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Abstract
Self-interacting dark matter is a popular and active field of research, it produces a
rich phenomenology, and gives unique signals that we can search for. This thesis
is devoted to the topic of dark matter bound state formation with emphasis on a
pseudo-scalar mediator in the non-relativistic regime. Using the Bethe-Salpeter
formalism we derive a method of finding two-particle fermion wavefunctions that
reduce to solutions of the Schrödinger equation in the non-relativistic regime. We
show the expressions for the bound state formation and annihilation cross-section.
We find that the effective potential generated by a pseudo-scalar is dependent on
the total angular momentum state of the particle configuration, |J, S, P 〉 where
J is total angular momentum, S is the total spin, and P is the parity are the
quantum numbers of the configuration. Only one of such configuration leads to an
attractive potential, and allows for a bound state solution. For this potential the
Sommerfeld enhancement for the annihilation and bound state formation cross-
section is found to be negligible. We find that the bound state formation process
scales as momentum to leading order. During the bound state formation process a
pseudo-scalar is released. Due to pseudo-scalars being CP odd, the configuration
of the two-particle state must change for CP conservation to hold. Since the
final configuration must be the one that allows for bound state formation, the
initial configuration must be one that gives a repulsive potential, and therefore
suppresses the process.
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Chapter 1

Introduction

Dark matter is one of the large unknowns in modern physics. We know very
little about it, yet has a rich theoretical and experimental field of research. The
effects of dark matter have been studied since Fritz Zwicky showed that there
was not enough mass in luminous matter to explain the velocity distribution of
galaxies in the Coma galaxy cluster in 1933. Since then many astrophysical and
cosmological observations have been made that indicate another form of matter
exists [1–9]. Yet all these observations are indirect in that we do not directly ob-
serve the dark matter, and can be used primarily to put constraints on possible
models. This means that we have a large freedom in building models that fit the
observations.

We therefore prefer models that have some form of independent motivation,
and from particle physics we receive several candidates. The most popular can-
didates are sterile neutrinos, axions, and weakly interacting massive particles
(WIMPs), all motivated by the need to explain observations and discrepancies
in particle physics [10]. In this thesis we focus on WIMP like particles with a
long-range interaction. The motivation for self-interacting dark matter stems
from discrepancies between observations and simulations of structure formation
for cold dark matter only [11–13]. Introducing a self-interaction can reconcile
these discrepancies and explain the observations [14–18].

With a self-interacting model comes new signals and effects one can look for
experimentally [19–22]. In this thesis we focus on the effects in the non-relativistic
regime, such as the Sommerfeld effect [23] and the possibility for formation of
bound states [24–26]. In the non-relativistic regime, the long-range effects of a
potential have a larger impact on the particles. For an attractive potential this
leads to an enhanced cross-section, while a repulsive one will lead to a suppres-
sion. This suppression or enhancement is called the Sommerfeld effect.

The Sommerfeld effect has been studied for quantum field theories by, among
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2 Introduction Chapter 1

others, Iengo [27] and Cassel [28] but in 2015 Petraki et al. [29] published a com-
prehensive guide to finding the cross-sections of both annihilation and bound
state formation processes using the Bethe-Salpeter equations [30] for scalar dark
matter with massless scalar and vector mediating particles. This paper was fol-
lowed up in 2016 with a study of massive scalar and vector mediators [31].

The goal of this thesis is two-fold. We review the physics and the method
of Petraki et al. by applying it to fermionic dark matter. Secondly we explore
the physics of a massive pseudo-scalar mediator in the context of annihilation
and bound state formation. A first step in exploring the possibilities of a self-
interacting model with a pseudo-scalar mediator.

1.1 Outline

The outline if the thesis is as follows;

Chapter 2 consists of an overview of dark matter, leading up to self-interacting
models. A historical overlook is given, highlighting some of the most significant
observations of dark matter. We review some of the particle models for dark mat-
ter, with emphasis on WIMPs, and the discrepancies between observation and
cold dark matter only simulations motivating the introduction of self-interacting
dark matter. We discuss some of the effects that follows from a self-interacting
theory, like the Sommerfeld effect and bound state formation.

In chapter 3 we define what a bound state is, and how it is described in quan-
tum field theory using Feynman diagrams. The difficulties with the quantum field
theory description are specified, and we show how in the non-relativistic regime,
these difficulties become manageable. Along the way we specify the assumptions
used throughout the thesis concerning the non-relativistic approximation.

The derivation of the Bethe-Salpeter equation for fermionic dark matter is
shown in chapter 4. The general outline of the derivation follows the work done
by Petraki et al. [29] for scalar dark matter. The derivation done in this the-
sis accounts for the additional spinor structure that accompanies working with
fermions. Transitioning to the non-relativistic regime is generalized to fermions
and is shown the section 4.2 of this thesis.

Chapter 5 deals with finding the cross-section for dissipative bound state for-
mation and annihilation. The method for deriving these results again follow the
structure of Petraki et al. [29], from pole structure analysis to the non-relativistic
approximation. We here keep track of the spinor components through these steps
to ensure that the ordering of terms is correct. In section 5.3 we look at the
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Schrödinger equation and how to solve it numerically, allowing us to write the
three-momentum of the radiated particle in the dissipative BSF process in terms
of the eigenenergy of the Schrödinger equation and introduce the phase-space
suppression factor.

In Chapter 6 we derive the effective potential generated by a pseudo-scalar
mediator, following the method of Bellazzini et al. [32]. We find that for the
pseudo-scalar mediator the effective potential generated is dependent on the spe-
cific two-particle state of the incoming and outgoing particles. Additionally we
incorporate a discussion on the nature of singular potentials, and why we need
to renormalize them.

The results of the calculations of the Schrödinger equation, annihilation cross-
section, and the bound state formation cross-section with a pseudo-scalar medi-
ator is shown in Chapter 7. The boundary condition for the relevant potential of
the pseudo-scalar mediator is found and the resulting wavefunctions are shown
in section 7.1. Section 7.2 shows the final steps needed to calculate the annihila-
tion cross-section numerically. For the bound state formation cross-section, the
first order diagram is computed to leading order. Additionally, we discuss the
implications of CP conservation for the bound state formation process.





Chapter 2

Introduction to dark matter

The nature of dark matter is one of the great mysteries of modern physics, de-
spite that its existence has been known about for more than half a century. All
evidence for dark matter comes from astrophysical and cosmological observations
and are all indirect. We can only measure the effects of there being an unknown
component to our universe, but not the component itself. The first indication
that there may be something beyond standard matter came in 1933 when Fritz
Zwicky found a discrepancy between the calculated mass of a galaxy cluster and
the inferred mass from luminosity measurements [1]. Zwicky came to the conclu-
sion that there must be some matter present that does not produce light, which
he dubbed ”Dunkle Materie”, dark matter. However it was not until 1970 the
theory of dark matter started getting traction in the community, when Vera C.
Rubin and W. Kent Ford showed that the measured angular velocities of lumi-
nous materials in the Andromeda galaxy, were much faster than expected from
the gravitational effects of its known luminous material content [2]. Since then
there have been other observational evidence from different galaxies and galaxy
clusters using the methods of Zwicky and Rubin. These measurements are what
is considered the classical evidence of dark matter, in the sense that they were
the observations opened the field of dark matter study. However, today this does
not produce the best constrains on the nature of dark matter.

Perhaps the most important evidence for dark matter comes from measure-
ments of the Cosmic Microwave Background (CMB) radiation and what it tells
us about the history of our universe, mapped most recently by the Plank exper-
iment [3]. Shortly after the big bang the universe was very hot and dense. As
the universe expanded and cooled down, elementary particles started to combine
to form baryons. Eventually we get to the Recombination era, where protons
and electrons became bound, and photons became free to travel the universe,
gradually cooling down and having their wavelengths stretched by the expand-
ing universe. The CMB is this radiation that was freed when recombination
happened. Therefore the CMB is a snapshot of how the universe looked at this
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point in time. While incredibly uniform the CMB has tiny fluctuations which
act as seeds for large scale structure formation. These fluctuations form from
small over-densities in the early universe. The over-densities can either grow by
pulling in other matter through gravity or are wiped out by the pressure from the
other forces between the matter, and from the expansion of the universe. In a
universe with no dark matter the larger over-densities survive while smaller ones
do not. With a matter ratio containing dark matter, some of these smaller densi-
ties survive due to the dark matter creating deeper potential wells that captures
them. Measuring the CMB is done by mapping the photons wavelength λ from
different regions of the sky, associating the wavelength with the temperature of
the CMB in that direction. To analyze the mapping we transform the map into
spherical harmonics where the size of a fluctuation is related to the mode l of the
corresponding basis function. We can then plot the intensity of each such mode
in a power spectrum plot, see figure 2.1. If there was no dark matter the tail of
the power spectrum would fall to zero, while oscillating about the falling line. In
figure 2.1 we see that the third peak in the spectrum is larger than the second
peak. The third peak represents the smaller fluctuations that survive due to dark
matter. From the size of the third peak within the ΛCDM model we can deter-
mine that the universe has a dark matter relic density of Ωχ = 0.2589± 0.0057,
while normal matter has a relic density of Ωm = 0.04860 ± 0.00051 and dark
energy ΩΛ = 0.6911 ± 0.0062 [4]. Relic density refers to the ratio of todays ob-
served density over the critical density, where the critical density is the density
needed for a geometrically flat universe. Since we see a flat universe today we
know that the sum of all relic densities must add up to one

∑
Ωi = 1, and where

Ωi tells us how much of the energy in the universe today is due to each component.

Along with the classic evidence of Zwicky and Rubin, and the precision mea-
surements of the CMB there has been a steady stream of complementary evidence
in the form of gravitational lensing observations [5,6] mapping out the amount of
dark matter using weak lensing effects and mapping out the densities of galaxy
clusters using strong lensing effect. Measuring the hot gas in clusters and us-
ing hydrodynamics predictions to map out the density profile of dark matter [7].
Measurements of the Big Bang nucleosynsthesis [8], that is the production of the
lightest elements in the early universe and comparing them to todays value puts
constraints on dark matter models as they cannot interfere with this process.
The final significant evidence for dark matter is the bullet cluster [9]. The bullet
cluster observation is of the aftermath of two galaxy clusters colliding, see figure
2.2. The luminous material is observed through X-ray telescopes to be clumped
together while images of the same region shows gravitational lensing effects to
both sides of the luminous clump. This indicates that the dark matter surround-
ing each cluster passes through each other instead of colliding.
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Figure 2.1: The thermal power spectrum from the 2015 Plank data. The
solid line represents the ΛCDM model. The third peak in the power spectrum
represents the fluctuations that survive due to the presence of dark matter. In
a model with no dark matter the third peak would be lower than the second
peak and the tail would decrease exponentially. With a dark matter content
Ωχ = 0.268 the third peak grows and as seen in the figure grows taller than
the second peak. Image taken from [3]

One of the very first ideas for what produces effects, was that Newtonian
dynamics where different of these large scales that previously thought, leading
to the field of modified gravity theories [33]. Although it initially gathered in-
terest to explain dark matter, its failure to predict all of the above observation
simultaneously has lead to more focus on the idea of some form of unobserved
matter. This could be many things, including primordial black holes, some un-
known particle, etc. From an astrophysical point of view there is no a priori
reason for choosing one over another, we can make all of them fit the parts, or all
of the data. However, when considering particle physics, motivation for certain
particle models emerges [10], three candidates emerge which are considered the
most promising.

The first of which are sterile neutrinos. Sterile neutrino models are motivated
as a possible explanation for neutrino oscillations. To explain the oscillation be-
tween neutrino species one needs to give the neutrinos mass. This can however
not be done in the Standard Model as there are no right handed neutrinos present.
Let us suppose we add right handed neutrinos. As so not to break the symme-
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Figure 2.2: Left: Color image of the merging bullet cluster 1E 0657-558 with
the mass density gradient overlapped in green measured using lensing effects.
Right: X-ray image of the same merging event showing that the concentration
of the luminous material does not overlap with the high mass density regions
indicating that there exists and unknown component that is non-luminous.
Image come from [9]

tries of the Lagrangian they cannot have any SM gauge interactions. The mass
of the neutrinos are then determined by diagonalizing into mass eigenstates. By
selecting the interaction strength to the higgs field to be of first order λ ∼ O(1)
you get three neutrinos with small masses ∼ λ2/M and the rest of mass ∼ M .
This is called the seesaw mechanism, and for M of order ∼ 1014GeV we get the
correct mass range for the observed neutrinos but these sterile neutrinos are to
heavy to be dark matter [10]. That is however only if we assume an interaction of
order 1. With other interaction strengths we can produce lighter sterile neutrinos
and still get out the correct neutrino mass.

Another possibility are axion models as explanation for the fine tuning of
the CP violating terms in the strong sector of SM Lagrangian. This CP vio-
lating term is the one that would give the electric dipole moment to neutrons,
which is measured to be very small. By adding a global U(1) symmetry that is
spontaneously broken a new pseudo-scalar field with a coupling that mimics the
violating term emerges. One can make the degree of CP violation dynamically
dependent on a new introduced mass scale. By tuning the value of this mass
scale we can make the electric dipole moment of the neutron disappear and as a
consequence a new very light particle arises that is naturally weakly interacting,
fulfilling the criterion for a dark matter candidate.

The last of the prominent, and perhaps the most popular, candidates are
WIMPs, to explain the hierarchy problem. The hierarchy problem refers to the
need for a fine tuning of the Higgs mass. In classical mechanics the physical mass
of an object is a parameter of the Lagrangian of the system, while in quantum
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field theory the physical mass is given by the parameter from the Lagrangian
plus quantum corrections,

m2
H = m2

H0 + ∆m2
H , where ∆m2

H ∼ λ2Λ2, (2.1)

where mH is the physical higgs mass, mH0 is the Lagrangian parameter, ∆mH is
the quantum correction to the mass, λ is an order O(1) coupling constant, and
Λ is the energy scale at which the SM breaks down, which is of the order the
Planck mass in the SM. So to produce the physical mass of ∼ 125 GeV there
must be a cancellation of terms to the order of one part in 1036, which is very
unsettling. This fine tuning problem can be resolved by introducing new physics
at a scale of 1 TeV implying new stable particles of mass m ∼ 10 GeV-TeV with
interaction strength of order weak interaction. Such particles are therefore called
weakly interacting massive particle, or WIMPs.

WIMPs are further motivated by what is dubbed the ”WIMP Miracle”. From
the CMB measurements we know that a large portion of the universe consists of
dark matter, and this dark matter had to be produced somehow. A compelling
mechanism is the thermal production. In the early universe, all particles that
interact with the SM would be in thermal equilibrium. As the universe expands
and cools heavier particles species would gradually fall out of equilibrium and
their comoving number density would be fixed. This evolution of the number
density is described by the Boltzmann equation

dn

dt
+ 3Hn = −〈σv〉

(
n2 − n2

eq

)
, (2.2)

where n is the number density, neq is the number density at equilibrium, H is the
Hubble parameter, and 〈σv〉 is the thermally averaged annihilation cross section.
This equation then balances how likely an interaction is with the expansion of the
universe. If the expansion term was not there, the number density would drop
nearly to zero as the universe cooled down and all the dark matter would have
interacted away. Since the universe does expand, at some point the expansion
would stop the interactions leading to what is referred to as freeze out, and giving
the dark matter relic density seen today, see figure 2.3. We find that when freeze
out happens the thermal relic density is given as

Ωχ ∼ 〈σv〉−1 ' (3× 10−26cm3s−1)−1 (2.3)

[3]. To first order the thermally averaged annihilation cross section is

Ωχ ∼
m2
χ

g4
χ

, (2.4)

where mχ is the mass of the particle in question and gχ is its coupling constant.
The ”WIMP miracle” is that when using masses and couplings the correspond to
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those of the weak scale needed to solve the hierarchy problem, the correct amount
of dark matter is produced. Any other model that produces the correct thermally
averaged annihilation cross section is just as valid, but given the motivation from
particle physics, the WIMP has been one of the most studied models for dark mat-
ter. This analysis is done under the assumption of no unique interaction between
the WIMPs themselves. Adding a self-interaction will produce corrections to the
thermally averaged annihilation cross section, changing valid parameters slightly.

