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Abstract
The explanations we use to teach the principles of flight more often than not merely

propagate long-held myths.  Discussions should focus on the angle of attack and not the shape
of the wing.  By explaining flight as an application of Newton’s principles, one can understand
lift, power, wing efficiency and other principles of flight. The Newtonian description of lift
and an understanding of flight are presented here.  The myths and some misconceptions of the
application of Bernoulli's equation are also discussed.

I. INTRODUCTION
There are few physical phenomena, so generally studied, which are as misunderstood

as the phenomenon of flight.  In general what we have been taught and what we often
teach as the physical explanation of lift is incorrect.  As you will see, that explanation
does not even always make sense.  We have also studied, often in a fairly superficial way,
the Bernoulli theorem in a constricting tube, and have gone on to misapply it to
unconfined airflow.  Because our view has been misguided, there has been little to teach
about flight, which is a very interesting and important part of our lives.  Here we will
show that when the physics of lift is understood, flight becomes much more interesting,
rich with topics to be considered.

We have all been taught, in one form or another, what we will call the Bernoulli
description of lift.  Before and shortly after WWII most flight manuals taught the
Newtonian view of flight 1,2, but sometime shortly thereafter the Bernoulli description
dominated.  This description of lift of a wing has three major parts.  The first is that it
fixates on the shape of the wing.  The wing is viewed as being asymmetric with a kind of
hump on the top.

The second part of the description is that the air accelerates over the top of the wing.
The most common explanation for this acceleration is that, when the air separates at the
leading edge of the wing, that air going over the top and that going under the wing must
rejoin at the trailing edge.  Since the air going over the top has to go over the hump, it has
farther to travel and thus must go faster.  Of course, no one has ever given a physical
reason why this principle of equal transit times must be obeyed.  In some cases this rule
is softened a little to just state that since the air must go farther it must go faster.

At this point one might wonder (though it is unlikely) about Newton's second law
(F=ma) and ask if the acceleration of the air might requires a force, or in the case of a
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fluid, a difference in pressure.  And if so, is not that difference in pressure more
fundamental to understanding lift than the acceleration?  Acceleration is an effect not a
cause.  But, we will ignore such thoughts for now.

The third part of the Bernoulli description employs the Bernoulli equation:

p +
2
1 ρv2 = C, (1)

Here p is the pressure (not well defined at the moment), ρ is the air density, v is the speed
of the air, and C is a constant.  In aerodynamics the potential energy term (ρgh) is
neglected because of the small height differences and the small value of density.  The
argument of the Bernoulli description of lift is that since the air goes faster over the top of
the wing it has a lower pressure and thus we have lift.

So what is wrong with this tidy description?  The nature of a clear, physical
understanding of a phenomenon is that it allows one to understand it in a variety of
situations.  So let us look at this explanation of flight more carefully.  Some questions
that one might try to address with the Bernoulli description of lift are:

• How does an airplane with asymmetric wings fly inverted?
• How do airplanes with symmetric wings (no hump) fly?
• How does a wing adjust for change in load at a constant speed?  A jumbo jet can

be as much as 40% fuel by weight at takeoff yet flies at a constant speed the entire
flight.

• Where is the work done?  The power required for lift is proportional to the load2,
and proportional to 1/speed of the airplane.

• If the vacuum holds the wing up, what holds the vacuum up?  If the lowered
pressure on the top of the wing is strong enough to lift the wing (and it is), why
does not the air above get pulled down into the lowered pressure and collapse it?

One might also ask if it  makes sense that a wing slicing through the air like a knife,
making a small, transient ripple in the air, can hold up a 250-ton aircraft.  As we will see,
it takes much more than a transient ripple in the air to produce a lifting force of 250 tons.

There is another popular variation on the Bernoulli description of lift, which we will
call the half-venturi description of lift.  This description looks at the hump on the top of
the wing as a half venturi.  It is pinching off the airflow and thus the air is accelerated.
To increase lift the wing’s angle of attack is increased and thus there is more pinching,
thus more lift.  Those with this view must also believe that one can pinch with one finger
and clap with one hand.  Below we will show that a barn door can produce lift.  When
rotated to produce lift it extends both up and down in a symmetric way, violating this
view.

