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Abstract

In recent years, a new generation of particle physics experiments explore electron-positron and
proton-antiproton collisions at centre-of-mass energies never reached before. Large detectors measure
accurately all details of the collision processes. This article reviews the wealth of precise, mostly
still preliminary measurements which are used to determine masses and coupling constants of heavy
fermions and bosons with unprecedented accuracy. The measurements are so precise that they test
the Standard Model of particle physics not only at lowest order but also at the level of its higher-
order radiative corrections, and constrain its parameters. The results of these tests of the electroweak
Standard Model, constraints on its parameters and consequences for new physics are presented.

The main results are: the Standard Model of electroweak interactions describes successfully the
complete set of measurements. Based on the analysis of electroweak radiative corrections, the masses
of the top quark and the W boson are indirectly determined, and the results agree well with the
direct measurements. For the Standard Model Higgs boson, a small mass value is determined, with
MH < 262 GeV at 95% confidence level.
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Chapter 1

Introduction and Overview

1.1 Structure of this Review

In this article experimental tests of the Standard Model of electroweak interactions [1] at high energies
are reviewed. Currently, the experiments at the high-energy electron-positron colliders SLC and LEP

provide a wealth of precise results on the electroweak and strong interaction, in particular on the
neutral and charged heavy gauge bosons, Z and W. The W boson and especially the sixth and
heaviest quark, the top quark, are studied by the experiments at the TEVATRON proton-antiproton
collider. Neutrino-nucleon scattering experiments also measure precisely the electroweak mixing angle.

This article is organised as follows: In Chapter 2 the theoretical framework of the Standard Model
of particle physics is presented, which is applied in Chapter 3 to discuss the specific physics studied
at high-energy e+e− colliders. The modern e+e− colliders, SLC and LEP and their experiments are
briefly described in Chapter 4. In Chapter 5 experimental measurements and results, mostly still
preliminary, are discussed which are used in the subsequent analyses. Tests of the Standard Model
are performed and analysed in Chapter 6. Expectations for the future are summarised in Chapter 7,
and conclusions are given in Chapter 8.

The system of units adopted here is that of particle physics, where the reduced Planck constant,
~ = h/(2π), and the speed of light, c, are set to unity, ~ = c = 1. The electromagnetic finestructure
constant, αem, is given by αem = e2/(4π) in units of the positron charge e. Energies, momenta and
masses are measured in units of electron volts, 1 eV = 1.60217733(49) · 10−19 J. Cross sections are
measured in units of barns, 1 b ≡ 10−28 m2. Otherwise, SI units are used.

1.2 Goals of Particle Physics

The aim of particle physics is to describe the elementary constituents of matter and the interactions
between them. This field of physics entered its modern phase at the end of the nineteenth century
with a series of exciting discoveries: X-rays by W.C. Röntgen in 1895 [2], radioactivity by H. Becquerel
in 1896 [3], and the electron as the first particle still considered elementary today by J.J. Thomson in
1897 [4].

Radioactive decays, discovered in uranium, invalidated the common belief in unchangeable chemical
elements or atoms. Indeed the phenomenon of radioactivity involves the three interactions still studied
today in particle physics: the strong, the electromagnetic and the weak interaction. Radioactive decays
of heavy nuclei under emission of α-rays, which are identified as Helium nuclei, show that the atomic
nucleus is composed of neutral and charged nucleons, neutrons and protons, bound together by the
strong interaction. As a composite object, fission of the atomic nucleus is possible. Furthermore,
radioactive decays under emission of γ-rays, identified as photons, are expected, because the atomic
nucleus as a composite object of charged and neutral particles may undergo transitions, for example
from an excited state to the ground state. Radioactive decays under emission of β-rays, which are
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electrons, change neutrons into protons. This is a manifestation of the charged weak interaction where
again a change of particle identity appears, now on the more elementary level of nucleons.

Over the last 100 years, experimental results on the weak interaction in particular have shown
many surprises, sometimes causing changes to physical concepts deemed to be fundamental. Among
these are: postulation of neutrinos by W. Pauli in 1930 [5] to ensure energy-momentum and angular-
momentum conservation in β decays, discovery of parity violation in charged weak decays by C.S. Wu
et al. in 1957 [6], discovery of CP violation by J.W. Cronin, V.L. Fitch et al. in 1964 [7], and discovery
of neutral weak interactions by F.J. Hasert et al. in 1973 [8]. Within the framework of gauge theories,
the weak interaction, being of short range and weak at low momentum transfer, requires the exchange
of very massive spin-1 gauge bosons, the charged W boson and the neutral Z boson. These intermediate
vector bosons were discovered by C. Rubbia et al. in 1983 [9, 10].

In order to describe the three phenomenologically vastly different strong, weak and electromagnetic
interactions in a common framework, the concepts of special relativity, quantum theory, local gauge
symmetry and spontaneous symmetry breaking are used. The Standard Model of particle physics is
a renormalisable quantum field theory of the electroweak and strong interactions. This theory is able
to explain or at least accommodate all experimental results in particle physics obtained so far.

The electroweak theory, developed by S.L. Glashow, S.Weinberg and A.Salam [1] from 1961 to 1968,
provides an integrated description of the weak and electromagnetic interactions. The problem of mass
generation in gauge theories was solved in 1964 by the Higgs mechanism named after P.W.Higgs [11,
12]. The strong interaction theory of quantum chromodynamics was developed in 1973 by H.Fritzsch,
M.Gell-Mann, H.Leytwyler, D.J.Gross, F.Wilczek [13] and many others. The concept of confinement
of quarks and gluons inside hadrons was suggested by S.Weinberg [14]. The asymptotic freedom
property was discovered by D.J.Gross, F.Wilczek and H.D.Politzer [15]. Renormalisability of theories
like the Standard Model of strong and electroweak interactions was proven by G.’tHooft [16] in 1971.
These developments comprise the theoretical foundation of the Standard Model of particle physics.

1.3 Experiments in Particle Physics

Until the middle of the twentieth century, particle physics experiments were mainly based on the
study of radioactive materials and cosmic rays. With the advent of particle accelerators, the exper-
imental emphasis shifted towards fixed-target and colliding-beam experiments, allowing to perform
experiments under controlled beam conditions.

The colliding-beam particles must be stable charged particles, leaving electrons, protons and their
antiparticles as possibilities.1 On circular orbits, protons and antiprotons can be accelerated to much
higher energy than electrons and positrons, because their masses are higher and the energy loss due
to synchrotron radiation is thus much reduced. Therefore, higher centre-of-mass energies in collisions
are more easily obtained at proton-antiproton colliders, allowing the production and thus discovery of
new particles with high masses.

An example is given by the SPS accelerator at CERN in Geneva, having provided pp collisions at
centre-of-mass energies of up to 0.6 TeV. In 1983, the SPS experiments UA1 and UA2 discovered the
heavy intermediate vector bosons, the charged W boson and the neutral Z boson [9, 10], with masses
around 80 GeV and 90 GeV, respectively. By the end of data taking at the SPS in 1990, a few hundred
W and Z bosons were accumulated by the SPS experiments.

In contrast, electron-positron colliders offer a much cleaner experimental environment due to the
pointlike nature of the colliding beam particles. Particles and interactions are studied and theories
are tested with high experimental precision.

In 1989, the e+e− colliders SLC at SLAC, Stanford, and LEP at CERN started to operate at centre-
of-mass energies close to 91 GeV. This energy corresponds to the mass of the neutral Z boson, which
is thus resonantly produced, e+e− → Z.

1However, since a few years, the design of a µ+µ− collider is actively studied [17].



Until 1995, more than 16 million Z-boson decays have been recorded by the four LEP experiments
ALEPH, DELPHI, L3 and OPAL at LEP–I together, and until 1998, more than half a million Z bosons
have been produced with longitudinally polarised electron beams at SLC. This large amount of Z
data combined with the clean experimental situation leads to high-precision measurements of the
properties of the Z boson, such as its mass, total and partial decay widths, and the neutral-current
coupling constants of fermions.

From 1996 until the year 2000 the LEP collider operates in its second phase, called LEP–II, where
the centre-of-mass energy is more than doubled to a range from 160 GeV up to 200 GeV. These
centre-of-mass energies allow the pair-production of on-shell W± bosons, e+e− → W+W−. Nearly
10,000 W-pair events in total are expected per experiment, making it possible to study the W boson
precisely and in particular to measure its mass and its gauge couplings.

In parallel to the SLC/LEP program, a new phase of pp physics commenced with the TEVATRON

collider at Fermilab near Chicago. Its centre-of-mass energy of 1.8 TeV is a factor of three larger
than that of the SPS. By the end of run I in 1996, the TEVATRON experiments CDF and DØ have
collected more than 100 pb−1 of luminosity each, yielding several 10,000 W and Z bosons. The most
important discovery at the TEVATRON is that of the sixth and heaviest quark, the top quark, by CDF

in 1994 [18] and DØ in 1995 [19]. The top-quark mass of about 175 GeV is so large that it cannot be
pair-produced at current e+e− colliders. After upgrading the TEVATRON collider and the CDF and
DØ detectors, data taking will recommence with run II in the year 2000.

The most recent experiment to study neutrino-nucleon interactions is the NUTEV experiment. It
is located at Fermilab and makes use of the detector of the older neutrino-nucleon experiment CCFR.
The main advantage with respect to previous neutrino experiments lies in the availability of both a
neutrino and an antineutrino beam, leading to measurements with reduced systematic errors. Data
taking at NUTEV was completed in the fall of 1997.

For the future two new large accelerators are planned, increasing the centre-of-mass energy by
about another order of magnitude. At CERN, the large hadron collider, LHC, a proton-proton collider
with a centre-of-mass energy of 14 TeV will be installed in the existing LEP tunnel. Starting in the
year 2005, two general-purpose experiments, ATLAS and CMS, will search for the important missing
piece of the Standard Model, the Higgs boson, and for new particles predicted by extended theories
such as supersymmetry. For e+e− physics an international effort is currently under way to design a
linear collider and detectors for centre-of-mass energies ranging from 0.3 TeV to 3 TeV, high enough to
study the properties of the top quark precisely and to search for the Higgs boson and manifestations
of new physics beyond the Standard Model.





Chapter 2

The Standard Model of Particle

Physics

The Standard Model (SM) of particle physics [1] culminates decades of experimental and theoretical
research aimed at constructing a consistent theory describing elementary particles and their inter-
actions as observed in experiments. Developed during the 1960s and early 1970s the SM provides
a mathematical framework to describe particle physics, incorporating the fundamental concepts of
special relativity, quantum theory and local gauge symmetry.

This chapter presents an overview on the SM in general and its electroweak interactions in partic-
ular. The application to the physics of high-energy e+e− collisions is discussed in Chapter 3. Quan-
titative calculations are performed with the semianalytical programs SMATASY [20], TOPAZ0 [21]
and ZFITTER [22], discussed in Section 3.3.2.

2.1 The Minimal Standard Model

The Minimal Standard Model (MSM) is most economic in implementing the key dynamic ingredients
of the Standard Model, local gauge symmetry and spontaneous symmetry breaking in form of the
Higgs mechanism [11, 12], while describing all experimental measurements. Electromagnetic, weak
and strong interactions between elementary particles are incorporated, but not gravity. For the latter,
a consistent quantum field theory has yet to be developed. This shortcoming of the SM does not inhibit
the investigation of the electroweak and strong interactions in experiments, because the gravitational
force between elementary particles is about 40 orders of magnitude smaller than the electromagnetic
force. Conceptually however, this fundamental incompleteness of the SM shows that it must be part
of an encompassing “theory of everything”.

2.2 Local Gauge Symmetries

Gauge theories are an important concept in field theory as such theories are always renormalisable.
Renormalisation of quantum field theories is necessary in order to obtain a unique relationship between
calculated and measured quantities.

2.2.1 Gauge Transformations

In quantum field theories, particles, for example, fermions, are described by complex fields ψ(x)
depending on the space-time coordinate x. In gauge theories, interactions between fermions are intro-
duced by the requirement of the invariance of the theory under local, i.e., x-dependent transformations
U(x):

ψ(x) → ψ′(x) = U(x)ψ(x) , (2.1)

5



The gauge transformations U describe a symmetry of the theory if the equations of motion remain
invariant. The transformations may either be simple phase transformations, or, more complicated,
mix the components corresponding to the internal degrees of freedom of ψ(x). For each symmetry of
the theory, the set of all unitary gauge transformations U(x) form a Lie group, G. The transformations
U(x) are normally expressed using the n hermitian generators Hj, j = 1, . . . , n, of the Lie group:

U(x) = exp



−i
n
∑

j=1

θj(x)Hj



 , (2.2)

where θj(x) are real functions of the space-time coordinate x specifying the local transformation. The
n generators Hj obey the Lie algebra:

[Hj,Hk] ≡ HjHk −HkHj = i

n
∑

l=1

hjklHl , (2.3)

where hjkl, real numbers, are the structure constants of the Lie algebra of the generators Hj. They
are totally antisymmetric and vanish if the group is Abelian.

Equations of motion such as the Klein-Gordon or the Dirac equation contain partial derivatives
of the fields ψ(x) with respect to the space-time coordinates xµ, ∂µ = ∂/∂xµ. Applying a local gauge
transformation to the field ψ(x) entering the equation of motion leads to additional terms when acted
upon by the derivative operator ∂µ. Invariance of the equation of motion is reestablished by adding
terms to the partial derivative ∂µ to form the covariant derivative Dµ:

∂µ → Dµ = ∂µ + ig

n
∑

j=1

HjA
j
µ(x) . (2.4)

The n spin-1 boson fields Aj
µ(x), j = 1, . . . , n, are called gauge fields. They couple to the fermion

fields with the coupling strength g, thus introducing interactions between the formerly free particles.
The value of the coupling constant g is not predicted by the theory.

Also the gauge fieldsAj(x) transform under a gauge transformation U(x), where the transformation
is again determined by the overall invariance requirement of the theory:

Aj
µ(x) → Aj

µ
′(x) = Aj

µ(x) − 1

g
∂µθj(x) −

n
∑

k,l

hjklθk(x)A
l
µ(x) . (2.5)

The field-strength tensor Aj
µν(x) of the gauge field Aj

µ(x) is given by:

Aj
µν(x) = ∂µA

j
ν − ∂νA

j
µ − g

n
∑

k,l

hjklA
k
µA

l
ν . (2.6)

The first non-Abelian gauge theory was formulated by O. Klein in 1939 [23]. Theories containing
non-Abelian symmetry groups are nowadays called Yang-Mills theories [24].

2.2.2 Local Symmetry Groups of the Standard Model

Quantum electrodynamics, QED, is invariant under local transformations of an Abelian U(1) sym-
metry group denoted as U(1)EM . The associated gauge field is nothing else but the electromagnetic
potential, Aµ, describing the photon. The corresponding generator and coupling strength between a
fermion and a photon is simply the electromagnetic charge of the fermion, Qf . Since U(1)EM is an
Abelian group photon self-interactions do not exist; the photon does not carry electromagnetic charge.

The strong-interaction theory of quarks, quantum chromodynamics or QCD [13–15], is a Yang-
Mills theory based on the non-Abelian symmetry group SU(3) denoted as SU(3)C where the subscript



C stands for colour. Each quark flavour corresponds to an SU(3)C quark triplet in a three-dimensional
space, the so-called colour space visualised as being spanned by three base colours, red, green and
blue. The eight generators of the Lie group SU(3)C correspondingly require eight massless spin-1 fields
Ga

µ, a = 1, . . . , 8, called gluons. Since SU(3)C is a non-Abelian group gluon self-interactions occur;
the gluons themselves carry colour charge.

About 30 years ago, the integration of the electromagnetic and weak interaction was proposed.
At that time, only charged weak interactions were known. The charged weak interactions, raising
or lowering the electromagnetic charge by one unit, involve left-handed fermions and right-handed
antifermions only. The left-handed and right-handed parts of a generic fermion field ψ, ψL and ψR,
are given by the normalised orthogonal projections:1

ψL ≡ 1 − γ5

2
ψ ψR ≡ 1 + γ5

2
ψ ψ = ψL + ψR . (2.7)

The smallest Lie group with three generators required for three interactions, two charged weak and
a neutral electromagnetic interaction, is SU(2). However, SU(2) alone leads to inconsistencies as in
contrast to the weak interactions the electromagnetic interaction does not distinguish between left-
and right-handed fermions.

The simplest way out is to enlarge the symmetry group of the electroweak interaction from an
SU(2)L symmetry group of left-handed fields by an additional U(1) symmetry group, called U(1)Y ,
which, although being mathematically the same U(1) Lie group as that of QED, has a different
physical meaning. As a consequence, a neutral weak interaction is predicted. Its discovery in neutrino
interactions established that the symmetry group of the electroweak theory, GEW , must be at least
as large as the direct product SU(2)L ⊗ U(1)Y with U(1)EM 6= U(1)Y being a subgroup of GEW .

The three generators of the group SU(2)L are called the weak-isospin operators, T1, T2, and T3, in
analogy to ordinary spin. The generator of the group U(1)Y is called the weak-hypercharge operator
Y . The corresponding gauge fields consist of a vector-boson triplet under SU(2)L, W i

µ, i = 1, 2, 3, and
a vector-boson singlet under SU(2)L, Bµ. Three independent linear combinations of these four gauge-
boson fields acquire mass as a result of the Higgs mechanism of spontaneous symmetry breaking [11, 12]
while one remains massless. The three massive gauge bosons are the W± bosons mediating the charged
weak current, and the Z boson mediating the neutral weak current. The massless boson is identified
as the photon of the electromagnetic interaction.

In summary, the symmetry group of the minimal SM of strong and electroweak interactions, GMSM,
is given by:

GMSM = U(1)Y ⊗ SU(2)L ⊗ SU(3)C . (2.8)

Since GMSM is a direct product of three independent Lie groups, the MSM contains three independent
coupling constants, g1, g2, g3, for U(1)Y , SU(2)L, SU(3)C , respectively. The covariant derivative of
the MSM reads:

Dµ = ∂µ + ig1Y Bµ + ig2
τj
2
W j

µ + ig3
λa

2
Ga

µ , (2.9)

where the generators τi/2 ≡ Ti and λa/2 are those of the SU(2)L and SU(3)C groups, respectively.
The matrix representations of the τi’s and λa’s are known as Pauli and Gell-Mann matrices [25],
respectively.

1The customary language also used here is somewhat confusing. To be more precise, the fields ψL and ψR defined
above and participating in the charged weak interaction are fermion states of definite chirality. They correspond to states
of definite helicity, −1 and +1, respectively, only in the case of massless fermions.



2.3 Elementary Particles

The particle content of the MSM is reported in Table 2.1. Left-handed fermions are grouped into
SU(2)L weak-isospin dubletts, ΨL. Right-handed fermions, ΨR, are singlets under SU(2)L. Right-
handed neutrinos are usually assumed not to exist, implying that neutrinos are massless. However,
recent experimental results based on solar, atmospheric and reactor neutrino experiments [26, 27]
indicate the possible existence of neutrino oscillations which would require that neutrinos have non-
vanishing mass. Confirmation of these results and their consistent interpretation is needed [28].

The fermions appear in generations or families, at least three, with increasing mass but otherwise
identical quantum numbers. The assignment of quantum numbers for the non-Abelian SU(2)L sym-
metry group, total weak isospin, T , and its third component, T3, is fixed by the assignment of the
particles to the SU(2)L multiplets. In contrast, for the Abelian group U(1)Y of weak hypercharge Y ,
the group structure alone does not provide any guidelines in the assignment of the weak hypercharge
quantum number, c.f. electric charge. Gauge invariance of the theory and the requirement of a linear
relation between Y , T3 and the electromagnetic charge, Q, determine Y up to an overall factor [29]:

Q = T3 + a · Y . (2.10)

Historically, a = 1/2 yielding the Gell-Mann/Nishijima relation first established for the strong-isospin
symmetry [30]. In Table 2.1, the convention a = 1 is used.

2.4 Standard Model Lagrangian

The Lagrangian of the Minimal Standard Model can be written as a sum of four contributions2:

L = LFermion + LYang−Mills + LHiggs + LYukawa . (2.11)

The Fermion Lagrangian describes the dynamics of the fermions, i.e., their kinetic energy and inter-
actions with the gauge bosons through the covariant derivative as given above:

LFermion =
∑

ΨL

ΨLiγ
µDµΨL +

∑

ΨR

ΨRiγ
µDµΨR . (2.12)

The Yang-Mills Lagrangian contains the kinetic-energy and self-interaction terms of the various gauge
fields associated with the local symmetry groups. In terms of the field strength tensors of the gauge
boson fields, Equation 2.6, it is given by:

LYang−Mills = −1

4
BµνBµν − 1

4
W µν

i W i
µν − 1

4
Gµν

a Ga
µν , (2.13)

predicting trilinear and quadrilinear couplings within the set of gauge bosons of each non-Abelian
symmetry group. Because of the antisymmetry of the structure constants, the resulting triple and
quadruple gauge boson vertices involve at most two identical gauge bosons.

Problems arise with the inclusion of particle masses in the Lagrangian for both fermions and gauge
bosons. For spin-1/2 fermions, mass terms have the form mΨΨ, or, written in terms of left-handed
and right-handed components, m(ΨRΨL +ΨLΨR), which is not an SU(2)L singlet and hence does not
yield an SU(2)L invariant Lagrangian. For spin-1 bosons, mass terms are proportional to m2AµAµ

which is not invariant under a gauge transformation of the field A. Therefore, such mass terms are
cannot be part of the Lagrangian.

Both problems are circumvented by the Higgs field, invoking, however, independent mechanisms
of mass generation for gauge bosons and for fermions [11, 12]. The Higgs Lagrangian provides mass
terms for the gauge bosons introduced by spontaneous symmetry breaking. The Yukawa Lagrangian
contains mass terms for fermions introduced by Yukawa couplings of the Higgs to the fermions. The
price to pay for the solution of the mass problems is the addition of at least one additional SU(2)L
doublet in the theory, the spin-0 Higgs field.

2Contributions from gauge-fixing terms and ghost fields are not shown.



Fermions — Spin-1/2

1. 2. 3. SU(3)C SU(2)L T3 Y Q
(

νe

e−

)

L

(

νµ

µ−

)

L

(

ντ

τ−

)

L

1

1

2

2

+1/2

−1/2

−1/2

−1/2

0

−1

νeR νµR ντ R 1 1 0 0 0

e−R µ−R τ−R 1 1 0 −1 −1
(

u

d′

)

L

(

c

s′

)

L

(

t

b′

)

L

3

3

2

2

+1/2

−1/2

+1/6

+1/6

+2/3

−1/3

uR cR tR 3 1 0 +2/3 +2/3

dR sR bR 3 1 0 −1/3 −1/3

Gauge Bosons — Spin-1

SU(3)C SU(2)L T3 Y Q

B 1 1 0 0 0








W+

W3

W−









1

1

1

3

3

3

+1

0

−1

0

0

0

+1

0

−1

Ga 8 1 0 0 0

Higgs Bosons — Spin-0

SU(3)C SU(2)L T3 Y Q
(

φ+

φ0

)

1

1

2

2

+1/2

−1/2

+1/2

+1/2

+1

0

Table 2.1: Multiplet assignments and quantum numbers of leptons νℓ, ℓ
− (ℓ = e, µ, τ), quarks u, d′

(u = u, c, τ ; d = d, s,b), gauge bosons (B, W and G), and Higgs boson (φ) in the MSM. Right-handed
neutrinos are hypothetical, there is no indication for their existence. The prime on the d-type quarks
(d′) denotes symmetry eigenstates, which arise from the mass eigenstates d by the unitary Cabibbo-
Kobayashi-Maskawa quark mixing matrix, see Section 2.7. Indices L and R denote left-handed and
right-handed fermions. The electromagnetic charge Q is given by Q = T3 + Y .

2.5 Higgs Mechanism

In the minimal SM the Higgs sector [11, 12] is minimal, containing just one SU(2)L complex Higgs
doublet, Φ. The Higgs Lagrangian has the form:

LHiggs = (DµΦ)†(DµΦ) − V (Φ†Φ) , (2.14)

where V is the SU(2)L invariant potential of the Higgs field:

V (Φ†Φ) = µ2Φ†Φ + λ(Φ†Φ)2 . (2.15)

For stability reasons the potential must increase for large Φ†Φ which implies λ > 0. The mass
parameter, µ2, however, may still be smaller than zero. In this case the potential has a non-trivial
minimum Vmin for:

Φ†Φ = −µ
2

2λ
≡ v2

2
> 0 , (2.16)



where v/
√

2 is the vacuum expectation value of the Higgs field. The SU(2)L symmetry of the Higgs
potential leads to a whole family of non-trivial minima of the Higgs potential V . Choosing a specific
one as the vacuum ground state and expansion point amounts to breaking this symmetry. Since Φ is
a complex SU(2)L doublet field it is possible to write it as:

Φ(x) = exp
[

iθj(x)
τj
2

]

(

0

[v + φ(x)] /
√

2

)

, (2.17)

where θj(x), j = 1, 2, 3, and φ(x) correspond to the four real degrees of freedom of Φ. The exponential
term is removed by a local SU(2)L gauge transformation:

Φ(x) → Φ′(x) = exp
[

−iθj(x)
τj
2

]

Φ(x) =

(

0

[v + φ(x)] /
√

2

)

, (2.18)

leaving only one physical Higgs boson, φ(x). The other three degrees of freedom disappear due to the
local gauge transformation. They reappear as mass terms and thus longitudinal degrees of freedom
for three of the four gauge bosons of the electroweak gauge group GEW .

2.5.1 Boson Masses

Using the above representation of the Higgs field Φ, and expanding the sum τiW
i
µ in a spherical basis,

τiW
i
µ =

√
2(τ+W+

µ + τ−W−
µ ) + τ3W

3
µ , the Higgs Lagrangian becomes:

LHiggs =
g2
2

4
W µ

−W
+
µ (v + φ)2 +

1

8
(g2W

µ
3 − g1B

µ)(g2W
3
µ − g1Bµ)(v + φ)2

+
1

2
(∂µφ)(∂µφ) − µ2

2
(v + φ)2 − λ

4
(v + φ)4 . (2.19)

The terms proportional to v2 in the first line describe mass terms for spin-1 bosons. For charged
spin-1 bosons, mass terms are of the form m2W µ

−W
+
µ , therefore:

MW =
v

2
g2 . (2.20)

The combination of fields Zµ ∝ (g2W
3
µ − g1Bµ) is identified as a neutral spin-1 boson, the Z boson.

The mass term for a neutral spin-1 particle has the form m2ZµZµ/2, therefore:

MZ =
v

2

√

g2
1 + g2

2 . (2.21)

The field Zµ arises from the original fields W 3
µ and Bµ by a rotation:

(

Aµ

Zµ

)

=

(

cos θW sin θW
− sin θW cos θW

)

·
(

Bµ

W 3
µ

)

. (2.22)

The orthogonal combination Aµ does not appear in the Higgs Lagrangian. It corresponds to a massless
spin-1 boson, the photon.

The rotation angle, θW, called the electroweak mixing angle, is given in terms of the electroweak
couplings g1 and g2:

sin θW ≡ g1
√

g2
1 + g2

2

cos θW ≡ g2
√

g2
1 + g2

2

tan θW ≡ g1
g2
, (2.23)

also relating the masses of the spin-1 gauge bosons W and Z:

MW

MZ
= cos θW sin2 θW = 1 − M2

W

M2
Z

. (2.24)



The remaining terms of the Higgs Lagrangian govern the dynamics of the surviving spin-0 Higgs boson
φ, namely its kinetic energy, self-couplings and couplings to the gauge bosons W and Z, predicting
trilinear and quadrilinear couplings of the Higgs boson to itself and to the massive gauge bosons. In
particular, the mass of the Higgs boson is fixed by the terms containing only φ2 as fields. Since the
mass term for a scalar spin-0 boson has the form m2φ2/2, the mass of the Higgs boson is:

MH =
√

−2µ2 =
√

2λv . (2.25)

The measured masses of the bosons are reported in Table 2.2.

2.5.2 Fermion Masses

Mass terms for fermions are introduced via Yukawa coupling of the left and right-handed fermion
fields to the SU(2)L doublet Higgs field. For left-handed quark and lepton doublets, qL and ℓL, and
right-handed singlets, uR, dR, νR, and ℓR, one has for each generation:

LYukawa = − gνℓLΦ̃νR − gℓℓLΦeR

− guqLΦ̃uR − gdqLΦdR + Hermitian conjugate , (2.26)

where Φ̃ ≡ iτ2Φ
∗. If right-handed neutrinos are assumed to be absent, implying massless neutrinos,

νR does not exist and gν = 0. Using the special representation of the Higgs field Φ, this simplifies to:

LYukawa = −v + φ√
2

(

gννν + gℓℓℓ+ guuu+ gddd
)

, (2.27)

which is left-right symmetric. The terms proportional to v have the form of mass terms for fermions,
mfΨΨ, with masses:

mf =
v√
2
gf . (2.28)

The terms proportional to φ describe fermion-Higgs couplings with a coupling strength mf/v. This
is the reason for stating that the Higgs couples to the mass of a particle. The measured masses of
the fermions are reported in Table 2.2. The mass differences between fermions are huge, it is not
understood why the Yukawa couplings are so different between the fermions.

Particle Mass Particle Mass Particle Mass

Fermions — Spin-1/2

νe < 15 eV νµ < 0.17 MeV ντ < 18.2 MeV

e 0.510999 MeV µ 105.6584 MeV τ 1777 GeV

u 1.5 − 5 MeV c 1.1 − 1.4 GeV t 173.8 ± 5.2 GeV

d 3 − 9 MeV s 60 − 170 MeV b 4.1 − 4.4 GeV

Gauge Bosons — Spin-1

γ < 2 · 10−16 eV W 80.41 ± 0.10 GeV Z 91.187 ± 0.007 GeV

Higgs Boson — Spin-0

H > 77.5 GeV

Table 2.2: Masses or mass limits of neutrinos, charged leptons, quarks, gauge bosons and Standard
Model Higgs boson as of early 1998 [31]. Improved results on Mt, MZ, MW and MH will be given in
this review.



2.6 Quantum Chromodynamics

In contrast to the electroweak sector of the MSM, the strong interaction does not participate in the
process of symmetry breaking. The Higgs field is a singlet under the symmetry group of quantum
chromodynamics, SU(3)C [13–15]. Thus the eight gluons of QCD remain massless. QCD enters the
study of the electroweak interaction through higher-order radiative corrections involving quark-gluon
and multi-gluon vertices as discussed in Sections 2.11.2 and 3.1.3.

Unlike QED each quark carries the same strong colour charge. The analogon to the finestructure
constant of QED is given by the strong coupling constant, αS = g2

3/(4π). Since αS ≫ αem and
because of gluon-selfinteractions, QCD has a much richer structure than QED. The strong interaction
is assumed to confine the coloured quarks and gluons [14], so that only white, colourless bound states
are observable. These are systems of qqq or qq bound by the strong force, which correspond to baryons
and mesons. Because of gluon-selfinteractions, also glueballs may exist, which are colourless bound
states solely consisting of gluons. Studies and reviews of experimental results and tests of QCD are
given in [32, 33].

2.7 Fermion Mixing

As there exist more than one generation of fermions, the electroweak symmetry eigenstates of the
theory may be different from the mass eigenstates. Mixing may occur between the fermions having
the same quantum numbers, i.e., within the set of neutrinos ν, charged leptons ℓ, up-type quarks u,
and down-type quarks d, respectively. The bases of symmetry eigenstates and mass eigenstates are
related by a unitary transformation in flavour space, Sα

L,R, α = u, d, ℓ, ν.
The electromagnetic and neutral weak currents are unaffected, as the transformations Sα

L,R and

Sα†
L,R acting on Ψα and Ψα commute with the Dirac γ matrices to yield Sα†

L,RS
α
L,R = 1. Thus the absence

of flavour-changing neutral currents at tree level is preserved. The charged weak current, however, is
affected. Within the leptonic sector, the basis of the three neutrinos can simply be changed by the
combined transformation Sℓ†

L S
ν
L without any observable effects as long as all neutrinos have the same

mass. Otherwise, this is not possible and the treatment is the same as in the quark sector discussed
in the following.

By convention, the S matrices are collected to assign the mixing to the Q = −1/3 down-type
quarks:

dL,i → (Su†
L Sd

L)ijdL,j . (2.29)

The product of the two S matrices is called the Cabibbo-Kobayashi-Maskawa quark mixing matrix,
VCKM = Su,†

L Sd
L [34]. For three generations of fermions, the unitary VCKM matrix describes the

following transformation between symmetry eigenstates q′ and mass eigenstates q:




d′

s′

b′



 =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 ·





d
s
b



 . (2.30)

The matrix elements Vij of VCKM are not predicted by theory but must be inferred from experimental
results on the charged weak current. They enter in processes involving the charged intermediate vector
boson, W±. In case of three or more generations, the general quark mixing matrix contains one or
more non-trivial complex phases which lead to CP violating effects in the SM.

2.8 Currents in Electroweak Theory

Electroweak interactions between fermions, mediated by γ, Z, W± or H exchange, are usually written
in terms of currents, i.e., terms bilinear in the fermion fields. With the help of Dirac’s γ matrices, the



most general term bilinear in fermion fields can be decomposed into a linear combination of 16 basic
terms, which are defined by their transformation properties under Lorentz transformations. These
16 terms are: scalar (Ψ1Ψ, one term), pseudoscalar (Ψγ5Ψ, one term), vector (ΨγµΨ, four terms),
axial-vector (Ψγµγ5Ψ, four terms), and tensor (Ψ i

2 [γµ, γν ] Ψ, six terms).

Using the following natural definitions for hypercharge and left-handed charged and neutral weak
currents:

JY
µ ≡ ΨγµYΨ (2.31)

J±
µ ≡ ΨLγµτ

±ΨL (2.32)

J3
µ ≡ ΨLγµ

τ3

2
ΨL , (2.33)

and collecting the pieces of the Lagrangian which lead to couplings of fermions to gauge-bosons:

Lint = − g1g2
√

g2
1 + g2

2

AµJ
µ
EM −

√

g2
1 + g2

2ZµJ
µ
NC − g2√

2
(W+

µ J
µ
+ +W−

µ J
µ
−) , (2.34)

one can derive the fermionic currents that couple to the gauge-boson fields A, Z and W :

Jµ
EM = Jµ

3 + Jµ
Y = QΨγµΨ (2.35)

Jµ
NC = Jµ

3 − sin2 θWJ
µ
EM = Ψγµ gV − gAγ

5

2
Ψ (2.36)

Jµ
± = Ψγµ V − Aγ5

2
τ±Ψ , (2.37)

respectively. In particular, the photon couples with equal strength to left-handed and right-handed
charged fermions and does not couple to neutrinos. Denoting with Q the electromagnetic charge of a
fermion in units of the positron charge e, e2/(4π) = αem being the finestructure constant, the relation
between e and the coupling constants g1 and g2 is given by:

e =
g1g2

√

g2
1 + g2

2a
= g1 cos θW = g2 sin θW . (2.38)

The above equations define the customary vector and axial-vector coupling constants of the weak
neutral current, which depend on the fermion species f :

gAf ≡ T f
3 gVf ≡ T f

3 − 2qf sin2 θW , (2.39)

where qf is the electromagnetic charge of fermion f in units of the positron charge e. The vector and
axial-vector coupling constants of the weak charged current are identical for all fermions:

A ≡ 1 V ≡ 1 . (2.40)

The relative sign between the vector and axial-vector part of the charged weak current is the reason
for stating that the charged weak interaction has a V − A structure. The corresponding left-handed
and right-handed couplings are:

gLf ≡ T f
3 − qf sin2 θW gRf ≡ − qf sin2 θW , (2.41)

for the neutral weak current, and:

L ≡ 1 R ≡ 0 , (2.42)

for the charged weak current.



2.9 Electroweak Mixing Angle

There are three relations involving the electroweak mixing angle:

1. The relation between the electromagnetic coupling, e, and the weak couplings, g1 and g2.

2. The ratio between the SU(2)L and U(1)EM component of the neutral weak current.

3. The ratio of the heavy gauge-boson masses.

The latter two are experimentally accessible through the measurement of the neutral weak current at
SLC and LEP–I, and the measurement of the W and Z boson masses at the SPS, TEVATRON and LEP.
Radiative corrections as discussed in the following modify these relations in a different way, leading
to different possibilities in defining the electroweak mixing angle.

2.10 Four-Fermion Theory

E. Fermi made a first attempt to formulate a theory of charged weak interactions in 1934 [35]. As
an ansatz for the Lagrangian, he used a product of two currents, i.e., two terms bilinear in the
fermion fields. They are evaluated at the same space-time point, therefore describing a vertex with
four fermion lines. Initially, Fermi connected the two currents by a vector interaction. Experimental
results collected in the following years, in particular the discovery of parity violation in charged weak
decays by C.S. Wu in 1957 [6], lead R. Feynman and M. Gell-Mann to suggest in 1958 [36], that
the interaction Lagrangian should be the product of two (V − A) currents. The coupling constant
connecting both currents in the four-fermion matrix element is nowadays called the Fermi constant,
GF. Within the MSM, the charged weak interaction is still described by two (V − A) currents, now
coupled by the propagator of the charged intermediate vector boson W±. The two different concepts
are compared in Figure 2.1.

The experiments at that time (1930–1960) measured processes, which take place at low energies
and low momentum transfers q2 → 0 [37]. In this limit, the propagator term Gµν

V (q2) of a heavy spin-1
vector boson V with four-momentum qµ becomes:

Gµν
V (q2) =

−gµν + qµqν/M2
V

q2 −M2
V

qλ→0−→ gµν

M2
V

. (2.43)

Thus the low energy limit of the MSM recovers the old four-fermion theory, connecting the Fermi
constant GF to the mass of the intermediate W boson:

GCC(0)√
2

=
g2
2

8M2
W

=
παem

2 sin2 θWM
2
W

=
1

2v2
=

GF√
2
. (2.44)

Hence the two formulations compared in Figure 2.1 are equivalent at low energies, but differ strongly
at high centre-of-mass energies,

√
s. While the predictions of cross sections based on the four-fermion

theory violate the unitarity limit3 since σ ∝ G2
Fs, those based on the SM lead to well behaved

expressions.
The Fermi constant is determined precisely in muon decays. As discussed in Appendix A, QED

radiative corrections specific to the muon decay process [38–40] as well as fermion-mass and W-
propagator effects are explicitly corrected for. The quantity GF absorbs universal radiative corrections
only and is thus a process independent quantity. The result for GF is [40]:

GF = 1.16637(1) · 10−5GeV−2 , (2.45)

where the error is dominated by the experimental error on the measured lifetime of the muon [31].

3The unitarity limit is a consequence of the conservation of probability in scattering processes, i.e., the intensity of
an outgoing partial wave cannot exceed the intensity of the corresponding incoming partial wave. For a process with
angular momentum J , this requires σ(s) < 16π(2J + 1)/s.
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Figure 2.1: The decay of the muon. Left: Four-fermion theory; right: minimal SM. The two charged
weak currents are µ−νµ and νee
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2.11 Interdependence of Gauge-Boson Masses

2.11.1 Born Term

Taking the limit qλ → 0 for the neutral weak interaction yields:

GNC(0)√
2

=
g2
1 + g2

2

8M2
Z

=
g2
2

8 cos2 θWM
2
Z

=
GF√

2
. (2.46)

The ratio of the neutral to charged weak current at zero momentum transfer is therefore:

ρ ≡ GNC(0)

GCC(0)
=

g2
1 + g2

2

g2
2

M2
W

M2
Z

=
1

cos2 θW

M2
W

M2
Z

= 1 , (2.47)

to lowest order. The different boson masses appearing in the vector-boson propagators, MW and
MZ, are compensated by the different charged and neutral weak current couplings, so that the overall
coupling strength of the neutral and charged weak current are equal. The precisely known Fermi
constant GF thus establishes an interdependence between MW and MZ:

M2
W

(

1 − M2
W

M2
Z

)

=
παem√
2GF

, (2.48)

to lowest order. In terms of the electroweak mixing angle, Equation 2.24, this relation becomes:

παem√
2GF

= M2
W sin2 θW = M2

Z sin2 θW cos2 θW , (2.49)

to lowest order.

2.11.2 Radiative Corrections

The MW −MZ interdependence arising from GF is modified by higher-order radiative corrections:

M2
W

(

1 − M2
W

M2
Z

)

=
παem√
2GF

· 1

1 − ∆r
. (2.50)

The corrections arise due to propagator corrections as shown in Figure 2.2. The resulting higher-order
quantum correction ∆r consists of a QED contribution, denoted as ∆αem, and a weak contribution,
denoted as ∆rw:

1

1 − ∆r
=

1

1 − ∆αem(M2
Z)

· 1

1 − ∆rw
, (2.51)

which are discussed in the following [41, 42].
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Figure 2.2: Higher-order corrections to the gauge-boson propagators arising due to insertion of fermion
and boson loops. Contributions from unphysical degrees of freedom are not shown. The loop insertions
may be iterated. At two-loop order, QCD enters through gluon exchange in the quark loops.

2.11.2.1 QED Corrections

The QED contribution arises from the photonic vacuum polarisation, also called photon self energy,
consisting of fermion-loop insertions in the propagator of the photon. This effect is expected in any
theory containing QED. The correction is usually reinterpreted as the dependence of the electromag-
netic coupling strength on the energy of the probing photon, leading to an effective finestructure
constant, αem, running with momentum transfer:

αem ≡ αem(0) → αem(s) =
αem

1 − ∆αem(s)
, (2.52)

where 1/αem(0) = 137.0359895(61) [31].
Each light charged fermion, 4m2

f < s, contributes to ∆αem(s) by an amount of:

∆α(f)
em(s) =

αem

3π
Nf

Cq
2
f

[

−5

3
−

4m2
f

s
+ βf

(

1 +
2m2

f

s

)

ln
1 + βf

1 − βf

]

(2.53)

→ αem

3π
Nf

Cq
2
f

[

ln
s

m2
f

− 5

3

]

for 4m2
f ≪ s , (2.54)

where Nf
C is the QCD colour factor, Nf

C = 1 for leptons and Nf
C = 3 for quarks, and βf =

√

1 − 4m2
f/s

is the fermion velocity. The running of αem(s) is driven by the light charged fermions, while heavy
charged fermions, 4m2

f > s, decouple and are not visible:

∆α(f)
em(s) = −αem

3π
Nf

Cq
2
f

3

5

s

m2
f

for 4m2
f ≫ s . (2.55)

For ∆r, αem(s) must be evolved from the Thomson limit s = 0, where αem is defined, to the scale
s = M2

Z set by the Z mass. The contribution of the three charged leptons is calculated up to three-

loop order, ∆α
(eµτ)
em (M2

Z) = 0.03150 with negligible uncertainty [43]. The top contribution is small,

∆α
(t)
em(M2

Z) = −0.00007(1), showing numerically the decoupling of the heavy top quark.
For the light quarks q = d,u, s, c,b with mq ≪ MZ, large QCD corrections make the above

expression for ∆α
(q)
em unreliable. Instead, the contribution of the five light quarks is calculated based



on the measured cross section of e+e− annihilations into hadrons at low centre-of-mass energies,√
s ≪ MZ, as discussed in Appendix B. Since it is derived from data, the hadronic contribution

includes all corrections to all orders. The hadronic contribution, ∆α
(had)
em (M2

Z) = +0.02804(65) [44, 45],
is nearly as large as the leptonic contribution. Its error, arising from the accuracy of the hadronic
cross section measurement at low

√
s ≪ MZ, completely dominates the error on ∆αem(M2

Z). This is
the reason why the error on αem(M2

Z) is large despite αem being known very precisely [43–45]:

1

αem(M2
Z)

= 128.886 ± 0.090 . (2.56)

Recent theoretical developments aiming at reducing the error on ∆α
(had)
em (M2

Z) are discussed in Ap-
pendix B.

The correction ∆αem arises from the well known theory of QED. Since charged particles with
masses 4m2

f ≫ s do not contribute to ∆αem(s), αem(M2
Z) is insensitive to new physics in form of new

particles with large masses. Taking αem(M2
Z) as an input parameter, the interdependence between

the mass of the W and Z boson now reads:

M2
W

(

1 − M2
W

M2
Z

)

=
παem(M2

Z)√
2GF

· 1

1 − ∆rw
. (2.57)

The remaining quantum correction ∆rw is discussed in the following.

2.11.2.2 Weak Corrections

Within the MSM, the weak correction ∆rw contains a leading term with ∆ρ, and a remainder,
∆rremainder:

∆rw = − cot2 θW∆ρ+ ∆rremainder . (2.58)

The ρ parameter, ρ = 1/(1 − ∆ρ), is defined previously as the ratio of the neutral weak and charged
weak current amplitude in the limit of zero momentum transfer. To lowest order, ∆ρ = 0. The
corrections to the ρ parameter arise from loops in the propagators of the heavy gauge bosons W and
Z involving fermions and the Higgs boson. Each weak isospin doublet of left-handed fermions with
masses m1 ≥ m2 contributes to ∆ρ by an amount of [46]:

∆ρ(f) = Nf
C

GF

8
√

2π2
·
(

m2
1 +m2

2 −
2m2

1m
2
2

m2
1 −m2

2

ln
m2

1

m2
2

)

(2.59)

→







0 for m1 = m2

Nf
C

GFm
2
1

8
√

2π2
for m1 ≫ m2

. (2.60)

In contrast to ∆α
(f)
em, ∆ρ(f) is negligible for light fermions but large for heavy fermions with light

weak-isospin partners such as the top quark. Since for large top-quark masses the corrections are
large, two-loop corrections need to be taken into account as well, reducing slightly the Mt dependence
of the leading ∆ρ(t) correction given above. For large Higgs-boson masses, the Higgs contribution to
∆ρ is given by:

∆ρ(H) = −3
GFM

2
W

8
√

2π2
tan2 θW

(

ln
M2

H

M2
W

− 5

6

)

for MH ≫MW . (2.61)



Top-quark and Higgs-boson contributions to ∆r also appear in ∆rremainder. The combined contribu-
tions to ∆r arising from the top quark and the Higgs boson are given by:

∆r(t) = −GFM
2
W

8
√

2π2

[

3 cot2 θW
M2

t

M2
W

+ 2

(

cot2 θW − 1

3

)

ln
M2

t

M2
W

+ (2.62)

4

3
ln cos2 θW + cot2 θW − 7

9

]

(2.63)

∆r(H) =
11

3

GFM
2
W

8
√

2π2

(

ln
M2

H

M2
W

− 5

6

)

for MH ≫MW . (2.64)

Electroweak radiative corrections are calculated to one-loop order and leading two-loop order. Re-
cently, subleading two-loop corrections are also calculated [47].

2.11.2.3 Sensitivity to Top Quark and Higgs Boson

The one-loop weak corrections discussed above show a quadratic dependence on the top-quark mass,
but only a logarithmic dependence on the Higgs-boson mass, i.e., the effect of a heavy Higgs boson
is screened [48]. This so-called Veltman screening is due to the accidental SU(2)R symmetry of the
Higgs sector of the MSM. Terms quadratic in MH only appear at two-loop order and are numerically
small.

In order to show quantitatively the sensitivity of ∆r to its various contributions, the variations δ
in ∆αem, Mt and MH are determined which lead to the same uncertainty δ∆r on ∆r. Taking only the
leading dependence into account, one obtains:

∂∆r

∂∆αem
δ∆αem = +1δ∆αem (2.65)

∂∆r

∂Mt
δMt = −3 cot2 θWGF

4
√

2π2
MtδMt = − 0.0019

(

Mt

175 GeV

)(

δMt

5 GeV

)

(2.66)

∂∆r

∂MH
δMH = +

11GFM
2
W

12
√

2π2

δMH

MH
= + 0.0050

(

δMH

MH

)

. (2.67)

While the sensitivity to Mt is large, the sensitivity to MH is rather weak, for example, a 40% uncer-
tainty on MH causes an effect as large as a 3% uncertainty on Mt. The error on the hadronic vacuum
polarisation of ±0.00065 [44, 45] is equivalent to an error of 1.7 GeV on Mt and an error of 13% on
MH.

2.12 Standard Model Input Parameters

The a-priori unknown parameters of the Standard Model Lagrangian as introduced above are the
coupling constants associated to the three gauge groups, g1, g2 and g3, the parameters describing
the Higgs potential, µ2 and λ, and the coupling constants of the Yukawa coupling between the Higgs
boson and the fermions, gf . For charged-current processes containing Wqq′ vertices, the elements of
the Cabibbo-Kobayashi-Maskawa quark mixing matrix appear in addition.

Renormalisability of the Standard Model ensures that any observable is calculable in terms of these
parameters to any order of perturbation theory. However, it is useful to change the input parameters
to more physical parameters, in particular if some of these parameters are also precisely measured.
Such a set consists, for example, of the QED and QCD coupling constants, αem(M2

Z) and αS(M2
Z),

the boson masses MW, MZ, MH, and the fermion masses mf . Because the fermion masses with the
exception of the top quark are small compared to the centre-of-mass energy of high-energy interactions
and known well enough, there are essentially six relevant Standard Model parameters: αem, αS , MW,
MZ, MH and Mt. All of them should be measured accurately.



The precisely-known Fermi constant GF usually replaces MW in this set so that MW is then
calculated. In case of the running electromagnetic finestructure constant, the top-quark contribution
is removed. Because it is Mt dependent, it is calculated as a function of the Standard Model input

parameter Mt and added explicitly to the five-flavour α
(5)
em(M2

Z) taken as the Standard Model input
parameter.

2.13 Status of the Standard Model

The MSM as a theory describes all experimental results in particle physics very successfully. Neverthe-
less it is regarded as an incomplete theory, because it does not include gravity. Another drawback is
that it contains many parameters which are not predicted or calculable within the MSM but must be
inferred from experiment, in particular number of families, masses and quantum numbers of particles,
coupling constants and mixing angles.

Physical observables such as cross sections are calculated in terms of these parameters. Measure-
ments of physical observables then lead to a determination of these parameters. Consistency between
the values derived from various measurements constitutes a test of the MSM.

2.13.1 Missing Particles

The most recently discovered fundamental particle is the heaviest known elementary particle, the
top quark, with a mass of about 175 GeV. It completes the third generation of quark families.
Measurements of Z boson decays as discussed in this article show, that there are no additional fermion
generations or families, at least not with light neutrinos. The particles reported in Table 2.1 have all
been directly observed experimentally with two exceptions, the τ neutrino and the Higgs boson.

2.13.1.1 The τ Neutrino

Measurements of Z boson decays as discussed in this article require the existence of a third light
neutrino species besides the electron neutrino and the muon neutrino. The existence of the τ neutrino
is also inferred from measurements of τ -lepton decay properties relating to the weak isospin of the
τ lepton. These measurements confirm the assignment of the τ− to a weak-isospin doublet, which
implies the existence of its isopartner, by definition the τ neutrino, which is distinct from the electron-
neutrino and the muon-neutrino. With this hypothesis measurements of τ decays yield a mass limit
of [31]:

mντ < 0.0182 GeV (95% CL) . (2.68)

Experimentally, the difficulty in observing and identifying the τ neutrino directly arises from the fact
that it is produced and interacting only weakly. The Fermilab experiment E872, called DONUT for
direct observation of ντ [49], aims to measure the charged-current neutrino-nucleon reaction ντN →
τX through identification of the final-state charged τ lepton via its characteristic decay. For a SM τ
neutrino, the total data sample is expected to establish the signal unambiguously.

