU(2)

be t± and t3. Then ρ(t+) ∈ su(N)C is the direct sum of the Jordan blocks of size h1,

. . . , hJ . In particular this is nilpotent. The nilpotent orbit of type ρ is defined to be

Nρ = SU(N)C · ρ(t+) . (6.6)

In particular it has an isometry SU(N). Its closure Nρ is a hyperkähler cone and

it coincides with the Higgs branch of the quiver TρT [SU(N)], where ρT denotes the

transpose of the Young diagram ρ in which ha are the length of the rows.

The Slodowy slice Sρ is a certain nice transverse slice to Nρ ⊂ su(N)C at ρ(t+).

The Coulomb branch of Tρ[SU(N)] is Sρ ∩ N , where N = N{1,...,1} is the maximal

nilpotent orbit. Then the isometry of the Coulomb branch is the commutant of

ρ(SU(2)) inside SU(N), and agrees with the symmetry (6.2) read off from the brane

construction.
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3. Mirror of Sicilian theories

After having understood the mirror of triskelions, which are the building blocks,

we can proceed to generic 3d Sicilian theories. The mirror of a 3d triskelion with

punctures (ρ1, ρ2, ρ3) is obtained by taking the three Tρi [SU(N)] linear quivers for i =

1, 2, 3 and gauging together the three SU(N) Higgs symmetry factors. To construct

a Sicilian theory we gauge together two SU(N) Higgs symmetries, therefore on the

mirror side we gauge together two SU(N) Coulomb symmetries. In the following we

study the effect of such gauging on the mirror.

a. Genus zero: star-shaped quivers

Let us consider, for simplicity, two triskelions glued together. The mirror is obtained

by taking the two sets of linear quivers Tρi [SU(N))] and Tρ′i [SU(N)], i = 1, 2, 3. We

gauge together the three SU(N) Higgs symmetries in each set. We let ρ1 and ρ′1

be maximal, and gauge together the SU(N) Coulomb symmetries of Tρ1 [SU(N)] and

Tρ′1 [SU(N)].

Since the order of gauging does not matter, we shall first consider the effect of

gauging together two copies of T [SU(N))] by the SU(N) Coulomb symmetries. The

resulting low energy theory [61] has a Higgs branch T ∗SU(N)C, the total space of the

cotangent bundle to the complexified SU(N) group, and no Coulomb branch. The

Higgs branch is acted upon by SU(N)×SU(N) on the left and right respectively, but

every point of the zero-section breaks it to the diagonal SU(N), and no other point

on the moduli space preserves more symmetry. Since the Higgs branch has a scale

given by the volume of the base space SU(N)C and it is smooth, around each point

the theory flows to N2 − 1 free twisted hypermultiplets, which are then eaten by the

Higgs mechanism.
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⇒

⇒

Fig. 25. Top: We take two copies of TN and gauge together two SU(N) Higgs sym-

metries. Bottom: Its mirror. We gauge together two SU(N) Coulomb sym-

metries. This ends up eliminating the two T [SU(N)] tails. Here N = 3.

Summarizing, coupling two copies of T [SU(N)] by their SU(N) Coulomb sym-

metries spontaneously breaks the SU(N) × SU(N) Higgs symmetry to the diagonal

subgroup. Therefore, we are left with Tρ2,3 [SU(N)] and Tρ′2,3 [SU(N)] with all four

SU(N) Higgs symmetries gauged together. See Figures 25 and 26 for examples; there,

the TN theory is depicted by a trivalent vertex with three boxes, each representing

an SU(N) Higgs symmetry.

This is easily generalized to a generic 3d genus zero Sicilian theory obtained from

a sphere with punctures. Its mirror is obtained by taking the set of Tρ[SU(N)] linear

quivers corresponding to all punctures, and gauging all the SU(N) Higgs symmetries

together. Such theory is a star-shaped quiver.

We find that in 3d, the low energy theory only depends on the topology of the

punctured Riemann surface, and not on its complex structure. This is as expected:
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Fig. 26. Left: A pants decomposition of the Riemann surface of a genus zero Sicilian

theory. In the example the four punctures are {1, 1, 1} (⊙) and {2, 1} (•), and
the Sicilian theory is SU(3) SQCD with 6 flavors. Right: Star-shaped quiver,

mirror of a genus zero Sicilian theory. Notice that the SU(6)×U(1) Coulomb

symmetry due to monopole operators is easy to see.

In 4d the complex structure controls the complexified gauge couplings of the IR

fixed point. When compactifying to 3d, all gauge couplings flow to infinity based on

dimensional analysis, washing out the information contained therein.

b. Higher genus: adjoint hypermultiplets

Let us next consider the mirror of 3d Sicilian theories obtained from Riemann surfaces

of genus g ≥ 1. Taking advantage of S-duality in 4d Sicilian theories, without loss

of generality we can consider a pants decomposition in which all handles come from

gluing together two maximal punctures on the same triskelion.

The mirror can be constructed as before, by taking Tρ[SU(N)] for each of the

punctures, and suitably gauging together the Higgs and Coulomb SU(N) symmetries.

The only difference compared to the genus zero case is that, for each of the g handles,

we get two copies of T [SU(N)] gauged together both on the Higgs and Coulomb

branch. This amounts to gauging the diagonal subgroup of the SU(N) × SU(N)

Higgs symmetry of T ∗SU(N)C, which is not broken along the zero-section: the N2−1

twisted hypermultiplets living there are thus left massless. They transform in the
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Fig. 27. Mirror symmetry of higher genus Sicilian theories. Left: We gauge two SU(N)

Higgs symmetries producing a “handle” in a higher genus Sicilian theory.

Right: In the mirror we gauge two SU(N) Coulomb symmetries, getting rid

of two T [SU(N)] tails but leaving one adjoint hypermultiplet. Here N = 3.

adjoint representation of the diagonal subgroup. See Figure 27 for an example.

We find that the mirror theory is, as before, a gauge theory. It is obtained by

taking the set of Tρ[SU(N)] linear quivers corresponding to the punctures, plus g

twisted hypermultiplets in the adjoint representation of SU(N), and gauging all the

SU(N) Higgs symmetries together. See Figure 28 for two examples and the generic

case. The g adjoint hypermultiplets carry an accidental IR USp(2g) Higgs symmetry,

not present in the 4d theory. Again, the 3d IR fixed point only depends on the

topology of the defining Riemann surface.

One can check that the dimensions of the Coulomb and Higgs branch in the 3d

Sicilian theories and star-shaped quivers agree, after exchange.

Let us stress two nice examples of mirror symmetry. One is the 4d theory dual

to the Maldacena-Nuñez supergravity solution [67] of genus g. This theory in non-

Lagrangian, however after compactification to three dimensions its mirror is SU(N)

with g adjoint hypermultiplets (center in Figure 28). The other example is the rank-k

E6,7,8 theories. Their 3d mirror is a quiver of groups U(k ni) where the shape is the
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Fig. 28. Star-shaped mirrors of genus g Sicilian theories. Left: Mirror of the Sicilian

theory of genus 1 with k simple punctures {N −1, 1}. The Sicilian theory is a

closed chain quiver (also called elliptic quiver) of k SU(N) gauge groups and

bifundamentals. Center: Mirror of the Sicilian theory of genus g and without

punctures, which is the 3d compactification of the field theory dual to the

Maldacena-Nuñez supergravity solution. Right: Mirror of a generic genus g

Sicilian theory with k punctures ρ1, . . . , ρk. The g hypermultiplets are in the

adjoint of SU(N), and a USp(2g) IR symmetry emerges.

extended Dynkin diagram Ê6,7,8 and the ranks are k times the Dynkin index ni of the

i-th node. For k = 1 it is the example considered in the seminal paper [60].

4. Boundary conditions, mirror symmetry and N = 4 SYM on a graph

In the last subsection we described how to obtain the mirror of 3d Sicilian theories

in terms of junctions of 5-branes compactified on T 2. Since a stack of N 5-branes

compactified on T 2 gives N = 4 super Yang-Mills, it is possible to rephrase what

we derived from the brane construction in terms of half-BPS boundary conditions of

N = 4 super Yang-Mills, as was in [61]. This perspective allows us to extend the

mirror symmetry map to more general theories, not easily engineered with M5-branes.

Let us start by reviewing the framework of [68, 61].

a. Half-BPS boundary conditions: review

Consider N = 4 super Yang-Mills with gauge group G = G1×G2×· · · on a half-space

x3 > 0. In the following we set all θ angles to zero. We introduce the metric on the
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Lie algebra g = g1 ⊕ g2 ⊕ · · · using the coupling constants, as in

⟨a, b⟩g = g−2
1 ⟨a1, b1⟩g1 + g−2

2 ⟨a2, b2⟩g2 + · · · (6.7)

where a = a1 ⊕ a2 ⊕ · · · and b = b1 ⊕ b2 ⊕ · · · are two elements of g, ⟨· · · ⟩gi is the

standard Killing metric on gi, and gi is the coupling constant of the i-th factor. The

Lagrangian is then given by

S =

∫
d4x⟨Fµν , F

µν⟩+ ⟨DµΦi, D
µΦi⟩+ fermions . (6.8)

We split the six adjoint scalar fields Φ1,...,6 into X⃗ = (X1, X2, X3) and Y⃗ = (Y1, Y2, Y3).

Out of the SU(4) R-symmetry, the symmetry manifest under this decomposition is

the subgroup SO(3)X × SO(3)Y , which we can identify with the SO(4)R symmetry of

a 3d N = 4 CFT, as was discussed in subsection 1.

The boundary condition studied in [68] consists of the data (ρ,H,B). First, ρ is

an embedding

ρ : SU(2) → G (6.9)

which controls the divergence of X⃗:

Xi ∼
ρ(ti)

x3
, (6.10)

where ti (i = 1, 2, 3) are three generators of SU(2). The gauge field close to x3 = 0

needs to commute with ρ(SU(2)) ⊂ G. Therefore let H be a subgroup of G that

commutes with ρ(SU(2)), and B be a 3d N = 4 CFT living on the boundary with H

global symmetry. The theory B can possibly be an empty theory, ∅. The boundary
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conditions we impose are

0 = F+
3a| , 0 = F−

ab| , (6.11a)

0 = X⃗+ + µ⃗B| , 0 = D3X⃗
−| , (6.11b)

0 = D3Y⃗
+| , 0 = Y⃗ −| . (6.11c)

Here the indices a, b = 0, 1, 2 are the directions along the boundary, and the bar

| means the value at the boundary x3 = 0. We decompose the algebra of G as

g = h⊕h⊥. Then the superscript + is the projection onto h and the superscript − the

projection onto h⊥. Finally µ⃗B is the moment map of the H symmetry on the Higgs

branch of B. The condition (6.11a) means that on the boundary only the gauge field

in H is non-zero; in other words the boundary condition sets Neumann boundary

conditions in the subalgebra h and Dirichlet boundary conditions in the orthogonal

complement h⊥. Note that this class of boundary conditions does not treat X⃗ and Y⃗

equally: we will denote the boundary conditions more precisely as (ρ,H,B)X,Y when

necessary.

We can define a boundary condition (ρ′, H ′,B′)Y,X where the role of X⃗ and Y⃗

is interchanged; in particular we will have Y⃗ + + µ⃗B′ = 0, where µ⃗B′ is the moment

map of H ′ on the Higgs branch of the twisted hypermultiplets of B′. The S-duality

of N = 4 SYM in the bulk x3 > 0 acts non-trivially on spinors, and it is known to

map the class of boundary conditions (ρ,H,B)X,Y to another one with the role of X⃗

and Y⃗ exchanged:

S : (ρ,H,B)X,Y 7→ (ρ′, H ′,B′)Y,X . (6.12)

Let us emphasize again that this involves the exchange of the role of untwisted and

twisted multiplets of the boundary 3d theory, and it is closely related to mirror

symmetry.
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0 1 2 3 4 5 6 7 8 9 10

IIB
{ D3 − − − − �

D5 − − − � − − −

IIA
{ D4 − − − − − �

D6 − − − − � − − −

M
{ M5 − − − − − −

KK − − − − − − −

IIA
{ D4 − − − − � −

KK − − − � − − −

IIB
{ D3 − − − − �

NS5 − − − � − − − −

Fig. 29. Boundary conditions of 4d N = 4 SYM from 5d N = 2 SYM. By T-duality,

an arm of 5-branes ending on 7-branes (top of figure) is mapped to D3/D5

or D4/D6 (first two lines of table). Uplift to M-theory gives M5-branes on a

punctured cigar—a complex surface in the KK monopole—and further reduc-

tion gives D4-branes on the same cigar (middle of figure). Reduction along

the S1 of the cigar gives 4d N = 4 SYM on a half-space x3 ≥ 0 with half-BPS

boundary conditions (bottom of figure). In the table we perform T-duality

and uplift/reduction along x4,5. A square means coordinates to be removed.

For G = SU(N), it was shown in [61] that

S :
(
1, SU(N), Tρ[SU(N)]

)
X,Y

7→
(
ρ, 1, ∅

)
Y,X

. (6.13)

For example, ρ = {1, . . . , 1}, which we abbreviate as just ρ = 1, is the trivial

embedding and (1, 1, ∅) is the standard Dirichlet boundary condition, which can be

realized by ending N D3’s on N D5-branes. Its S-dual has T [SU(N)] on the boundary,

and comes from ending N D3’s on N NS5-branes. On the other extreme, the theory

T{N}[SU(N)] is an empty theory and
(
1, SU(N), ∅

)
is the Neumann boundary con-

dition. This can be realized by ending N D3’s on 1 NS5-brane (and decoupling the

U(1)). Its S-dual is ({N}, 1, ∅), and corresponds to ending N D3’s on 1 D5-brane.

This pair of boundary conditions arise naturally from 5-branes ending on 7-

branes, see Figure 29. Start from D5-branes ending on D7-branes. Compactification
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on T 2 and T-duality leads to a configuration of N D3-branes ending on D5-branes.