We said that the Bernoulli description of lift fixates on the shape of the wing.  Picture
in your mind a variety of "wings": an asymmetric wing in normal flight, the same wing in
inverted flight, a barn door, and a hand out the window of a car.  For each, one can find
an orientation into the wind, which gives zero lift.  Call this orientation the zero effective
angle of attack.  Now if one were to measure the lift of these "wings" as a function of the
effective angle of attack, the results for all of them would be similar to Figure 1.  The lift
is linear with angle, both positive and negative, until the wing reaches the critical angle
and a stall begins.  It is hard to reconcile this information with the Bernoulli description
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Fig. 1.  Lift as a function of effective angle of attack for all "wings".

of lift.  We should point out that the shape of the wing does affect the stall characteristics
and efficiency of the wing, but it is not the primary factor in determining its lift.

Some of us have worked problems in a physics class calculating the lift of a wing.
Let us revisit the calculations with real numbers.  Take as an example the lift of the wing
of a Cessna 172, a common four-seat, high-wing airplane.  It weighs 2300 lb at gross
weight, has a wing area of 174 ft2, and can fly in slow flight at 65 mph.  The path length
over the top of the wing is 1.5% greater than the path length under the wing.  A
calculation assuming that the air’s velocity over the top of the wing is 1.5% greater than
for the air going under the wing yields a lift of about 2% of that needed for flight.
Following the same logic, the minimum speed to produce the necessary lift would be
about 400 mph.  Or working the other way around, the difference in path length would
have to be about 50% to produce the necessary lift at 65 mph.  This wing would be
almost as thick as its chord length (distance from leading edge to trailing edge).

Clearly, something is wrong with the Bernoulli description of lift.  For one thing, the
principle of equal transit times is only true for a wing with zero lift.  The air that goes
over the top of a wing arrives at the trailing edge much before the air going under the
wing.

There is another mistaken description of lift, which we will call the wrong-Newtonian
description of lift, although those that teach it just call it the Newtonian description of lift.
This description of lift states that diverting air down produces lift, and that lift is a
reaction force.  This part is true.  Unfortunately, in the wrong-Newtonian description of
lift the air is diverted down by impact with the bottom of the wing.  It is interesting to
note that this was the view of lift held by Sir Isaac Newton himself.  Although there is a
little of this kind of lift for most wings, it is minimized for efficient wings. In the extreme
case of the barn door (a very inefficient wing) about 40% of the lift is due to air
impacting the bottom, and the rest is due to the lowering of the pressure on the top of the
wing.  This is not true for real wing designs, and the amount of air impacted by the
bottom of the wing is far too small to account for the lift.  It will become clear that the
lowering of the pressure above the wing has nothing to do with the Bernoulli description
of lift.
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Sometimes the Bernoulli and the wrong-Newtonian descriptions of lift are combined.
The contribution from the lowered pressure on top of the wing is attributed to Bernoulli,
and the increase in pressure on the bottom is attributed to Newton.

Yet another common description of lift is that of circulation theory.  Here the air is
seen to rotate around the wing.  This is sometimes used to explain the acceleration of the
air over the top to the wing.  There is a great deal of jargon, such as "starting vortex" and
"bound vortices", associated with this description.   Circulation theory is a mathematical
abstraction useful and accurate for aerodynamic calculations.  Mathematically,
circulation is a non-zero curl in the airflow in a closed line integral around a wing, which
is simply a statement that the wing bends the air.  Circulation theory, like Bernoulli’s
theorem, can be misapplied.  For example, statements have been made that classical
aerodynamic theory proves that insects cannot fly.  In all examples that we are familiar
with, the flight of insects is expressed in terms of circulation.  Circulation is a model
developed for large aircraft that does not apply to small insects.

What follows is a brief and correct Newtonian description of the lift of a wing.  A
more detailed discussion can be found elsewhere 3.  In brief, the lift of a wing is a
reaction force and is proportional to the amount and vertical velocity of air diverted from
the horizontal to the vertical, with almost all of the air diverted from above the wing.
But, before we get to Newton there are some preliminary topics to discuss.  We will start
with the Coanda effect, a key to understanding flight.