2.13.1.2 The Higgs Boson

The existence of the Higgs boson is required within the theoretical framework of the MSM. The theory
needs a mathematically consistent mechanism for the generation of fermion and gauge-boson masses,
for which the Higgs mechanism offers an elegant and simple solution compatible with experimental
results. On theoretical grounds the Higgs boson must have a mass of less than about 1 TeV [50]. The
analysis of precision measurements of electroweak parameters in the framework of the MSM constraints
MH through Higgs-boson dependent electroweak radiative corrections, as discussed in this article.



The MSM Higgs boson as a free particle has been searched for directly without success. It must
be so heavy that it cannot be produced at current colliders at a measurable rate. A mass limit of:

MH > 90 GeV (95% CL) , (2.69)

is obtained from negative direct searches at LEP–II [51].

2.13.2 Extended Higgs Sector

The MSM is minimal in the sense that its Higgs sector is the smallest one which accommodates
spontaneous symmetry breaking and mass generation. The Higgs sector might be more complicated,
including additional doublets or consisting of larger multiplets, e.g., triplets of Higgs bosons. If there
are several Higgs multiplets the gauge boson mass relation is modified as follows:

M2
W

M2
Z

= ρ0 cos2 θW , (2.70)

where:

ρ0 =

∑

i v
2
i (T

2(i) − T 2
3 (i))

2
∑

i v
2
i T

2
3 (i)

, (2.71)

and where vi is the vacuum expectation value of the charge-zero component of the Higgs multiplet i
with weak isospin T 2(i) = t(i)(t(i) + 1) and third component T3(i) = t3(i). Within the MSM, ρ0 = 1,
where the subscript 0 denotes the lowest-order calculation. Any deviation from ρ0 = 1 signals an
extended Higgs sector, for example ρ0 = 1/2 for a Higgs triplet, and 0.5 < ρ0 < 1 for a mixture of
doublet and triplet Higgs multiplets. In such a case ρ0 becomes an additional independent parameter
of the theory [52]. On top of such Born-term effects, higher-order electroweak radiative corrections as
discussed in Sections 2.11.2 and 3.1.3 modify ρ in the order of a few permille already in the minimal
Standard Model.

2.13.3 Conceptual Problems of the Standard Model

Particular fine-tuning problems arise with the values of some parameters, namely the CP-violating
phase of QCD [53], the problem of massive scalar particles, often also referred to as naturalness or
hierarchy problem [54], and the cosmological constant problem [55].

The theory of QCD has a non-trivial topological structure, which leads to an additional contribu-

tion to the QCD Lagrangian of ∆LQCD = θ
g2
3

64π2 ǫµνρσG
a
µνG

ρσ
a , which is P-odd and T-odd, thus CP

violating. Such a θ term would create a non-vanishing electric dipole moment of the neutron. As
this has not been observed, an upper limit of |θ| < 10−10 is derived for a parameter, which a priori is
allowed to have any value between 0 and 2π.

Corrections to the Higgs-boson propagator arising from diagrams similar to the ones shown in
Figure 2.2 imply a shift of the Higgs mass between bare mass and physical mass which grows quadrat-
ically with the upper cut-off in the integral over the loop momentum. For this cut-off in the order of
the Planck mass, M = MP lanck = 1019 GeV, the bare mass must be negative and fine-tuned to more
than 30 digits in order to obtain a physical Higgs mass in the order of 0.1 TeV to 1 TeV.

The Higgs potential in the minimum contains a constant term, V0 = −µ2v2/2 = M2
Hv

2/4. This
energy density contributes as a constant term to the vacuum energy density and thus to the cosmo-
logical constant introduced in the general theory of relativity, Λ ∝ V0, by an amount which is about
50 orders of magnitude larger than the experimental limit on the cosmological constant Λ. Thus there
must exist some new aspects associated with gravity which suppresses or cancels this contribution to
an accuracy of 1 in 1050.



2.13.4 Extensions of the Standard Model

The problems discussed above lead to fine-tuning requirements that are mathematically possible but
regarded as physically unnatural. In order to evade them, new physics beyond the Standard Model is
required already at the TeV scale rather than at the Planck scale of 1019 GeV where gravity must be
included.

Various hypothetical extensions of the Standard Model are constructed, for example, supersymme-
try, supergravity, technicolour, grand-unified theories or string theories; see, for example, [56, 57] for
recent reviews. Any extended theory is severely constrained by the fact that new physics effects are
not allowed to perturb the excellent agreement of the minimal Standard Model with the experimental
measurements. No experimental evidence for extended theories has been found so far.





Chapter 3

Physics at Electron-Positron Colliders

This chapter discusses the physics of high-energy e+e− collisions. Quantitative calculations are per-
formed with the semianalytical programs SMATASY [20], TOPAZ0 [21] and ZFITTER [22], discussed
in Section 3.3.2.

At electron-positron colliders the initial state of an interaction consists of electrons and positrons,
which to our knowledge are pointlike particles. Being charged leptons, they interact only electroweakly.
The lowest-order tree-level Feynman diagrams for e+e− interactions as derived from the MSM La-
grangian discussed above fall into three classes:

1. s-channel scattering through neutral bosons γ, Z, H;

2. t-channel scattering through bosons γ, Z, H, W±; or fermions e, νe;

3. u-channel scattering through fermion e.

The Higgs coupling to fermion pairs is proportional to the ratio of the fermion mass to the Z boson
mass, mf/MZ. Therefore, Higgs exchange with a direct coupling of the Higgs boson to the initial-state
leptons is suppressed by a factor of m2

e/M
2
Z and can safely be neglected. At lowest order, the final state

may either be a single massive boson decaying to a fermion-antifermion pair, or a pair of photons, or
a pair of massive bosons each decaying to a ff pair and thus leading to a four-fermion final state.

In the absence of transverse polarisation of the initial state, the non-trivial degrees of freedom in
the final state for a given centre-of-mass energy are twofold:

1. The polar scattering angle, θ, of the fermion or boson with respect to the beam electron in the
centre-of-mass system, cos θ ≡ cos θf = − cos θf , as shown in Figure 3.1. The measurement of
cos θ is rather simple, especially if only the absolute value, i.e., the event axis, is needed.

2. The helicities of the two final-state particles, which are correlated by angular-momentum con-
servation. The measurement of the final-state helicities is rather complicated and routinely done
only for the τ+τ− and W+W− final states.

The cross sections of fermion-pair and boson-pair production as a function of the centre-of-mass
energy are compared in Figure 3.2 . The Z boson resonance leads to a sharp enhancement of the
cross section, up to 30 nb at the pole

√
s = MZ. The production of W-pairs and Z-pairs occurs with

a much smaller cross section, in the order of 20 pb and 1 pb. The energy dependence shows the
expected threshold behaviour at

√
s = 2MW and

√
s = 2MZ, respectively. The calculations of these

cross sections and their dependence on the parameters of the Standard Model will be discussed in the
following.
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Figure 3.1: The polar scattering angle, θ, is defined as the polar angle between the directions of the
incoming electron, +z axis, and the outgoing fermion or W− boson.
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Figure 3.2: Cross sections of qq(γ), W+W−(γ) and ZZ(γ) production in e+e− interactions as a function
of the centre-of-mass energy

√
s. The (γ) denotes the possible presence of radiative photons.

3.1 Single-Boson and Fermion-Pair Production

The lowest-order Feynman diagrams for fermion-pair production are shown in Figures 3.3 and 3.4. In
general in e+e− interactions, fermion pairs are produced in s-channel annihilations via the exchange
of a virtual photon or Z boson, Figures 3.3. In the case of t-channel interactions, the initial-state
particles and the t-channel exchanged particle specify the final-state particle flavour. The additional
Feynman diagrams for e+e− and νeνe production due to t-channel γ/Z exchange and W exchange,
respectively, are shown in Figure 3.4. For e+e− final states, i.e., Bhabha scattering, the pure QED
t-channel γ exchange dominates the cross section at small polar scattering angles θ → 0. All known
neutrinos, charged leptons and quarks, with the exception of the heavy top quark, are kinematically
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Figure 3.3: Feynman diagrams in s-channel fermion-pair production at e+e− colliders: Electromagnetic
and neutral weak current.
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Figure 3.4: Feynman diagrams in t-channel fermion-pair production at e+e− colliders: Electromag-
netic, neutral weak and charged weak current.

accessible in ff production at modern e+e− colliders.

3.1.1 Born Level

3.1.1.1 Helicity Amplitudes

The matrix element for s-channel fermion-pair production in e+e− interactions, e+e−→ ff , is a sum
of two contributions corresponding to s-channel photon and Z-boson exchange:

M = Mγ + MZ (3.1)

Mγ = i
4παem

s
[(qeγµ) ⊗ (qfγ

µ)] (3.2)

MZ = i
4παem

s
κχ(s)

[

(γµ(gVe − gAeγ5)) ⊗ (γµ(gVf − gAfγ
5))
]

, (3.3)

where:

αem =
e2

4π
≃ 1/137 (3.4)

κ =
1

4 sin2 θW cos2 θW
=

GFM
2
Z

2
√

2παem

≃ 1.50 . (3.5)

The term [Jµ ⊗ Jµ] denotes the product of an initial- and a final-state current:

[Jµ ⊗ Jµ] = (v̄eJµue) (ūfJ
µvf ) , (3.6)

where uf and vf are spinors describing fermions and antifermions, respectively.

Since the interaction is mediated by spin-1 bosons in the s-channel the angular dependence in θ
is determined solely by the d1

1 functions of angular momentum [58]. The helicities h = ±1 of the
two final-state fermions are not independent of each other due to helicity conservation at vertices



with only vector and axial-vector couplings, yielding hf = −hf , which holds for both the initial state
electron-positron pair and the final state fermion-antifermion pair. Hence there are four independent
helicity amplitudes describing the scattering processes:

e−Le+
R → fLf̄R

e−Le+
R → fRf̄L

e−Re+
L → fRf̄L

e−Re+
L → fLf̄R , (3.7)

which add incoherently as they do not interfere. They give rise to four independent terms each for
the γ exchange, γ/Z interference and Z exchange contribution to the differential cross section.

3.1.1.2 Differential Cross Section

Neglecting fermion masses, the differential cross section for unpolarised e+e− beams has the form:

dσ0
tot(e

+e−→ ff ;hf )

d cos θ
=

πα2
em

4
×
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The parameters rAf , jAf and gAf are real numbers and express the magnitude of the Z exchange, γ/Z
interference and γ exchange contributions, respectively. They are called S-Matrix parameters because
they are derived within a general S-Matrix formalism describing fermion-pair production [59]. The
rationale behind the labels A = tot, fb,pol, fbpol will become apparent in the following.

The
√
s dependence of the three contributions is given by the components of the first matrix.

The Z exchange is described by a relativistic Breit-Wigner for a massive spin-1 particle, the Z boson,
characterised by its mass, MZ, and total decay width, ΓZ. The γ/Z interference contribution vanishes
at

√
s = MZ. The γ exchange shows the typical 1/s behaviour of QED.

The dependence on the polar scattering angle, θ, is given by the last matrix. There are two
components, a forward-backward symmetric part, proportional to 1 + cos2 θ, and an antisymmetric
part, proportional to 2 cos θ. The asymmetric part results in a forward-backward asymmetry of the
differential cross section but does not contribute to the total cross section within a fiducial volume
symmetric in cos θ.

Within the Standard Model the photon couples with the electromagnetic charge qf to fermionic
vector currents and the Z boson couples with strengths gVf and gAf to fermionic vector and axial-
vector currents, respectively. The S-Matrix parameters for that case are reported in Table 3.1. For
the inclusive hadronic final state, a sum over all kinematically accessible quark flavours, q = d,u, s, c,b
for

√
s < 2Mt, is performed.

In most cases the helicity of the final-state fermions is not measured so that the final-state helicities
hf = ±1 are summed over with the result:

dσ0
tot(e

+e−→ ff)

d cos θ
=

πα2
em

2
×

(

s
(s−M2

Z)2 +M2
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Z

s−M2
Z

(s−M2
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ZΓ2
Z

1
s

)

·
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 . (3.9)



A rAf jAf gAf

tot κ2
[

g2
Ve + g2

Ae

]

[

g2
Vf + g2

Af

]

Nf
C 2κqeqfgVegVfN

f
C q2eq

2
fN

f
C

fb 4κ2gVegAegVfgAfN
f
C 2κqeqfgAegAfN

f
C 0

pol, fblr 2κ2
[

g2
Ve + g2

Ae

]

gVfgAfN
f
C 2κqeqfgVegAfN

f
C 0

fbpol, lr 2κ2gVegAe

[

g2
Vf + g2

Af

]

Nf
C 2κqeqfgAegVfN

f
C 0

Table 3.1: S-Matrix parameters in the Standard Model.

3.1.1.3 Total Cross Section and Z Lineshape

Integrating over the polar scattering angle θ yields the total production cross section:

σ0
tot(e

+e−→ ff ;
√
s) =

4

3
πα2

em

[

gtot
f

s
+
srtotf + (s−M2

Z)jtotf

(s−M2
Z)2 +M2

ZΓ2
Z

]

. (3.10)

The dependence of σ0
tot on the centre-of-mass energy

√
s is shown in Figure 3.5. For small energies,√

s → 0, the γ exchange dominates with its 1/s pole the production of charged fermions whereas
neutrino production vanishes. For large energies ,

√
s → ∞, all three contributions behave like 1/s

and contribute proportional to gtot
f , rtotf , and jtotf . For

√
s ≈MZ the s-channel Z exchange dominates

the total cross section with its Breit-Wigner
√
s dependence:

σ0
Z ≡ 4

3
πα2

em · rtotf · s

(s−M2
Z)2 +M2

ZΓ2
Z

(3.11)

=
12π

M2
Z

ΓeeΓff

Γ2
Z

sΓ2
Z

(s−M2
Z)2 +M2

ZΓ2
Z

. (3.12)

The partial decay width, Γff , of the Z → ff decay is given by:

Γff = Nf
C

αemMZ

12 sin2 θW cos2 θW

[

g2
Vf + g2

Af

]

= Nf
C

GFM
3
Z

6
√

2π

[

g2
Vf + g2

Af

]

, (3.13)

which is proportional to the sum of the squares of the couplings gVf and gAf . The total decay width
of the Z boson, ΓZ, is the sum of all partial decay widths:

ΓZ = Γee + Γµµ + Γττ + Γinv + Γhad (3.14)

Γinv = NνΓνν (3.15)

Γhad =
∑

q 6=t

Γqq . (3.16)

The decay width of the Z into invisible particles, Γinv, counts the number of light neutrino species, Nν ,
within the Standard Model. Since 2Mt > MZ, the decay Z → tt of on-shell Z bosons is kinematically
not allowed. The inclusive hadronic width is thus a sum over the five light quark flavours.

Measurements of the total production cross sections for various final states ff determine the
basic properties of the Z boson. The mass MZ, total width ΓZ and partial decay widths Γff are
determined by the position, width and height of the Z lineshape, the resonance curve describing the
total production cross section as a function of

√
s.



√s


   [GeV]

σ(
e+ e− →

qq
−
) 

  [
nb

]
Z/Z
|γ/Z|
γ/γ
Total

10
-3

10
-2

10
-1

1

10

0 50 100 150 200 250

√s


   [GeV]

σ(
e+ e− →

qq
−
) 

  [
nb

]

Z/Z
γ/Z
γ/γ
Total

0

0.1

0.2

0 50 100 150 200 250

√s


   [GeV]

σ(
e+ e− →

µ+ µ− ) 
  [

nb
]

Z/Z
|γ/Z|
γ/γ
Total

10
-5

10
-4

10
-3

10
-2

10
-1

1

0 50 100 150 200 250

√s


   [GeV]

σ(
e+ e− →

µ+ µ− ) 
  [

nb
]

Z/Z
γ/Z
γ/γ
Total

0

0.02

0.04

0 50 100 150 200 250

Figure 3.5: Born cross sections as a function of
√
s for qq and µ+µ− production in e+e− annihilations.

The total cross section and the contributions arising from Z exchange, γ exchange, and γ/Z interference
are shown separately. In case of logarithmic scale, the absolute value of the interference cross section
is shown. Because of the larger vector couplings of quarks, the Z exchange and the γ/Z interference
are more pronounced in qq production than in ℓ+ℓ− production. At energies above the Z resonance,
γ and Z exchange have equal importance of qq production, with the γ/Z interference term reaching
a magnitude of a few percent of the total. In contrast, µ+µ− production above the Z resonance is
dominated by the γ exchange, which is an order of magnitude large than Z exchange and more than
two orders of magnitude larger than the γ/Z interference. The reason is again the smallness of the
vector coupling of charged leptons.



3.1.1.4 Definition of Z Mass and Width

The
√
s dependence of the total cross section determines the Z mass and total width. It is fixed by

the complex propagator χZ for a massive unstable particle. Several possibilities exist for the definition
of χZ:

1. Breit-Wigner with s-independent width as introduced above:

χZ(s) =
s

s− M̄2
Z + iM̄ZΓ̄Z

, (3.17)

2. Breit-Wigner with s-dependent width as suggested by phase space:

χZ(s) =
s

s− M̂2
Z + i

√
sΓ̂Z

, (3.18)

3. Breit-Wigner with s-dependent width as suggested by phase-space and Standard Model elec-
troweak radiative corrections:

χZ(s) =
s

s−M2
Z + isΓZ/MZ

, (3.19)

4. Pole in the complex invariant-mass plane:

χZ(s) =
s

s−
(

M̃Z − i
2 Γ̃Z

)2 . (3.20)

The first definition is used in the S-Matrix ansatz. The third definition is motivated by phase-space
considerations and Standard Model electroweak radiative corrections associated with the Z-boson
propagator, see Section 3.1.3, and is adopted at LEP. These definitions lead to different numerical
results for the mass and total width of the Z boson, which are significant compared to the experimental
errors. The S-Matrix results are related to the s-dependent width convention adopted at LEP by the
relations:

MZ = M̄Z

√

1 + Γ̄2
Z/M̄

2
Z ≈ M̄Z + 34.1 MeV (3.21)

ΓZ = Γ̄Z

√

1 + Γ̄2
Z/M̄

2
Z ≈ Γ̄Z + 0.9 MeV . (3.22)

which are applied when reporting numerical results on MZ and ΓZ based on S-Matrix analyses.

3.1.1.5 Asymmetries

The information contained in the fully differential cross section of Equation 3.8, besides the total cross
section, is usually expressed in the form of three asymmetries which are ratios of cross sections and
which combine differently the forward, backward, left-handed and right-handed production of fermions.
Defining σ0

A with A = fb,pol, fbpol, in analogy to σ0
tot of Equation 3.10, the three asymmetries are:

1. the forward-backward asymmetry, Afb:

Afb(s) =
σ0(cos θ > 0) − σ0(cos θ < 0)

σ0(cos θ > 0) + σ0(cos θ < 0)
= +

3

4

σ0
fb

σ0
tot

, (3.23)



2. the polarisation asymmetry, Apol:

Apol(s) =
σ0(hf = +1) − σ0(hf = −1)

σ0(hf = +1) + σ0(hf = −1)
= −

σ0
pol

σ0
tot

, (3.24)

3. the forward-backward polarisation asymmetry, Afbpol:

Afbpol(s) =
σ0(hf cos θ > 0) − σ0(hf cos θ < 0)

σ0(hf cos θ > 0) + σ0(hf cos θ < 0)
= − 3

4

σ0
fbpol

σ0
tot

. (3.25)

This is the reason for using the labels A for the different S-Matrix parameters.
The asymmetries as a function of the centre-of-mass energy

√
s are shown in Figure 3.6. In case

the final state has the same couplings as the initial state and only vector- and axial-vector couplings
are involved, 3

4Apol(s) = Afbpol(s) holds at Born level independent of
√
s. For small energies,

√
s→ 0,

the asymmetries vanish for charged fermions. For large energies,
√
s → ∞, both numerator and

denominator behave like 1/s so that the asymmetries AA converge to constants. They change sign
at s = M2

Zj
A
f /(r

A
f + jAf ). On the peak of the resonance,

√
s = MZ, where the interference terms

vanish, the asymmetries have very simple expressions when removing the pure photon exchange in the
denominator:

Afb(s = M2
Z) = +

3

4

rfbf
rtotf

= +
3

4
AeAf (3.26)

Apol(s = M2
Z) = −

rpol
f

rtotf

= − Af (3.27)

Afbpol(s = M2
Z) = −3

4

rpol
f

rtotf

= − 3

4
Ae . (3.28)

The coupling parameter Af is defined as:

Af ≡ 2
gVf · gAf

g2
Vf + g2

Af

= 2
gVf/gAf

1 + (gVf/gAf )2
=

g2
Lf − g2

Rf

g2
Lf + g2

Rf

=
1 − (gRf/gLf )2

1 + (gRf/gLf )2
, (3.29)
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Figure 3.6: Born asymmetries as a function of
√
s for ℓ+ℓ− production in e+e− annihilations. The total

asymmetry and the contributions arising from Z exchange, γ exchange and γ/Z interference are shown
separately. In all cases, the γ exchange contribution vanishes. The forward-backward asymmetry is
by far dominated by the γ/Z interference. The Z contribution is barely visible around

√
s = MZ. In

contrast, both Z exchange and γ/Z interference are equally important for the polarisation asymmetries.



which is a function of the ratio of the neutral-current couplings.
For

√
s close to MZ the s-channel Z exchange dominates the total cross section in the denominator.

In that region the energy dependence of the asymmetries AA is quantified by the ratio jAf /r
tot
f .

The dependence of the average fermion helicity, i.e., the longitudinal polarisation Pf , on the
scattering angle cos θ simplifies on the peak to:

Pf (cos θ) = −
rpol
f (1 + cos2 θ) + rfbpol

f 2 cos θ

rtotf (1 + cos2 θ) + rfbf 2 cos θ
= − Af (1 + cos2 θ) + Ae2 cos θ

(1 + cos2 θ) + AeAf2 cos θ
. (3.30)

This quantity is measurable in τ+τ− production, where the parity-violating charged-current decay of
the τ lepton serves as a polarisation analyser.

3.1.1.6 Polarised Electron-Positron Beams

The above formulae are derived assuming unpolarised electron and positron beams. It is possible,
however, to obtain both transverse as well as longitudinal polarised beams. Transverse polarisation
causes a modulation of the differential cross section in azimuthal angle, φ. The modulation, pro-
portional to sin2 θ, averages out at each value of θ when integrating over the full azimuthal angular
range. Transverse polarisation is thus not particularly useful except for the determination of the beam
energy, see Section 4.6. In contrast, longitudinal polarisation is interesting from a physics point of
view. Denoting with P±

L the degree of longitudinal polarisation of the e± beam, PL = −1 for fully
left-handed, PL = +1 for fully right-handed, the differential cross section becomes:

dσ0(e+e−→ ff, P±
L )

d cos θ
= (1 − P−

L P
+
L )

dσ0
tot(e

+e−→ ff)

d cos θ
− (P−

L − P+
L )

dσ0
lr(e

+e−→ ff)

d cos θ
(3.31)

where dσ0
lr/d cos θ is obtained from dσ0

tot/d cos θ by replacing the labels A = (tot, fb) by A = (lr, fblr)
in Equation 3.9.

Experimentally, an electron beam polarised to a degree P−
L = ±P , P > 0, is brought into collisions

with an unpolarised positron beam, P+
L = 0. The forward-backward asymmetry is modified:

Afb(s) =
3

4

σ0
fb − P−

L σ
0
fblr

σ0
tot − P−

L σ
0
lr

(3.32)

s→M2
Z−→ 3

4

rfbf − P−
L r

fblr
f

rtotf − P−
L r

lr
f

=
3

4

Ae − P−
L

1 − AeP
−
L

Af . (3.33)

Furthermore, the measurement of two additional asymmetries is possible:

1. the left-right asymmetry, Alr:

Alr(s) =
1

P
· σ

0(P−
L = −P ) − σ0(P+

L = +P )

σ0(P−
L = −P ) + σ0(P+

L = +P )
=

σ0
lr

σ0
tot

(3.34)

s→M2
Z−→

rlrf
rtotf

= Ae , (3.35)

2. the forward-backward left-right asymmetry, Afblr:

Afblr(s) =
1

P
· σ(P−

L cos θ < 0) − σ(P−
L cos θ > 0)

σ(P−
L cos θ < 0) + σ(P−

L cos θ < 0)
=

3

4

σ0
fblr

σ0
tot

(3.36)

s→M2
Z−→ 3

4

rfblr
f

rtotf

=
3

4
Af , (3.37)

where the σ0
A, A = lr, fblr, are defined in analogy to σ0

tot of Equation 3.10. At Born level with only
vector- and axial-vector couplings one finds 3

4Alr(s) = −Afbpol(s) and Afblr(s) = −3
4Apol(s).



3.1.2 Bhabha Scattering

Besides the two s-channel diagrams shown in Figure 3.3, two additional Feynman diagrams contribute
to the process e+e−→ e+e− in lowest order, t-channel γ and Z boson exchange as shown in Figure 3.4.
The differential and total cross section is therefore given by a sum of ten terms [60]:

dσ0(e+e−→ e+e−)

d cos θ
=

10
∑

i=1

dσ0
i (e

+e−→ e+e−)

d cos θ
. (3.38)

For unpolarised e+e− beams and denoting z = cos θ the ten terms are:

dσ0
1

d cos θ
=

dσ0
s(sZsZ)

dz
=

πα2
em

2s
|χ(s)|2κ2

[

(g2
Ve + g2

Ae)
2(1 + z2) + 8g2

Veg
2
Aez
]

dσ0
2

d cos θ
=

dσ0
s(sγsZ)

dz
=

πα2
em

2s
2ℜ(χ(s))κ

[

g2
Ve(1 + z2) + 2g2

Aez
]

dσ0
3

d cos θ
=

dσ0
s(sγsγ)

dz
=

πα2
em

2s
(1 + z2)

dσ0
4

d cos θ
=

dσ0
t (tZtZ)

dz
=

πα2
em

2s

[χ̃(t)]2

2
κ2
[

((g2
Ve + g2

Ae)
2 + 4g2

Veg
2
Ae)(1 + z)2+

4((g2
Ve + g2

Ae)
2 − 4g2
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=
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=
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=
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Ae)
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dσ0
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=
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i (sZtγ)
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=

πα2
em

2s
(−2)ℜ(χ(s))κ(g2
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Ae)
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dσ0
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d cos θ
=
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i (sγtZ)
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=

πα2
em

2s

[

χ̃(t)κ(g2
Ve + g2

Ae)(1 + z)2
]

dσ0
10

d cos θ
=

dσ0
i (sγtγ)
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=

πα2
em

2s
(−2)

(1 + z)2

1 − z
, (3.39)

where the t-channel Z propagator is given by:

χ̃(t) =
s

t−M2
Z

. (3.40)

The indices denote the contributions arising from products of s- and t-channel, γ and Z-boson matrix
elements.

For small polar scattering angles, θ → 0, the cross section is clearly dominated by the pole of the
t-channel photon exchange, dσ0

t (tγtγ)/d cos θ, a pure QED process. The s-channel contributions to
the total cross section are enhanced for large polar scattering angles, for example | cos θ| <

√
2. For

this region of phase space, the contributions of s-channel, t-channel and s/t-interference to the total
cross section and the forward-backward asymmetry are shown in Figure 3.7.

3.1.3 Radiative Corrections

In order to interpret the precise measurements around the Z pole correctly, the theoretical predic-
tions need to take into account higher-order radiative corrections, reviewed in detail in [41, 42, 61] and
references therein. Based on the specific interaction, the corrections are loosely classified as QED
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Figure 3.7: Bhabha cross section and forward-backward asymmetry in the fiducial volume defined by
| cos θ| < 0.72 for the polar angle of both final-state charged leptons, including radiative corrections
discussed in Section 3.1.3. The contributions arising from s-channel, t-channel and s/t-interference,
and the total are shown separately. While the total cross section clearly shows the Z resonance, the
forward-backward asymmetry is dominated by t-channel and s/t-interference effects.

corrections, QCD corrections, and weak corrections. Based on the topology of the Feynman dia-
grams involved, the higher-order corrections are also classified as bremsstrahlung corrections, vertex
corrections, propagator corrections and box contributions.

QED corrections arise in any theory containing the electromagnetic gauge group U(1)EM . In terms
of Feynman diagrams, they consist of those higher-order diagrams where extra photons are attached
to the charged particles in Born-level diagrams, either as a bremsstrahlung photon or as a virtual
photon connecting two charged particles. QCD corrections are similar to QED corrections, replacing
the additional photon in QED corrections by a gluon coupling to quarks. Weak corrections collect the
effects of all other higher-order diagrams with internal loops consisting of fermions or additional lines
with heavy gauge bosons.

In the electroweak theory the separation of QED and weak corrections is sensible both experi-
mentally and theoretically, the latter at least to one-loop order. Theoretically, QED corrections can
be defined in such a way that they form a gauge-invariant subset of the complete set of electroweak
corrections. They are independent of the detailed structure of the non-QED part of the theory. Ex-
perimentally, QED corrections depend on the details of the measurements, for example the spatial and
energy resolution of the detector to resolve radiative photons, and the event selection criteria applied.
In contrast, weak corrections are independent of the experimental setup as they are internal to the
Feynman diagrams and do not modify the particle content of the observed final state. They depend
on the detailed structure of the full theory through corrections arising from internal loops involving
all particles of the theory.

QED and QCD bremsstrahlung corrections are shown in Figure 3.8 and QED and QCD vertex cor-
rections are shown in Figures 3.9. As the initial state does not couple to gluons, QCD bremsstrahlung-
and vertex corrections appear only as final-state corrections. Propagator corrections, already discussed
in Section 2.11.2 are shown in Figure 2.2. Weak vertex corrections and box contributions are shown
in Figures 3.10 and 3.11, respectively.
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Non-vanishing fermion masses introduce a kinematic effect as they restrict the available phase-
space, thus modifying the expressions given above for pair production of massless fermions. For quarks,
confinement causes quark masses to be an ill-defined concept especially for light quarks, where the
confinement energy is comparable to the mass. Because of strong QCD effects quark masses must be
treated as running masses, so that QCD and mass corrections, if both need to be considered, cannot be
factorised. This also prevents for quarks a simple definition of effective electroweak coupling constants,
absorbing only electroweak effects, beyond first order.

Analyses of precision measurements in terms of radiative corrections allow to search for virtual
effects of new particles otherwise too heavy to be produced directly. In the case of the MSM, the
interest lies in particular in the analysis of the measurements in terms of effects caused by the top
quark and the Higgs boson. Mass values inferred for these particles as well as for the W boson are
then compared to the direct measurements, testing the Standard Model at the level of its electroweak
radiative corrections.

3.1.3.1 QED Bremsstrahlung Corrections

QED corrections to fermion-pair production are rather large. For example, the total cross section on
top of the Z pole is reduced by about 25%, and the cross section at energies

√
s ≫ MZ is increased

by several 100%, as shown in Figure 3.12. Thus QED corrections need to be calculated very precisely
in order to retain the sensitivity to the weak corrections which are of the order of a few permille.

As a neutral boson is exchanged in s-channel fermion-pair production, a gauge invariant separation
of QED corrections into initial-state, final-state and initial-final interference corrections is possible and
discussed in the following. QED radiative corrections to Bhabha scattering are discussed in [60, 62]
and references therein.

The bulk of the QED corrections is caused by initial-state radiation. QED corrected cross sections
are obtained by convoluting the Born cross section, σ0, with a radiator function R:

σ(e+e−→ ff(γ); s) =

∫ 1

4m2
f
/s

dz R(z, s) · σ0(e+e−→ ff ; zs) , (3.41)

where (γ) denotes the possible presence of radiative photons in the final state. The differential cross
section is treated in the same way by using a radiator function which depends on the scattering angle.

The radiator functions for symmetric total cross sections, such as σtot, and antisymmetric forward-
backward cross sections, such as σfb, are different. Therefore, the Born level relations in models with
only vector- and axial-vector couplings, 3

4Alr(s) = −Afbpol(s) and Afblr(s) = −3
4Apol(s), do no longer

hold after the inclusion of QED radiative corrections.
The idea behind the convolution integral is that initial-state radiative photons, Figure 3.8, carry

away four-momentum such that the hard e+e− interaction takes place at the reduced centre-of-mass
energy,

√
s′, where s′ = zs. The radiator function R(z, s) expresses the probability for such photon

radiation which decreases monotonically with increasing photon energy.
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Figure 3.12: Cross sections as a function of
√
s, comparing Born term with radiatively corrected cross

sections under various cuts in
√
s′: no

√
s′ cut,

√

s′/s > 0.10, and
√

s′/s > 0.85. Note the step in the
latter when the radiative return to the Z is cut out at

√
s = MZ/0.85 = 107 GeV. At the Z pole, QED

radiative correction lower the Z-peak cross section by about 25% and skew the Z lineshape towards
higher values.
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Figure 3.13: Asymmetries as a function of
√
s, comparing Born term with radiatively corrected asym-

metries under various cuts in
√
s′: no

√
s′ cut,

√

s′/s > 0.10, and
√

s′/s > 0.85. Note the step in
the latter when the radiative return to the Z is cut out at

√
s = MZ/0.85 = 107 GeV. Especially

above the Z pole, the radiative corrections on the forward-backward asymmetry are large, while the
polarised asymmetries are less affected.



Technically, the radiator function R(z, s) is split into contributions from virtual-, soft- and hard-
photon corrections, δV , δS , δH . Soft-photon corrections are combined with virtual QED corrections
at the e+e−Z vertex in order to obtain finite results. Summing soft-photon radiation to all orders, the
radiator function is given by:

R(z, s) = β(1 − z)β−1

[

1 +
∞
∑

n=1

(αem

π

)n
δV +S
n

]

+
∞
∑

n=1

[(αem

π

)n
δH
n (z)

]

(3.42)

β =
2αem

π
(L− 1) (3.43)

L = ln
s

m2
e

. (3.44)

The corrections to first order in αem/π are:

δV +S
1 =

(

3

2
L+

π2

3
− 2

)

(3.45)

δH
1 (z) = (1 − L)(1 + z) , (3.46)

while for the forward-backward cross section the hard-photon correction is more complicated:

δH
1 (z) = (1 − L)

(

2

1 − z
− 4z

(1 + z)2
1 + z2

1 − z

)

− 4z

(1 + z)2
ln

4z

(1 + z)2
. (3.47)

In general the corrections δn are n-th order polynomials in the large logarithm L and are calculated
order-by-order in perturbation theory. They are known to complete second order and including the
summation of soft and virtual photons to all orders. For total cross sections inside a symmetric
fiducial volume in cos θ, the third order correction is known to leading order in the large logarithm L.
A collection of radiator functions in the additive and multiplicative form is given in [60, 61, 63–65]. At
the Z pole,

√
s ≈MZ, virtual- and soft-photon corrections dominate as the Z resonance, σ0(s′) in the

convolution integral, serves as an effective cutoff for hard initial-state photon radiation. In contrast,
for

√
s > MZ, the largest effect arises from hard initial-state radiative corrections. Because of the

Z pole in σ0(s′), initial-state radiation with the photon lowering
√
s′ to values close to MZ, called

the radiative return to the Z, is preferred. Applying a cut in s′ with s′ > s′cut ≫ M2
Z restricts the

phase-space for photon emission and removes the radiative-return events to keep only the interesting
genuine high-energy events.

Final-state QED radiative corrections exhibit a much smaller effect. In the absence of cuts re-
stricting the phase space for final-state radiation, the effect corresponds to an overall normalisation
factor on the total cross section:

R
(f)
QED = 1 + ∆

(f)
QED (3.48)

∆
(f)
QED =

3

4

αem

π
q2f + O(α2

em) , (3.49)

where these factors are also known with cuts on s′ and cos θf . The replacement αem ≡ αem(0) →
αem(s) incorporates the bulk of second- and higher-order corrections such as multiple final-state photon
radiation and final-state pair production through radiation of off-shell photons [66].

The radiated photons move preferentially along the direction of the radiating charged particle.
Thus, the bulk of initial-state radiative photons is not seen as it is lost inside the beam pipe.

The interference between initial- and final-state radiation is treated as before by extending the
above ansatz of convoluting with a radiator function. These corrections need to be combined with
QED box contributions, where an additional γ line connects an initial state fermion with a final state
fermion. Since the box contributions differ for γ and Z exchange, the cross section to be convoluted
must be separated into γ and Z exchange and its interference:

σ(s) =

∫ 1

4m2
f
/s

dz
[

σ0
ZZ(z, s)RZZ(z, s) + σ0

γZ(z, s)RγZ(z, s) + σ0
γγ(z, s)Rγγ(z, s)

]

(3.50)



The cross sections inside the convolution integral depend on two scales, s for initial-state and s′ = zs
for final-state radiation:

σ0
ZZ(z, s) =

4

3
πα2

em

rtotf

s′
1

2

[

χ(s)χ∗(s′) + χ∗(s)χ(s′)
]

(3.51)

σ0
γZ(z, s) =

4

3
πα2

em

jtotf

s′
1

4

[

χ(s) + χ∗(s) + χ(s′) + χ∗(s′)
]

(3.52)

σ0
γγ(z, s) =

4

3
πα2

em

gtot
f

s′
(3.53)

χ(s) ≡ s

s−M2
Z + iMZΓZ

. (3.54)

The interference of initial- and final state radiation and the box diagrams make the radiator functions
dependent on both s and t, i.e., also on the scattering angle cos θ. The interference correction is
proportional to ln(t/u) = ln tan(θ/2), thus the interference effect is largest for | cos θ| → 1.

For
√
s close to MZ, the corrections arising from the interference between initial- and final-sate

QED radiation is suppressed due to the finite lifetime of the Z boson [67]. In the absence of strong cuts
on the energy of photon radiation, the correction is of order O

(

(αem/π)(ΓZ/MZ)2
)

= 2 ·10−6 for cross
sections [68], and of order O ((αem/π)(ΓZ/MZ)) = 6 · 10−5 for forward-backward asymmetries [69], as
no large logarithms L = ln s

m2
e

appear.

With final-state radiation present,
√
s′ can no longer be identified with the invariant mass of the

final-state ff system. Care must be taken in the interpretation of results and the comparisons with
theoretical calculations, as sometimes the convention is used that

√
s′ is defined as mff . Further-

more, the inclusion of initial-final interference leaves only the invariant ff mass as an experimentally
measurable quantity, but not

√
s′.

3.1.3.2 Pair Production

Photons radiated off the initial- or final-state fermions may also be off-shell, γ∗ with mγ∗ > 0, leading
to an additional ff pair in the final state due to the conversion process γ∗ → ff . When the additional
ff system becomes more and more massive, also radiation of virtual Z bosons needs to be included.

The complete final state now consists of four fermions, e+e− → ffff . For an additional pair of
low invariant mass, pair production is regarded as a radiative correction to fermion-pair production.
The production of two pairs of comparable mass, on the other hand, is considered as genuine four-
fermion production. Because of the continuous transition region between the two cases, there arises the
question of the signal definition for fermion-pair and four-fermion production, i.e., the question which
cut to use in order to separate ffff production into radiative corrections belonging to fermion-pair
production and into genuine four-fermion production.

Experimentally, pair production via low-mass off-shell photons radiated from the initial state are
uncritical, as the photon and its decay products are predominantly close to the initial-state particles.
Thus the additional soft fermion-antifermion pair is not visible within the detector as it is confined
inside the beam pipe. The total correction on the fermion-pair cross section varies with

√
s and is of

the order of −3 · 10−3 [70, 71].
In contrast, pair production via off-shell photons radiated from the final state leads to additional

fermion-antifermion pairs moving along the direction of the primary final-state fermions. Thus they
become visible in the detector. In the absence of cuts restricting the phase space for the radiation of
final-state pairs, real and virtual corrections cancel each other [72].

3.1.3.3 QCD Bremsstrahlung Corrections

Final-state QCD radiative corrections are treated similar to final-state QED radiative corrections,
replacing the QED coupling constant αem with the strong coupling constant αS and including QCD



colour factors. Since the QCD coupling is much stronger, αS ≫ αem, the correction needs to be
known to higher than just first order. For total cross sections, they are known up to third order, thus
incorporating multiple gluon radiation and off-shell gluon splitting, g∗ → qq, gg, ggg. In the limit of
massless quarks, the correction is flavour independent [60, 63]:

R
(f)
QCD = 1 + ∆

(f)
QCD (3.55)

∆
(f)
QCD =

{

αS
π + 1.41

(αS
π
)2 − 12.77

(αS
π
)3

+ O(α4
S) for f = q

0 for f = ℓ, ν
. (3.56)

Beyond first order, the vector and axial-vector currents receive different corrections. Simple effective
formula for the bb and inclusive hadronic final state, which take the leading effects into account,
are [60, 63]:

∆
(had)
QCD =

αS

π
+ (0.78 ± 0.04)

(αS

π

)2
− (15.46 ± 0.06)

(αS

π

)3
+ O(α4

S) (3.57)

∆
(b)
QCD =

αS

π
− (2.46 ± 0.17)

(αS

π

)2
− (24.7 ± 0.3)

(αS

π

)3
+ O(α4

S) . (3.58)

The corrections ∆QCD are shown in Figure 3.14 as a function of αS .
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Figure 3.14: QCD correction for partial Z decay widths, ∆QCD, as a function of the strong coupling
constant, αS . Shown are the calculations for massless quarks, the inclusive hadronic width, and the
special case of b quarks. For the latter, the triple lines show central value and ±1 sigma theoretical
error.

3.1.3.4 Combination of QED and QCD Bremsstrahlung Corrections

Mixed QED/QCD bremsstrahlung corrections arise due to the competing radiation of both a photon
and a gluon off the final-state quarks. The additional normalisation factor is given by [66]:

R
(f)
QED/QCD = 1 + ∆

(f)
QED/QCD (3.59)

∆
(f)
QED/QCD =

{

−1
4
αem
π

αS
π q2q for f = q

0 for f = ν, ℓ
. (3.60)



If QED, QCD and mixed QED/QCD corrections are combined, the overall correction is given by:

R(f) = 1 + ∆
(f)
QED + ∆

(f)
QCD + ∆

(f)
QED/QCD . (3.61)

Note that there is no factorisation of QED and QCD bremsstrahlung corrections, R(f) 6= R
(f)
QEDR

(f)
QCD.

3.1.3.5 Final-State Corrections on Asymmetries

To first order in αem and αS , final state corrections cancel in the forward-backward cross section,
σfb = σ(cos θ > 0) − σ(cos θ < 0), of ff production. Thus the forward-backward asymmetry, being
the ratio of the forward-backward and the total cross section, is affected by the inverse of the correction
factor for total cross sections.

3.1.3.6 Weak Corrections and Effective Coupling Constants

Weak corrections to fermion-pair production fall into three classes, propagator or self-energy correc-
tions of the intermediate gauge bosons, vertex corrections at the boson-fermion vertices, and contri-
butions from box diagrams. The effect of γ/Z mixing in the internal gauge-boson propagator, possible
due to fermion loop insertions, does no longer allow a clean separation of the matrix element in a γ
and Z part. If the box contributions are neglected, it is still possible, however, to retain the structure
of the Born-term γ and Z exchange matrix elements summing up to the total matrix element of the
e+e−→ ff scattering process. The electroweak radiative corrections are incorporated in the two pieces
in such a way that a gauge invariant separation is obtained.

Weak radiative corrections modify the photon and Z-boson matrix elements by introducing complex
valued

√
s dependent formfactors, FA(s), GVf (s) and GAf (s):

M = Mγ + MZ (3.62)

Mγ = i
4παem

s
FA(s) [(qeγµ) ⊗ (qfγ

µ)] (3.63)

MZ = i
√

2GFM
2
Zχ(s)

[

(γµ(GVe(s) −GAe(s)γ5)) ⊗ (γµ(GVf (s) −GAf (s)γ5))
]

. (3.64)

Expressions for cross sections and decay widths are rewritten in terms of complex vector- and axial-
vector couplings by using the following prescription given in symbolic notation:� Z boson exchange:

{g2
Vf , g

2
Af , gVfgAf} −→ {|GVf |2, |GAf |2, ℜ(GVfG

∗
Af )} (3.65)� γ exchange:

q2eq
2
f −→ q2eq

2
f |FA(s)|2 (3.66)� γ/Z interference:

qeqf{gVegVf , gAegAf}ℜ(χZ(s)) −→ qeqfℜ({GVeGVf , GAeGAf}F ∗
A(s)χZ(s)) (3.67)

qeqf{gVegAf , gAegVf}ℜ(χZ(s)) −→ qeqfℜ({GVeGAf , GAeGVf}F ∗
A(s)χZ(s)) . (3.68)

The photonic matrix element Mγ contains the effect of fermion loop insertions in the photon propaga-
tor, expressed by the complex photon vacuum polarisation, FA(s). The real part of FA(s) is simply the
running of the finestructure constant αem as introduced during the discussion of ∆r in Section 2.11.2:

ℜ(FA(s)) =
1

1 − ∆αem(s)
. (3.69)



The imaginary part is given by:

ℑ(FA(s)) = −1

3

∑

f

Nf
Cq

2
fβf

(

1 +
2m2

f

s

)

θ(s− 4m2
f ) (3.70)

ℑ(FA(M2
Z)) → −1

3

∑

f 6=t

q2fN
f
C . (3.71)

Within the total matrix element, the imaginary part of FA(s) picks up the imaginary part of the Z-
boson propagator, leading to an additional γ/Z interference contribution to cross sections and asymme-
tries of the order of αemℑ(FA(M2

Z))ΓZ/MZ. Through γ/Z mixing in the propagator, it also contributes
to the resonant Z-exchange terms.

The complex vector and axial-vector couplings are expressed in terms of complex formfactors ρf (s)
and κf (s):

GVf (s) =
√

ρf (s) ·
(

T f
3 − 2qfκf (s) sin2 θW

)

(3.72)

GAf (s) =
√

ρf (s) · T f
3 . (3.73)

Loop insertions to the Z boson propagator are interpreted as a change in the weak coupling strength.
The coupling in the Z-boson matrix element MZ is changed:

παem

sin2 θW cos2 θW
→ ρ(s)

√
2GFM

2
Z , (3.74)

where ℜ(ρ) = 1/(1 − ∆ρ) is, to leading order, nothing else but the ρ parameter denoting the ratio
between the neutral weak and charge weak current. In general the ρ parameter is expected when
expressing a neutral weak current amplitude in terms of the charged weak current coupling strength
GF. The large logarithms due to fermionic loop insertions as seen in the photon propagator and αem(s)
are cancelled by introducing the charged current coupling GF.

The Z/γ mixing in the propagator with subsequent coupling of the photon to the fermion pair is
interpreted as a correction to the charge dependent part of the vector coupling of the Z boson. The
factor κ(s) in front of the electroweak mixing angle expresses this correction:

sin2 θW → κ(s) sin2 θW , (3.75)

where κ = 1 + ∆κ.

For Z-pole measurements, the complex s-dependent couplings may be treated as constant by
setting s = M2

Z, called the Z-pole approximation. In order to avoid a complex mixing angle and com-
plex vector- and axial-vector couplings, only the real parts are usually retained as effective couplings
whereas the imaginary parts are added explicitly:

αem(M2
Z) = ℜ(αem · FA(M2

Z)) =
αem

1 − ∆αem(M2
Z)

(3.76)

gAf = ℜ(
√
ρf ) · T f

3 (3.77)

gVf = ℜ(
√
ρf ) · (T f

3 − 2ℜ(κf )qf sin2 θW)) (3.78)

sin2 θf = ℜ(κf ) sin2 θW . (3.79)

The approximation where the imaginary parts are neglected is called the improved Born approxima-
tion. This approximation is not adequate for the precise results obtained at SLC and LEP–I. For the
extraction of the effective couplings from the experimental data, the imaginary parts are therefore
fixed to their Standard Model prediction.



In general theories the three weak correction terms ∆rw, ∆ρ, and ∆κ are independent of each
other. Within the MSM, the leading terms are the same and given by ∆ρ:

∆rw = − cot2 θW∆ρ (3.80)

∆κ = + cot2 θW∆ρ . (3.81)

The corrections discussed so far are of universal nature, i.e., they are independent of the flavour of
the external fermions. Fermion-specific vertex corrections introduce dependences on the flavour of the
external fermions:

ρf = ρ+ ∆ρf (3.82)

κf = κ+ ∆κf . (3.83)

For all fermions except the b quark, the flavour dependence of the vertex correction is very small.
However, for b quarks, vertex corrections involving Wtb vertices, as shown in Figure 3.15, are large
due to the high mass of the isopartner of the b quark, the top quark, and the large Cabibbo-Kobayashi-
Maskawa quark mixing matrix element |Vtb| ≈ 1:

∆ρb = −4

3
∆ρ (3.84)

∆κb = −1

2
∆ρb = +

2

3
∆ρ . (3.85)

The inclusion of the specific vertex corrections inverts the Mt dependence of ρb and increases the Mt

dependence of κb as compared to the other fermions. A comparison of the electroweak corrections for
f = b and f 6= b is shown in Figures 3.16.

Based on the master equation:

sin2 θ(1 − sin2 θ) =
παem√
2GFM2

Z

· 1

1 − ∆
, (3.86)

several possibilities exist to define an electroweak mixing angle:

sin2 θ =
1

2

[

1 −
√

1 − 4
παem√
2GFM

2
Z

1

1 − ∆

]

, (3.87)

which are summarised in Table 3.2. The comparison of the top-quark and Higgs-boson mass depen-
dence of the different definitions of the electroweak mixing angle, on-shell sin2 θW and effective sin2 θW,
is shown in Figure 3.17.

While the measurement of the W-boson mass at the TEVATRON and LEP–II determines the on-
shell quantities sin2 θW and ∆r, measurement of fermion-pair production at the Z pole performed at
SLC and LEP–I determine the effective quantities sin2 θf and ∆r̄f . For a heavy top quark and a heavy
Higgs boson, the effective Z-pole quantities are given by:

∆r̄(t) = −GFM
2
W

8
√

2π2

[

3
M2

t

M2
W

− 2

3 cos2 θW
ln
M2

t

M2
W

]

(3.88)

∆r̄(H) =
GFM

2
W

8
√

2π2

1 + 9 sin2 θW
3 cos2 θW

(

ln
M2

H

M2
W

− 5

6

)

. (3.89)

The sensitivity of the effective Z pole quantities to ∆αem, Mt and MH, given by:

∂∆r̄

∂∆αem
δ∆αem = +1δ∆αem (3.90)

∂∆r̄

∂Mt
δMt = − 3GF

4
√

2π2
MtδMt = − 0.0005

(

Mt

175 GeV

)(

δMt

5 GeV

)

(3.91)

∂∆r̄

∂MH
δMH = +

GFM
2
W

4
√

2π2

1 + 9 sin2 θW
3 cos2 θW

(

δMH

MH

)

= + 0.0017
δMH

MH
. (3.92)
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Figure 3.15: Vertex corrections in bb production involving the top quark.
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Figure 3.16: Electroweak formfactors ρf and κf as a function of Mt comparing b and non-b fermions.
In each case, three lines are shown corresponding to Higgs-boson masses of 90 GeV, 300 GeV, and
1000 GeV. For fixed top-quark mass, both ρf and κf increase with MH.