This realizes the boundary condition (ρ, 1,∅) of 4d N = 4 SYM , on the right of

(6.13). When only one T-duality is performed, it can also be thought of as N M5-

branes on a cylinder ending on a cap with a puncture inserted, or a punctured cigar,

further compactified on S1. Then it can be thought of as N D4-branes on the same

cigar geometry. The Kaluza-Klein reduction along the S1 of the cigar produces 4d

SYM on a half-space, and since the original system preserves half of the supersymme-

try, the boundary condition is also half-BPS. In fact, this corresponds to N D3-branes

ending on NS5-branes, and realizes the boundary condition (1, SU(N), Tρ[SU(N)]) of

4d SYM on the left of (6.13): we have just performed S-duality.

b. Junction and boundary conditions from the brane web

In our brane construction, N (p, q) 5-branes on the torus give N = 4 U(N) super

Yang-Mills. The 6d gauge coupling of a (p, q) 5-brane is inversely proportional to its

tension. Compactifying on T 2 and performing S-duality of the resulting 4d theory,

its action is given schematically by

T

∫
d4x

(
trFµνF

µν + tr ∂µXi∂
µXi + tr ∂µYi∂

µYi

)
. (6.14)

Here T is the tension of the 5-brane multiplied by the area of T 2, Y1,2,3 is a fluctuation

along x7,8,9, X1 is the fluctuation transverse to the brane inside x5,6 and X2,3 come

from the Wilson lines around T 2.

We would like to understand the boundary condition corresponding to the junc-

tion of N D5-, NS5- and (1, 1) 5-branes, see Figure 30. Let us first consider the case

N = 1. Let us denote the unit normal to the 5-branes by n⃗1,2,3 and the tensions of
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Fig. 30. Left: In the x5,6-plane, we measure the worldvolume displacements X
(1,2,3)
1 of

the three segments along the unit normal vectors n⃗(1,2,3). The Y⃗ (i) displace-

ments are along x7,8,9, “orthogonal” to the paper. Right: When the junction

is moved by v⃗, the displacements are given by X
(i)
1 = v⃗ · n⃗(i).

the 5-branes by T1,2,3. The condition of the balance of forces can be written as

T1n⃗1 + T2n⃗2 + T3n⃗3 = 0 . (6.15)

The three arms provide three copies of U(1) SYM, that we can think of as a single

U(1)3 SYM. We measure X
(1,2,3)
1 along the normal n⃗(1,2,3) of each of the 5-branes. The

boundary condition for the scalar X1 is T1X
(1)
1 + T2X

(2)
1 + T3X

(3)
1 = 0 that we expect

to be enhanced to

T1X⃗
(1) + T2X⃗

(2) + T3X⃗
(3) = 0 (6.16)

after compactification on T 2. On the other hand, the boundary condition for Y⃗ is

just

Y⃗ (1) = Y⃗ (2) = Y⃗ (3) (6.17)

because they can only move along x7,8,9 together. Comparing with the formulation

in (6.11), these boundary conditions can be expressed in the two equivalent, S-dual

ways

S : (1, U(1)diag, ∅)X,Y 7→ (1, U(1)3/U(1)diag, ∅)Y,X , (6.18)
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Fig. 31. Left: N = 4 SU(N) SYM on the segments, boundary conditions

(1, SU(N)3, TN) at the center and (1, 1,∅) at the punctures. Right: Its S-dual;

boundary conditions (1, SU(N)diag,∅) at the center and (1, SU(N), T [SU(N)])

at the punctures.

where U(1)diag is the diagonal subgroup of U(1)3. Note that the relation (6.16) de-

termines the orthogonal complement to the diagonal subgroup under the metric of

U(1)3 (6.7) given by the coupling constants.

The S-duality/mirror symmetry of the two conditions in (6.18) is easily checked.

Consider the expression on the left, and close each arm at the external end with

Neumann boundary conditions (1,U(1),∅)X,Y : this gives one 3d free vector multiplet.

Now consider the expression on the right and close each arm with the S-dual boundary

conditions, namely Dirichlet (1, 1,∅)Y,X : this gives one free twisted hypermultiplet.

For generic N we still have the conditions (6.16)–(6.17), as can be checked by

separating the N simple junctions along the Y⃗ direction. The decoupled overall U(1)

part is the same as before. Then the boundary condition for the SU(N) part is

(1, SU(N)diag, ∅)X,Y . (6.19)

To obtain its S-dual boundary conditions, we proceed as follows. We take a trivalent

graph with SU(N)N = 4 SYM on each arm, boundary conditions
(
1, SU(N), T [SU(N)]

)
at the external end of each arm, and the breaking-to-the-diagonal boundary condition
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(1, SU(N)diag,∅) at the junction (see right panel in Figure 31). This configuration

realizes, at low energy, the quiver diagram in Figure 22. As found in subsection a,

this quiver is the mirror of the TN theory. On the other hand, we can directly perform

S-duality on the configuration of SYM on a graph: on each arm we still have SU(N)

SYM (which is self-dual), at the external end of each arm we get (1, 1,∅), while at

the junction we get the boundary condition we are after (see left panel in Figure

31). Since (1, 1,∅) is the usual Dirichlet boundary condition, to obtain TN which has

SU(N)3 Higgs symmetry it must be

S :
(
1, SU(N)diag, ∅

)
X,Y

7→
(
1, SU(N)3, TN

)
Y,X

. (6.20)

This can be proved also by considering a simple case in which we already know

the mirror symmetry map. For instance, consider the 3d Sicilian theory given by

one puncture ρ = {N} on the torus: this is 3d N = 8 SU(N) SYM. The graph

construction has two SU(N) segments, (1, SU(N)3, TN) at the junction and Dirichlet

boundary condition at the puncture. The mirror theory is N = 8 SU(N) SYM itself.

The S-dual graph has SU(N) on the segments and Neumann boundary condition at

the puncture. To reproduce the mirror, we need (1, SU(N)diag,∅) at the junction.

c. Junction and boundary conditions from 5d SYM

We can derive the boundary condition of diagonal breaking (6.19) also from 5d SYM

on the punctured Riemann surface. The 3d TN theory arises from N D4-branes on a

three-punctured sphere C. At low energy we get maximally-supersymmetric 5d SYM

on C, which has U(N) gauge field Aµ, curvature Fµν and scalar fields X1,2, Y1,2,3. To

preserve supersymmetry, the theory is twisted so that X1,2 are effectively one-forms
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=⇒

Fig. 32. Left: 5d N = 2 SYM on a junction of three cylinders. Right: The KK

reduction leads to 4d N = 4 SYM on three half-spaces, meeting on R3.

on C. The action of the bosonic sector is roughly given by

1

g25d

∫
d5x

[
trFµνF

µν + trD[µXν],aD
[µXν]

a + trDµYaD
µYa

]
(6.21)

where D is the covariant derivative.

We can introduce a metric on C such that the surface consists of three cylinders

of circumference ℓ1,2,3 meeting smoothly at a junction, see Figure 32. The behavior

of the system at length scales L far larger than ℓ1,2,3 is given by three segments of 4d

N = 4 SYM meeting at the same boundary R3. The action on each segment is (6.14)

with Ti = ℓi/g
2
5d. The boundary condition at the junction is half-BPS, because the

original 5d SYM on C is half-BPS.

Let us determine the boundary condition explicitly. Classical configurations

which contributes dominantly to the path integral at the scale L ≫ ℓ1,2,3 will have

A,X, Y of order L−1 and the action density should scale as L−4. Mark three S1
(i)’s

(i = 1, 2, 3) very close to the junction as depicted in Figure 32, and call the region

bounded by them as S. When L is very big, the non-liner term in the covariant deriva-

tive can be discarded compared to the derivative, and the dominant contribution to
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the action is

∼
∫
S

d5x
[
|dA|2 + |dXa|2 + |∂Ya|2

]
. (6.22)

The action density should be of order L−4. Then in the large L limit, Ya need to be

constant while A and Xa need to be flat. We let A(i), X
(i)
1,2 and Y

(i)
1,2,3 be the values of

A, X1,2 and Y1,2,3 on S1
(i). The boundary condition for Y is then given by

Y⃗ (1) = Y⃗ (2) = Y⃗ (3) . (6.23)

Flatness of A translates to ∫
S1
(1)

A+

∫
S1
(2)

A+

∫
S1
(3)

A = 0 (6.24)

giving T1A
(1)+T2A

(2)+T3A
(3) = 0 and similarly for X1,2. Calling A as X3, we obtain

T1X⃗
(1) + T2X⃗

(2) + T3X⃗
(3) = 0 . (6.25)

The result agrees with what we deduced from the brane construction in (6.16)

and (6.17). However the derivation here has the merit that it is applicable also to

the 6d N = (2, 0) theories of type D and E, for which we have not found a brane

construction of the junction.

d. N = 4 SYM on a graph

We found that 3d Sicilian theories can be engineered in a purely field theoretic way—

without involving string theory anymore—by putting SU(N) N = 4 SYM on a graph.

The graph is made of segments, that can end on “punctures” or can be joined at

trivalent vertices. On each segment we put a copy of SU(N) SYM. A puncture ρ

corresponds to the boundary condition (ρ, 1,∅), while the trivalent vertex corresponds

to the boundary condition (1, SU(N)3, TN).
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Fig. 33. Mirror symmetry including both TN and star-quivers. The 3d theory is given

by a graph on which N = 4 SYM lives. The mirror is obtained by performing

the S-dual of the boundary conditions at open ends and at the junctions. The

case depicted is self-mirror.

To obtain the mirror theory we simply perform S-duality of N = 4 SYM on

each segment: SU(N) SYM is mapped to itself; the boundary conditions at the punc-

tures are mapped to
(
1, SU(N), Tρ[SU(N)]

)
; the boundary condition at the vertices

is mapped to (1, SU(N)diag,∅). To read off the 3d theory it is convenient to reduce

the graph: every time we have SYM with breaking-to-the-diagonal vertices on both

sides, the gauge group is broken, we can remove the segment and leave a n-valent

vertex which breaks SU(N)n to the diagonal SU(N). If instead the two ends of the

same segment are joined together, we are left with an adjoint hypermultiplet. This

parallels the discussion of subsection 3 and reproduces the star-shaped quivers.

The advantage of this perspective is that, being purely field theoretical, can be

generalized beyond brane constructions. For instance, we could couple star-shaped

quivers to Sicilian theories: in this way we get a class of theories closed under mirror
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Fig. 34. Left: k domain walls introducing one extra fundamental have been added,

compared to Figure 26. Right: Its mirror have k domain walls, each intro-

ducing an extra bifundamental coupled to a U(1).

symmetry, see Figure 33. More generally, the full set of half-BPS boundary conditions

in [68, 61] can be used. One example is a domain wall that introduces a fundamental

hypermultiplet; its mirror is a domain wall that introduces a bifundamental coupled

to extra U(1), see Figure 34. Finally, one could consider N = 4 SYM with gauge

groups other than SU(N). We will consider SO(P ) in the next subsection.

5. DN Sicilian theories

Another class of Sicilian theories, that we will call of type DN and studied in [44],

can be obtained by compactification of the 6d N = (2, 0) DN theory on a Riemann

surface with half-BPS punctures. The 6d DN theory is the low energy theory on a

stack of 2N 1
2
M5-branes on top of the R5/Z2 orientifold in M-theory; here and in the

following, having 2N 1
2
branes means to have 2N branes on the covering space. This

parallels the construction of Sicilian theories of type AN−1 considered so far. We are

interested in extending the mirror map to those theories.

Since the 6d DN theory compactified on T 2 gives 4d N = 4 SO(2N) SYM at

low energy, it should be possible to construct 3d DN Sicilian theories through N = 4

SYM on a graph, with suitable half-BPS boundary conditions at the punctures and

at the junctions. This is the approach we follow in this subsection.
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6. The punctures

Let us start by focusing on a single puncture, which can be understood via systems of

D4/O4/D6-branes. First consider the 6d DN theory on a cigar, with a single puncture

at the tip, as we did for the AN−1 theory in Figure 29. Far from the tip we have the

6d DN theory on S1, in other words 2N 1
2
D4-branes on top of an O4−-plane. The tip

of the cigar with a puncture then becomes a half-BPS boundary condition for that

theory, which comes from terminating 1
2
D4-branes on 1

2
D6-branes. The configuration

of branes is as in the case of AN−1, see the table in Figure 29. In our conventions

USp(2) ∼= SU(2).

Let us classify how 2N 1
2
D4-branes on top of an O4−-plane can end on 1

2
D6-

branes. Let us put as many D6-branes as possible away from the orientifold. For

each 1
2
D6, assign a column of boxes whose height is given by the change in the D4-

charge across the D6-brane. We thus obtain Young diagrams with 2N boxes. Let

Nh be the number of columns of height h. When Nh is even, we can place the Nh

1
2
D6-branes outside the O-plane, and no further restrictions apply. When Nh is odd,

one 1
2
D6 has to be placed on top of the O-plane. However, every time a 1

2
D6 crosses

the O4−, the latter becomes an Õ4− on the other side, see [69] for more details.

Therefore the difference of the 1
2
D4-charge is odd. This implies that Nh must be even

for h even. We call these the positive punctures, and the corresponding diagrams

Young diagrams of O(2N). The global symmetry algebra at these punctures is read

off from the brane construction:

gρ+ =
⊕
h odd

so(Nh)⊕
⊕
h even

usp(Nh) . (6.26)

We also have negative punctures, which produce a branch cut or twist line across
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which there is a Z2 monodromy of the DN theory.4 The monodromy will terminate

on some other negative puncture on the Riemann surface. Compactifying the 6d DN

theory on S1 with such a twist, we obtain 5d N = 2 USp(2N−2) SYM [46]. This time

we have (2N − 2) 1
2
D4-branes on top of an O4+-plane. The property of O4+-planes

crossing a 1
2
D6-brane now implies that Nh must be even when h is odd, in contrast

to the positive punctures. We call these diagrams Young diagrams of USp(2N − 2).