II. The Coanda effect
In understanding the physics of lift, it is important to understand why air bends

around the top of the wing with enough force to produce lift.  The answer is viscosity.
The simplest demonstration of the effect of viscosity on a flowing fluid is to touch a
small stream of water from a faucet with the side of a glass held horizontally.  The water
wraps part way around the glass.  Newton’s first law says that there must be a force on the
stream of water, in the direction of the glass.  Newton’s third law says that there must be
an equal and opposite force on the glass.  The glass feels a force towards the water, not
away as one might guess.

The flow of water around the glass is a demonstration of the Coanda effect, named
after Henri-Marie Coanda (1885-1972), a Romanian aerodynamicist.  Because of
viscosity, at the surface of an object the velocity of the fluid is exactly zero.  (This is why
one cannot hose dust off of a car.)  A short distance from the surface the fluid has a non-
zero velocity.  The velocity increases with distance from the surface until the free-stream
velocity is reached.  This transition region is known as the boundary layer.  The adjacent
streamlines in this boundary layer are traveling at different speeds causing shear forces
that bend the fluid in the direction of the slower moving streamlines.  The boundary layer
on a wing is very thin and increases in thickness with distance from the leading edge.  At
the trailing edge of the large wing on a Boeing 747, the boundary layer is still less than an
inch thick.

Aeronautical simulations are done in the limit of zero viscosity, and without a
boundary layer.  Because of this, many claim that lift does not require viscosity.
Viscosity is introduced implicitly with the Kutta-Joukowski condition, which requires
that the air come smoothly off the trailing edge of the wing.  So in reality these “zero
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viscosity” calculations do require viscosity. Viscosity is also introduced with the
requirement that the air follows the shape of the wing.

We have seen why air bends around the top of the wing.  The question is why this
thin boundary layer can pull the amount of air necessary to produce lift.  First, one must
understand that for flight speeds below about Mach 0.3 (30% of the local speed of
sound), the forces are so small that air is considered an incompressible fluid.  This means
that the volume does not change and that it is difficult to form voids in the flow.  (This
may seem like a strange assumption but that assumption is also made in calculation of the
flow of gas through a venturi using the Bernoulli equation.)  The boundary layer is pulled
from the horizontal flow of air over the wing pulling down the adjacent streamline and
causing a lowering of the pressure over the wing.  This propagates outwards causing a
great deal of air to be accelerated down.  This lowering of the pressure causes an
acceleration of the air, which can be calculated by the Bernoulli principle.  The
acceleration of the air over the wing is caused by the lowering of the pressure and not the
other way around.

III. The Newtonian description of lift
The derivative form of Newton's second law describes the thrust of a rocket motor or

of a jet engine:

vmF &= . (2)

Here m& is the time derivative of the expelled mass and v is the velocity of the gas. Like
the rocket and the jet, propellers produce thrust and helicopter rotors produce lift by the
expulsion of air according to Newton's second law.  Propellers and rotors are just rotating
wings.  It should not be surprising that wings also produce lift by accelerating air in the
downward direction.  As we will soon see, the wing diverts a great deal of air to produce
lift.

Let us now look at the airflow over the wing.  Figure 2 shows the airflow around the
wing as depicted in many textbooks, flight manuals, and even a NASA website.  This
figure might be considered a Bernoulli description's view of airflow.  This wing in reality
has no lift.  The air approaches from the horizontal and leaves in the same direction.
There has been no net change to the air's direction and therefore no change (lift) to the
wing. From a Newtonian point of view, the net bending of the air is zero so there is no
net force acting on it (Newton's first law).  Since there was no net force acting on the air
there can be no net force acting on the wing (Newton's third law).

Fig. 2.  The Bernoulli description's view of airflow around a wing.
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  Figure 3 shows the true airflow around a wing with lift.  The air is drawn up from
below the wing producing upwash.  The reason for upwash is beyond the scope of this
work but it should be clear that since the airflow is diverted up, it is putting an additional
load on the wing.  The air leaves the wing with a downward component, called
downwash.  Since the air is bent downward, Newton’s first law states that there is a
downward force on that air.  Newton’s third law states that there is an equal upward force
on the wing.  We have lift.