Scheme ∆ sin2 θ

Born 0 sin2 θ

+ QED ∆αem sin2 θ0

+ self energies ∆r̄ = ∆αem − ∆ρ+ ∆r̄rem sin2 θW = (1 + ∆κ) sin2 θW

+ vertex corrections ∆r̄f = ∆αem − ∆ρ+ ∆r̄f,rem sin2 θf = κf sin2 θW

MW prediction ∆r = ∆αem − cot2 θW∆ρ+ ∆rrem sin2 θW = 1 −M2
W/M

2
Z

Table 3.2: Various definitions of the electroweak mixing angle.
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Figure 3.17: The effective and the on-shell electroweak mixing angle as a function of Mt, comparing
b and non-b fermions. In each case, three lines are shown corresponding to Higgs-boson masses of
90 GeV, 300 GeV, and 1000 GeV. For fixed top-quark mass, all increase with MH.

Compared to the on-shell quantities ∆r and sin2 θW, the sensitivity is reduced by a factor of cot2 θW =
3.5 for Mt and 11 cos2 θW/(1 + 9 sin2 θW) = 2.8 for MH, as visible in Figure 3.17. However, the large
statistics of the Z-pole measurements at SLC and LEP–I more than compensates this loss of sensitivity.
Nevertheless when interpreting measurements of ∆r̄, the error on the hadronic vacuum polarisation
of ±0.00065 [44, 45] is equivalent to an error of 6 GeV on Mt and an error of 37% on MH.

The dependences of the electroweak correction terms ∆ on top-quark and Higgs-boson mass are
of opposite sign. Constraining electroweak corrections by an experimental measurement implies a
determination of Mt and MH with a positive correlation.

3.1.4 The Decay Widths of the Z Boson

The Z boson propagator needs to be considered together with the photon propagator due to γ/Z mixing
effects through loop insertions in the propagator. The imaginary part of the Z self energy appears in
the total decay width, ΓZ, entering the Z-boson propagator. Both these higher-order corrections and
phase-space effects lead to a linear increase of the total decay width ΓZ with

√
s. Overall, ΓZ varies

linear with s:

ΓZ −→ ΓZ(s) ≡ s

M2
Z

ΓZ(MZ) , (3.93)

so that the Breit-Wigner description of the Z pole naturally changes from an s-independent width to
an s-dependent width, see also Section 3.1.1.4. This leads to the above redefinition of the parameter
called total width to be ΓZ = ΓZ(MZ) so that the s-dependence appears explicitly in the Z-boson
Breit-Wigner χZ(s).

Owing to factorisation, partial decay widths of the Z boson are corrected by the same terms as
cross sections to obtain radiatively corrected decay widths. The individual partial decay widths are
written in terms of GF and effective couplings absorbing weak corrections and are corrected by the
same factors R for final state QED and QCD radiation as discussed before. Including fermion-mass



effects, the partial widths of the Z boson are:

Γff = Nf
C

GFM
3
Z

6
√

2π

√

1 −
4m2

f

M2
Z

[

|GVf |2
(

1 +
2m2

f

M2
Z

)

+ |GAf |2
(

1 −
4m2

f

M2
Z

)]

R(f) (3.94)

R(f) = 1 + ∆
(f)
QED + ∆

(f)
QCD + ∆

(f)
QED/QCD . (3.95)

For the calculation of partial width to one-loop order, the complex formfactors GV and GA may be
replaced by their real parts gV and gA, as there is no other imaginary part to interfere with. If,
however, cross sections are calculated, the imaginary part picks up the imaginary part of the boson
propagator at Born level, thus cannot be neglected.

In case the Z-exchange cross section is written as a product of the radiatively corrected partial

widths into initial- and final-state fermion-pairs, σ ∝ ΓeeΓff , then the QED correction of Γee, ∆
(e)
QED,

must be taken out, as initial-state radiation is explicitly accounted for through the convolution integral.

3.1.5 The ǫ Parameters

Within the framework of the Standard Model, most electroweak radiative corrections contain the
potentially large quadratic contribution from the top-quark mass. It has been studied how the Higgs
dependence and new physics can be disentangled from this leading top quark correction. For this
purpose, four new parameters, ǫ1, ǫ2, ǫ3 and ǫb, are introduced [56, 73]. They are defined such that
they absorb genuine weak corrections and vanish in the approximation when only effects due to pure
QED and QCD are taken into account.

ǫ1 = ∆ρ (3.96)

ǫ2 = cos2 θ0∆ρ+
sin2 θ0

cos2 θ0 − sin2 θ0
∆rw − 2 sin2 θ0∆κ

′ (3.97)

ǫ3 = cos2 θ0∆ρ+ (cos2 θ0 − sin2 θ0)∆κ
′ (3.98)

ǫb =
1

2
∆ρb , (3.99)

where sin2 θ0 is the electroweak mixing angle absorbing only QED effects:

sin2 θ0 cos2 θ0 =
παem(M2

Z)√
2GFM2

Z

, (3.100)

and ∆κ′ transforms this electroweak mixing angle into the effective electroweak mixing angle:

sin2 θf = (1 + ∆κ′) sin2 θ0 . (3.101)

Within the Standard Model one obtains the following large asymptotic contributions:

ǫ1 =
3GFM

2
t

8
√

2π2
− 3GFM

2
W

4
√

2π
tan2 θW ln

MH

MZ
+ . . . (3.102)

ǫ2 = −GFM
2
W

2
√

2π2
ln
Mt

MZ
+ . . . (3.103)

ǫ3 =
GFM

2
W

12
√

2π2
ln
MH

MZ
− GFM

2
W

6
√

2π2
ln
Mt

MZ
+ . . . (3.104)

ǫb = −GFM
2
t

4
√

2π2
+ . . . (3.105)

Another commonly used description is based on the so-called S, T and U parameters [74].
While the ǫ parameters are merely rearrangements of corrections arising from higher-order dia-

grams, their merit lies in isolating the large quadratic Mt effects in ǫ1 and ǫb. The quantities ǫ2 and ǫ3



contain only logarithmic dependences on Mt. The leading terms for large Higgs masses are contained
in ǫ1 and ǫ3.

A second aspect in the construction of the ǫ parameters is the search for new physics effects. In
the case of the ǫ parameters, it is assumed that new physics effects enter mainly through vacuum
polarisation diagrams. There are three independent vacuum polarisation contributions, in analogy to
the three independent terms ∆ρ, ∆κ, and ∆rW in theories more general than the Minimal Standard
Model. Such an ansatz includes lepton-, neutrino- and light-quark universality, thus ignoring fermion-
specific vertex corrections with the exception of those for the b quark.

The Z pole measurements at SLC and LEP–I constrain ǫ1, ǫ3 and ǫb through the measurement of
the Z mass and the effective couplings. The parameter ǫ2 is determined through ∆rw which requires
the measurement of the W-boson mass, performed at the TEVATRON and at LEP–II.

3.1.6 Summary of Fermion-Pair Production

The measurement of the fermion-pair production cross section as a function of the centre-of-mass
energy in the vicinity of the Z pole determines the mass and total and partial decay widths of the
Z boson. The partial decay widths in turn determine the sum of the squares of the effective vector-
and axial-vector coupling constants, g2

Vf + g2
Af . The various asymmetries determine the ratio of the

vector and the axial vector couplings, gVf/gAf , in form of the couplings parameter, Af . Together they
determine gAf and gVf up to the ambiguity gVf ↔ gAf , which is resolved by the energy-dependence
of the asymmetries. The measurements of cross sections and asymmetries at centre-of-mass energies
away from the Z pole determine the γ/Z interference terms, jf .

Electroweak radiative corrections are absorbed in effective vector and axial-vector coupling con-
stants. Analyses of the measured effective couplings test the Standard Model at the level of radiative
corrections. In particular, since the top quark and the Higgs boson appear as virtual particles in loop
corrections, their masses are constrained by precision measurements even if they are too heavy to be
produced directly at current e+e− colliders.



3.2 Boson-Pair and Four-Fermion Production

In e+e− interactions, pairs of neutral bosons γ and Z are produced in neutral-current t- and u-channel
interactions as shown in Figure 3.18. The set of these two diagrams is denoted as NC02 [62]. As
only the already known γff and Zff vertices and couplings are involved, pair production of neutral
gauge bosons and their decay does not reveal new information about the Standard Model. However,
an observation of neutral boson pair production involving ZZZ, γZZ or γγZ tree-level vertices, absent
in the SM, would signal new physics beyond the SM.

Topologically, the NC02 diagrams with at least one boson decaying into a fermion-antifermion pair
are identical to s-channel fermion-antifermion pair production with a radiative photon or additional
pair-production attached to the initial state. This shows again the problem of the signal definition,
i.e., what is considered as radiative correction to fermion-pair production, and what is considered as
genuine four-fermion production, now from the side of four-fermion production.

Pair production of charged bosons, e+e−→ W+W−, proceeds through both charged-current t-
channel and neutral-current s-channel interactions as shown in Figure 3.19. The set of these three
diagrams is called CC03 [62]. The s-channel diagrams are particularly interesting because they appear
as a consequence of the triple gauge boson vertices γW+W− and ZW+W− which are expected due to
the non-Abelian nature of the electroweak gauge group SU(2)L. Measurement of W-pair production
thus tests the Standard Model of electroweak interactions in this very fundamental area.

e+ γ/Z

e

e− γ/Z

e+

γ/Z

e

e−

γ/Z

Figure 3.18: Feynman diagrams in γ/Z-pair production in e+e− interactions. The u-channel diagram
exists for pair-production of identical bosons.
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Figure 3.19: Feynman diagrams in W-pair production in e+e− interactions.

3.2.1 Born Level

3.2.1.1 Helicity Amplitudes

The matrix element for W-pair production in e+e− interactions, e+e−→ W+W−, is a sum of three
contributions corresponding to s-channel γ and Z exchange and t-channel neutrino exchange. The
decomposition in terms of helicity amplitudes is given by:

M(σ, σ̄, λ, λ̄) = Mγ(σ, σ̄, λ, λ̄) + MZ(σ, σ̄, λ, λ̄) + Mν(σ, σ̄, λ, λ̄) , (3.106)



where σ, σ̄ are the helicities of the initial-state electron and positron, normalised to σ = ±1, and λ,
λ̄ are the helicities of the outgoing W− and W+ bosons, λ = ±1, 0. The total spin of the initial and
the final state is given by ∆σ = (σ − σ̄)/2 and ∆λ = λ− λ̄, respectively.

The t-channel neutrino exchange requires left-handed electrons and right-handed positrons, thus
contributes to the ∆σ = −1 cross section σLR only. Since due to the exchange of spin-1 bosons only
vector- and axial-vector couplings are involved, helicity conservation in the limit of massless electrons
implies that amplitudes with ∆σ = 0 vanish,1 σLL = σRR = 0. The s-channel diagrams contribute
both to σLR and σRL. For the final-state W-boson pair, nine helicity states are possible.

The polar angular dependence due to kinematics is given by the d functions of angular momen-
tum [58], dJ0

∆σ∆λ, where J0 = 1, 2 denotes the lowest angular momentum contributing for a given
helicity contribution, J0 = max(|∆σ|, |∆λ|). In order to separate the purely kinematic d functions
from the interesting dynamics, one writes M in terms of reduced matrix elements M̃:

M(σ, σ̄, λ, λ̄, θ) = 4παemM̃(∆σ, σ̄, λ, λ̄)dJ0
∆σ∆λ(θ) . (3.107)

Only the t-channel diagram contributes to the two J0 = |∆λ| = 2 states:

M̃(∆σ, |∆λ| = 2) = M̃ν(∆σ = −1, |∆λ| = 2) (3.108)

=
δ∆σ,−1

sin2 θW

s

4t
= − δ∆σ,−1

sin2 θW

1

1 + β2
W − 2βW cos θ

, (3.109)

where the Kronecker δ ensures ∆σ = −1, and βW =
√

1 − 4M2
W/s is the W-boson velocity. The

remaining seven helicity states are accessible via both the s-channel and the t-channel diagrams:

M̃γ(∆σ, λ, λ̄) = −
√

2βWA
γ
∆σλλ̄

δ|∆σ|,+1 (3.110)

M̃Z(∆σ, λ, λ̄) = +
√

2βW

[

δ|∆σ|,+1 −
1

2 sin2 θW
δ∆σ,−1

]

s

s−M2
Z

AZ
∆σλλ̄ (3.111)

M̃ν(∆σ, λ, λ̄) =
1√

2βW sin2 θW

[

Bλλ̄ +
s

4t
Cλλ̄

]

. (3.112)

Two components contribute to the total matrix element, an electromagnetic part with coupling e2 =
4παem, and a weak part with coupling e2/ sin2 θW = g2

2 . The d functions and contributing Feynman
diagrams for the nine helicity states of the W bosons are reported in Table 3.3. The subamplitudes
AV

∆σλλ̄
for V = γ,Z, Bλλ̄ and Cλλ̄ as expected in the Standard Model are given in Table 3.4.

3.2.1.2 Triple Gauge Boson Couplings

In order to test the sector of non-Abelian self couplings among the gauge bosons, triple gauge boson
couplings more general than those appearing in the Standard Model are considered. The most general
model considers each of the seven helicity states of the W-pair final state, which are accessible via
diagrams containing triple gauge boson vertices, as independent, yielding seven coupling constants
each for photon and Z boson exchange. Several conventions for these couplings appear in the liter-
ature. Here the set is used which corresponds to the effective Lagrangian yielding the most general
Lorentz invariant triple gauge boson vertices observable in processes where the gauge bosons couple

1Since the electron mass is small but finite, the LL- and RR-amplitudes are suppressed by me/
√
s compared to the

other amplitudes but non-vanishing. They lead to a constant contribution to the total cross section. Unitarity problems
at very high centre-of-mass energies are avoided by including the s-channel Higgs contribution to W-pair production,
e+e− → H → W+W−.



∆σ = −1 (σLR)

∆λ (λ, λ̄) J0 dJ0
∆σ∆λ Diagrams

+2 (+−) 2 +1
2(1 − cos θ) sin θ ν

−2 (−+) 2 −1
2(1 + cos θ) sin θ ν

+1 (0−), (+0) 1 +1
2(1 − cos θ) γ,Z, ν

0 (−−), (00), (++) 1 + 1√
2
sin θ γ,Z, ν

−1 (−0), (0+) 1 +1
2(1 + cos θ) γ,Z, ν

∆σ = +1 (σRL)

∆λ (λ, λ̄) J0 dJ0
∆σ∆λ Diagrams

+1 (0−), (+0) 1 +1
2(1 + cos θ) γ,Z

0 (−−), (00), (++) 1 − 1√
2
sin θ γ,Z

−1 (−0), (0+) 1 +1
2(1 − cos θ) γ,Z

Table 3.3: Helicity states in W-pair production: Amplitudes, d functions and contributing Feynman
diagrams.

to effectively massless fermions [75]. With V = γ,Z:

i
Leff

V WW

gV WW
= +gV

1 V
µ
(

W−
µνW

+ν −W+
µνW

−ν
)

+κVW
+
µ W

−
ν V

µν +
λV

M2
W

V µνW+ρ
ν W−

ρµ

+igV
4 W

−
µ W

+
ν (∂µV ν + ∂νV µ)

+igV
5 ǫµνρσ

((

∂ρW−µ
)

W+ν −W−µ
(

∂ρW+ν
))

V σ

− κ̃V

2
W−

µ W
+
ν ǫ

µνρσVρσ − λ̃V

2M2
W

W−
ρµW

+µ
ν ǫνραβVαβ , (3.113)

where here Fµν = ∂µFν −∂νFµ for F = V,W . The overall normalisations gV WW are fixed with respect
to the electromagnetic charge e =

√
4παem:

gγWW = e (3.114)

gZWW = e cot θW . (3.115)

The subamplitudes AV
∆σλλ̄

, V = γ,Z, resulting from the general Lagrangian are also given in Table 3.4.

Within the Standard Model, gV
1 = κV = 1 for V = γ,Z, while all other couplings vanish. The parts

of the Lagrangian associated to the various couplings do not necessarily conserve all of the discrete
symmetries C, P and CP. The complete list conserved discrete symmetries is given in Table 3.5.

With the above conventions, simple expressions for the electromagnetic properties of the W− boson,
its electric charge, magnetic dipole moment, electric quadrupole moment, electric dipole moment and



∆λ (λ, λ̄) ∆σ = ±1 ∆σ = −1

AV
∆σλλ̄

AV
∆σλλ̄

(SM) Bλλ̄ Cλλ̄

+1 (+0) ±γ(gV
1 + κV + λV − igV

4 + βWg
V
5 + i

βW
(κ̃V − λ̃V )) ±2γ −2γ2 −2(1+βW)

γ

+1 (0−) ∓γ(gV
1 + κV + λV + igV

4 + βWg
V
5 − i

βW
(κ̃V − λ̃V )) ∓2γ +2γ +2(1−βW)

γ

0 (++) ∓(gV
1 + 2γ2λV + i

βW
(κ̃V + (1 − 2γ2)λ̃V )) ∓1 1 1

γ2

0 (00) ±(gV
1 + 2γ2κV ) ±(1 + 2γ2) +2γ2 2

γ2

0 (−−) ∓(gV
1 + 2γ2λV − i

βW
(κ̃V + (1 − 2γ2)λ̃V )) ∓1 1 1

γ2

−1 (0+) ∓γ(gV
1 + κV + λV + igV

4 − βWg
V
5 + i

βW
(κ̃V − λ̃V )) ∓2γ +2γ +2(1−βW)

γ

−1 (−0) ±γ(gV
1 + κV + λV − igV

4 − βWg
V
5 − i

βW
(κ̃V − λ̃V )) ±2γ −2γ −2(1−βW)

γ

Table 3.4: Subamplitudes in W-pair production: AV
∆σλλ̄

for V = γ,Z and ∆σ = ±1; Bλλ̄ and Cλλ̄ for
∆σ = −1. For subamplitude A, the general expression as well as the Standard Model expectations
are shown, for the subamplitudes B and C the SM SM formulae expected from the structure of the
Wff

′
vertex.

Coupling gV
1 κV λV gV

4 gV
5 κ̃V λ̃V

Invariance C, P, CP C, P, CP C, P, CP P CP C C

Table 3.5: Discrete symmetries C, P and CP of the general VW+W− interaction, V = γ,Z.

magnetic quadrupole moment are derived:

QW = −egγ
1

SM−→ −e

µW = −e
2MW

(gγ
1 + κγ + λγ)

SM−→ − e
MW

QW = −e
M2

W
(λγ − κγ)

SM−→ e
M2

W

dW = −e
2MW

(κ̃γ + λ̃γ)
SM−→ 0

MW = −e
M2

W
(λ̃γ − κ̃γ)

SM−→ 0 ,

(3.116)

respectively, where the latter two are CP violating quantities. The number of free coupling constants
in the general case, 7 each for photon and Z boson, is reduced by making additional assumptions.
First, the couplings are approximated to be real, neglecting small imaginary parts appearing above
the W-pair threshold. Electromagnetic gauge invariance requires gγ

1 = 1 and gγ
5 = 0. Furthermore, in-

variance under C and P transformations leaves just five couplings, gZ
1 , κγ , κZ, λγ , λZ. Gauge symmetry

requirements establish relations between γW+W− and ZW+W− couplings, for example:

∆κZ = ∆gZ
1 − ∆κγ tan2 θW (3.117)

λZ = λγ , (3.118)

where ∆ denotes the difference of the respective coupling to its Standard Model value. These relations
reduce the number of independent couplings to three, which are usually chosen to be gZ

1 , κγ and λγ .

Also the non-observation of anomalous effects in e+e− interactions at the Z pole leads to restrictions
in the parameter space of anomalous triple-gauge-boson couplings [76, 77].

In order to investigate the general triple gauge boson vertex, both the scattering angle of the W
boson as well as the W polarisation must be analysed. Because of the (V−A) structure of the charged
weak current the angular distributions of the W decay fermions are ideal W polarisation analysers.



In the case the final-state fermion helicities are not measured, all information is contained in five
phase-space angles, the polar scattering angle of the W− boson, and the polar and azimuthal decay
angles of the fermion-antifermion pair in the respective W rest system.

3.2.1.3 Differential Cross Section

The lowest order differential cross section in the Standard Model for the production of two equal-mass
W bosons, M− = M+ = MW (ΓW = 0), has the form [78, 79]:

dσ0(e+e−→ W+W−,ΓW = 0)

d cos θ
=

πα2
emβW

8s
[aγγ + aZZ + aνν + aγZ + aγν + aZν ] (3.119)

where in the Standard Model:

aγγ = as (3.120)

aZZ =

(

1 − 1

2 sin2 θW
+

1

8 sin4 θW

)

· s2

(s−M2
Z)2

· as (3.121)

aνν =
1

sin4 θW
· at (3.122)

aγZ =

(

1

2 sin2 θW
− 2

)

· s

s−M2
Z

· as (3.123)

aγν = − 1

sin2 θW
· ai (3.124)

aZν =

(

1

sin2 θW
− 1

2 sin4 θW

)

· s

s−M2
Z

· ai . (3.125)

The s- and t-channel and the s/t-interference terms are:

as = β2
W

[

16s

M2
W

+ sin2 θ

(

s2

M4
W

− 4s

M2
W

+ 12

)]

(3.126)

at =
2s

M2
W

+ β2
W

sin2 θ

2

[

s2

4M2
W

+
s2

t2

]

(3.127)

ai = 16

(

1 +
M2

W

t

)

+ β2
W

[

8s

M2
W

+
sin2 θ

2

(

s2

M4
W

− 2s

M2
W

− 4s

t

)]

. (3.128)

Besides the kinematic d functions, another θ dependence of the differential cross section is introduced
due to the dependence of the t-channel matrix elements on the Mandelstamm variable t, denoting the
momentum transfer between incoming e− and outgoing W−, t = M2

W − s(1 − βW cos θ)/2.

3.2.1.4 Total Cross Section

By integrating over the polar scattering angle, the total cross section is obtained. The integrals
A =

∫

adθ are [78, 79]:

As(s) = β2
W

[

16s

M2
W

+
2

3

(

s2

M4
W

− 4s

M2
W

+ 12

)]

(3.129)

At(s) =
2s

M2
W

+ β2
W

s2

12M4
W

+ 4

[(

1 − 2M2
W

s

)

L− 1

]

(3.130)

Ai(s) = 16 − 32
M2

W

s
L+ β2

W

[

8s

M2
W

+
1

3

s2

M4
W

− 2

3

s

M2
W

]

(3.131)

+4

(

1 − 2M2
W

s

)

− 16
M4

W

s2
L , (3.132)



with:

L =
1

βW
ln

1 + βW

1 − βW
. (3.133)

The six contributions to the total cross section are shown in Figure 3.20. At the kinematic threshold,√
s ≈ 2MW, the cross section is dominated by the t-channel neutrino diagram. At higher energies

the s-channel diagrams, which depend on the non-Abelian gauge couplings, become more and more
important. In the absence of self-interactions among the gauge bosons, the cross section would be de-
termined by the t-channel neutrino graph only. In that case the cross section would grow proportional
to s and eventually violate the unitarity limit. Within the Standard Model, considering all diagrams,
good high-energy behaviour of the cross section is restored through interference of all diagrams.

At the kinematic threshold, the total cross section rises quickly with
√
s which is exploited to

measure the mass of the W bosons. The finite width of the W boson causes a softening of the sharp
rise of the total cross section, also shown in Figure 3.20. The lowest-order total cross section for off-
shell W-pair production is written as a double integral over the masses of the two W-bosons, s− = M2

−
and s+ = M2

+:

σ0(s) =

∫ s

0

∫ s

0
ds−ds+ ρ(s−)ρ(s+)σ0

CC03(s; s−, s+) , (3.134)

where the Breit-Wigner densities are given by:

ρ(s±) =
1

π

MWΓW

(s± −M2
W)2 +M2

WΓ2
W

. (3.135)

Analytic expressions for σ0
CC03(s; s−, s+) are given in [80]. They contain the above on-shell results,

σ0(s; s− = s+ = MW,ΓW = 0) = σ0(s;MW).
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Figure 3.20: Cross section of the reaction e+e−→ W+W− as a function of
√
s. Left: Born cross

section in the zero-width approximation (ΓW = 0). The contributions arising from the three Feynman
diagrams and their interferences are shown separately. Right: Total cross section, comparing the
effects of finite W width and QED radiative corrections on the total W-pair production cross section.



3.2.2 Radiative Corrections

Radiative corrections in boson pair production are treated rather similar to radiative corrections in
fermion pair production. The accuracy required for theoretical predictions is, however, much less due
to the lower statistical accuracy of the measurements at LEP–II as compared to LEP–I.

3.2.2.1 QED Bremsstrahlung Corrections

As in fermion-pair production, QED radiative corrections are incorporated by convolution [81, 82],
adding an integration over s′:

σ(s) =

∫ s

0
ds′ σ0(s′) = (3.136)

=

∫ s

0
ds′
∫ s′

0

∫ s′

0
ds−ds+R(s, s′)ρ(s−)ρ(s+)R(s, s′)σ0

CC03(s
′; s−, s+) . (3.137)

To lowest leading order, the radiator function R(s′ = zs, s) is identical to the one used in fermion-pair
production. For the t-channel and s/t-interference part, additional small non-leading pieces must be
added to the radiator function.

The Coulomb attraction between the slowly separating oppositely charged W bosons amounts to
a sizeable correction to the total cross section at threshold, because the scale of the correction is set
by αem/βW rather than αem alone:

RCoulomb = 1 +
αemπ

2β̄W

[

1 − 2

π
arctan

( |βM + ∆|2 − β̄2
W

2β̄Wℑ(βM )

)]

, (3.138)

where:

β̄W =

√

1 − 2
s+ + s−

s
+ ∆2 (3.139)

∆ =
|s+ − s−|

s
(3.140)

βM =

√

1 − 4

s

(

M2
W − iMWΓW − iǫ

)

. (3.141)

Here β̄W is the average velocity of the two W bosons with invariant masses
√
s+ and

√
s−. In the

approximation of stable W bosons, the Coulomb correction summed to all orders is:

RCoulomb
ΓW→0−→ αemπ/βW

1 − exp(−αemπ/βW)
≈ 1 +

αemπ

2βW
, (3.142)

therefore the name Coulomb singularity.

The effect of QED radiative corrections is shown in Figure 3.20.

3.2.2.2 Quadruple Gauge Boson Couplings

Within the Standard Model, also quadruple gauge boson vertices with at most two identical bosons
exist, namely γγW+W−, γZW+W−, ZZW+W− and W+W−W+W− vertices. They lead to W+W−γ
and W+W−Z final states in e+e− interactions as shown in Figure 3.21. The corresponding cross sec-
tions are of the same order in αem as first order QED bremsstrahlung correction in W+W− production.
Thus these processes should be taken into account at the same level as QED radiative corrections.
At LEP–I, these processes are strongly suppressed due to kinematics. At LEP–II well above the W-
pair threshold, W+W−γ production becomes visible, similar to QED radiative corrections to W+W−

production, while W+W−Z production is still below the kinematic threshold.
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Figure 3.21: Triple gauge boson production involving quadruple gauge boson vertices.

3.2.2.3 Weak Corrections

In the case of fermion-pair production, the Standard Model input parameters chosen for the calculation
of electroweak radiative corrections are αem, αS , MZ, Mt, MH, and GF replacing MW. This is justified
since MW is not a directly observable quantity in those processes. However, in case of W physics, this
is no longer true. The W boson mass appears in the calculations of cross sections in both the matrix
element and the phase-space. Thus it is more convenient to use a parameter set which contains MW.

For W-pair production, the leading weak corrections are incorporated in the matrix elements
discussed above by the replacements:

αem −→ αem(s) (3.143)

αem

sin2 θW
−→

√
2

π
GFM

2
W , (3.144)

for the electromagnetic and weak part, respectively.

3.2.3 The Decay Widths of the W Boson

For W bosons, which decay via the left-handed charged weak current, V = A = 1, one finds:

Γ
W→ff

′ = Nf
C

αemMW

12 sin2 θW
|V

ff
′ |2 = Nf

C

GFM
3
W

6
√

2π
|V

ff
′ |2 , (3.145)

where for leptonic decays the mixing matrix is the unit matrix. Writing the partial widths in terms of
the Fermi constant GF incorporates most of the electroweak radiative corrections on W-decay partial
widths.

3.2.3.1 QCD and Mass Corrections

Including also fermion-mass effects and QCD corrections arising in hadronic W decays, the partial
widths are modified:

Γ
W→ff

′ =

√

1 − (mf +mf ′)2

M2
W

√

1 − (mf −mf ′)2

M2
W

[

1 −
m2

f +m2
f ′

2M2
W

−
(m2

f −m2
f ′)2

2M4
W

]

×

Nf
C

GFM
3
W

6
√

2π
|V

ff
′ |2R(f)

QCD , (3.146)

with R
(f)
QCD = 1+∆

(f)
QCD as given before. The inclusive hadronic decay width is given by the sum over

all W → qq′ decay widths:

ΓW→had =
∑

q 6=t

ΓW→qq′ =
GFM

3
W√

2π

(

1 + ∆
(had)
QCD)

)

, (3.147)



where for the latter equality fermion-mass effects are neglected. Since Mt > MW, the decay W → tb
of on-shell W bosons is kinematically not allowed. The total decay width is the sum of all partial
decay widths:

ΓW = Γeν + Γµν + Γτν + ΓW→had =
3GFM

3
W

2
√

2π

(

1 +
2

3
∆

(had)
QCD

)

. (3.148)

Like in the case of Z boson production, fermion-mass corrections and QCD corrections for hadronic W
decays also correct the total W-pair production cross section due to its dependence on ΓW arising from
the W-boson propagator. For cross sections of specific four-fermion final-states in W-pair production,
the change in W-decay branching fractions must also be taken into account.

3.2.4 ZZ Production

The two Feynman diagrams contributing to ZZ production are shown in Figure 3.18. The differential
cross section for Z-pair production is given in [83, 84]. The total cross section is given by [85]:

σ0(e+e−→ ZZ,ΓZ = 0) = βZ
G2

FM
4
Z

8πs

[

(gVe + gAe)
4 + (gVe − gAe)

4
]

(

s2 + 4M4
Z

s− 2M2
Z

1

βZs
ln
s(1 + βZ) − 2M2

Z

s(1 − βZ) − 2M2
Z

− 2

)

, (3.149)

where βZ =
√

1 − 4M2
Z/s is the Z-boson velocity. This Born cross section is modified by the inclusion

of the finite width of the Z boson [86]. QED radiative corrections are incorporated as before by
convolution with a radiator function [82, 87]. The cross sections on Born level, corresponding to the
above Equation, and including QED radiative corrections and width effects are shown in Figure 3.22.
Within the SM, the Z-pair cross section is about a factor 15 smaller than the W-pair cross section.
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Figure 3.22: Cross section for the reaction e+e−→ ZZ as a function of
√
s, comparing Born term in

the zero-width approximation to the calculation including QED radiative correction and the finite Z
width.



3.2.5 Four Fermion Production

The diagrams for Z- and W-pair production, NC02 and CC03, as shown in Figures 3.18 and 3.19 lead
to the production of two heavy gauge bosons both of which may be on-shell, called double resonant
production. Each heavy boson decays into a pair of light fermions so that the final state observed
in the detector consists of four fermions. In case of boson-pair production, products of branching
fractions of the heavy bosons determine the four-fermion event sample composition:

σ(e+e− → V V → (ff)1(ff)2)

σ(e+e− → V V )
= B(V → (ff)1) ·B(V → (ff)2) (3.150)

=
Γ(V → (ff)1)

ΓV
· Γ(V → (ff)2)

ΓV
, (3.151)

where V = Z,W.
For a given four-fermion final state, however, there exist many more Feynman diagrams contribut-

ing to it than just the NC02 and CC03 graphs with two resonant bosons. A classification of all
four-fermion processes is given in [62]. For four-fermion final states consisting of two charged-current
type fermion-antifermion pairs (CC), the number of contributing Feynman diagrams ranges from 9
to 56 depending on the final state. For four-fermion final states consisting of neutral-current type
fermion-antifermion pairs (NC), between 6 and 144 diagrams contribute . The various possibilities
are reported in Tables 3.6 and 3.7. In particular, certain final states belong to both classes as they
are produced by both CC and NC type Feynman diagrams. Because of the large number of dia-
grams involved, no complete calculation of electroweak radiative correction exists for four-fermion
production.

The analysis of W-pair production needs to take into account that there are other diagrams in four-
fermion production besides CC03, such as single resonant boson production as shown in Figure 3.23
and non-resonant diagrams. As an example, the CC20 set of 20 diagrams contributing to the process
e+e− → qqeν at lowest order is shown in Figure 3.24. The additional diagrams modify the results
for total and differential cross sections as calculated on the basis of the CC03 set of diagrams. The
effects are usually small except if electrons appear in the final state. In that case t-channel diagrams
with the electron line going from the initial to the final state contribute, leading to additional poles
for small scattering angles, θ → 0, of the t-channel electron.

In neutral-current four fermion production, the typical two-photon type of diagrams are part of the
diagrams contributing to the processes e+e− → e+e−ff . In the case of ff = qq, the diagrammatic
calculation on fermion level is inadequate if the ff system is of low invariant mass, i.e., in the
typical two-photon physics region. In that region of phase space the cross section is dominated by the
multiperipheral two-photon diagrams topologically identical to graphs 1 to 4 of Figure 3.24, where all
internal gauge-boson propagators consist of photons. Effectively, the internal photons may become
off-shell and fragment into a low mass hadronic resonance with the same quantum numbers. Thus,
hadron-hadron collisions occur which cannot be described at the parton level.



CC d̄u s̄c e+νe µ+νµ τ+ντ

dū 43 11 20 10 10

e−ν̄e 20 20 56 18 18

µ−ν̄µ 10 10 18 19 9

Table 3.6: Number of lowest-order Feynman diagrams contributing to the four-fermion final state
composed of two charged-current type fermion-antifermion pairs. Combinations not reported above
are given by family generation symmetry and particle-antiparticle interchange.

NC d̄d ūu e+e− µ+µ− ν̄eνe ν̄µνµ

d̄d 64 43 48 24 21 10

s̄s 32 43 48 24 21 10

ūu 43 64 48 24 21 10

e+e− 48 48 144 48 56 20

µ+µ− 24 24 48 64 19 19

τ+τ− 24 24 48 24 19 10

ν̄eνe 21 21 56 19 36 12

ν̄µνµ 10 10 20 19 12 12

ν̄τντ 10 10 20 10 12 6

Table 3.7: Number of lowest-order Feynman diagrams contributing to the four-fermion final states
composed of two neutral-current type fermion-antifermion pairs. Combinations not reported above
are given by family generation symmetry.
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Figure 3.23: Feynman diagrams with single resonant W/Z bosons in four-fermion production which
contain triple gauge boson vertices. In case of single W production the diagrams with an internal
propagator of a massless photon dominate over those with a massive Z boson, making single W
production sensitive to the electromagnetic gauge couplings of the W boson only. Single Z production
with a ZW+W− vertex is strongly suppressed as all three boson propagators are massive. The single
Z boson may be replaced by a massless photon, with the consequence that single-photon production,
e+e− → ννγ, is sensitive to the electromagnetic gauge couplings of the W boson.
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Figure 3.24: All Feynman diagrams contributing to the CC20 process e+e− → ud̄e−ν̄e at lowest order.
Graphs 7, 16 and 17 correspond to the CC03 double-resonant diagrams. Graphs 1, 2, 3 and 4 are
the non-resonant diagrams. Topologically, they are identical to the multiperipheral diagrams in two-
photon collision processes. All other graphs are singly-resonant diagrams. Triple gauge boson couplings
appear in graphs 5, 6, 16 and 17. The CC10 set is given by the CC03 graphs plus the graphs 11,
12, 13, 14, 18, 19, and 20, replacing e−ν̄e by µ−ν̄µ. The CC09 set is obtained from the CC10 family
by replacing ud̄ by νττ

+ and removing graph 13, since the photon does not couple to neutrinos. The
CC11 set is obtained from the CC10 set by replacing µ−ν̄µ by sc̄ and adding graph 20 again with the
Z replaced by a photon, as the photon does couple to quarks.



3.2.5.1 Single W Boson Production

An interesting example is the process of single-W production, e+e− → Weν, which is part of the
CC20 process e+e− → qqeν shown in Figure 3.24. The differential cross section in four-fermion qqeν
production is shown in Figure 3.25. In addition to double-resonant W-pair production with one W
decaying to eν, t-channel diagrams of the type shown in Figure 3.23 contribute in particular for small
values of the polar scattering angle of the t-channel electron [88, 89]. As then the electron is lost in
the beam pipe, only the decay products of a single W boson are registered by the detector, either two
hadronic jets from the decay W → qq′, or a single charged lepton from the decay W → ℓν.
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Figure 3.25: Distribution of electron polar angle in e+e− → qqeν production. The flat part of the
distribution is mainly caused by the CC03 diagrams. The peak at cos θe → 1 is mainly caused by
single W production, e+e− → Weν.

3.2.5.2 Top Quark Production

The process e+e− → tt requires
√
s > 2Mt for the production of top-quark pairs. In contrast, the

production of single top quarks in four-fermion production, e+e− → tbff
′
, is kinematically possible

already for
√
s larger than Mt plus a few GeV to account for the other three fermions and to gain some

phase-space. Single top production proceeds via the CC10, CC11, and CC20 set of diagrams, where one
quark pair contains the top quark and the other ff

′
pair consists of leptons or light quarks. However,

for top-quark masses of 175 GeV, the single-top cross section is below 10−3 fb at
√
s = 200 GeV [90].

Single top production is thus completely out of the reach of LEP–II.

The single-top cross section increases with centre-of-mass energy and reaches a few fb just at the
kinematic threshold of tt pair production [91]. Above the tt threshold, top-pair production, with a



cross section of about 0.5 pb [91], is by far the dominant production mechanism for top quarks in
e+e− interactions.

Besides the important question of the top-quark mass, the top decay width will test both the
electroweak theory and QCD [92]. For Mt > MW +mb, the top quark decays into a b quark and an
on-shell W boson, t → Wb, leading to a Standard Model decay width of:

Γt =
GFM

3
t

8
√

2π

(

1 − M2
W

M2
t

)2(

1 + 2
M2

W

M2
t

)[

1 − 2

3

αS

π

(

2π2

3
− 5

2

)]

. (3.152)

The total decay width of the top quark ranges from 0.8 GeV for Mt = 150 GeV to 2.2 GeV for
Mt = 200 GeV, and is 1.4 GeV for Mt = 175 GeV.

3.2.5.3 Higgs Boson Production

The trilinear couplings of the Higgs boson imply the existence of HW+W−, HZZ and HHH vertices.
They lead to Higgs-boson production in e+e− interactions with larger cross section than through direct
coupling of the Higgs to the initial e+e− pair. The Feynman diagrams of Higgs production in e+e−

interactions are shown in Figure 3.26.
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Figure 3.26: Main Feynman diagrams contributing to Higgs-boson production in e+e− collisions.

For MH up to
√
s−MZ Higgs radiation off the s-channel Z boson is dominant, e+e− → Z∗ → ZH,

with a cross section given by [63]:

σ0(e+e− → Z∗ → ZH) =
G2

FM
4
Z

24πs2
(

g2
Ve + g2

Ae

)
√
λ
λ+ 12sM2

Z

(s −M2
Z)2

(3.153)

λ =
(

s−M2
H −M2

Z

)2 − 4M2
HM

2
Z , (3.154)

which stays above 0.1 pb for Higgs-boson masses up to the nominal kinematic limit of
√
s = MZ +MH

due to the finite width of the Z boson neglected in the expression given above. For Higgs masses up to√
s Higgs production is only possible through W+W− or ZZ fusion, e+e− → νeν̄eH or e+e−→ e+e−H,

respectively. However, the cross section is much smaller, a few fb only [63].
The quadrilinear couplings of the Higgs boson imply the existence of HHW+W−, HHZZ and HHHH

vertices. As in the case of quadrilinear gauge couplings, they are suppressed by a factor αem relative
to trilinear Higgs couplings.

For the analysis of e+e− interactions, direct Higgs boson production must be evaluated. Dedicated
searches for direct Higgs boson production are performed, so far with negative results. Thus the
Higgs boson must be so heavy that it cannot be produced at a measurable rate at current colliders.
The highest lower limit on the mass of the Higgs boson is derived from the negative search for ZH
production in e+e− annihilations, and is given by MH >

√
s −MZ as indicated above. The current

limit of MH > 90 GeV at 95% CL [51] is so high that any remaining contribution of direct Higgs
boson production to the e+e− processes of interest here is negligible. However, virtual effects arising
through trilinear and quadrilinear Higgs couplings to the massive gauge bosons lead to gauge-boson
propagator corrections and thus to the MH dependence of the effective couplings of the neutral weak
current as discussed in Section 2.11.2.



3.2.6 Final State Interactions

In case of four-fermion production, final state interactions are more complicated than expected from
a simple linear superposition of two two-fermion systems, as cross talk between the two systems
may occur. In particular, there are two types of strong final state interactions which potentially
have severe consequences for the experimental determination of the W-boson mass in the channel
e+e−→ W+W− → qqqq [63].

First, there are colour-reconnection (CR) effects arising from QCD interactions [62, 63]. Each W
boson decays to a colour-singlet qq pair which then undergoes parton-shower evolution and hadroni-
sation. Because of the very short W lifetime, their separation is just 0.1 fm compared to the typical
hadronic scale of 1 fm. Thus the two hadronic systems evolve on top of each other. Cross talk between
the two systems may lead to a reconnection of the two colour strings between the qq pair from each
W boson to two colour strings connecting quark-antiquarks from different W bosons. Such a colour
reconnection may occur both during the perturbative shower evolution through gluon exchange, as
shown in Figure 3.27, and during the non-perturbative hadronisation process for which only phe-
nomenological models are available. Visible effects include modifications of event shapes and particle
multiplicities.
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Figure 3.27: Perturbative colour reconnection in qqqq production through two-gluon exchange.

Second, there are effects due to Bose-Einstein correlations [62, 63]. Such correlations are of
quantum-mechanical origin as the overall wavefunction of the hadronic final state must be symmetric
under the exchange of identical bosons, for example pions. Effectively, this causes particle correlations
in phase space, since identical bosons in the hadronic final state tend to be closer in phase space than
in a world without Bose-Einstein correlations.

Effects of colour reconnection and Bose-Einstein correlations within the hadronic system of a
hadronically decaying W boson are uncritical for the experimental determination of the W-boson
mass, as the total four-momentum of the system is unchanged. However, cross talk between the
two hadronic systems due to colour reconnection or Bose-Einstein correlations may introduce a non-
vanishing four-momentum transfer between the two systems, as schematically shown in Figure 3.28.
In that case the concept of individually conserved invariant masses of the two W bosons, assumed in
the experimental determination of the W mass, is no longer valid.

The problem is that these phenomena in W-pair production are studied based on phenomenological
models only. Except for the case of colour reconnection during the perturbative phase, they cannot
be calculated from first principles. Depending on the particular Monte Carlo modelling, mass shifts
on MW of up to 100 MeV in the e+e−→ W+W− → qqqq are possible, which is large compared to the
statistical accuracy on the W boson mass expected at the end of the LEP–II program.

The size of both effects depends on how close two jets from different W bosons are in phase space.
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Figure 3.28: Schematic view of colour reconnection and Bose-Einstein correlations in W-pair produc-
tion.

Thus, the experimental selection procedure must be taken into account, as it intrinsically has lower
efficiency for overlapping jets reducing the number of visible jets. In addition, the bias in MW depends
on how MW is extracted from the distribution of invariant masses, for example, the simple mean of
the mass distribution is much more affected by tails than the pole mass of a Breit-Wigner fit to the
data.

For a detailed analysis, different models depending on several parameters should first be tuned using
data by analysing other distributions sensitive to such effects. Examples are Bose-Einstein correlation
functions as observed at the Z peak, or particle multiplicities and spectra comparing semileptonic
and hadronic W pair events. Such a tuning of the Monte Carlo models to describe the data will
lead to refined models with restricted variation of model parameters. Applying these models to the
experimental procedure to reconstruct the W-boson mass allows to study the effect on MW, to tune
the mass determination to be less sensitive to such effects, and to assess remaining systematic biases.

3.2.7 Summary of Boson-Pair Production

Boson-pair production is especially interesting in the case of W-pair production because it allows to
measure the mass and the gauge couplings of the W boson.

The measurement of the total W-pair production at the kinematic threshold determines the W-
boson mass. Above the kinematic threshold, the W-boson mass is best determined from the invariant
mass of the W decay products. Care must be taken in the analysis of invariant masses in W-pair
events where both W bosons decay hadronically, as strong final-state interaction effects between the
two overlapping hadronic W decay systems may lead to a bias.

The measurement of the total and differential cross sections in W-pair mediated four-fermion
production also allows the measurement of gauge boson couplings. These are expected due to the
non-Abelian structure of the electroweak theory and their measurement constitutes a crucial test of
the MSM. In the literature this is often referred to as a search for anomalous gauge boson couplings.
The reason is that the LEP–II data statistics is only sufficient to search for relatively large deviations
from the Born-term values rather than to measure electroweak radiative corrections to gauge boson
couplings.



3.3 Monte Carlo Generators and Semianalytical Programs

3.3.1 Monte Carlo Generators

Monte Carlo generators simulate e+e− interactions for various final states, usually distributed in
phase-space according to the Standard Model expectation, or, to be more precise, according to the
Standard Model calculation as implemented in the event generator. The most widely used Monte
Carlo generators are: BHLUMI [93] for e+e−→ e+e−(γ) for luminosity applications; BABAMC [94],
BHAGENE3 [95], BHWIDE [96], UNIBAB [97] and TEEGG [98] for e+e−→ e+e−(γ); KORALZ [99]
for e+e−→ µ+µ−(γ), τ+τ−(γ); ARIADNE [100] and JETSET [101] for e+e−→ qq(γ); DIAG36 [102]
and LEP4F [103] for two-photon process e+e− → e+e−ℓ+ℓ−; PHOJET [104] for two-photon process
e+e− → e+e−had; KORALW [105], EXCALIBUR [106] and GRC4F [107] for e+e− → ffff(γ);
PYTHIA [101] and HERWIG [108] for e+e−→ qq(γ),W+W−(γ),ZZ(γ).

The generated final-state particles are propagated through the detector simulation. Most experi-
ments model the response of the detector with the detector simulation program GEANT [109], which
includes the effects of energy loss, multiple scattering and showering in the detector materials and in
the beam pipe. Hadronic showers are usually simulated with the GHEISHA [110] program.

The detector simulation makes direct comparisons with the recorded data possible. Thus efficien-
cies of selections for specific final states are evaluated as well as background contributions arising from
other processes.

Through the detailed simulation of detector effects, one is able to correct the number of selected
data events for background and selection efficiency, and thus arrive at a measurement for a specific
process free of detector effects. These measurements are then analysed by comparing them to pre-
dictions calculated based on various physics assumptions. These predictions are usually calculated by
the semianalytical programs discussed in the following.

3.3.2 Semianalytical Programs

Semianalytical programs calculate cross sections integrating out most of the kinematic variables spec-
ifying the final state, such as azimuthal or polar angles or energies of the final state fermions and
radiative photons. These integrations are performed analytically or numerically. Only a few simple
cuts on the phase-space variables describing the final state are taken into account, such as polar angles,
acollinearity or amount of photon radiation.

On one side there are programs coding Standard Model calculations. As a function of the chosen
Standard Model input parameter set, these programs calculate all other quantities, such as effec-
tive couplings, partial decay widths, cross sections and forward-backward asymmetries, both with or
without including QED radiative effects. The most widely used programs in this respect are AL-
IBABA [111], TOPAZ0 [21] and ZFITTER [22] for fermion-pair production, and GENTLE [112] and
WTO [113] for W-pair and four-fermion production.

In addition, there are theory programs which calculate cross sections and asymmetries in so-
called model-independent approaches. Such calculations of cross sections and asymmetries are based
on masses, partial widths or effective coupling constants. They allow the determination of these
parameters from the measurements without relying on the full framework of the Standard Model,
thus also allowing to perform tests of the Standard Model. The programs used in this area are
MIZA [114] and ZFITTER, implementing the methods of partial widths and effective couplings, and
SMATASY [20], implementing the S-Matrix ansatz within the ZFITTER framework. In this review,
the theoretical calculations are performed with the semianalytical programs SMATASY, TOPAZ0 and
ZFITTER.



3.3.3 Theoretical Uncertainties

The Standard Model calculations necessarily contain uncertainties due to uncalculated and thus miss-
ing higher order radiative corrections. The precision of the calculations and their theoretical uncer-
tainties are assessed in [60, 62, 63, 115–117]. A detailed comparison of the various computer codes,
in particular of the the semianalytical programs and electroweak libraries for the calculation of elec-
troweak observables, have been made by the working group on precision calculations for the Z reso-
nance [116] in 1994. Since then, additional higher-order corrections have been calculated and the new
results are incorporated in the semianalytical programs TOPAZ0 and ZFITTER. In order of increasing
importance, the newly available corrections are:� Four-loop QCD corrections [118].

The effect of these corrections is less than 10−5 relative and thus negligible compared to the
experimental errors.� Nonfactorisable mixed O(αemαS) QCD-electroweak corrections [119].
These corrections reduce the hadronic Z width by about 0.6 MeV and thus increase the value of
αS derived from the measurement by 0.001.� Next-to-leading two-loop electroweak corrections [47].
Depending on the mass of the top quark and of the Higgs boson, these corrections decrease ∆ρ
by up to 4 · 10−4, increase sin2 θW by up to 2 · 10−4, and decrease MW by up to 15 MeV.

The combined effect of all new corrections on the electroweak parameters as calculated by the two
programs TOPAZ0 and ZFITTER is summarised in [120]. The inclusion of the new subleading two-
loop electroweak corrections reduces the theoretical uncertainty on the SM calculations of sin2 θW and
MW to less than 10−4 and 10 MeV, respectively [121]. Detailed comparisons between the calculations
of TOPAZ0 and ZFITTER and studies of the remaining theoretical uncertainties are compiled in [122].