Figure 2.3: Figure of the evolution of the comoving number density Y ac-
cording to equation 2.2 for a particle type of mass 100GeV at the lower end of
the electroweak scale. The dotted gray line represents the evolution if the dark
matter was always in equilibrium with the Standard Model plasma. The solid
gray line represents the evolution to get the correct number density today for
said particle type. The bands represents what changed when the cross section
differs in value by a factor 10, 102, and 103 respectively. Image from [10]

With a WIMP model we can explain the phenomena attributed to dark mat-
ter. There are however some problems with structure formation. Using the
CMB as an initial condition we can simulate the formation of large and small
scale structure in the universe, assuming that dark matter is a non-interacting
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cold component. Cold here meaning non-relativistic. The resulting simulations
have three small scale discrepancies compared to observations of our universe
today [11]. The cusp vs core problem where simulations show that the density
profile of dark matter in galaxies go as ∼ 1/r whereas observations show that the
profile is rounded towards the center [12]. The missing satellite problem states
that simulations indicate that there should be significantly more sub halos/sub
galaxies then what is observed. Simulations also show that the largest of these
satellites should be significantly larger than observed, called the too large to fail
problem. It should be noted that these simulations are done with only non-
interacting cold dark matter, and does not include the effects from the difficult
to simulate, baryonic physics. So these problems may very well be from the lack
of proper treatment of baryonic effects [13], but they also can be explained by
adding a self interaction to the dark matter [14–18]. There have also been claims
to have experimentally observed unique effects of self interaction in the Abell
3827 galaxy cluster [19], but this is still in dispute.

The interest in self interacting dark matter theories and hidden sector models
also stems from a lack of detection of dark matter, in particular WIMPs. The
energy scale of WIMPs lies perfectly in the operating range of the LHC, indirect
detection experiments like Fermi, PAMELA and AMS [20], and direct detection
experiments such as DAMA/LIBRA, LUX, and IceCube [21], yet there is a lack
of detection. Self interacting theories provides ways around the constraints that
arise from the lack of detection, seemingly fixes discrepancies between simula-
tion and observation regarding structure formation, and should provide unique
detectable signals. However with a self-interacting theory comes their own restric-
tions, the most famous of which is the Bullet Cluster [22]. In the Bullet Cluster
the two dark matter halos around each galaxy passes through each other to each
side of the luminous material that clumps together, see figure 2.2. This is the
exact behavior one would expect of the self interacting luminous matter and from
non self-interacting dark matter. This then sets and upper bound on the self-
interacting scattering cross section of σ/m < 1.25 cm2g−1 and σ/m < 0.7 cm2g−1

if one assumes an equal mass-to-light ratio of the clusters prior to the merger.
The range to explain the discrepancies in the cold dark matter simulations ver-
sus observation are of the order 0.5 − 5 cm2g−1, restricting self-interacting dark
matter models considerably.

To reconcile these restrictions with those from other observations we must
consider some of the effects that come with a self-interacting theory. Two main
effects that come into play with a self interacting theory are the Sommerfeld
effect [23] and bound state formation. The idea behind the Sommerfeld effect is
that two particles with a long range attractive force between them will be pulled
together. If the particles are highly relativistic this effect is negligible but for
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non-relativistic particles this effect can be significant. Therefore the cross section
of a process, whether it is scattering, annihilation, or bound state formation,
will be enhanced or suppressed for low relative velocities, see figure 2.4. While
these effects allow the evasion of the bounds previously mentioned, they do lead
to new signals from whom new bounds occur. In particular, the formation of
bound states leads to new detectable signals for direct detection [21], indirect
detection [24], production at the LHC [25], and it has an effect on the thermal
production of dark matter [26].

Figure 2.4: A plot of the annihilation cross sections for a vector mediator(s-
wave) and a scalar mediator (p-wave) as a function of velocity for some selected
combinations of the dark matter mass and the mediator mass. The highlighted
regions show the velocities corresponding to regions probed by different ob-
servations. Relic density refers to restrictions from the thermal production of
dark matter. The AMS positrons refers to the restrictions from galactic origin
particle detection. Fermi dwarfs refers to measurements of dwarf galaxies, and
Planck CMB refers to restrictions from the exact form of the CMB. Images
from [34].

The state of dark matter research today is one of constraining, with hopes of
detection. And we find that some of the most studied models are heavily con-
strained. Recent papers by Bringmann et al. [34] and Cirelli et al. [35] explore
what regions of parameter space are left open for self interacting dark matter
with a scalar or vector mediator that can both explain the three discrepancies in
simulations and have consistent velocity scaling cross section to give the correct
thermal relic density. The regions highlighted in figure 2.4 set different bounds
on the cross-section. Being consistent with the bounds in one velocity regime will
make it inconsistent with the bounds in another regime without these enhance-
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ments or suppressions as a function of velocity. What they find is that there
is no region of parameter space open that meets these conditions, with some
caveats. If we still want to explain the simulation/observation discrepancy with
self interacting dark matter we must turn to more complicated models. You can
include connections to hidden sectors and sterile neutrinos that are still experi-
mentally verifiable or, as is done in this thesis, we can turn to other mediators. A
pseudo-scalar mediator is a viable next option. Interactions with pseudo-scalars
can change spins of the interacting particles and gives a spin configuration de-
pendent potential [32] which can change the cross sections, and their velocity
dependents. This can allow us to possibly circumvent some of these constraints
and it is not as well studied.





Chapter 3

Bound state mechanics

In this chapter we introduce the concept of a bound state as defined by a pole in a
scattering amplitude, and the unique characteristics of a bound state. The main
part of this chapter is the motivation for the Bethe-Salpeter equation. We see
the occurrence of infinite sets of diagrams to each order in perturbation theory,
and how the problem simplifies in the non-relativistic regime. We go on to study
how to treat Dirac fermions in this non-relativistic regime of interest.

3.1 Defining a bound state

A natural starting point in a discussion of bound states is to ask what defines a
bound state. The defining characteristic of a bound state is the concept of the
rest mass being lower than the sum of individual masses M = m1 + m2 + E <
m1 +m2. In quantum mechanics we recognize the quantity E as the eigenvalue of
the Hamilton operator. The eigenvalues form a discrete set of negative energies
that are bounded from below. In quantum field theory we define the mass of
a state as the poles in scattering amplitudes [36]. This is seen in the Källén-
Lehmann spectral representation [37] of a two point correlation function

〈Ω|Tφ(x)φ(y) |Ω〉 =

∫ ∞
0

dM2

2π
ρ(M2)DF (x− y;M2) (3.1)

here shown for a two point correlation function. The left hand side is the cor-
relation between two time ordered fields φ in vacuum, |Ω〉. The right hand side
is an integral over mass squared, M2, of a density function ρ(M2) and the en-
ergy dependent Feynman propagator DF (x − y;M2). The variable M2 in the
propagator is the a generalized mass squared, such that the integral runs over all
positive energies with a Lorentz invariant measure. The spectral density func-
tion ρ(M2) selects the physical masses/poles of states; be they single particle, a
bound state, or a branch cut for multi particle state. This is derived by inserting
a completeness relation of a physical state basis for the Hilbert space, generated
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by the fields φ acting on a zero energy state |0〉, the zero element of the Hilbert
space. The poles come with a corresponding field-strength renormalization factor
that determines the contribution of each pole, and thus state, at a given energy
scale.

Bound state formation consists of two incoming free and two outgoing but
bounded particles. We will therefore consider four point correlation functions,
G(4), rather than two point correlation function as in (3.1). For G(4) we will do
a the decomposition in terms of bound and free states. The idea of this type of
decomposition becomes important for the derivation of the Bethe-Salpeter equa-
tion [29, 30] as seen in chapter 4.1, when deriving the relevant cross-sections for
bound state formation and annihilation chapter 5, and the derivation of the po-
tential for a pseudo-scalar mediator [32] chapter 6.

In this thesis we will follow the notation of Petraki, Postma and Wiechers
[29]. In this work, a center of mass frame will constantly be used. As such the
definitions for reduced mass we use is given by

µ ≡ m1m2

m
. (3.2)

where
m ≡ m1 +m2, (3.3)

A general bound state will be denoted by |BQ,n〉 with total momentum Q and
energy ωQ,n =

√
Q2 +M2

n, where n is a general placeholder for all relevant quan-
tum numbers and Mn < m. There will similarly be use for a general notation for
an unbounded, free two-particle state |UQ,q〉 where the discrete quantum number
is replaced by the relative momentum defined by vrel = q/µ and correspondingly
ωQ,q ≥ m. The states |BQ,n〉 and |UQ,q〉 can be constructed with fermions, in
which case these states will represent a specific spin state. The coordinates will
be split up into relative coordinates denoted by a lower case letter, and center of
mass coordinates denoted by upper case letters as follows,

x ≡ x1 − x2, X ≡ η1x1 + η2x2, (3.4)

x1 ≡ X + η2x, x2 ≡ X − η1x, (3.5)

Q ≡ p1 − p2, p ≡ η2p1 − η1p2, (3.6)

p1 ≡ η1Q+ p, p2 ≡ η2Q− p, (3.7)

with
η1,2 =

m1,2

m
, such that η1 + η2 = 1, (3.8)

such that the Jacobian under this coordinate transformation is 1. x, X are
position coordinates and p, Q are momentum coordinates.
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3.2 Instantaneous approximation and the non-

relativistic expansion

The Källén-Lehmann decomposition, eqs. (3.1), tells us that the pole of a bound
state will be at its mass, M = m1 +m2 + E < m1 +m2 where the binding energy
will be dependent on the potential depth regulated by the coupling constant,
such that E ∼ α. Therefore the pole in the correlation function is dependent on
the coupling constant. In Feynman diagrams the coupling constant is introduced
in the vertex factors, as part of the numerator. To have the coupling to appear
in the denominator there needs to be a resummation of diagrams of all orders.
Therefore a pole in α cannot appear for any Feynman diagram of finite order
n [36]. This means that the perturbative expansion has to diverge for any such
four point correlation function G, irregardless of how small the coupling constant
may be. So to calculate BSF (bound state formation) one can no longer rely on
the familiar perturbative methods in the traditional sense and one needs to find
a way to handle such an infinite set of diagrams.

The Bethe-Salpeter [30], formulates the problem of finding the correlation
function in terms of an integro-differential equation for the exact correlation func-
tion in terms of irreducible kernels, rather than individual diagrams. It is this
aspect of the formalism that makes the problem solvable in the non-relativistic
regime. We will talk about two aspects of the non-relativistic regime separately;
the instantaneous approximation for the momentum and energy of the mediating
particle and the non-relativistic approximation for the momentum and energy of
the dark matter particles.

The instantaneous approximation states that the momentum exchange of
two particles is instant, i.e. does not depend on time. This implies a non-
relativistic regime where energy can be written in terms of the three-momenta
scaling as; |q| ∼ µvrel for unbounded particles and |q| ∼ µα for bounded par-
ticles [29] (i.e. order of the Bohr momenta [36]). The energy transfer will then
be of order momenta squared, q0 ∼ q2/2µ = 1

2
α2, 1

2
v2

relµ � |q| which is very
small for α, vrel � 1. This means that both fermion, scalar, and photon prop-
agators contribute of order ∼ 1/q2 ∼ 1/α2 and loop integrals will contribute∫
dk0dk ∼ α2α3 = α5. Diagrams which in the relativistic case would be of differ-

ent orders can then be of the same order in the instantaneous approximation, as
shown in figure 3.1. The two diagrams in figure 3.1 are examples of ladder dia-
grams, where there is an energy exchange through a mediator in a t-channel. The
dependence on the coupling α is shown in figure 3.1 and when multiplying the
factors together we see that both diagrams are of overall order 1/α. In fact any
ladder diagram will be of order 1/α while other types of diagrams will give higher
orders in α. We still has an infinite set of diagrams to the lowest perturbative
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order but only one one particle irreducible (1PI) kernel. In the regular pertur-
bative method of finding correlation function we would still have to calculate an
infinite set of diagram but the 1PI kernel consists only of one diagram and we
get around the problem of having to calculate an infinite amount with the Bethe-
Salpeter formalism. To be exact one would still need to include all possible 1PI
kernels, but to first order we only need to include the ladder 1PI. Including only
the ladder 1PI kernel is called the ladder approximation. This approximation has
been an integral part of the Bethe-Salpeter equation and its viability since its
start [30, 38], but was initially met with distrust. The Bethe-Salpeter formalism
allows us to do calculations with an infinite set of diagrams built up by the 1PI
diagrams. Relativistically this seems very strange as it automatically includes
higher order ladder diagrams but ignores the higher order diagrams from other
1PI kernels, and for the first couple of years after the Bethe-Salpeter equations
conception was a major criticism [38]. However, in the instantaneous approxima-
tion; as described above, one can see that the sums in the non-relativistic limit is
consistent. This is why the instantaneous approximation is significant in giving
a consistent way to solve the Bethe-Salpeter equation, as now all orders of ladder
diagrams are of the same order in perturbation and the ladder approximation is
now consistent.

√
α

√
α

1/α2

√
α

√
α

√
α

√
α

1/α21/α2

1/α2

1/α2

∫
dk0dk
∼ α5

Figure 3.1: In the instantaneous approximation the momentum transfer for
mediating particles in a bound state is of order |q| ∼ µα which means that the
two diagrams shown above are of the same order in α due to the loop integral.
The lowest order in perturbation theory gives an infinite sum of diagrams
built up of the 1PI diagram. Left : One particle irreducible part of a ladder
diagram, with corresponding order of α contribution from vertex and propa-
gator in the instantaneous approximation. Right : The second possible ladder
diagram consisting of two 1PI, with the corresponding order of α contribu-
tion from the vertex, both propagators, and loop integral in the instantaneous
approximation.

Before we set about giving an overview of the derivation of the Bethe-Salpeter
equation, we will finish discussion of the non-relativistic regime by summarizing
what we called the non-relativistic approximation from Petraki et al. [29] and
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show how to treat fermion and more specifically spinors in such an approxima-
tion.

From appendix C of Petraki et al. [29] we have the non-rel. approximation
summarized; P,p� P 0,m1,m2 which leads to:

E1(p,P) =
√

p1
2 +m2

1 ' η1

(
m+

P2

2m

)
+

P · p
m

+
p2

2m1

, (3.9)

E2(p,P) =
√

p2
2 +m2

2 ' η2

(
m+

P2

2m

)
− P · p

m
+

p2

2m2

, (3.10)

E1(p,P) + E2(p,P) ' m+
P2

2m
+

p2

2µ
. (3.11)

With these quantities established working with scalars is straight forward but
does require quite a bit of algebra. However, we will be concerned with fermionic
dark matter and as such we need to know how spinors and spin structure changes
when going to the non-relativistic regime. The answer is found in the large
and small component decomposition of a spinor1. The following derivation is
taken from ”Quantum Field Theory” by Itzykson and Zuber, for QED covariant
derivative of U(1) symmetry but the emergence of a large and a small component
is in general independent of the symmetry, and is due to the βm term in the Dirac
equation

i
∂ψ

∂t
= (α · p + βm)ψ +

(
−eα ·A + eA0

)
ψ, (3.12)

where A0 and A are the zeroth and three vector components of the vector poten-
tial, i.e. the gauge boson. Writing the spinors out in terms of distinct upper and

lower components; ψ =

(
φ
χ

)
and in the aforementioned Dirac representation we

have β =

(
I 0
0 −I

)
, α =

(
0 σ
σ 0

)
we see that the β matrix has different signs

for its diagonal components. Writing the equations in component form the mass
term has a different sign in the two equations

i
∂φ

∂t
= σ · πχ+ eA0 +mφ, (3.13)

i
∂χ

∂t
= σ · πφ+ eA0 −mχ, (3.14)

where π is the gauge-invariant momentum defined by π ≡ p− eA. Then in the
non-relativistic regime the mass term dominates. We therefore introduce slowly

1Note that in this thesis we will be working in the Dirac representation of the gamma
matrices.
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varying functions

φ = e−imtΦ, (3.15)

χ = e−imtX, (3.16)

which lead to the two equations

i
∂Φ

∂t
= σ · πX + eA0Φ, (3.17)

i
∂X

∂t
= σ · πΦ + eA0X − 2mX. (3.18)

The second equation gives us, for eA0 � 2m

X ' σ · π
2m

Φ� Φ. (3.19)

Inserting this (3.12) gives the out the familiar Pauli equation, the spin half
dependent version of the Schrödinger equation. And since the lower component
χ is then much smaller than the upper component φ in the non-relativistic limit,
they are respectively called the small and large component. We have a way to
handle spinors in the non-relativistic regime, where the large component gives
zeroth order terms while the small components give higher order terms. This also
allows us to see the effect of gamma matrices on spinors in the limit, as in the
Dirac representation the γ0 ' 1 since it does not mix terms, while both the γ and
γ5 mix small and large components. Therefore γ and γ5 can induce higher cor-
rection in momentum separately but combinations can give leading order terms.
The above discussion can be generalized also to other interactions than U(1).