Fig. 3.  The true airflow around a wing with lift.

Two rest frames
We are used to looking at the wing in a rest frame where the wing is stationary and

the air is moving.  This is the perspective in a wind tunnel or of a pilot.  We will call this
the wing’s rest frame.  But, few consider the rest frame where the air is originally
standing still and the wing is moving.  This we will call the air’s rest frame. This is the
rest frame of a person standing on a mountaintop who is able to take a picture of the
velocity distribution around a passing wing. That person would see that the air is going
almost straight down behind the wing.  This also puts the force parallel to the direction of
gravity.

Figure 4 shows how the two rest frames are related.  The horizontal arrow is the
speed and direction of the oncoming air in the wing’s rest frame.  The other two arrows
are the downwash as seen in the wing and air’s rest frames.  The small vertical arrow,
labeled vv, is the component of velocity given to the air to produce lift.  In the figure, the
Greek letter α represents the angle of attack of the wing.

Fig. 4.  The relationship between the wing and air rest frames.

In the wing's rest frame the wing is seen to bend the airflow down to produce lift.  In
the air's rest frame the air sees the wing as a receding surface drawing down on the air.
This is sort of like the action of a receding piston. The air accelerates towards the wing
and at the last minute the wing gets out of the way.

One might ask if it makes sense that in the air's rest frame the air goes straight down.
It certainly makes sense from the point of view of efficiency.  This puts the force parallel
to gravity.  In fact, the air has a slight forward direction due to frictional forces.  But
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these forces are quite small.  The fictional drag on the wing of a Boeing 747 is the same
as that of a 0.5-inch cable of the same length.

One can easily demonstrate that the air comes vertically off the trailing edge of the
wing.  Examine the air from a small household fan, the blades of which are legitimate
wings.  The airflow is in a tight column.  If the air were coming off the trailing edge at an
angle it would form a cone rather than a column.  It is fortunate that airfoils work this
way. If, in the case of a propeller, the air came off the trailing edge at an angle, the
transverse component of that air would cost energy but would not contribute to the net
thrust.

It is worth noting that the wing produces lift by transferring momentum to the air.  In
straight-and-level flight this momentum is directed towards the ground.  If the airplane
were to fly over a large scale the weight of the airplane would be measured.  The earth
does not get lighter when the airplane takes off.

We would like to point out that insects obey the same laws of physics as airplanes and
helicopters.  They produce lift by blowing air down.  When you have a chance, observe a
bumblebee feeding on flowers.  You will see that when it flies over a leaf, the leaf is
depressed just as if it had landed on it.

The adjustment of lift
We are now able to consider how a wing can adjust the lift, L, for varying situations.

We will rewrite eqn. (2) to read:

vvmL &= , (3)

Where vv is the vertical velocity of the downwash in the air’s rest frame.  One can adjust
the lift by adjusting m& , vv or both.  As we will see, the value of vv changes with distance
above the wing so it should more accurately be looked at as an average velocity.  Let us
start with the adjustment of vv.

Referring to figure 4, one should have little trouble seeing that doubling the speed of
the airplane, while keeping the angle of attack constant, doubles vv.  Likewise doubling
the angle of attack of the wing, while keeping the speed of the airplane constant, also
doubles vv.  Thus is follows that vv is proportional to the

• speed
• angle of attack

For those that are not familiar with the operation of an airplane, the angle of attack is
adjusted by tilting the entire aircraft.

Now let us look at the adjustment of m& .  We would first like the reader to view the
wing as a kind of "scoop" as illustrated in figure 5.  The amount of air intercepted by the
wing is related to the lift distribution along the wing.  The shape of the scoop is half of an
ellipse with the major axis equal to the wingspan and the minor axis proportional to the
chord length (distance from leading to trailing edges) of the wing. The air intercepted is
diverted down with the highest downward velocity near the wing and the deflection speed
tapering to zero as the distance above the wing increases, as shown in the figure.  In
aeronautics the area of this scoop can be calculated with the Biot-Savart law, which
solves a "fluid potential", similar to an electric potential.
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Fig. 5.  The wing as a "scoop" for air.