The global symmetry is now

gρ− =
⊕
h even

so(Nh)⊕
⊕
h odd

usp(Nh) . (6.27)

The analysis here is equivalent to that given in [44], except that we moved all the

D6-branes to the far-right of the NS5-branes and that we can thus read off the flavor

symmetry. So far we have considered the 6d DN theory on a cigar, which provides

information about the 4d Sicilian theory; after compactification on S1 we can perform

a T-duality and repeat the whole construction in terms of D3/O3/D5-branes, which

is useful to get the mirror.

The S-dual of the boundary conditions at the punctures are easily obtained from

the brane construction, as written in [61]. We start with the brane setup of the

puncture, given by 1
2
D3-branes on top of an O3-plane and ending on 1

2
D5-branes, and

perform an S-duality transformation (Table V). The resulting theory at the puncture

is read off, recalling that 2k 1
2
D3-branes on O3+ or Õ3+ and suspended between

1
2
NS5-branes give an USp(2k) gauge theory, while k 1

2
D3-branes on O3− or Õ3− give

an O(k) gauge theory.5

4The 6d DN theory on a Riemann surface has operators of spin 2, 4, . . . , 2N − 2
plus one operator of spin N . They correspond to the Casimirs of so(2N), the last
one being the Pfaffian. The Z2 twist changes the sign of the operator of spin N ,
corresponding to the parity outer automorphism of so(2N).

5At the level of the algebra, O3− and Õ3− project u(k) to its imaginary subalgebra
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O-plane gauge theory across 1
2D(p+ 2) across 1

2NS5 S-dual (p = 3)

Op− O(2N) Õp− Op+ O3−

Õp− O(2N + 1) Op− Õp+ O3+

Op+ USp(2N) Õp+ Op− Õ3−

Õp+ USp′(2N) Op+ Õp− Õ3+

Table V. Properties of Op-planes, for p ≤ 5. We indicate: type of Op-plane, gauge the-

ory living on them when 2N Dp-branes are added to the covering space, type

of Op-plane on the other side of a crossing 1
2
D(p+ 2)-brane, or 1

2
NS5-brane,

and S-dual plane (for p = 3). In our conventions USp(2) ∼= SU(2), and

USp′(2N) is USp(2N) with the θ angle shifted by π.

A positive puncture ρ+ = {h1, . . . , hJ} before S-duality describes D3-branes on

an O3− puffing up to become D5-branes. Accordingly, it should be given by an

embedding ρ+ : SU(2) → SO(2N). Indeed, if we decompose the real 2N -dimensional

representation of SO(2N) in terms of irreducible representations of SU(2) as in (6.5),

Nh for even h is even, because h for even h is pseudo-real. The global symmetry

(6.26) is the commutant of this embedding ρ+. Performing S-duality and exchanging

D5-branes with NS5-branes, we obtain the quiver

SO(2N)− USp(r1)−O(r2)− · · · − USp(rJ−1) (6.28)

where the underlined group is a flavor Higgs symmetry as before. Here J is always

even, and the sizes are

ra =
[ J∑
b=a+1

hb

]
+,−

, + : O , − : USp (6.29)

where [n]+(−) is the smallest (largest) even integer ≥ n (≤ n). The two options refer

which is so(k). At the level of the group, the projection selects the real subgroup of
U(k), which is O(k).
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to the group being O or USp. When the last group is USp(0), we remove it. These

quivers have been introduced in [61] and called Tρ+ [SO(2N)].

A negative puncture ρ− = {h1, . . . , hJ} before S-duality describes D3-branes on

an O3+ puffing up to become D5-branes. Accordingly, it should be given by an

embedding ρ− : SU(2) → USp(2N − 2). Indeed, if we decompose the pseudo-real

(2N − 2)-dimensional representation of USp(2N − 2) under SU(2), Nh for odd h is

even, because h is strictly real when h is odd. The global symmetry (6.26) is the

commutant of this embedding ρ−. Performing S-duality, we get the 3d quiver

SO(2N − 1)− USp(r1)−O(r2)− · · · −O(rJ̃) with J̃ = [J ]+ . (6.30)

The sizes are

ra =
[
1 +

J∑
b=a+1

hb

]
+̃,−

, +̃ : O , − : USp (6.31)

where [n]+̃ is the smallest odd integer ≥ n. The two options refer to the group being

O or USp. These quivers are called Tρ− [SO(2N − 1)].

They give rise to the S-dual pairs of boundary conditions

S :
(
ρ+, 1, ∅

)
X,Y

7→
(
1, SO(2N), Tρ+ [SO(2N)]

)
Y,X

,

S :
(
ρ−, 1, ∅

)
X,Y

7→
(
1, O(2N − 1), Tρ− [SO(2N − 1)]

)
Y,X

.

(6.32)

The Coulomb branch of Tρ+ [SO(2N)] is Sρ+ ∩ N ⊂ so(2N)C, whereas that of

Tρ− [SO(2N − 1)] is Sρ− ∩ N ⊂ usp(2N − 2)C. As such, the symmetries on the

Coulomb branch are given by the commutant of ρ+ inside SO(2N) and of ρ− inside

USp(2N − 2), respectively. They agree with the symmetries found from the brane

construction, (6.26) and (6.27). The theories Tρ[SO(r)] have a Higgs branch which is

the closure of a certain nilpotent orbit ρ∨ of O(r).
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Fig. 35. 6d DN theory on a pair of pants C with Z2 monodromy along two tubes. KK

reduction along S1
C ⊂ C gives a junction of two segments of 5d USp(2N − 2)

SYM and one of SO(2N); further compactification on S1
A gives its 4d version.

Instead compactification on S1
A gives 5d SO(2N) SYM on a pair of pants

with Z2 monodromy by the parity transformation σ ∈ O(2N); further KK

reduction on S1
C gives a junction of two segments of 4d O(2N − 1) SYM

and one of SO(2N). We obtain USp(2N − 2) in the first description and

O(2N − 1) in the second, because the procedure involves the exchange of S1
C

and S1
A, which acts as S-duality of 4d N = 4 SYM.

a. Two types of junctions and their S-duals

3d DN Sicilian theories can be constructed by putting N = 4 SYM on a graph.

We saw that there are two types of punctures: positive ones, which are boundary

conditions for SO(2N) SYM, and negative ones, which are boundary conditions for

USp(2N − 2) SYM and create a twist line. Accordingly, to keep track of twist lines,

on the segments of the graph we put either SO(2N) or USp(2N−2) SYM. We need to

consider two types of junctions: a junction among three copies of SO(2N) SYM, and a

junction among one copy of SO(2N) and two copies of USp(2N −2). These junctions

correspond to the maximal triskelions, see Figure 35. We will call the two resulting

theories R2N with SO(2N)3 Higgs symmetry and R̃2N with SO(2N)×USp(2N − 2)2

Higgs symmetry. When compactified on S1, the boundary conditions at the junction
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are

(
1, SO(2N)3, R2N

)
X,Y

and
(
1, SO(2N)×USp(2N − 2)2, R̃2N

)
X,Y

. (6.33)

With these boundary conditions, all 3d DN Sicilian theories can be reproduced via

pants decomposition.

The S-dual of these boundary conditions can be easily obtained with the analysis

in subsection c. We obtain

S :
(
1, SO(2N)3, R2N

)
X,Y

7→
(
1, SO(2N)diag, ∅

)
Y,X

,

S :
(
1, SO(2N)× USp(2N − 2)2, R̃2N

)
X,Y

7→
(
1, O(2N − 1)diag, ∅

)
Y,X

.

(6.34)

Here SO(2N)diag is the diagonal subgroup of SO(2N)3, while O(2N−1)diag ⊂ SO(2N)×

O(2N − 1)2 corresponds to choosing an O(2N − 1) subgroup of SO(2N), and then

taking the diagonal subgroup of O(2N − 1)3.

This can be proved also by considering a simple case in which we already know

the mirror symmetry map. For instance, consider the 3d Sicilian theory given by

one simple positive puncture on the torus: this is 3d N = 8 SO(2N) SYM. The

graph construction has two SO(2N) segments, (1, SO(2N)3, R2N) at the junction and

({2N − 1, 1}, 1,∅) at the puncture. The mirror theory is N = 8 SO(2N) SYM itself.

The S-dual graph has SO(2N) on the segments and (1, SO(2N),∅) at the puncture,

because T{2N−1,1}[SO(2N)] is an empty theory. To reproduce the mirror, we need

(1, SO(2N)diag,∅) at the junction. Similarly, consider the 3d Sicilian theory given

by one simple positive puncture on the torus with a twist line around it: this is

3d N = 8 USp(2N − 2) SYM. The graph construction has one SO(2N) and one

closed USp(2N − 2) segment, (1, SO(2N)×USp(2N − 2)2, R̃2N) at the junction and

({2N−1, 1}, 1,∅) at the puncture. The mirror theory is N = 8 O(2N−1) SYM. The

S-dual graph has SO(2N) and O(2N −1) on the segments, and (1, SO(2N),∅) at the
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puncture. To reproduce the mirror, we need (1,O(2N − 1)diag,∅) at the junction.

b. Mirror of Sicilian theories

Now it is easy to construct the mirrors of 3d Sicilian theories of type DN obtained

from an arbitrary punctured Riemann surface C. First consider C of genus zero with

only positive punctures. When we gauge two T [SO(2N)] together via their SO(2N)

Coulomb symmetries, the Higgs branch of the combined theory is the cotangent bun-

dle T ∗SO(2N)C, which has the action of SO(2N) × SO(2N) from the left and the

right. This is broken to its diagonal subgroup on the zero-section. When it is gauged

on both sides by different vector multiplets, the Higgs mechanism gets rid of one

SO(2N) vector and the adjoint hypermultiplet. We are left with a star-shaped quiver

with SO(2N) gauge group at the center. Then consider C with genus g ≥ 1 and with

only positive punctures. There will be g copies of T ∗SO(2N)C gauged on both sides

by the same G = SO(2N), i.e. G acts on the cotangent bundle by the adjoint action.

Around the origin of T ∗SO(2N)C all hypermultiplets are massless. We are left with a

star-shaped quiver, with g extra SO(2N) adjoint hypermultiplets and SO(2N) gauge

group at the center. The analysis so far was completely parallel to that of type AN−1

Sicilians.

Next, consider C of genus zero with n+ positive and 2n− negative punctures.

When we gauge together two copies of T [SO(2N − 1)] on the Coulomb branch, we

get T ∗SO(2N − 1)C which spontaneously breaks the symmetry. However there will

be n− − 1 copies of T ∗SO(2N)C which are gauged by two O(2N − 1) on both sides:

the gauge group is broken to the diagonal O(2N − 1) and a hypermultiplet in the

fundamental of O(2N − 1) remains massless. We are left with a star-shaped quiver,

with n− − 1 extra fundamentals of the O(2N − 1) gauge group at the center. See

Figure 36a for the case n− = 2.
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a) b)

c) d)

Fig. 36. a) The segment at the center gives T ∗SO(2N)C, to which O(2N − 1)2 gauge

groups couple. We are left with one O(2N − 1) gauge group and one extra

fundamental hypermultiplet. b) T ∗SO(2N)C is coupled to O(2N − 1) which

acts by the adjoint action. We are left with an adjoint and a fundamental of

SO(2N−1). c) With a monodromy when one crosses a big S1, the resulting 4d

SYM on a graph has segments with O(2N−1) gauge group. d) A monodromy

when one crosses a small S1 results in 4d SYM on a graph with a loop around

which we have a monodromy. This is indicated as a mark in the graph shown

on the right. c) and d) give rise to the same 3d theory in the low energy limit,

as explained in the main text.
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Fig. 37. Mirrors of DN Sicilian theories of genus g. Left: Mirror of a DN Sicilian with

only positive punctures and no twist lines. The g adjoints carry USp(2g) Higgs

symmetry. Right: Mirror in the presence of some twist line, where 2n− ≥ 0 is

the number of negative punctures. The n− + g − 1 extra fundamentals carry

USp(2n− + 2g − 2) Higgs symmetry.
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When g > 0, there are many choices for the configuration of monodromies: they

are classified by H1(C \ {punctures},Z2). When one has two negative punctures

but without twist lines on a handle (see Figure 36b), T ∗SO(2N)C is gauged by the

same O(2N − 1) via the adjoint action and we get one adjoint and one fundamental

of SO(2N − 1). Another possibility is to have a closed twist line along a handle

of the graph (Figure 36c): T ∗SO(2N − 1)C is gauged on both sides by the same

G = O(2N − 1) via the adjoint action, giving rise to an adjoint of SO(2N − 1). If

we take the S-duality of the 4d Sicilian theory first and then compactify it down to

3d, we get the 4d SYM on a graph shown in Figure 36d. This amounts to gauging

T ∗SO(2N)C with one SO(2N) with the embedding

SO(2N) ∋ g 7→ (g, σgσ) ∈ SO(2N)× SO(2N) (6.35)

where σ ∈ O(2N) is the parity transformation. The theory spontaneously breaks the

gauge group to O(2N − 1), which is the subgroup of SO(2N) invariant under parity,

and eats up 2N−1 hypermultiplets. We are left with O(2N−1) with just one adjoint.