Chapter 4

Electron-Positron Colliders and

Detectors

4.1 The Stanford Linear Collider SLC

The SLC collider at SLAC, Stanford, is based on the old linear accelerator initially built during the
1960s for fixed-target lepton-nucleon scattering experiments. During the 1980s it was modified to
accelerate both electrons and positrons which are brought into collisions at a single interaction point
by guiding them along opposing arcs as shown in Figure 4.1. In June 1989 the first e+e− collisions
at 91 GeV centre-of-mass energy were recorded by the upgraded MARK II detector [123], which had
already taken data in e+e− collisions at lower centre-of-mass energies. By August 1989, the first
measurement of Z resonance parameters in e+e− collisions was performed. Since 1992, the new SLD

detector [124], in design similar to the LEP detectors, takes data at the SLC.

The SLC provides the unique opportunity of longitudinally polarised electron beams. The longi-
tudinal polarisation of the electron beam, Pe, is defined as the average electron helicity, he = −1 for
left-handed electrons and he = +1 for right-handed electrons, averaged over the electrons in the beam.
Nowadays, SLC routinely achieves beam polarisations in excess of |Pe| = P = 70%. Because of the
small SLC beam pipe radius of only 4.5 cm at the interaction vertex, the silicon micro vertex detector
of SLD is positioned very close to the interaction point. This makes precise reconstruction of vertices,
impact parameters and decay lengths possible.

Until June 1998, the SLD experiment has collected 5.6 · 105 Z events at 91.28 GeV where the Z
pole e+e− annihilation cross section has its maximum. The amount of polarisation obtained for the
different data sets is shown in Table 4.1. In view of the excellent performance in 1997 and 1998, the
SLD collaboration and SLAC propose a run extension with the goal of collecting more than 7 · 105

additional Z decays.

4.2 The Large Electron Positron Collider LEP

The LEP collider has been built at CERN close to Geneva during the 1980s. As shown in Figure 4.2,
it is a circular accelerator with a circumference of 27 km, which makes it the largest machine in the
world. Existing colliders at CERN, such as the PS and SPS, are used as pre-accelerators to ramp
the electrons and positrons to the LEP injection energy between 20 GeV and 22 GeV as shown in
Figure 4.3. Inside the LEP ring, the e+e− beams are further accelerated and brought into collisions at
four interaction points, which are equipped with the detectors ALEPH [126, 127], DELPHI [128, 129],
L3 [130] and OPAL [131]. The LEP machine started its operation with a pilot run in August 1989,
yielding a handful of Z events per experiment. The first energy scan of the Z resonance was performed
in the fall of 1989.
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Figure 4.1: The SLC collider at SLAC, Stanford.

Data Taking Z Events Polarisation

Period [105] P [%]

1992 0.1 22.4 ± 0.6

1993 0.5 62.6 ± 1.2

1994+1995 1.0 77.2 ± 0.5

1996 0.5 76.5 ± 0.5

1997 1.0 73.3 ± 0.8

1998 2.5 73.1 ± 0.8

Table 4.1: Number of Z events selected by SLD and degree of beam polarisation at SLC [125]. The
error on the polarisation is dominated by systematic effects. The polarisation results for the 1996-1998
data are preliminary.
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Figure 4.2: The LEP collider and the four LEP experiments ALEPH, DELPHI, L3 and OPAL at CERN,
Geneva.

Figure 4.3: The injection scheme of the LEP collider at CERN.



Since then, LEP delivered an increasing amount of integrated luminosity each year as shown in
Table 4.2. Peak luminosities reached 1031cm−2s−1. The LEP accelerator is considered as a Z factory,
delivering luminosity at a rate nearly two orders of magnitude higher than SLC. Until 1995, LEP

was operated at various centre-of-mass energies close to the Z mass, |√s −MZ| < 3 GeV, in order to
scan the Z resonance. During this phase, called LEP–I, each experiment collected about 160 pb−1 of
integrated luminosity and selected on average 4 · 106 hadronic and 4 · 105 leptonic events.

The Z phase of LEP ended in the final weeks of the 1995 data taking period, when the centre-of-
mass energy was increased by a factor of 1.5 to a range of 130 GeV to 140 GeV. Since then the LEP

accelerator provides by far the highest centre-of-mass energies ever achieved in e+e− collisions. During
the LEP–II program from 1996 until the year 2000, the centre-of-mass energy gradually increases from
the threshold of W-pair production, 161 GeV, to a maximum of about 200 GeV. The increase in
centre-of-mass energy with respect to LEP–I is achieved by adding 288 superconducting cavities over
the years 1995 to 1999. At LEP–II, peak luminosities of 1032cm−2s−1 are reached and a total integrated
luminosity approaching 500 pb−1 per experiment is expected until the end of the year 2000, when data
taking at LEP must stop due to preparations for the LHC project.

In contrast to SLC, LEP operates with unpolarised electron and positron beams during physics
data taking and the measurements are interpreted under this assumption. Only under special running
conditions, transverse beam polarisation is obtained, which is used for the calibration of the LEP

beam energy as discussed in Section 4.6. Transverse beam polarisation leads to an azimuthal modu-
lation of differential cross sections which, however, integrates out since the detectors are azimuthally
symmetric. An unknown net longitudinal polarisation at the interaction points would be dangerous.
Studies show that the magnitude of the electron and positron polarisations are smaller than 0.5%, and
that the polarisation vectors of electrons and positrons are opposite for identical orbits [132]. Thus
modifications of observables linear in the polarisation vanish, while quadratic effects are limited to be
less than 2.5 · 10−5 which is negligible.

Data Taking Energy Luminosity Centre-of-mass Energies

Period Points pb−1 √
s

1989 10 1 |√s−MZ| < 4 GeV

1990 7 6 |√s−MZ| < 3 GeV

1991 7 14 |√s−MZ| < 3 GeV

1992 1 25
√
s ≃MZ

1993 3 35 |√s−MZ| < 3 GeV

1994 1 50
√
s ≃MZ

1995 3 30 |√s−MZ| < 3 GeV

1995 3 5 130 GeV − 140 GeV

1996 1 10 161 GeV

1996 2 10 170 GeV − 172 GeV

1997 2 7 130 GeV − 136 GeV

1997 3 55 182 GeV − 184 GeV

1998 1 180 189 GeV

1999+2000 3 200 192 GeV − 200 GeV

Table 4.2: Number of centre-of-mass energy points and average recorded integrated luminosity per
experiment. For 1999-2000, expectations are shown.



4.3 The Experiments at SLC and LEP

The conceptual design of the SLC detector, SLD [124], and the four LEP detectors, ALEPH [126, 127],
DELPHI [128, 129], L3 [130] and OPAL [131], is rather similar. They are shown in Figures 4.4, 4.5
and 4.6. All detectors aim as much as possible for hermetic coverage of the full solid angle. Various
subdetector systems are layered as cylinders centred along the beam line and on the interaction point.
Part or all of the detector is embedded in a magnetic field with field lines parallel to the beam axis.

The inner tracking system consists of multilayered silicon micro-strip vertex detectors surrounded
by gas drift chambers. This system measures track parameters such as momentum and angles of
charged particles. Extrapolation back to the interaction vertex allows the determination of the event
vertex, impact parameters, secondary vertices and decay lengths.

Calorimeters surround the inner tracking system. They are usually divided into two parts, first
an electromagnetic calorimeter and then a hadronic calorimeter. All non-minimal-ionising particles
are absorbed and their energy is measured. The electromagnetic calorimeter measures precisely the
energy and position of electromagnetic showers arising from electrons and photons. The hadronic
calorimeter measures the energyflow of both charged and neutral hadronic particles.

An outer tracking system for penetrating minimal-ionising muons completes the detectors. Such
a system improves on the accuracy of the measurements of the inner tracking system for muons due
to its larger lever arm.

Particle identification is also derived from dE/dx measurements in the central tracking chamber,
and for some experiments by ring-imaging Cerenkov counters. In addition, the detectors contain special
purpose subdetectors to measure the luminosity in their interaction region, described in Section 4.5.

Figure 4.4: The SLD detector at SLC.
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4.4 Beam Polarisation

4.4.1 Production of Polarised Electrons

Polarised electrons at SLC are photoproduced by shining circularly polarised laser light on a strained
GaAs cathode as shown in Figure 4.7. The sign of the laser polarisation, and thus the sign of the
electron polarisation, is chosen at random with equal probability. The strain affecting the GaAs lattice
is obtained by growing a 0.1 µm thick layer of GaAs on a basis of GaAsP. It lifts the degeneracy of the
J = 3/2 energy levels in the valence band by about 0.05 eV as shown in Figure 4.8. Incident photons
with positive helicity and an energy between 1.43 eV and 1.48 eV excite only the transition from the
mj = −3/2 state in the valence band to the mj = −1/2 state in the conduction band, thus producing
electrons of one helicity state only. As a consequence the polarisation of the extracted electrons is
increased above the limit of 50% accessible in the degenerate case.

4.4.2 Transport of Polarised Electrons

Before entering the damping ring, the longitudinal polarisation of the electron bunch is rotated to
become transverse. This transverse polarisation is kept during acceleration up to the nominal beam
energy of 46.6 GeV along the linear accelerator, as shown in Figure 4.1. The electron spin orienta-
tion is manipulated in the SLC arc by a pair of vertical betatron oscillations to achieve longitudinal
polarisation at the interaction point.

4.4.3 Polarisation Measurement

The polarisation of the beam electrons is measured twice. First it is measured with a Moller polarime-
ter at the end of the linear part of the accelerator, and then with a Compton polarimeter after the
electron beam has crossed the SLD collision point, as shown in Figure 4.9.

The experimental setup of the more precise Compton polarimeter is shown in Figure 4.10. Cir-
cularly polarised laser light interacts through Compton scattering with the longitudinally polarised
beam electrons. If in the electron-photon centre-of-mass system the electron is scattered backwards,
the energy loss of the electrons in the laboratory system becomes quite sizeable. The Compton cross
section is measured for parallel, J = 3/2, and antiparallel, J = 1/2 combinations of the photon and
electron beam helicities, and their asymmetry is formed:

A(E) =

dσ(E, J = 3/2)
dE

− dσ(E, J = 1/2)
dE

dσ(E, J = 3/2)
dE

+
dσ(E, J = 1/2)

dE

= κPePγAC(E) , (4.1)
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Figure 4.7: Source of polarised beam electrons at SLC [133]. The laser light is polarised with a
linear polariser and two Pockels cells allowing to generate arbitrary elliptical polarisation in order to
compensate for phase shifts in the laser beam transport optics.
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Figure 4.8: Energy levels of the strained GaAs photocathode used to produce polarised electrons for
SLC [133]. Shown is the energy gap between the conduction and the valence band and the splits of
the energy levels of the valence band caused by the applied strain and the spin-orbit coupling. The
stimulated transition is indicated by the arrow pointing from the valence band to the conduction band.
The helicity of the extracted electrons is the same as that of the incident photons since the extracted
electrons have opposite direction to the incident photons.

Figure 4.9: Measurements of electron beam polarisation at SLC. Shown are the locations of the
Compton and Moller polarimeters along the SLC beam line. The thick arrows indicate the beam
polarisation vector along the electron beam line.
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where AC(E) is the known Compton asymmetry function [134], and κ is the analysing power of the
polarimeter accounting for detector effects, typically κ = 0.7. The asymmetry A(E) is measured
as a function of the electron energy E. This is achieved by spatially separating the scattered beam
electrons of different energy E by means of a magnetic spectrometer deflecting the electron beam from
its nominal path, the so called neutral beam line. As shown in Figure 4.11, the scattered electrons are
measured by a nine-channel Cerenkov detector extending from 11 cm to 21 cm in transverse distance
to the neutral beam line, corresponding to electron energies in the range from 17 GeV to 30 GeV.

For each energy E, the measurement of A(E) determines the product of electron beam and laser
light polarisations, PePγ . The laser is circularly polarised by means of a linear polariser and two
Pockels cells, as shown in Figure 4.12. The polarisation of the laser beam, typically Pγ = 99.6± 0.2%,
is itself also continuously monitored both before and after passing through the Compton interaction
point. In each case, the amount of left-polarised light and right-polarised light making up the total is
measured by photodiodes.

Based on this setup, the longitudinal electron beam polarisation is measured downstream of the
electron beam every three minutes with a statistical uncertainty δP better than 1%. Machine tuning
of the accelerator causes changes to the polarisation in the range of ∆P = 0.5% over the time scale of
hours. The time dependent drift of the polarisation is well tracked. The measurement of the average
polarisation is systematics limited, dominated by the detector linearity and interchannel consistency.
In recent years the relative error δP/P is reduced to 0.7% as the final error, as reported in Table 4.1.
The error on the polarisation directly propagates as a source of systematic error to the measurements
of polarised asymmetries, δP/P = δAlr/Alr = δAfblr/Afblr.
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Figure 4.11: Left: Calculated unpolarised cross section and Compton asymmetry [135]. Right: Mea-
surements shown as circles compared to fit result shown as horizontal bar. The fit procedure determines
the beam polarisation and the location of the Compton edge, i.e., the position of the detector with
respect to the beam line. Part a) shows the the observed asymmetry for each detector channel. Part
b) shows the response of channel 6 as a function of the table position or transverse distance to the
neutral beamline.
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Figure 4.12: Compton laser system and monitoring of laser polarisation at SLC [135].

4.5 Luminosity Measurement

The accurate measurement of the total integrated luminosity, L, at each centre-of-mass energy point
is crucial for precise measurements of cross sections, σ, as it enters all cross-section measurements:

σ =
Nsel −Nbg

ǫ · L , (4.2)

where the number of events selected in the data, Nsel, corrected for the expected number of events
selected from background sources, Nbg, is divided by the selection efficiency, ǫ, and the total integrated
luminosity of the data sample, L.

The parameters of the SLC and LEP machines and fills are not well enough known to calculate
the luminosity at the individual experimental interaction points with permille precision. A much
more reliable determination is obtained by using the detector itself to measure the luminosity of its
interaction region, thereby also taking detector deadtimes and downtimes correctly into account. Given



a specific luminosity reaction e, the luminosity at the centre-of-mass energy
√
s is simply determined

by the inverse of the equation above, written for each
√
s point:

L(s) =
N e

sel(s) −N e
bg(s)

ǫe(s) · σe(s, a)
, (4.3)

where σe(s, a) is the calculated cross section of reaction e within the fiducial volume a. Effectively,
the cross section of any new process, σ(s), is simply determined relative to the known cross section
σe(s, a).

It is obviously advantageous to use a well known interaction e with a high cross section σe(s, a) to
keep both the theoretical error on the calculation of σe(s, a) and the statistical error of the luminosity
measurement as small as possible. At e+e− colliders, the reaction typically used is Bhabha scattering,
e+e−→ e+e−(γ), measured at small polar scattering angles θ. In this region of phase-space, the
Bhabha cross section is dominated by the t-channel exchange of a photon leading to a sharp rise of
the differential cross section with θ → 0, see Equation 3.39. The lowest-order result is:

dσe(s)

dθ
=

dσt(γtγt)

dθ
=

32πα2
em

s
· 1

θ3
for 0 < θ ≪ 1 rad . (4.4)

At small scattering angles, t = −s(1− cos θ)/2 is small and in that region of t QED is experimentally
well tested. Furthermore, since t-channel photon exchange is a pure QED process, the luminosity is
also nearly completely independent of the Z boson, whose properties are to be determined.

Integrating the differential cross section, the total cross section in the fiducial volume a given by
the polar angular range 0 < θmin < θ < θmax is obtained:

σe(θmin < θ < θmax) =
16πα2

em

s

(

1

θ2
min

− 1

θ2
max

)

for θmax ≪ 1 rad (4.5)

= 0.125
M2

Z

s

(

1

θ2
min

− 1

θ2
max

)

nb . (4.6)

An error on the fiducial volume, δθ, translates into an error on the Bhabha cross section and thus
luminosity of δL/L = δσe/σe = 2 δθ/θ. In particular the inner edge of the fiducial volume, θmin, needs
to be known precisely.

The principle of the luminosity measurement is shown in Figure 4.13. The experiments at SLC and
LEP are equipped with dedicated luminosity detectors situated at low polar angles, typically covering
the angular range of 25 mrad < θ, π− θ < 60 mrad. The accepted cross section of small-angle Bhabha
scattering for the luminosity measurement ranges from 50 nb to 100 nb. This is a factor of 2 to 3
larger than the largest Z resonance cross section, which is about 30 nb for the hadronic final state at
the Z pole

√
s = MZ. The accepted cross sections for lepton-pairs are smaller by at least an order of

magnitude. Thus the statistical error on the luminosity measurement needs to be taken into account
for the measurement of the hadronic cross section while it is negligible for all other cross section
measurements. It is always negligible for cross section measurements at centre-of-mass energies far
away from the Z resonance, i.e., for the LEP–II measurements.

The systematic error of the luminosity measurement constitutes a correlated error between all cross
section measurements of that experiment. When averaging cross section measurements of different
experiments, the theoretical error on the calculation of the small-angle Bhabha cross-section must be
taken as fully correlated.

4.5.1 Experimental Errors

The experimental systematic errors are dominated by aspects concerning the definition of the fiducial
volume in polar angle, such as the reconstruction of the polar coordinate of the electrons, the detector
geometry and the alignment of the detector with respect to the interaction vertex. In order to reduce
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Figure 4.13: Principle of luminosity measurement at e+e− collider. The distance of the luminosity
detectors to the interaction point is about 2.5 m. The radial coverage typically extends from 6 cm to
16 cm.

the uncertainty on the luminosity due to such geometrical effects, asymmetric fiducial volumes are
defined for the two luminosity detectors, a wide region on one side and a narrow region on the other
side. The luminosity is measured twice with the wide side and the narrow side interchanged. The
average of the two has a reduced sensitivity to effects caused by misalignment.

The first generation of luminosity detectors in the LEP experiments consisted of electromagnetic
calorimeters, yielding experimental systematic errors in the order of 0.5%. In order to exploit the
higher luminosities and high precision energy scans of the Z resonance performed in the years 1993
to 1995, the LEP experiments have installed a second generation of luminosity detectors, combining
calorimetry with silicon strip technology in order to improve the reconstruction of impact coordinates
and the definition of the fiducial volume. Experimental systematic errors of 0.03% to 0.1% are now
achieved [127, 129, 136–138]. Distributions of typical selection variables are shown in Figure 4.14.

4.5.2 Theoretical Errors

The theoretical calculation of the cross section for small-angle Bhabha scattering at
√
s ≈MZ has been

improving in parallel with the data taking at LEP–I. Prompted by always decreasing experimental
errors, a large effort was undertaken in order to decrease the theoretical uncertainties as well, and
to provide adequate Monte Carlo programs for acceptance calculations. The theoretical error on the
luminosity measurement for Z pole centre-of-mass energies decreased by an order of magnitude, from
about 1% before the start of data taking at SLC and LEP to 0.11% in 1995. This progress is achieved
by including higher-order QED radiative corrections and assessment of the remaining uncertainties [60,
62, 116, 140]. Currently, the complete O(αem) corrections and the leading-log corrections to all orders,
O(αn

emL
n) with L = ln |t/m2

e | ≈ 15 are included in both calculations and event generators which allow
to study the effects for realistic experimental event selections. The currently remaining uncertainties
are summarised in Table 4.3 [62, 140].

At SLC/LEP–I centre-of-mass energies, the total theoretical uncertainty is large compared to the
statistical precision of 0.025% given by 16 ·106 hadronic Z decays selected by the four LEP experiments
combined. At LEP–II centre-of-mass energies, lower precision is required due to the smaller number
of selected ff events, yielding statistical accuracies in the order of 0.25% on the number of hadronic
events combining the data of the four experiments at the end of the LEP–II program.

The total theoretical error is dominated by uncertainties due to missing second-order subleading
QED corrections, O(α2

emL). These uncertainties have been evaluated to be 0.10% at
√
s = MZ

and 0.20% at
√
s = 2MZ. A recent reevaluation of these uncertainties reduces the corresponding
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Source of Systematic Contribution to

Uncertainty δL/L [%]
√
s = MZ

√
s = 2MZ

Missing O(α2
emL) 0.10 0.20

Vacuum Polarisation 0.04 0.10

Light Pairs 0.03 0.05

Missing O(α3
emL

3) 0.015 0.03

Z-boson exchange 0.015 —

Total 0.11 0.25

Table 4.3: Contributions to the total theoretical error on the calculation of the cross section of the
small-angle Bhabha scattering process [62, 140], which is used in the luminosity analysis. For typical
polar angles, the large logarithm L is given by L = ln |t/m2

e | ≈ 15.



errors down to 0.027% and 0.04%, respectively [141]. Thus the total theoretical luminosity error will
decreased by a factor of two, down to 0.06% and 0.12%, respectively . With this improvement, the
total theoretical error on the luminosity is then dominated by the uncertainty in the hadronic vacuum
polarisation.

4.6 Centre-of-Mass Energy Measurement

In order to determine the resonance parameters of the Z boson such as its mass and total decay
width precisely, total cross sections must be measured at several precisely known LEP–I centre-of-
mass energies around the mass of the Z boson. Likewise, the determination of the mass of the W
boson requires precise knowledge on the centre-of-mass energies where data is taken at LEP–II. The
calibration of the LEP centre-of-mass energy is discussed in this section.

At LEP–I, energy scans of the Z resonance have been performed in the years 1989, 1990, 1991,
1993 and 1995. In 1992 and 1994, luminosity was collected at a centre-of-mass energy where the Z
cross section is maximal. The various centre-of-mass energies are reported in Table 4.2, together with
typical luminosities per experiment. By now, the 1989 data is ignored due to its negligible statistical
significance as compared to the data taken in later years and due to significant improvements in the
accuracy of the LEP energy calibration. At LEP–II, data has been taken at the threshold of W-pair
production, 161 GeV, and above, at 172 GeV, in the year 1996; at 183 GeV in 1997; and at 189 GeV
in 1998. In the year 1999 LEP will approach a centre-of-mass energy of 200 GeV to be kept until the
end of data taking at LEP in the year 2000.

The SLD detector at SLC has taken data at the maximum of the Z-pole annihilation cross section.
The luminosity weighted mean centre-of-mass energy is measured with precision energy spectrome-
ters [142] to be 91.280 ± 0.025 GeV [143]. This measurement is now being verified by also analysing
cross sections for Z boson production at 0.9 GeV below and above the peak. From a fit to the three
cross sections and knowing the Z mass from LEP–I, a preliminary correction in the centre-of-mass
energy of ∆

√
s = −49 ± 40 MeV is derived [125].

4.6.1 Calibration of the LEP Energy

4.6.1.1 Beam Energy Measurement

The determination of the LEP beam energy for the data accumulated by the experiments relies on two
key points:

1. The precise measurement of the LEP beam energy by the method of resonant depolarisation [144,
145], usually performed just before a LEP machine fill is terminated.

2. The model to describe the time dependent and interaction point specific variation of the LEP

beam energy during data taking at LEP–I [146–150] and LEP–II [151–153].

4.6.1.2 Method of Resonant Depolarisation

In an ideal circular orbit, the circulating electrons and positrons become polarised transverse to the
plane containing the orbit. The polarisation is built up naturally due to synchrotron radiation, called
Sokolov-Ternov effect [154]. Over time, the transverse polarisation, P (t), approaches an asymptotic
value:

P (t) = P∞ ·
[

1 − exp

(

− t

τ

)]

(4.7)

P∞ =
8

5
√

3
· τd
τp + τd

= 0.92376 · τd
τp + τd

(4.8)

τ =
τpτd
τp + τd

, (4.9)



where τp and τd are the time constants of self-polarising and depolarising effects competing against
each other. Usually, τd ≪ τp due to machine imperfections, i.e., depolarisation occurs much faster
than self polarisation, so that during normal data taking the transverse polarisation of the LEP beams
vanishes.

Under special running conditions, however, τd is much reduced and transverse polarisation is built
up within an hour or less, as shown in Figure 4.15. It is then possible to measure the spin tune, i.e.,
the number of spin precessions per complete particle revolution, which is related to the particle energy
via the Lorentz γ factor:

νs = aeγe = ae
Ee

me
= ns + δs , (4.10)

where ae = (ge − 2)/2 is the anomalous magnetic moment of the electron. The quantities ns is the
integer part and δs is the fractional part of the spin tune νs. Standard magnetic measurements are
precise enough to determine ns without ambiguity. At the Z pole, ns = 103 for a beam energy of
45.6 GeV.

A radial field of an RF magnet oscillating with frequency fdep is used to rotate the spin by
0.14 mrad. If the perturbation from the RF magnet is in resonance with the spin precession, these
small spin rotations add up coherently. After about 104 turns or 1 sec at a particle revolution fre-
quency of fe = 11.25 kHz, the polarisation vector is moved into the horizontal plane, and the vertical
polarisation is destroyed. A sweep of fdep around the estimated value f res

dep is performed while contin-
uously measuring the beam polarisation. Eventually, depolarisation is observed at a certain setting,
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Figure 4.15: Build-up of transverse beam polarisation at LEP–I achieved under special running con-
ditions. The asymptotic value of the polarisation is determined to be P∞ = 11.5 ± 0.3% for this
measurement.
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Figure 4.16: Resonant depolarisation of transverse beam polarisation at LEP. The change in transverse
polarisation at a beam energy of 44.7 GeV, corresponding to ns = 101, is shown when sweeping through
the depolarising resonance [145]. The calculated beam energies corresponding to νs are also shown.

yielding f res
dep . The condition for depolarisation to occur reads:

f res
dep = (k ± δs)fe , (4.11)

where k is an arbitrary integer. The frequencies f res
dep used at LEP correspond to the cases k = 0 with

the frequency f res
dep = δsfe, or k = +1 with the mirror frequency f res

dep = (1 − δs)fe. A measurement
of the depolarising frequency at the resonance, f res

dep, yields the fractional part of the spin tune, thus
determining the average beam energy around the LEP ring:

Ee =
me

ae
νs = 0.4406486(1) ·

(

ns +
f res

dep

fe

)

GeV . (4.12)

A measurement of δs to an accuracy of 0.5·10−3 determines Ee to an accuracy of 0.5·10−5 or 0.22 MeV.
The width of the depolarisation resonance in spin tune and beam energy is shown in Figure 4.16 for
two depolarisation measurements. Intrinsic accuracies of 0.2 MeV and less are achieved.

The beam polarisation Pe itself is measured [155] by a polarimeter [156] based on spin-dependent
Compton scattering of circularly polarised photons off the polarised electron beam [157]. The angular
distribution of the backscattered photons is measured far downstream, where the beams following their
circular orbit are bent away, in terms of the transverse distance Yγ from the extrapolated electron
beam line. The mean transverse position depends on the product of laser polarisation, Pγ , and
beam polarisation, Pe. The shift ∆ in the mean position 〈Yγ〉 is determined when reversing the laser
polarisation:

∆〈Yγ〉 = κPγPe , (4.13)

where κ = (500 ± 30)µm is the analysing power of the polarimeter [155]. The idea is similar to the
polarisation measurement at SLC discussed before except that the scattered photons are detected,
and not the scattered electrons. However, the requirement in accuracy is much less stringent since no
absolute polarisation measurement is needed for the purpose of the energy calibration.



4.6.1.3 Energy Model for 1990 to 1992

For the energy scans in 1990 and 1991 [146, 147, 149] and the data taken in 1992 [148], the average
LEP beam energy for each energy point i and fill f is derived from the magnetic field measured in a
reference dipole which is powered in series with the LEP dipoles. The field measurement determines
the so-called field-display energy, EFD(i, f), to which corrections are applied in order to determine
the centre-of-mass energy at the interaction points:

ECM (i, f) = 2EFD(i, f)

[

1 + aabs + α
2EFD(i, f) − 93 GeV

2EFD(i, f)
+

Ctemp(T (i, f) − T̄ ) + ∆ERF (IP, i, f)
]

. (4.14)

The individual corrections are described in the following:

1. The absolute energy scale is determined by calibrating the field-display energy against the result
from the method of resonant depolarisation, which is performed at the P + 2 energy point at√
s = 93 GeV. The resulting relative offset is aabs = (−73.0 ± 5.7) · 10−5.

2. The correction of the local energy scale is determined from flux-loop measurements. It is lin-
earised and normalised to the P + 2 calibration point at 93 GeV. The linear correction is
α = (−2.0 ± 1.5) · 10−3.

3. A linear temperature correction is applied on a fill-by-fill basis. The temperature coefficient
Ctemp is obtained from flux-loop measurements and dedicated laboratory experiments, Ctemp =
(1.00 ± 0.25) · 10−4K−1.

4. Interaction-point specific corrections, ∆RF (IP, i, f), need to be taken into account. They arise
from the asymmetric distribution of the RF cavities around the LEP ring and alignment errors
of these RF cavities. In addition, these corrections are time dependent as they vary according
to the high-voltage and power status of the accelerating RF cavities.

Typical accuracies on
√
s of 25 MeV in 1990 and of 5 MeV in 1991 are obtained.

4.6.1.4 Energy Model for 1993 to 1995

For the precise energy scans of 1993 and 1995 and the data taken in 1994, measurements of resonant
depolarisation are performed at all three energy points of each scan. The energy model is much
refined to take additional effects such as earth tides and parasitic currents on the beam pipe created
by electrical trains running nearby into account [150]. The latter effect, discovered for the 1995 data
taking period, invalidated the LEP energy calibration for 1993 already published before [158]. The
1993 and 1994 energies are retroactively corrected for this effect [150].

The LEP beam energy averaged over the interaction points is calculated every 15 minutes according
to the formula:

Ee(t) = Enorm(f)

· [1 + Crise(t)] · [1 +Ctemp(t)] · [1 + Ctide(t)]

· [1 + Corbit(f)] · [1 + Ccorr(t)] · [1 + CQFQD(t)] , (4.15)

where the energy used for normalisation, Enorm, is either given by the resonant depolarisation result
if the fill f was calibrated, or by the mean of the calibrations performed for the fills of this energy
point if the fill f was not calibrated. The individual corrections are described in the following:

1. Crise accounts for the change in the bending field due to parasitic currents flowing along the
beam pipe;



2. Ctemp accounts for the change in the field of the dipole magnets due to temperature changes;

3. Ctide accounts for the effect of earth tides changing the circumference of the LEP ring;

4. Corbit accounts for the deviation of the horizontal orbit position from a central orbit with no
quadrupole bending component;

5. Ccorr accounts for different settings of the horizontal corrector dipoles between physics mode and
energy calibration mode, which affects the orbit and thus the field integral seen by the beams;

6. CQFQD accounts for the magnetic field induced by the current imbalance of the focusing quadru-
poles, QF , and defocusing quadrupoles, QD, which is due to the different phase advance in the
vertical and horizontal plane.

4.6.1.5 Centre-of-Mass Energy

The LEP centre-of-mass energy for an individual experiment is then calculated by applying corrections
specific to the interaction point:

ECM (t) = 2Ee(t) + ∆ERF (t) + ∆Edisp(t) + ∆Ee+ . (4.16)

The correction ∆ERF (t) describes interaction point specific corrections due to the status of the RF
system. The bulk of the effect is given by the asymmetric distribution of RF power along the LEP

ring as shown in Figure 4.17. The correction ∆Edisp is the interaction point dependent correction in
1995 due to the combined effect of opposite-sign vertical dispersion and vertical beam offsets. The
correction ∆Ee+ accounts for the possible difference in the average energies of positrons and electrons.

The time-dependent centre-of-mass energies are used by the experiments to calculate the luminosity-
weighted mean centre-of-mass energies for each energy point. Seven energy points are considered for
each LEP experiment, three each for the scans in 1993 and 1995, and the single peak energy of 1994.
The errors on the mean centre-of-mass energies are given in terms of a covariance matrix, taking
correlations due to the calibration procedure into account. The full covariance matrix has a size of 28
by 28 and takes interaction point specific errors and correlations into account. Assuming equal weight
of the measurements of the four experiments, the 28×28 error matrix is simplified to the 7×7 matrix
reported in Table 4.4.

Period 93 P − 2 93 P 93 P + 2 94 95 P − 2 95 P 95 P + 2

93 P − 2 11.71 7.60 6.73 5.06 1.66 1.41 1.45

93 P 7.60 44.81 6.96 5.67 1.30 1.43 1.33

93 P + 2 6.73 6.96 8.69 4.67 1.51 1.57 1.76

94 P 5.06 5.67 4.67 13.14 1.51 1.68 1.53

95 P − 2 1.66 1.30 1.51 1.51 3.17 1.53 1.49

95 P 1.41 1.43 1.57 1.68 1.53 29.08 1.79

95 P + 2 1.45 1.33 1.76 1.53 1.49 1.79 2.83

Table 4.4: Error matrix for the seven LEP–I centre-of-mass energies of 1993 to 1995 in units of
MeV2 [150].
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4.6.2 Energy Spread

The time-dependence of the centre-of-mass energy causes a spread ωt of typically 10 MeV to 15 MeV
associated to the mean centre-of-mass energy of each energy point. In addition, the intrinsic energy
distribution of particles in the LEP beams at any given time is not a δ function but has a finite width.
For the 1993 to 1995 data, the spread ωi typically ranges from 54 MeV to 57 MeV and is known
to an accuracy ranging from 1.1 MeV to 1.3 MeV [150]. Therefore, the measured cross sections and
asymmetries are the result of a convolution in centre-of-mass energy. The effect of the convolution on
the measured quantities is calculated assuming a Gaussian centre-of-mass energy distribution with a

width of ωE =
√

ω2
t + ω2

i .

4.6.2.1 Effect on Cross Sections

For cross sections, the convolution is given by:

σmeasured(ECM ) =
1√

2πωE

∫ +∞

−∞
dE exp

[

−1

2

(

E − ECM

ωE

)2
]

σ(E) (4.17)

A Taylor expansion of the cross section, σ(E), around the mean centre-of-mass energy, ECM , yields
the effective shift in the cross section, ∆σ, due to the energy spread ωE of:

∆σ ≡ σ(ECM ) − σmeasured(ECM ) = − d2σ

dE2

ω2
E

2
, (4.18)

which depends on the second derivative of the cross section with respect to the centre-of-mass energy.
The effect is large at the pole where the curvature of the cross section is largest. While the observed
pole cross section is reduced, the observed cross sections at the wings of the Z resonance are increased.
Thus the energy spread affects in particular the measurement of the total width of the Z boson.



4.6.2.2 Effect on Asymmetries

The effect on asymmetries is calculated by performing the above convolution on the forward and the
backward cross section separately, and dividing the convoluted difference by the convoluted total cross
section, yielding the result:

∆Afb ≡ Afb(ECM ) − Ameasured
fb (ECM ) = −

(

d2Afb

dE2
+

2

σ

dσ

dE

dAfb

dE

)

ω2
E

2
. (4.19)

4.6.2.3 Corrections

An order of magnitude estimate shows the typical size of the corrections:

O
(

∆σ

σ

)

= O(∆Afb) =
ω2

E

Γ2
Z

≈ 10−3 , (4.20)

which is smaller than the statistical errors for leptonic final states but larger than the statistical error
in the hadronic final state.

The experiments quote their cross sections and forward-backward asymmetries having applied the
correction for the energy spread. The corrections are calculated by performing the above convolutions
based on the theoretical calculation of cross sections and forward-backward asymmetries. The calcula-
tions depend on parameters of the model, such as the mass and the total width of the Z boson, which
one wants to measure. However, the uncertainty on the energy spread corrections arising from the
variation of the input parameters used in the calculations is negligible. Typical corrections on cross
sections and forward-backward asymmetries are reported in Table 4.5. The effect on cross sections is
as large as the luminosity theory error, while the effect on asymmetries is negligible.

Energy Point

Quantity P − 2 P P + 2

1
σ

dσ
d
√

s
[GeV−1] +0.73 +0.06 −0.52

1
σ

d2σ

d
√

s
2 [GeV−2] +0.69 −1.09 +0.39

dAℓ
fb

d
√

s
[GeV−1] +0.09 +0.08 +0.04

d2Aℓ
fb

d
√

s
2 [GeV−2] +0.00 −0.02 −0.01

∆σ
σ [10−3] −1.1 +1.7 −0.6

∆Aℓ
fb [10−3] −0.22 +0.02 +0.08

Table 4.5: First and second derivatives of s-channel total cross sections and leptonic forward-backward
asymmetries; and fractional changes in cross sections and shifts in leptonic forward-backward asym-
metries to be applied to the measurements in order to correct for the effect of the spread in the LEP–I

centre-of-mass energy. Numerical values are calculated for the three LEP–I centre-of-mass energies of
1993 to 1995 and a spread of 56 MeV in

√
s. Since the magnitude of the spread correction is quadratic

in the spread, the relative error on the correction is twice the relative error on the spread.

4.6.3 Treatment of Energy Errors

The error on the mean centre-of-mass energy and the error on the energy spread induce additional
uncertainties on both the theoretical calculation of cross section and asymmetry predictions and the



experimentally measured cross sections. The theoretical cross sections and asymmetries are calculated
as a function of the centre-of-mass energy, and are convolutions as discussed above. The measured cross
section also depends on the measured luminosity. The measured luminosity in turn depends on the
theoretical cross section for small-angle Bhabha scattering, σe, which is calculated as a function of the
centre-of-mass energy. In leading order, the following uncertainties on cross sections and asymmetries
are obtained:

δσtheo =
dσtheo

dE
δE ⊕ d2σtheo

dE2

δω2
E

2
(4.21)

δσexp =
dσexp

dL

(

dL
dE

δE ⊕ d2L
dE2

δω2
E

2

)

=
σexp

σe

(

dσe

dE
δE ⊕ d2σe

dE2

δω2
E

2

)

(4.22)

δAtheo
fb =

dAtheo
fb

dE
δE ⊕

(

d2Atheo
fb

dE2
+

2

σtheo

dσtheo

dE

dAtheo
fb

dE

)

δω2
E

2
, (4.23)

where ⊕ stands for addition in quadrature. Since the uncertainties on the centre-of-mass energy
and the uncertainties on the energy spread are uncorrelated, their contributions to the error on the
cross section are added in quadrature. The combined uncertainty on the difference of theoretical and
measured cross section and asymmetry, which enters the χ2 of the fitting procedure, is given by:

δ(σtheo − σexp) =

[

dσtheo

dE
− σexp

σe

dσe

dE

]

δE ⊕
[

d2σtheo

dE2
− σexp

σe

d2σe

dE2

]

δω2
E

2
(4.24)

δ(Atheo
fb − Aexp

fb ) = δAtheo
fb . (4.25)

Assuming a power-law behaviour of the small-angle Bhabha cross section as a function of E, σe ∝ E−k,
k ≈ 2, the expression for the cross section difference simplifies to:

δ(σtheo − σexp) =

[

dσtheo

dE
+ k

σexp

E

]

δE ⊕
[

d2σtheo

dE2
− k(k + 1)

σexp

E2

]

δω2
E

2
. (4.26)

An order of magnitude estimate shows the relative importance of the δE induced errors:

O
(

1

σ

dσ

dE
δE

)

= O
(

dAfb

dE
δE

)

=
δE

ΓZ
≈ 10−3 (4.27)

O
(

k

E
δE

)

=
δE

MZ
≈ 10−5 , (4.28)

and δω2
E induced errors:

O
(

1

σ

d2σ

dE2

δω2
E

2

)

= O
((

d2Afb

dE2
+

2

σ

dσ

dE

dAfb

dE

)

δω2
E

2

)

=
δω2

E

Γ2
Z

≈ 10−5 (4.29)

O
(

k(k + 1)

E2

δω2
E

2

)

=
δω2

E

M2
Z

≈ 10−8 . (4.30)

In both cases, the uncertainties entering through the luminosity measurement are negligible. Note
that the errors induced by δE and the errors induced by δωE are fully correlated between all cross
section and asymmetry measurements, all energy points, and all four LEP experiments.

4.6.4 Uncertainties on Mass and Width of the Z Boson

When extracting Z-boson parameters from measured cross sections and asymmetries, the energy errors
are propagated and thus taken into account. A simplified analysis [150] allows to estimate the size of
the errors on mass and total width induced by the uncertainties on the LEP energy calibration. These
two parameters are determined essentially by the high-precision scans of the Z lineshape in 1993 and
1995, where luminosity was recorded at the peak, P , and approximately 1.8 GeV below and above the



peak, denoted as P ± 2. Equal weight of the four LEP experiments and of the two scans in 1993 and
1995 are assumed.

The mass of the MZ boson is determined by the position of the Z resonance curve. This position
is fixed by the average of the two off-peak centre-of-mass energies. The error on the Z mass arising
from the LEP energy calibration is therefore determined by the error on the average energy of the two
off-peak energy points.

δMZ =
1

2
δ (EP+2 + EP−2) (4.31)

= 1.9 MeV . (4.32)

The total decay width of the Z boson is given by the width of the Z resonance curve relative to its
height. The measurement of the width is fixed by the difference in the off-peak centre-of-mass energies.
The relative error on the total width arising from the LEP energy calibration is therefore determined
by the relative error on the energy difference between the two off-peak energy points:

δΓZ = ΓZ · δ (EP+2 − EP−2)

EP+2 − EP−2
(4.33)

= 1.2 MeV . (4.34)

The 1 MeV uncertainty on the centre-of-mass energy spread contributes a negligible 0.2 MeV uncer-
tainty on ΓZ.

4.6.5 Energy Calibration above the Z pole

For LEP–II running above the Z pole, additional superconducting RF cavities, in total 288 by the
year 1999, are installed around each LEP experiment. The energy sawtooth thus halves its period, as
shown in Figure 4.18. Nevertheless the amplitude is much larger, as the energy loss due to synchrotron
radiation increases with the fourth power of the beam energy, ∆Ee ∝ E4

e .
Even though the rate of radiative selfpolarisation, 1/τp, increases with E5

e , the rate of depolarisa-
tion, 1/τd, due to resonances driven by machine imperfections increase even faster. A simple model
predicts τp/τd ∝ E2

e [63]. Since the beam energy spread is increased by a factor of four at LEP–II

energies, ωE ∝ E2
e , depolarising resonances nearby in phase space cannot be avoided. Levels of trans-

verse polarisation useful for beam energy measurements are limited to a maximal beam energy about
60 GeV, even under special running conditions.

For this reason, extrapolation based on the magnetic field strength of the LEP dipoles is required
to move from calibration energy up to the beam energy of physics collisions in the range of 80 GeV to
100 GeV. In order to increase the lever arm on which the extrapolation is based, and to test the linearity
of the magnetic measurements, the energy is calibrated by the method of resonant depolarisation at
several beam energy points between 40 GeV and 55 GeV [151–153]. Nevertheless, the error on the
LEP–II beam energies, reported in Table 4.6, is by far dominated by the extrapolation error. The
accuracy at 183 GeV is improved since several polarisation measurements have been made during data
taking. For the 189 GeV data taken in 1998, resonant depolarisations were also achieved at a beam
energy of 61 GeV.

The expected statistical accuracy on the determination of the W-boson mass at LEP–II is 25 MeV
combining all four experiments. Since the error on the beam energy propagates directly to the mass,
δMW/MW = δEe/Ee, the beam energy needs to be measured with an accuracy of 10 MeV to 15 MeV
for the bulk of the luminosity collected at LEP–II.

In order to achieve this goal, a new precise magnetic spectrometer will be installed in time for
data taking in 1999 and 2000 [152], with the intention to propagate improvements in the beam energy
determination back to previous years. The angular deflection of the LEP beams in a dipole magnet
with precisely mapped field will be measured. The resonant depolarisation technique will be used at
low energies to calibrate the angular deflection, and at intermediate energies to test this calibration.
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Figure 4.18: Left: Distribution of RF power along the LEP–II ring [152]. Right: Deviation of electron
and positron beam energy along the LEP–II ring from the average [151–153]. The situation is shown
for 1997 and

√
s = 183 GeV. The energy sawtooth is caused by the energy loss due to synchrotron

radiation, ∆Ee ∝ E4
e , and the distribution of the RF power along the LEP–II ring.

The goal is to measure the change in angular deflection at different energies to an anticipated accuracy
of 1 in 104, corresponding to an uncertainty of 10 MeV on the final LEP–II beam energy of 100 GeV.

In contrast to the method of resonant depolarisation, this method determines the beam energy
at one point along the LEP ring rather than the average energy. An extrapolation to the interaction
points is required across the large amplitudes of the energy sawtooth shown in Figure 4.18.

At LEP–II, the centre-of-mass energy spread, ωE, is about a factor of four larger than at LEP–I,
since it grows quadratically with the energy, ωE ∝ s. The actual values, also depending on the machine
optics, are reported in Table 4.6. The effect of the energy spread on cross sections is negligible, since
in the LEP–II energy range the cross sections do not show sharp structures with high curvatures
and are measured with larger statistical errors. In case the mass of the W boson is reconstructed
based on beam energy constraints or four-momentum conservation, it is smeared by an amount of
δMW/MW = ωE/

√
s. The effect on the mass and width of the W boson extracted from the invariant

mass distribution is negligible, since the additional smearing enters in quadrature to the effects of
detector resolution and width itself.

year
√
s δEe ωE

[GeV] [MeV] [MeV]

1996 161 27 144 ± 7

1996 172 30 165 ± 8

1997 183 25 219 ± 11

Table 4.6: Uncertainties in the determination of the LEP–II beam energy Ee [151, 152], and spread in
centre-of-mass energy

√
s [153]. The uncertainty of 25 MeV on the beam energy for the 1997 data is

common to the 1996 data. The spread in beam energy is a factor of
√

2 smaller than the spread in√
s given above.



Chapter 5

Measurements and Results

The experimental measurements used for the determination of electroweak parameters and to test the
Standard Model are summarised in this chapter. Nearly all results are preliminary, and sometimes
not yet based on the complete data sample collected.

Many results are derived from measurements of fermion-pair production in e+e− interactions at
the Z pole. These measurements are performed by experiments at the e+e− colliders SLC and LEP.

Because of the much larger luminosity available at LEP, the SLD experiment concentrates on
exploiting the uniqueness of longitudinally polarised beams at SLC in order to measure polarised
asymmetries. In addition, due to the small SLC beam pipe and powerful SLD micro vertex pixel
detector, identification of the heavy b quarks and c quarks is performed with higher tagging efficiency at
SLD, so that the resulting higher sensitivity compensates for the lower luminosity. The measurements
of SLD are performed at a fixed centre-of-mass energy of 91.26 GeV, corresponding to the maximum
of the Z pole annihilation cross section.

The dependence of e+e− cross sections and asymmetries on the centre-of-mass energy is investigated
at LEP. During the LEP–I program from 1989 until 1995, e+e− collisions were recorded at centre-of-
mass energies in a window of about ±4 GeV around MZ. These measurements determine the mass
and total decay width of the Z boson. For the LEP–II program lasting from 1996 until the year 2000,
the centre-of-mass energy is increased from 161 GeV up to 200 GeV, allowing the pair production of
W+W− bosons. At LEP–II, the properties of W bosons are measured, in particular its mass, total
decay width, decay branching fractions and gauge couplings.

In the past, properties of the W boson were measured at hadron colliders only, first by the SPS
experiments UA1 and UA2 at CERN, where the W and Z bosons were discovered in 1983, and nowa-
days at the TEVATRON collider at Fermilab, Chicago. In 1994 and 1995, the TEVATRON experiments
CDF and DØ have discovered the top quark. Until the end of run I in 1996, both experiments have
subsequently measured its production cross section, mass and other properties. Data taking at the
TEVATRON will recommence with run II in the year 2000.

The analysis of neutrino-nucleon interactions yields a determination of the on-shell electroweak
mixing angle, i.e., the mass ratio of W and Z boson, since radiative corrections are small. Especially
the new result from the CCFR successor experiment NUTEV, which completed data taking at Fermilab
in the fall of 1997, is very precise due to the advantage of taking data with both a neutrino and an
anti-neutrino beam.

The measurements are compared to the expectations within the Minimal Standard Model, cal-

culated for 1/α
(5)
em(M2

Z) = 128.878 ± 0.090, αS(M2
Z) = 0.119 ± 0.002, MZ = 91186.7 ± 2.1 MeV,

Mt = 173.8 ± 5.0 GeV and MH = 300+700
−210 GeV, where these parametric uncertainties are propagated

to the calculated observables. The Standard Model calculations are performed with the semianalytical
programs TOPAZ0 and ZFITTER described in Section 3.3.
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5.1 Z Lineshape and Leptonic Forward-Backward Asymmetries

The reaction e+e−→ ff(γ), where the (γ) denotes the possible presence of radiative photons, is
measured for all charged fermion-pair final states. For each final state, selection criteria are optimised
to obtain the signal with high efficiency and low background. The leptonic final states, e+e−(γ),
µ+µ−(γ) and τ+τ−(γ), are easily distinguishable from another and from the inclusive hadronic events,
e+e− → hadrons(γ), for which the five quark flavours q = d,u, s, c,b produced at LEP are summed
over. The sum is considered, because quarks manifest themselves as jets, which are collimated groups
consisting of many neutral and charged hadrons, so that the flavour of the primary quark is not easily
accessible.

Total cross sections and forward-backward asymmetries are measured at each centre-of-mass en-
ergy. Each experiment selects about 4 · 106 hadronic and 4 · 105 lepton-pair events at LEP–I in total,
leading to small statistical errors of 0.1% and less. Therefore, systematic errors and their correlations
must carefully be investigated in order to match the statistical precision. At LEP–II, the data statistics
is three orders of magnitude smaller due to the lower cross sections at the higher LEP–II centre-of-mass
energies. The event samples separate into two classes: events where the effective centre-of-mass energy
of the hard interaction is close to the nominal centre-of-mass energy, s′ → s, and events where an
initial-state radiative photon lowers the effective centre-of-mass energy close to that of the Z mass,
s′ →M2

Z, denoted as radiative return to the Z.

5.1.1 Selection and Total Cross Sections

Total cross sections of a given signal process are measured by counting selected signal events, Nsel,
subtracting the expected number of background events arising from other processes, Nbg, and dividing
this difference by the selection efficiency to select the signal, ǫ, and the integrated luminosity, L:

σ(s) =
Nsel(s) −Nbg(s)

ǫ(s) · L(s)
. (5.1)

Monte-Carlo simulations of signal and background processes are used to determine the signal efficiency,
ǫ, and the number of expected background events, Nbg. The latter is a sum over all contributing
background processes i = 1, n:

Nbg =

n
∑

i=1

ǫi · σ(i) · L , (5.2)

with cross section σ(i). The efficiency to select background process i is denoted by ǫi. Efficiencies are
determined by forming the ratio:

ǫ =
NMC

sel

NMC
gen

, (5.3)

between the number of selected and the number of generated Monte Carlo events. Besides the signal
efficiency, the selection is characterised by the purity, defined as the ratio between accepted signal
cross section and total accepted cross section:

p =
ǫ · σ

ǫ · σ +
∑n

i=1 ǫi · σ(i)
. (5.4)

Both efficiency and purity change with changing selection criteria. The product of efficiency and purity
must be maximised in order to obtain the cross section measurement with the smallest statistical error.