The amount of air intercepted by the scoop, m& , is proportional to the
• area of the wing
• speed
• air density

To a good approximation, neither the angle of attack nor the load on the wing affects the
amount of intercepted air.

We are now in a position to understand the adjustment of lift.  Let us look at three
situations.

Situation 1:  the speed of the airplane has doubled.  If the angle of attack were not
corrected both m&  and vv would double.  So, to maintain a constant lift, the pilot reduces
the angle of attack to halve vv.  This requires a reduction in the angle of attack by a factor
of four.

Situation 2:  the load on the wing has doubled in a 2-g turn, but the speed of the
airplane remains constant.  The value of m&  has not changed so the wing adjusts for the
increased load by doubling the angle of attack, doubling vv.

Situation 3:  the airplane flies at a constant speed but has climbed to an altitude where
the air density is halved.  Since m&  is now halved the angle of attack must be doubled in
order to double vv.

One might ask how large m& is for a typical airplane. Take for example the Cessna 172
that weighs about 2300 lb (1045 kg).  Traveling at a speed of 140 mph (220 km/h), and
assuming an effective angle of attack of 5 degrees, we get a vertical velocity for the air of
about 11.5 mph (18 km/h) right at the wing.  If we assume that the average vertical
velocity of the air diverted is half that value then we calculate m&  to be on the order of 5
ton/s.  Thus, a Cessna 172 at cruise is diverting about five times its own weight in air per
second to produce lift.  A 250-ton jumbo jet in cruise is diverting about its own weight
per second.

If for convenience we assume a rectangular scoop for the 36-foot wingspan of the
Cessna 172, we calculate that the air is diverted from about 18 feet (7.3 m) above the
wing.  Thus, one can see that the production of lift is not a surface effect as implied by
the Bernoulli description of lift, but extends far above the wing.  This is one of the
reasons that biplanes are less efficient than monoplanes.  The lower wing is lowering the
pressure on the bottom of the upper wing making it less effective. Because of this, many
biplanes have the upper wing (or sometimes the wing’s root) placed forward of the lower
wing.
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Power and lift
In aerodynamics, the subject of power requirements is seldom considered.  Some

introductory textbooks do not even have power listed in the index.  In aeronautics this
discussion would be about drag, which is a retarding force, the effect of which is
proportional to the speed of the airplane.  Unfortunately, drag is difficult to derive and is
usually presented without derivation.

It is through the understanding of power that flight, as well as drag, can be better
understood.  We will consider two kinds of power.  Induced power, Pi, is the power
associated with lift.  Before the wing arrives, the air is standing still.  After the wing’s
passing, the air is headed towards the ground.  Induced power is the rate that kinetic
energy is given to the air to producing lift. Parasitic power, Pp, is the power lost do to the
impact of the air with airplane’s structure and to frictional losses.

Although it is difficult to calculate Pi exactly it is easy to state its functional form.
Since Pi is the rate that kinetic energy is give to the air,

Pi ∝ m& vv
2. (4)

We can substitute equation (3) into equation (4) to get:

Pi ∝ Lvv. (5)

A useful function for pilots is the power curve, which is the total power requirement
for flight as a function of the airplane’s speed.  The total power is the sum of Pi and Pp.
We are now in a position to derive the Pi term of the power curve.  We know that if the
airplane doubles its speed, m&  is doubled and thus vv is adjusted to half of its original
value to maintain a constant lift.  Since the lift is constant, equation (5) tells us that Pi is
halved.  Thus doubling the wing’s speed halves Pi.  It follows that

Pi ∝ 
speed

1
. (6)

This is the dotted line in Figure 6. As the airplane flies slower m&  decreases so vv must be
adjusted by increasing the angle of attack.  Pi dominates at low speed.