Summarizing, consider a 3d Sicilian theory defined by a genus g Riemann surface

C, some number of punctures (of which 2n− are negative) and possibly extra closed

twist lines in H1(C,Z2). If there are no twist lines at all (so n− = 0), the mirror is a

star-shaped quiver where an SO(2N) group gauges together all positive punctures and

g extra adjoint hypermultiplets. If there are twist lines, the mirror is a star-shaped

quiver where an O(2N − 1) group gauges together all punctures, g extra adjoints and

(n−+ g− 1) extra fundamentals. This is summarized in Figure 37. It is reassuring to

find that the resulting mirror theory does not depend on the pants decomposition.
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B. More 3d mirror pairs

1. Review

Three dimensional N = 4 gauge theory has SU(2)L × SU(2)R R symmetry. This can

be seen from the compactification of 6d N = 1 theory: SU(2)R is the R symmetry

of the 6d theory while SU(2)L symmetry comes from the rotation group of the three

dimensional space on which we do the reduction. The moduli space of the vacua

has Coulomb branch and Higgs branch (we also have the mixed branch). The Higgs

branch is a Hyperkahler manifold whose Kahler form transforms under SU(2)R and

invariant under the SU(2)L. There usually are global symmetries acting on Higgs

branch, when we have a lagrangian description, the global symmetry can be read

readily, we can turn on mass terms and preserveN = 4 supersymmetry. The Coulomb

branch is also a Hyperkahler manifold whose kahler form transforms under SU(2)L

and invariant under SU(2)R. Usually there is only a U(1) global symmetry arising

from the shift symmetry of the photon, but sometimes the symmetry is enhanced due

to monopole operators [61, 70]; if there are U(1) factors in gauge group, we can turn

on Fayet-lliopoulos (FI) terms and preserve the same number of supersymmetry. For

some theories, the Higgs branch and Coulomb branch intersects at a single point, and

there is an interacting SCFT on which both SU(2)L and SU(2)R acts. This SCFT is

the IR fixed point under the RG flow of the theory.

Suppose we have two three dimensionalN = 4 theory A and B, and both theories

flow to non-trivial IR fixed points A and B. We say they are mirror pairs if the Higgs

branch of A is identical to the Coulomb branch of B and vice versa [60]. The mass

terms are identified with the FI terms under mirror symmetry. Since Coulomb branch

gets quantum corrections and Higgs branch has the non-renormalization property and

is exact by doing classical calculation, the quantum effects of one theory is captured
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by classical effects of another theory. The IR fixed points are usually strongly coupled,

we mainly use the UV theory A and B to learn their IR behavior and simply states

the theory A and B are mirror pairs.

In [25], a large class of mirror pairs are found. Theory A arises from compactify-

ing 4d N = 2 generalized superconformal quiver gauge theory on a circle; Theory B is

a star-shaped quiver. Four dimensional theory is realized as compactifying six dimen-

sional (0, 2) theory on a Riemann surface Σ with punctures which are classified by

Young Tableaux [11]. The Hitchin’s equation defined on Riemann surface is the BPS

equation and whose moduli space with specified boundary condition at the puncture

is the Coulomb branch of the three dimensional theory. The boundary condition of

the Hitchin’s equation is a regular singularity for this class of theories. The Hitchin’s

moduli space can be approximately by a quiver as discovered by Boalch [58], it turns

out that this quiver is the mirror quiver for the theory A. We only consider those

theories for which the Hitchin’s system is irreducible. In physics language, this means

that the quiver gauge theory has a dimension N operators in the Coulomb branch.

In general, we can not write a lagrangian description for the theory; The weakly

coupled gauge group and flavor symmetries can be determined using the information

on the puncture , we also know the flavor symmetry. These theories and its general-

ization are further studied in [66, 71, 44, 72, 73, 74]. Various S-duality frames of 4d

theory are identified with the different degeneration limits of the punctured Riemann

surface.

We further compactify theory A on a circle S and get a 3d N = 4 theory.

The compact space is Σ × S. We can model each leg in pants decomposition of

the punctured Riemann surface as a cylinder S1 × I, then the three dimensional

space we do the reduction on this leg is (S1 × I) × S. We can change the order of

compactification and regard the three space as (S1 × S) × I: in first step, we get a
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4d N = 4 SU(N) SYM and we assume that the boundary condition at the ends of I

is classified by the same Young Tableaux. This fact can be seen from the following

argument: the Hitchin’s equation around the singularity is identified with the Nahm’s

equation with specified singular boundary condition, which is exactly the equation

governing the boundary condition for N = 4 SU(N) SYM on the half space. In this

order of compactification, 3d theories are represented as 4d N = 4 SYM on a one

dimensional graph. In fact, the graph is just the dual graph of the punctured Riemann

surface as described in [23], it is a trivalent graph with lots of three junctions.

With this graph representation of the theory A, the mirror symmetry is under-

stood as the S duality of the N = 4 on the graph. The S duality of N = 4 SYM

on half space has been studied in full detail in [68, 61], in particular, the dual of the

boundary condition we discussed earlier is worked out. The mirror of each boundary

condition is a quiver leg. For example, if the Young Tableaux has heights [h1, h2, ...hr]

with h1 ≥ h2 ≥ ... ≥ hr, then the mirror quiver leg is

N − U(n1)− U(n2)− ....− U(nr−1) (6.36)

where ni =
∑r

i+1 hj, and the first N means we have a global SU(N) flavor symmetry.

The S-dual of the three junctions is worked out in [25, 44], it is simply the

diagonal part of three SU(N) gauge groups on the legs connecting with the junction.

By combining various components, the mirror theory is just a star-shaped quiver with

a SU(N) node at the center. In another word, we simply gauge together the SU(N)

node of each leg. It is interesting to note that the mirror does not depend on the

pants decomposition.

Let’s give an example to illustrate the main idea. Consider four dimensional

N = 2 SU(2) gauge theory with four fundamentals. It is derived from six dimensional

theory on a Riemann sphere with four punctures. One of the pants decomposition is
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1 1
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b)

c)

Fig. 38. a): One S-duality frame for four dimensional N = 2 SU(2) with four funda-

mentals, each puncture carries a SU(2) flavor symmetry. b): Three dimen-

sional version of (a), which is derived by compactifying (a) on a circle. we

represent it as N = 4 SYM on the graph. c): The graph mirror of (b), which

is simply derived by gluing the SU(2) flavor symmetry of four quiver tails.

described in Figure 38a). The graph representation of 3d theory is shown in Figure

38b). The internal leg represents the SU(2) gauge group. The Young Tableaux of the

boundary condition has the heights [1, 1], the mirror of this boundary condition is a

quiver tail 2 − U(1), after gauging the common SU(2) node, we found the mirror in

Figure 38c).

We can extend the above analysis to DN theory [25]. Since the four dimensional

gauge theory involves not only SO group but also USp group, we need to turn on

the z2 monodromy line. In the pants decomposition, if there is a monodromy around

the circle S1, then the gauge group on that leg would be SO(2N + 1). To get a

three dimensional theory, we further compactify the theory on S. To represent the

theory as N = 4 SYM on the graph, we change the order of compactification, we first

compactify six dimensional theory on S × S1, the four dimensional gauge group is

USp(2N − 2) which is the S dual of the theory derived from S1 × S, the boundary
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condition at the ends should be given by the Young Tableaux of USp(2N − 2) which

is exactly the case as found in [44]. There are two types of junctions: the first type is

the one for which there is no USp leg while the second type has two USp legs. The

S-dual of the boundary condition of SO group and USp group has been also studied

in [61]. The S-dual of two different junctions are worked out in [25]: the dual is the

diagonal SO(2N) group for the first type of junction while the S-dual of the second

type is a diagonal USp(2N − 2) group. The dual of the boundary conditions are also

worked out explicitly in [61].

2. Adding more fundamentals

a. AN−1 theory

Genus 0 theory The theories studied in [25] is superconformal in the four dimen-

sional sense. It is interesting to extend to the non-conformal cases, i.e. those theories

with more fundamentals on the weakly coupled gauge group(we call them theory Ã).

We will use the graph representation of the three dimensional theory we reviewed in

last subsection. Before doing that, we want to introduce some important concepts on

3d quiver gauge theories.

Since the IR theory we want to study is usually strongly coupled, we hope we

can learn some of its property from the UV theory, this is not always possible, for

instance, there might be accidental R symmetry in the IR which is not the same R

symmetry in the UV. Consider 3d N = 4 SU(Nc) theory with Nf fundamentals, let’s

define the excess number of it:

e = Nf − 2Nc. (6.37)

This theory is called “good” if e ≥ 0, “ugly” if e = −1, “bad” if e < −1. For the

“good” theory, there is a standard critical points and the IR R symmetry is just the
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R symmetry in the UV theory. For the “ugly” theory, the IR limit is just a set of

free hypermultiplets. For the “bad” theory, the IR limit is not a standard critical

point and the R symmetry might be accidental symmetry. For the ”good” theory,

the theory can be completely higgsed and there is a pure Higgs branch, we can learn a

lot about the IR limit from the UV theory. We mainly focused on the ”good” theory

in this subsection. If e = 0, we call it a “balanced” theory which has interesting

property on the Coulomb branch.

The above definition can be extended to a quiver. We call a quiver “good”

if ei ≥ 0 for every node. The Coulomb branch symmetry is enhanced due to the

monopole operators. If we have a linear chain of balanced quiver with P nodes, i.e.

ei = 0 for every node, then the global symmetry on Coulomb branch is enhanced to

SU(P + 1). If the balanced quiver has the shape Dn or En type dynkin diagram,

then the symmetry is enhanced to the corresponding Dn or En group. The global

symmetry for a general “good” quiver is just the product of enhanced non-abelian

symmetries and abelian U(1)s from non-balanced nodes. This is useful since we can

read the exact global symmetry of Higgs branch of the theory A using the mirror. For

instance, for the theory SU(2) with four fundamentals, the flavor symmetry is SO(8).

In the Gaiotto’s representation in Figure 38a), only SU(2)4 subgroup is manifest,

while we can see the full SO(8) symmetry in the Coulomb branch of the mirror

using monopole operators. This example might be trivial since we have a lagrangian

description for A, but for other strongly coupled theory, the mirror theory is very

useful to see full flavor symmetries.

For the irreducible theory A we considered in this paper, the mirror B is always

good as one can check. Now let’s consider theory Ã which is derived by adding more

fundamentals to the gauge groups of the theory A considered in [25], the mirror B̃

should also be a good quiver. There is a graph representation for A as we reviewed
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Fig. 39. Left: The addition of a “D5” brane to the internal leg of the graph. Right:

Its mirror.

in last subsection, the gauge groups are represented as the internal legs. To add

fundamentals, it is natural to think adding some “D5” branes on the internal leg.

There is one important question: Is the IR limit of N = 4 SYM on the graph the

same as the IR limit of theory Ã? In general the answer is not: there are some free

hypermultiplets in the IR besides the fix point theory of Ã. This can be seen from

the mirror of the graph. The graph mirror is in general a “bad” quiver.

The mirror of the graph is simple, the S-dual of the “D5” branes are “NS”

brane. From the gauge theory point of view, there are now two U(N) gauge groups

connected by a bi-fundamental, see Figure 39. In general, the graph mirror is “bad”

which reflects the fact the IR limit of the graph does not coincides with the IR limit

of theory Ã. We want to extract the mirror B̃ from the graph mirror.

The process we suggest is the following: for any “bad” or “ugly” node on the

graph mirror with the excess number ei < 0, we replace its rank by

n
′

i = ni + ei, (6.38)

then the excess number of the quiver nodes around it will also be changed, if there

are still some “bad” nodes, we will do the same manipulation on those nodes. We
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continue doing this until all the nodes are “good”, the resulting theory is the mirror

B̃ for the theory Ã.

The theory B̃ should have the same Higgs branch as the star-shaped quiver B.

Since theory Ã has the same Coulomb branch dimension as A. The graph mirror has

the same Higgs branch as B as we can easily count: we add one bi-fundamental and

one U(N) node, the net contribution to Higgs branch is zero. The graph mirror has

two central nodes, and the only possible “bad” node is one of the central node, See

Figure 40. for the illustration. The contribution of this central node to the Higgs

branch is

NfNc −N2
c = Nc(Nf −Nc). (6.39)

This number is unchanged if we change the rank of the gauge group to N
′
c = Nf −Nc

and keep Nf unchanged. The number N
′
c = Nc + Nf − 2Nc = Nc + e which is just

the number we defined earlier. N
′
c should be less or equal than N , so we can only do

the manipulation for those quiver node with e < 0.

We want to point out some generic features of the manipulation. As we noticed

earlier, only one of the central node can be “bad” for the graph mirror, the excess

number of it is e < 0. After changing its rank, its new excess number is−e. The excess

number of its adjacent nodes are increased by e. If none of those new excess numbers

are negative, then our manipulation stops, there is one more U(1) global symmetry

on the Coulomb branch from the new node. This reflects the fact there is an extra

U(1) flavor symmetry coming from the new added fundamental. It is possible some

of the adjacent node becomes “balanced” and therefore we have enhanced symmetry,

however we can only have one new “balanced” adjacent node with just one exception.
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Fig. 40. Top: The naive mirror for adding one fundamental to one of weakly coupled

gauge group; We assume that the left central node is bad. Bottom: We replace

the rank of the left central node with N
′
c = Nf −N =

∑j
k=1 nk.

We order the rank of the adjacent nodes so that n1 ≤ n2 ≤ ... ≤ nj, so

e
′

i ≥
j∑

k=1

nk − 2ni, (6.40)

e
′
i ≥ 0 for any i ≥ 3. e2 ≥ 0, it is zero only when there are only two identical quiver

tails with Young Tableaux [N −n1, n1]. This is consistent since after adding only one

fundamental, the flavor symmetry can only be changed from SU(k) to SU(k + 1) or

from SO(k + 2) to SO(2k + 2) (this is for the USp group).

It is possible that n1 node becomes “bad” after we change the rank of the central

node. We will focus on this quiver tail. The excess number of each node on this

quiver tail can be read from the Young Tableaux:

ei = ni+1 + ni−1 − 2ni =
r∑

j=i+2

hj +
r∑

j=i

hj − 2
r∑

j=i+1

hj = hi − hi+1, (6.41)

we take hr+1 = 0 (here we use i to denote the node on this particular quiver tail and
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ni as its rank), the excess number is non-negative as from the definition of the Young

Tableaux. It is a several chains of balanced quiver separated by the “good” quiver

nodes.