We now have the motivation for using the Bethe-Salpeter equation and the
tools necessary to handle going from the fully relativistic theory to the non-
relativistic regime. Let us now look at the derivation of the Bethe-Salpeter equa-
tion and how to get to the non-relativistic version of it.



Chapter 4

Bethe-Salpeter equation

The Bethe-Salpeter(B-S) equation was derived in 1951 [30] using the diagram-
matic approach of Feynman to tackle bound state formation, though several other
authors proposed similar methods around the same time [38]. The different meth-
ods follow the same general principles and the formalism of Bethe and Salpeter
solidified as the go to approach. The idea is that the amplitude of BSF, or any
two body process, is exactly described by the four point correlation function

G(4)(x1, x2, y1, y2)ab;cd = 〈Ω|Tχ1,a(x1)χ̄2,b(x2)χ1,c(y1)χ̄2,d(y2) |Ω〉 , (4.1)

where χ1,a, χ2,b are the fermion fields of particle type 1 and 2, with indices a, b in
spinor space running from 1 to 4. Repeated indices will be summed over. This
correlation function can be written out as an infinite sum of diagram1, both fully
connected and disconnected, through the Dyson-Schwinger equation [29,39]. The
disconnected diagrams together constitute the first right hand side term in figure
4.1. The connected diagrams consists of products of 1PI kernels W . This then
repeats to infinity, and we recognize that this infinite sum contains the four point
function itself, in expanded form. We therefore write the correlation function as
a non-scattering amplitude plus the product of the 1PI kernel and the four point
function making a differential equation, figure 4.1. Based on this expansion we
can do a decomposition of the four point function G(4) similar to the Källén-
Lehmann spectral decomposition but in terms of two-particle wavefunctions. By
analyzing the pole structure of this decomposition and comparing it to the general
form of the solution to the Dyson-Schwinger equation one arrives at the Bethe-
Salpeter equation. In this chapter we go through the derivation as done by
Petraki et al. [29], along the way showing the differences when dealing with
fermions, instead of scalars. In the last section we apply the instantaneous and
non-relativistic assumptions presented in chapter 3.2 and show that the Bethe-
Salpeter reduces to the Schrödinger equation.

1Note that unlike what I will present here, Itzykson and Zuber derive the integro-differential
equation that leads to the B-S equation though Legandre transformation of the Dyson-
Schwinger equation but leads to the answer as the diagrammatic approach that follows.
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G(4)

c

d

a

b

=

c

d

a

b

+

c

d

a

b

W

+

c

d

a

b

WW + · · ·

=

c

d

a

b

+

c

d

a

b

W G(4)

Figure 4.1: The diagrammatic expansion of the four point correlation func-
tion G(4). The first term gives the non connected diagrams, where there is
no interactions between the two particles. The remaining terms are the fully
connected scattering diagrams in terms of 1PI kernels W . Using the proper-
ties of infinite sums we can rewrite the sum on the right hand side in terms
of G(4) giving us an integro-differential equation describing the exact full four
point correlation function. The a, b, c, d indices signify the spinor index each
external fermion line has.

4.1 Derivation of the Bethe-Salpeter equation

As with the Källén-Lehmann decomposition we want to have a complete set of
states to decompose the correlation function into. For this we use the bound and
free states introduced in chapter 3.1 to create the completeness relation

1 =
∑
n

∫
d3Q

(2π)32ωq,n

|BQ,n〉 〈BQ,n|+
∫

d3q

(2π)3

d3Q

(2π)3

1

2ωQ,q2εQ,q
|UQ,q〉 〈UQ,q| ,

(4.2)
with the relativistic normalization 〈p|k〉 = 2Ep(2π)3δ3(p − k) where Ep is the
energy of the one particle state |p〉. The ε is just to indicate that it is con-
nected to the normalization of the second continuous variable but is otherwise
identical to ω. For fermions, these states represent a specific spinor states. The
normalizations give to lowest order

2ωQ,q2εQ,q ' 2E1(q; Q)2E2(q; Q). (4.3)

to be consistent in the non-relativistic limit.
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We therefore define two-particle wavefunctions as two point correlation func-
tions between the vacuum and some final physical state

ΨQ,n,ab(x1, x2) ≡ 〈Ω|Tχ1,a(x1)χ̄2,b(x2) |BQ,n〉 , (4.4)

Ψ?
Q,n,ab(x1, x2) ≡ 〈BQ,n|Tχ1,a(x1)χ̄2,b(x2) |Ω〉 , (4.5)

ΦQ,q,ab(x1, x2) ≡ 〈Ω|Tχ1,a(x1)χ̄2,b(x2) |UQ,q〉 , (4.6)

Φ?
Q,q,ab(x1, x2) ≡ 〈UQ,q|Tχ1,a(x1)χ̄2,b(x2) |Ω〉 , (4.7)

which are unknown quantities we want to solve for. The wavefunction for a bound
state is described by its center of mass momentum and a discrete set of quantum
numbers noted by n. The free wavefunction is described by the two continuous
variables of CM and relative momentum.

With these wavefunctions it is straightforward to change into the relative
coordinates (3.4)-(3.7) defined in chapter 3.1 by use of translation invariance.
This leads to the wavefunctions with variables

ΨQ,n,ab(x) ≡ 〈Ω|Tχ1,a(η2x)χ̄2,b(−η1x) |BQ,n〉 , (4.8)

in relative coordinates. In turn we can define the wavefunctions in momentum
space as the Fourier transform with respect to the previously defined relative
coordinates of x and p respectively. Having established the wavefunction we write
out the Dyson-Schwinger equation in terms relative momentum coordinates

G̃
(4)
ab;cd(p, p

′;Q) =(2π)4δ4(p− p′)Sab;cd(p;Q)

+ Sab;ef (p;Q)

∫
d4k

(2π)4
W̃ef ;gh(p, k;Q)G̃

(4)
gh;cd(k, p

′;Q), (4.9)

where
Sab;cd(p; q) ≡ S̃1,a;c(η1Q+ p)S̃2,b;d(η2Q− p), (4.10)

is the product of the exact propagator of particle type 1 and 2, and the tilde
indicates that it is in momentum space. The spinor indices are such that they
are consistent with figure 4.1.

We now have all the tools necessary to start the derivation. By insertion of
the completeness relation (4.2) we can then split up the four point function into
contributions to bound states and scattering states

G̃
(4)
ab;cd(p, p

′;Q) =
∑
n

G̃
(4)
n,ab;cd(p, p

′;Q) + G̃
(4)
U ,ab;cd(p, p

′;Q). (4.11)

This splitting allows us to analyze each contribution separately and distinguish
the contributions from each part separately.
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First a small interlude into the Heaviside step function needed to explicitly
do the time ordering in each contribution. The integral representation of the
function is

θ(z) =
i

2π

∫ ∞
−∞

dk
e−ikz

k + iε
, (4.12)

and from [40] we have the relation

θ[min(x0
1, x

0
2)−max(y0

1, y
0
2)] = θ[X0 − Y 0 + h−(x0)− h+(y0)], (4.13)

with h±(x0) ≡ 1
2
(η2 − η1)x0 ± 1

2
|x0| for relative coordinates. The bound states

contribution of (4.11) gives

G
(4)
n,ab;cd(x, y;X − Y ) =∫
d3K

(2π)3

1

2ωK,n

〈Ω|Tχ1,a(x1)χ̄2,b(x2) |BK,n〉 〈BK,n|χ1,c(y1)χ̄2,d(y2) |Ω〉

× θ[min(x0
1, x

0
2)−max(y0

1, y
0
2)]

=

∫
d3K

(2π)3

1

2ωK,n

ΨK,n,ab(x)Ψ?
K,n,cd(y)e−iωK,n(X0−Y 0)eiK·(X−Y)

× i

(2π)

∫ ∞
−∞

dK0 e
−i[K0−ωK,n][X0−Y 0+h−(x0)−h+(y0)]

K0 − ωK,n + iε

= i

∫
d4K

(2π)4
e−iK(X−Y )ΨK,n,ab(x)Ψ?

K,n,cd(y)
e−i[K

0−ωK,n][X0−Y 0+h−(x0)−h+(y0)]

ωK,n(K0 − ωK,n + iε)
,

when applying the relations (4.13) in the first step and (4.12) in the second step
integrating over K0. We Fourier transform the above expression with respect to
x, y, and X − Y

G̃
(4)
n,ab;cd(p, p

′;Q) =

∫
d4xd4yd4(X − Y )e[px−p′y+Q(X−Y )]G(4)

n (x, y;X − Y )

= i

∫
d4xd4ye[px−p′y]ΨQ,n,ab(x)Ψ?

Q,n,cd(y)
e−i[Q

0−ωQ,n][X0−Y 0+h−(x0)−h+(y0)]

2ωQ,n(Q0 − ωQ,n + iε)
,

(4.14)

to arrive at the pole structure in terms of the energy. At the pole Q0 → ωQ,n we
have

G̃
(4)
n,ab;cd(p, p

′;Q)→
ΨQ,n,ab(p)Ψ

?
Q,n,cd(p

′)

2ωQ,n(Q0 − ωQ,n + iε)
. (4.15)

Following the same process for the scattering state contribution to the corre-
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lation function leads to the expression

G̃
(4)
U ,ab;cd(p, p

′;Q) = i

∫
d3q

(2π)3

∫
d4xd4ye[px−p′y]ΦQ,q,ab(x)Φ?

Q,q,cd(y)

× e−i[Q
0−ωQ,q][X0−Y 0+h−(x0)−h+(y0)]

2ωQ,q2εQ,q(Q0 − ωQ,q + iε)
.

(4.16)

Note that unlike for the bound states, which have simple poles, the scattering
states give rise to a branch cut. The cut arises due to the extra integral over the
free variable q.

With the pole structure having been established, we turn to solving the Dyson-
Schwinger equation. By defining an operator

A(p, p′;Q)ab;cd ≡ (2π)4δ4(p− p′)S−1
ab;cd(p;Q)− W̃ab;cd(p, p

′;Q), (4.17)

we can rewrite the Dyson-Schwinger equation into∫
d4k

(2π)4
Aef ;gh(p, k;Q)G̃

(4)
gh;cd(k, p

′;Q) = Ief ;cd, (4.18)

where I = (2π)4δ4(p− p′)δecδfd. We check that relation (4.17) holds by inserting
the definition (4.18) into (4.17)

S−1
ef ;gh(p;Q)G̃

(4)
gh;cd(p, p

′;Q)−
∫

d4k

(2π)4
W̃ef ;gh(p, k;Q)G̃

(4)
gh;cd(k, p

′;Q) = Ief ;cd.

(4.19)
We then multiply from the left Sab;ef (p;Q) = S̃1,aeS̃2,bf . The product of the
propagators will then be

Sab;ef (p;Q)S−1
ef ;gh(p;Q) = S̃1,ae(p;Q)S̃2,bf (p;Q)S̃−1

2,fg(p;Q)S̃−1
1,eh(p;Q)

= S̃1,ae(p;Q)δbgS̃
−1
1,eh(p;Q) = δahδbg (4.20)

and with this equation (4.19) becomes

G̃
(4)
ab;cd(p, p

′;Q)− Sab;ef (p;Q)

∫
d4k

(2π)4
W̃ef ;gh(p, k;Q)G̃

(4)
gh;cd(k, p

′;Q)

= Sab;ef (p;Q)Ief ;cd,

(4.21)

therefore

G̃
(4)
ab;cd(p, p

′;Q) = Sab;cd(p;Q)

+ Sab;ef (p;Q)

∫
d4k

(2π)4
W̃ef ;gh(p, k;Q)G̃

(4)
gh;cd(k, p

′;Q), (4.22)
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which is the Dyson-Schwinger equation (4.9).

The solution to equation (4.18) is formally

G̃
(4)
ab;cd(p, p

′;Q) =
∑
n

1

cn(Q)
Cn,ab(p;Q)C̄n,cd(p

′;Q)

+

∫
ds

fs(Q)
Fs,ab(p;Q)F̄s,cd(p

′;Q), (4.23)

given in terms of functions Cn,a,b(p;Q) and Fs,a,b(p;Q), where n, as before, rep-
resent a general collection of discrete quantum numbers and s a continuous one.
These function are eigenfunctions of the operator Aa,b;e,f (p, p

′;Q)∫
d4k

(2π)4
Aab;ef (p, k;Q)Cn,ef (k;Q) = cn(Q)Cn,ab(p;Q), (4.24)∫

d4k

(2π)4
Aab;ef (p, k;Q)Fs,ef (k;Q) = fs(Q)Fs,ab(p;Q), (4.25)

for the discrete and continuous spectrum respectively with corresponding eigen-
values cn(Q) and fs(Q). With the eigenfunctions are normalized such that∑

n

Cn,ab(p;Q)C̄n,cd(p
′;Q) +

∫
dsFs,ab(p;Q)F̄s,cd(p

′;Q)

= (2π)4δ4(p− p′)δacδbd. (4.26)

Given the same form of eq. (4.11) and eq. (4.23), we can use equations (4.14)
and (4.16) to read of the eigenfunction, up to a proportionality

Cn,ab(p;Q) ∝
∫
d4xΨQ,n,ab(p)e

ipxe−i[Q
0−ωQ,n]h−(x0), (4.27)

C̄n,cd(p
′;Q) ∝

∫
d4xΨ?

Q,n,cd(p)e
−ip′ye−i[Q

0−ωQ,n]h+(y0), (4.28)

cn(Q) ∝ 1− ωQ,n

Q0
, (4.29)

and

Fs,ab(p;Q) ∝
∫
d4xΦQ,q,ab(p)e

ipxe−i[Q
0−ωQ,q]h−(x0), (4.30)

F̄s,cd(p
′;Q) ∝

∫
d4xΦ?

Q,q,cd(p)e
−ip′ye−i[Q

0−ωQ,q]h+(y0), (4.31)

fs(Q) ∝ 1− ωQ,q

Q0
. (4.32)
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Here we have made sure that all dependence on p and p′ is contained in the
respective eigenfunction, while the eigenvalues are chosen such that the eigen-
functions themselves are not singular in the limit Q0 → ω.

To summarize, we have now found an operator that allows us to rewrite the
Dyson-Schwinger equation in a form that allows us to decompose the four point
correlation function G̃(4) in terms of the functions Cn(p;Q), Fs(p;Q), cn(Q),and
fs(Q). It also allows us to decompose the Dyson-Schwinger equation to two
eigenvalue equations, eqs. (4.24) and (4.25). Then by a spectral decomposition
we found the pole structure of G̃(4) in term of the two-particle wavefunction
defined in eqs. (4.4)-(4.7). This was used to find the eigenfunctions Cn(p;Q),
Fs(p;Q) and eigenvalues cn(Q), fs(Q). The last step now is to insert these
functions into the decomposed Dyson-Schwinger equation (4.24) and (4.25) in
the limit of Q0 → ω to arrive at the Bethe-Salpeter equations

Ψ̃Q,n,ab(p) = S(p;Q)ab;ef

∫
d4k

(2π)4
W̃ef ;gh(p, k;Q)Ψ̃Q,n,gh(k), (4.33)

Φ̃Q,q,ab(p) = S(p;Q)ab;ef

∫
d4k

(2π)4
W̃ef ;gh(p, k;Q)Φ̃Q,q,gh(k), (4.34)

for the bound and scattering wavefunctions respectively. Like the Schrödinger
equation, these equations do not determine the normalizations of the wavefunc-
tions. And since we can only determine the eigenvalues to a proportionality,
we cannot use the normalization of the formal solutions to determine their nor-
malizations. One therefore needs a new equation for the normalizations, which
can be found using relations of the Dyson-Schwinger equation in operator form,
eq.(4.18), and its derivative.

The ordering of equation (4.18) is such that it recreates the ordering of equa-
tion (4.9). However we could have just as easily factored the G(4) out on the
left hand side of the last term in figure 4.1, see figure 4.2, in which case the
corresponding operator equation would be with the A and G̃(4) switched in eq.
(4.18). Therefore A and G̃(4) must commute and we have some freedom when
manipulating these equations.