The functional form of Pp is also easy to understand.  The energy given to an air
molecule on collision with the airplane is 1/2 mv2.  This yields a speed2 term.  The rate of
collisions with the air is proportional to the speed of the airplane.  Therefore

Pp ∝ speed3. (7)

The dashed line in Figure 6 represents the functional form of Pp. The total power is the
solid line in the figure.  The interesting point to be taken from equation (7) is that the top

speed of an airplane, where Pp dominates, increases as 3
pP .  The engine’s power must be

increased by a factor of eight in order to double the speed.
Now let us consider what happens when an airplane goes to a higher altitude, where

the air density has decreased by 25%.  If the speed is kept constant m&  is reduced by 25%
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Fig. 6.  Power requirement for flight as a function of speed.

and vv must be increased by 33% to maintain a constant lift.  Thus Pi has increased by
33%.  On the other hand, Pp has been reduced by 25% because of a lower rate of
collisions with the air.  Since Pp dominates at cruise speeds, it requires less power to fly
at higher altitudes, but more power at takeoff and landing speeds.

We know that aircraft manufacturers go to great efforts to make airplanes light.  Now
we can understand the relationship between Pi and load.  Consider the case where the
load has been increased by a factor of two in a 2-g turn at a constant speed.  The angle of
attack must be doubled to double vv since m&  is constant.  Since both L and vv have
doubled, equation (5) tells us the Pi has increased by a factor of 4.  Thus we have the
relationship:

Pi ∝ L2.

Thus, lightening the structure of the airplane is rewarded in substantial power savings.
This is particularly true in takeoffs and climb where Pi dominates.

Since drag is part of the jargon of flight, we should not completely neglect it in our
discussion.  Power is drag times speed.  Or the other way around, drag is power/speed.
So from equation’s (6) and (7) we can write the functional form of induced drag, Di, and
parasitic drag, Dp:

Di ∝ 
2speed

1
,

and
Dp ∝ speed2.

It should be noted that propellers produce an approximately constant propulsive
power and jet engines produce a constant thrust.  Thus the maximum speed of a
propeller-driven airplane is determined by Pp, while Dp determines the maximum speed
of a jet airplane.
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Wing efficiency
The efficiency of the production of lift is a fundamental concept that also applies to

the subject of propulsion.  Consider a wing with a fixed speed and load.  If the area of
this wing is doubled, m&  is doubled, vv is halved and Pi is likewise halved.  Thus the
power requirement to produce the lift decreases linearly with the size of the wing.  Lift is
proportional to the rate of momentum transfer, and Pi is proportional to the rate of kinetic
energy transferred.  The larger m&  is for a given lift or thrust the smaller the value of Pi.
One can consider Pi as wasted energy.  Ideally, one would like to produce lift with an
almost infinite m&  and an almost zero value of vv.  This explains why the propeller cannot
produce enough thrust to lift the airplane directly, while the wing produces the required
lift with a small fraction of the engine’s power.  The propeller, being small, must
accelerate a small amount of air to a very high velocity. This also explains why
helicopters are less efficient than fixed-wing aircraft.  Again, too little air is accelerated at
too high of a velocity, producing greater wasted energy.

Fanjet engines, as seen on all the large, modern jet aircraft (i.e. the Boeing 747, 757,
etc) have a large fan in front of the jet engine.  Only about one part in nine of the air that
goes into the large intake goes through the combustion chamber.  The rest blows by the
outside of the turbine engine like the air from a propeller.  Ideally the energy removed
from the jet's core exhaust, to drive the fan, is sufficient to match the jet’s core exhaust
velocity with the fan's exhaust velocity.  Thus, the jet engine's core exhaust is only
producing about 11% of the thrust. This increases the engines efficiency by greatly
increasing m&  for the same thrust.  There is the additional advantage that these engines
are much quieter.

IV. Misapplication of Bernoulli’s equation
Many of the misconception of the physics of flight come from a misunderstanding of

the application of Bernoulli’s principle.  We feel that we should give at least a brief
discussion of this topic.