The selection efficiency ǫ is determined relative to the region of phase-space for which the sample
of Monte Carlo events is generated and the Monte Carlo cross section σ(i) is quoted. For most
e+e−→ ff(γ) reactions, the generated phase-space covers nearly the full phase space except for some



very loose requirements on the minimal fermion-antifermion energies or invariant masses, typically
0.1 GeV to 1 GeV, or 0.1

√
s, the former in order to ensure numerical stability and the latter in order

to avoid the region of qq resonances. The only exception is given by the Bhabha scattering process.
Because of the divergent differential cross section for θ → 0, a cut on the polar angular range of the
final state e+e− particles must be imposed in the event generation.

It must be ensured that the selection criteria do not accept events which lie outside the generated
phase-space region, as otherwise efficiencies and accepted cross sections are determined incorrectly.
The phase-space cuts for which the measured cross section should be quoted may be tighter than those
used in the generation of Monte Carlo events. In that case, the denominator in the efficiency ratio is
replaced by the number of events generated in the restricted region, and the cross section prediction is
scaled by the ratio of the number of events inside the restricted region and the total number of events
generated. As required, this leaves the predicted accepted cross section invariant. Migration due to
resolution effects may cause events being selected which lie outside that region. This is automatically
corrected for by the modified efficiency calculation. As for any background, it is desirable that the
fraction of such events is small.

5.1.1.1 Hadron Production

Experimentally, hadronic events, e+e−→ qq(γ) → hadrons(γ), are selected with the highest efficiency
and acceptance, between 95% up to more than 99%, owing to the large particle multiplicity in the
final state and full centre-of-mass energy observable in the detector. Backgrounds are very small,
typically in the order of 0.1%. Examples of hadronic events recorded at LEP are shown in Figure 5.1,
and distributions of typical selection variables are shown in Figure 5.2.

The measurement of hadron production constitutes the most precise cross section measurement due
to the large number of selected events accompanied by very small systematic errors. The correlated
systematic scale uncertainty on the hadronic cross section arises mainly from the systematic error on
the luminosity measurement. The remaining systematic error ranges typically from 0.04% to 0.1%.
The correlated systematic absolute uncertainty is given by the subtraction of non-resonant background
processes such as hadronic two-photon collision processes but also cosmic-ray showers and machine-
related beam-gas and beam-wall interactions. Depending on the analysis, non-resonant background
contributions ranging from 10 pb to 50 pb with an associated uncertainty between 3 pb and 7 pb are
subtracted, to be compared to a maximum signal cross section of 30 nb.

Because of its statistical power, the hadronic channel largely determines the mass and total width
of the Z boson. A scale error on the cross sections correlated between energy points causes a negligible
error on these two parameters. However, a correlated absolute error on the cross sections directly
propagates to the total width, as ΓZ is measured as the width of the resonance curve relative to its
height. For example, a correlated uncertainty of 3 pb causes an error of 0.4 MeV on the total width.
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Figure 5.1: Hadronic events recorded at LEP, each showing two jets of tracks in the central tracking
chamber and energy depositions in the calorimeters. Left: a LEP–I event recorded by the DELPHI

detector. Right: a LEP–II event showing a radiative return to the Z recorded by the L3 detector. The
radiative photon is visible in the lower right endcap of the electromagnetic calorimeter.
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Figure 5.2: Distributions used in the hadron analysis of L3 at
√
s = MZ [139]. Left: Visible energy.

Right: Longitudinal energy imbalance. The arrows indicate the position of the selection cuts.



5.1.1.2 Lepton Production

The reactions e+e−→ µ+µ−(γ) and e+e−→ τ+τ−(γ) are studied in a polar angular range of typi-
cally | cos θ| < 0.7 − 0.9. The restriction in polar angular range is required by deteriorating particle
identification for | cos θ| → 1 and losses in the beam pipe at very low polar angles.

Dimuon events, e+e−→ µ+µ−(γ), recorded at LEP are shown in Figure 5.3. Muons are identified
in the outer muon chambers as well as minimum ionising particles traversing the detector from the
inner central tracking system through the calorimeters. They are of high energy, up to half the centre-
of-mass energy. Distributions of typical selection variables are shown in Figure 5.4. Systematic errors
between 0.1% and 0.5% are obtained.

A τ -pair event, e+e−→ τ+τ−(γ), recorded at LEP–I is shown in Figure 5.5. Since τ leptons have
such a short lifetime they decay already inside the beam pipe, either into an electron, a muon, or a
few light hadrons, accompanied by neutrinos. Since there is no unique event signature for τ+τ−(γ)
events, the selection efficiencies and purities are somewhat lower compared to the other charged lepton
species. Distributions of typical selection variables are shown in Figure 5.6. Systematic errors between
0.2% and 0.8% are obtained.

The reaction e+e− → e+e−(γ) is measured in a reduced fiducial volume, restricting the polar
scattering angle to large values, typically | cos θ| < 0.7. In this phase-space region, the contribution
of the interesting s-channel Z exchange diagram to the total cross section is enhanced, as opposed
to the small-angle region, θ → 0, where the t-channel photon exchange dominates, c.f. luminosity
measurement discussed in Section 4.5. Bhabha events recorded at LEP are shown in Figure 5.7.
Events are characterised by two large energy depositions in the electromagnetic calorimeter, with
energies up to half the centre-of-mass energy and electromagnetic shower shape, matched to high-
momentum tracks reconstructed in the central tracking system. Distributions of typical selection
variables are shown in Figure 5.8. Systematic errors between 0.2% and 0.5% are obtained.

5.1.1.3 Cross Sections at and above the Z pole

The distributions of the reconstructed effective centre-of-mass energy,
√
s′, for data taken well above

the Z pole are shown in Figures 5.9 and 5.10. Different methods of reconstructing the effective centre-
of-mass energy lead to different

√
s′ distributions, in particular visible for hadronic events.

Two classes of events are clearly visible, the so-called genuine high-energy events at s′ → s,
and the events showing a radiative return to the Z at s′ → MZ = 91 GeV. For Bhabha events, the
genuine high-energy events dominate due to t-channel and s/t-interference contributions. A cut on the
reconstructed

√
s′, typically

√
s′ > 0.85

√
s, separates the true high-energy events from the radiative

return to the Z.
The hadronic and leptonic cross sections measured as a function of the centre-of-mass energy are

shown in Figure 5.11 for LEP–I energies close to MZ. Cross sections at higher centre-of-mass energies,
including and excluding the radiative return to the Z, are shown in Figure 5.12.
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Figure 5.3: Dimuon events recorded at LEP, showing the two muons as minimal ionising tracks travers-
ing the detector. Left: a LEP–I event recorded by the L3 detector. Right: a LEP–II event showing a
radiative return to the Z recorded by the L3 detector.
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Figure 5.5: Tau-pair events recorded at LEP, each containing a one-prong and a three-prong τ decay.
Left: a LEP–I event recorded by the ALEPH detector. Right: a LEP–II event showing a radiative return
to the Z recorded by the L3 detector.
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Figure 5.7: Large-angle Bhabha events recorded at LEP, showing two tracks in the central tracking
chamber matched with energy depositions in the electromagnetic calorimeter. Left: a LEP–I event
recorded by the OPAL detector. Right: a LEP–II event showing a radiative return to the Z recorded
by the L3 detector. The radiative photon is visible in the endcap of the electromagnetic calorimeter.
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Figure 5.11: Cross sections at the Z pole measured by OPAL for hadrons, electrons, muons and
taus [161]. The fiducial volume for the e+e− final state is given by the requirement | cos θe− | < 0.7.
The result of a fit to the measurements is shown as the line.
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5.1.2 Forward-Backward Asymmetries

In order to measure the forward-backward flavour asymmetry in e+e−→ ff(γ) production, polar angles
must be measured, and fermions and anti-fermions must be separated. In case of ℓ+ℓ− production, the
fermion is identified by its negative electric charge, while the anti-fermion is identified by its positive
charge.

Particle charges are derived from the curvature of tracks measured in the tracking systems of the
experiments. Incorrect charge measurement and thus incorrect flavour assignment causes a forward
event, cos θf > 0, to be misidentified as a backward event, cos θf < 0, and vice versa. Such charge
confusion dilutes the observed asymmetry with respect to the underlying true asymmetry:

Aobs
fb = (1 − 2C)Afb , (5.5)

where C denotes the probability for charge confusion of an event. The results quoted by the experi-
ments are corrected for this effect.

For ℓ+ℓ− events, the charge confusion is small, a few % at most. In contrast, for qq events,
where the original quark charge is obscured due to the hadronisation process, the charge confusion is
much larger. In the case of the inclusive hadronic final state, a forward-backward charge asymmetry,
discussed in Section 5.7, is measured instead of a flavour-based forward-backward asymmetry.

There are two strategies to measure the forward-backward asymmetry, the counting method and
the fitting method. The counting method derives the forward-backward asymmetry from counting the
events in the forward and backward hemispheres. As a function of cos θ, the number of observed events
is corrected for background, efficiency and charge confusion. Denoting with Nf and Nb the corrected
number of events in the forward and in the backward hemisphere, respectively, the forward-backward
asymmetry inside the symmetric fiducial volume defined by the requirement | cos θ| < c is simply given
by:

Afb(| cos θ| < c) =
Nf (c) −Nb(c)

Nf (c) +Nb(c)
. (5.6)

As indicated, the observed asymmetry depends on the phase-space cuts applied in cos θ. The counting
method does not make any assumption on the differential signal cross section dσ/d cos θ.

The functional form of the differential cross section given by the lowest-order Born term formula
is a very good approximation to the result expected including all radiative corrections if events with
very large acollinearity angle are removed. In case of s-channel processes:

dσ(s)

d cos θ
= σ(s)

[

3

8
(1 + cos2 θ) + Afb(s) cos θ

]

. (5.7)

Based on this expression for the differential cross section, the forward-backward asymmetry measured
within the fiducial volume defined by | cos θ| < c is extrapolated to the full solid angle by the relation:

Afb(s) = Afb(s, | cos θ| < c) · 3

4

c+ c3

3

c2
. (5.8)

The fitting method to determine the forward-backward asymmetry relies on a functional form
to describe the differential cross section by fitting it to the distribution of observed events. The
forward-backward asymmetry is determined by an unbinned maximum likelihood fit maximising the
likelihood:

L =
∏

i

[

3

8

(

1 + cos2 θi

)

+ (1 − 2Ci)Afb(s) cos θi

]

. (5.9)

where the product runs over all selected events i. The quantity Ci determines the probability for a
wrong charge measurement of event i. The factor (1 − 2Ci) in front of the fit parameter Afb takes



into account the effect of charge confusion on an event-by-event basis. The fitted asymmetry, Afb(s) is
directly the asymmetry extrapolated to the full range of polar angles, where the extrapolation is based
on the functional form of dσ/d cos θ used in the likelihood. The unbinned fitting method usually yields
smaller statistical errors, since it imposes a functional form describing the differential cross section
and makes use of the cos θ measurement of each event instead of grouping all events in just two bins
of polar angle, forward and backward.

In both methods, all radiative corrections are absorbed in the parameter Afb(s). The effect of the
cut on the acollinearity of the final-state fermion pair, restricting the phase-space for QED radiation,
is not corrected for as it ensures the validity of the simple polynomial expression for dσ/d cos θ.

Most experimental systematic effects cancel in the measurements of forward-backward asymme-
tries, as they are ratios of cross sections. For example, uncertainties on the luminosity do not propa-
gate. In case of the fitting method, fiducial volume effects or cos θ dependent efficiencies cancel since
they are usually either forward-backward or charge symmetric.

However, background contamination and selection effects may bias the forward-backward asymme-
try measurement. For the e+e−(γ) and µ+µ−(γ) selections, the background from other leptons, mainly
τ+τ− pairs decaying to electrons or muons, respectively, is small. The τ+τ− sample is selected with
the largest background from hadronic and other lepton-pair events. Since the forward-backward asym-
metries of e+e−(γ), µ+µ−(γ) or τ+τ−(γ), and hadronic events are different, the observed asymmetries
must be corrected for the asymmetry of the selected background contaminations.

The forward-backward asymmetry, measured using the sample of selected events, may also be
affected by a bias due to the event selection procedure. For example, the event selection efficiency
may depend on the amount of QED radiation or on the ℓ+ℓ− acollinearity. In case of τ+τ−(γ)
production, requirements on the energy of the visible τ decay products also introduce a dependence
of the event selection efficiency on the polarisation of the decaying τ leptons. Since such effects do
not factorise in the multidimensional differential cross section, a bias is introduced in the forward-
backward asymmetry of the selected event sample. This bias is determined based on Monte-Carlo
simulations of ℓ+ℓ−(γ) production, by comparing the forward-backward asymmetry of selected signal
Monte Carlo events with that of all signal Monte Carlo events generated within the idealised phase-
space cuts for which Afb(s) is to be quoted. The selections are designed so that these effects are small
or even negligible.

For µ+µ− and τ+τ− events, the forward-backward asymmetry is usually determined by the fitting
method, as the differential cross section is indeed well described by the simple second-order polynomial
in cos θ as shown in Figure 5.13. Systematic errors range from 0.0005 to 0.0015 for µ+µ− events and
from 0.0007 to 0.0030 for τ+τ− events.

For the e+e− final state, the forward-backward asymmetry is usually determined by the counting
method in the restricted range of large polar angles also used for the e+e− cross section measurement.
The counting method is used here because the differential cross section exhibits a much more compli-
cated behaviour due to the large contributions arising from t-channel and s/t-interference, as shown
in Figure 5.13. Extrapolation to the full solid angle is not useful since for | cos θ| → 1 the t-channel
photon exchange dominates leading to divergent cross sections and a forward-backward asymmetry of
unity. Systematic errors between 0.001 and 0.003 are obtained.

The leptonic forward-backward asymmetries measured as a function of the centre-of-mass energy
are shown in Figure 5.14 for LEP–I energies close to MZ, and in Figure 5.15 for all centre-of-mass
energies.
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Figure 5.14: Forward-backward asymmetries at the Z pole measured for electrons, muons and taus by
OPAL [161]. The fiducial volume for the e+e− final state is given by the requirement cos θe− < 0.7
The result of a fit to the measurements is shown as the line.
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Figure 5.15: Forward-backward asymmetries at and above the Z pole for electrons, muons and taus measured by L3 [160]. The fiducial volume
for the e+e− final state is given by the requirement 44◦ < θ < 136◦ for the polar angle of both electron and positron.



5.1.3 The Z-Boson Parameters

Each LEP experiment determines Z-boson parameters in a fit to its cross sections, σ(s), and forward-
backward asymmetries, Afb(s), measured for the different ff final states. The

√
s dependence of the

measurement is accounted for by a relativistic Breit-Wigner function describing a spin-1 resonance,
as discussed in Section 3.1.1.4. Best values, errors and correlations for two sets of parameters, in the
following called the Z-pole parameters and the S-matrix parameters, are determined.

5.1.3.1 The Z-Pole Parameters

The Z-pole parameters describe the s-channel Z-exchange contribution to total cross sections and
forward-backward asymmetries. The parameters are chosen such that their determination based on
the experimental measurements leads to minimal correlations between them:� The mass, MZ, and total width, ΓZ, of the Z boson, defined using a Breit-Wigner denominator

with s-dependent width, s−M2
Z + isΓZ/MZ.� The hadronic pole cross section, σ◦had, of Z exchange defined as:

σ◦had =
12π

M2
Z

ΓeeΓhad

Γ2
Z

. (5.10)� The ratio of the Z partial decays widths of hadrons and leptons:

RZ
ℓ =

σ◦had

σ◦ℓ
=

Γhad

Γℓℓ
for ℓ = e, µ, τ . (5.11)

As RZ
ℓ is also the ratio of the hadronic and leptonic pole cross sections, normalisation uncertain-

ties cancel.� The leptonic forward-backward pole asymmetries, A0,ℓ
fb = 3

4AeAf , where the coupling parameter
Af is defined in terms of the real parts of the effective vector and axial-vector coupling constants,
gVf and gAf :

A0,ℓ
fb =

3

4
AeAℓ for ℓ = e, µ, τ (5.12)

Af = 2
gVf/gAf

1 + (gVf/gAf )2
. (5.13)

The total and partial decay widths of the Z boson in the above expression are the physical quantities
including fermion-mass effects and absorbing all higher-order radiative corrections. For the forward-
backward asymmetries, however, the imaginary parts of the effective couplings and of the photonic
vacuum polarisation are accounted for explicitly, and their values are taken from the Standard Model.

The nine parameters describe only the s-channel Z exchange contribution to total cross sections
and forward-backward asymmetries. The s-channel γ exchange contributions are fixed to their QED
expectations, assuming lepton and quark charges of the Standard Model. For the inclusive hadronic
final state, also the γ/Z interference contributions are fixed to the Standard-Model values. For the
leptonic final states, the s-channel γ/Z interference contributions are calculated based on the effective
couplings. The real and imaginary parts of the photonic vacuum polarisation are taken from QED
calculations.

If lepton universality of the neutral weak current is assumed, the nine Z-pole parameters are
reduced to five. In that case, Γℓℓ and RZ

ℓ are defined based on the decay width of the Z boson into a
pair of massless charged leptons. The phase-space suppression due to lepton-mass effects is relevant
only in τ+τ− production, where the partial width Γττ is reduced by 0.23% and thus RZ

τ increased by
the same amount.



5.1.3.2 The S-Matrix Parameters

The S-Matrix parameters describe the s-channel γ/Z-interference contributions in addition to the
s-channel Z-exchange contributions to total cross sections and forward-backward asymmetries. No
special parameter transformation is applied to reduce the correlations between these parameters when
derived from experimental measurements of cross sections and forward-backward asymmetries. The
S-Matrix parameters, see Equation 3.9, are:� The mass, MZ, and total width, ΓZ, of the Z boson, defined using a Breit-Wigner with s-

independent width. For the purpose of eased comparisons, mass and total width are transformed
according to Equations 3.21 and 3.22 to correspond to the usual definition based on the Breit-
Wigner with s-dependent width when listing numerical results.� The contribution of the Z exchange to the total cross sections, rtotf , for hadrons and charged
leptons.� The contribution of the γ/Z interference to the total cross sections, jtotf , for hadrons and charged
leptons.� The contribution of the Z exchange to the forward-backward cross sections, rfbf , for charged
leptons.� The contribution of the γ/Z interference to the forward-backward cross sections, jfbf , for charged
leptons.

By definition, the S-matrix parameters rf , jf and gf are real numbers absorbing all higher-order
radiative corrections. Mass effects are explicitly incorporated in the fitting formulae.

The 16 parameters describe both the s-channel Z exchange and the s-channel γ/Z interference
contributions. The s-channel γ exchange contributions are fixed to their QED predictions. If lepton
universality of the neutral weak current is assumed the 16 S-Matrix parameters are reduced to eight.

5.1.4 Fitting Procedure

Both parameter sets are determined in the same way. A χ2 fit is performed, where the χ2 is con-
structed from the experimental measurements, the theoretical predictions, the measurement errors,
the theoretical errors, and the correlations between the errors:

χ2 = ∆V −1∆ . (5.14)

The χ2 as a function of the fit parameters is minimised using the program MINUIT [162]. The vector ∆
is the vector of differences between measurement and prediction, and the matrix V is the error matrix
associated with the set of results, taking correlations into account. In case some error components
depend on the central values, as is the case for statistical or relative errors, the measured experimental
errors are replaced by the expected errors which are calculated based on the predicted central values
as a function of the fit parameters. In case of relative errors, the correction of the error component is
simply:

δσtheo = δσexp ·
σtheo

σexp
(5.15)

δAtheo
fb = δAexp

fb · Atheo
fb

Aexp
fb

. (5.16)



In case of small backgrounds, the statistical errors δ are δσ ∝ √
σ for cross sections and δAfb ∝

√

(1 − A2
fb)/σ for forward-backward asymmetries, so that the correction for the statistical errors is:

δσtheo = δσexp ·
√

σtheo

σexp
(5.17)

δAtheo
fb = δAexp

fb ·
√

σexp

σtheo
·
√

1 − Atheo
fb

1 − Aexp
fb

. (5.18)

The theoretical predictions are calculated as a function of the Z-pole or S-Matrix parameters to be
fitted. For this purpose, semianalytical program such as MIZA, SMATASY and ZFITTER, discussed
in Section 3.3.2, are used. Effects of initial-state QED radiation are taken into account explicitly by
convoluting the theoretical cross sections with the appropriate radiator function. Fixing the s-channel
γ exchange contributions to the QED predictions as discussed above is consistent with the use of
QED-based radiator functions, which is mandatory to account for the large effects induced by initial-
state QED radiative corrections, and with the calculation of the low-angle Bhabha cross section for
the measurement of the luminosity.

5.1.4.1 Treatment of Bhabha Scattering

Compared to s-channel fermion-pair production, the additional t-channel Feynman diagrams in case
of Bhabha scattering make the calculation of radiatively corrected e+e−(γ) production technically
very difficult. The computations are so complicated that semianalytical programs of the required
physical and technical precision, such as ALIBABA [111] and TOPAZ0 [21], are much too slow for
fitting purposes. This problem is circumvented by an approximate procedure, which treats the t-
channel and s/t-interference contributions as constant, i.e., independent of the interesting electroweak
parameters to be fitted. This ansatz is justified as these terms are either small or their dependence
on the interesting Z parameters is small or both. Thus, these terms are kept constant while only the
s-channel part of the prediction is calculated as a function of the varying fit parameters.

However, corrections, errors and correlations must be calculated based on complete calculations
including s-channel, t-channel and s/t-interference contributions, as this is what is measured in the
data. An example is given by the energy dependence of cross sections and asymmetries on the centre-
of-mass energy, which is needed for the treatment of the LEP energy errors. As shown in Figures 5.11
and 5.14, the energy dependences are drastically different for e+e− production compared to µ+µ− or
τ+τ− production. The t-channel and s/t-interference contributions must be added to the theoretical
s-channel calculations, rather than subtracting them from the experimental measurements.

For the purpose of visually comparing cross sections and forward-backward asymmetries of e+e−

production with those of other charged leptons, the experiments also report s-channel cross section and
s-channel forward-backward asymmetries in e+e− production. These results are obtained by subtract-
ing the theoretical expectation of t-channel and s/t-interference contributions from the measurements
and then extrapolating to the full solid angle. The subtraction procedure introduces a statistical cor-
relation between the s-channel cross section and the s-channel forward-backward asymmetry at each
energy point.

5.1.5 Averaging Procedure

The measurements of cross sections and forward-backward asymmetries of the four LEP experiments
are averaged based on the four sets of fitted Z-pole or S-Matrix parameters, including the corresponding
error matrices [163]. The fitted error matrices describe fully the errors and correlations within each
experiment. In order to average correctly, the correlated errors between the experiments are needed for
the fitted parameters. The sources of inter-experimental correlations are common to both parameter
sets and are discussed in the following.



5.1.5.1 The Centre-of-Mass Energy Calibration

To extract the inter-experimental correlations on the fitted parameters due to the common LEP energy
calibration [146–148, 150], an approximate procedure based on the fitted parameters and their error
matrix E is used. Additional fits are performed to the data set of an experiment, where all experimental
errors not arising from the LEP energy calibration are scaled by a factor f . Denoting with E ′ the
error matrix of the second fit, the error matrix C describing the inter-experimental correlations is then
given by:

C =
E ′ − f2E
1 − f2

. (5.19)

A factor of f = 1/2 simulates the weight of four experiments in the average. For the scaled fit one has
to check that the central values do not move. If they do, this bias, averaged over all four experiments,
must be applied to the LEP average. Such a bias is observed in MZ only, which is understood since
the LEP energy errors contributing to MZ are different for the 1993 and the 1995 scan.

There are two possibilities to account for the bias. One is to use correlated errors as obtained by
evaluating C in the limit f → 1, which are slightly larger [163]. Another, more intuitive method would
be to consider separate MZ masses in the averaging procedure, one mass for each period of energy
calibration [164]. After the average over the experiments is performed, the Z masses corresponding to
the different energy-calibration periods can be compared which constitutes an internal cross check of
the LEP–I energy calibration. Finally, the mass values are averaged over calibration periods in order
to obtain the best Z-mass determination.

The approximative procedure used is checked for the hadronic final state, which essentially deter-
mines MZ and ΓZ. A fit to the measured hadronic cross sections of all four experiments is performed,
taking the full 28-by-28 LEP energy error matrix into account. The results are compared to the re-
sults of the approximative procedure also using the hadronic cross sections only. Good agreement is
observed [163, 164].

5.1.5.2 The Centre-of-Mass Energy Spread

The uncertainties arising from the error on the spread of the LEP centre-of-mass energy as discussed
in Section 4.6 are fully correlated between all experiments. However, the associated uncertainties on
the fitted parameters are negligible compared to the other uncertainties on these quantities.

5.1.5.3 The Luminosity Theory Uncertainty

This error, currently 0.11% and soon to be reduced to 0.06%, see Section 4.5, affects in a correlated way
all total cross section measurements and thus propagates to all parameters measuring cross sections,
i.e., the hadronic pole cross section σ◦had, or the S-Matrix parameters rf , jf and gf , which scale cross
section contributions.

5.1.5.4 The Bhabha Theory Uncertainty

The theoretical errors associated with the calculation of the Bhabha process at large polar scattering
angles, in particular with the t-channel and s/t-interference contributions, are discussed in detail
in [117]. The uncertainties depend on the centre-of-mass energy, the fiducial volume in polar angle
and the maximal allowed final-state electron-positron acollinearity. Scaled by a factor of 0.8 to account
for the actual experimental acceptance, they are estimated to be in the range of 1.0 − 1.3 pb on the
forward cross section and 0.2 − 0.3 pb on the backward cross section. The size of the uncertainties
reflects the importance of the t-channel and s/t-interference contribution in the two angular regions.
Since the uncertainty dominates the forward region, there will be a positive correlation between the
total cross section and the forward-backward asymmetry.



The error on the total Bhabha cross section propagates to the errors on RZ
e , rtote , jtote , and gtot

e , the
error on the forward-backward asymmetry enters A0,e

fb , and the error on the forward-backward cross
section affects rfbe , jfbe , and gfb

e . Since the theoretical Bhabha errors are small and the most precise
measurements are obtained at the pole itself, it is a good approximation to propagate at least the
errors quoted for the peak centre-of-mass energy to the fitted parameters. Because RZ

e ∝ 1/σe, the
correlation between RZ

e and A0,e
fb due to this source of uncertainty will be negative.

5.1.5.5 The Residual Standard Model Dependence

Effective couplings are defined as the real parts of the complex s-dependent formfactors evaluated at√
s = MZ. The imaginary parts of the formfactors must be taken from the SM. Thus a dependence

on SM calculations and SM input parameters is introduced. Largest effects in the Z-pole fits arise
from the dependence on the Higgs mass through the effective electroweak mixing angle fixing the
hadronic γ/Z interference term for total cross sections. Varying MH from 90 GeV to 1000 GeV, the
extracted Z mass changes by ±0.15 MeV, which is very small. This source of SM dependence and
associated uncertainty is not present in the S-Matrix analysis, as there the hadronic interference term
is determined from the measurements.

5.1.5.6 The QED Convolution

The radiator functions for forward-backward cross sections are known to complete second order. For
total cross sections, also the leading O(α3

em) correction is known, which decreases the convoluted
cross sections by an amount ranging from 0.04% at 3 GeV below the Z pole to 0.11% at 3 GeV
above the Z pole with respect to the second order calculation [65]. Within the YFS exponentiation
scheme [165], these corrections are known already for some time [64]. The changes are comparable to
the luminosity theory error and thus must be taken into account. If these corrections are included in the
theoretical calculations, it is estimated that the remaining missing higher-order corrections introduce
an uncertainty of 0.02% [65] or less. In contrast, for asymmetries, the leading third order correction
is not yet known. Based on the structure function approach, it is estimated that the uncertainty
on forward-backward asymmetries due to missing higher-orders beyond second order is limited to
less than 10−4 [166], which is negligible compared to the statistical error of the forward-backward
asymmetry measurements.

5.1.5.7 The Radiative Pair Production

The Monte Carlo event generators used to calculate selection efficiencies do not simulate the effect of
off-shell photon radiation from the initial or final state leading to additional soft fermion-antifermion
pairs. Pairs from the initial state usually remain inside the beam pipe, thus do not affect the selection
efficiency. Initial-state pair production reduces the cross section, depending on centre-of-mass energy,
by up to 0.3%, with an uncertainty of 1.8 · 10−4 arising from radiation of hadrons [70, 71]. Pairs from
the final state are visible in the detector, however. Corrections due to virtual and real final-state pairs
cancel each other [72]. Therefore, the selection procedure should not discriminate against additional
soft tracks. Otherwise, a correction of about +0.4% needs to be applied to cross sections, as virtual
and real final-state pair production is also not included in the semianalytical programs used to fit the
measurements.

5.1.5.8 The Interference of Initial-State and Final-State Radiation

The interference of initial- and final-state radiation combined with box diagrams changes slightly the
differential cross section of ff production depending on cos θ and s′ and in particular for | cos θ| → 1.
Integrated over the full phase space, the interference effect is suppressed and negligible for LEP–I centre-
of-mass energies around MZ, while it becomes sizeable at the higher LEP–II centre-of-mass energies.



The interference of initial- and final-state radiation is automatically included in the diagrammatic
O(αem) calculation of radiative corrections to ff production, but not necessarily when concentrating
on higher-order initial-state radiative corrections which cause larger effects. The Monte Carlo event
generators used to calculate selection efficiencies are therefore operated in the mode to simulate higher-
order initial state radiative corrections, then neglecting interference, rather than in O(αem) mode
including interference. Thus both the determination of the selection efficiency within the fiducial
volume and the extrapolation to full solid angle do not take interference effects into account. However,
a bias is only introduced if the selection efficiency within the fiducial volume is different for initial-
final interference events. If the extrapolation to full solid angle is performed neglecting initial-final
interference, then the program used to calculate the theoretical prediction should also neglect the
interference in that region of phase-space. Another possibility is to remove the initial-final interference
correction from the data by subtracting the effect expected from theory, and compare with theoretical
calculations ignoring initial-final interference effects altogether.

5.1.5.9 The Hadronic Cross Section

The uncertainty on the total hadronic cross section due to fragmentation effects or the subtraction of
hadronic two-photon collision processes is potentially correlated between the experiments. However,
owing to the close to complete acceptance for hadronic events and since each experiment tunes its
Monte Carlo simulations differently, the correlation is assumed to be negligible.

5.1.6 Results on the Z-Pole Parameters

For the determination of the Z-pole parameters, only the LEP–I measurements at centre-of-mass en-
ergies in the vicinity of the Z pole, |√s − MZ| < 3 GeV, are used. The LEP–II measurement at
centre-of-mass energies well above the Z resonance do not improve the determination of Z-pole pa-
rameters since in this ansatz the hadronic γ/Z interference term is taken from the Standard Model
and the leptonic interference terms are already well constrained by the effective couplings.

The preliminary results on the Z-pole parameters obtained by the LEP experiments and the re-
sulting LEP average are shown in Tables 5.1 and 5.3. The correlation matrices of the LEP averages
are shown in Tables 5.2 and 5.4. The determination of the five-parameter average is based on the four
nine-parameter sets, imposing lepton universality in the averaging procedure.

As indicated by the χ2/d.o.f of each experiment, the measured cross sections and forward-backward
asymmetries are well described by the model. Furthermore, as indicated by the χ2/d.o.f of the average,
28/27 corresponding to a probability of 42%, also the results of the experiments in terms of the fitted
Z-pole parameters are in good agreement with each other. The Z-pole parameters measured by the
four LEP experiments and the LEP averages will be discussed in the following.



Parameter ALEPH DELPHI L3 OPAL LEP MSM

MZ [GeV] 91.1884±0.0031 91.1866±0.0029 91.1886±0.0029 91.1848±0.0030 91.1867±0.0021 −
ΓZ [GeV] 2.4950±0.0043 2.4872±0.0041 2.4999±0.0043 2.4939±0.0040 2.4939±0.0024 2.4920±0.0042

σ◦had [nb] 41.519±0.067 41.553±0.079 41.411±0.074 41.474±0.068 41.491±0.058 41.479±0.011

RZ
e 20.688±0.074 20.87±0.12 20.78±0.11 20.924±0.095 20.783±0.052 20.735±0.016

RZ
µ 20.815±0.056 20.67±0.08 20.84±0.10 20.819±0.058 20.789±0.034 20.735±0.016

RZ
τ 20.719±0.063 20.78±0.13 20.75±0.14 20.855±0.086 20.764±0.045 20.782±0.016

A0,e
fb 0.0181±0.0033 0.0189±0.0048 0.0148±0.0063 0.0069±0.0051 0.0153±0.0025 0.0151±0.0011

A0,µ
fb 0.0170±0.0025 0.0160±0.0025 0.0176±0.0035 0.0156±0.0025 0.0164±0.0013 0.0151±0.0011

A0,τ
fb 0.0166±0.0028 0.0244±0.0037 0.0233±0.0049 0.0143±0.0030 0.0183±0.0017 0.0151±0.0011

χ2/d.o.f 169/176 (63%) 179/168 (27%) 142/159 (83%) 158/202 (99%) 28/27 (42%) −

Table 5.1: Z-pole parameters of the four LEP experiments and their average not assuming neutral-current lepton universality [163].

Parameter MZ ΓZ σ◦had RZ
e RZ

µ RZ
τ A0,e

fb A0,µ
fb A0,τ

fb

MZ 1.000 0.000 −0.040 0.002 −0.010 −0.006 0.016 0.045 0.038

ΓZ 0.000 1.000 −0.184 −0.007 0.003 0.003 0.009 0.000 0.003

σ◦had −0.040 −0.184 1.000 0.058 0.094 0.070 0.006 0.002 0.005

RZ
e 0.002 −0.007 0.058 1.000 0.098 0.073 −0.442 0.007 0.012

RZ
µ −0.010 0.003 0.094 0.098 1.000 0.105 0.001 0.010 −0.001

RZ
τ −0.006 0.003 0.070 0.073 0.105 1.000 0.002 0.000 0.020

A0,e
fb 0.016 0.009 0.006 −0.442 0.001 0.002 1.000 −0.008 −0.006

A0,µ
fb 0.045 0.000 0.002 0.007 0.010 0.000 −0.008 1.000 0.029

A0,τ
fb 0.038 0.003 0.005 0.012 −0.001 0.020 −0.006 0.029 1.000

Table 5.2: Correlation coefficients of nine-parameter average [163].



Parameter ALEPH DELPHI L3 OPAL LEP MSM

MZ [GeV] 91.1883±0.0031 91.1867±0.0029 91.1886±0.0029 91.1843±0.0029 91.1867±0.0021 −
ΓZ [GeV] 2.4949±0.0043 2.4876±0.0041 2.4996±0.0043 2.4940±0.0040 2.4939±0.0024 2.4920±0.0042

σ◦had [nb] 41.519±0.067 41.553±0.079 41.411±0.074 41.474±0.068 41.491±0.058 41.479±0.011

RZ
ℓ 20.738±0.038 20.728±0.060 20.788±0.066 20.828±0.045 20.765±0.026 20.735±0.016

A0,ℓ
fb 0.0169±0.0016 0.0187±0.0019 0.0187±0.0026 0.0141±0.0017 0.01683±0.00096 0.01512±0.00108

χ2/d.o.f 173/180 (63%) 184/172 (25%) 144/163 (86%) 160/206 (99%) 31/31 (47%) −

Table 5.3: Z-pole parameters of the four LEP experiments and their average assuming neutral-current lepton universality [163].

Parameter MZ ΓZ σ◦had RZ
ℓ A0,ℓ

fb

MZ 1.000 0.000 −0.040 −0.010 0.062

ΓZ 0.000 1.000 −0.184 0.002 0.004

σ◦had −0.040 −0.184 1.000 0.123 0.006

RZ −0.010 0.002 0.123 1.000 −0.072

A0,ℓ
fb 0.062 0.004 0.006 −0.072 1.000

Table 5.4: Correlation coefficients of five-parameter average [163].



5.1.6.1 The Mass of the Z Boson (I)

The comparison of the LEP results for the mass of the Z boson is shown in Figure 5.16. Good agreement
between the results is observed. The Z mass is determined with a precision an order of magnitude
better than originally anticipated [60]:

MZ = 91186.7 ± 2.1 MeV . (5.20)

The successful measurement of MZ at LEP depends very much on a precise calibration of the LEP

energy, in particular of the off-peak energy points, which contributes 1.7 MeV to the total error on
MZ. The relative accuracy of the MZ measurement, δMZ/MZ = 2 ·10−5, approaches that of the Fermi
constant, δGF/GF = 1 · 10−5. As far as Standard-Model calculations are concerned, MZ, like GF, is
now known with such a precision that uncertainties in theoretical predictions due to the error on MZ

are completely negligible.

5.1.6.2 The Total Width of the Z Boson

The comparison of the LEP results for the total width of the Z boson is given in Figure 5.17. Also for
the total width the individual results agree well. The Z width is measured to be:

ΓZ = 2493.9 ± 2.4 MeV , (5.21)

which is a precision of 0.1%. Also for the measurement of the total width, a precise LEP energy
calibration, in particular of the off-peak energy points, is essential, contributing 1.3 MeV of the total
error on ΓZ. Within the Standard Model the total width is calculated, where the prediction depends on
the values of the Standard Model input parameters, MZ, Mt, MH, αS and αem. The band associated to
the Standard Model calculation shown in Figure 5.17 reflects typical uncertainties in these parameters.

5.1.6.3 The Hadronic Pole Cross Section

The results for the hadronic pole cross sections are summarised in Figure 5.17. The LEP average value
is:

σ◦had = 41.491 ± 0.058 nb (5.22)

The error on σ◦had, 0.13%, is largely dominated by the theoretical error on the luminosity determination,
0.11%. As shown in Figure 5.17 the uncertainty is so large that there is nearly no sensitivity to radiative
corrections and Standard Model input parameters.

5.1.6.4 The Leptonic Quantities

The results on the leptonic quantities RZ
ℓ and A0,ℓ

fb are compared with each other and with the Standard
Model in Figure 5.18. The correlated uncertainty arising from Bhabha t-channel and s/t-interference
contribution causes the correlation of −44% between RZ

e and A0,e
fb . The leptonic quantities show good

agreement among themselves, supporting the hypothesis of lepton universality of the neutral weak
current. With this assumption, RZ

ℓ and A0,ℓ
fb are determined with increased precision:

RZ
ℓ = 20.765 ± 0.026 (5.23)

A0,ℓ
fb = 0.01683 ± 0.00096 , (5.24)

with a correlation of −7.2%. The parameter RZ
ℓ is insensitive to the LEP energy, as it is a ratio of cross

sections measured at the peak of the resonance where the derivatives with respect to the centre-of-mass
energy are small. However, the leptonic pole forward-backward asymmetry A0,ℓ

fb depends strongly on
the knowledge of the pole centre-of-mass energy in order to transport the measurement to

√
s = MZ

since dAfb(s)/d
√
s = 8.2 · 10−5/MeV at the pole. An uncertainty of 3 MeV in the centre-of-mass

energy therefore translates into an uncertainty of 0.00025 in A0,ℓ
fb .



MZ   [MeV]

Mass of the Z Boson
Experiment MZ   [MeV]

ALEPH 91188.3 ± 3.1

DELPHI 91183.9 ± 2.9

L3 91188.6 ± 2.9

OPAL 91184.3 ± 2.9

χ2 / dof  =  3.5 / 3

LEP 91186.7 ± 2.1

common error 1.7

91180 91185 91190

Figure 5.16: Comparison of the LEP results on MZ. The common error of 1.7 MeV is included in the
errors. The χ2 of the average is calculated based on the uncorrelated errors.
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M
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Experiment σ0
had   [nb]

ALEPH 41.519 ± 0.067

DELPHI 41.553 ± 0.079

L3 41.411 ± 0.074

OPAL 41.474 ± 0.068

χ2 / dof  =  3.3 / 3

LEP 41.491 ± 0.058

common error 0.046
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Figure 5.17: Comparison of the LEP results on ΓZ and σ◦had. The common error of 1.3 MeV on ΓZ and
0.046 pb on σ◦had is included in errors. The χ2 of the averages are calculated based on the uncorrelated
errors.
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5.1.6.5 The Partial Widths of the Z Boson

The partial Z-boson decay widths themselves are calculated from the average set of nine and five Z-
pole parameters and their correlations by applying the corresponding parameter transformation. Not
assuming lepton universality, the results and correlations are summarised in Table 5.5.

Good agreement between the leptonic partial widths is observed. Assuming lepton universality,

Parameter Average Γhad Γee Γµµ Γττ MSM

Γhad [MeV] 1743.0±2.9 1.000 −0.146 0.676 0.596 1739.3±3.4

Γee [MeV] 83.87±0.14 −0.146 1.000 −0.086 −0.073 83.90±0.12

Γµµ [MeV] 83.84±0.18 0.676 −0.086 1.000 0.443 83.90±0.12

Γττ [MeV] 83.94±0.22 0.596 −0.073 0.443 1.000 83.71±0.12

Table 5.5: Partial decay widths of the Z boson not assuming lepton universality.



the partial decay widths of the Z boson are determined with increased precision:

Γhad = 1742.3 ± 2.3 MeV (5.25)

Γℓℓ = 83.90 ± 0.10 MeV , (5.26)

with a correlation of 49.6%. Furthermore, the partial decay width of the Z decaying into invisible
particles, Γinv, is calculated. Including correlations, the result is:

Γinv = ΓZ − (Γhad + Γee + Γµµ + Γττ ) = ΓZ −
(

RZ
ℓ + 3 + δτ

)

Γℓℓ

= 500.1 ± 1.9 MeV , (5.27)

where δτ = −0.23% takes τ -mass effects into account.

5.1.6.6 The Number of Light Neutrino Species

Within the Standard Model, Z decays into invisible particles are solely given by the decays into
neutrino-antineutrino pairs, Z → νν. Thus the measurement of the invisible width, Γinv, determines
the number of neutrino species, Nν , which are kinematically accessible in Z decays, 2mν < MZ. Instead
of using:

Nν =
Γinv

ΓSM
νν

(5.28)

to determine Nν , it is more advantageous to calculate:

Nν =
Γinv

Γℓℓ

(

Γℓℓ

Γνν

)

SM

. (5.29)

The experimental error on Γinv/Γℓℓ is slightly smaller than that of Γinv. Moreover, radiative corrections
in the Standard-Model calculations of the partial widths due to unknown top-quark and Higgs-boson
masses cancel to a large extend in the ratio and are not introducing additional sources of error on Nν .
Based on the double ratio, the number of light neutrino species is determined to be:

Nν = 2.994 ± 0.011 . (5.30)

A heavy neutrino with mass mν contributes to Nν by a fractional amount:

∆Nν =

(

1 − m2
ν

M2
Z

)

√

1 − 4m2
ν

M2
Z

. (5.31)

Because of the step dependence of ∆Nν on mν for mν → MZ/2, the resulting limit on mν is just a
few tens of MeV below the kinematic limit MZ/2.

The error on the number of hadronic and leptonic events as well as the luminosity theory error
contribute to the error δNν on the number of neutrinos. Approximately, one finds:

δNν = 10.5
δNhad

Nhad
⊕ 3.0

δNlep

Nlep
⊕ 7.5

δL
L , (5.32)

where ⊕ denotes addition in quadrature. The luminosity theory error, δL/L = 0.11%, is the single
largest contribution to the total error on the number of neutrinos, causing an error of 0.008 on Nν .



5.1.6.7 The Strong Coupling Constant

Measurements involving the hadronic final state are sensitive to the strong coupling constant αS(M2
Z),

mainly through the final-state QCD correction factor R
(had)
QCD = 1 + ∆

(had)
QCD(αS(M2

Z)) affecting the

hadronic partial width Γhad. Within the Z-pole parameter set, ΓZ, σ◦had and RZ
ℓ are sensitive to this

correction, as is the leptonic pole cross section, σ◦ℓ = σ◦had/R
Z
ℓ . The dependences are given by:

ΓZ ∝ 1 + 0.7 · ∆(had)
QCD (5.33)

σ◦had ∝ 1 − 0.4 · ∆(had)
QCD (5.34)

RZ
ℓ ∝ 1 + 1.0 · ∆(had)

QCD (5.35)

σ◦ℓ ∝ 1 − 1.4 · ∆(had)
QCD . (5.36)

Within the Z-pole parameter set, RZ
ℓ has the highest sensitivity to ∆

(had)
QCD(αS(M2

Z)). However, an
even larger sensitivity occurs for σ◦ℓ , which is a purely leptonic observable since it is the ratio of the
number of lepton-pairs divided by the number of small-angle luminosity Bhabhas. Beyond one-loop
order, there are also mixed QCD-electroweak corrections, for example mixed final state radiation of
photons and gluons, and gluon exchange in quark-loop insertion of the vector-boson propagators.
However, their αS(M2

Z) dependence affects observables much less than the direct final-state correction

∆
(had)
QCD(αS(M2

Z)).

Since both RZ
ℓ and the pole cross sections are ratios of partial widths, other higher-order electroweak

radiative corrections depending on top-quark and Higgs-boson masses cancel to a large extend, allowing
the determination of αS(M2

Z) with reduced uncertainties arising from these electroweak parameters.
The systematic error on cross sections due to the luminosity theory uncertainty limits the sensitivity of

the pole cross sections to αS . Considering the leading αS dependence, ∆
(had)
QCD ≃ αS/π, the estimated

errors on αS obtained from the four quantities are reported in Table 5.6.

Quantity Error on αS(M2
Z)

Statistical Systematic Luminosity Total

σ◦had
π

0.4

√

1
Nhad

π
0.45 · 10−4 π

0.4
δL
L

0.002 0.004 0.009 0.010

RZ
ℓ

π
1.0

√

1
Nhad

+ 1
Nlep

π
1.01 · 10−3 —

0.003 0.003 — 0.004

σ◦ℓ
π

1.4

√

1
Nlep

π
1.41 · 10−3 π

1.4
δL
L

0.002 0.002 0.003 0.004

Table 5.6: Estimated errors on αS derived from different observables showing statistical, experimental
systematic and luminosity theory errors as individual error sources. The numerical estimates are based
on the combined LEP–I data sample, Nhad = 16 · 106, Nlep = 17 · 105, and δL/L = 0.11%.

In the future, when the luminosity theory error is reduced by a factor of two, σ◦ℓ will be the best
single quantity to determine αS(M2

Z). Currently the quantities RZ
ℓ and σ◦ℓ determine αS(M2

Z) with
equal precision. Within the Standard Model framework, taking all αS(M2

Z) dependences into account,



one obtains the following results:

RZ
ℓ = 20.765 ± 0.026 (5.37)

→ αS(M2
Z) = 0.1241 ± 0.0039 (exp.) ± 0.0017 (MH) , (5.38)

and:

σ◦ℓ = 1.9981 ± 0.0035 nb (5.39)

→ αS(M2
Z) = 0.1221 ± 0.0039 (exp.) ± 0.0014 (MH) , (5.40)

where in each case the constraint Mt = 173.8±5.0 GeV is imposed and the second error arises due to a
variation in the mass of the Higgs boson from 90 GeV to 1000 GeV. These results are not independent.
A determination of αS based on the combined data is given in Section 6.2.3.

Theoretical errors on the determination of αS based on hadronic Z decays are not included in the
errors quoted above. They are addressed in [167–169] and are still a matter of debate, with total
errors on global averages of αS ranging from 0.002 to 0.006 [31, 56, 170, 171]. This is discussed again
in Section 6.2.3.

5.1.7 Results on the S-Matrix Parameters

For the determination of the S-Matrix parameter, where the γ/Z interference terms are determined
from the data, the measurements of fermion-pair production at LEP–II centre-of-mass energies above
the Z resonance are included. The reason is that at centre-of-mass energies far away from the Z pole,
e.g., s ≫ M2

Z, γ exchange and γ/Z interference are no longer dominated by the pure Z exchange
since the latter falls off rapidly when moving away from the pole. As shown in Figure 5.19 for hadron
production, the LEP–II measurements are particularly sensitive to the γ/Z interference if a cut s′ > M2

Z

is applied, rejecting events returning to the Z pole, s′ ≈M2
Z, through initial-state photon radiation.

The four sets of S-Matrix parameters obtained by the LEP experiments and the corresponding
LEP averages are shown in Tables 5.7 and 5.9. The correlation matrices are shown in Tables 5.8
and 5.10. The determination of the eight-parameter average is based on the four sixteen-parameter
sets, where in the averaging procedure lepton universality is imposed. As indicated by the χ2/d.o.f of
the averages, the parameters describe the experimental measurements of cross sections and forward-
backward asymmetries, and furthermore the results of the four LEP experiments are in agreement.
The largest deviation between the individual measurements is seen for the parameter jfbℓ , scaling the
γZ interference contribution to the leptonic forward-backward cross section and therefore essentially
determining the centre-of-mass energy dependence of the leptonic forward-backward asymmetries.

Large correlations appear between the S-Matrix parameters. The correlations between the rf
parameters and the total width ΓZ are a consequence of the parameter definition. They are not visible
in case of the Z-pole parameters, because those are chosen to be as uncorrelated as possible.



Parameter ALEPH DELPHI L3 OPAL LEP MSM

MZ [GeV] 91.1951±0.0056 91.1841±0.0056 91.1870±0.0056 91.1879±0.0055 91.1884±0.0031 −
ΓZ [GeV] 2.4939±0.0044 2.4897±0.0041 2.5006±0.0043 2.4946±0.0044 2.4945±0.0025 2.4920±0.0042
rtot
had

2.966±0.010 2.957±0.010 2.972±0.010 2.962±0.010 2.9637±0.0063 2.9587±0.0098
rtot
e

0.14361±0.00076 0.1412±0.0010 0.14171±0.00088 0.1418±0.0011 0.14229±0.00049 0.14240±0.00040
rtot
µ

0.14248±0.00062 0.14274±0.00069 0.14257±0.00083 0.14228±0.00066 0.14253±0.00036 0.14240±0.00040
rtot
τ

0.14313±0.00067 0.14140±0.00097 0.1433±0.0011 0.14118±0.00088 0.14247±0.00043 0.14240±0.00040
jtot
had

-0.18±0.27 0.36±0.28 0.30±0.28 0.03±0.27 0.13±0.14 0.2143±0.0084
jtote -0.007±0.041 -0.037±0.045 -0.011±0.045 -0.123±0.060 -0.028±0.023 0.00413±0.00030
jtot
µ

-0.018±0.030 0.052±0.030 0.028±0.036 -0.012±0.037 0.013±0.016 0.00413±0.00030
jtot
τ

-0.012±0.032 0.017±0.037 0.042±0.039 -0.003±0.042 0.010±0.018 0.00413±0.00030
rfb
e

0.00303±0.00072 0.00326±0.00096 0.0025±0.0013 0.0016±0.0010 0.00270±0.00046 0.00262±0.00021
rfb
µ

0.00288±0.00048 0.00267±0.00053 0.00323±0.00067 0.00262±0.00050 0.00279±0.00027 0.00262±0.00021
rfb
τ

0.00288±0.00055 0.00376±0.00075 0.00419±0.00094 0.00318±0.00066 0.00329±0.00034 0.00262±0.00021
jfbe 0.861±0.058 0.813±0.073 0.644±0.080 0.778±0.068 0.786±0.034 0.7986±0.0010
jfb
µ

0.826±0.036 0.759±0.034 0.838±0.046 0.724±0.036 0.780±0.019 0.7986±0.0010
jfb
τ

0.846±0.041 0.745±0.047 0.788±0.057 0.727±0.042 0.778±0.023 0.7986±0.0010
χ2/d.o.f 180/189 (67%) 233/195 (3%) 156/183 (93%) 109/155 (99.8%) 54/48 (26%) −

Table 5.7: S-Matrix parameters of the four LEP experiments and their average not assuming neutral-current lepton universality [163].