Symbolically figure 4.2 means that

Aab;efG̃
(4)
ef ;cd = G̃

(4)
ab;efAef ;cd = Iab;cd, (4.35)

where I = (2π)4δ4(p−p′)δacδbd is defined as before. We can now differentiate the

equation Aab;efG̃
(4)
ef ;cd = Iab;cd with respect to Q0. Through the product rule and

using equation (4.35) we obtain

G̃
(4)
ab;ef

(
dAef ;gh

dQ0

)
G̃

(4)
hg;cd = −

(
dG̃

(4)
ab;cd

dQ0

)
, (4.36)
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Figure 4.2: The diagrammatic expansion of the four point correlation func-
tion G(4) where we have factorized out the four point correlation function out
on the left hand side rather than on the right hand side as in figure 4.1. This
freedom is important in both determining the normalization and in keeping
track of ordering of terms.

a normalization condition for the Bethe-Salpeter wave equations. For our ease
we define two quantities

Ñn,ab;cd(p, p
′; Q) ≡ i

[
dAab;cd(p, p

′;Q)

dQ0

]
Q0=ωQ,n

, (4.37)

Ñq,ab;cd(p, p
′; Q) ≡ i

[
dAab;cd(p, p

′;Q)

dQ0

]
Q0=ωQ,q

, (4.38)

as normalization operators. Notice that we defined these quantities in the limit
Q0 → ω as that is the limit in which the Bethe-Salpeter equations (4.33) and
(4.34) hold. In this limit we can insert equations (4.15) and the equivalent limit
of (4.16) into the normalization condition (4.36) to obtain the two normalizations

∫
d4p

(2π)4

d4p′

(2π)4
Ψ̃?

Q,n,abÑn,ab;cd(p, p
′; Q)Ψ̃Q,n′,cd = 2ωQ,nδn,n′ , (4.39)∫

d4p

(2π)4

d4p′

(2π)4
Φ̃?

Q,q,abÑq,ab;cd(p, p
′; Q)Φ̃Q,q′,cd = 2ωQ,q2εQ,q(2π)3δ3(q− q′).

(4.40)
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4.2 Non-relativistic limit

The Bethe-Salpeter equations, (4.33) and (4.34), are exceedingly difficult to solve
and can only be done with approximations such as the non-relativistic approxima-
tion. We are interested in what the instantaneous approximation tells us about
the 1PI kernel W . The instantaneous approximation stated that the interactions
in this kernel happens instantly, implying that the energy exchanged by the me-
diating particle is given in terms of the three momenta q0 ∼ q2/2µ � |q|. This
means that the zeroth momentum component of the kernel can be neglected, and
we are left with only explicit three-momentum dependence. When considering
ladder diagrams in relative coordinates, we note that exchanged momenta will
only depend on the absolute difference of the relative momenta and is therefore
independent of the center of mass momentum Q. We then have that

W̃ab;cd(p, p
′;Q) ' Wab;cd(|p− p′|), (4.41)

implying that the four momentum integral in eqs. (4.33) and (4.34) is reduced
to an integral over three momentum. When multiplying both sides of eqs. (4.33)
and (4.34) with the inverse of the propagator product we see that the right hand
side does not depend on p0. This motivates the definition of the p0 independent
quantities

S0,ab;cd(p;Q) ≡
∫
dp0

2π
Sab;cd(p,Q), (4.42)

ψ̃Q,n,ab(p) ≡
√

2NQ(p)S−1
ab;ef (p;Q)S0,ef ;gh(p;Q)Ψ̃Q,n,gh(p), (4.43)

φ̃Q,q,ab(p) ≡

√
2NQ(p)

2εQ,q
S−1
ab;ef (p;Q)S0,ef ;gh(p;Q)Φ̃Q,q,gh(p), (4.44)

NQ(p) ≡ E1(p; Q)E2(p; Q)

E1(p; Q) + E2(p; Q)
, (4.45)

which are chosen a posteriori such that they will allow us to reduce to the
Schrödinger equation. The final equation is chosen such that it coincides with
the normalization for the Bethe-Salpeter wavefunctions and in the non-relativistic
limit gives the correct completeness relations one would expect for Schrödinger
wavefunctions. Equations (4.43) and (4.44) can be further rewritten by multi-
plying both sides with S(p,Q) and integrating over p0

ψ̃Q,n,ab(p) =
√

2NQ(p)

∫
dp0

2π
Ψ̃Q,n,ab(p), (4.46)

φ̃Q,q,ab(p) =

√
2NQ(p)

2εQ,q

∫
dp0

2π
Φ̃Q,q,ab(p), (4.47)
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The time ordering in the definitions of the wavefunctions (4.4) and (4.6) becomes
trivial and ψ̃?Q,n(p) = ψ̃∗Q,n(p). Rewriting equation (4.43) by multiplying both

side by the combination of propagators S−1S−1
0 S and dividing by the normaliza-

tion factor we see that

S−1
ab;ef (p;Q)Ψ̃Q,n,ef (p) =

S−1
ab;ef (p;Q)S−1

0,ef ;gh(p;Q)Sgh;ij(p;Q)ψ̃Q,n,ij(p)√
2NQ(p)

. (4.48)

Using this relation and (4.44) with (4.46) and (4.47) in conjunction with the
assumption (4.41), we can then rewrite the Bethe-Salpeter equations (4.33) and
(4.34) as

S−1
ab;ef (p;Q)S−1

0,ef ;gh(p;Q)Sgh;ij(p;Q)ψ̃Q,n,ij(p)√
2NQ(p)

=

∫
dk3

(2π)3

Wab;gh(|p− k|)√
2NQ(p)

ψ̃Q,n,gh(p), (4.49)

S−1
ab;ef (p;Q)S−1

0,ef ;gh(p;Q)Sgh;ij(p;Q)φ̃Q,q,ij(p)√
2NQ(p)

=

∫
dk3

(2π)3

Wab;gh(|p− k|)√
2NQ(p)

φ̃Q,q,gh(p). (4.50)

Going to the Schrödinger equation we will only keep leading order terms.
This is due to our previous approximation of the interacting kernel. Higher order
terms in the non-relativistic expansion would also imply higher order diagrams
for the kernel. To leading order the normalization is given as NQ(p) ' µ, and
is independent of momenta and thus cancels out. When calculating S0(p; Q) for
fermions we have to take into account the such things as the spin structure and
large/small components as well as the pole along the p0 axis.

We define a function S(t; p;P ) ≡
∫

dp0

2π
S̃1(η1P +p)S̃2(η2P −p)eip

0t as a gener-
alization of S(p;P ), such that we can calculate S0(p,P) by closing the contour
parameterized by the variable t, without adding a contribution to S0(p,P) =
S(0; p;P ) from the contour. To explicitly handle the spin structure of the fermion
propagator we use an alternative way of writing the propagator from Itzykson &
Zuber [39],

/p1
+m1

p2
1 −m2

1 + iε
=

[
Λ+(p1)

p0
1 − E1 + iε

+
Λ−(p1)

p0
1 + E1 − iε

]
γ0

1 , (4.51)

where Λ±(p1) = E1±H(p1)
2E1

with H(p1) = γ0
1γ1 · p1 + γ0

1m1. The index 1 and
2 on the Dirac matrices represent the particle that they act on. Since the two
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particles never interact we must keep track of which particles spinor space the
matrices are a basis for. The Λ+ and Λ− can be thought of as operator that
project over positive and negative energy states, and as such have respectively
poles at positive and negative energies. We write out the integral

S(t; p;P ) = −
∫
dp0

2π

[
Λ+

1

η1P 0 + p0 − E1 + iε
+

Λ−1
η1P 0 + p0 + E1 − iε

]
γ0

1

×
[

Λ+
2

η2P 0 − p0 − E1 + iε
+

Λ−2
η2P 0 − p0 + E1 − iε

]
γ0

1e
ip0t, (4.52)

in terms of the expansion (4.51). We have here used the shorthand notation of
Λ+

1 = Λ±(p1). We identify the poles for each their respective Λ factor

t > 0 : Λ−1 : p0 = −η1P
0 − E1 + iε = −σ1, Λ+

2 : p0 = η2P
0 − E2 + iε = ρ2,

t < 0 : Λ+
1 : p0 = −η1P

0 + E1 − iε = −ρ1, Λ−2 : p0 = η2P
0 + E2 − iε = σ2,

(4.53)

allowing for easy identification of poles. When doing the integral we get

S(t; p;P ) = −i



−Λ+
1 γ

0
1Λ+

2 γ
0
2e
iρ2t

P 0−E1−E2
+

Λ−1 γ
0
1Λ+

2 γ
0
2e
−iσ1t

P 0+E1−E2

−Λ−1 γ
0
1Λ+

2 γ
0
2e
iρ2t

P 0+E1−E2
+

Λ−1 γ
0
1Λ−2 γ

0
2e
−iσ1t

P 0+E1+E2
if t > 0

−Λ+
1 γ

0
1Λ+

2 γ
0
2e
−iρ1t

P 0−E1−E2
− Λ+

1 γ
0
1Λ−2 γ

0
2e
−iρ1t

P 0−E1+E2

+
Λ+
1 γ

0
1Λ−2 γ

0
2e
iσ2t

P 0−E1+E2
+

Λ−1 γ
0
1Λ−2 γ

0
2e
−iσ2t

P 0+E1+E2
if t < 0 ,

(4.54)

for closing the contour in the lower and upper half plane respectively. We get
out both the explicit pole structure and the spin structure

S0(p;P ) = i

(
Λ+

1 γ
0
1Λ+

2 γ
0
2

P 0 − E1 − E2

− Λ−1 γ
0
1Λ−2 γ

0
2

P 0 + E1 + E2

)
, (4.55)

of the reduced propagator in the fully relativistic regime. Going to the non-
relativistic regime we look closer at the combinations of Λ in terms of momentum
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following the analysis of Iengo [27],

Λ∓1 γ
0
1Λ∓2 γ

0
2 =

(E1 ∓ γ0
1γ1 · (η1P + p)∓ γ0

1m1)γ0
1(E2 ∓ γ0

2γ2 · (η2P− p)∓ γ0
2m2)γ0

2

4E1E2

= 1/4

[
γ0

1γ
0
2 +

m1m2

E1E2

±
(
γ0

1m2

E2

+
m1γ

0
2

E1

)

∓
(
γ1 · (η1P + p)γ0

2

E1

− γ0
1γ2 · (η2P− p)

E2

)

−
(
γ1 · (η1P + p)m2

E1E2

+
γ2 · (η2P− p)m1

E1E2

)

+
γ1 · (η1P + p)γ2 · (η2P− p)

E1E2

]
.

Terms with a single γ will mix small and large component and thus create a
higher order term, while γ0 will neither mix nor change the components and is
therefore effectively of order ∼ 1. To lowest order the energy is the mass of the
particle which is why we get

Λ∓1 γ
0Λ∓2 γ

0 ∼

{
1 if + +

0 else ,
(4.56)

where we include the result for other possible combinations of Λ as well. Since
the small component is of higher order in momentum we effectively cut away the
half of the matrix γ0 that acts on the small component, hence γ0 ∼ 1. This
means that we are here finding the equation for the large component in the non-
relativistic limit. Since γ0 ∼ 1, S0 is diagonal and then commutes with other
matrices such as S. Using this commutation in equations (4.49) and (4.50) to
commute the S−1

0 with S allows us to cancel S with S−1 on the left hand side.

In the non-relativistic limit the dominant component of S0 has the momentum
dependence

S0(p, P ) ' −1

i(P 0 − E1 − E2)
=

−1

i(E − p2

2µ
)
, (4.57)

where E is either the energy, for bound or free states respectively as in

P 0 = m+
P2

2m
+ E . (4.58)
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This means that the equations (4.49) and (4.50) now become(
−p2

2µ
+ En

)
ab;ef

ψ̃n,ef (p) =
−1

i

∫
d3k

(2π)3
Wab;ef (|p− k|)ψ̃n,ef (p), (4.59)(

−p2

2µ
+ Eq

)
ab;ef

φ̃q,ef (p) =
−1

i

∫
d3k

(2π)3
Wab;ef (|p− k|)φ̃q,ef (p), (4.60)

where we have written the factor in front of the integral as −1/i for simple
comparison with the factor of equations (2.78) and (2.79) of [29], −1/i4mµ2. By
doing the derivation for fermion fields rather than scalar fields as done by Petraki
et al. [29] the only difference is this −1/i factor in front of the integral in (4.59)
and (4.60). Pertaki et al. arrives at a different factor due to the difference in
units of a scalar field compared to a fermion field, and a four factor from the
difference in degrees of freedom. This difference in degrees of freedom is seen
in equation (4.2) of [31] as a factor 4 difference when comparing the coupling
constant between fermionic and scalar dark matter for a scalar mediator. We
have arrived at the Schrödinger equation, with constant factors corresponding
to fermions, in momentum space. By a Fourier transform we get the familiar
equation [

−∆2

2µ
+ V (r)

]
ψn(r) = Enψn(r), (4.61)[

−∆2

2µ
+ V (r)

]
φq(r) = Eqφq(r), (4.62)

with the potential defined as

V (r) ≡ −1

i

∫
d3k

(2π)3
W(k)eik·r. (4.63)

Through eqs. (4.42)-(4.45) we have been able to relate the relativistic quan-
tities of the Bethe-Salpeter wavefunctions with the Schrödinger wavefunctions in
the non-relativistic limit. This is important, as we now have the tools to solve
more complicated amplitudes by first decomposing them to the B-S wavefunc-
tions and then be able to consistently solve in the non-relativistic limit. This is
the approach we will use to derive cross sections for bound state formation and
annihilation processes.

Finally one could to look at the normalizations of the wavefunctions in the
non-relativistic limit. As the details of the analysis of the limit on these nor-
malizations hold no significance for the further calculations, we will omit them

2Note that we here drop the subscript Q as there is no longer any explicit dependence on
it.
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here but the details can be found in section 2.7 of [29]. The result is that the
Schrödinger wavefunctions are normalized exactly as one would expect from quan-
tum mechanics. This would have had to have been the case for the Schrödinger
wavefunctions, but it is nice to see that the method is consistent in deriving
conditions from the Dyson-Schwinger equation (4.9).



Chapter 5

General cross-section calculation

Having established a connection between relativistic and non-relativistic two-
particle wavefunctions through the Bethe-Salpeter equation we will now turn
towards calculating cross sections. The goal is to decompose the more intricate
diagrammatic processes of bound state formation and annihilation in term of
the four point correlation function (4.1) and thereby into the relativistic two-
particle wavefunctions. This will allow us to calculate the cross section in the non-
relativistic limit through the relations (4.42)-(4.45) and the Schrödinger equations
(4.61) and (4.62). The method of deriving the cross sections is that of Petraki et
al. [29] with careful note of the changes when considering fermionic dark matter.

5.1 Bound state formation

The radiative bound state formation happens through a five point correlation
function

G
(5)
ab;cd(Xϕ, x1, x2; y1, y2) ≡ 〈Ω|Tϕ(Xϕ)χ1,a(x1)χ̄2,b(x2)χ1,c(y1)χ̄2,d(y2)|Ω〉 , (5.1)

where the field ϕ gives the mediating particle of the interaction. A bound state
is defined by its mass M = m1 + m2 + E < m1 + m2, and to go from two free
particle into a bound state it therefore must emit some energy through a radiative
process, hence G(5). Our goal is then to find the S-matrix element of the process

out

〈
BP,n;ϕPϕ|UK,k

〉
in

=
〈
BP,n;ϕPϕ|S|UK,k

〉
. (5.2)

Attaining the S-matrix element will be done through an LSZ reduction and
by the decomposition into four point correlation functions, G(4). We can dia-
grammatically decompose the five point function (5.1) into a fully amputated
hard scattering part A(5), the four point correlation function G(4) and the full
propagator for the force mediator as shown in figure 5.1.

35
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G̃(5)

Pϕ

η1K + k

η2K − k

η1P + p

η2P − p Ã(5)G̃(4)

G̃(4)

Pϕ

η1K + k

η2K − k

η1P + p

η2P − p

Figure 5.1: The expansion of the five point correlation function G̃(5) in
terms of four point correlation functions G̃(4), the full propagator of the force
mediator, and a fully amputated, hard scattering five point function Ã(5).