Most of the misapplication of Bernoulli's equation and general confusion when
discussing the physics of moving air, outside of the confines of a pipe, are due to the fact
that most physics textbooks stop about one paragraph too soon.  Earlier we stated that the
pressure in equation (1) was not well defined.  In most textbooks it is presented as the
pressure at a point.  In reality, it is the static pressure, ps, which is measured
perpendicular to the direction of flow.  The second term (1/2 ρv2) is referred to as the
dynamic pressure in aeronautics. In unconfined flow, C in equation (1) is not necessarily
a constant and is referred to as the total pressure, pt.  Thus a more general statement of
Bernoulli's equation (still neglecting the ρgh term) is:

t
2

s pv
2

1
p =ρ+ . (8)

If energy is added to unconfined air, such as the exhaust from a hair drier or by your
breath, the dynamic and total pressures of the air increase but not ps.  At the exit from the
hairdryer or from your lips the stream of air adjusts itself by expanding or contracting to
have the same value of ps as the surrounding air.
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A good demonstration of this is the static port on the side of an airplane. The static
port is a small hole on the side of the fuselage used to provide the air pressure for the
altimeter and other instruments. Although the air passes over the static port at hundreds
of miles per hour, the correct pressure is still measured.  Only when fast moving,
unconfined air bends is ps different from the surrounding environment.  The belief that
just because air is moving faster that the value of ps is lower is wrong in general. The
exceptions are if the air is confined in a pipe without the addition of energy, or if the
unconfined air is bending.

Let us look at a few misapplications of Bernoulli’s principle.  The first example we
will examine is the Bernoulli strip, which is often give as a demonstration of lift of a
wing.  This is a thin strip of paper, held at one end by both hands.  It first hangs down but
when one blows along the top, it rises.  This is a demonstration of lift, but certainly not of
Bernoulli’s principle.  The breath does not have lower ps.  The Coanda effect causes the
breath to follow the curved surface, Newton’s first law says there a force on the air and
Newton’s third law says there is an equal and opposite force on the paper.  Momentum
transfer lifts the strip.

A second example is the confinement of a ping-pong ball in the vertical exhaust from
a hair dryer.  We are told that this is a demonstration of Bernoulli's principle.  But, we
now know that the exhaust does not have a lower value of ps.  Again, it is momentum
transfer that keeps the ball in the airflow.  When the ball gets near the edge of the exhaust
there is an asymmetric flow around the ball, which pushes it away from the edge of the
flow.  The same is true when one blows between two ping-pong balls hanging on strings.
They swing together because of the Coanda effect and momentum transfer, not
Bernoulli’s principle.

The curve of a spinning ball is a little more difficult.  In brief, it is an asymmetric stall
that causes asymmetric airflow around the ball. The airflow looks very much like that
around a wing.

V. Conclusion
We have demonstrated the power of the Newtonian description of lift of a wing.

The key points are that the lift of the wing is proportional to m& vv and the induced power
is proportional to Lvv. Also, m& is proportional to the wing's area and speed, and the air
density, while vv is proportional to the wing's speed and angle of attack.  With these
simple tools, most relations in aerodynamics can be understood, and often the functional
form derived.  It is also easy to understand how a wing adjusts for speed, load, and
altitude. With the knowledge that efficiency means a large m&  and a small vv, one has an
additional tool for understanding flight and aircraft propulsion systems. An important
result, which contradicts what most of us have been taught, is that the shape of the wing
is of little significance in determining its lift. In addition, we find that the acceleration of
the air over the wing cannot be the primary cause of lift since the acceleration of the air
requires a difference in pressure by Newton's second law.  In other words, the pressure
difference drives the acceleration of the air, not the other way around.

Although circulation theory can be used for accurate calculations of lift, and
Bernoulli's theorem is a powerful tool when used correctly in simulations, neither gives a
simple, intuitive description of the lift on the wing.  Newton's laws, however, hold
without exception and can be used to yield an understanding of many concepts without
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complicated mathematics.  Unfortunately, sometime around WWII, Newton’s laws were
replaced by the Bernoulli theorem and a hand-waving argument for the acceleration of air
over the top of a wing.  It is our hope that teachers will return to the basics and use
Newton’s laws to describe lift.  Then students can explore flight in much more depth than
was possible with the popular explanation using Bernoulli.
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