MZ ΓZ rtot
had

rtot
e

rtot
µ

rtot
τ

jtot
had

jtot
e

jtot
µ

jtot
τ

rfb
e

rfb
µ

rfb
τ

jfb
e

jfb
µ

jfb
τ

MZ 1.00 -.10 -.07 -.03 -.06 -.05 -.75 -.25 -.30 -.28 .04 .11 .09 .01 -.02 -.01
ΓZ -.10 1.00 .80 .51 .51 .43 .16 .03 .07 .06 .00 .00 .00 .02 .05 .04
rtot
had

-.07 .80 1.00 .59 .66 .55 .13 .01 .05 .05 .01 .01 .01 .03 .06 .05
rtot
e

-.03 .51 .59 1.00 .42 .35 .09 .04 .04 .04 .03 .00 .00 .05 .04 .03
rtot
µ

-.06 .51 .66 .42 1.00 .46 .10 .01 .14 .04 .01 .03 .01 .03 .10 .04
rtot
τ

-.05 .43 .55 .35 .46 1.00 .09 .01 .04 .13 .01 .01 .03 .02 .04 .09
jtot
had

-.75 .16 .13 .09 .10 .09 1.00 .27 .32 .30 -.04 -.11 -.09 .00 .03 .01
jtote -.25 .03 .01 .04 .01 .01 .27 1.00 .11 .10 .01 -.04 -.03 .02 .01 .00
jtot
µ

-.30 .07 .05 .04 .14 .04 .32 .11 1.00 .12 -.01 .00 -.03 .00 .02 .00
jtot
τ

-.28 .06 .05 .04 .04 .13 .30 .10 .12 1.00 -.01 -.04 .00 .00 .01 .01
rfb
e

.04 .00 .01 .03 .01 .01 -.04 .01 -.01 -.01 1.00 .01 .01 .09 .00 .00
rfb
µ

.11 .00 .01 .00 .03 .01 -.11 -.04 .00 -.04 .01 1.00 .03 .00 .17 .00
rfb
τ

.09 .00 .01 .00 .01 .03 -.09 -.03 -.03 .00 .01 .03 1.00 .00 .00 .16
jfb
e

.01 .02 .03 .05 .03 .02 .00 .02 .00 .00 .09 .00 .00 1.00 .00 .00
jfb
µ

-.02 .05 .06 .04 .10 .04 .03 .01 .02 .01 .00 .17 .00 .00 1.00 .00
jfb
τ

-.01 .04 .05 .03 .04 .09 .01 .00 .00 .01 .00 .00 .16 .00 .00 1.00

Table 5.8: Correlation coefficients of sixteen S-Matrix parameters [163].



Parameter ALEPH DELPHI L3 OPAL LEP MSM

MZ [GeV] 91.1951±0.0056 91.1837±0.0056 91.1857±0.0056 91.1866±0.0054 91.1882±0.0031 −
ΓZ [GeV] 2.4939±0.0044 2.4896±0.0041 2.5002±0.0043 2.4945±0.0044 2.4945±0.0024 2.4920±0.0042

rtothad 2.966±0.010 2.956±0.010 2.971±0.010 2.962±0.010 2.9637±0.0062 2.9587±0.0098

rtotℓ 0.14293±0.00055 0.14211±0.00061 0.14264±0.00066 0.14188±0.00060 0.14245±0.00032 0.14240±0.00040

jtothad -0.18±0.27 0.38±0.28 0.34±0.28 0.08±0.27 0.14±0.14 0.2143±0.0084

jtotℓ -0.012±0.022 0.024±0.023 0.031±0.025 -0.013±0.027 0.004±0.012 0.00413±0.00030

rfbℓ 0.00292±0.00033 0.00306±0.00040 0.00327±0.00050 0.00264±0.00037 0.00292±0.00019 0.00262±0.00021

jfbℓ 0.840±0.025 0.761±0.026 0.788±0.033 0.733±0.025 0.780±0.013 0.7986±0.0010

χ2/d.o.f 183/197 (75%) 241/203 (3%) 164/191 (92%) 116/163 (99.8%) 59/56 (37%) −

Table 5.9: S-Matrix parameters of the four LEP experiments and their average assuming neutral-current lepton universality [163].

MZ ΓZ rtothad rtotℓ jtothad jtotℓ rfbℓ jfbℓ

MZ 1.00 -0.13 -0.09 -0.08 -0.75 -0.43 0.14 -0.02

ΓZ -0.13 1.00 0.80 0.61 0.16 0.09 0.00 0.07

rtothad -0.09 0.80 1.00 0.77 0.13 0.06 0.02 0.09

rtotℓ -0.08 0.61 0.77 1.00 0.12 0.12 0.03 0.12

jtothad -0.75 0.16 0.13 0.12 1.00 0.47 -0.14 0.03

jtotℓ -0.43 0.09 0.06 0.12 0.47 1.00 -0.05 0.02

rfbℓ 0.14 0.00 0.02 0.03 -0.14 -0.05 1.00 0.15

jfbℓ -0.02 0.07 0.09 0.12 0.03 0.02 0.15 1.00

Table 5.10: Correlations of eight S-Matrix parameters [163].
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Figure 5.19: Ratio of the interference cross section to the total cross section for qq production summed
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s = MZ/0.85 = 107 GeV.

5.1.7.1 The Mass of the Z Boson (II)

A new large correlation, −75%, arises between the mass of the Z boson, MZ, and the hadronic γ/Z
interference term, jtothad. In the analysis based on the Z-pole parameters, this correlation is not visible
as jtothad is fixed to its Standard-Model value. The new correlation leads to an increase in the error on
MZ in models where jtothad is left free:

MZ = 91188.2 ± 3.1 MeV (5.41)

jtothad = 0.14 ± 0.14 , (5.42)

with a correlation between the two results of −75%. The contours of 68% and 95% probability in the
(MZ, j

tot
had) plane are shown in Figure 5.20, comparing the results based on LEP–I data only to those

including also the LEP–II data. As expected, the error on jtothad and consequently the error on MZ are
considerably reduced by using total cross-section measurements at centre-of-mass energies far away
from the Z pole [172].

The TOPAZ collaboration at the e+e− collider TRISTAN at KEK has performed a measurement
of the total hadronic cross section at

√
s = 57.77 GeV, σ0

tot = 143.6 ± 1.5(stat.) ± 4.5(syst.) pb [173].
Combining this measurement with the LEP results yields:

MZ = 91188.2 ± 2.9 MeV (5.43)

jtothad = 0.14 ± 0.12 , (5.44)
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and the combined LEP result [163].

and the correlation between MZ and jtothad is reduced from −75% to −71%.
Radiative hadron production, e+e−→ qqγ, at the Z pole, s = M2

Z, also explores the energy region
below the Z-pole through initial-state radiation lowering the centre-of-mass energy of the colliding
e+e− pair, and could thus be used to constrain jtothad. The ALEPH collaboration has performed such
an analysis of jtotf for dimuon production [174]. On the other side of the Z pole in the energy region

of LEP–II, s ≫ M2
Z, further measurements of the total hadronic cross section excluding the radiative

return to the Z will reduce the error on jtothad consequently the error on MZ further, approaching the
error on MZ obtained in the Z-pole parameter set.



5.2 Tau Polarisation

5.2.1 Measurements

The weak charged current decay of the τ lepton violates parity conservation due to its V−A structure.
This offers the unique experimental possibility to measure the longitudinal polarisation, i.e., average
helicity h, of fermion pairs produced in e+e− interactions, here in case of τ pairs.

The LEP experiments analyse up to five different τ decay modes, τ → eνν, µνν, πν, ρν and a1ν,
for polarisation at LEP–I. The τ polarisation, Pτ , is measured by obtaining the linear combination
of the hτ = +1, hτ = −1 Monte-Carlo signal and non-τ background distributions of polarisation
sensitive variables which best fits the data. Depending on the τ decay mode, different polarisation
sensitive variables are analysed. Since fully simulated Monte Carlo events are used, all detector effects
influencing the measurement are automatically taken into account and implicitly corrected.

For the e, µ and single-π decay modes, the polarisation sensitive variable is simply the energy,
E, of the visible τ decay product. For leptonic τ decays, the energy spectrum of the charged decay
product in terms of the scaled energy x = E/Eτ is given by:

1

Γ

dΓ

dx
=

1

3

(

5 − 9x2 + 4x2
)

+ Pτ · 1

3

(

1 − 9x2 + 8x3
)

. (5.45)

The measured distribution is shown in Figures 5.21. For hadronic decay modes τ → ντh, the energy
spectrum is linear:

1

Γ

dΓ

dx
= 1 + Pτ · αh (2x− 1) (5.46)

αh =
m2

τ − 2m2
h

m2
τ + 2m2

h

< 1 (5.47)

and shown in Figure 5.22. While for pions απ = 1, the sensitivity of the energy spectrum to Pτ is
reduced in case of τ decays to heavy mesons. For the ρ and a1 decay channels, the polarisation of these
spin-1 mesons also carries information on the τ polarisation, which is recovered by also analysing the
decay angles of the subsequent ρ and a1 decays into π mesons. In τ+τ− events where both τ leptons
decay into hadrons, it is possible to reconstruct the τ direction relative to the direction of the decay
products, which is needed in order to reach the maximal possible sensitivity to the τ polarisation [175].

The multidimensional analyses in case of τ decays via spin-1 mesons is reduced to one-dimensional
analyses by employing the concept of optimal observables [175]. A single optimal variable, ω, is
constructed with the same sensitivity to the τ polarisation as the multidifferential cross section. This
is possible because in generalisation of the above equations also the fully differential cross section is
linear in Pτ :

dσ(Ω,Pτ )

dΩ
= C0(Ω) + Pτ · C1(Ω) (5.48)

ω(Ω) =
C1(Ω)

C0(Ω)
, (5.49)

where Ω is the set of phase-space variables describing the final state. Including the reconstruction of
the tau direction, the sensitivity of the ρ and a1 decays increases to the maximal possible value. The
distribution of the optimal observable used in τ → ρν decays is shown in Figure 5.22.

The large number of τ+τ−(γ) events collected by the experiments at LEP–I makes it possible to
determine the τ polarisation, Pτ , as a function of the polar scattering angle, cos θ. The results of
the polarisation measurements are then quoted in terms of the coupling parameters Ae and Aτ as
suggested by the lowest order formula describing the dependence of the τ polarisation on the polar
scattering angle, evaluated at

√
s = MZ:

Pτ (cos θ) = −Aτ (1 + cos2 θ) + 2Ae cos θ

(1 + cos2 θ) + 2AeAτ cos θ
. (5.50)
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The above equation for Pτ (cos θ) neglects corrections for the effects of
√
s dependence, γ exchange,

γ/Z interference, QED initial- and final-state radiation including helicity-flip configurations. They
are implicitly taken into account in the experimental analyses through the use of the Monte-Carlo
simulations. They amount to corrections of +0.003 on both Ae and Aτ with a negligible theoretical
uncertainty. The data collected at the off-peak centre-of-mass energies are included. This is possible
since the τ polarisation does not depend strongly on

√
s so that the SM energy dependence may be

used to transport the measurements to
√
s = MZ. The τ polarisation measured as a function of cos θ

is shown in Figure 5.23.

The experimental analyses implicitly assume the charged current V−A theory for τ decays. In the
case this assumption is dropped the uncertainties in the measurements of the Michel parameters [31,
178, 179] describing τ decays increase the error of the extracted Pτ polarisation. The additional error
on Pτ is dominated by the error δξ in the Michel parameter ξ:

δPτ = |Pτ · δξ| , (5.51)

as it is mainly the product ξPτ which is measured. The LEP experiments also analyse the τ+τ− data
in terms of the Michel parameters. In these analyses the τ polarisation is determined together with
the Michel parameters. The error is larger but the central values agree, because the Michel parameters
are as expected for a pure V −A charged current τ decay. Further details on experimental aspects of
the measurement of Pτ are reviewed in [180–182]. For the results quoted in the following, the charged
current V − A hypothesis is assumed without any associated error.
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Figure 5.23: Tau polarisation, Pτ , as a function of the polar scattering angle, cos θ, as measured by
the L3 collaboration based on the complete LEP–I data set [176]. The universality fit imposes the
constraint Ae = Aτ .



5.2.2 Averaging Procedure and Results

The averaging procedure consists of several steps. First, within each experiment the τ -polarisation
measurements are averaged over all LEP–I centre-of-mass energies and τ -decay channels analysed for
polarisation. This average takes correlated experimental systematic errors due to detector effects such
as energy calibrations and resolutions properly into account. The results on Ae and Aτ of each LEP

experiment, in good agreement with each other, are shown in Table 5.11 and in Figure 5.24. The
systematic error on the average τ polarisation, Aτ , is about thrice as large as that of Ae and only
slightly smaller than the statistical error. The measurements of Ae are still statistics limited. The
errors are treated as uncorrelated when averaging the Ae results and the Aτ results.

In a second step, the results are averaged between the four LEP experiments, resulting in best LEP

values for Ae and Aτ :

Ae = 0.1479 ± 0.0051 (5.52)

Aτ = 0.1431 ± 0.0045 . (5.53)

The two averages have a χ2/d.o.f of 5.2/3 and 1.0/3, corresponding to a probability of 18% and 80%,
respectively. The two results agree, as is expected from lepton universality of the neutral weak current.
Their average is:

Aℓ = 0.1452 ± 0.0034 , (5.54)

where the χ2/d.o.f of the average has a value of 0.5/1, corresponding to a probability of 48%. The
errors are treated as uncorrelated when combining the averages of Ae and Aτ .

For an improved averaging procedure, errors correlated between the experiments need to be iden-
tified and quantified. A direct source of common uncertainties is given by hadronic τ decays, which
are not calculated from first principles but modelled using structure functions to describe the hadronic
current in the τ decay matrix element. In particular, there are two sources of uncertainties:

1. Radiative corrections in τ → πν and τ → ρν decays.
These two τ -decay channels carry the largest weight in the τ polarisation analysis. In contrast
to leptonic τ decays, which are calculable from first principles since only pointlike particles
interacting electroweakly are involved, calculations of QED radiative corrections suffer from
uncertainties induced by the presence of a hadronic current.

2. Modelling of the τ → a1ν decay.
The τ → a1 decay is least constrained by experimental data on τ decays. Varying the model
parameters within their allowed ranges leads to sizeable effects. Because of the relatively small
weight of this channel compared to the other decay channels, the uncertainty on the average τ
polarisation is much reduced.

For their final τ -polarisation analysis, L3 has estimated the uncertainties due to these effects to be
0.0001 on Ae, 0.0010 on Aτ , and 0.0007 on the average of Ae and Aτ [176].

Another interesting averaging strategy would be to first average the results of the four LEP exper-
iments for each channel separately. This would yield best LEP values for the τ polarisation in each
τ decay mode investigated and constitutes an interesting check of possible problems in τ decays or
even new physics effects specific for certain final states. For that procedure, the experiments need to
provide more details on their analyses in order to treat correlated systematic errors in the average
properly.



Experiment Status Aτ Ae

ALEPH (90 - 95), prel. 0.1452 ± 0.0052 ± 0.0032 0.1505 ± 0.0069 ± 0.0010

DELPHI (90 - 95), prel. 0.1381 ± 0.0079 ± 0.0067 0.1353 ± 0.0116 ± 0.0033

L3 (90 - 95), final 0.1476 ± 0.0088 ± 0.0062 0.1678 ± 0.0127 ± 0.0030

OPAL (90 - 94), final 0.134 ± 0.009 ± 0.010 0.129 ± 0.014 ± 0.005

LEP Average 0.1431 ± 0.0036 ± 0.0027 0.1479 ± 0.0050 ± 0.0010

χ2/d.o.f 1.0/3 (80%) 5.2/3 (18%)

MSM 0.1419 ± 0.0051 0.1419 ± 0.0051

Table 5.11: Measurements of Aτ and Ae in τ polarisation and their averages [163]. The first error is
statistical and the second systematic.
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Figure 5.24: Comparison of the LEP results on Ae and Aτ from τ polarisation.

5.3 Left-Right Asymmetries

5.3.1 Measurements

The expressions for the differential and total cross sections of e+e− interactions with polarised electron
beams are discussed in Section 3.1.1.6. The measurement of the left-right asymmetry is very robust
as it requires simply counting Z events for each beam polarisation and forming the corresponding



asymmetry. The analysis is performed for hadronic events, e+e− → hadrons(γ). For leptonic final
states, e+e−→ ℓ+ℓ−(γ), it is rather straight forward to measure as well the cos θ distribution of the
event samples obtained by left-handed and right-handed electron beams. They are shown Figure 5.25
for all three charged lepton flavours. From a fit to the distributions obtained with left-handed and right-
handed electron beams, the initial-state coupling parameter Ae and the final-state coupling parameter
Af are determined simultaneously. This way both the left-right asymmetry and the forward-backward
left-right asymmetry are determined. In case of e+e− production, the additional t-channel and s/t-
interference contributions are clearly visible and are accounted for by adding corresponding terms to
the s-channel expressions of the fitting formulae.

5.3.2 Results

The average of the Alr measurements from the different SLD data taking periods with different degrees
of electron beam polarisation is given by:

Alr = 0.1504 ± 0.0023 . (5.55)

The average has a χ2/d.o.f of 6.9/5, corresponding to a probability of 23%. The result includes the
leptonic polarised forward-backward asymmetries, Afblr, but is dominated by the left-right asymmetry,
Alr. The systematic error, about a factor of two smaller than the statistical error, is dominated by
the error on the measurement of the beam polarisation P discussed in Section 4.4. The measurement
of Alr is by far the most precise determination of the leptonic coupling parameter Ae.

5.4 Heavy Flavours

At SLC and at LEP, the name heavy flavours stands for the heavy c and b quarks, as top quarks are not
produced. The large data sample of qq events collected by the LEP experiments at the Z pole, 4 · 106

events on average per experiment, corresponds to more than 800,000 bb events and nearly 700,000 cc
events per experiment. The SLD collaboration collected more than 500,000 qq events, corresponding
to more than 100,000 bb events and nearly 100,000 cc events.

5.4.1 Measurements

5.4.1.1 Electroweak Parameters

With the help of tagging b and c quark jets as discussed below, samples of bb and cc events are
selected. For bb and cc final states, the same electroweak parameters as for leptons are determined:� The ratio of partial Z decay widths for heavy quarks and hadrons:

RZ
q =

Γqq

Γhad
q = b, c . (5.56)

For historical reasons, RZ
q is defined differently than RZ

ℓ = Γhad/Γℓℓ.� The pole forward-backward asymmetries in heavy quark production:

A0,q
fb =

3

4
AeAq q = b, c . (5.57)� The polarised forward-backward asymmetries, measured by SLD at SLC only, written in terms

of the coupling parameter Aq:

Aq =
4

3
A0,q

fblr q = b, c . (5.58)



Figure 5.25: Differential cross sections in ℓ+ℓ− production measured by SLD at SLC with polarised
electron beams [125].



5.4.1.2 Heavy Flavour Tagging

Samples of bb and cc events are selected from an inclusive sample of hadronic events based on heavy
flavour tags. Several tagging methods have been developed in order to separate bb and cc events
from light quark events. For a review see [183, 184]. They are based on specific decay properties of
heavy quarks as shown in Figure 5.26, such as semileptonic decays, long lifetimes, high masses, and
hard fragmentation of heavy quarks, as well as on exclusive reconstruction of hadrons containing b
and c quarks. Distributions of some tagging variables are shown in Figure 5.27. The b tag efficiencies
and purities obtained by the experiments are compared in in Figure 5.28. The separation of b and
c quarks, based on the two variables vertex mass and vertex momentum determined for secondary
vertices, is shown in Figure 5.29.
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Figure 5.26: Heavy flavour bb event recorded at LEP–I by the ALEPH detector. The B meson decay
chain is fully reconstructed. Top left: global view showing two hadronic jets with tracks reconstructed
in the central tracking chamber and energy depositions in the calorimeters. Top right: Enlarged view
showing hits and tracks reconstructed in the silicon micro-strip vertex detector. Bottom: Further
expanded view showing the primary interaction vertex and secondary decay vertices.
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5.4.1.3 Partial Widths

Experimentally, the ratio of the number of heavy quark events to all hadronic events is measured,
which is the ratio of the corresponding production cross sections at the Z pole:

Rq(s, s
′
cut) =

σ(e+e− → qq(γ), s′ > s′cut)

σ(e+e− → had, s′ > s′cut)
, (5.59)

where s′cut denotes the s′ cut applied in the analysis, s′cut > 4m2
q . In order to derive the ratios of the

corresponding Z decay widths, small corrections are applied to account for radiative corrections, γ
exchange and γ/Z interference contributions which are

√
s dependent. Typically, one finds:

RZ
b =

Γbb

Γhad
= Rb(

√
s = MZ) + 0.00029 (5.60)

RZ
c =

Γcc

Γhad
= Rc(

√
s = MZ) − 0.00032 , (5.61)

where the numerical corrections depend slightly on the invariant-mass or s′-cut applied.
Tagging of heavy quarks is applied to the event as a whole or to the two individual jets or hemi-

spheres of the event. Single-tag methods allow the determination of, for example, Rb, based on the
following relation:

Nt

Nhad
= ǫbRb + ǫcRc + ǫuds(1 − Rb − Rc) , (5.62)

where Nt is the number of tagged events, Nhad the total number of hadron events analysed, and ǫb,
ǫc and ǫuds the efficiency of the tag for b, c and light-quark events. Single-tag measurements receive
relatively large contributions to the systematic error because the tagging efficiency ǫb, multiplying the
quantity Rb to be measured, must be taken from Monte Carlo simulations. This drawback is avoided
by the double-tag method. In this method, hemispheres or jets rather than the events as a whole are
tagged, leading to two relations, one for the number of hemispheres or jets tagged, N1, and one for
the number of events with both jets or hemispheres are tagged, N2, where:

N1

2Nhad
= ǫbRb + ǫcRc + ǫuds(1 − Rb − Rc) (5.63)

N2

Nhad
= Cbǫ

2
bRb + Ccǫ

2
cRc + Cudsǫ

2
uds(1 − Rb − Rc) , (5.64)

where the correlation coefficients C take into account possible correlations of the jet tagging efficiencies
between the jets or hemispheres. Such correlations arise, for example, through acceptance effects, hard
gluon radiation and the position of the primary event vertex.

The double tagging method allows to determine the b tagging efficiency from data, albeit only
to the statistical precision set by the size of the data sample, but nevertheless leading to smaller
systematic errors on Rb. Furthermore it is possible to combine several different tagging methods, each
having its own efficiency determined from the data, in so-called multitag analyses. Such an ansatz
improves the statistical sensitivity and reduces systematic errors due to correlations and background.

The individual results on RZ
b and RZ

c are summarised in Figure 5.30.

5.4.1.4 Asymmetries

The measurement of the charge of the primary quarks in the reaction e+e−→ qq(γ) is less straightfor-
ward compared to ℓ+ℓ− production, as the quarks manifest themselves in the detector as jets consisting
of many neutral and charged hadrons. In the case the heavy quark decays semileptonically, the quark
charge is tagged by the charge of the decay lepton associated to the quark jet. For exclusively recon-
structed decay vertices of heavy-quark hadrons, the quark charge is inferred from the charge of the
decaying meson as given by the sum of the charges of tracks assigned to the decay vertex.
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The complete hadronic jet also carries information about the charge of its parent quark. The jet
charge, Qj , is calculated as the weighted sum of the charges of particles assigned to the jet, where the
weight is typically given by the longitudinal momentum of the track with respect to the jet axis:

Qj =

∑

i qi|p
‖
i |κ

∑

i |p
‖
i |κ

. (5.65)

The sum runs over all particles i with charge qi assigned to the jet or hemisphere under consideration.
The parameter κ is tuned to obtain the best charge separation, resulting in 0.5 < κ < 1.5. The
average charge separation, ∆q, expresses how well a quark jet is separated in measured charge from
an antiquark jet:

∆q = |〈Qq −Qq̄〉| . (5.66)

For each event, a forward and a backward charge is constructed by using the charge of the jet in the
forward and backward hemisphere, respectively:

QF = Qjet(cos θjet > 0) (5.67)

QB = Qjet(cos θjet < 0) . (5.68)

The forward-backward charge asymmetry is simply the difference in forward and backward charge,
QFB = QF −QB . In analogy to the counting method to determine asymmetries, the average forward-
backward charge asymmetry is determined which is proportional to the usual flavour-based forward-
backward asymmetry, Aq

fb:

〈Qq
FB〉(| cos θ| < c) = sign(qq)∆qA

q
fb(| cos θ| < c) , (5.69)

from which the corresponding pole forward-backward asymmetry, A0,q
fb , is derived. The use of the

average charge asymmetry and charge separation automatically corrects for charge-confusion effects.
Since Aq

fb = sign(qq)Q
q
FB/∆q, the charge separation ∆q needs to be known as precisely as pos-

sible. In order to keep the systematic error low, it is determined using data. For this purpose, two
experimentally accessible data distributions are analysed, the distribution of the average event charge,
Q = (QF + QB)/2 = (Qq + Qq̄)/2, and the distribution of the product of charges, QFQB = QqQq̄.
The charge separation ∆ is then given by:

∆ = 4
(

cov(Qq, Qq̄) − 〈QFQB〉 + 〈Q〉2
)

, (5.70)

where only the covariance cov(Qq, Qq̄) must be taken from Monte-Carlo simulation. The dependence
on the simulation is further reduced by also analysing the sum of the QF distribution and the QB

distribution which is nothing else but the sum of the Qq distribution and the Qq̄ distribution.1 This
distribution has the same mean as the distribution of the average event charge, 〈Q〉. Assuming that
the Qq and Qq̄ distributions have the same width σ, the width V of the summed distribution is given
by:

V 2 = σ2 +
1

4
∆2 , (5.71)

so that the charge separation is written as:

∆2 = 4 · ρ(Qq, Qq̄)V
2 − 〈QFQB〉 + 〈Q〉2

1 + ρ(Qq, Qq̄)
, (5.72)

where now only the correlation coefficient ρ(Qq, Qq̄) = cov(Qq, Qq̄)/σ
2 instead of the covariance

cov(Qq, Qq̄) needs to be taken from the simulation.

1Note that the resulting distribution is not the distribution of the quantity 2Q = QF +QB = Qq +Qq̄.



In order to apply the fitting method to determine the forward backward charge asymmetry, the
charge flow is evaluated on an event by event basis. The positive quark is assumed to be in the
forward region and the negative quark in the backward region if QFB is positive, and vice versa if
QFB is negative. Both charge measurements QF and QB are used to assign the event charge flow.
Assuming Gaussian distributions, the charge-confusion probability C of wrong charge assignment is
given by:

C =
1√
2π

∫ − ∆

σ
√

2(1−ρ)

−∞
exp

(

−1

2
x2

)

dx , (5.73)

since the width of the Qq − Qq̄ distribution is given by σ
√

2(1 − ρ). Thus C depends on the charge
separation ∆, the accuracy of the charge determination, σ, and the correlation between the two charges
in the event, ρ. A maximum likelihood fit is then performed, where the likelihood is given by:

L =
∏

i

[

3

8

(

1 + cos2 θi

)

+ (1 − 2C)Afb(s) cos θi

]

, (5.74)

and where the polar angle of the fermion for each event is constructed from the charge flow QFB and
the known quark charge:

cos θi = sign (qqQFB(i)) | cos θthrust(i)| . (5.75)

The measured bb and cc forward-backward asymmetries at centre-of-mass energies around the Z pole
are shown in Figure 5.31.

In order to determine pole forward-backward asymmetries, some corrections must be applied to
the measurements:

1. Because of the hadronic nature of the final state, the asymmetries are affected by final-state
QCD corrections, which modify the differential cross section of the process e+e−→ qq(γ) as
follows:

dσ

d cos θ
= σtot

[

3

8

(

4

3 + aq

)

(1 + aq cos θ) + Aq
fb cos θ

]

(5.76)

Aq
fb = A0,q

fb

[

1 − c1
αS(M2

Z)

π
− c2

(

αS(M2
Z)

π

)2
]

(5.77)

aq = a0
q

[

1 − d1
αS(M2

Z)

π
− d2

(

αS(M2
Z)

π

)2
]

, (5.78)

where quantity aq is called the shape parameter. The coefficients of the series in αS/π have been
calculated to first order for massive quarks and to second order for massless quarks [189–194].
The corrections depend on whether the quark direction or the thrust axis is used to determine
the polar angle. For massless quarks to first order and using the quark direction instead of the
thrust axis, the results are simply a0

q = 1, c1 = 1 and d1 = 8/3.

Experimentally, the thrust axis is used to determine the polar angle of the event. Since the
corrections are dependent on the experimental details of the analysis, the experiments quote
their results with QCD effects removed and extrapolated to full acceptance. Detailed studies on
experimental effects are given in [195].

2. Additional corrections are applied to transport the measurements to the pole centre-of-mass
energy,

√
s = MZ, and to remove initial-state QED radiative corrections as well as γ exchange

and γ/Z interference contributions. The corrections are reported in Table 5.12. To the number
of digits quoted, these corrections have a negligible error.

The individual results on A0,b
fb and A0,c

fb are summarised in Figure 5.32.
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Figure 5.31: Forward-backward asymmetries in bb and cc production measured as a function of
√
s

around the Z pole [163].

Source ∆Ab
fb ∆Ac

fb√
s = MZ −0.0013 −0.0034

ISR +0.0041 +0.0104

γ, γ/Z −0.0003 −0.0008

Total +0.0025 +0.0062

Table 5.12: Corrections to be applied to the measured bb and cc forward-backward asymmetries in
order to determine the pole asymmetries [163]. The uncertainty on these corrections is negligible.

5.4.2 Averaging Procedure

The experimental analyses in the heavy flavour sector are much more complicated as compared to
lepton and inclusive hadron production. This is reflected in the complicated fitting procedure to
obtain the heavy-flavour averages [196]. Uncertainties and correlations arise due to external input,
such as fragmentation and decay models and their parameters, as well as from parameters which are
measured by the experiments, such as RZ

c affecting the measurement of RZ
b due to cc background in

the bb sample.

For the external input parameters, the experiments agree on and constantly revise a common set of
central values and uncertainties [197]. All heavy-flavour measurements are corrected in central value
and error to correspond to the latest common set of values and uncertainties. Errors arising from the
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ment.



same sources are treated as correlated between the affected measurements.
Other heavy flavour parameters which are directly measured by the experiments are determined

in parallel with the heavy flavour electroweak parameters. Besides the four or six electroweak param-
eters discussed above, the averaging procedure therefore considers and determines the following seven
parameters in addition when combining results:� The semileptonic branching fractions of b quarks, B(b → ℓ) and B(b → c → ℓ̄), which determine

the rate of inclusive leptons in bb events used by lepton tags;� The average oscillation or mixing probability of neutral B mesons, χ̄, which leads to a dilution
of the bb forward-backward asymmetry by a factor 1/(1 − 2χ̄);� The probabilities that a charm quark from Z decays produces one of the weakly decaying charm
hadrons, D+, Ds, and charmed baryons, P(c → D+), P(c → Ds), and P(c → c − Baryon), respec-
tively. The probability that a c quark fragments into a D0 meson is derived from the constraint
that all four probabilities add up to unity.� The probability that a charm quark produces a D∗+ meson, P(c → D∗+), times the branching
fraction for the strong decay D∗+ → D0π+, P(c → D∗+) · B(D∗+ → D0π+)

The c fractions are important for analyses reconstructing exclusively the various charm hadrons for
charm counting.

The dependence of each measurement result on any of the fit parameters is accounted for by
parametrising this dependence explicitly. The value of the measured quantity is adjusted to correspond
to the set of actual values of the fit for all other parameters. For example, the dependence of the
measured value Rbmeasured on the value of Rc, changed by the fit from the value of Rcused used to
determine the measurement result Rbmeasured, is cast as:

Rbmeasured −→ Rbmeasured + aRc

Rc − Rcused

Rc
. (5.79)

This adjusted value of the Rb measurement enters the calculation of the χ2 to be minimised in the
averaging procedure.

5.4.3 Results

The averaging procedure for the LEP heavy flavour results determines eleven parameters, the four
electroweak parameters, RZ

b , RZ
c , A0,b

fb , A0,c
fb , and the seven additional heavy flavour parameters as given

above. The results for the four electroweak parameters including their correlations are reported in
Table 5.13. The χ2/d.o.f is low, 42/69, resulting in a high probability of 99.5%. In case the SLD heavy
flavour results are included, the polarised forward-backward asymmetries are included as additional
electroweak parameters, which determine the coupling parameters Ab and Ac. They are treated as
independent of the forward-backward asymmetries A0,b

fb and A0,c
fb , i.e., the relation A0,q

fb = 3
4AeAq is

not used. The combined results including correlations are reported in Table 5.14. Also in this case,
the χ2/d.o.f is rather low, 44/75, thus the probability of the fit very high, 99.8%.

The anticorrelation between RZ
b and RZ

c and the correlation between A0,b
fb and A0,c

fb are mainly
caused by the background of cc events in the sample of selected bb events. Because the results are
correlated, in particular (RZ

b ,R
Z
c ), (A0,b

fb ,A
0,c
fb ), and (Ab,Ac), two-dimensional correlation contours are

shown in Figure 5.33. Compared to the experimental errors, the measurements of A0,q
fb are the heavy

flavour measurements most sensitive to SM parameters, while the SM predictions of Ab and Ac are
constant compared to the experimental errors. The largest deviation of the electroweak heavy flavour
measurements from the SM is seen for the parameter Ab.



Parameter Average RZ
b RZ

c A0,b
fb A0,c

fb MSM

RZ
b 0.21664±0.00076 1.00 −0.17 −0.06 0.02 0.21582±0.00018

RZ
c 0.1724±0.0048 −0.17 1.00 0.06 −0.05 0.17223±0.00006

A0,b
fb 0.0991±0.0021 −0.06 0.06 1.00 0.13 0.0994±0.0036

A0,c
fb 0.0712±0.0045 0.02 −0.05 0.13 1.00 0.0708±0.0028

Table 5.13: Average results on electroweak heavy flavour parameters and their correlations obtained from LEP data. The χ2/d.o.f of the eleven-
parameter average is 42/69 (99.5%) [163].

Parameter Average RZ
b RZ

c A0,b
fb A0,c

fb Ab Ac MSM

RZ
b 0.21656±0.00074 1.00 −0.17 −0.06 0.02 −0.02 0.02 0.21582±0.00018

RZ
c 0.1735±0.0044 −0.17 1.00 0.05 −0.04 0.01 −0.04 0.17223±0.00006

A0,b
fb 0.0990±0.0021 −0.06 0.05 1.00 0.13 0.03 0.02 0.0994±0.0036

A0,c
fb 0.0709±0.0044 0.02 −0.04 0.13 1.00 −0.01 0.07 0.0708±0.0028

Ab 0.867±0.035 −0.02 0.01 0.03 −0.01 1.00 0.04 0.9342±0.0004

Ac 0.647±0.040 0.02 −0.04 0.02 0.07 0.04 1.00 0.6656±0.0022

Table 5.14: Average results on electroweak heavy flavour parameters and their correlations obtained from SLD/LEP data. the χ2/d.o.f of the
thirteen-parameter average is 44/75 (99.8%) [163].
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−210 GeV.

The various sources of errors on the electroweak parameters are reported in Table 5.15. Systematic
errors play an important role and sometimes dominate the total error. The small χ2/d.o.f of both fits
suggests that the systematic errors, their correlations, or both, are estimated rather conservatively.2

The errors on the averages are therefore less than optimal.

2Necessarily, systematic errors are treated like statistical errors in order to be able to apply the averaging procedure
based on χ2 fits with error matrices. However, systematic errors are rarely Gaussian with a well defined spread.



Source RZ
b RZ

c A0,b
fb A0,c

fb Ab Ac

[10−3] [10−3] [10−3] [10−3] [10−2] [10−2]

Uncorrelated systematics 0.32 2.4 0.8 1.9 2.4 2.2

QCD effects 0.23 0.2 0.3 0 0.7 0.3

B(D → neut.) 0.17 0.1 0 0 0 0

D decay multiplicity 0.09 0.5 0.1 0.1 0 0

B(D+ → K−π+π+) 0.10 0.4 0 0 0 0.1

B(Ds → φπ+) 0.02 1.2 0 0 0 0

B(Λc → pK−π+) 0.04 0.6 0 0 0 0.1

B(c→ ℓ) 0.02 1.2 0.3 0.1 0 0

D lifetimes 0.07 0.2 0.1 0.1 0 0

gluon splitting 0.29 0.9 0 0 0.1 0.2

c fragmentation 0.07 0.8 0.1 0 0.1 0.1

light quarks 0.10 0.6 0.5 0 0 0.1

Total systematic 0.57 3.4 1.0 2.2 2.5 2.3

Statistics 0.47 2.7 1.8 3.8 2.5 3.3

Total 0.74 4.4 2.1 4.4 3.5 4.0

Table 5.15: Error sources in heavy-flavour analyses. Except for the statistical error and uncorrelated
systematics, all other systematic error sources are treated as correlated between measurements [163].

5.5 The Coupling Parameters

In the previous sections, several measurements are presented which constrain the values of the coupling
parameter Af . These are the forward-backward asymmetries, A0,f

fb , which determine the product

A0,f
fb = 3

4AeAf , the τ polarisation results Ae and Aτ , the left-right asymmetry Alr = Ae, and the

polarised forward-backward asymmetries, A0,f
fblr = 3

4Af .

5.5.1 Charged Leptons

First, the leptonic coupling parameter Aℓ will be considered. The results on Aℓ derived from the
various asymmetry measurements are summarised in Table 5.16. As expected from the agreement of
the A0,ℓ

fb values, also good agreement between the different lepton species in terms of Aℓ is observed.
Furthermore, the results on Ae and Aτ agree well with the same quantities determined from the
τ -polarisation and Alr measurement. Assuming lepton universality, the leptonic forward-backward
asymmetries determine the absolute value of Aℓ, |Aℓ| = 0.1498 ± 0.0043. Combining this result with
the τ -polarisation and Alr measurements, the best value for Aℓ is obtained:

Aℓ = 0.1489 ± 0.0017 . (5.80)

The average has a χ2/d.o.f of 2.2/3, corresponding to a probability of 53%.

5.5.2 Heavy Flavours

Second, the quark coupling parameters are considered, based on the measured forward-backward
and forward-backward left-right bb and cc asymmetries. Assuming lepton universality, the coupling



Aℓ A0,ℓ
fb Pτ Alr Average

Ae 0.143±0.012 0.1479±0.0051 0.1504±0.0023 0.1501±0.0020

Aµ 0.153±0.018 0.145±0.012

Aτ 0.171±0.021 0.1431±0.0045 0.1447±0.0043

Aℓ 0.1498±0.0043 0.1452±0.0034 0.1504±0.0023 0.1489±0.0017

MSM 0.1419±0.0051 0.1419±0.0051 0.1419±0.0051 0.1419±0.0051

Table 5.16: Results on the leptonic coupling parameters Aℓ and their combination, with and without
the assumption of lepton universality. Note that there is a large anti-correlation between the Aℓ values
derived from the A0,ℓ

fb results alone. The correlation matrices are given in Table 5.17. The average of

the four Aℓ determinations based on A0,ℓ
fb , Ae and Aτ from τ polarisation, and Alr has a χ2/d.o.f of

2.2/3, corresponding to a probability of 53%.

Parameter Ae Aµ Aτ Ae Aµ Aτ

Ae 1.000 −0.720 −0.663 1.000 −0.166 −0.033

Aµ −0.720 1.000 −0.493 −0.166 1.000 0.014

Aτ −0.663 −0.493 1.000 −0.033 0.014 1.000

Table 5.17: Correlations between the leptonic coupling parameters derived from A0,ℓ
fb only (left) and

from all results (right).

parameters for charged leptons, b quarks and c quarks are determined and reported in Table 5.18.
The average has a χ2/d.o.f of 2.5/5, corresponding to a probability of 78%.

The mutual consistency between the measurements of Aℓ, Aq and A0,q
fb = 3

4AeAq for q = b, c is
shown in Figure 5.34. The three bands corresponding to the three measurements overlap in a common
region of the (Aℓ,Aq) plane. The measurement errors on Ab and Ac are very large compared to the
effects of electroweak radiative corrections within the SM. This is indicated by the Standard Model
expectation as a function of the SM input parameters, which is essentially constant in Ab and nearly
so in Ac for any reasonable values of the SM input parameters.

The derived coupling parameter Ab deviates from the Standard Model prediction by about three
standard deviations. This is caused by the combined action of several effects. First, the direct
SLD measurement of Ab from the left-right forward-backward asymmetry at SLC is low compared to
the almost constant Standard Model prediction of this parameter. Second, Aℓ is high and A0,b

fb is
low compared to Standard Model predictions based on the same values for Mt and MH. Thus Ab

Parameter Average Ab Ac Aℓ MSM

Ab 0.882±0.018 1.000 0.139 −0.412 0.9342±0.0004

Ac 0.640±0.029 0.139 1.000 −0.118 0.6656±0.0022

Aℓ 0.1491±0.0017 −0.412 −0.118 1.000 0.1419±0.0051

Table 5.18: Results on the heavy-quark coupling parameters Aq and their correlations derived from
the SLD/LEP data under the assumption of lepton universality. The average has a χ2/d.o.f of 2.5/5,
corresponding to a probability of 78%.
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determined from Ab = 4
3A0,b

fb /Aℓ is also driven towards low values. Combining the two low Ab values,
a significantly low Ab average is obtained. It is not possible to lower Alr and to increase Ab through
the dependence of their SLD measurement on the SLC electron beam polarisation at the same time,
as both observables would change in the same direction. Improved measurements of Aℓ, A0,b

fb and Ab,
combined with a realistic assessment of systematic errors in the heavy-flavour analyses, are clearly
desirable.

5.6 The Effective Vector and Axial-Vector Couplings

5.6.1 Charged Leptons

The effective vector and axial-vector coupling constants of the neutral weak current are determined by
both asymmetries and partial decay widths of the Z boson. The asymmetries constrain the coupling
parameters Af , which is a function of the ratio of couplings, whereas the partial decay widths determine
the sum of the squares of the couplings:

Af = 2
gVfgAf

g2
Vf + g2

Af

= 2
gVf/gAf

1 + (gVf/gAf )2
(5.81)

Γff = Nf
C

GFM
3
Z

6
√

2π

[

RVg
2
Vf +RAg

2
Af

]

, (5.82)

where RV,A express QED and QCD corrections of the vector and axial-vector current as discussed in
Section 3.1.4.

Both measurements allow to disentangle gVf and gAf up to the ambiguity of interchanging gVf ↔
gAf . The analysis of the γ/Z interference terms, e.g., the energy dependence of the forward-backward
asymmetry Afb(s) in the vicinity of

√
s = MZ, resolves this ambiguity. The measurement of Af

determines only the relative sign between gVf and gAf . The absolute sign is fixed by the convention
that gAe is chosen to be negative.



The results are reported in Table 5.19. The average has a χ2/d.o.f of 2.1/3, corresponding to
a probability of 55%. The graphical comparison between the SLD and LEP measurements is shown
in Figure 5.35. The enormous increase in precision on the effective couplings gained through the
operation of SLC and LEP is clearly visible when comparing 1998 results with the situation before
SLC/LEP in 1987.

Assuming lepton universality, the best values for the leptonic coupling constants are:

gAℓ = −0.50102 ± 0.00030 (5.83)

gVℓ = −0.03753 ± 0.00044 , (5.84)

which have a correlation of −4.1%. The average has a χ2/d.o.f of 5.3/7, corresponding to a probability
of 62%. The value of gAℓ is different from the Born-term value of −1/2 by more than three standard
deviations, showing evidence for higher-order electroweak corrections.

Assuming three generations of neutrinos, Nν = 3, and defining gν = gVν = gAν , the neutrino
coupling constant derived from Γinv = 500.1 ± 1.9 MeV is given by:

|gν | = 0.50123 ± 0.00095 . (5.85)

5.6.2 Heavy Flavours

Like for leptons, effective couplings are also determined for the heavy quarks b and c. For quarks,
however, additional complications arise in the definition of electroweak effective couplings absorbing
all electroweak effects due to the presence of QCD corrections and running-mass effects. For example,
Mt dependent effects are contained both in electroweak and in QCD corrections. A clean separation of
electroweak and QCD corrections in effective couplings depending on Mt and MH and QCD correction
factors depending on αS is not possible beyond one-loop order. For the results presented below, the
factorisation as implemented in the ZFITTER [22] framework of effective couplings is used as an
example.

The results are summarised in Table 5.20 and shown in Figure 5.36. The average has a χ2/d.o.f
of 2.5/5, corresponding to a probability of 78%. Of the six effective couplings, the b quark couplings
deviate significantly from the Standard Model expectation.

The precise measurement of Rb severely constraints g2
Ab + g2

Vb, squeezing the (gVb, gAb) contour
curves along a circle in the (gVb, gAb) plane, while the measurement of Ab selects a certain region of
that circle. With respect to the SM expectation, the circle has the correct radius, while the region
selected by Ab is shifted.

This is a consequence of the low value of the coupling parameter Ab discussed before, which forces
the ratio gVb/gAb to be low as well. In terms of the chiral couplings gLb and gRb, the measurement of
Rb constrains g2

Lb + g2
Rb and thus the left handed coupling |gLb| since |gLb| ≫ |gRb|. The low value of

the coupling parameter Ab causes a low absolute value of the right-handed coupling gRb.
Nevertheless, the experimental results on the neutral current couplings of both c and b quark

show that they belong to doubletts of weak isospin. This is particularly interesting in the case of b
quarks [198] as it proofs the existence of the top quark, defined as the weak isospin partner of the b
quark.
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Parameter Average gAe gAµ gAτ gVe gVµ gVτ MSM

gAe −0.50098±0.00038 1.00 0.00 0.00 0.02 0.00 0.00 −0.50115±0.00027

gAµ −0.50082±0.00058 0.00 1.00 0.38 0.02 −0.36 0.02 −0.50115±0.00027

gAτ −0.50171±0.00065 0.00 0.38 1.00 −0.04 0.01 −0.08 −0.50115±0.00027

gVe −0.03781±0.00052 0.02 0.02 −0.04 1.00 −0.17 −0.03 −0.03574±0.00131

gVµ −0.0366±0.0030 0.00 −0.36 0.01 −0.17 1.00 0.01 −0.03574±0.00131

gVτ −0.0365±0.0011 0.00 0.02 −0.08 −0.03 0.01 1.00 −0.03574±0.00131

Table 5.19: Effective vector and axialvector coupling constants of charged leptons and their correlations derived from SLD/LEP data. The average
has a χ2/d.o.f of 2.1/3, corresponding to a probability of 55%.

Parameter Average gAb gAc gAℓ gVb gVc gVℓ MSM

gAb −0.5206±0.0062 1.00 −0.01 −0.01 −0.98 0.15 0.40 −0.49831±0.00029

gAc +0.5067±0.0075 −0.01 1.00 −0.02 0.04 −0.29 −0.06 +0.50130±0.00027

gAℓ −0.50102±0.00030 −0.01 −0.02 1.00 0.05 −0.02 −0.04 −0.50115±0.00027

gVb −0.3118±0.0101 −0.98 0.04 0.05 1.00 −0.15 −0.41 −0.34314±0.00059

gVc +0.1834±0.0098 0.15 −0.29 −0.02 −0.15 1.00 0.12 +0.19107±0.00096

gVℓ −0.03756±0.00042 0.40 −0.06 −0.04 −0.41 0.12 1.00 −0.03574±0.00131

Table 5.20: Effective vector and axial-vector coupling constants of heavy quarks and their correlations derived from SLD and LEP data. The
average has a χ2/d.o.f of 2.5/5, corresponding to a probability of 78%.
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5.7 Hadronic Charge Asymmetry

5.7.1 Measurements

The jet-charge technique used to determine the forward-backward asymmetry in bb events is also
applied to the inclusive hadronic event sample. In this case, however, all the five light quark flavours
are mixed, so that the charge asymmetry of the inclusive sample is a weighted sum of the charge
asymmetry of the contributing quark flavours:

Qfb =
∑

q

σ(e+e−→ qq(γ))

σ(e+e−→ had)
·Qq

fb =
∑

q

σ(e+e−→ qq(γ))

σ(e+e−→ had)
· sign(qq)∆q Aq

fb . (5.86)

Applying small corrections, in analogy to the pole cross section and pole forward-backward asymmetry,
the hadronic pole charge asymmetry is obtained:

Q0
fb =

∑

q

Γqq

Γhad
· sign(qq)∆q A0,q

fb =
3

2
Ae

∑

q [sign(qq) δq gVq gAq]
∑

q

[

g2
Vq + g2

Aq

] . (5.87)

The different quark flavours show different charge separation ∆q, in particular between up-type quarks
and down-type quarks. In addition, fragmentation and hadronisation effects make the charge separa-
tion flavour dependent. Experimentally, each term in the above sum must be corrected for selection
efficiency and purity of the corresponding quark flavour.

5.7.2 Averaging Procedure and Results

Since the hadronic charge asymmetry is an inclusive quantity, it depends on many electroweak param-
eters, namely the effective vector- and axial-vector couplings of the five light quarks and the coupling
parameter Ae. For a meaningful interpretation of Qfb, the number of eleven quantities needs to be



reduced. Thus quark universality is assumed, meaning that the quark couplings are written in terms
of a universal effective electroweak mixing angle:

sin2 θW =
T f

3

2qf

(

1 − gVf

gAf

)

(5.88)

Since the factor Ae of Qfb has a much stronger sin2 θW dependence than any of the gVq, the hadronic
charge asymmetry, when interpreted as a measurement of sin2 θW, essentially determines sin2 θW for
electrons. Small flavour-specific electroweak corrections, largest for the b quark, are negligible.

Experiment Status sin2 θW

ALEPH (90 - 94), final 0.2322 ± 0.0008 ± 0.0011

DELPHI (91 - 94), prel. 0.2311 ± 0.0010 ± 0.0014

L3 (91 - 95), prel. 0.2327 ± 0.0012 ± 0.0013

OPAL (91 - 94), prel. 0.2326 ± 0.0012 ± 0.0013

LEP Average 0.2321 ± 0.0010

MSM 0.23217 ± 0.00064

Table 5.21: Results on the hadronic charge asymmetry obtained at LEP [163].