Using the established relative coordinates (3.5)-(3.6) and the decomposition in
figure 5.1, the five point correlation function in momentum space can be written

G̃
(5)
ab;cd(Pϕ, η1P + p, η2P − p; η1K + k, η2K − k) =

S̃ϕ(Pϕ)

∫
d4p′

(2π)4

d4k′

(2π)4
G̃

(4)
ab;ef (p, p

′;P )(2π)4δ4(K − P − Pϕ)i

×A(5)
ef ;gh(Pϕ, η1P + p′, η2P − p′; η1K + k′, η2K − k′)G̃(4)

gh;cd(k
′, k;K) (5.3)

where

S̃ϕ(Pϕ) =
iZϕ

P 2
ϕ −m2

ϕ + iε
(5.4)

is the ϕ field propagator with Zϕ being the field strength renormalization factor
for ϕ. Extracting the S-matrix element in the limit

P 0
ϕ → ωϕ(Pϕ), P 0 → ωP,n, K0 → ωK,k, (5.5)

using the LSZ reduction formula for the left hand side of (5.3) we get∫
d4Xϕd

4Xd4Y d4xd4yei(PϕXϕ+PX−KY )ei(px−qy)

×G(5)
ab;cd(Xϕ, X + η2x,X − η1x;Y + η2y, Y − η1y)

∼

[
i
√
Zϕ(Pϕ)

2ωϕ(Pϕ)(P 0
ϕ − ωϕ(Pϕ) + iε)

][
iΨ̃P,n,ab(p)

2ωP,n(P 0 − ωP,n + iε)

]
×

〈
BP,n;ϕPϕ |S|UK,k

〉 ∫ d3k′

(2π)32εK.k

iΦ̃?
K.k′,cd(q)

2ωK.k′(K0 − ωK.k′ + iε)
, (5.6)

where we have used the definitions of the relativistic two-particle wavefunction
(4.4) and (4.7). The LSZ reduction formula is based on the same expansion as
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the Källén-Lehmann spectral representation (3.1). The LSZ reduction into one
particle states leaves the S-matrix element as a scalar, while the two-particle
states have a matrix structure. Taking the same limits for equations (4.14) and
(4.16) and inserting them into the right hand side of (5.3) we get

G̃
(5)
ab;cd(Pϕ, η1P + p, η2P − p; η1K + q, η2K − q) ∼

iZϕ(Pϕ)

P 2
ϕ −m2

ϕ + iε

∫
d4p′

(2π)4

d4q′

(2π)4

iΨP,n,ab(p)Ψ
?
P,n,ef (p

′)

2ωP,n(P 0 − ωP,n + iε)

× (2π)4δ4(K − P − Pϕ)iA(5)
ef ;gh(Pϕ, η1P + p′, η2P − p′; η1K + q′, η2K − q′)

×
∫

d3k′

(2π)3

iΦK,k′,gh(q
′)Φ?

K,k′,cd(q)

2ωK,k′2εK,k′(K0 − ωK,k′ + iε)
, (5.7)

where the ordering becomes fixed by the decomposition done as shown in figure
5.1. Equations (5.7) and (5.6) are now equal at the poles (5.5). The mediator
particle pole and renormalization factor we can easily cancel, and to cancel the
ΨP,n,a,b(p) factor we notice that by multiplying both sides by Ψ−1

P,n,ab(p) from the
left hand side we have no problems with commutations. Since the Ψs have spin
structure that is independent of the surrounding products we can exactly cancel
the terms on both sides. This gives us the equation√

Zϕ(Pϕ)

∫
d4p′

(2π)4

d4q′

(2π)4
Ψ?

P,n,ef (p
′)(2π)4δ4(K − P − Pϕ)

× iA(5)
ef ;gh(Pϕ, η1P + p′, η2P − p′; η1K + q′, η2K − q′)

×
∫

d3k′

(2π)3

ΦK,k′,gh(q
′)Φ?

K,k′,cd(q)

2ωK,k′,c,d2εK,k′(K0 − ωK,k′ + iε)

∼
〈
BP,n;ϕPϕ |S|UK,k

〉 ∫ d3k′

(2π)32εK.k

iΦ̃?
K,k′,cd(q)

2ωK.k′(K0 − ωK.k′ + iε)
, (5.8)

where we are left with the Φ?
K,k′,c,d(q) term to cancel. Because of the integrals

over k′ on both sides being independent of each other we cannot simply can-
cel them by multiplying with an inverse. Instead we make use of the normal-
ization relation (4.40). By multiplying both sides of (5.8) from the right by
Ñk,cd;ij(q, q

′′; K)Φ̃K,k,ij(q
′′) and integrating over q and q′′, letting the normaliza-

tion fix k′ to obtain〈
BP,n;ϕPϕ|S|UK,k

〉
=
√
Zϕ(Pϕ)

∫
d4p

(2π)4

d4q

(2π)4
Ψ?

P,n,ef (p)(2π)4δ4(K − P − Pϕ)

× iA(5)
ef ;gh(Pϕ, η1P + p, η2P − p; η1K + q, η2K − q)ΦK,k,gh(q). (5.9)

We can then write the S-matrix element in term of an amplitude〈
BP,n;ϕPϕ |S|UK,k

〉
= (2π)4δ4(K − P − Pϕ)iMk→n, (5.10)
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where

Mk→n =
√
Zϕ(Pϕ)

∫
d4p

(2π)4

d4q

(2π)4
Ψ?

P,n,ef (p)

×A(5)
ef ;gh(Pϕ, η1P + p, η2P − p; η1K + q, η2K − q)ΦK,k,gh(q).

(5.11)

Next we look closer at the hard scattering five point function A(5). A(5) is the
sum of all connected diagrams and is fully amputated such that

iC(5)
ab;cd(Pϕ, p1, p2; k1, k2)

= S̃1,ae(k1)S̃2,bf (k1)iA(5)
ef ;gh(Pϕ, p1, p2; k1, k2)S̃ϕ(Pϕ)S̃1,gc(p1)S̃2,hd(p2),

(5.12)

where C(5) is the sum of all connected diagrams. This then excludes all vacuum

C̃(5)
ϕ−amp

Pϕ

η1K + k

η2K − k

η1P + p

η2P − p = Ã(5)

Pϕ

η1K + k

η2K − k

η1P + p

η2P − p

Figure 5.2: Showing diagrammatically the relation between the fully ampu-
tated, connected, hard scattering five point correlation function Ã(5) and the
only ϕ amputated, connected, hard scattering five point correlation function

C̃(5)
ϕ−amp relation of equation (5.13).

bubble diagrams but includes non fully connected diagrams as is the convention
for the LSZ reduction formalism. We can also define a middle ground between
these with only the force carrier amputated

iC(5)
ab;cd(Pϕ, p1, p2; k1, k2) = iC(5)

ϕ−amp,ab;cd(Pϕ, p1, p2; k1, k2)S̃ϕ(Pϕ), (5.13)

with the ordering as according to figure 5.2. This allows us to rewrite the hard
scattering five point correlation function in terms of this semi-amputated corre-
lation function

iA(5)
ab;cd(Pϕ, p1, p2; k1, k2)

= iS−1
ab;ef (p;P )C(5)

ϕ−amp,ef ;gh(Pϕ, p1, p2; k1, k2)S−1
gh;cd(k;K) (5.14)
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where S(p;P ) and S(k;K) are defined by (4.10). By substituting eq. (5.14) into
the amplitude (5.11) we get

Mk→n =
√
Zϕ(Pϕ)

∫
d4p

(2π)4

d4q

(2π)4
Ψ?

P,n,ab(p)S
−1
ab;cd(p;P )

× C(5)
ϕ−amp,cd;ef (Pϕ, η1P + p, η2P − p; η1K + q, η2K − q)S−1

ef ;gh(q;K)ΦK,k,gh(q).

(5.15)

where the right most product of wavefunction and propagator is well known in
the non-relativistic limit from (4.48). The left most combination however, has the
wrong ordering according to (4.48). Remember that there is an freedom in the
ordering of terms in the Dyson-Schwinger equation (4.35), see figure 4.2. This
means that there is also an freedom in the ordering of term in the eigenvalue
equations (4.24) and (4.25), i.e. one can also write∫

d4k

(2π)4
Cn,ab(k;Q)Aab;cd(k, p;Q) = cn(Q)Cn,cd(p;Q), (5.16)

and the Bethe-Salpeter equation will become

Ψ̃Q,n,cd(p) =

∫
d4k

(2π)4
Ψ̃Q,n,ab(k)W̃ab;ef (k, p;Q) Sef ;cd(p;Q), (5.17)

Φ̃Q,q,cd(p) =

∫
d4k

(2π)4
Φ̃Q,q,ab(k)W̃ab;ef (k, p;Q) Sef ;cd(p;Q). (5.18)

To reduce to the Schrödinger equation we define the non-relativistic wave-
function with a different ordering of terms

ψ̃Q,n,cd(p) ≡
√

2NQ(p)Ψ̃Q,n,ab(p)S0,ab;ef (p;Q)S−1
ef ;cd(p;Q), (5.19)

φ̃Q,q,cd(p) ≡

√
2NQ(p)

2εQ,q
Φ̃Q,q,ab(p)S0,ab;ef (p;Q)S−1

ef ;cd(p;Q), (5.20)

which means that the equation (4.48) changes its ordering

Ψ̃Q,q,ab(p)S
−1
ab;cd(p;Q) =

ψ̃Q,n,ab(p)Sab;ef (p;Q)S−1
0,ef ;gh(p;Q)S−1

gh;cd(p;Q)√
2NQ(p)

, (5.21)

such that it matches the left most term in equation (5.15). We have established
that S0 is diagonal to leading order and therefore commutes with S meaning we
can simplify the expression

Ψ̃Q,q,ab(p)S
−1
ab;cd(p;Q) =

ψ̃Q,n,ab(p)S−1
0,ab;cd(p;Q)√

2NQ(p)
. (5.22)
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Because of the freedom in factorization of the last term in the Dyson-Schwinger
equation we get two equations to solve the for the same quantity Ψ. Further,
these two equivalent equations reduce to the same non-relativistic Schrödinger
equation, through slightly different definitions of the Schrödinger wavefunctions.
They are however solutions to the same equation so they must be the same
function. We can therefore insert both (4.48) and (5.21) into (5.15) to obtain

Mk→n '
√

2εK,k

∫
d3p

(2π)3

d3q

(2π)3

ψ̃n,ab(p)Mtrans,ab;cd(q; p)φ̃k,cd(q)√
2NP(p)

√
2NK(q)

, (5.23)

with

Mtrans,ab;cd(q; p) ≡
∫
dp0

2π

dq0

2π
S−1

0,ab;ef (p;Q)

× C(5)
ϕ−amp,ef ;gh(Pϕ, η1P + p, η2P − p; η1K + q, η2K − q)S−1

0,gh;cd(q;K)

(5.24)

defined for later convenience. We have also here set an energy scale such that
Zϕ(Pϕ) ' 1 to lowest order.

With the amplitude of the process derived all that remains is to insert it into
the differential cross-section for the 2− 2 process

vrel
dσnlmBSF

dΩ
=

|Pϕ|
64π2m2µ

|Mk→nlm|2. (5.25)

5.2 Annihilation

Like with the bound state formation cross section, we want to decompose the
annihilation amplitude into the constituents of a four point correlation function
G(4) and a hard scattering amplitude, see figure 5.3. The process in figure 5.3
describes what is called the Sommerfeld effect [23]. For relativistic particles the
zeroth order term of G̃(4) is a no vertex diagram and does not contribute. In the
non-relativistic regime however we get an infinite number of vertices as discussed
in chapter 3. The physics interpretation is that when two particles are non-
relativistic they are susceptible to the weaker long range effects of the effective
potential, and they will either be slowly attracted together or repulsed apart.
This means an effective enlargement or suppression of the cross-section in this
regime.
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G̃ann

a

b

=

a

b

G̃(4) Aann

Figure 5.3: Diagrammatic representation of an annihilation amplitude into
final state particles that is decomposed into a four point correlation function
in momentum space G̃(4) and a hard scattering amplitude Aann. This decom-
position is what constitutes the Sommerfeld effect [23].

The amplitude G̃ann in figure 5.3 describes a 2→ N process where two dark
matter particles annihilate into final state particles. This N + 2 correlation
function is then

G̃ann
ab (p1, ..., pN ; k1, k2) =

N∏
j=1

∫
d4xje

ipjxj

∫
d4y1d

4y2e
−i(k1y1+k2y2)

× 〈Ω|Tf(x1)...f(xN)χ̄1,a(y1)χ2,b(y2)|Ω〉 ,
(5.26)

where f(xj) is the field of the final state particle, here assumed to be non-
fermionic. Given the decomposition shown in figure 5.3 we can also write the
annihilation amplitude as

G̃ann
ab (p1, ..., pN ; η1K + k, η2K − k) =

N∏
j=1

S̃fj(pj)(2π)4δ4

(
K −

N∑
j=1

pj

)
∫

d4k′

(2π)4
iAann

ef (p1, ..., pN ; η1K + k′, η2K − k′)G̃(4)
ef ;ab(k

′, k;K), (5.27)

where Aann is the sum of all connected and amputated diagrams contributing to
the annihilation process, and S̃fj(pj) is the propagator of the final state particles

in momentum space. Unlike the amplitude A(5) that appears in the bound state
formation calculation of last chapter, figure 5.1, this amplitude has to be fully
connected for it to be an annihilation process.

We want to extract the S-matrix element of the process

out 〈f1f2...fN |UK,k〉in = 〈f1f2...fN |S|UK,k〉 , (5.28)

and will do so as for the bound state formation. Analyzing the pole structure of
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(5.26) in the limits p0
j → ωj(pj) and K0 → ωK,k we derive

G̃ann
ab ∼

N∏
j=1

 i
√
Zj(pj)

2ωj(pj)
(
p0
j − ωj(pj) + iε

)


〈f1f2...fN |S|UK,k〉
∫

d3k′

(2π)32εK.k

iΦ̃?
K,k′,ab(q)

2ωK.k′(K0 − ωK.k′ + iε)
, (5.29)

where
√
Zj(pj) = 〈Ω|f(0)|fj〉 is the renormalization factor for the fields fj. In

the same limits we can also analyze the pole structure of (5.27) by inserting the

found pole structure of G
(4)
U (4.16)

G̃ann
ab ∼

N∏
j=1

iZj(pj)

p2
j −m2

j + iε

∫
d4q′

(2π)4
(2π)4δ4

(
K −

N∑
j=1

pj

)

iAann
ef (p1, ..., pN ; η1K + q′, η2K − q′)

∫
d3k′

(2π)3

iΦK,k′,ef (q
′)Φ?

K,k′,ab(q)

2ωK,k′2εK,k′(K0 − ωK,k′ + iε)
.

(5.30)

As before we cancel terms and multiply both sides of (5.8) from the right by
Ñk,ab;ij(q, q

′′; K)Φ̃K,k,ij(q
′′) and integrate over q and q′′ to use the normalization

condition (4.40)

〈f1f2...fN |S|UK,k〉 =
N∏
j=1

√
Zj(pj)

∫
d4q

(2π)4
(2π)4δ4

(
K −

N∑
j=1

pj

)
× iAann

ab (p1, ..., pN ; η1K + q, η2K − q)ΦK,k,ab(q).
(5.31)

The S-matrix element is related to the amplitude of the process through

〈f1f2...fN |S|UK,k〉 = (2π)4δ4

(
K −

N∑
j=1

pj

)
iMann (5.32)

with

Mann =
N∏
j=1

√
Zj(pj)

∫
d4q

(2π)4
Aann
ab (p1, ..., pN ; η1K+q, η2K−q)ΦK,k,ab(q). (5.33)

By setting the momentum scale such that
√
Zj(pj) = 1 and using the relation
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(4.44) we can derive the amplitude in the non-relativistic limit

Mann '
√

2εK,k

∫
d3q

(2π)2

1√
2NQ(p)

×
∫
dq0

2π
Aann
ab (p1, ..., pN ; η1K + q, η2K − q)S−1

0,ab;ef (q;K)Sef ;gh(q;K)φ̃k,gh(q).

(5.34)

Unlike for bound state formation, the hard process is here fully connected.
For a non-fully connected diagram, at least one leg will be off-shell, while for fully
connected diagrams all legs will be on-shell. Since this process is fully connected
we can use the on-shell approximation. If Aann does not have any singularities in
q0 then the propagator S(q;K) forces the evaluation of Aann at its poles under
the integration over q0. As seen in the relation (4.53) the propagator has two
poles; one in the upper and one in the lower q0 complex plane. Of these two
poles there is one physical pole that is on-shell and one unphysical pole where
the other particles energy becomes negative. In the non-relativistic regime we
expect the particles to be on-shell and so, by closing the contour in the lower half
plane we select the physical pole

q0 = −η1K
0 + E1(q; K)− iε. (5.35)

By fixing this value the energies of the particles χ1, χ2 becomes a function of
q, K, and the quantum number k. Inserting equations (3.9), (3.10), and (4.58)
into (5.35) and using the fact that we have required the limit K0 = ωK,k to derive

q0
1 = E1(q; K), q0

2 = ωK,k − E1(q; K) ' E2(q; K) + Ek −
q2

2µ
. (5.36)

What we find is that the χ2 particle is off-shell by a factor Ek − q2

2µ
. However,

in the non-relativistic limit the energy Ek ≈
〈q2〉
2µ

is the average kinetic energy.
Therefore the amplitude Aann may be evaluated on-shell.