After changing the rank of this node, the new excess number of the central

number is e
′
c = e1 which is positive. The excess number of the n1 is e

′
1 = −e1 − e.

The new excess number of other adjacent node n2 is e
′
2 = e1 + e2 + e, if this number

is non-negative, then our process stops. If not, we continue the process, the excess

number of the first node changed to e2 though. We only need to do one manipulation

on each possible node. The general conclusion is that the process stops at the jth

node on the quiver tail with the condition

e1 + e2 + ...ej + e ≥ 0, e1 + e2 + ..ej−1 + e < 0. (6.42)

In particular, the structure of the balanced chain is not changed. The final form of

the quiver with its rank and excess number is shown in Figure 41. No new rank

number is zero or negative, since

n
′

i = ni+e+e1+...ei = ni+h1−hi+1+e > ni+h1−hi+1+n1−N = ni−hi+1 > 0. (6.43)

This ensures that on quiver node disappears. The structure of the new quiver shows

that there is a extra U(1) on the symmetry of the Coulomb branch, which is exactly

what we want.

For four dimensional theory, the gauge group contents depend on the pants de-

composition of the Riemann surface; To add fundamentals to the gauge group, we

must specific the pants decomposition. Go to three dimensions, the mirror is obvi-

ously different for different pant decomposition, which is in contrast with conformal

case for which the mirror is independent of pants decomposition. This allows us to

determine different duality frames of 4d SCFT as we will see later.
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′
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Fig. 41. Top: The rank and excess number of a quiver tail associated with a central

node, we assume that e + e1 < 0 for this quiver tail. Bottom: The rank and

excess number of the quiver tail after the manipulation is finished. It stops at

the jth node, from the condition, we have ej > 0, this shows that no balanced

node is lost, and they balanced chain is not altered. The new excess number

is e
′
j−1 = −(e + e1 + e2 + ...ej−1) > 0, e

′
j = e + e1 + e2 + ...ej ≥ 0, so it is

only possible for one more balanced node to appear. If a new balanced node

appears, it shows that there are already fundamentals exist; The new rank is

n
′
i = ni + e+ e1 + ...ei.
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Let’s give an example to illustrate our main idea. The four dimensional theory is

the original example studied by Argyres-Seiberg [10], in one weakly coupled duality

frame A1, it is just a SU(3) theory with six fundamentals; In another duality frame A2,

there is a weakly coupled SU(2) gauge group coupled with one fundamental and E6

strongly coupled theory. The S-duality can be understood from the six dimensional

construction. See Figure 42 for the pants decomposition and the graph representation

for the corresponding three dimensional theory.

Now let’s add more fundamentals (say two as in Figure 43) to the gauge groups

of the above theories, namely, we now consider theories Ã1 and Ã2. To find their

mirrors, we use the graph representation of the conformal theories and add “D5”

branes on the internal leg, we apply the S-dual and find graph mirror. If the mirror

quiver is “good”, then this quiver is just the mirror of Ã; if the mirror is “bad”, this

means that the IR limit of the graph is not the same as the theory Ã, but we can do

the manipulation as we described earlier to find the mirror of Ã.

The graph representation and graph mirrors are shown in Figure 43. The simple

puncture is represented by the Young Tableaux with heights [2, 1], the quiver tail to it

is just 3−U(1); The circle cross has partition [1, 1, 1], the quiver tail is 3−U(2)−U(1).

The mirror of “D5” branes is to cut the gauge groups into two and introduce a bi-

fundamental connecting them.

The quiver in Figure 43(a) is “good”, so we conclude that the graph representa-

tion on the left of Figure 43(a) has the same IR limit as the three dimensional SU(3)

with 8 fundamentals, and the graph mirror is just the mirror of theory Ã1, this is in

agreement with the result in [62].

The quiver in Figure 43b) is “bad”: the SU(3) node on the left has excess number

negative 1, so we replace it with a U(2) node, then the SU(3) node adjacent to it

becomes “ugly” with excess number negative 1, we also replace it with U(2). After
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Fig. 42. a): The weakly coupled duality frame with SU(3) gauge group on the left,

there are two type of punctures: the cross represents the simple puncture

with Young Tableaux [2, 1], the circle cross represents the full puncture with

Tableaux [1, 1, 1]. The graph representation for three dimensional theory is

shown on the right. b): The weakly coupled duality frame with SU(2) gauge

group on the left, graph representation for three dimensional theory on the

right. c): The mirror for theory (a) and (b), they are identical.
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Fig. 43. a): On the left, we add two “D5” branes on the internal segment which

represents a SU(3) gauge group, on the right, we apply S-duality and get a

good quiver. b): We add two “D5” branes on the SU(2) gauge group, the

left-hand side is the mirror quiver which is bad, the left central U(3) node is

“bad”. c): We replace the bad U(3) node with U(2), and then replace the

adjacent U(3) with U(2) node, the resulting quiver is “good”.

doing this, we get a ”good” quiver as shown in Figure 43c), this is the mirror for the

theory Ã2.

Let’s do some check on our result. The theory Ã2 has the same Coulomb branch

dimension (we always mean the hyperkahler dimension in this paper) as A2 and

the Higgs branch dimension of Ã2 is increased by four. Comparing the quiver in

Figure 43c) with the quiver in Figure 42c), its Coulomb branch dimension is increased

by 4 and Higgs branch dimension is not changed. The flavor symmetry of Ã2 is

SO(6)×SU(6). The SO(6) is from three fundamentals while SU(6) is from E6 matter.
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In the Figure 43c), on the left, we have a linear chain of three balanced quiver and

on the right we have a linear chain with 5 balanced quiver, so the symmetry on the

Coulomb branch is SU(4) × SU(6) which is the same as the symmetry on the Higgs

branch of Ã2. (Notice the U(1) symmetry on the middle U(2) node is decoupled).

In fact, we can use the “D5” brane as a probe to find out what is the weakly

coupled gauge group SU(k) (or USp(k) in some cases) for 4d SCFT by counting the

change of the Coulomb branch dimension of the mirror. Since for the theory Ã, the

Higgs branch is increased by k, if we know the change of Coulomb branch dimension

of the mirror, we can determine the weakly coupled gauge group. To determine

whether it is a USp group of SU group, we can see the enhanced symmetry on the

Coulomb branch of the mirror. If the mirror quiver has a balanced part with shape of

Dn dynkin diagram, then the gauge group is USp(k), otherwise the weakly coupled

gauge group is SU(N). The weakly coupled gauge group can also be determined using

the degeneration limit in [23]. Here we use three dimensional mirror symmetry to do

the job. We describe one example in Figure 44 Comparing the quiver in Figure 44c)

and Figure 44a), the Coulomb branch dimension is increased by 4, since the quiver

does not have a balanced part with Dn dynkin diagram shape, the gauge group is

SU(4), this is in agreement with the result using the degeneration method as described

in [23]. A special case is if the graph mirror is a “good” quiver, then the gauge group

is SU(N) or USp(N) as the Coulomb branch of the mirror is increased by N .

We can also find out how many fundamentals on the gauge group for the four

dimensional conformal theory. Since if there are l fundamentals exists, after adding

one more fundamental, the global symmetry on Higgs branch is enhanced from U(l)

to U(l+1). In the mirror, we can see the change of the global symmetry on Coulomb

branch using monopole operators, and we can determine k. In the quiver of Figure

44a), the global symmetry on Coulomb branch is SU(6)×U(1)×SU(2); For the quiver
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Fig. 44. a): A generalized quiver gauge theory A in three dimensions, its graph repre-

sentation is depicted on the left, we draw Young Tableaux for the boundary

condition, its mirror is depicted on the right. b): We add one “D5” branes on

internal leg of the graph in (a), the mirror of the graph is shown on the right.

c): The mirror of the theory Ã which has one more fundamental than A.
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Fig. 45. Top: A four dimensional theory is derived by compactifying six dimensional

A4 theory on a sphere with four punctures, the Young Tableaux of the punc-

tures are depicted, its 3d mirror can be found from the information in the

puncture, it is a bad quiver, the central node has negative excess number.

Bottom: For the bad node, we change its rank using the formula N
′
c = Nc+e,

after this modification, the excess number of the quiver nodes around the

central are also changed and they are “bad”, we do the modification on those

nodes too, at the end, we get a “good” quiver, this quiver is the same as the

quiver depicted in Figure 4.

in Figure 44c), the symmetry on Coulomb branch is SU(6)× SU(2)× U(1)× SU(2),

we see the global symmetry is changed from U(1) to U(2), so originally we have only

1 fundamental. This is also in agreement with the result in [23].

There is another application of our procedure of extracting irreducible theory

from “bad” quiver. We consider four dimensional irreducible theory up to now. For

the reducible theory, the three dimensional mirror is “bad”, which means that there

are free hypermultiplets besides the SCFT, those SCFT are actually represented ir-

reducibly by lower rank six dimensional (0, 2) theory. Using our method, we can

extract the free hypermultiplets and the irreducible SCFT from the 3d mirror. Those

reducible theories have been considered in [74], our method gives another simple way
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to study them.

For instance, consider A4 theory on a sphere with four punctures which are

labeled as [4, 1], [4, 1], [1, 1, 1, 1], [2, 2, 1] (This is the first example in the appendix of

[74]). The 3d mirror of this theory is depicted in Figure 45a), it is a bad quiver, so

we do the modification to the rank of the bad quiver node, finally, we get a good

quiver which is depicted in Figure 45b). One can recognize that this good quiver is

the same as the quiver in Figure 42, so we can conclude that this is the SCFT part

of the theory. Comparing the quiver in Figure 45a) and Figure 45b), the Coulomb

branch is decreased by 10. So we conclude that the theory composes of a SCFT as

described in Figure 45 and 10 free hypermultiplets. This is in agreement with the

result in [74].

Let’s go back to four dimensional N = 2 generalized quiver gauge theory. We

have shown how to determine the weakly coupled gauge group and the number of

fundamentals on it by using the “D5” brane probe. However, there are other strongly

coupled matter systems coupled with the gauge group, we want to determine them.

Let’s follow the procedure in [23]: the weakly coupled gauge group corresponds to

the long tube of the Riemann surface; we first consider the gauge group at the end

of the quiver and completely decouple this gauge group, two new punctures appear,

the Riemann surface are decomposed into two parts: a three punctured sphere Σ1

and another sphere Σ2 with a lot of punctures, see Figure 46a). The information

of the matter system can be read from the three punctured sphere, we also want

to determine what is the new puncture p on Σ2. In [23], we assume that the two

new appearing punctures are identical and find the new puncture by counting the

Coulomb branch dimension. Motivated by our study of mirror symmetry in this

paper, we follow a different approach, we assume the new puncture on Σ1 is always

the maximal puncture.
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Fig. 46. a): A four dimensional N = 2 generalized quiver gauge theory is derived from

six dimension (0, 2) SU(N) SCFT on this punctured sphere, the gauge group

is represented by a long tube; We show one weakly coupled gauge group at the

end of the quiver; After completely decoupling the gauge group, the Riemann

surface becomes into two parts Σ1 and Σ2, we put a full puncture at the new

formed three punctured sphere. There is a new puncture p on Σ2. b): The

3d mirror for three punctured sphere. c): If the mirror in (b) is “bad”, we

change the rank of the “bad” nodes and get a “good” quiver, we assume that

n1 and n2 nodes are “good”. d): The mirror quiver tail for the puncture p for

the case (c).
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We extract the matter information by looking at the 3d mirror of the three

punctured sphere B, see Figure 46b) , If the mirror is “good”, then the matter system

is just a strongly coupled isolated SCFT and the puncture p is just the maximal

puncture. The weakly coupled gauge group is just SU(N) as we have shown earlier.

If the mirror quiver is “bad”, we can still extract the matter information by doing the

manipulation we have used to find the mirror for the theory with more fundamentals.

There are several situations we need to consider. The first situation is that after

changing the rank of the central node to n1+n2−1, the n1 and n2 nodes are “balanced”

or “good”, in this case, the resulting quiver M3 is shown in Figure 46c). This is the

matter coupled to the gauge group. The quiver tail for the new puncture p is shown

in Figure 46d). There are some checks on our result. The weakly coupled gauge

group is SU(n1 + n2) from our previous analysis; For the quiver Figure 46d), there is

indeed a chain of n1 + n2 − 1 “balanced” nodes which has an enhanced SU(n1 + n2)

symmetry on Coulomb branch. The original quiver is formed by gauging this global

symmetry and the SU(n1+n2) symmetry of the quiver p. Another serious check is to

compare the Coulomb branch and Higgs branch dimension of the decomposed system

and generalized quiver, they are in agreement with each other (the calculation is the

same as we have done in [23], though a little bit tedious).

The other cases are more complicated. One usually have both free fundamental

hypermultiplets and strongly coupled matter system. We already know how to see

fundamentals, using the above method one can also extract the strongly coupled

matter system.

Higher genus theory Let’s next consider the theory associated with the higher

genus Riemann surface. The theory A is a generalized quiver gauge theory and the

mirror theory B has adjoint matter attached to the central SU(N) node. There is no
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complete Higgs branch for the A theory: for genus g theory, there are g(N − 1) free

U(1) vector hypermultiplets in the Higgs branch. So the dimension of the “Higgs”

branch is equal to the number of hypermultiplets minus the vector multiplets, and

then plus g(N − 1). Let’s consider genus one Riemann surface with just one simple

puncture, the graph and the mirror is shown in Figure 47a). This is just 4d N = 2∗

SU(N) theory, one should be a little bit careful here, the adjoint matter has dimension

N2. One can check that the Coulomb branch and Higgs branch dimensions of A and

B matches by counting the dimension of “Higgs” branch of A by including the free

U(1) vector multiplets.