The experiments quote the results of the hadronic charge asymmetry measurement already in
terms of sin2 θW. Their results are summarised in Table 5.21. The systematic error, dominated by
fragmentation and decay modelling uncertainties, is typically 10% to 30% larger than the statistical
error. In the combination, the systematic error due to fragmentation uncertainties of about 0.005 is
assumed to be correlated between the experiments. The LEP average is:

sin2 θW = 0.2321 ± 0.0010 . (5.89)

The total systematic part of the error on sin2 θW for this measurement amounts to 0.0008.

5.8 The Effective Electroweak Mixing Angle

The asymmetry measurements obtained at LEP and SLC determine the ratio of the vector and axial-
vector coupling constants, and therefore the effective electroweak mixing angle. A crucial test of the
Standard Model is given by the requirement, that it must be possible to interpret all asymmetry
measurements in terms of the same value for the effective electroweak mixing angle.

The seven results for sin2 θW derived from the various asymmetry measurements are shown in
Figure 5.37. The sensitivity of A0,q

fb = 3
4AeAq to the electroweak mixing angle arises from the Ae part

rather than the Aq part, thus A0,q
fb determines sin2 θW for electrons, and the flavour specific corrections,

in particular those of the b quark, do not play a role. Neglecting the small correlation between the
measurements of A0,b

fb and A0,c
fb , the weighted average of all sin2 θW results has a value of:

sin2 θW = 0.23157 ± 0.00018 . (5.90)

The average has a χ2/d.o.f of 7.8/6, corresponding to a probability of 25%, showing the consistency
of the results. The largest contributions to the χ2 arise from the two most precise determinations of
this quantity, Alr and A0,b

fb , who lead to low and high values of sin2 θW with respect to the average.
Note that the χ2/d.o.f of the average has decreased from 12.8/6, corresponding to a probability of
5%, by 5.0/6 over the last two years [199, 200].
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Figure 5.37: Measurements of effective electroweak mixing angel sin2 θW derived from asymmetry
measurements at SLC and LEP–I. For the average, the small correlation between the measurements of
A0,b

fb and A0,c
fb is neglected.



5.9 Neutrino-Nucleon Scattering

Neutrino-nucleon scattering allows to measure both charged weak current and neutral weak current
interactions. As shown in Figure 5.38, the interactions proceed via the t-channel exchange of a W or
Z boson, connecting the incoming neutrino or anti-neutrino to a quark in the nucleons of the target
material.

νl l

W

q q′

νl νl

Z

q q

Figure 5.38: Feynman diagrams in neutrino-nucleon scattering on parton level. Left: charged-current
reaction. Right: neutral-current reaction.

The differential cross sections for neutral and charged weak interactions are related due to weak-
isospin invariance. For isoscalar targets having the same number of up-type quarks and down-type
quarks, and considering only valence quarks, this is expressed in the Llewellyn-Smith relations [201]:

dσNC(ν) = g2
LdσCC(ν) + g2

RdσCC(ν̄) (5.91)

dσNC(ν̄) = g2
LdσCC(ν̄) + g2

RdσCC(ν) , (5.92)

where g2
L = g2

L(u) + g2
L(d) and g2

R = g2
R(u) + g2

R(d) are the sum of neutral weak current couplings
for left- and right-handed quark flavours, while the charged weak current couplings are assumed to
be L = 1,R = 0. The Llewellyn-Smith relations allow the calculations of cross section ratios, where
unknown parton distribution function and experimental effects largely cancel:

Rν =
σNC(ν)

σCC(ν)
= g2

L + g2
R · r = ρ2

(

1

2
− sin2 θW +

5

9
sin4 θW [1 + r]

)

(5.93)

Rν̄ =
σNC(ν̄)

σCC(ν̄)
= g2

L + g2
R · 1

r
= ρ2

(

1

2
− sin2 θW +

5

9
sin4 θW

[

1 +
1

r

])

, (5.94)

with r = σCC(ν̄)/σCC(ν) = 1/3. In case both a neutrino and an antineutrino beam is available, also
the Paschos-Wolfenstein ratios R± [202] are measured:

R± =
σNC(ν) ± σNC(ν̄)

σCC(ν) ± σCC(ν̄)
=

Rν ± rRν̄

1 ± r
(5.95)

= g2
L ± g2

R =

{

ρ2
(

1
2 − sin2 θW + 10

9 sin4 θW
)

ρ2
(

1
2 − sin2 θW

)
. (5.96)

Scattering of sea quarks and antiquarks introduce systematic errors due to uncertainties in the de-
scription of the sea. Since σ(νq) = σ(ν̄q̄) and σ(ν̄q) = σ(νq̄), the effect of scattering from sea quarks
and antiquarks, which are symmetric under quark-antiquark exchange, cancels in the difference of the
neutrino and antineutrino cross sections. The Paschos-Wolfenstein ratio R− is thus insensitive to the
scattering from the sea.

The ratios R± depend only on the electroweak parameters and sin2 θW. The ρ parameter appears
naturally because the ratio of neutral and charged weak cross sections is taken, which is the ratio
of couplings times propagators involving the gauge-boson masses as discussed in Section 2.11, ρ =
(MW/MZ)2/ cos2 θW. This may be reinterpreted as the introduction of effective neutral coupling



constants proportional to
√
ρ for the Zqq vertex and the Zνν vertex, which appear if neutral-current

processes are expressed using the charged-current coupling GF, where the latter cancels in the ratio.
Electroweak radiative corrections modify the above relations [203–205]. The ρ parameter moves

away from unity, its leading Mt dependence is the same as the one discussed in Section 2.11.2 before.
The parameter κ multiplying the on-shell sin2 θW in the above formulae is small because of subtle
cancellation effects between radiative corrections caused by bosonic and fermionic loops. The mea-
surement of the various cross section ratios thus remains a determination of the mass ratio MW/MZ,
which is usually quoted in terms of the on-shell electroweak mixing angle, sin2 θW = 1 −M2

W/M
2
Z.

Using MZ as determined at LEP–I, it is also interpreted as a measurement of MW. However, one has
to keep in mind that such a mass determination is not based on an analysis of on-shell W or Z bosons.

5.9.1 Measurements and Results

The most recent neutrino-nucleon scattering experiment, NUTEV, has taken data at Fermilab with
the CCFR detector until the fall of 1997. The detector consists of an 18 m long 690 ton neutrino
target calorimeter. The calorimeter is made of of 168 iron plates, 3 m · 3 m · 5.1 cm in size. The active
elements consist of liquid scintillation counters and drift chambers interleaved every two and every four
iron plates, respectively. Neutrinos and antineutrinos with energies ranging from 30 GeV to 350 GeV
are produced from decays of pions and kaons, which are themselves produced from the interactions of
800 GeV protons in a production target. Mesons of positive or negative charge are selected, yielding
either a neutrino or an antineutrino beam, π+/K+ → µ+νµ and π−/K− → µ−ν̄µ.

For an incident νµ or ν̄µ beam, charged-current reactions are tagged by the presence of a µ− or µ+

in the final state which traverses the complete detector as a minimum ionising particle. In contrast,
neutral-current reactions do not contain a muon in the final state, and the event is much more localised
in the detector. This difference in event shape, shown in Figure 5.39, is exploited in order to separate
the two types of reactions based on the length of the event in the detector. The distributions of
the event length from the NUTEV collaboration for neutrino and antineutrino beams are shown in
Figure 5.40 [206]. The contamination of the muon-neutrino beam with electron-neutrinos must be
known precisely, as both charged-current and neutral-current electron-neutrino reactions do not lead
to muons in the final state.

The neutrino-nucleon scattering experiments CDHS, CHARM and CCFR, used the ratios Rν and
Rν̄ for the determination of sin2 θW. The NUTEV experiment uses the Paschos-Wolfenstein ratio R−
for reduced systematic errors [206]. The NUTEV result is by far the most precise. An effective R− is
considered:

R− =
Rν − rRν̄

1 − r
, (5.97)

where the parameter r is adjusted in order to make the measurement insensitive to charm production
in charged-current reactions. This is necessary to reduce the corresponding systematic error arising
from uncertainties in the charm quark mass and in parton distribution functions. For the NUTEV
experimental setup, the optimal value for r turns out to be 0.5136. The preliminary result on sin2 θW,
combined with the CCFR result [207], is given by [206]:

sin2 θW = 0.2255 ± 0.0018 (stat.) ± 0.0010 (syst.) (5.98)

−0.00142 · M
2
t − (175 GeV)2

(100 GeV)2
+ 0.00048 · ln MH

150 GeV
, (5.99)

where the residual dependence of the result on Standard-Model electroweak radiative corrections
depending on Mt and MH is explicitly parametrised. Within the Standard Model, the value of sin2 θW
is given by sin2 θW = 0.2245±0.0017. UsingMZ from LEP–I, the result of the measurement corresponds
to a mass of the W boson of MW = 80.25 ± 0.11 GeV, which is of the same accuracy as the direct
measurements of MW by the experiments at the TEVATRON and at LEP–II.



Figure 5.39: Neutrino-nucleon interactions observed in the NUTEV detector. The neutrino or antineu-
trino beam impinges from the left. The events are shown in both projections. Top: charged current
event with a muon in the final state traversing the detector and leading to a long event. Bottom:
neutral current event without a muon in the final state leading to a localised shower and a short event.



Figure 5.40: Distributions of the event length in neutrino-nucleon interactions observed by the NUTEV
collaboration for neutrino and antineutrino beams [206]. The separation between neutral-current and
charged-current events is made at a length of 20 counters, approximately 2.1 m of steel, and is indicated
by the arrows. The insert shows the ratio between the data and the Monte Carlo expectation together
with the band expressing the systematic error.



5.10 Mass of the W Boson

5.10.1 Measurements at Hadron Colliders

In 1983, the W and Z bosons were discovered by the UA1 and UA2 experiments at the CERN SPS pp
collider. At hadron colliders, W and Z bosons are produced by quark-antiquark fusion:

pp → W +XW (5.100)

pp → Z +XZ , (5.101)

where XV , V = W,Z, denotes the pp remnant recoiling against the heavy boson. The W and Z bosons
are cleanly identified in the leptonic decay modes, W → ℓνℓ and Z → ℓ+ℓ−, if the leptons are electrons
or muons:

pp → XW ℓνℓ (5.102)

pp → XZ ℓ
+ℓ− . (5.103)

The Feynman diagrams for W and Z production on parton level and decay are shown in Figure 5.41.

q
−′

q

W

ν
−

l

l

q
−

q

Z

l+

l−

Figure 5.41: Feynman diagrams of W and Z production and decay in pp collisions on parton level.

In total a few hundred W and Z events were observed by the SPS experiments UA1 and UA2,
which had taken data at a pp centre of mass energy between 0.5 TeV and 0.6 TeV. The TEVATRON

experiments CDF and DØ, taking data at a centre-of-mass energy of 1.8 TeV, have observed several
10,000 leptonic W and Z decays in run I which ended in 1996. The detectors CDF and DØ are shown in
Figure 5.42. They have a similar structure as the LEP and SLD detectors. Viewed from the interaction
point, there is a silicon vertex detector, drift chambers, calorimeters and muon chambers. Also in pp
physics, one aims for a coverage of the full solid as complete as possible. Selected W events are shown
in Figures 5.43 and 5.44.

Because of the additional neutrino in leptonic W decay, it is not possible to reconstruct the complete
W kinematics, as the W boson is produced with an unknown boost. The longitudinal part of the boost
vector cannot be determined as part of the remnants of the proton-antiproton system are lost along
the beam pipe. For this reason the W kinematics is only known in the coordinates transverse to the
beam axis.
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Figure 5.43: W events observed in the DØ detector, where the W decays into an electron and a
neutrino. Shown is the end view of the detector with hits and tracks in the central tracking system
and energy depositions in the electromagnetic and hadronic calorimeters. Left: W plus zero jets.
The electron is causing the electromagnetic jet at φ = 90◦. The missing energy attributed to the
neutrino is shown as the slim strip at φ = 285◦. Right: W plus two jets. The electron is causing the
electromagnetic jet at φ = 180◦. The missing energy attributed to the neutrino is shown as the slim
strip at φ = 315◦.



 Run 57515 Event11191   ana.run1b]topfnd_wele_new.pad   6JUN94  1:10:35 25-FEB-95

PHI:

ETA:

  198.

  0.49

 40.7

 DAIS E transverse Eta-Phi LEGO Plot                
 Max tower E=  40.7 Min tower E=  0.50  N clusters= 

 METS: Etotal = 314.4 GeV,   Et(scalar)=  78.6 Ge
       Et(miss)=  40.9 at Phi=  11.9 Deg.        

UON:  ETEM/ETTOT/ORG/NTW/PT             

PHI:

ETA:

  198.

  0.49

 Run 58778 Event92886   .RUN1B]RUN1B_WELE2JET_TAG.DST   1MAY94 23:43:46 25-FEB-95

PHI:

ETA:

   71.

  0.80

 23.5

Eta - Phi LEGO: Raw Data,Transverse  Energy.                
Tower energy threshold 0.5 GeV.                             
 EM                                                         (  +HA)  Maximum energy  23.5 GeV.                          

UON:  ETEM/ETTOT/ORG/NTW/PT             

PHI:

ETA:

   71.

  0.80

 Run 60428 Event 3848   [ANA.RUN1B]RUN1B_WELE3JEt.DST  29JUN94  4:12:20 25-FEB-95

PHI:

ETA:

  340.

  0.78

 24.9

Eta - Phi LEGO: Raw Data,Transverse  Energy.                
Tower energy threshold 0.5 GeV.                             
 EM                                                         (  +HA)  Maximum energy  24.9 GeV.                          

UON:  ETEM/ETTOT/ORG/NTW/PT             

PHI:

ETA:

  340.

  0.78

 Run 58322 Event31627   ANA.RUN1B]TOPFND_WELE_NEW.PAD  ??? LRID AFU ??? 26-FEB-95

PHI:

ETA:

   69.

  0.41

 28.9

 DAIS E transverse Eta-Phi LEGO Plot                
 Max tower E=  28.9 Min tower E=  0.50  N clusters= 

 METS: Etotal = 330.5 GeV,   Et(scalar)=  72.4 Ge
       Et(miss)=  31.5 at Phi= 223.7 Deg.        

UON:  ETEM/ETTOT/ORG/NTW/PT             

PHI:

ETA:

   69.

  0.41

e e

e e

ET ≅  41 GeV ET ≅  32 GeV

W + 0,1,2,3 jet(s) Events

ET ≅  35 GeV ET ≅ 33 GeV

CDF

Figure 5.44: W events with 0, 1, 2, 3 additional jets observed in the CDF detector. Shown is the
two-dimensional map of energy depositions in the calorimeters.



The so-called transverse invariant mass is calculated based on the transverse energy of the charged
lepton, Eℓ

T , and the transverse energy of the neutrino, Eν
T , given by the transverse part of the missing

energy vector:

m2
T (ℓ, ν) = 2Eℓ

TE
ν
T (1 − cosφℓν) ≤ m2

inv(ℓ, ν) , (5.104)

where the angle φℓν denotes the azimuthal opening angle between the lepton and the neutrino in
the transverse plane. The transverse mass is always smaller than the invariant mass. It approaches
the invariant mass if the transverse plane coincides with the decay plane of the W boson. Therefore,
information on the W mass is obtained from those events whose transverse mass approaches the upper
edge of the transverse-mass spectrum, called Jacobian peak.

The transverse mass mT is insensitive to transverse boosts and therefore less sensitive to the W
boson production model than the transverse energy ET of lepton or neutrino alone. The energies of the
lepton and the neutrino also carry information on MW. The transverse lepton energy is less sensitive
to detector effects than the mT and Eν

T spectra which depend strongly on the detector response to
the underlying event. This is illustrated in Figure 5.45.

The transverse mass does depend on the longitudinal momentum of the W boson whose distribution
depends in turn on the partonic structure functions of the proton. These distributions are constrained
by the measured forward-backward asymmetry of W production in hadron collisions.

The CDF experiment uses both W → eν and W → µν events, while DØ uses W → eν events only.
Distributions of the transverse mass and transverse lepton energy as measured by the DØ and CDF

collaborations are shown in Figures 5.46 and 5.47. Detector resolution and the total width of the W
boson are responsible for the tail of high transverse masses extending above the nominal value of MW.
Background from W → τν → ℓνν, between 0.8% and 1.6%, is concentrated towards lower values of
mT and Eℓ

T . Background from Z → ℓ+ℓ− with one lepton lost is 0.1% to 0.4% for the electron channel
and about 3.6% for the muon channel.

A precise energy calibration of the detector is essential. The energy scale and resolution function
of leptons is determined by analysing Z → ℓ+ℓ− events, as the Z mass is precisely known from LEP–I

measurements. Non-linear effects in the energy calibration are studied by using leptonic decays of
heavy-quark resonances, J/Ψ/Υ → ℓ+ℓ−, and π0 → γγ decays. The understanding of detector effects
in the measurement of the hadronic recoil to the W boson is tested by measuring this recoil in Z
events, where it is independently determined from the leptonic decay products of the Z. Systematic
errors due to this data driven calibration naturally scale down with additional data statistics.

For both TEVATRON experiments, the transverse mass distributions determine MW with a slightly
better statistical and systematic accuracy. Based on fits to their observed transverse-mass spectra,
the following results on MW are obtained by CDF [208–210] and DØ [209–212]:

MW(CDF) = 80.38 ± 0.12 GeV (5.105)

MW(DØ) = 80.43 ± 0.11 GeV , (5.106)

where the errors include systematic uncertainties. Taking a correlated systematic error of 0.05 GeV
into account and including the less precise UA2 result, the current preliminary value of MW obtained
at hadron colliders is [209, 210]:

MW = 80.41 ± 0.09 GeV . (5.107)

The systematic part of the error on MW amounts to 0.07 GeV.
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Figure 5.45: Monte Carlo simulation of the transverse lepton-neutrino mass (left) and the transverse
lepton energy (right) for DØ [213]. The solid lines show the distributions at generator level with
the transverse W momentum set to zero. The dots show the distributions when the transverse W
momentum is included according to the W production model, modifying the transverse lepton energy
but not the transverse lepton-neutrino mass. The shaded area show the spectra when the resolution
of the detector, here DØ, is included, visibly affecting the transverse lepton-neutrino mass but not the
transverse lepton energy.
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Figure 5.46: Distributions of (a) the transverse electron-neutrino mass and (b) the transverse electron
energy as observed in W → eν events selected by the DØ experiment [213]. The solid line shows the
fit result including background. The arrows indicate the fit region. In addition to the χ2/d.o.f , the
Kolmogorov-Smirnov probability is given. The shaded part denotes the background.



0

100

200

300

400

500

50 60 70 80 90 100 110 120

CDF(1B) Preliminary χ2/df = 158/139 (50 < MT < 120)

χ2/df = 62/69 (65 < MT < 100)

Mw = 80.430 +/- 0.100 (stat) GeV

KS(prob) = 52%

Fit region

Transverse Mass (GeV)

# 
E

ve
nt

s
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5.10.2 Measurements at LEP-II

5.10.2.1 Selection

Pair production of W bosons, e+e− → W+W−(γ), at LEP–II is very clean because only the W-pairs
and possibly some radiative photons are produced. Therefore, all decay modes of the W boson are
analysed. Since two W bosons are produced and decay per event, there are three event classes: fully
hadronic events where both W bosons decay into qq′ pairs, semileptonic events where one W decays
hadronically and the other into a lepton-neutrino pair, and leptonic events where both W bosons
decay into ℓν pairs. Examples of selected events are shown in Figures 5.48 and 5.49.

Hadronic events, W+W− → qqqq, are selected with typical efficiencies of 85% and purities of
80%. Events must contain four well separated hadronic jets and no missing energy. The dominant
background arises from QCD multijet production in e+e− → qq(γ). At centre-of-mass energies

√
s >

2MZ, above the ZZ threshold, e+e− → ZZ → qqqq(γ) becomes an important background.
Leptonic events, W+W− → ℓνℓν are selected by requiring two acoplanar charged leptons, which

rejects the main background arising from dilepton production, e+e−→ ℓ+ℓ−(γ). Efficiencies ranging
from 30% to 70% and purities ranging from 75% to 90% are achieved, where the lower values are
obtained if both leptons are τ leptons and the higher values if both leptons are electrons or muons.

Semileptonic events, W+W− → qqℓν, are tagged by the presence of a high-energy charged lepton.
In addition, events must contain two hadronic jets and missing energy due to the neutrino. The main
background arises through inclusive lepton production in qq(γ) events, where the missing energy is
given by initial-state radiative photons lost in the beam pipe. Semileptonic events are selected with
an efficiency between 30% and 90% and a purity between 70% and 95%, where the lower values are
obtained for qqτν events and the higher values for qqeν and qqµν events.
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Figure 5.48: W-pair events selected at LEP–II. Left: W+W− → qqqq event observed in the DELPHI

detector, showing four well separated jets. Right: W+W− → eνµν event observed in the L3 detector
showing apparent lepton flavour violation.
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Figure 5.49: W-pair events selected at LEP–II. Top: W+W− → qqµν event observed in the ALEPH

detector. Bottom left: W+W− → qqeν event observed in the OPAL detector, showing two hadronic
jets and an electron. The neutrino is inferred from the missing momentum vector. Bottom left:
W+W− → qqτν event observed in the L3 detector, showing two hadronic jets and a hadronic τ decay.
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Figure 5.50: Distributions of selection variables in W-pair analyses at
√
s = 183 GeV. Top: Likelihood

distribution for qqqq events selected by OPAL [214]. Bottom left: Momentum of charged lepton in
qqℓν events selected by DELPHI [215]. Bottom right: Acoplanarity of charged leptons in ℓνℓν events
selected by L3 [216].

A joint analysis of all W-pair mediated four-fermion channels must be performed in order to
determine cross sections and W decay branching fractions, since there is sizeable cross feed between
the semileptonc channels and between the purely leptonic channels. Cross sections for channel i are
determined by maximising Poisson probabilities P (Ni, µi) to observe Ni events when µi are expected:

L =
∏

i

P (Ni, µi) (5.108)

µi =





∑

j

ǫijσj + σbg
i



 · L , (5.109)



where ǫij is the efficiency of the selection of channel i to select events of channel j. Within this ansatz,
the total W-pair cross section σWW and the W-decay branching fractions are determined by writing
the channel cross sections as follows:

σ(qqqq) = σWW ·B(W → qq)B(W → qq) (5.110)

σ(qqℓν) = σWW · 2B(W → qq)B(W → qq) (5.111)

σ(ℓνℓν) = σWW · (B(W → eν) +B(W → µν) +B(W → τν))2 . (5.112)

The results on W-decay branching fractions are summarised in Table 5.22 and compared in Figure 5.51.
They agree well with the prediction of a universal charged current coupling strength. The measured
cross section for W-pair production will be discussed in the following sections.

Experiment B(W → eν) B(W → µν) B(W → τν) B(W → qq)

ALEPH 11.2 ± 0.8 ± 0.3 9.9 ± 0.8 ± 0.2 9.7 ± 1.0 ± 0.3 69.0 ± 1.2 ± 0.6

DELPHI 9.9 ± 1.1 ± 0.5 11.4 ± 1.1 ± 0.5 11.2 ± 1.7 ± 0.7 67.5 ± 1.5 ± 0.9

L3 10.5 ± 0.9 ± 0.2 10.2 ± 0.9 ± 0.2 9.0 ± 1.2 ± 0.3 70.1 ± 1.3 ± 0.4

OPAL 11.7 ± 0.9 ± 0.3 10.1 ± 0.8 ± 0.3 10.3 ± 1.0 ± 0.3 67.9 ± 1.2 ± 0.6

Average 10.9 ± 0.5 10.3 ± 0.5 10.0 ± 0.6 68.8 ± 0.8

SM 10.8 10.8 10.8 67.5

Table 5.22: Branching fractions of W decay. The hadronic branching fractions are determined under
the assumption of charged-current lepton universality [163].

5.10.2.2 Mass Measurements

There are several methods to measure the mass of the W boson in e+e− interactions:

1. The threshold method.
The kinematic threshold of W pair production depends on MW:

σ(e+e−→ W+W−) = σ(MW,
√
s) . (5.113)

2. The method of direct reconstruction.
The W mass is measured by the invariant mass of the W → ff decay products:

minv(W) = minv(ff) (5.114)

3. The angle method.
The opening angle between the fermion and the antifermion from W decay, W → ff , has a
lower limit depending on MW:

αmin ≤ αff ≤ 180◦ (5.115)

cosαmin = 1 − 8M2
W

s
. (5.116)



 

ALEPH W→eν 11.20 ±  0.85
DELPHI W→eν  9.90 ±  1.21

L3 W→eν 10.50 ±  0.92
OPAL W→eν 11.70 ±  0.97

LEP W→eν 10.92 ±  0.49

ALEPH W→µν  9.90 ±  0.84
DELPHI W→µν 11.40 ±  1.21

L3 W→µν 10.20 ±  0.92
OPAL W→µν 10.10 ±  0.86

LEP W→µν 10.29 ±  0.47

ALEPH W→τν  9.70 ±  1.06
DELPHI W→τν 11.20 ±  1.84

L3 W→τν  9.00 ±  1.24
OPAL W→τν 10.30 ±  1.05

LEP W→τν  9.95 ±  0.60

LEP W→lν 10.40 ±  0.26

B(W→lν) [%]
8 10 12

   

ALEPH 69.0 ± 1.4

DELPHI 67.5 ± 1.7

L3 70.1 ± 1.4

OPAL 67.9 ± 1.4

LEP 68.8 ± 0.8

B(W → hadrons) [%]
64 66 68 70 72

Figure 5.51: Branching fractions of W decay. The hadronic branching fractions are determined under the assumption of charged-current lepton
universality [163]. The Standard Model expectations are 10.8% and 67.5%, respectively.



4. The endpoint method.
The energy of each W decay fermion, W → ff , has a lower and an upper limit, both depending
on MW:

E− ≤ Ef ≤ E+ (5.117)

E± =

√
s

4

(

1 ±
√

1 − 4M2
W

s

)

. (5.118)

In each case, the finite width of the W boson has to be taken into account, leading to a softening of
otherwise sharp cutoffs. The third method is applicable if both W decay fermions are visible, i.e., for
the hadronic decay modes of the W, W → qq. The fourth method is well applicable in case of electrons
and muons, whose energies are precisely measured. However, for both methods, only those W decays
contribute to the mass measurement which are at the edges of the distributions. This drawback makes
the last two method statistically less powerful than the other two, where all events contribute to the
mass measurement. Therefore, the experimental effort concentrates on the threshold method for data
taken at the kinematic threshold, and on the method of direct reconstruction for data taken at higher
centre-of-mass energies.

5.10.2.3 Threshold Method

The threshold method has already been successfully applied by the BES collaboration at the BEPC
collider in Beijing in the measurement of the τ lepton mass [217]. The τ -pair cross section is mea-
sured at different centre-of-mass energies close to 2mτ , where each

√
s point is chosen to have the

maximal sensitivity of the cross section σ(
√
s) on the mass of the τ lepton, given the knowledge on

mτ accumulated so far in the energy scan.

Compared to the τ lepton, the situation for the measurement of the mass of the W boson at LEP–II

is somewhat different. The principle of the measurement is shown in Figure 5.52a. The rather large
total width of the W boson makes the statistical sensitivity vary only slightly across the range of W
masses allowed by earlier measurements. Thus a scan in

√
s is not necessary and it is sufficient to

measure the cross section at a fixed, a-priori known centre-of-mass energy.

The sensitivity of the cross section on MW is given by:

δMW = δσ/
dσWW

dMW
. (5.119)

Three types of errors, δσ, contribute to the total error of the cross section measurement, the statistical
error, δσ ∝ √

σWW, a systematic scale error, δσ ∝ σWW, for example luminosity, and a systematic
offset error, δσ = const, for example background subtraction. The resulting errors on MW show the
following dependence on σWW(MW):

δMW ∝















dMW
dσ · √σWW

dMW
dσ · σWW

dMW
dσ

. (5.120)

These error components are shown in Figure 5.52b as a function of MW. A scale uncertainty of 2% on
the theoretical calculation of the W-pair cross section causes an error of 34 MeV on MW. The error
on the background subtraction in the various W+W− → ffff channels is at most 0.1 pb, leading
to an error of 50 MeV on MW. For the amount of luminosity in question, less than 100 pb−1, the
statistical error on the cross section measurement is clearly the dominant contribution to the total
error on the mass, even in case of 100% efficiency and purity. The curve of the statistical error shows a
broad minimum at a centre-of-mass energy about 0.5 GeV above the nominal threshold of 2MW. The



√s


   [GeV]

σ(
e+ e− →

W
+ W

− (γ
))

   
[p

b]

MW=80.0 GeV

MW=80.2 GeV

MW=80.4 GeV

MW=80.6 GeV

MW=80.8 GeV

LEP
0

2

4

6

8

10

12

14

155 160 165 170 175

√s


 − 2MW   [GeV]

offset error

|dM/dσ|   [GeV pb−1]

statistical error

√σ


 |dM/dσ|

[GeV pb-1/2]

scale error

σ |dM/dσ|
[GeV]

0

1

2

3

4

5

-2 0 2 4 6

Figure 5.52: W-mass measurement at threshold. Left: Cross section for W-pair production as a
function of

√
s in the vicinity of the kinematic threshold for different values of MW. Right: Error

components of MW error arising from the statistical error and systematic scale and offset errors on
the cross section measurement at threshold. All contributions show a minimum around zero to 2 GeV
above the nominal threshold of

√
s = 2MW.

threshold method is most efficient for the W-mass determination with a cross section measurement at
the optimal centre-of-mass energy of

√
s = 2MW + 0.5 GeV = 161 GeV.

In the first half of the 1996 data taking period, LEP–II was operated at a centre-of-mass energy of√
s = 161.33±0.05 GeV. Each LEP experiment collected a luminosity of 10 pb−1 and selected about 30

W+W− events. The measured total W-pair cross sections of the four LEP experiments are compared
in Figure 5.53. The measurements are averaged based on weights given by the expected errors so
that the average is unbiased by upward or downward fluctuations of individual measurements. The
averaged W-pair cross section at a centre-of-mass energy of

√
s = 161.33 ± 0.05 GeV is:

σWW = 3.69 ± 0.45 pb . (5.121)

This value corresponds to a mass of the W boson of:

MW = 80.40+0.22
−0.21 ± 0.03 GeV , (5.122)

also shown in Figure 5.53. The first error is experimental, the second due to the uncertainty in the
LEP beam energy calibration as discussed in Section 4.6. For the determination of MW, this method
must assume QED radiative corrections, the Standard-Model calculation of the total width of the W
boson in terms of MW, and the Standard-Model dynamics in the area of gauge couplings of the W
boson.
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Figure 5.53: Determination of the W-boson mass from the W-pair cross section measured at the
kinematic threshold. The χ2 of the average is calculated based on the uncorrelated errors.



5.10.2.4 Direct Reconstruction Method

At higher centre-of-mass energies, the sensitivity of the total W-pair cross section to the W mass is
much reduced. On the other hand, more WW events are available due to the higher cross section,
allowing to apply the method of direct reconstruction.

The fermions in selected W-pair events, e+e− → ffff(γ) are reconstructed, yielding the energy,
E, and polar and azimuthal angle, θ and φ of the visible fermions. Invariant masses of W decay
products are calculated for fully hadronic and semileptonic W-pair events, e+e− → qqqq(γ) and
e+e− → qqℓν(γ), respectively, while in e+e− → ℓνℓν(γ) the presence of two neutrinos does not allow
a measurement of the W mass with this method.

The laboratory system coincides with the CM system of the W pair produced in e+e− interac-
tions, e+e−→ W+W−, simplifying the kinematic analysis of the events. A kinematic fit imposing
four-momentum conservation and equal mass of the two W bosons allows the determination of the un-
measured neutrino kinematics and improves the resolutions in the kinematics of the measured fermions
by a factor of three to four. The spectra of reconstructed invariant masses are shown in Figure 5.54.

A difficulty associated with qqqq(γ) events is the assignment of hadronic jets to W bosons. A priori
there are three possibilities to group 4 jets into two pairs, (1,2)(3,4), (1,3)(2,4), and (1,4)(2,3). There
are several algorithms to solve this ambiguity. For example, one can chose the combination with the
smallest mass difference, or the combination with the largest sum of the two masses. It is also possible
to let the kinematic fit evaluate the combinations by imposing an equal mass constraint in addition.
In that case a kinematic fit is performed for each of the three possibilities. The kinematic fit with
the largest fit probability is most likely indicating the correct combination. In contrast to correctly
paired four-jet events, the invariant mass distribution of the incorrectly paired events is much broader,
as shown in Figure 5.54. In order to recover events, also the second best pairing is included in the
mass determination. This is possible because the W-mass values extracted from correct and incorrect
pairings are uncorrelated.
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Figure 5.54: Distribution of invariant masses reconstructed in W-pair events selected by L3 at
√
s =

183 GeV [218]. Left: semileptonic events; right: hadronic events.



The mass of the W boson is determined based on the reconstructed mass spectrum. Signal Monte
Carlo events are reweighted to construct samples corresponding to different values ofMW. Background,
independent of MW, is added and the resulting Monte Carlo spectrum is compared to the spectrum
observed in the data. Technically, an unbinned log-likelihood fit is performed where theMW-dependent
expectation is derived from the reweighted Monte Carlo simulation, thus taking detector and selection
effects properly into account.3

The measurements of the four LEP experiments are summarised in Table 5.23 and Figure 5.55,
comparing semileptonic and hadronic events. Within the statistical error, the results on MW agree
well between the two channels:

MW(qqℓν) = 80.31 ± 0.11 GeV (5.123)

MW(qqqq) = 80.39 ± 0.14 GeV . (5.124)

The systematic error onMW common between the experiments is estimated to be 0.04 GeV for qqℓν and
0.10 GeV for qqqq. Systematic errors common to the experiments arise from the calibration of the LEP

beam energy, δMW/MW = δ
√
s/
√
s, fragmentation uncertainties and strong final-state interactions

(FSI) in the qqqq channel as discussed in Section 3.2.6. The FSI effects between decay products of
different W bosons may lead to four-momentum exchange between the two hadronically decaying W
systems so that the invariant masses are not individually conserved, an assumption inherent in the
direct reconstruction method. No evidence for FSI between the decay products of different W bosons
is seen with the data collected up to 1997, neither in dedicated studies of event shapes and particle
multiplicities nor in particle correlations [219, 220]. The error on the mass derived from hadronic
events contains a common contribution of 90 MeV to account for possible effects due to strong FSI.

The average of the W mass from the semileptonic and hadronic channels is derived from the
combined mass value of the individual experiments, as the treatment of experimental error correlations
is better controlled by each experiment:

MW(ffff) = 80.36 ± 0.09 GeV . (5.125)

The systematic part of the total error on the average amounts to 0.06 GeV. The comparison of
the results with the SM is shown in Figure 5.56. Averaging the combined ffff results of the four
experiments with the threshold measurement improves the error on MW by less than 10 MeV:

MW = 80.37 ± 0.09 GeV . (5.126)

Experiment Status qqℓν qqqq ffff

ALEPH (96 - 97), prel. 80.34 ± 0.18 80.53 ± 0.18 80.44 ± 0.13

DELPHI (96 - 97), prel. 80.50 ± 0.24 80.01 ± 0.22 80.24 ± 0.17

L3 (96 - 97), prel. 80.09 ± 0.24 80.59 ± 0.23 80.40 ± 0.18

OPAL (96 - 97), prel. 80.29 ± 0.19 80.40 ± 0.24 80.34 ± 0.15

LEP Average 80.31 ± 0.11 80.39 ± 0.14 80.36 ± 0.09

χ2/d.o.f 1.6/3 (66%) 5.6/3 (13%) 1.1/3 (78%)

Table 5.23: Measurements of MW obtained at LEP–II for the qqℓν and qqqq final state, and their
combination [163]. The χ2 of the average is calculated based on the uncorrelated errors. The Standard
Model calculation of MW yields MW = 80.30 ± 0.09 GeV.

3With this method it is also possible to determine the total width, ΓW, of the W boson, by treating ΓW as an
additional fit parameter independent of MW instead of imposing the SM relation ΓW = ΓW(MW).
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Figure 5.55: W mass as measured by the LEP experiments based on the method of direct reconstruction
of invariant masses. Top: semileptonic events; bottom: fully hadronic events. The χ2 of the averages
is calculated based on the uncorrelated errors.
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Figure 5.56: W mass as measured by the LEP experiments based on the method of direct reconstruction
of invariant masses, combining semileptonic and hadronic events. The χ2 of the average is calculated
based on the uncorrelated errors.



5.10.3 Results

In summary, the direct measurements of MW at the TEVATRON and at LEP–II are:

MW(TEVATRON) = 80.41 ± 0.09 GeV (5.127)

MW(LEP) = 80.37 ± 0.09 GeV . (5.128)

The combined result is:

MW = 80.39 ± 0.06 GeV , (5.129)

which is a measurement of the W boson mass with an accuracy of 0.08%. The Standard Model
calculation of MW yields MW = 80.30 ± 0.09 GeV.

5.11 Gauge Couplings of the W Boson

The measurements of the gauge couplings of the gauge bosons explore and test the SM of electroweak
interactions in the fundamental area of gauge-boson selfcouplings and of the Higgs mechanism allowing
for massive and thus longitudinal gauge bosons. At current colliders such as the TEVATRON or LEP–II,
the error on the measured gauge couplings is large compared to the effect of radiative corrections on
these quantities. Thus the measurements test the Standard Model at Born level.

At the TEVATRON, the analysis of triple-gauge-boson couplings relies on the measurement of W
boson production accompanied by an additional hard photon or Z boson, assumed to arise from the
triple-gauge-boson vertices γW+W− or ZW+W−.

At LEP–II, the triple-gauge-boson vertices γW+W− and ZW+W− appear in the s-channel part of
W-pair production, e+e− → W+W−. The electromagnetic triple-gauge-boson vertex γW+W− alone
also appears in single-W production, e+e− → Weν, and in single photon production, e+e− → ννγ.
The combined analysis of all these processes increases the accuracy in the determination of triple-gauge
couplings.

The total cross section of W-pair production alone already contains information on triple-gauge-
boson couplings, especially at higher centre-of-mass energies as shown in Figure 5.57. This is due to
the fact that the β2

W suppression of the gauge-couplings dependent s-channel contribution relative to
the gauge-couplings independent t-channel contribution becomes negligible at higher centre-of-mass
energies.

Anomalous values of the gauge couplings also modify the angular distribution and the polarisation
of the produced W+W− pair as shown in Figure 5.58. The parity-violating charged-current W decays
serves as a polarisation analyser. Thus, the multidimensional differential cross section in the five
phase-space angles describing the four-fermion final state are exploited for increased accuracy. The
set Ω of phase space angles consists of the polar angle of the W− boson, Θ, and the W → ff

′
decay

angles in the respective W restframes, (θ∗+, φ
∗
+) and (θ∗−, φ

∗
−). These angles are graphically shown in

Figure 5.59.

The gauge couplings are determined based on the measured total and multidifferential cross sec-
tions as shown in Figure 5.60. Similar to the mass analyses, Monte Carlo events are reweighted to
correspond to different values of gauge couplings and the reweighted distributions are compared to
those observed in the data. Since the matrix element is linear in any anomalous gauge coupling α,
both the multidifferential and the total cross section has the form:

dσ(Ω, α)

dΩ
= C0(Ω) + α · Cα

1 (Ω) + α2 · Cα
2 (Ω) , (5.130)

where C0(Ω) is the Standard Model term. In order to avoid fits to multidimensional distributions, the
concept of optimal observables as already applied in the Pτ -polarisation analysis [175] is also used. For
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Figure 5.57: Total cross section of W-pair production measured at LEP–II.
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Figure 5.58: Differential W-pair cross section measured by OPAL at
√
s = 183 GeV [214]. Shown are

the measured distributions for the production of transverse (right) and longitudinal (left) W bosons
as a function of the polar scattering angle, and the expectations for three different values of the
anomalous triple-gauge-boson coupling ∆gZ

1 .
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small anomalous couplings values, the quadratic term may be ignored, so that the optimal observable
for the anomalous gauge coupling α is simply given by:

ωα(Ω) =
Cα

1 (Ω)

C0(Ω)
. (5.131)

The distribution of the optimal observable for the gauge coupling gZ
1 in qqℓν events is shown in

Figure 5.61.
For single-W production, the total cross section is used to derive information on W+W−γ couplings.

in case of single-γ production, the distribution of the energy and the polar angle of the photon are
also exploited.

5.11.1 Measurements and Results

The results of the four LEP experiments and of DØ are shown in Tables 5.24 and 5.25 for one- and two-
parameter results. The combination of the experimental results is performed by adding the likelihood
curves of the individual experiments as indicated in Figure 5.62. Contour curves for two-dimensional
results are shown in Figure 5.63. In both cases, systematic errors are included. Systematic errors
correlated between the experiments are estimated to be small, and their correlation is neglected in the
average.

Currently, the following results on triple-gauge-boson couplings are obtained, combining the four
LEP experiments and DØ:

gZ
1 = +1.00 ± 0.08 (5.132)

κγ = +1.13 ± 0.16 (5.133)

λγ = −0.03 ± 0.07 , (5.134)

where for the determination of each gauge coupling the other two are set to their Standard-Model value.
These results are all in good agreement with the expectations of the SM of electroweak interactions,
gZ
1 = κγ = 1 and λγ = 0. In particular, the results prove the existence of the gauge coupling between

the Z boson and a pair of W bosons, i.e., there are selfcouplings among the heavy gauge bosons. The
above results completely exclude [221] Kaluza-Klein type theories in which κγ = −2 [222].

With these measurements the Standard Model is successfully tested in the area of gauge couplings
in the electroweak sector. This justifies the use of the theoretical calculation of σWW(MW,

√
s) in-

volving SM gauge couplings in order to determine the mass of the W boson from the cross section of
W-pair production at the kinematic threshold.
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Figure 5.60: Distribution of phase-space angles measured by L3 at
√
s = 183 GeV [223]. The different

shapes of the cos Θ distributions for qqℓν and qqqq events is caused by wrong assignments of jets to
W bosons and increased charge confusion in qqqq events. The multidifferential distribution is fitted
rather than the one-dimensional projections shown here.
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√
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Experiment ∆gZ
1 ∆κγ λγ

ALEPH — −0.02+0.28
−0.33 +0.05+0.50

−0.51

DELPHI +0.04+0.14
−0.14 +0.34+0.26

−0.28 −0.07+0.19
−0.16

L3 −0.03+0.18
−0.16 +0.16+0.40

−0.35 +0.01+0.19
−0.17

OPAL −0.02+0.12
−0.11 +0.19+0.47

−0.37 −0.08+0.13
−0.12

DØ — −0.08+0.34
−0.34 0.00+0.10

−0.10

Average 0.00+0.08
−0.08 +0.13+0.14

−0.14 −0.03+0.07
−0.07

Table 5.24: One-parameter results on triple gauge boson couplings obtained at LEP and at the
TEVATRON [163]. For the determination of each coupling, the other two are set to their Standard
Model value of zero.

Experiment ∆gZ
1 ∆κγ ∆gZ

1 λγ ∆κγ λγ

ALEPH — — +0.05+1.2
−1.1 −0.05+1.6

−1.5

DELPHI +0.06+0.21
−0.18 +0.31+0.50

−0.39 +0.17+0.16
−0.18 −0.23+0.22

−0.19 +0.27+0.39
−0.36 −0.10+0.36

−0.31

L3 −0.06+0.20
−0.16 +0.33+0.62

−0.52 −0.06+0.23
−0.21 +0.04+0.24

−0.23 +0.35+0.64
−0.36 −0.04+0.21

−0.19

OPAL +0.01+0.15
−0.17 0.00+0.60

−0.30 −0.15+0.34
−0.20 +0.23+0.26

−0.43 −0.01+0.46
−0.34 +0.03+0.22

−0.18

Average 0.00+0.12
−0.11 +0.28+0.33

−0.27 +0.05+0.13
−0.13 −0.07+0.16

−0.15 +0.09+0.17
−0.15 +0.02+0.13

−0.12

Correlation −0.54 −0.79 −0.50

Table 5.25: Two-parameter results on triple gauge boson couplings obtained at LEP [163]. For the
determination of each pair of couplings, the third is set to its Standard Model value of zero.
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Figure 5.62: Comparison of one-parameter results on triple gauge boson couplings obtained at LEP–II.
The results from DØ are also shown and included in the average. For the determination of each
coupling, the other two are set to their Standard Model value of zero.
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boson couplings obtained at LEP–II. For the determination of each pair of couplings, the third is set
to its Standard Model value of zero.



5.12 Mass of the Top Quark

5.12.1 Top Quark Production and Decay

Because of its very high mass, the top quark was discovered at the TEVATRON rather than at the
SPS, SLC or at LEP. Proton-antiproton collisions produce tt pairs in the reaction:

pp → tt +Xt , (5.135)

where Xt denotes the pp remnant recoiling against the tt system. The Feynman diagrams contributing
to tt production on parton level are shown in Figure 5.64.

q
−

q

g

t
−

t

g t
−

t

g t

Figure 5.64: Feynman diagrams of tt production in pp collisions on parton level.

For a given centre-of-mass energy, the total tt production cross section decreases rapidly with
increasing mass of the top quark, as shown in Figure 5.65. For a top mass of Mt = 175 GeV, the
theoretical calculations yield cross sections between 4.7 pb and 6.2 pb [224–226], with 90% of the cross
section given by the qq diagram.

The top quark immediately decays via the charged weak current:

t → b W (5.136)

W → ff
′
, (5.137)

since the Cabibbo-Kobayashi-Maskawa matrix element Vtb dominates. For sufficiently heavy top
quarks, Mt > MW +mb, the W boson is on-shell. The total decay width of the top, Γt ∝ GFM

3
t , be-

comes large for high mass, for example, Γt = 1.4 GeV for Mt = 175 GeV as discussed in Section 3.2.5.2.
Thus the top quark decays before there is enough time to form mesonic or baryonic bound states with
any other quarks, and hadrons containing top quarks cannot not exist.

The decay channels of tt events are those of a W-pair accompanied by a bb system. In analogy
to W-pair production discussed at LEP–II, there are fully hadronic channels, semileptonic channels
and leptonic channels. The branching fractions for these final states are given by the products of W
branching fractions.

tt → bb W+ W− → bb (ff
′
)1 (ff

′
)2 (5.138)

→







bb qq′ qq′ 45.6%

bb qq′ ℓνℓ 14.6% each for ℓ = e, µ, τ

bb ℓ+ν̄ℓ ℓ
′−νℓ′ 10.6% for ℓ = e, µ, τ combined

. (5.139)

Like in W physics at the TEVATRON, the main leptonic W decay modes analysed are W → eν and
W → µν. Since a common experimental signature is the existence of two b quarks in the final state,
tagging of hadronic b jets is of crucial importance. It is used to identify tt production and to reject the
background of QCD multijet events. Examples for each class of tt events are shown in Figures 5.66
to 5.70.
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Figure 5.65: Cross section of tt production in pp collisions at
√
s = 1.8 TeV as a function of the top-

quark mass, Mt. For each of the three theoretical calculations [224–226], three lines corresponding to
minimal, central and maximal value are shown.
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Figure 5.66: Hadronic tt events, tt → bbqq′qq′, observed in the DØ detector. Shown is the end view
of the detector with hits and tracks in the central tracking system and energy depositions in the
electromagnetic and hadronic calorimeters. Both events contain two jets with an inclusive muon,
shown as the minimum ionising track traversing the complete detector at φ = 60◦, 200◦ (left) and at
φ = 70◦, 190◦ (right), which are thus identified as the bb jets.
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Figure 5.67: Semileptonic tt events, tt → bbqqℓν, observed in the DØ detector. Shown is the end
view of the detector with hits and tracks in the central tracking system and energy depositions in the
electromagnetic and hadronic calorimeters. Left: The lepton is an electron causing the electromagnetic
jet at φ = 295◦. The missing energy attributed to the neutrino is shown as the slim strip at φ = 220◦.
Right: The lepton is a muon shown as the minimum ionising particle at φ = 20◦ traversing the complete
detector. The missing energy attributed to the neutrino is shown as the slim strip at φ = 330◦.
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Figure 5.68: Leptonic tt events, tt → bbℓνℓν, observed in the DØ detector. Shown is the end view
of the detector with hits and tracks in the central tracking system and energy depositions in the
electromagnetic and hadronic calorimeters. Left: eµ event. The electron is causing the electromagnetic
jet at φ = 280◦. The muon is shown as the minimum ionising particle at φ = 105◦ traversing the
complete detector. The missing energy attributed to the neutrinos is shown as the slim strip at
φ = 315◦. Right: Both leptons are muons shown as the minimum ionising particles at φ = 120◦ and
φ = 170◦ traversing the complete detector. The missing energy attributed to the neutrinos is shown
as the slim strip at φ = 35◦.



Figure 5.69: Semileptonic tt event, tt → bbqqeν, observed in the CDF detector. One top quark is
reconstructed from the forth jet, tagged as a b jet, and the electron and neutrino from W decay. The
other top quark is reconstructed from the first jet, also tagged as b jet, and the second and third jet
from W decay.



Figure 5.70: Leptonic tt event, tt → bbeνµν, observed in the CDF detector. The first jet is tagged as
a b jet.



5.12.2 Measurements and Results

In tt → bbW+W− events, where both W bosons decay leptonically, tt → bbℓνℓν, the presence of
two neutrinos prevents a complete reconstruction of all invariant masses. However, the mass of the
top quark is correlated with the kinematics of the decay products, such as lepton energies, quark-jet
energies, and jet-lepton angular separation. The distributions of these variables yield a determination
of Mt, albeit with large errors.

In hadronic events, tt → bbqqqq, all decay products are quarks. The six quarks lead to six hadronic
jets visible in the detector, two of which are b-quark jets. Knowing quark masses and measuring
the three-momenta of the six jets, the two top quarks are fully reconstructed up to combinatorial
ambiguities in in combining light-quark jets to W bosons, and W bosons and b jets to top quarks.
The combination procedure is aided by tagging the b jets and exploiting the mass constraints minv(t) =
minv(̄t) and minv(W

+) = minv(W
−) = MW, yielding a 3C kinematic fit.

Semileptonic events, tt → bbqq′ℓν also allow a complete reconstruction of the top quark kinematics.
It is necessary to consider the complete production and decay chain:

pp → t1t2 +Xt

t1 → b1 + W1

t2 → b2 + W2 (5.140)

W1 → ℓ+ ν

W2 → q1 + q2 .

These five four-vector equations contain seven unknown four-vectors, namely those of q1, q2, ℓ, ν,
b1, b2, Xt, corresponding to 4 · 7 = 28 unknowns. There are 17 measurements, namely the three-
momenta of q1, q2, ℓ, b1, b2 and the two transverse momentum components of the remnant Xt. Overall
four-momentum conservation and the mass conditions:

minv(t1) = minv(t2)

minv(W1) = minv(W2) = MW

mb1 = mb2 = mb

mℓ = mν = mq1 = mq2 = 0 (5.141)

establish 13 constraints in total, leading to a 2C kinematic fit for the determination of all four-momenta.
Reconstructed mass distributions are shown in Figure 5.71.