This means that when doing the integral over q0 we impose the on-shell con-
dition on Aann and S → S0. With this the amplitude for the annihilation process
becomes

Mann '
∫

d3q

(2π)3
Aann
ab (p1, ...,pN ; η1K + q, η2K− q)φ̃k,ab(q), (5.37)

where we have used the zeroth order approximations N ' µ and ε ' µ to stay
consistent with the on-shell approximation.
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It is often useful to expand the amplitude into partial waves, i.e. Legendre
polynomials

M(Ω) =
∑
l

(
2l + 1

4π

)
MlPl(cos θ), (5.38)

where dΩ = sin θ dθdϕ is the solid angle, Pl(cos θ) are the Legendre polynomials,
and

Ml =

∫
dΩPl(cos θ)M(Ω). (5.39)

With this expansion we can then decompose the cross-section into partial waves
as well

σ =
∑
l

σl, (5.40)

where

σl ∼
2l + 1

4π
|Ml|2, (5.41)

is the l dependence of the cross-section originating from (5.38). This decomposi-
tion allows us to put a bound on the different partial wave contributions through
unitarity for the inelastic cross-section [41]

σinel,l ≤
(2l + 1)π

µ2v2
rel

. (5.42)

For massless scalar and vector boson models, this can be used to set an upper
bound on the coupling αupper ≈ 0.54 [29] and similar restrictions from further
analysis congruent with thermal production [26].

For annihilation into two final-state particles in the CM frame, K = 0, the
momenta of the final-state particles will be |p1| = |p2| = |p| where |p| ' K0/2 =
(m+Ek)/2 ' m/2 to zeroth order. This means we can define the angles in (5.38)
and (5.39) in terms of the momenta p

Ω→ Ωp and θ → θp. (5.43)

The annihilation cross-section times the relative velocity are then

σannvrel =
fs

128π2mµ

∫
|Mann(Ωp)|2dΩp =

fs
128π2mµ

∑
l

2l + 1

4π
|Mann,l|2 (5.44)

where fs is a multiplicity factor that is 1/2 for identical final state particles and
1 for non-identical. Next we want to express the annihilation amplitude Aann in
partial waves as follows

Aann(q,−q; p,−p) =
∞∑
l=0

ãl
(mµ)l

|p|l|q|lPl(cos θq,p) (5.45)
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where θq,p refers to the angle between the vector q and p. The expansion co-
efficient ãl can depend on q and can be expanded in the non-relativistic regime
as

ãl(q) ' al + Fl(q2, εA · q), (5.46)

with εA being the polarization vectors if the final-states are vector bosons, and
Fl is a polynomial function that vanishes at q = 0. This general form of the ex-
pansion coefficient comes from the fact that any lower wave will have corrections
to the higher wave. An s-wave has the characteristic that in the limit vrel → 0
then the amplitude will be a constant. For a p-wave the amplitude will go as
∼ v2

rel and generally a l −mode wave will scale as ∼ v2l
rel to leading order. This

does not however mean that the s-wave is generally independent of the relative
velocity, it is just independent to the leading order. So a p-wave will contribute
as the relative velocity squared to the expansion (5.45) but there will also be a
contribution from the s-wave process and so on. For the rest of this thesis we will
only take into account the al contribution to ãl. Including higher order terms
would mean including corrections in both the normalizations N , ε, and off-shell
corrections to the on-shell approximation.

To express the amplitude of the process and the cross-section, we need the
relation∫

dΩpPl′(cos θp)

∫
d3q

(2π)3
φ̃k(q)|q|lPl(cos θq,p)

= δll′
(2l + 1)!!

il(2l + 1)l!

[
dl

drl

∫
dΩrPl(cos θr)φk(r)

]
r=0

,

(5.47)

which is proven in appendix D of [29]. Using this relation we can calculate the l
mode amplitude (5.39) to be

Mann,l '
al|p|l

(mµ)l
(2l + 1)!!

il(2l + 1)l!

[
dl

drl

∫
dΩrPl(cos θr)φk(r)

]
r=0

. (5.48)

Using this relation and inserting it into the cross-section (5.44) we can find the l
partial wave

(σannvrel)l = σlSl,ann, (5.49)

with

σl =
[l!/(2l)!!]2

2l + 1

fs|al|2

32πmµ
, (5.50)

and where

Sl,ann =
[(2l + 1)!/(l!)2]2

4l+2π2µ2l

∣∣∣∣ dldrl
∫
dΩrPl(cos θr)φk(r)

∣∣∣∣
r=0

, (5.51)

is the Sommerfeld enhancement factor.
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5.3 The Schrödinger equation and phase-space

suppression

Having expressed the cross-sections of both bound state formation (5.25) and an-
nihilation (5.49) in the non-relativistic limit through solutions of the Schrödinger
equation we next look at solving the equation. The two equations for a bound
and free system are [

−∆2

2µ
+ V (r)

]
ψnlm(r) = Enlψnlm(r), (5.52)[

−∆2

2µ
+ V (r)

]
φk(r) = Ekψk(r), (5.53)

where the wavefunctions have the standard normalizations∫
d3rψ∗nlm(r)ψnlm(r) = 1, (5.54)∫
d3rφ∗k(r)φk′(r) = (2π)3δ3(k− k′). (5.55)

In this thesis we will only work with spherically symmetric potentials and we can
then preform the separation of variables

ψnlm(r) = κ3/2

[
χnl(κr)

κr

]
Ylm(Ωr), (5.56)

φk(r) =
∞∑
l=0

(2l + 1)

[
χ|k|,l(κr)

κr

]
Pl(k̂ · r̂), (5.57)

where κ = µα. We will use α = λ2

4π
, where λ is the coupling constant of the

interaction. This is equivalent to that of a Yukawa potential with fermion matter
particles1. Using x = κr, we have set

R(x) =

[
χ(x)

x

]
, (5.58)

as the radial part of the wavefunction. Defining the unitless parameter

γ ≡
√
−2µE/κ, (5.59)

for the eigenvalue, the radial equation becomes

χ′′(x) +

[
−l(l + 1)

x2
− 2µ

κ2
V (x)− γ2

]
χ(x) = 0. (5.60)

1In the next chapter we will see that the Yukawa potential shows up as a factor in the
potentials for pseudo-scalar mediators, eqs. (6.23)-(6.26)
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The boundary condition for x → 0 depends on the form of the potential
and not whether the energy E is negative or positive and will be treated on an
individual basis for each potential. On the other hand, the condition for x→∞
does depend on the sign of the eigenenergy. For a bounded system, E < 0,
we require that the wavefunctions vanish at infinity lim

x→∞
χ(x) = 0 to fulfill the

normalization condition (5.54) and preserve unitarity. For a bounded system we
can then write the energy in terms of (5.59) as

E = Enl ≡ −γ2
nl ×

κ2

2µ
(5.61)

where γ2
nl needs to be determined numerically for the potentials we will use.

For the scattering system the energy will be positive,E > 0, and is in the
non-relativistic regime

E = Ek =
k2

2µ
=

1

2
µv2

rel, (5.62)

which, from (5.59) gives

γ2 = − 1

ζ2
, (5.63)

where ζ = α
vrel

. The asymptotic behavior of the scattering solution is known

χ|k|,l(x) −−−→
x→∞

C
ζ

2i

[
ei(x/ζ+δl) − e−i(x/ζ−lπ)

]
, (5.64)

up to a normalization C, where the only unknown parameter is the phase shift
δl. This implies the condition∣∣∣∣χ|k|,l(x)

∣∣∣∣2 +

∣∣∣∣χ|k|,l(x− πζ/2)

∣∣∣∣2 = C2ζ2. (5.65)

This means that to solve for the scattering solution we can use a shooting method
to produce a solution that we then normalize using (5.65) to determine C. Since
the solution shows up in the form of absolute squares in the cross-sections, the
phase does not have physical meaning.

In terms of the variables defined in (5.61) and (5.62) we can express the
absolute three-momenta of the mediator, |Pϕ|, from the bound state formation
cross-section (5.25). In the CM frame, the energy that is released in the bound
state formation is the difference between the kinetic energy of the scattered states
and the binding energy of the bound state, assuming the bound state at rest.
Since the force carrier is on-shell we have that√

|Pϕ|2 +m2
ϕ = Ek − Enl =

k2

2µ
+
κ2

2µ
γ2
nl. (5.66)
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Using the relations κ = µα and k = µvrel can rewrite this into the form

|Pϕ|
κ

=
α

2

[
1 + ζ2γ2

nl

ζ2

]
× pss1/2

nl , (5.67)

where

pssnl = 1− 4ζ4

α2ξ2[1 + ζ2γ2
nl]
, (5.68)

with ξ = κ
mϕ

. pssnl is the phase space suppression factor. With the emitted

particle being on-shell and massive, the phase space of its momenta becomes
restricted by four-momentum conservation. The more restricted the phase space
is the less freedom there is for the interaction to happen and the cross-section for
the process diminishes. This suppression is dependent on the mass of the forces
carrying particle. When the mass mϕ → 0 the factor ξ → ∞ and pssnl → 1, as
this opens up the phase space maximally. As the mass increases the pssnl factor
becomes smaller, as the phase space is restricted until bound state formation is
no longer kinematically allowed as mϕ < Ek − Enl. Finally, we can write the
differential cross-section for bound state formation as

vrel
dσnlmBSF

dΩ
=

α2

27π2m2
pss

1/2
nl

(
1 + ζ2γ2

nl

ζ2

)
|Mk→nlm|2. (5.69)



Chapter 6

The pseudo-scalar mediating
potential and its renormalization

To solve the Schrödinger equation we must specify what the potential is. In
this thesis we will look at a pseudo-scalar interaction. We start this chapter by
introducing a more general method of deriving the potential associated with a
mediator than that presented in chapter 4.2. The potential for the pseudo-scalar
is presented along with a discussion about what it means for the initial and final
states. We end the chapter by discussing the singularity problem that arises from
the pseudo-scalar potential and how to renormalize this potential. The method
used to derive the results of this chapter is taken from ”The effective theory of
self-interacting dark matter” by Bellazzini et al. [32] with additional discussions
on the nature of singular potentials.

For a rotationally invariant, non-relativistic, self-interacting theory the elastic
scattering amplitude of a two particle interaction is a scalar function that depends
on the spins si of the particles, exchanged momentum q by the mediator, and
relative velocity v of the particles. This amplitude is given by

M = −
∫ ∞

0

dM2 ρ(M2)

q2 +M2

∑
i

gi(q
2/Λ2,v2

⊥)Oi(vi · iq/Λ, si · v⊥, s1 · s2), (6.1)

where v⊥ is the component of the relative velocity that is orthogonal to the
momentum transfer q, Λ is the scale of the dark sector, gi(q

2/Λ2,v2
⊥) are the

coupling constants dependent on the energy and scale at which we work, and
Oi(vi · iq/Λ, si ·v⊥, s1 · s2) are the operators which are allowed under the symme-
tries of the system. We have here used the general form of a two point correlation
function known as the Källén-Lehmann spectral representation, eq. (3.1) in in-
tegral form, where M2 is a parameter of units mass squared that together with
the density function of physical states ρ(M2) selects to relevant poles at the cor-
responding scale as discusses in section 3.1 of this thesis. We wish to assume

49
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a non-relativistic regime, and therefore we only keep leading order terms in ex-
changed momenta q/Λ and in the velocity. These assumptions imply simplifica-
tions for the couplings: the couplings are scale dependent and we can replace the
momentum dependence in gi(q

2/Λ2,v2
⊥) with the scale factor gi(−M2/Λ2,v2

⊥)
when neglecting short-range interactions. Furthermore, we are primarily inter-
ested in relatively light mediators compared to the matter particles such that
M2 � m2

χ,Λ
2. When combined with our assumption about the magnitude of the

relative velocity, we keep only zeroth order terms gi(−M2/Λ2,v2
⊥) ' gi(0, 0) ≡ gi.

Next we select the relevant operators. We consider operators that are invari-
ant under parity and time reversal and that are leading order in momentum and
velocity. As a refresher; spin, momentum and velocity transforms under these
symmetries as

P : iq→ −iq, s→ +s, v⊥ → −v⊥, (6.2)

T : iq→ +iq, s→ −s, v⊥ → −v⊥. (6.3)

With this we can build 6 operators

O1 = 1, (6.4)

O2 = s1 · s2, (6.5)

O3 = − 1

Λ2
(s1 · q)(s2 · q), (6.6)

O4 = (s1 · v⊥)(s2 · v⊥), (6.7)

O7,8 = − i

Λ
[(s1 ± s2) · (q× v)] . (6.8)

that respect both parity and time reversal. We here keep the subscript 7, 8 instead
of 5, 6 to be consistent with [32] and to avoid confusion. Furthermore, we wish to
restrict ourselves to operators generated by spin 1 particles or lower. This means
that the operators should at most be quadratic in either s or v [42], and the
operator O4 is therefore excluded. With the operators available we construct the
amplitude (6.1) and Fourier transform with respect to q to obtain the long-range
potential

V (r,v) =
1

4πr

[
g̃1(r) + g̃2(r)(s1 · s2)

+
g̃3(r)

Λ2r2
[3(s1 · r̂)(s2 · r̂)− s1 · s2] +

g̃7,8(r)

Λr
(s1 ± s2) · (r̂ × v)

]
, (6.9)

where we have factored terms by the dependence on r and the Fourier transform of
the operators. The ”new” couplings g̃i(r) are now combinations of the transform



51

of the ”old” couplings gi

g̃1(r) =

∫ ∞
0

dM2ρ(M2)e−Mr

[
g1 − g(1)

1

M2

Λ

]
, (6.10)

g̃2(r) =

∫ ∞
0

dM2ρ(M2)e−Mr

[
g2 +

(g3

3
− g(1)

2

)M2

Λ

]
, (6.11)

g̃3(r) = g3

∫ ∞
0

dM2ρ(M2)e−Mr

[
1 +Mr +

1

3
(Mr)2

]
, (6.12)

g̃7,8(r) = g7,8

∫ ∞
0

dM2ρ(M2)e−Mr [1 +Mr] , (6.13)

where g
(1)
i are the next order terms in the expansion of gi(−M2/Λ2,v⊥) →

(−M2/Λ2)ng
(n)
i /n!.

We have further restrictions if we consider only spin half matter particles.
A CP transformation corresponds to a conservation of total spin defined by the
operator S2 = (s1 + s2)2. For spin half particles this means a value of either 0
or 1 depending on whether the particles form a singlet or a triplet state. The
conservation of total spin means that g̃8 = 0, as the operator (s1−s2) changes the
total spin. Using the conjugate momentum p = mχv/2 we can write the potential
in terms of more natural operator for a spin half system; S and L = r× p

V si=1/2 =
1

4πr

[(
g̃1(r)− 3

4
g̃2(r)

)
+

1

2
g̃2(r)S2

+
g̃3(r)

2Λ2r2
[3(S · r̂)2 − S2] +

2g̃7(r)

mχΛr2
S · L

]
.

(6.14)

In this operator form we can map out the potential for specific configurations of
states. This potential does not generally conserve the orbital angular momentum
and can therefore couple different l-modes together. A basis choice of conserved
quantities must therefore exclude angular momentum, and we choose to use states
of the total angular momentum J , total spin S and parity P . The l-mode(s) of
each state is summarized in table (6.1).
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Table 6.1: Table showing the associated l-mode(s) to each |J, S, P 〉 state.
Table 4 from [32]

J S P l
0 0 - 0
0 1 + 1
1 0 + 1
1 1 + 1
1 1 - 0,2

Using these states we can find the effective potential for each combination of
states V = 〈out|V (r)|in〉 of the type |J, S, P 〉. Generally the in and out states
can be different and V (r) forms a matrix in the basis of these states. However,
the leading order contribution comes from the diagonal elements. Using equation
(6.14) as the potential bracketed by the total angular momentum states of particle
configuration |J, S, P 〉, we find these diagonal elements

|0, 0,−〉 → V1 =

(
g̃1(r)− 3

4
g̃2(r)

)
1

4πr
, (6.15)

|0, 1,+〉 → V2 =

(
g̃1(r) +

1

4
g̃2(r)− g̃3(r)

2Λ2r2
− 2g̃7(r)

mχΛr2

)
1

4πr
, (6.16)

|1, 0,+〉 → V3 =

(
g̃1(r)− 3

4
g̃2(r)

)
1

4πr
, (6.17)

|1, 1,+〉 → V4 =

(
g̃1(r) +

1

4
g̃2(r) +

g̃3(r)

4Λ2r2
− g̃7(r)

mχΛr2

)
1

4πr
, (6.18)

|1, 1,−〉 → V5 =

(
g̃1(r) + 1

4
g̃2(r) g̃3(r)

2
√

2Λ2r2
g̃3(r)

2
√

2Λ2r2
g̃1(r) + 1

4
g̃2(r)− g̃3(r)

4Λ2r2
− 3g̃7(r)

mχΛr2

)
1

4πr
. (6.19)

The last potential shows the coupling between a l = 0 and l = 2 modes. In
the case of a scalar or vector mediator the factor g̃3 = g̃7 = 0 and this coupling
between modes does not take place, while for all other mediators g̃3 6= 0. In this
thesis we do not consider the potential V5.