There are three types of internal legs for the higher genus theory in the dual

graph. For the first one, when we cut it, the number of loops of the graph is not

changed. When we cut the second type of internal legs, the graph becomes two

disconnected parts with loops; when we cut the third type of internal legs, there

is only one part left and its number of loops is reduced by 1. When we add more

fundamentals to the first two types of internal legs, the procedure of finding the mirror

is the same as the genus zero case. In particular, for the second type of internal legs,

the gauge group must be SU(N), adding a fundamental just introduces another U(N)

group and a bi-fundamental.

For the third type of internal legs, there is a subtle point when we add just

one fundamentals. Consider the example in Figure 47, we add a “D5” brane on the

internal leg as depicted in Figure 47b). Do S-dual on the graph, the “D5” brane

becomes a “NS5” brane, which cuts the original U(N) group into two U(N) groups,

however, these two U(N) groups are connected by a single junction which must be a

single U(N) since in the mirror only the diagonal part of the junction is survived. The

mirror has just one U(N) node. We need one modification: we replace the adjoint of

SU(N) with adjoint of U(N), and we let the central node be U(N) instead of SU(N).
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Fig. 47. a): The graph representation of N = 2 SU(N) with an adjoint is depicted on

the left, the mirror theory is depicted on the right, the loop attached on SU(N)

is the adjoint of SU(N). b): On the left, we add one more fundamental to

theory a); There is a cross on the adjoint which means that here is the adjoint

on U(N), also the central node is U(N) group. c): We add two fundamentals

to theory a); The mirror is depicted on the right, no U(1) is projected out.
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See Figure 47b) for the mirrors.

Let’s compare the Coulomb branch and Higgs branch dimension of theory Ã and

B̃. Now the Higgs branch of Ã is just the difference between the hypermultiplets

and vector multiplets. It is easy to see the dimensions matches. There are two mass

parameters for the theory Ã and in the mirror there are two U(1) factors so we have

two FI parameters as it should be.

When we add two fundamentals, there is no adjoint in the mirror, we have two

U(N) gauge groups, see Figure 47c). In general, when we add k fundamentals, there

are k U(N) gauge groups in the mirror.

In general, for genus g theory, when we add just one fundamental on one of the

handle, in the mirror, the central node is changed to U(N) and one of the adjoint of

SU(N) is changed to the adjoint of U(N); After doing that, there is only (g−1)(N−1)

free U(1)s in the “Higgs” phase of Ã. If we add another fundamental to a different

handle, we simply change one of the adjoint of SU(N) to U(N), the number of free

U(1) is reduced by (N − 1). However, when we add one fundamental on each handle,

there is not enough FI terms in the mirror, what happens we believe is that there is

hidden “FI” terms which appear only in the IR. There are a total of (g − 1) hidden

“FI” terms.

We can add arbitrary number of fundamentals to any of the weakly coupled

gauge group. A genus two example is shown in Figure 48.

b. DN theory

The above analysis can be extended to DN theory. Let’s first discuss the definition

of the “good”, “bad”, “ugly” for the USp and SO gauge theory. For SO(k) gauge
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Fig. 48. Top: A genus two theory with several fundamentals, the generalized quiver

representation is shown on the left . Bottom: Mirror theory of (a).

theory with nf flavors, we define the excess number

e = nf − k + 1. (6.44)

The theory with e ≥ 0 is called “good”. For USp(2t) theory with nf flavors, the

excess number is defined as

e = nf − 2t− 1. (6.45)

The theory with e ≥ 0 is “good”. The above theories are called “balanced” if e = 0,

notice that the balance condition for three dimensional theory is different from the

conformal invariant condition for the four dimensional theory. So the conventional

conformal orthosymplectic quiver is not a “good” quiver, which is different from the

unitary case. In fact, the SO nodes are “bad”.

Similarly, a quiver with alternative USp and SO nodes are called “good” quiver

if ei ≥ 0 for every node in the quiver; It is called “balanced” if ei = 0 for every node.

The global symmetry of Coulomb branch is enhanced by monopole operators for a

chain of balanced orthosymplectic quiver with P nodes, the global symmetry is in

general enhanced to SO(P +1). However, if the first node on the chain is SO(2), the
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a)

USp(2N − 2)

SO(2N − 1) SO(2N − 1)

b)

SO(2N)

USp(2N)

USp(2N − 2)

SO(2N) SO(2N)

Fig. 49. Top: The addition of a “D5” brane to a USp leg, its mirror is depicted on the

right. Bottom: The addition of a “D5” brane to a SO leg and its mirror.

global symmetry on the Coulomb branch of a chain with P nodes is SO(P + 2).

For the theory considered in [25], there is USp global symmetry for the A theory,

but there is no balanced orthosymplectic quiver with enhanced USp flavor symmetry,

so in general the mirror quiver is a “bad” quiver.

There are two types of internal legs for the theories considered in [25]. We add

some full “D5” branes to the internal leg and the mirror of one “D5” brane is shown

in [61] using brane splitting, we reproduce it in Figure 49.

To find the mirror theory B̃, we can not simply extend our analysis for the

unitary group case, since the mirror B is already a bad quiver. The theory B̃ should

have the same Higgs branch dimension as the theory B̃. The graph mirror has the

same Higgs branch as B̃. Now we would like to do some manipulation on the “bad”

node so that the Higgs branch dimension is not changed. Let’s consider a USp(2k)

node, the Higgs branch contribution (include all the matter attached on it) is

Nf2k − (2k2 + k) =
1

2
2k(2Nf − 2k − 1). (6.46)
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SO(2) USp(4) SO(5) USp(4) SO(5) USp(4) SO(3) USp(2) O(1)

e

e = 0e = −1
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e = 0 e = 0 e = 1 e = −1
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Fig. 50. a); An orthosymplectic quiver which is conformal in four dimension. b):

The graph representation of the three dimensional theory; We indicate the

Young Tableaux here. c): The mirror theory B. d): We add one full “D5”

brane on the internal leg on USp(2) leg. e): The naive mirror of the (d), we

indicate the excess number for some of the relevant nodes; We can do the rank

manipulation on USp(4) node. f): We change the USp(4) node to USp(2),

and then change the adjacent SO(5) node to SO(3), the new excess number

is indicated. This is the mirror theory B̃.
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For a bad quiver, we may wonder to replace its rank 2k with 2Nf − 2k − 1 so the

contribution to the Higgs branch is the same. We can not do this since 2Nf − 2k− 1

is a odd number. We can try to replace 2k with

2k
′
= 2Nf − 2k − 2 = 2k + 2(Nf − 2k − 1) = 2k + 2e, (6.47)

This is similar to the unitary case. However, after doing this, the Higgs branch

contribution of this node is increased by 2e.

For the SO(Nc) gauge theory, one can do the similar calculation as above, the

final result is that if we replace the rank of the gauge group by N
′
c = Nc + 2e. The

Higgs branch contribution of this node is increased by −2e.

Suppose we have a node with negative excess number e, after doing the manipu-

lation, the Higgs branch dimension is changed by 2e (we assume that this node is USp

type, SO type is similar), assume one of the adjacent node originally has excess num-

ber e1, its excess number becomes e
′
1 = e1 + e. First, we should ensure that e

′
1 < 0,

and we replace its rank follows our rule, the Higgs branch dimension is changed by

−2e
′
1, to cancel the change of the USp node, we have the relation

e1 = 0. (6.48)

One may wonder we can do the manipulation on both adjacent nodes to cancel the

contribution, a little bit calculation shows that this is possible only in the case e1 =

e2 = 0.

Our conjecture is that we only do the manipulation on those “bad” nodes one of

whose adjacent node is “balanced”. We continue this process until no nodes satisfy

this condition. This constraint makes sense, the “bad” node on the original quiver

leg does not satisfy this condition so we do not need to do the manipulation.

Let’s also give a simple example to illustrate the idea. We take an theory A for
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which we have a lagrangian description (the general case are really the same). See

Figure 50 for the details. The flavor symmetry on the Coulomb branch of the quiver

in Figure 50f) is changed from SO(2) to SO(4), which is exactly the flavor symmetry

on USp(2) node in Figure 50a) (original, we have two half-hypermultiplets on USp(2)

node, the flavor symmetry is SO(2), after adding two more half-hypermultiplets, the

flavor symmetry is changed USp(4)).

With this construction, We can reproduce the results from [69]. In fact, we have

constructed a large class of new mirror pairs for which the theory Ã involves strongly

coupled matter.

An important application of this “D5” brane probe is that we can read the weakly

coupled gauge group by counting the change of the dimension of the Coulomb branch

of the mirror. One subtly we should mention is that for the USp leg, we just add one

“D5” brane and count the change of the Coulomb branch dimension in the mirror.

However, the SO node is “bad”, so we need to first add one “D5” brane to make it

good, and then add another ”D5” brane to probe the rank of the gauge group. This

is the only tool we know to completely determine the generalized quiver from DN

theory. One may also determines the matter contents as we do for the unitary case.

One can also extend those consideration to the higher genus theory of the DN

type.

3. Gauging U(1)

For all the theories considered in [25] and this paper, the theory A has SU(k) gauge

groups while in the mirror B, there is no fundamentals attached on any quiver node.

In this subsection, we will show how the mirror changes if some of the U(1) symmetry

of theory A is gauged.

The rule is quite simple, when there is a U(1) symmetry in the A theory, there is
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a U(1) gauge group in the mirror. If we gauge the U(1) symmetry of A to get theory

Ã, the Higgs branch dimension of Ã is decreased by 1 while the Coulomb branch

dimension is increased by 1 comparing with A. To match this counting, we should

ungauge the U(1) node of B to get a theory B̃ whose Higgs branch is increased by 1

while the Coulomb branch is decreased by 1 comparing with B . This is in agreement

with the prediction of mirror symmetry.

The theory Ã loses a mass parameter while B̃ loses a FI parameter; The Higgs

branch of Ã loses a U(1) global symmetry while B̃ loses a U(1) global symmetry in

Coulomb branch. Those are also in agreement with Mirror symmetry.

Consider the example in Figure 47c), when we gauge the U(1) symmetry, the A

theory is U(N) theory an adjoint and two fundamentals, the B theory is the quiver

in the right of Figure 47c) with the U(1) node uncaged, this is in agreement with the

result in [64].

With this gauging trick, we can add some fundamentals on the central nodes

(nodes with at least three instrumentals attached on it)in the mirror. Notice that we

can not add fundamentals on the nodes on quiver tail attached to the central node.

4. General quiver tail

In the above generalizations, we do not change the boundary condition on the external

leg of the graph, so the quiver tail is the same. Our theory A is simply a chain of

simple unitary nodes coupled with fundamentals (sometimes antisymmetric matter)

and strongly coupled matter. Theory A does not have a lagrangian description in

general. Our theory B is always a standard quiver gauge theory.

In this subsection, we want to change the boundary condition so that we have

general quiver tail attached to the central node. In particular, we will allow quiver

tails whose nodes can have the fundamental hypermultiplets.
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To proceed, we need to reinterpret the graph representation of the theory A in

terms of N = 4 SYM on a half space. The general boundary condition of N = 4

theory can be labeled by (ρ,H,B) [68] where ρ is the homomorphism ρ : su(2) → g,

H is the commutate of the ρ in G, B is a three dimensional theory which is coupled

to H.

Consider a theory A whose graph representation only has one internal leg and

four external legs, and we assume that the weakly coupled gauge group on the in-

ternal leg is SU(N). This theory can be interpreted as gauging two matter systems

T1, T2 which are represented by trivalent graphs . As we proved in [23], these two

matter systems must have SU(N) flavor symmetry, the gauge group is derived by

gauging the diagonal SU(N) symmetry. These two matter systems are irreducible

(they have Coulomb branch parameters with dimension N), so their 3d mirrors are

“good” quivers. Consider one end of the internal leg, the boundary condition is just

(0, SU(N), T1), similar thing can be said at the other end.

The mirror theory B can be found by first finding the mirror of the matter system

T1, T2 and then gluing them together. The mirror of the matter system is also the

star-shaped quiver with a quiver tail which is T (SU(N)) (see [61] for its definition)

corresponding to the SU(N) flavor symmetry. The result of gluing is just annihilate

those two T (SU(N)) tails and we are left with only one central node, we refer this

as the gluing process to get the mirror B, which is a counterpart of gauging for the

original theory A. See Figure 8 in [25].

Let’s count the Coulomb branch and Higgs dimension of the theory from gluing

T1 and T2. For theory A, the Coulomb branch dimension is the sum of the Coulomb

branch of three parts (C1 + C2 + (N − 1)), where C1 and C2 is the Coulomb branch

dimension of T1 and T2. The Higgs branch dimension is the (H1 + H2 − (N2 − 1)),

here H1 and H2 is the Higgs branch dimension of T1, T2. In the mirror, before the
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Fig. 51. a): A linear quiver which we called theory B in the main text, it has a

SU(3) symmetry which is used to coupled to the T(SU(N)). b): The brane

construction for the quiver in (a), here crosses represent NS5 branes, vertical

dash lines represent the D5 brane, horizonal lines are D3 branes. c): The

S-dual brane configuration of (b), we have done a brane rearrangement so

there is a gauge theory interpretation. d): The quiver representation of (c),

which is the theory B∨ in the main text.

annihilation, the Coulomb branch dimension is simply H1 +H2 by mirror symmetry.

After annihilating two T (SU(N)) legs, the Coulomb branch dimension is decreased

by N2 − 1; and the Higgs branch dimension is increased by N − 1, this agrees with

theory A using mirror symmetry.

Now we can replace the theory T1 and T2 by any other “good” theories B∨ with

SU(N) flavor symmetry to form a theory Ã. As long as we know the mirror of B∨,

we may find the mirror theory B̃. If the mirror of T has a quiver tail T (SU(N)),

nothing will prevent us to find the mirror B̃ by simply annihilating the T (SU(N)).