The results on Mt obtained by CDF in the hadronic channel [227], the semileptonic channel [228]
and the leptonic channel [229], and by DØ in the semileptonic channel [230] and the leptonic chan-
nel [231] are summarised in Table 5.26 [232]. By convention, these masses correspond to pole masses.
They agree well between channels and experiments. When combining the results of the two experi-
ments, systematic errors and their correlations are taken into account, yielding:

Mt = 173.8 ± 3.2 (stat.) ± 3.9 (syst.) GeV . (5.142)

The average of the five measurements has a χ2/d.o.f probability of 79%. With a total error of 5.0 GeV,
the mass of the top quark is now known with the smallest relative error, 3%, of all quark masses.

The cross section for tt production in pp collisions is measured in each of the decay channels given
above. Combining final states, the cross sections measured by the TEVATRON experiments CDF and
DØ are:

σtt(CDF) = 7.6+1.8
−1.5 pb (5.143)

σtt(DØ) = 5.9 ± 1.6 pb , (5.144)

which agree within the errors. The measured cross sections depend on the assumed mass of the top
quark because of mass-dependent efficiencies, and are evaluated for the masses as measured by each
experiment. Measured masses and cross sections are compared in Figure 5.72.
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Mt [GeV] Experiment

Channel CDF DØ

tt → bbℓνℓν 167.4 ± 10.3 ± 4.8 168.4 ± 12.3 ± 3.6

tt → bbqqℓν 175.9 ± 4.8 ± 4.9 173.3 ± 5.6 ± 5.5

tt → bbqqqq 186.0 ± 10.0 ± 8.2 −
Average 175.3 ± 4.1 ± 5.0 172.1 ± 5.2 ± 4.9

TEVATRON 173.8 ± 3.2 ± 3.9

Table 5.26: Measurements of the top-quark mass by the TEVATRON experiments CDF and DØ [232].
The first error is statistical and the second systematic. The overall average has a χ2/d.o.f probability
of 79%.
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Chapter 6

Constraints on the Standard Model

The most precise measurements currently available in the area of electroweak interactions have been
presented in the previous Chapter. Now these results, mostly still preliminary, are used to test the
Standard Model and to constrain its parameters. In particular, electroweak radiative corrections will
be analysed in order to constrain the mass of the top quark, the W boson and the Higgs boson. These
indirect determinations are then compared to the corresponding direct experimental measurements.
The theoretical calculations are performed with the semianalytical programs TOPAZ0 and ZFITTER
described in Section 3.3.

6.1 Analysis Procedure

6.1.1 Treatment of Measurements

The results as described in the previous chapter have been obtained by applying several corrections to
the raw measurements. As some of these corrections depend on an underlying theory, here the MSM,
it must be analysed to which extend these corrections bias any interpretation of the results within this
or other theories.

6.1.1.1 Realistic or Convoluted Observables

A first set of corrections has already been applied when the experiments quote their results on cross
sections and asymmetries. Trivial dependencies of the raw measurements on effects specific to the
detector, for example, selection efficiencies or charge confusion, are removed, often with the help of
Monte Carlo simulation programs. The aim of the experiments is to present realistic observables which
are nevertheless free from effects due to the measurement device.

The validity of the Monte Carlo simulation is tested in the regions of phase space where the
detector actually measures, by comparing the output of the simulation to the recorded data. If an
extrapolation to unmeasured regions of phase space is required in any variable, a prediction of the
differential cross section in that region is needed. Examples are limited solid-angle coverage due to
holes in the detector or energy requirements on final-state particles due to the selection procedure.

The removal of detector effects from the measurements is therefore already based on theoretical
models used in the Monte Carlo simulation of the various reactions. In order to keep this dependence
small, the quoted realistic observables are not necessarily extrapolated to cover the full phase space, but
rather extrapolated to correspond to just a few idealised cuts on phase-space variables closely related
to the actual selection criteria. For example, cross sections are quoted for a cut on the minimum
effective centre-of-mass energy, or asymmetries are quoted for a cut on the maximum ff acollinearity.

Main effects are the extrapolation in polar angle, | cos θ| → 1, and energies or invariant mass of the
two final state fermions. The extrapolation for these effects depends on two prerequisites. First, the
exchange of spin-1 bosons, connecting electron-positron pairs of the initial state to fermion-antifermion
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pairs of the final state, determines the | cos θ| distribution. Second, the theory of QED determines the
energies and angles of radiative photons, thus fixing the energy spectrum of the final state particles
through the QED convolution.

Under these quite general assumptions, the extrapolation does not introduce a bias. Furthermore,
if the theoretical calculations of convoluted observables are based on the same assumptions which are
used to extrapolate the measurements, it does not matter how far the measurements are extrapolated
since the extrapolation, being common, effectively cancels out. Nevertheless, even if no bias is intro-
duced, a source of uncertainty arises due to the finite statistical and systematic accuracy of the Monte
Carlo simulation used in the correction and extrapolation procedure.

6.1.1.2 Pseudo or Deconvoluted Observables

In a second step, the set of realistic observables, cross sections and asymmetries measured at various
centre-of-mass energies, are used to determine so-called pseudo observables, for example properties of
the Z boson such as mass and decay widths, or effective coupling constants. Essentially, the effect of
the QED convolution to account for photon radiation on cross sections and asymmetries is removed
from the measurements, so that these observables are also called deconvoluted observables.

The QED deconvolution requires the knowledge of the QED radiator functions, which can only
be calculated assuming the theory of QED. Born term expressions, calculated as a function of the
pseudo observables and the centre-of-mass energy, are convoluted to account for QED radiative effects
and compared to the measurements. Values and errors for pseudo observables are then determined
in a fit to the measured realistic observables. As in principle only the well-known theory of QED is
involved, one still regards the determination of pseudo observables as a model-independent analysis
of the measurements. At the same time, this is also a test of QED, i.e., whether QED combined with
the underlying electroweak model is able to describe the data.

As before, the correction procedure introduces additional sources of errors, as discussed in Sec-
tion 5.1.5. First, the radiator functions are known only to finite order in perturbation theory. Missing
higher-orders impose additional uncertainties on the extracted pseudo observables. Second, the QED
deconvolution is independent from the full underlying theory only at one-loop order. At higher order
non-factorisable corrections occur, introducing residual dependencies of the fitted pseudo observables
on the underlying Standard Model. Another example for Standard Model dependencies are the imagi-
nary parts of the effective couplings which must be taken from the theory, here the Standard Model, in
order to calculate realistic observables. Third, model dependencies are introduced by fixing photon-
exchange contributions and sometimes also γ/Z interference contributions to their values expected
in the Standard Model. For the photon exchange contributions, given by QED only, this approach
is consistent with the use of QED-based radiator functions. The γ/Z interference terms, however,
are based on the full electroweak theory. The consequences of that particular model dependence are
mostly visible in the error on the mass of the Z boson, comparing the results on MZ obtained in the
Z-pole parameter set and the S-Matrix parameter set as discussed in Sections 5.1.6 and 5.1.7. An
additional source of model-dependence and associated systematic error arises in the case of Bhabha
scattering, e+e−→ e+e−(γ), due to the contribution of t-channel and s/t-interference diagrams.

Typical uncertainties on the pseudo observables arising from these effects are small but visible
compared to the uncertainties arising from experimental errors. The effect of the QED radiator
function is estimated by comparing, for example, various third-order radiator functions which differ
by subleading terms. The effect of the residual Standard-Model dependence is estimated by repeating
the extraction of the pseudo observables varying the Standard Model parameters and the calculational
schemes.



6.1.1.3 Standard Model Input Parameters

Within the Standard Model, pseudo observables are calculated as a function of the five Standard-
Model input parameters discussed in Section 2.12. From a fit to the pseudo observables, values and
errors of the five Standard Model input parameters are determined. The residual Standard-Model
dependence of the experimentally measured pseudo observables, neglected in all analyses, should in
principle be taken into account explicitly if the effects are non-negligible compared to the experimental
errors.

This is possible in two ways. Either, one skips the intermediate step of pseudo observables and
calculates predictions for the measured realistic observables directly, based on the Standard-Model
input parameters. This is a straight forward solution to the problem, but does not asses the validity
of the pseudo observables as such, which are useful quantities in their own right, e.g., the Z boson
properties such as mass, total and partial widths, effective couplings, etc. The other possibility is
to parameterise the residual dependence of the experimentally determined pseudo observables on
the Standard-Model parameters in a way similar to the sin2 θW measurement in neutrino-nucleon
scattering. These dependences can then be taken into account in the Standard Model analyses. In
that case the residual Standard-Model bias is properly accounted for in the determination of both
pseudo observables and Standard-Model input parameters.

The effect of missing higher-orders in the QED radiator function on the extraction of Standard-
Model input parameters is estimated in a similar way. Fitting directly to realistic observables, the
results obtained for the Standard-Model input parameters are compared when varying the QED ra-
diator function. If fits to pseudo observables are performed, the errors on pseudo observables need to
include the errors due to the QED radiator function in a correlated manner.

6.2 Tests of the Standard Model

6.2.1 Sensitivity to Radiative Corrections beyond QED

The first question to ask is whether the experimental results show evidence for electroweak radiative
corrections, in particular beyond QED and the associated running of the electromagnetic finestructure
constant. A particularly straight-forward test is based on those SLD/LEP–I measurements which are
free from QCD uncertainties, namely the effective electroweak mixing angle, sin2 θW, measured in
leptonic asymmetries, and the ρ parameter determined from the leptonic partial width, Γℓℓ. With the
measurement of MW at TEVATRON and at LEP–II, a further test is possible. In a model based on
Born-term expressions including the running of αem only, these parameters are predicted as follows:

ρ = 1 (6.1)

sin2 θ0 =
1

2

(

1 −
√

1 − 4
παem√
2GFM2

Z

)

(6.2)

Γℓℓ =
GFM

3
Z

24
√

2π
ρ
[

1 +
(

1 − 4 sin2 θ0
)2
]

(

1 +
3

4

αem

π

)

(6.3)

MW = MZ

√

1 − sin2 θ0 . (6.4)

Numerical results are shown in Table 6.1 and graphical comparisons are shown in Figure 6.1.

The significant deviation of the Born+QED prediction from the actual measurements shows signif-
icant evidence for the need of radiative corrections beyond pure QED. In contrast, the predictions of
the Standard Model as a function of top and Higgs mass, also shown in Figure 6.1, are compatible with
the experimental results. The comparison shows that the experimental measurements are so precise
that it is possible to test the Standard Model to the level of its electroweak radiative corrections.



Parameter Measurement Born Prediction with MSM

Result αem = αem(0) pull αem = αem(M2
Z) pull αem, αS ,MZ,Mt,MH pull

sin2 θW 0.23157±0.00018 0.21216 108 0.23114±0.00023 1.5 0.23217±0.00064 −0.1

Γℓℓ [MeV] 83.90±0.10 84.986 −11 83.564±0.011 3.4 83.898±0.118 0.0

MW [GeV] 80.39±0.06 80.938 −9 79.956±0.012 7.1 80.300±0.087 +0.9

ρ 1.0043±0.0012 1 3.6 1 3.6 1.0046±0.0011 −0.2

Table 6.1: Evidence for radiative corrections, in particular beyond the simple running of αem. Born terms and Born term plus QED predictions

are reported. The measurements are also compared to the expectations within the Minimal Standard Model, calculated for 1/α
(5)
em(M2

Z) =
128.878 ± 0.090, αS(M2

Z) = 0.119 ± 0.002, MZ = 91186.7 ± 2.1 MeV, Mt = 173.8 ± 5.0 GeV and MH = 300+700
−210 GeV. The pull is calculated as

the difference between the measurement and the model prediction divided by the errors of measurement and prediction added in quadrature.
The formfactor ρ is essentially determined by Γℓℓ, with a small dependence on sin2 θW. The resulting correlation between the experimental
determinations of ρ and sin2 θW is 8.8%.

Parameter Result 1/αem αS MZ ǫ1 ǫ2 ǫ3 ǫb MSM

1/α
(5)
em(M2

Z) 128.878±0.090 1.00 0.00 0.00 0.00 −0.07 0.46 0.00 —

αS(M2
Z) 0.1244±0.0045 0.00 1.00 0.00 −0.45 −0.22 −0.31 −0.62 —

MZ [GeV] 91.1866±0.0021 0.00 0.00 1.00 −0.06 −0.01 −0.02 0.00 —

ǫ1 +0.0042±0.0012 0.00 −0.45 −0.06 1.00 0.44 0.80 −0.01 +0.0046±0.0011

ǫ2 −0.0089±0.0020 −0.07 −0.22 0.00 0.44 1.00 0.26 −0.01 −0.0075±0.0003

ǫ3 +0.0042±0.0012 0.46 −0.31 −0.02 0.80 0.26 1.00 0.00 +0.0058±0.0007

ǫb −0.0045±0.0019 0.00 −0.62 0.00 −0.01 −0.01 0.00 1.00 −0.0058±0.0005

Table 6.2: Results on the ǫ parameters including their correlations derived from a fit to all measurements, excluding the measurement of Mt

at the TEVATRON and of sin2 θW from NUTEV, due to its explicit Mt dependence, as Mt is not expressed in terms of the ǫ parameters. The
χ2/d.o.f has a value of 11.6/11, corresponding to a probability of 39%.



0.231

0.2315

0.232

0.2325

0.233

83.6 83.8 84 84.2

   ∆α

Preliminary 68% CL

Γ l  [MeV]

si
n2 θle

pt

ef
f

mt= 173.8 ± 5.0 GeV
mH= 90...1000 GeV

mt

mH

0.231

0.2315

0.232

0.2325

0.233

1 1.002 1.004 1.006 1.008

   ∆α

Preliminary 68% CL

ρ

si
n2 θle

pt

ef
f

mt= 173.8 ± 5.0 GeV
mH= 90...1000 GeV

mt

mH

0.231

0.2315

0.232

0.2325

0.233

80 80.2 80.4 80.6

   ∆α

Preliminary 68% CL

MW   [GeV]

si
n2 θle

pt

ef
f

mt= 173.8 ± 5.0 GeV
mH= 90...1000 GeV

mt

mH

83.6

83.8

84

84.2

80 80.2 80.4 80.6

   ∆α

Preliminary 68% CL

MW   [GeV]

Γ l  
[M

eV
]

mt= 173.8 ± 5.0 GeV
mH= 90...1000 GeV

mt

mH
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6.2.2 The ǫ Parameters

Within a fit to determine the ǫ parameters, several parameter transformations are needed to arrive
at the predictions for the measured observables. Based on GF, MZ and αem(M2

Z), the auxiliary
quantity sin2 θ0 is calculated according to Equation 3.100/6.2. The ǫ parameters ǫ1, ǫ2, and ǫ3 are
used to calculate the quantum correction terms ∆ρ, ∆κ′, and ∆rW, according to Equations 3.96, 3.97
and 3.98. This assumes neutral-current universality between neutrinos, charged leptons and light
quarks. For b quarks, the specific Zbb vertex correction, ∆ρb, is expressed with ǫb, Equation 3.99.
At this stage, the W/Z mass ratio as well as the effective electroweak mixing angle, the effective
vector and axial-vector coupling constants, the pole asymmetries and the leptonic partial widths are
calculated. The calculations for qq final states depend also on the strong coupling constant αS . When
fitting for the four ǫ parameters, the fit must therefore also include αem(M2

Z), αS(M2
Z) and MZ as

parameters in order to take into account their errors in the determination of the ǫ parameters.

The analysis of the measurements in terms of the ǫ parameters yields the numerical results as re-
ported in Table 6.2. All ǫ parameters are significantly different from zero. This shows again significant
evidence for radiative corrections beyond simple QCD and QED effects including the running of the
electromagnetic finestructure constant.

6.2.3 Standard Model Analyses

The next question is how well the Standard Model is able to describe all experimental results. As the
Standard Model predictions depend on the set of values used as Standard Model input parameters,
this is tested by fitting to the set of measurements in order to determine the Standard Model input
parameters. The probability of the fit, based on the χ2 value in the minimum and the number of
degrees of freedom, expresses the compatibility of the Standard Model with all experimental results
for the same values of Standard-Model input parameters. Having determined the Standard-Model
input parameters, it is then possible to calculate values for any observable, measured or unmeasured.

The Standard Model input parameters actually being fitted are the inverse of the five-flavour run-

ning finestructure constant, 1/α
(5)
em(M2

Z), the strong coupling constant, αS(M2
Z), and the masses of

Z boson, top quark and Higgs boson, MZ, Mt, and log10(MH/GeV). In case of the running electro-
magnetic finestructure constant, the top-quark contribution is removed, because it is Mt dependent.
Therefore it is calculated and added inside the programs TOPAZ0 and ZFITTER calculating Stan-

dard Model radiative corrections. A value of 1/α
(5)
em(M2

Z) = 128.878 ± 0.090 [43, 44] is used, where the
error is propagated in the fit. For the Higgs mass, the logarithm is used as a fit parameter, because
to leading order the radiative corrections depend on logMH, as discussed in Sections 2.11.2 and 3.1.3.
Thus the errors will be more symmetric in log10(MH/GeV) than in MH. Theoretical errors are not
included in the results quoted below but discussed separately.

A first fit is performed, where all measurements are included, except the limit on MH derived from
the negative direct search at LEP–II and the direct determinations of MW and Mt at the TEVATRON

and at LEP–II. The predicted values for these quantities are then independent of the direct-search
limit and of the measured values so that a comparison tests the predictive power of the Standard
Model. The result of this Standard Model fit is shown in Table 6.3.

The χ2 of the fit has a value of 12.5 for 12 degrees of freedom, corresponding to a probability of 40%,
which shows that the set of measurements is well described by the Standard Model, with a unique set
of values for the Standard Model input parameters. This is a great success, both experimenatlly since
the measurements are so precise that they are sensitive to the small effects of electroweak radiative
corrections, and theoretically since the Standard Model as a theory is able to describe all measurement
on this level.



Parameter Result 1/αem αS MZ Mt MH

1/α
(5)
em(M2

Z) 128.883±0.087 1.000 −0.146 −0.003 −0.370 0.470

αS(M2
Z) 0.1202±0.0030 −0.146 1.000 −0.038 −0.214 −0.275

MZ [GeV] 91.1867±0.0021 −0.003 −0.038 1.000 −0.067 −0.020

Mt [GeV] 158.2±8.7
8.1 −0.370 −0.214 −0.067 1.000 0.408

log10(MH/GeV) 1.51±0.36
0.28 0.470 −0.275 −0.020 0.408 1.000

MH [GeV] 32±41
15

Table 6.3: Results on the Standard Model parameters derived from a fit to all measurements except
limit on MH derived from the negative direct search at LEP–II and the direct measurements of MW and
Mt at the TEVATRON and LEP–II. The χ2/d.o.f has a value of 12.5/12, corresponding to a probability
of 40%.

6.2.3.1 The Mass of the Top Quark

The above constraint on the mass of the top quark must be compared with the result from the
direct measurement at the TEVATRON, Mt = 173.8 ± 5.0 GeV. The indirect determination is lower,
Mt = 158.2+8.7

−8.1 GeV, but within the error in agreement with the direct measurement. The accuracy
of the constraint on Mt is improved by including the direct measurements of the W boson mass at
the TEVATRON and at LEP–II in the Standard Model analysis:

Mt = 161.1+8.2
−7.1 GeV , (6.5)

increasing the value of Mt towards the current direct measurement and reducing the error by 9%.
Nevertheless, the direct measurement of the mass of the top quark is already more precise than the
indirect determination of Mt based on the Standard Model.

6.2.3.2 The Mass of the W Boson

Having determined the Standard Model input parameters as reported in Table 6.3, the mass of the
W boson is now calculated within the framework of the Standard Model. Compared to the result of
the direct measurement of MW at the TEVATRON and at LEP–II, MW = 80.39 ± 0.09 GeV, the SM

constraint on MW is given by:

MW = 80.332 ± 0.037 GeV , (6.6)

which is in good agreement with the direct measurement. The accuracy of the constraint on MW is
further improved by including the direct measurements of the top quark mass at the TEVATRON in
the Standard Model analysis, with the result:

MW = 80.367 ± 0.029 GeV . (6.7)

Also here, good agreement with the direct measurement is observed. The SM constraint on MW is
more precise than the current direct measurement. For a stringent test of the SM, the mass of the
W boson should thus be measured to an accuracy of at least 30 MeV. The various determinations of
MW are compared in Figure 6.2. All are in good agreement.



W-Boson Mass  [GeV]

mW  [GeV]

χ2/DoF: 0.1 / 1

80.0 80.2 80.4 80.6 80.8

pp
−
-colliders 80.41 ± 0.09

LEP2 80.37 ± 0.09

Average 80.39 ± 0.06

NuTeV/CCFR 80.25 ± 0.11

LEP1/SLD/νN/mt 80.367 ± 0.029

Figure 6.2: Comparison of results on MW. Shown are the direct measurements of MW at the
TEVATRON and at LEP–II and their average as well as the indirect determinations based on the
measurement of sin2 θW by the NUTEV experiment and the combined indirect determination based
on the measurements of electroweak radiative corrections and the top-quark mass.

6.2.3.3 The Mass of the Higgs Boson

The contour curve of 68% confidence level in the (MW,Mt) plane corresponding to the results of the
SM fit reported in Table 6.3 is shown in Figure 6.3. It is compared to the 68% contour arising from the
independent direct measurements of MW and Mt at the TEVATRON and at LEP–II. The predictions
based on the analysis of the measurements in terms of radiative corrections within the framework of
the minimal Standard Model agree well with the direct measurements.

The contour curves of Figure 6.3 show that both the direct measurements and the indirect determi-
nations of MW and Mt prefer low values of MH. This is seen again when analysing the contour curves
in the (MH,Mt) plane as shown in Figure 6.4. A large correlation, +41%, exists between Mt and MH.
This is a result of the structure of radiative corrections. To leading order, most measurements are
sensitive to the same top and Higgs mass dependence. Only the measurement of RZ

b shows a different
leading top-mass dependence due to the specific Zbb vertex corrections involving the top quark.

The constraint on MH is drastically improved if the direct determination of Mt is included in the
analysis. The results of a fit to all measurements, except the limit on MH derived from the negative
direct search at LEP–II but including the direct determinations of MW and Mt at the TEVATRON and
at LEP–II, are reported in Table 6.4. The χ2 of the fit has a value of 14.9 for 15 degrees of freedom,
corresponding to a probability of 46%, showing that also the complete set of measurements is well
described by the Standard Model.
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Figure 6.3: Contour curves of 68% probability in the (Mt,MW) plane, showing the indirect data
corresponding to the results reported in Table 6.3, and the direct measurements of these parameters
at the TEVATRON and at LEP–II. The band corresponds to the SM relation given by GF.

Parameter Result 1/αem αS MZ Mt MH

1/α
(5)
em(M2

Z) 128.878±0.096
0.104 1.000 0.039 0.018 0.216 0.769

αS(M2
Z) 0.1194±0.0029 0.039 1.000 −0.042 0.036 0.125

MZ 91.1865±0.0021 0.018 −0.042 1.000 −0.009 0.046

Mt 171.1±4.9 0.218 0.036 −0.009 1.000 0.611

log10(MH/GeV) 1.88±0.33
0.41 0.769 0.125 0.046 0.611 1.000

MH [GeV] 76±85
47

Table 6.4: Results on the Standard Model parameters derived from a fit to all measurements except the
limit on MH derived from the negative direct search at LEP–II but including the direct determinations
of MW and Mt at the TEVATRON and at LEP–II. The χ2/d.o.f has a value of 14.9/15, corresponding
to a probability of 46%.
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Figure 6.4: Contour curves of 68% probability in the (MH,Mt) plane, showing the results based on
only the LEP–I measurements, and the results based on all measurements, in particular including the
direct determination of Mt. Also shown is the region excluded at 95 % CL by the negative direct
search for the Higgs boson at LEP–II, 90 GeV [51].

The ∆χ2
min(MH) curve, defined as:

∆χ2
min(MH) = χ2

min(MH) − χ2
min (6.8)

is shown in Figure 6.5. The central line corresponds to the value and error on MH as reported in
Table 6.4:

log10(MH/GeV) = 1.88+0.33
−0.41 ± 0.05 or MH = 76+85

−47 ± 9GeV , (6.9)

in agreement with the lower limit on MH of 90 GeV at 95% CL obtained from the negative direct search
at LEP–II [51]. The first error is experimental, while the second accounts for theoretical uncertainties.
The theoretical uncertainties are expressed by the shaded band around the central line in Figure 6.5.
The band is derived from comparing SM calculations as implemented in the two programs TOPAZ0 and
ZFITTER, and varying calculational options within these programs. The programs rely on different
renormalisation schemes, the generalised minimal subtraction scheme in case of TOPAZ0 and the on-
mass-shell scheme in case of ZFITTER, see [61] for a discussion. The various options of the programs
implement different factorisation schemes and momentum-transfer scales. The numerical results differ
effectively by as yet uncalculated higher-order terms, thus such a comparison estimates the associated
theoretical uncertainties. The width of the band shows, that this uncertainty is small for large Higgs
masses and large for small Higgs masses, affecting in particular the lower error on MH.

The one-sided 95% confidence level upper limit on the Higgs boson is determined including theo-
retical uncertainties expressed by the width of the shaded band. The determination of the upper limit
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Figure 6.5: Curve showing ∆χ2
min(MH) = χ2

min(MH) − χ2
min as a function of MH. The width of

the shaded band around the curve shows the theoretical uncertainty. The two lines correspond to

different evaluations of α
(5)
em(M2

Z), namely 1/α
(5)
em(M2

Z) = 128.878 ± 0.090 [43, 44] and 1/α
(5)
em(M2

Z) =
128.905± 36 [43, 235]. Also shown is the region excluded at 95 % CL by the negative direct search for
the Higgs boson at LEP–II, 90 GeV [51].

does not make use of the lower limit on MH derived from the negative direct search result [51]. Thus
the following independent information on the mass of the Higgs boson is available:

MH < 262 GeV 95% CL SM analysis (6.10)

MH > 90 GeV 95% CL direct search . (6.11)

A combination of the two is not straight forward as it requires the probability density as a function of
MH describing the negative result from the direct search, rather than just the 95% CL limit. Because
of the direct search limit, the impact of the larger theoretical uncertainty at low values of the Higgs
mass is of less relevance.

The indirect determination of the Higgs boson mass in a range up to a few hundred GeV shows the
selfconsistency of the analysis. Within the SM, the Higgs boson must be lighter than about 1 TeV [50].
If the result of the SM analysis were a Higgs mass in the TeV region, the SM analysis would not be
self-consistent and we could draw only one conclusion, namely that the SM is not able to describe the
data. The indirect determination of MH is also in agreement with the mass limit on MH obtained
from the negative direct search at LEP–II.

As shown in Table 6.4, the fitted error on 1/α
(5)
em(M2

Z), ±0.10, is larger than that of the direct
determination used in the fit, ±0.09. The reason for this is that the contribution of all other mea-

surements to the total χ2 calculated as a function of 1/α
(5)
em(M2

Z) shows a double minimum structure,
creating a negative curvature of χ2

min in the region between the two minima. The central value of
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Figure 6.6: Curve showing ∆χ2
min(αem) = χ2

min(αem)− χ2
min as a function of MH, excluding the direct

constraint on 1/α
(5)
em(M2

Z). The two direct constraints, 1/α
(5)
em(M2

Z) = 128.878 ± 0.090 [43, 44] and

1/α
(5)
em(M2

Z) = 128.905 ± 0.036 [43, 235], are shown as vertical bands with a width of ±1 sigma. The
band corresponding to the first measurement overlaps with the region of negative curvature, while
band corresponding to the second measurement, having also a higher central value, lies in the region
of about zero curvature.

the direct constraint on 1/α
(5)
em(M2

Z) lies in that region, as shown in Figure 6.6. The sum of both χ2

contributions, making up the total χ2, has a positive but reduced curvature compared to the direct

constraint alone, thus yielding an increased error on 1/α
(5)
em(M2

Z) in the fit.

The largest correlation, +77%, appears between log10(MH/GeV) and 1/α
(5)
em(M2

Z). In order to
improve the accuracy on the prediction of the Higgs boson mass, it is of foremost importance to

improve the accuracy on 1/α
(5)
em(M2

Z). This is shown graphically in Figure 6.5, where the ∆χ2
min(MH)

curve is shown using a more precise constraint on 1/α
(5)
em(M2

Z), evaluated as discussed in Appendix B.

Using 1/α
(5)
em(M2

Z) = 128.905 ± 0.036 [43, 235], MH is determined with much improved accuracy:

log10(MH/GeV) = 1.96+0.23
−0.26 ± 0.05 or MH = 91+64

−41 ± 11 GeV . (6.12)

The fitted error on 1/α
(5)
em(M2

Z) is no longer increased compared to the direct constraint since the
central value of the constraint has moved from the region of negative curvature to a region of about

zero curvature, as shown in Figure 6.6. Furthermore, the correlation between MH and 1/α
(5)
em(M2

Z) is
reduced, leaving with 70% the correlation between MH and Mt as the largest.

The data used in these analyses do not include a direct external constraint on αS(M2
Z). This

parameter is solely determined by the measurements, mainly through the QCD correction ∆
(had)
QCD on

the hadronic Z decay width, and its resulting influence on the total Z width and on the hadronic
pole cross section. The central value of αS , 0.120 ± 0.003, agrees well with the world average of
0.119 ± 0.002 [31]. Since the correlations with other Standard Model parameters are small, including,
for example, the world average on αS(M2

Z) as a constraint in the fit will neither shift the values of



fitted parameters nor decrease the errors, except the error on αS , significantly. Note that there is also
some controversy on the size of the theoretical error to be assigned in the determination of αS from
the measured QCD correction term ∆QCD in general. Total errors assigned to αS(M2

Z) range from
0.002 [31] to 0.004 [56] to 0.006 [170, 171], while the central value of 0.119 is uncontroversial.

The sensitivity of the individual measurements to the Higgs-boson mass is shown in Figures 6.7
and 6.8. Compared to the experimental accuracies, the asymmetries, all determining the effective
electroweak mixing angle sin2 θW, are the best Higgs meters. The width of the associated band

indicating the SM prediction shows again that 1/α
(5)
em(M2

Z) needs to be determined with improved
precision, as within the SM approximately δ(1/αem) ∝ δ sin2 θW. The mass of the W boson, still to

be improved in accuracy by the measurements at LEP–II, does not suffer as much from 1/α
(5)
em(M2

Z)
induced uncertainties.
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Figure 6.7: Higgs sensitivity (I). The variation of the electroweak observables with the mass of the
Higgs boson as calculated within the minimal Standard Model. The vertical bands shows the results
of the measurements. The Standard Model bands show the uncertainties in the SM calculations
due to the uncertainties in Mt, αS and αem, Mt = 173.8 ± 5.0 GeV, αS(M2

Z) = 0.119 ± 0.002, and

1/α
(5)
em(M2

Z) = 128.878 ± 0.090.
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Figure 6.8: Higgs sensitivity (II). The variation of the electroweak observables with the mass of the
Higgs boson as calculated within the minimal Standard Model. The vertical bands shows the results
of the measurements. The Standard Model bands show the uncertainties in the SM calculations
due to the uncertainties in Mt, αS and αem, Mt = 173.8 ± 5.0 GeV, αS(M2

Z) = 0.119 ± 0.002, and

1/α
(5)
em(M2

Z) = 128.878 ± 0.090.



6.3 Discussion

The pulls of the individual measurements, defined as the difference between the measurement and the
SM prediction, calculated in the minimum of the χ2, and divided by the error of the measurement, are
shown in Figure 6.9. The largest pulls occur for the measurements related to the b-quark asymmetries,
Ab and A0,b

fb , and for the most precise single measurement of sin2 θW, derived from the left-right
asymmetry Alr.

The reasons are already indicated in Section 5.5. Within the SM, Ab is constant. The low value
of the measured Ab is thus fixed, does not influence the Standard Model parameters and leads to a
constant contribution to the global χ2. In contrast, the parameter Aℓ depends on the values of the
Standard Model input parameters. The measurement of A0,b

fb = 3
4AeAb can therefore be accommodated

by choosing a combination of SM input parameter values which gives rise to a value of Aℓ which is low
compared to the measurements of Aℓ from the left-right asymmetry at SLC and from the ℓ+ℓ− forward-
backward and τ polarisation asymmetries at LEP–I. In the minimum of the global χ2, the Standard
Model parameters are determined such that an equilibrium between the two opposing requirements on
Aℓ is found. Consequently, A0,b

fb shows a negative pull. As far as the Aℓ measurements are concerned,
the effect becomes most visible in the pull of the Alr measurement because it is the measurement
with both the highest central value and the smallest error. Therefore, Alr shows a positive pull, or
equivalently sin2 θW determined from Alr shows a negative pull, as visible in Figure 6.9.

In interpreting these observations, different conclusions are obtained.

One possibility is that the deviation is attributed to the measurement of Alr. This point of view
is supported by two observations: first, the good agreement of all sin2 θW determinations obtained
from asymmetries excluding the Alr determination, as shown in Figure 5.37, and second, the slight
incompatibility of the Alr results with the current lower limit on the Higgs boson mass of 90 GeV derived
from the negative direct search at LEP–II [51]. The two-sigma deviation of the direct measurement of
Ab based on the forward-backward left-right asymmetry is considered as a fluctuation.

The other possibility is that the deviation is attributed to the b-quark sector, in particular to Ab,
affecting the direct measurement based on the forward-backward left-right asymmetry and propagating
to the forward-backward asymmetry A0,b

fb as well. Three years ago, the measurement of RZ
b deviated

by more than three standard deviations from the SM prediction. The measured value of RZ
b has since

moved and is now in agreement with the SM expectation. At the same time, the bb forward-backward
asymmetry decreased. The largest change in both results occurred during the same time period,
between the winter conferences and the summer conferences of the year 1996.

There are a few possible explanations for the observed disagreement:

1. It is simply a statistical fluctuation. This may happen and the measurements should definitely
not be excluded from the SM analysis. More data would be welcome, but, unfortunately, addi-
tional data taking at Z pole is not foreseen.

2. Some errors are too small. The measurement of Alr is statistics dominated. The low χ2/d.o.f
of the heavy flavour average suggests the opposite, i.e., the estimated errors are, if anything,
too large. A more refined error analysis may then even cause the discrepancy to become more
significant. One may speculate about a bias not identified so far. As discussed before, it is not
possible to lower Alr and to increase Ab through the dependence of their SLD measurement on
the SLC electron beam polarisation at the same time, as both observables would change in the
same direction.

3. There appears new physics in the area of b-quark couplings. The SM analyses discussed in this
Section are then intrinsically invalid as they necessarily assume the structure of the Standard
Model theory in order to calculate radiative corrections. New physics is of course the most
interesting explanation, and thus attracts wide-ranging speculation from many people.



Measurement Pull Pull
-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

mZ [GeV]mZ [GeV] 91.1867 ± 0.0021    .09

ΓZ [GeV]ΓZ [GeV] 2.4939 ± 0.0024   -.80

σhadr [nb]σ0 41.491 ± 0.058    .31

ReRe 20.765 ± 0.026    .66

AfbA0,e 0.01683 ± 0.00096    .73

AeAe 0.1479 ± 0.0051    .25

AτAτ 0.1431 ± 0.0045   -.79

sin2θeffsin2θlept 0.2321 ± 0.0010    .53

mW [GeV]mW [GeV] 80.37 ± 0.09   -.01

RbRb 0.21656 ± 0.00074    .90

RcRc 0.1735 ± 0.0044    .29

AfbA0,b 0.0990 ± 0.0021  -1.81

AfbA0,c 0.0709 ± 0.0044   -.58

AbAb 0.867 ± 0.035  -1.93

AcAc 0.647 ± 0.040   -.52

sin2θeffsin2θlept 0.23109 ± 0.00029  -1.65

sin2θWsin2θW 0.2255 ± 0.0021   1.06

mW [GeV]mW [GeV] 80.41 ± 0.09    .43

mt [GeV]mt [GeV] 173.8 ± 5.0    .54

1/α(5)(mZ)1/α(5)(mZ) 128.878 ± 0.090    .00

 

Figure 6.9: Pulls of measurements. The pull is defined as the difference of the measurement and
the Standard Model prediction calculated for the central values of the fitted Standard Model input
parameters as reported in Table 6.4, divided by the measurement error.



With the complete data at hand, the errors and correlations in the heavy-flavour analyses should be
investigated in more detail. The aim should clearly be to understand the problematic low χ2/d.o.f of
the average, and to correct possibly overly large errors or correlations assigned. The final results and
error assessments of the experimental analyses are needed.

From a statistical point of view, all measurements shows a very acceptable spread around their
prediction, which is also quantified by the global χ2/d.o.f of 15/15. With this many measurements,
some are expected to deviate by more than one or two standard deviations from their prediction. Thus
the observed deviations should be noted and kept in mind but not overinterpreted.



Chapter 7

Future Developments

7.1 Experimental Results

Nearly all of the measurements presented in Chapter 5 are still preliminary. Final results on the
data collected at SLC and LEP–I are expected soon, likewise for NUTEV and run-I results from the
TEVATRON. Data taking at LEP–II is still in progress.

7.1.1 SLC

According to approved schedule, data taking of SLD at SLC has stopped in June 1998. However,
pending funding, SLD and SLAC propose an additional SLC run with the goal of SLD collecting more
than 700,000 additional Z decays. The combined result on Alr would permit to determine sin2 θW with
an error of 0.00018, which is as precise as the current preliminary world average. The heavy flavour
measurements would become about as precise as the average of the four LEP experiments. In view of
the discussion in the previous section, this proposal becomes even more attractive.

7.1.2 LEP

Data taking at LEP is extended for one year and now scheduled to end in September 2000, when civil
engineering for the LHC project has to start. All luminosity still to be expected in the years 1999 and
2000, at least 200 pb−1, will be collected at the highest centre-of-mass energy of 200 GeV. Combining
the four LEP experiments, a measurement of the mass of the W boson with an accuracy of 30 MeV
is within reach. In order to achieve this goal, the LEP–II beam energy must be determined with an
accuracy of at most 15 MeV, and final-state interactions in the hadronic W+W− channel must be well
under control.

7.1.3 HERA

At the ep collider HERA, the experiments H1 and ZEUS measure the cross section of neutral-current
and charged-current deep inelastic lepton proton scattering as a function of Q2. The Q2 dependence
of the cross section arises from the propagator of the exchanged vector boson. Incorporating radia-
tive corrections by writing the charged-current and neutral-current amplitudes in terms of the Fermi
constant GF, the cross sections are proportional to G2

FM
4
W/(Q

2 +M2
W)2 and to G2

FM
4
Z/(Q

2 +M2
Z)2,

respectively. The Q2 dependence increases with increasing Q2.

Analysing the Q2 dependence of the charged-current cross section and keeping GF fixed, the mass
of the W boson is determined. Each experiments achieves an accuracy on MW of about 5 GeV [236]
based on about 40 pb−1 of luminosity collected until 1997. As the Q2 dependence of the propagator
is exploited, such a measurement of MW is comparable to the direct measurements of MW.
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At low Q2, the heavy boson masses cancel and the cross sections essentially depend on GF only,
leading to an allowed area of values in the (MW,Mt) plane which follows closely the lines arising from
the GF constraint, see for example Figure 6.3. With a luminosity of 1000 pb−1, a lepton polarisation
of −70%, and a systematic error of 1%, the cross section measurements yield a determination of
MW with an accuracy of 55 MeV when imposing the mass of the top quark [237]. Since electroweak
radiative corrections within the SM are exploited, such a measurement is comparable to the indirect
determinations of MW based on the analysis of radiative corrections.

7.1.4 TEVATRON

Run I at the pp collider TEVATRON ended in 1996, with each of the two experiments CDF and DØ
collecting more than 100 pb−1 of luminosity. Run II is scheduled to start in the year 2000 with the
goal of accumulating a luminosity of 2 fb−1 within 3 years. The mass of the W boson will then be
measured with about the same accuracy as at LEP–II, 30 MeV. The mass of the top quark will be
measured with an accuracy of 2 GeV, where systematic effects, including final state interactions as
discussed in Section 3.2.6, are the limiting factor.

7.1.5 LHC

The principal goal of the large hadron collider, a pp machine, is to find the Higgs boson and mani-
festations of new physics beyond the minimal Standard Model. Besides the mass of the Higgs boson,
also other properties, such as its decay branching fractions, will be measured in order to establish
whether the Higgs boson is that of the minimal Standard Model or that of extended theories such as
supersymmetry. As far as top quark and W boson are concerned, errors of less than 2 GeV on Mt and
less than 30 MeV on MW are expected.

7.1.6 LC

A future e+e− linear collider is the perfect machine to measure the mass of the W boson and the top
quark precisely, for example by performing dedicated scans in centre-of-mass energy of the e+e−→
W+W−(γ) and e+e−→ tt(γ) kinematic thresholds. Errors of less than 200 MeV on Mt and less than
10 MeV on MW are possible. Furthermore, the properties of the Higgs boson, if its production is
kinematically accessible, will be measured precisely.

7.2 Theoretical Developments

For reduced theoretical errors in the interpretation of radiative corrections, the complete set of two-
loop electroweak corrections in ff production should be calculated. At LEP–II centre-of-mass energies,
one also has to pay attention to QED radiative corrections, for example initial-final interference effects
which are no longer suppressed. An ambitious goal is to calculate the complete one-loop electroweak
radiative corrections in four-fermion production. The separation of two-fermion production including
radiative corrections versus four-fermion production has to be addressed, which continues at the
LC with the separation of four-fermion production including radiative corrections versus six-fermion
production.

7.3 Future Constraints on the Standard Model

As far as the prediction of the Higgs-boson mass is concerned, the analysis of the correlation matrix
shows, that the uncertainty on αem(M2

Z) should be reduced. For example, reducing the error on
αem(M2

Z) by a factors of two to four as suggested by recent publications on this topic [235, 238–246]
reduces the error on logMH because of the large correlation between logMH and αem(M2

Z).



Assuming the following uncertainties on Standard-Model parameters to be reached within the next
few year:

δ(1/αem(M2
Z)) = 0.01 (7.1)

δMt = 2 GeV (7.2)

δMW = 30 MeV , (7.3)

the relative error on the prediction of the Higgs-boson mass improves by a factor of 2.5, yielding a
35% uncertainty on MH. The comparison of the current and the expected future ∆χ2

min(MH) curves
is shown in Figure 7.1.
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Figure 7.1: Current and expected future curves showing ∆χ2
min(MH) = χ2

min(MH)−χ2
min as a function

of MH. The error on MH is expected to improve by a factor of 2.5, allowing a prediction of the Higgs
mass with an uncertainty of δMH/MH = 30%. Of course, it is not yet known where the minimum
of the χ2 will be in future. The vertical bands show the region currently excluded at 95 % CL
by the negative direct search for the Higgs boson at LEP–II, 90 GeV [51], and the region of the
expected sensitivity of the direct search for the final LEP–II centre-of-mass energy of

√
s = 200 GeV,

MH → √
s −MZ = 109 GeV. The LHC will cover the remaining mass range of a Standard Model

Higgs boson.

7.4 What if the Higgs Boson is found?

As soon as the Higgs boson is found and its mass measured, the value of all Standard Model input
parameters will be known. The accuracy of SM predictions will improve as the Higgs mass is no
longer a free parameter. The Standard Model of electroweak interactions is further tested in the



fundamental sector of mass generation through the comparison of the directly measured Higgs mass
with the prediction based on the analysis of radiative corrections.

Since the radiative corrections depend only logarithmically on MH, the required accuracy on MH

is less compared to the required accuracy on Mt. For example, a 5 GeV error on Mt is equivalent to
a 40% error on MH. Once the Higgs boson is found, be it at LEP–II or LHC, its mass will quickly
be known to sufficient precision as far as the calculation of radiative corrections within the Standard
Model are concerned. The remaining parametric uncertainties on Standard Model calculations will
thus arise due to the error on the running finestructure constant and the error on the mass of the top
quark.



Chapter 8

Summary and Conclusion

The last hundred years have seen an exciting development in particle physics, starting with the dis-
covery of radioactivity to the formulation of the theory of electroweak interactions to its successful
experimental tests. Recent high-energy physics experiments perform measurements on the electroweak
interaction which are so precise that the Standard Model of particle physics is tested at the level of
its radiative corrections.

Currently the Standard Model is able to accommodate and explain the mostly still preliminary
experimental results in a consistent manner, with the largest deviation observed in the bb asymmetries.
In particular, the predictions of the mass of the top quark and of the W boson agree well with the
direct measurements. From the experimental point of view there is no need to invoke new physics
beyond the Standard Model.

The Higgs boson, the fundamental part of the electroweak theory, has not yet been observed
directly, presumably because it is too heavy to be produced at a measurable rate at current colliders.
Based on the analysis of radiative corrections within the framework of the Standard Model, its mass
is predicted and an upper limit of 262 GeV at 95% CL is derived.

With the end of the SLC and LEP–I program there is no significant increase in the accuracy of
the measurement of electroweak radiative corrections to be expected. In contrast the measurements
of the mass of the W boson and of the top quark will continue to improve. An important quantity in
Standard Model analyses is given by the running electromagnetic finestructure constant evaluated at
the Z pole, which should be determined with much improved accuracy. This requires the measurement
of the hadronic cross section in e+e− interactions at centre-of-mass energies between 1 GeV and 7 GeV.

The conceptual problems of the Standard Model as a theory require that it is part of a larger
theory, if only to include a quantum mechanical description of gravity. New physics predicted by
extended theories is searched for by looking for the production of new particles connected to the new
physics. So far, no new particles are found. However, if new particles are too heavy to be produced
directly, there is still the possibility to look for virtual effects of such particles changing radiative
corrections. So far, the radiative corrections are in agreement with those predicted by the Minimal
Standard Model. Extensions of the Standard Model are thus severely constrained.

The direct search for the production of the Higgs boson and new particles takes place at the
colliders reaching the highest centre-of-mass energies, at the TEVATRON and LEP–II now, and at the
LHC and LC in the future. The mass range which will be explored at the LHC is so large, that either
the Higgs boson of the Standard Model or new particles predicted in extensions of the Standard Model
must be found. The LC is the machine to perform precision measurements on heavy and new particles
in order to determine their exact properties. Thus an exciting period of time in particle physics lies
directly ahead.
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Appendix A

The Fermi Constant

The Fermi constant GF is best determined from the precisely measured lifetime of the muon. The
decay of the muon into electron and two neutrinos is of purely electroweak nature. It is calculated
based on the hypothesis of a universal V − A structure of the charged weak current [247] as follows:

Γµ
e = Γ(µ→ eνν(γ)) =

G2
Fm

5
µ

192π3
Fm(ye)FWFrad , (A.1)

where the simple four-fermion term is corrected by:

1. a phase space factor Fm(ye) taking into account the finite mass me of the electron1:

ye =
m2

e

m2
µ

= 2.339011 · 10−5 (A.2)

Fm(y) = 1 − 8y + 8y3 − y4 − 12y2 ln y = 0.999813 , (A.3)

2. a factor FW for the correction due to W propagator effects:

FW = 1 +
3

5

m2
µ

m2
W

= 1.000001 , (A.4)

3. a factor Frad expressing QED radiative corrections to first [38, 39] and second [40] order:

Frad = 1 +
α(mµ)

π

(

25

8
− π2

2

)

+

(

α(mµ)

π

)2

(6.701 ± 0.002) ≈ 0.99580 (A.5)

The numerical values above are calculated using world averages [31] for particle masses. The running
coupling constant of QED at the muon mass is [40, 248]:

αem(mµ) = 1/135.90 , (A.6)

incorporating virtual photon corrections as well as the emission of real photons and electron-positron
pairs.

Based on the world average of the muon lifetime [31]:

τµ =
1

Γµ
e

= 2.19703(4) · 10−6 s , (A.7)

the Fermi constant is determined to be [40]:

GF = 1.16637(1) · 10−5 GeV−2 . (A.8)

1In case of a massive muon neutrino and neglecting the electron mass, the correction is given by Fm(yνµ
).
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Appendix B

The Electromagnetic Finestructure

Constant

The finestructure constant at zero momentum transfer, αem(0), is measured based on several methods.
The most precise results are obtained from the measurement of the hyperfine splitting in muonic atoms,
the quantum hall effect, the anomalous magnetic moment of the electron, and the gyromagnetic ratio
of the proton combined with the AC Josephson effect.

The finestructure constant at zero momentum transfer is one of the fundamental physical constants
for which the CODATA group provides best values. The last adjustment, performed in 1986 [249],
yields for αem:

αem(0) = 1/137.0359895(61) . (B.1)

The next adjustment is planned for the end of 1998 [31].

For Standard Model calculations, the actual number of relevance is not αem = αem(0) but rather
the running electromagnetic finestructure constant, αem(s), evaluated at the Z pole, s = M2

Z:

αem(s) =
αem(0)

1 − ∆αem(s)
. (B.2)

The running of αem is caused by fermion loops in the propagator of the photon. The leptonic contribu-
tions are calculated to third order with negligible uncertainty [43]. The uncertainty on ∆αem(s) arises
from the contribution of the five light quark flavours, ∆α(had)(s). It is determined via a dispersion
integral:

∆α(had)
em (s) = −αem

3π
· s · ℜ

[

∫ ∞

4m2
π

ds′
R(s′)

s′(s′ − s− iǫ)

]

(B.3)

R(s) =
σ0(e+e− → γ∗ → had; s)

σ0(e+e− → γ∗ → µ+µ−; s)
, (B.4)

where σ0 denotes lowest order expressions derived from the experimental measurements by remov-
ing effects due to QED radiation and the running of αem(s) [44]. The experimental errors on the
hadronic cross sections at centre-of-mass energies between 1 GeV and 7 GeV dominate the final error

on ∆α
(had)
em (M2

Z) [44]:

∆α(had)
em (s) = 0.02804 ± 0.00065 . (B.5)

Recently, many reevaluations of ∆α
(had)
em (M2

Z) [235, 241–246] have been performed applying perturba-
tive QCD down to low centre-of-mass energies for an improved normalisation or even replacement of
the experimental cross section measurements in the continuum region. This approach is grounded in
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the successful application of perturbative QCD in hadronic τ decays and indicated in Figure B.1 [235],
although some potential systematic effects are not considered [250]. A compilation of the results is
shown in Figure B.2 [246]. New and more precise measurements of cross sections in the above men-
tioned energy range are needed to confirm the theoretical ansatz. Such measurements are currently
under way, for example by the BES collaboration at the e+e− collider BEPC in Beijing. Preliminary
results at centre-of-mass energies of 2.60 GeV and 3.55 GeV show slightly lower results for R than the
older measurements [251], in better agreement with the expectation of perturbative QCD.
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Figure B.1: Measurements of the ratio of the hadronic cross section to the pointlike e+e−→ µ+µ− cross
section at low centre-of-mass energies

√
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contribution. In addition to the narrow resonances, the experimental data is also used in the shaded
regions for the evaluation of the dispersion integral.
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