The interaction term in a Lagrangian can be written in a basis of the operators
Oi of equations (6.4)-(6.8). For a pseudo-scalar interaction, L ⊃ iλχ̄γ5χϕ, the
interaction term corresponds to the operator O3 only 1, meaning that g3 is the

1Table 1 of [32] identifies which of the couplings gi and operators Oi that corresponds to
the interaction term for all mediator types.
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only non-zero coupling constant. The coupling constant is

g3 = λ2 Λ2

m2
χ

, (6.20)

where we have here explicitly accounted for the scaling dependence of the coupling
constant. In the weakly coupled regime the density function becomes ρ(M2) =
δ(M2 −mϕ). From eqs. (6.10)-(6.13) the surviving terms are

g̃2(r) =
λ2m2

ϕ

3m2
χ

e−mϕr, (6.21)

g̃3(r) =
λ2Λ2

m2
χ

e−mϕrh(mϕ, r), (6.22)

where h(mϕ, r) =
[
1 +mϕr + 1

3
(mϕr)

2
]
. Inserting this into the equations (6.15)-

(6.18) we get

|0, 0,−〉 → V1 = −
λ2m2

ϕ

4m2
χ

e−mϕr

4πr
, (6.23)

|0, 1,+〉 → V2 =
1

µr2
+

[
λ2m2

ϕ

12m2
χ

− λ2h(mϕ, r)

2m2
χr

2

]
e−mϕr

4πr
, (6.24)

|1, 0,+〉 → V3 =
1

µr2
−
λ2m2

ϕ

4m2
χ

e−mϕr

4πr
, (6.25)

|1, 1,+〉 → V4 =
1

µr2
+

[
λ2m2

ϕ

12m2
χ

+
λ2h(mϕ, r)

4m2
χr

2

]
e−mϕr

4πr
, (6.26)

where we have added the centrifugal barrier term for the l = 1 orbital angular
momentum modes with the reduced mass µ. Changing to the dimensionless
parameters established for the Schrödinger equation in section 5.3 and assuming
identical particles such that µ = mχ/2 we derive the dimensionless potential
V = 2µ

κ2
V

|0, 0,−〉 → V1 = − α2

8ξ2

e−x/ξ

x
, (6.27)

|0, 1,+〉 → V2 =
2

x2
+

[
α2

6ξ2
− α2h(ξ, x)

4x2

]
e−x/ξ

x
, (6.28)

|1, 0,+〉 → V3 =
2

x2
− α2

8ξ2

e−x/ξ

x
, (6.29)

|1, 1,+〉 → V4 =
2

x2
+

[
α2

6ξ2
+
α2h(ξ, x)

8x2

]
e−x/ξ

x
, (6.30)
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where h(ξ, x) = 1 + x/ξ + 1
3
(x/ξ)2.

We see that potential V4 is strictly positive and will therefore be a repulsive
potential. As such it will prevent bound state formation and will not lead to
Sommerfeld enhancements. Potential V3 is a bit trickier to evaluate. A Yukawa
potential does allow for bound state formation, and has been studied in this
context [31]. The Yukawa term in V3 does however have a factor α2/(6ξ2) sup-
pressing it. ξ involves the ratio of the reduced mass and the mediator mass. We
have assumed that the mass of the matter particle to be much greater than the
mediator mass in the derivation of this potential and as such ξ � 1 and the
Yukawa term can effectively be ignored. This means that the potential (6.29)
will not be very effective at forming bound states and we will not consider it in
our further calculations. The same factor also suppresses the Yukawa term in
both potential V1 and V2, however with no centrifugal term in V1 and with the
∼ 1/x3 term in potential V2, both potentials allow for bound state formation and
Sommerfeld enhancement.

The ∼ 1/x3 term is a singular term and leads to unphysical predictions if not
renormalized. A potential is defined as regular [43] if at r = 0 the potential goes
as

lim
r→0

r2V (r) = 0, (6.31)

singular if
lim
r→0

r2V (r) = ±∞, (6.32)

and transitional if

lim
r→0

r2+ε(r) =

{
0 if ε > 0

±∞ if ε < 0 .
(6.33)

In quantum mechanics a singular potential leads to ones loss of the ability
to determine to phase factor between two solutions, and unbounded systems.
Landau and Lifshitz [44] has a simple example to illustrate the problem of un-
bounded energies for singular potentials. If we consider a particle confined to a
small region r0 around the origin. The uncertainty in position of that particle
would be of order ∼ r0 meaning that through the uncertainty principle it has a
momenta of order ∼ 1/r0. With a potential of the form g/rm, the average energy
is then approximately

E ∼ 1/r2
o + g/rm, (6.34)

where g is either a negative or a positive number for respectively an attractive
or repulsive potential. For g < 0 and m > 2 we see that the energy would go to
−∞ in the limit r → 0, and the system is unbounded. If m < 2 then the system
is bounded and if g > 0 then m can take arbitrary values. All the problems
associated with singular potentials only occur for attractive potentials, and only
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repulsive potentials do not require renormalization.

It has been shown that whether an effective potential is regular or singular is
related to the renormalizability of the quantum field theory that produces it [45].
A non-renormalizable theory leads to a singular potential, a renormalizable the-
ory to a transitional potential, and a superrenormalizable theory to a regular
potential. To renormalize the effective potential we adopt the Wilsonian treat-
ment of divergences. By integrating out the behavior at short distances we can
expand the short range physics in terms of Dirac δ-functions. We regulate the
potential by a short distance a and expand the behavior at r < a in terms of a
series of local operators to parameterize the unknown physics,

V (r)→ V (r)θ(r − a) + c0(a)δ3(r) + c2(a)a2∆2δ3(r) + ... (6.35)

We can then truncate the expansion at any order as long as the momenta
of the exchanging particle q is smaller than the energy cutoff scale Λ = a−1.
The constants ci cannot be derived from first principle and generally needs to be
determined by experimental data. However, we are focused on the non-relativistic
regime where long-range effects dominate. This means that we will truncate to
first order and choose to regulate the potential with a square well

Vreg(r) = V (r)θ(r − rcut) + V0θ(rcut − r), (6.36)

where V0 is the depth of the potential V at rcut such that the potential is contin-
uous. In principle we can calculate the short-range behavior, or use experimental
data and determine the cutoff. A reasonable value for the energy scale will be
the reduced mass µ of the two dark matter particles, as it is the scale were
the non-relativistic approximation breaks down. We therefore set rcut such that
V0 = V (rcut) = −µ. For the dimensionless potentials, V1 - V4, established in
(6.27) - (6.30), we must also make the cutoff dimensionless. We do this as es-
tablished in (5.60), by multiplying V0 with the factor 2µ/κ2 which means the
dimensionless cutoff will be

V0 = − 2

α2
. (6.37)

Only the contribution that arises from the effective potential (6.14) is regulated.
The centrifugal barrier arises from the separation of variables and is non-singular,
and unrelated to the UV physics. It is therefore not regulated by the cutoff.

This has implications of the potential V2 as its minima depends on the rela-
tive strengths of the ∼ −1/x3 and ∼ 1/x2 terms. If xcut is large enough it may
remove the minima needed for a bound state solution. We check this by numer-
ically finding the xcut value, and the minima, xmin, of V2 for a given value of α
and ξ. What we find is that the ratio xcut/xmin is roughly constant as a function
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of ξ, but changes in value with α as shown in table 6.2.

Table 6.2: The ratio xcut/xmin for a range of values for α and ξ. This ratio
corresponds to the energy at which we would have to cut the singular potential
such that a minima is available for bound state formation. A value of 2.5 would
correspond to a cutoff at V0 = 2.5µ.

ξ α = 1 α = 0.5 α = 0.1
1 2.56959 4.19639 12.3758
5 2.66088 4.23138 12.3775
10 2.66515 4.23264 12.3776
20 2.66628 4.23296 12.3776
50 2.6666 4.23305 12.3776

Table 6.2 tells us that in order for a minima to be included we must set the
cutoff at a higher energy. For the best case scenario, α = 1, ξ = 1, this would
mean a cut at V0 = 2.56959µ. This is in a region where the non-relativistic
approximation looses validity and the assumptions made to find the effective po-
tential breaks down. This means that the only potential of the four that allows
for bound state formation and Sommerfeld enhancement is the potential V1.

The true upper limit to α is given by the perturbative limit, α = 4π. This
due to a 1/4π factor that scales the coupling α in a loop integral such that for
α ≤ 4π each loop will have a less than 1 factor that can be used for a perturbative
expansion. While the value of α can be larger than 1, we have through this
thesis equated α and vrel in orders of power counting, to be consistent in the non-
relativistic limit. This works well for a low value of α, but may add complications
when becoming large in value. To have a minimum in the renormalized version
of potential V2, the coupling must be α ∼ 3

2
π.
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Calculations and results

We consider an interaction Lagrangian

L = χ̄1i /Dχ1 + χ̄2i /Dχ2 +
1

2
∂µϕ∂

µϕ−m1χ̄1χ1 −m2χ̄2χ2 −
1

2
m2
ϕϕ

2

− g1ϕχ̄1γ
5χ1 − g2ϕχ̄2γ

5χ2. (7.1)

Unlike a scalar or vector, the effective potential generated by the pseudo-scalar
mediator depends on the spin structure of the fermions to leading order. In equa-
tion (6.14) we see the general dependence on the spin structure that can occur
in an effective potential in the non-relativistic regime. For a scalar or vector me-
diator only g̃1(r) and g̃2(r) are non-zero and the potential will have a component
that is independent of the state of the particles. This means that to leading order
the analysis done for scalar matter particles in [29] will hold for fermionic matter
and in [31] this is used to calculate the bound state formation and annihilation
cross-sections for massive scalar and vector mediators. A pseudo-scalar mediator
potential does not have any component independent of the spin and will intro-
duce complications. We will see this explicitly when calculating the amplitude
of the hard process for bound state formation.

Annihilation is however a simpler problem to solve as the on-shell approx-
imation and the partial wave expansion allows for zeroth order calculations of
the hard process as it is independent of the spin structure. For the annihilation
process the total angular state of the two-particle configuration only impacts the
G̃(4) component in figure 5.3, and thereby its effect appears only in the Sommer-
feld factor (5.51) in terms of the scattering solution to the Schrödinger equation.

For both annihilation and bound state formation the first step will be to solve
the Schrödinger equation for the potentials V1 (6.27) and V2 (6.28) established
in chapter 6.

57
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7.1 Solutions to the Schrödinger equation

To solve the Schrödinger equation (5.60) for potential V1 (6.27) we must first
find the boundary condition at x → 0. The standard boundary condition for a
Yukawa potential with a centrifugal term is

lim
x→0

χ′(x) = (l + 1) lim
x→0

χ(x)

x
, (7.2)

which implies that the solution scales as xl+1 in this region. Potential V1 is of a
similar form but with l = 0. While the boundary condition (7.2) is set for l > 0
it is valid in the limit x→ 0 and can be used for the l = 0 case.

The numerical method for solving the Schrödinger equation (5.60) is different
for the bound state and the scattering state. For the scattering process we know
what energy is and can solve the differential equation for a set of initial condi-
tions, (7.2).

For the bound state solution we have to find the eigenenergy as well as the
eigenstate. We accomplish this through the Mathematica function Parametric-
NDSolve. This function allows for solving a differential equation as a function of
a set of variables x, y, ... while leaving a set of parameters as input values. For
solving the Schrödinger equation we set a unitless quantity a as the parameter
replacing γ in (5.60), while solving over x. We can then run over different values
of a and using an error function to determine the solution that is closest to an
eigenstate, thereby also finding the corresponding eigenvalue. The error function

err =

∫
dx
∣∣D (ψ(x)/

√
N)− γ2 (ψ(x)/

√
N)
∣∣∫

dx
∣∣γ2 (ψ(x)/

√
N)
∣∣ , (7.3)

where D = d2

dx2
+
(
−l(l+1)
x2
− 2µ

κ2
V (x)

)
is the radial equation differential operator

such that Dψ(x) = γ2ψ(x), and N is the normalization

N =

∫
dx|ψ(x)2|. (7.4)

The error function will then be zero for the exact eigenenergy a = γ, but will in
general give a minima as a function of a. This will however be inefficient as the
resolution wanted in the run over a values requires a large amount of computation
time. To reduce the computation time we introduce an automated minima search.

This automated search is an approximation of taking a second derivative and
testing whether it is positive, providing a fast minima search at the cost of ac-
curacy. The search takes the difference between all the error function values and
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determines if that difference is positive, zero, or negative and assigns that element
the values 1, 0, −1 respectively. We then take the difference between all these
values as well. If a point is a minimum then the previous and next value will be
larger generating the values 1, −1 in the first step. In the next step the difference
between them will give the value 2. So after taking the second difference we need
only identify the elements of value 2 to find the minimas.

This allows us to run a sparse initial resolution in a values, then identify the
minimas. We then adjust the resolution around these points and run again. We
can then increase the desired final resolution by increasing the number of such
runs that we make, allowing for a fine final resolution without an unnecessary
amount of calculations. The method does rely on an initial grid that is fine
enough to actually find the minimas initially.

While this method works very well for a standard Yukawa or Coulomb po-
tential, for the potential V1 it becomes ineffective. This is due to the very fine
grid resolution needed for solving the boundary value problem, when the poten-
tial changes as rapidly as ours does here. The method described above is very
accurate but time consuming. When we additionally need to increase the grid
size significantly the time requirements increase as well. We then adopt an alter-
native method to find the wavefunctions.

With the condition at the endpoint, lim
x→∞

χ(x) = 0, of a bound state solution

and the initial conditions (7.2) we have an extra condition we can apply. Since
initial value problems are often quicker to solve numerically, we can solve the
differential equation with the conditions (7.2) then find for what values of a the
solution is zero at the numerical endpoint. With the rapidly changing potential
we have to be careful not to overshoot with the initial first derivative. This means
that we have to use a first derivative that is small enough not to overshoot in the
first step, but still large compared to the initial value at the startpoint.

Though fast, this method has the disadvantage that we cannot guaranty that
we find the ground state solution. The method requires us to find the roots of
the solution as a function of the variable a, of which there infinitely many. Using
this method we find three bound state solutions for the parameter values α = 0.5
and ξ = 50, shown in figure 7.1.
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Figure 7.1: Plot of the wavefunctions for the potential (6.27) with α = 0.5,
ξ = 50 for all lines. The lines represents different energies; a = 3.91987 (Solid),
a = 2.75903 (Dashed), a = 0.807955 (Dot dashed)

7.2 Annihilation

The annihilation process with ladder diagrams will have the form as seen in figure
7.2. The ladder contribution corresponds to the G̃(4) contribution from figure 5.3
and is bracketed by the |J, S, P 〉 states give one of the potential V1 - V4 (6.27 -
6.30).

〈J, S, P | · · · |J, S, P 〉 〈J, S, P | |J, S, P 〉

Figure 7.2: Annihilation of a particle-antiparticle pair into two force carrying
particles with the Sommerfeld enhancement through the infinite ladder and
the lowest order hard process for 2→ 2 annihilation.
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The first box of figure 7.2 gives the contribution that corresponds to the Som-
merfeld factor (5.51). The factor depends on the effective potential through the
scattering solution to the Schrödinger equation and we will therefore in general
have a separate factor for each of the potentials V1 - V4. Since only the potential
V1 is attractive, it is the only one that can give a Sommerfeld enhancement factor.