Interestingly, in [61], a large class of those theories has been found.
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Fig. 52. Top: A quiver with T3 factor on one end of SU(3) gauge group, on the other

end, it is coupled to the theory B∨ as depicted in Figure 51d). Bottom: The

mirror to theory (a), we use the quiver B in Figure 51a).
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Let’s give a short review of their results. Suppose we have a boundary condition

(0, SU(N), B), assume the dual boundary condition has full gauge symmetry. the dual

boundary condition is (0, SU(N), B∨) where B∨ is a SCFT living in the boundary.

The mirror B̃∨ is

B̃∨ = BSU(N)×SU(N)T (SU(N)). (6.49)

We assume that this is a “good” quiver, so the SU(N) symmetry on the Coulomb

branch of T (SU(N)) is the SU(N) symmetry of the Higgs branch of B∨.

Now we replace one of theory T1 with theory B∨, the mirror is simply to replace

two quiver tails from T1 by B. The above consideration is quite general. Here we

consider the case where the theory B is a linear quiver, since we require the quiver

in 6.49 to be good quiver, the first node of this quiver should have rank Nc ≥ N + 1.

B has a NS5 − D5 − D3 brane constructions, we can find theory B∨ by doing S-

duality on the brane systems. To have a gauge theory interpretation, we may need

to rearrange the branes, see [62, 61] for more details. See Figure 51 for an example.

Now let’s consider a SU(3) theory coupled with two T3 theory, we replace one of

T3 with the theory B∨, which we call the theory Ã, the mirror theory B̃ can be found

from our general recipe. See Figure 52 for an example.

The theory TN can play an interesting role, for each SU(N) flavor symmetry, we

can attach a general quiver tail. then the mirror is a star-shaped quiver with three

general quiver tails. In fact, using TN theory, we can construct the mirror theory with

any number of general quiver tails.

The above consideration can be extended to the case even if the quiver is “bad”,

the mirror is still given by a star-shaped quiver as we described earlier, but the gauge

group on the leg is not SU(N) but broken down to a subgroup, we can use the method

in this subsection to determine the theory A.
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5. Irregular singularity

The mirror theory we considered so far are almost linear quiver with only one bi-

fundamental connecting the quiver nodes. The shape of the quiver is quite simple.

In this subsection, we will see more general type of quivers.

There are other four dimensional N = 2 field theories constructed from six di-

mensional (0, 2) SCFT. In the examples discussed in [25], one consider the compacti-

fication on Riemann surface with regular singularities, this defines a four dimensional

N = 2 SCFT [23]. However, one can also consider irregular singularities [24, 56] on

the Riemann surface. This defines a four dimensional theory A which we will study

in detail elsewhere. In this subsection, we will study the mirror theory for some of

those theories which have already been mentioned in [24].

The moduli space of the Hitchin equation with irregular singularity is the Coulomb

branch of the four dimensional theory on a circle with radius R. In the deep IR limit,

there is a three dimensional N = 4 SCFT which we call theory A. We want to find

the mirror theory B. In the case of regular singularities, we attach a quiver tail to

each of the singularity and then glue the common SU(N) nodes together.

The procedure for the irregular singularity case is quite similar. We need to

define a quiver to the irregular singularity. After doing this, we glue those quiver tails

of the regular singularities to the quiver associated with the irregular singularity. So

the problem is reduced to find the quiver tail of the irregular singularity. The general

story of irregular singularity is quite complicated and we do not intend to consider

the general case in this paper. We only consider some simple cases and discuss the

general theory elsewhere. Although as simple as the theory A we consider in this

paper, the mirror seems to have some new features: more than one bi-fundamentals

and exotic quiver shape. We should mention that, in mathematics literature, the
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moduli space of Hitchin’s equation in complex structure J has been given a quiver

approximation [58], in physics language, we extend this observation to the level of

Hyperkahler structure, moreover, the Coulomb branch of the quiver is identified with

the Higgs branch of the theory A, which is not recognized in mathematics literature.

a. A1 theory

The SU(2) Hitchin system defined on Riemann surface (in this paper, we only consider

Riemann sphere) has only two types of irregular singularities [56], we write the form

of the holomorphic Higgs field

Φ =
A

zn
+ ....

Φ =
A

zn−1/2
+ ...., (6.50)

where A is a diagonal matrix. we call them Type I and Type II singularity respectively.

When we put such a singularity on the Riemann surface, we get a four dimensional

N = 2 theory A. One can add other regular singularities on the Riemann sphere. The

moduli space of Hitchin’s equation in complex structure I has the famous Hitchin’s

fibration, which is identified with the Seiberg-Witten fibration of the four dimensional

theory. In particular, the Coulomb branch dimension of four dimensional theory has

half the dimension of the Hitchin’s moduli space. The spectral curve of the Hitchin

system is

det(x− Φ) = 0, (6.51)

which is just the Seiberg-Witten curve. The total dimension of Hitchin’s moduli space

is equal to the contribution of each singularity and minus the global contribution

2(dimG − r) = 6, here G = SU(2), r is the rank of the gauge group. The local

contribution of regular singularity is 2 [56], and 2n for the irregular singularity. We
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only consider just one irregular singularity on this paper(when there are more than

one irregular singularities, the mirror is not a quiver).

The mass parameter for the four dimensional theory is encoded in the residue

of the Higgs field. So for type I singularity, there is one mass parameter. However,

there is no mass parameter for type II singularity since the residue term is not allowed

because of monodromy. We want to attach a quiver with these irregular singularities.

In the case of regular singularity, the dimension of the Higgs branch of the quiver

tail only accounts for the local dimension of the singularity. In the case of irregular

singularity, we should include the global contribution to the irregular singularity: the

Higgs branch of the quiver should have dimension n− 3. The quiver should have one

U(1) factor for Type I node and no U(1) factor for type II node, since the FI term

for the U(1) would correspond to the mass parameter (these are not true in general,

since we have exotic IR behavior for some theories, in these cases, one can not tell

what exactly happens in the IR from the UV theory).

With these considerations, we have the following conjecture for the quiver at-

tached on the irregular singularity: for the Type I singularity, we have two nodes

with U(1) group, and there are (n − 2) bifundamentals connecting them, one of the

U(1) is decoupled, so we only have one FI term; There are n− 3 mass terms for the

bi-fundamentals, this means that the original theory has n − 3 “hidden” FI terms.

The origin of these ”hidden” FI terms will be discussed elsewhere. One example is

shown in Figure 53a).

For Type II singularity, if n ≥ 5 we have only one U(1) node with n − 2 lines

connect to itself, these are the adjoints for the U(1) which are just the fundamentals.

This is exactly like the mirror for the high genus theory in the context of regular

singularities [25]. There are also enhanced global symmetry in the mirror and there are

extra n−3 mass parameters which correspond to the “hidden” FI term in the original
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Fig. 53. a): The quiver for type I irregular singularity, here n = 5. b): The quiver

for type II irregular singularity, here n = 5, here we have adjoint matter on

U(1). c): The quiver tail for a regular singularity. d): We spray the SU(2)

symmetry into two U(1)s.

theory A. Follow the analogy with the higher genus theory, n = 4 corresponds to

genus 1 case. In the genus one case, the massless limit has enhanced supersymmetry,

and the mirror has only one adjoints while the massive limit has an extra U(1) node.

For the irregular singularity here, we conjecture that the mirror corresponds to the

massless limit of the genus 1 case, so we only have one adjoint, the mirror is indeed

U(1) with one fundamental, we will confirm this later. Similarly, for n = 3, there

is only one U(1) node, in this case, there is no meaning to consider this irregular

singularity alone, this is only a recipe to form the mirror quiver when there are extra

regular singularities. For this class of singularities, we show one example in Figure

53b).

When there are other regular singularities, the quiver tail is shown in Figure 53c).

We spray the node as in Figure 53d). To connect the regular singularity to irregular

singularity, we just gauge the U(1) node: In type I case, they are gauged separately;
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Fig. 54. a): The mirror for the A2 Argyres-Douglas point, there is one Type I irregular

singularity with n = 3 and one regular singularity, we glue them together to

form a quiver on the right. b): For A1 Argyres-Douglas point, there is a

type II irregular singularity with n = 3 and a regular singularity, after gluing

them, we get a A1 affine dynkin diagram. c): Another representation of

A1 Argyres-Douglas point, only one Type I irregular singularity with n = 4

needed, the resulting quiver is the same as representation (b). d): For A0

Argyres-Douglas point, only one Type II singularity with n = 4 is needed, the

resulting mirror is just the A0 affine dynkin diagram.
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in type II case, they are gauged on the same node. Since the Higgs branch of this

quiver tail accounts the local dimension of the regular singularity to the Hitchin’s

moduli space even after spraying, the Higgs branch of the whole quiver is the same

as the Coulomb branch of the theory A.

We can consider some examples studied in [24]. In that paper, we claim that

the Argyres-Douglas A2 theory is derived with one Type I irregular singularity with

n = 3 and a regular singularity. The Seiberg-Witten curve as from 6.51 is

x2 = z2 + u1z + u2 +
u3
z

+
m2

z2
. (6.52)

We put the irregular singularity at z = ∞ and regular singularity at z = 0. Let’s count

the scaling dimension of the operators in the curve. The Seiberg-Witten differential

is λ = xdz; We require its dimension to be 1, together with the form of the Seiberg-

Witten curve, we have the scaling dimension of x and z:

[x] =
1

2
, [z] =

1

2
. (6.53)

One can easily get the scaling dimension of the operators: [u1] =
1
2
, [u2] = 1, [u3] =

3
2
, [m] = 1, which is the same as the A2 Argyres-Douglas (AD) points as shown in [55].

The Coulomb branch dimension of this theory is 1, and the Higgs branch dimension

is 2. The flavor symmetry is SU(3) which is not easy to see from our six dimensional

description, since there is only manifest SU(2) × U(1) flavor symmetry. We will see

below that the we can see the enhanced symmetry from the mirror.

The mirror quiver is depicted in Figure 54a), we show how to glue the quiver

from the regular singularity and the irregular singularity together. Let’s check that it

gives the correct mirror description: The Higgs branch dimension is 1 and Coulomb

branch is 2, which agrees with the prediction from mirror symmetry. Since the mirror

quiver has a chain of balanced quiver with two nodes (one U(1) is decoupled), the
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symmetry in the Coulomb branch is SU(3) which is exactly the flavor symmetry of

the A2 theory.

For A1 AD points, there are two construction: one Type II irregular singularity

with n = 3 and a regular singularity; or we can have just one Type I irregular

singularity with n = 4. For the first representation, the spectral curve is

x2 = z + u1 +
u2
z

+
m2

z2
. (6.54)

We put irregular singularity at z = ∞ and regular singularity at z = 0. The scaling

dimension is [x] = 1
3
, [z] = 2

3
. The scaling dimension of the spectrum is [u1] =

2
3
, [u2] =

4
3
, [m] = 1, which is the same as the A1 points [7].

For another representation, the spectral curve is

x2 = z4 + u1z
2 +mz3 + u2. (6.55)

We have shift the origin so z term is absent. The spectrum is [u1] =
2
3
, [m] = 1, [u2] =

4
3
, which is the same as the above representation.

The A1 AD point has Coulomb branch dimension 1 and Higgs branch dimension

1, the flavor symmetry is SU(2). The 3d mirror B are the same as we can see in

Figure 54b), this also justifies that these two descriptions are equivalent. The mirror

has Coulomb branch dimension 1 and Higgs branch dimension 1, the symmetry on

the Coulomb branch is SU(2), these are all in agreement with the mirror symmetry.

A0 theory is defined on a sphere with a Type II irregular singularity with n = 4.

The spectral curve is

x2 = z3 + u1z + u2. (6.56)

The spectrum is [u1] =
4
5
, [u2] =

6
5
, which is the same as shown in [7]. The Coulomb

branch of A0 theory is 1 and the Higgs branch is 0.
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The mirror for A0 theory is shown in Figure 54c), which is just U(1) with one

fundamentals. In the deep IR, it is just a twisted free hypermultiplet, so the Coulomb

branch is 1, and the Higgs branch is 0 (see e.g. [61]). In this case, the mirror symmetry

does not match the Coulomb branch to Higgs branch, but match the Coulomb branch

to Coulomb branch, this kind of phenomenon has also been observed in [75].

Notice that the mirror are just the affine dynkin diagram of the corresponding

type for the Argyres-Douglas points. The singular fibre is classified by Kodaira with

type A0, A1, A2, D4, E6, E7, E8. Four dimensional superconformal field theory with

these curves are found [54, 7, 48, 76]. The mirror theory of IR limit of the three

dimensional cousin are just given by the corresponding ADE affine dynkin diagram.

Interestingly, the Coulomb branch of these isolated SCFT in three dimensions are the

ALE space of the corresponding type.

b. AN−1 theory

The classification of the irregular singularity for rank N theory is quite complicated.

Here we only consider the most simple irregular singularity.

Φ =
A

zn
+ ... (6.57)

where A is the diagonal matrix with distinct eigenvalues. The Hitchin equation with

this kind of singularity has been considered in detail in the gauge theory approach to

Geometric Langlands program [56].

The local dimension of just one singularity is

n(dimG− r), (6.58)

where r is the rank of the gauge group and G is SU(N) in the present context. The

total dimension of the Hitchin’s moduli space with just one such irregular singularity
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n = 3
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a)

b)

Fig. 55. Top: A four dimensional superconformal field theory derived from six dimen-

sional (0, 2) theory on a sphere with one irregular singularity. Bottom: The

mirror to theory (a).
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is

n(N2 −N)− 2(N2 − 1). (6.59)

So the four dimensional theory A has Coulomb branch dimension

dC =
1

2
n(N2 −N)− (N2 − 1) =

1

2
(n− 2)(N2 −N)− (N − 1). (6.60)

There are a total of N − 1 mass parameters.

c. Three dimensional mirror for AN theory

When we compactify six dimensional theory on a sphere with such a singularity, we

get a four dimensional SCFT A. The spectrum can be worked out similar as the AD

points, we will give it elsewhere, here we consider its mirror B. The mirror to this

theory is quite simple, there are N nodes with U(1) gauge groups and there are (n−2)

bi-fundamentals connecting each pair of nodes. The Higgs branch of this quiver B is

(n− 2)
1

2
(N2 −N)− (N − 1), (6.61)

which is exactly the Coulomb branch dimension of A. See Figure 55 for an example.
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CHAPTER VII

4D-2D CORRESPONDENCE∗

The four dimensional theory is completely determined by the data defined on the

two dimensional Riemann surface. It is found by AGT [19] that for SU(2) case, the

Nekrasov partition function of four dimensional gauge theory is identified with the

conformal block of the Liouville theory. This rather striking relation deserves further

investigation.

S duality plays a central role in understanding four dimensional gauge theory.

While crossing symmetry and modular invariance is central in studying two dimen-

sional conformal field theory. I am going to study further the relation between these

two fundamental concepts in 4d and 2d theory.

A. Crossing symmetry and modular invariance in conformal field theory

Let’s first review how the dual string model was proposed [30]. Consider an elastic

scattering amplitude with incoming spinless particles of momentum p1, p2 and out-

going spinless particles of momentum of p3, p4 (see Figure 56). The conventional

Mandelstam variables are

s = −(p1 + p2)
2, t = −(p2 + p3)

2, u = −(p1 + p4)
2. (7.1)

Consider first the t channel contribution. There are various particles with mass

∗ Part of the result reported in this chapter is reprinted with permission from On
crossing symmmetry and modular invariance in conformal field theory and s duality
in gauge theory by D. Nanopoulos and D. Xie, published in Phys. Rev. D. 80 (2009)
105015, Copyright[2009] by American Physical Society.
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Fig. 56. An elastic scattering with incoming particles of momentum p1, p2 and outgoing

particles of momentum p3, p4. We indicate the contribution from s channel

and t channel. The field theory amplitude is constructed from the sum of

those contributions.

MJ and spin J which might be exchanged:

A(s, t) = −
∑
J

g2J(−s)J

t−M2
J

. (7.2)

We have the following similar amplitude if we consider s channel:

A
′
(s, t) = −

∑
J

g2J(−s)J

s−M2
J

. (7.3)

Two remarkable properties of the scattering amplitude are that the above sums are

infinite and these two amplitudes are equal to each other A(s, t) = A
′
(s, t). The last

property which is called s− t duality motivates the proposed Veneziano amplitude.

It is well known that the Veneziano amplitude can be derived from two dimen-

sional (world sheet) string theory. The infinite sum is due to the infinite number of

states in mass spectrum. The s−t duality is simply the crossing symmetry of the four

point function of conformal field theory. This crossing symmetry is also equivalent to

the associativity of the OPE on the world sheet:

Ai(ζ)Aj(0) =
∑
k

Ck
ij(ζ)Ak(0). (7.4)
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We briefly summarize some properties of CFT. The Virasoro algebra is

[Ln, Lm] = (n−m)Lm+n +
c

12
n(n2 − 1)δn+m,0, (7.5)

here c is the central charge and Lm are generators of conformal symmetry. The

representations of this algebra are labeled by primary states which satisfy:

L0|Vα >= ∆α|Vα >, Ln|Vα >= 0, n > 0, (7.6)

∆α is the conformal dimension of this primary state. The other states of this repre-

sentation are represented as:

L−knL−kn−1 ....L−k1 |Vα >, (7.7)

here kn ≥ kn−1... ≥ k1. These secondary states have conformal weights ∆ = ∆α+ |Y |;

here |Y | is the total boxes of the Young Tableaux with rows k1, ...kn. The correlation

functions involving the energy momentum tensor and secondary states are expressed

by the correlation functions of the primary states.

The OPE of two primary states are given as [50]:

ϕm(z, z̄)ϕn(0, 0) =
∑
p

cpnmz
∆p−∆n−∆m

z̄∆̄p−∆̄n−∆̄mψp(z, z̄|0, 0). (7.8)

The most important dynamical information are cpnm and the conformal dimensions.

The four point function has the form

Glk
nm(x, x̄) =< k|ϕl(1, 1)ϕn(x, x̄)|m >, (7.9)

here we fixed the positions of three vertex operators as 0, 1,∞ and x is the projective
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Fig. 57. Crossing symmetry of four point function in conformal field theory.

invariant variable. The crossing symmetry is

Gkl
nm(x, x̄) = Gmk

nl (1− x, 1− x̄) = x−2∆nx̄−2∆̄nGlm
nk(

1

x
,
1

x̄
) (7.10)

Using OPE of ϕnϕm, the four point function is

Glk
mn(x, x̄) =

∑
p

cpnmclkpF
lk
nm(p|x)F̄ lk

nm(p, x̄), (7.11)

here F is the conformal block which is entirely determined by the conformal symme-

try(we give the s channel contribution). The crossing symmetry relates the contribu-

tions of different channels (see for instance Figure 57):

Next let’s consider the one-loop partition function defined on a torus:

Z(τ) =
∑
i

qhi−c/24q̄h̃i−c(−1)Fi , (7.12)

here i runs over all the states in CFT and Fi is the fermion number, q = exp( 2πiτ). It

is well known that this partition function is needed to be invariant under the SL(2, Z)

modular group transformation of the torus. The high energy density states of this

theory is determined by the central charge for compact unitary conformal field theory.

For Liouville theory, there is a modification to this result, see [77].
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Fig. 58. Different degeneration limits of the punctured sphere, this corresponds to

different weakly coupled S-dual theory of N = 2 SU(2) gauge theory with

four fundamentals.

B. Superconformal field theories in four dimensions

It is proposed in [78] that a strongly coupled gauge theory can be described by a

weakly coupled theory in which the elementary particles are the monoples of the orig-

inal theory. This proposal is naturally realized inN = 4 supersymmetric gauge theory

and is extended to a SL(2, Z) duality group. Later, D = 4 N = 2 SU(2) gauge theory

with four fundamental hypermultiplets has also been shown to have the SL(2, Z) du-

ality [1]. Gaiotto found an extremely useful way to describe the gauge structure of dif-

ferent S-dual frames of this theory. We use the SU(2)a
⊗

SU(2)b
⊗

SU(2)c
⊗

SU(2)d

subgroup of full SO(8) flavor group. This theory can be realized as the six dimen-

sional (0, 2) A1 theory compactified on a sphere with four punctures. The different S

dual frames are realized as the different degeneration limits of this punctured sphere,

see Figure 58. The Seiberg-Witten (SW) curve of this theory is written as

x2 =
u

(z − 1)(z − q)z
, (7.13)

we have fixed the positions of three punctures and left an unfixed puncture which is

identified with the gauge coupling constant. The SW curve for the mass deformed

theory is x2 = ϕ2(z), where

ϕ2(z) =
M2(z)

z2(z − 1)2(z − q)2
+

U2(z)

z(z − 1)(z − q)
. (7.14)
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For each puncture, we associate a mass parameter ma,b,c,d to it; the physical

masses of the fundamentals are given by

m1,2 = ma ±mb, m3,4 = mc ±md. (7.15)

The partition function of this theory on S4 is given by [79]:

Zs4 =
1

vol(G)

∫
[da]e

− 4π2r2

g2
Y M

(a,a)
Z1loop|ZN

inst(r
−1, r−1, a)|2 (7.16)

Here a is the parameter for the Coulomb branch and r is the radius of the sphere.

The 1-loop part is given by:

ZN=2
1−loop =

H(2a)H(−2a)∏4
i=1H(a+mi)H(a−mi)

. (7.17)

Here H(x) is given by Barnes’s G function H(x) = G(1 + x)G(1 − x); mi is the

mass parameters for the four fundamentals and a is the Coulomb branch parameter.

The instanton part of the partition function is identified with the Nekrasov instanton

partition function [15] Zinst(ϵ1, ϵ2, a). Notice that for the S4 case ϵ1 = ϵ2 =
1
r
.

Next, let’s study the N = 4 SU(2) theory. It is given by the six dimensional

A1 theory compactified on a smooth torus. The SL(2, Z) duality of the gauge theory

is interpreted as the SL(2, Z) modular invariance of this torus. The full partition

function of this theory is of the same form as formula (7.16). It is interesting to note

that for N = 4 U(M) gauge theory the one-loop part is trivial Z1−loop = 1 and the

full partition function for U(M) gauge theory is only from the instanton part (see the

discussion in section 5 of [79], we change the normalization here though):

Z = C
1

|η(τ)|2M(2π
√
τ2)M

. (7.18)

where η(τ) = q
1
24

∏∞
k=1(1− qk), q = e2πiτ .



214

C. S duality from the conformal field theory

AGT [19] made a conjecture that the full partition function of the above N = 2

SU(2) SCFT is equivalent to the correlation function of Liouville theory. It is shown

by AGT that the instanton part of the gauge theory partition function is equal to

the conformal block of the correlation function and the one-loop part and classical

part correspond to the structure constant part of the correlation function. It is also

argued that the energy momentum tensor of Liouville theory is related to the operator

(7.14) (this can be seen from the classical uniformization problem with the punctured

sphere).

The relation between the deformation parameters and the parameters in Liouville

field theory is

ϵ1 = b, ϵ2 =
1

b
, (7.19)

here ϵ1 and ϵ2 are the deformation parameters in Nekrasov’s instanton partition func-

tion. Notice that in order to use the partition function on S4, we need to set b = 1.

We associate a exponential vertex operator eαiϕ to each puncture. We also as-

sociate a intermediate state eαϕ to weakly coupled SU(2) group with Coulomb pa-

rameter a. The exact relations between the parameters in gauge theory and Liouville

theory are

α1 = ma +
Q

2
, α2 = mb, α = a+

Q

2
, α3 = mc +

Q

2
, α4 = md.

Here Q is the conventional parameter for the Liouville theory Q = b+ 1
b
. See Figure

59 for the correspondence.

Now the crossing symmetry (7.10) of CFT states that the correlation function of

different channels are related. When we consider the gauge theory, the different chan-

nels mean different S dual frames (see Figure 58). With the identification between
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Fig. 59. Left: Riemann surface associated with the SU(2) gauge theory in one partic-

ular S dual frame, the Coulomb branch parameter is a. Right: The s channel

contribution to the four point function of Liouville theory.

the partition function of gauge theory and correlation function of CFT, we conclude

that: The partition function of 4d SCFT in different S dual frames are related as in

formula (7.10). Notice that the gauge coupling is identified with the position of the

unfixed coordinate of the vertex operator, and the second identity in (7.10) relates

theories with gauge couplings q
′
= 1

q
. So this identity is a check of S-duality !

Next let’s consider N = 4 SU(2) theory, then we are tempting to identify the

gauge theory partition function with the partition function of Liouville theory, the

Liouville partition function can be calculated from (7.12):

Z(τ) = Vϕ
1

2π
√
τ2|η(τ)|2

. (7.20)

here Vϕ is the zero mode contribution and is independent of τ , this is identified

with the gauge theory partition function; we also need to identify α = 1 + a for

intermediate state and the gauge coupling is π
g2Y M

= τ2 which is consistent with our

previous identification. Comparing to (7.18) with M = 2, we can see that the U(1)

part contribution to gauge theory partition function is

ZU(1) = C
′ 1

2π
√
τ2|η(τ)|2

. (7.21)
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CHAPTER VIII

CONCLUSION

This dissertation is only a first step towards a new understanding of quantum field

theory in various dimensions. We want to point out several open problems which

deserve further study.

Regarding the construction of four dimensional field theory, there are several re-

maining interesting problems. We are mainly studying field theory engineered from

six dimensional AN type theory, DN theory is studied in some detail in [44], it is in-

teresting to extend the same analysis to EN case for which there is no simple type IIA

brane construction. One can also consider orbifold Riemann surface with punctures,

this might be useful in describing DN type four dimensional quiver [80]. The most

interesting question is to further study irregular singularity, only a very small set of

singularities are used in this dissertation. It is possible to give a classification of four

dimensional theory once the irregular singularity is fully understood.

Various extended objects of four dimensional theory deserves further study. The

line operators for SU(2) generalized superconformal quiver gauge theory is classified

and its property under S-dualtiy is also studied. This also uses the data on punctured

Riemann surface [81]. It is interesting to extend to higher rank gauge theory. Surface

operators [82] can be introduced and may shed light on the structure of gauge theory.

Finally, the domain wall and the boundary condition needs further study, its S-dual

property might be very interesting as what happens for N = 4 super Yang-Mills

theory.

Perhaps the most interesting problem is to find the wall crossing behavior of all

these theories. The geometric setting of six dimensional construction is quite useful.

Once again, the problem is reduced to the study of puncture Riemann surface. In
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fact, stable BPS particles are understood from the curve on the punctured Riemann

surface [83]. Hopefully, the wall crossing phenomenon can also be extracted simply

from the information on the puncture.

The gauge theory data on the Riemann surface is fully specified in this disserta-

tion and the integrable system is defined for the gauge theory too. It is interesting

to study in detail the AGT conjecture and NS conjecture. Maybe the crucial point is

also the data on the Riemann surface, see the discussion in [84]. The AGT correspon-

dence is extended to the case with insertion of line operators and surface operators

on the gauge theory side [85, 86], it is definitely interesting to study the 2d-4d corre-

spondence with the gauge theory constructed in this dissertation.

It is interesting to see if the same higher dimensional engineering is possible for

four dimensional N = 1 theory. It might also be possible study three dimensional

Chern-Simons theory by turning on θ term of N = 4 theory on the graph in our study

of three dimensional mirror symmetry [87].
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