The second part of figure 7.2 shows the 2→ 2 annihilation process bracketed
by these same state. However, considering the expansion (5.45) of this annihi-
lation process, the diagram is independent of the potential or the final state to
leading order order. The constant al in (5.45) is a dimensionless quantity that
needs to be estimated. For a 2 → 2 process, as in figure 7.2, there are two
vertices that contribute with a g2 factor times the multiplicity of the diagram.
There are four ways of constructing the annihilation amplitude from symmetries
of the diagram. This means that the constant should be a0 = 4g2 = 16πα. From
(5.48) we have that the cross-section for the annihilation of dark matter through
a pseudo-scalar mediator in the non-relativistic regime will then be

(σannvrel)0 = σ0S0,ann (7.5)

where

σ0 =
4πα2

mµ
(7.6)

from equation (5.50) and from (5.51) we get

S0,ann =
∣∣φk(r=0)

∣∣2 = lim
x→0

[
χ|k|,l=0(x)

x

]
. (7.7)

To find this value we take a closer look at the asymptotic behavior of the
scattering state (5.64) and the condition (5.65). These conditions are true up to
a normalization of the wavefunction. Iengo [27] shows that this normalization
determines the enhancement by

Sl,ann =

(
1 · 3 · · · (2l + 1)

C

)2

, (7.8)

contrasting (5.51) by a normalization C that is determined by the asymptotic
limit of the solution

ϕl(y) −−−→
y→∞

C sin

(
y − lπ

2
+ δl

)
, (7.9)

with y = ζx. The scaling between the solutions is given by

Cϕl(y) = χ|k|,l(y). (7.10)
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This means that when solving the radial Schrödinger equation (5.60), the
solution will give an asymptotic such that the equation condition (5.65) will not
be exactly equal to ζ2 but be off by multiplicative constant C. We can then find
this constant C, and thereby the Sommerfeld enhancement, by

C =

√√√√√
∣∣∣∣χ|k|,l(x)

∣∣∣∣2 +

∣∣∣∣χ|k|,l(x− πζ/2)

∣∣∣∣2
ζ2

. (7.11)

In figure 7.3 we show the Sommerfeld enhancement as a function of ξ for a
range of different values of ζ. The larger the value of ζ, the better the non-
relativistic approximation becomes. We see that as ζ grows the change in en-
hancement tends to 1. As part of the assumptions made in deriving the pseudo-
scalar potentials we required that ξ � 1, and for these values we see that the
value of the Sommerfeld enhancement is very close to 1. Even for ξ = 1, the
enhancement is only ≈ 1.03. This contrasts results for a vector mediator where
the enhancement can range from a factor 10 to 1000 [31].
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Figure 7.3: Plot of the Sommerfeld enhancement factor for the potential
V1 (6.27) with α = 0.5 as a function of ξ = µα/mϕ. The different data sets
represent values of; ζ = 1 (Filled Circle), ζ = 10 (Square), ζ = 30 (Diamonds),
ζ = 50 (Triangle), ζ = 80 (Upside down triangle), ζ = 200 (Empty Circle)

We find that for the attractive potential V1 (6.27) there is a negligible enhance-
ment. This means that we find no enhancement for the annihilation process in
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the non-relativistic regime. It is known from contemporary sources that the en-
hancement for a Yukawa interaction is small but with the additional suppression
as in the pseudo-scalar case, there is no enhancement at all. When we look at
the potential V1 (6.23) with dimensions

V (r) = −
m2
ϕ

4m2
χ

αe−mϕr

r
(7.12)

we see that the suppering factor
m2
ϕ

4m2
χ

effectively scales the coupling such that

V (r) = −α
′e−mϕr

r
(7.13)

with α′ =
m2
ϕ

4m2
χ
α where α′ � α. The lower the value of the coupling, the less of

an effect there will be from Sommerfeld enhancement as the potential will go to
0 faster as r →∞.

We can conclude that there is a significantly different behavior for a pseudo-
scalar mediator than for a scalar or vector in the non-relativistic limit. While the
Sommerfeld effect has been studied previously for similar potentials, the bound
state formation has not been studied for a pseudo-scalar mediator.

7.3 Bound state formation

For the bound state formation cross-section we must calculate the lowest order
contribution from the hard scattering amplitude C̃ϕ−amp. Figure 7.4 shows this
lowest order contribution for two distinct dark matter particles. While we do
most of the calculations with the idea of distinct particles, we are ultimately
interested in a particle-antiparticle model, as we studied in chapter 6.

C̃ϕ−amp

Pϕ

η1K + k

η2K − k

η1P + p

η2P − p

=

Pϕ

η1K + k

η2K − k

η1P + p

η2P − p

+

η1K + k

η2K − k

η1P + p

η2P − p
Pϕ

Figure 7.4: The lowest order contribution to the hard scattering process of
dissipative bound state formation.
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Figure 7.4 shows the lowest order contribution to the ϕ-amputated hard scat-
tering process

(2π)4δ4(K − P − Pϕ)iC(5)
ϕ−amp(Pϕ, p1, p2; q1, q2) =

− ig1m1s̃1(p1)γ5
1 s̃1(q1)(2π)4δ4(Pϕ + p1 − q1)s̃2(q2)(2π)4δ4(p2 − q2)

− ig2m2s̃2(p2)γ5
2 s̃2(q2)(2π)4δ4(Pϕ + p2 − q2)s̃1(q1)(2π)4δ4(p1 − q1). (7.14)

Equivalently

C(5)
ϕ−amp(Pϕ, η1P + p, η2 − p; η1K + q, η2K − q) = −

[
g1m1s̃1(η1P + p)γ5

1

× (2π)4δ4(q − p− η2Pϕ) + g2m2s̃2(η2 − p)γ5
2(2π)4δ4(q − p− η2Pϕ)

]
S(q;K).

(7.15)

where we used the fact that S(q;K) = s̃1(η1K + q)s̃2(η2K − q) = s̃2(η2K −
q)s̃1(η1K + q). We define the two quantities

Ξ1(p,q;K,P ) ≡
∫
dp0

2π
s̃1(η1P + p)γ5

1

∫
dq0

2π
S(q;K)(2π)δ(q0 − p0 − η2P

0
ϕ),

(7.16)

Ξ2(p,q;K,P ) ≡
∫
dp0

2π
s̃2(η1P + p)γ5

2

∫
dq0

2π
S(q;K)(2π)δ(q0 − p0 − η2P

0
ϕ),

(7.17)

such that we may write

Mtrans(q; p) = −S−1
0 (p;P )

[
g1m1Ξ1(p,q;K,P )(2π)3δ3(q− p− η2Pϕ)

+ g2m2Ξ2(p,q;K,P )(2π)3δ3(q− p− η2Pϕ)

]
S−1

0, (q;K), (7.18)

using the definition (5.24).

By taking the Fourier transform of δ(q0 − p0 − η2P
0
ϕ) we can write (7.16) as

Ξ1(p,q;K,P ) =

∫
dte−iη2P

0
ϕt

∫
dp0

2π
s̃1(η1P + p)e−ip

0tγ5
1

∫
dq0

2π
S(q;K)eiq

0t.

(7.19)

while
∫

dq0

2π
S(q;K)eiq

0t is known from equation (4.54), we must calculate
∫

dp0

2π
s̃1(η1P+
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p)e−ip
0t. Using the alternate form of the propagator (4.51) we get∫

dp0

2π

[
Λ+

1 (η1P + p)

η1P 0 + p0 − E1(η1P + p) + iε
+

Λ−1 (η1P + p)

η1P 0 + p0 + E1(η1P + p)− iε

]
γ0

1e
−ip0t

=


Λ+

1,pγ
0
1e
i(η1P 0−E1,p)t for t > 0

−Λ−1,pγ
0
1e
i(η1P 0+E1,p)t for t < 0 ,

(7.20)

where we have introduced the short hand notation of 1,p to mean of particle type
1 with incoming relative momenta p as opposed to 2,q to mean particle type 2
with outgoing relative momenta q. From equations (7.20) and (4.51) we see that
the spinor structure of (7.16) will be of the form

Λ±1,pγ
0
1γ

5
1Λ±1,qγ

0
1Λ±2,qγ

0
1 =

[
(E1,p ± γ0

1γ1 · (η1P + p)± γ0
1m1)γ0

1

2E1,p

γ5
1

× (E1,q ± γ0
1γ1 · (η1K + q)± γ0

1m1)γ0
1

2E1,q

(E2,q ± γ0
2γ2 · (η2K− q)± γ0

2m2)γ0
2

2E2,q

]
.

(7.21)

The energies E1,p ,E1,q, and E2,q are to lowest order E1,p ' m1 + p2/2m1. This
means that

1

E1,p

' 1

m1

(
1− p2

2m2
1

)
, (7.22)

where we have dropped the terms that goes as ∼ P · p and ∼ P2 from the
expansion (3.9) as P2 corrections are of order v4

rel, α
4, see equation (5.67), while

p2 is of order v2
rel. Therefore the 8 combinations

γ0
1γ

5
1γ

0
1γ

0
2 , γ

0
1γ

5
1γ

0
1m2, γ

0
1γ

5
1γ

0
2m1, γ

5
1γ

0
1γ

0
2m1,

γ0
1γ

5
1m1m2, γ

5
1γ

0
1m1m2, m

2
1γ

5
1γ

0
2 , γ

5
1m

2
1m2, (7.23)

will give terms that are of lowest order in momentum when we have factorized
out the γ5 component. Using the commutation relation {γ5

1 , γ
0
1} = 0 we can fac-

tor these terms such that the γ5 comes first. Taking the sign of the terms from
(7.21) we can organize the term as shown in table 7.1.

When discussing leading order terms, we must also consider the contribution
from the exponential factors in (7.19). From table 7.1 we see that the combina-
tion of terms that give the lowest order contribution to (7.16) will be Λ−Λ+Λ+.
Equation (4.54) shows that closing in both upper and lower half-plane will give
the required Λ+Λ+ but to get the Λ− factor we must have t < 0 from (7.20). For
the combination of Λs we know that the integral will be∫ 0

−∞
dtei(η1P

0+E1,p−η1K0+E1,q−η2P 0
ϕ)t. (7.24)



66 Calculations and results Chapter 7

Table 7.1: Table of the sign for the leading order terms for the expression
(7.16) in momentum. The last column shows the sum of these leading order
term in the non-relativistic limit. The parenthesis (−) marks the sign of the
term after the commutation of the γ matrices.

(−)γ5
1γ

0
2 (−)γ5

1m2 (−)γ5
1γ

0
1γ

0
2m1 γ5

1γ
0
1γ

0
2m1 (−)γ5

1γ
0
1m1m2

Λ+Λ+Λ+ − − − + −
Λ+Λ+Λ− − + − + +
Λ+Λ−Λ+ − − + + +
Λ−Λ+Λ+ − − − − −
Λ+Λ−Λ− − + + + −
Λ−Λ+Λ− − + − − +
Λ−Λ−Λ+ − − + − +
Λ−Λ−Λ− − + + − −

γ5
1γ

0
1m1m2 γ5

1γ
0
2m

2
1 γ5

1m
2
1m2 Non-rel

Λ+Λ+Λ+ + + + 0
Λ+Λ+Λ− − + − 0
Λ+Λ−Λ+ + − − 0
Λ−Λ+Λ+ − − − −γ5

1

Λ+Λ−Λ− − − + 0
Λ−Λ+Λ− + − + 0
Λ−Λ−Λ+ − + + 0
Λ−Λ−Λ− + + − 0

We then use the equality P 0
ϕ = K0 − P 0 to get∫ 0

−∞
dtei(P

0−K0+E1,p+E1,q)t =
−i

P 0 − (K0 − E1,p − E1,q)
. (7.25)

In equation (4.57) we used the fact that the combination of terms P 0 − E1,p −
E2,p ' E − p2

µ
. The expression 7.16 will have the conservation of three-momenta

δ3(q− p− η2Pϕ) imposed and as such p ' q to lowest order in vrel. This means
that for identical particles

K0 − E1,p − E1,q ' E −
q2

µ
, (7.26)

and (7.25) goes as ∼ 1/m to leading order, and this is not the leading order we
can get from the exponential. With the combination +++ we get the exponential∫ ∞

0

dtei(P
0−E2,p−E1,q)t =

i

P 0 − E2,p − E1,q

, (7.27)
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which goes as ∼ 1
p2/m

. Therefore first order terms of the combination + + + will

give corrections to the same order as the zeroth order terms of −++1. Before we
find the second order terms of + + + let us note the this process is second order
in vrel. This means that we expect the process to be suppressed at low velocities
as in the non-relativistic regime and bound state formation may be subdominant
to the annihilation process. This contrasts with the case of a scalar mediator
for which, without the γ5 component, the combination that gives leading order
contribution is + + +, and a leading order independent of vrel.

The combination + + + gives to first order the terms

Λ+
1,pγ

0
1γ

5
1Λ+

1,qγ
0
1Λ+

2,pγ
0
2 =

1

8

[
γ5

1γ
0
2 −

γ5
1m2

E2,q

− γ5
1γ

0
1γ

0
2m1

E1,q

+
γ5

1γ
0
1γ

0
2m1

E1,p

− γ5
1γ

0
1m1m2

E1,qE2,q

+
γ5

1γ
0
1m1m2

E1,pE2,q

+
γ5

1γ
0
2m

2
1

E1,pE1,q

+
γ5

1m
2
1m2

E1,pE1,qE2,q

+
γ5

1γ2 · (η2K− q)

E2,q

− γ5
1γ1 · (η1K + q)γ0

1γ
0
2

E1,q

+
γ5

1γ1 · (η1P + p)γ0
1γ

0
2

E1,p

− γ5
1γ2 · (η2K− q)γ0

1m1

E1,qE2,q

− γ5
1γ1 · (η1K + q)γ0

2m1

E1,pE1,q

+
γ5

1γ1 · (η1P + p)γ0
2m1

E1,pE1,q

− γ5
1γ1 · (η1K + q)γ0

1m2

E1,qE2,q

+
γ5

1γ1 · (η1P + p)γ0
1m2

E1,pE2,q

+
γ5

1γ2 · (η2K− q)γ0
1m1

E1,pE2,q

]
.

In the non-relativistic limit the zeroth order terms cancel, and their corresponding
second order terms originating from the expansion of (7.22), in the non-relativistic
limit where γ0 ∼ 1. For the already first order terms we will only keep zeroth
order contributions from (7.22). This means that the expansion becomes

Λ+
1,pγ

0
1γ

5
1Λ+

1,qγ
0
1Λ+

2,pγ
0
2 =

γ5
1

8

[
γ2 · (η2K− q)

m2

− γ1 · (η1K + q)γ0
1γ

0
2

m1

+
γ1 · (η1P + p)γ0

1γ
0
2

m1

− γ2 · (η2K− q)γ0
1

m2

− γ1 · (η1K + q)γ0
2

m1

+
γ1 · (η1P + p)γ0

2

m1

− γ1 · (η1K + q)γ0
1

m1

+
γ1 · (η1P + p)γ0

1

m1

+
γ2 · (η2K− q)γ0

1

m2

]
.

1Note that any combination of last two factors other than ++ will give a similar higher
order contribution from both (4.54) and from the resulting exponentials, giving no leading
order contributions.
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Ξ1 will then be

Ξ1(p,q;K,P ) '
Λ−1,pγ

0
1γ

5
1Λ+

1,qγ
0
1Λ+

2,pγ
0
2

K0 − E1,q − E2,q

1

P 0 − (K0 − E1,p − E1,q)

−
Λ+

1,pγ
0
1γ

5
1Λ+

1,qγ
0
1Λ+

2,pγ
0
2

K0 − E1,q − E2,q

1

P 0 − E2,p − E1,q

. (7.28)

For Ξ2, the possible combinations of Λs are given by Λ±2,pγ
0
2γ

5
2Λ±2,qγ

0
2Λ±1,qγ

0
1 .

This leads to the same conclusion as that for Ξ1 shown in table 7.1 with the
interchange of the subscripts 1↔ 2. As such it is still the combination −++ that
gives one contribution and + + + the other. From the corresponding exponential
factors we get

Ξ2(p,q;K,P ) ' −
Λ−2,pγ

0
2γ

5
2Λ+

2,qγ
0
2Λ+

1,pγ
0
1

K0 − E1,q − E2,q

1

(K0 − E1,p − E1,q)− P 0

−
Λ+

2,pγ
0
2γ

5
2Λ+

2,qγ
0
2Λ+

1,pγ
0
1

K0 − E1,q − E2,q

1

P 0 − E2,p − E1,q

. (7.29)

From the above analysis we have determined the momentum and spinor con-
figuration of the diagram C

(4)
ϕ−amp of the transition amplitude (5.24). Since we

additionally know the momentum dependence of S−1
0 in the non-relativistic limit

from (4.57), we find that

Mtrans ∼ p for vrel → 0. (7.30)

This means that the process will be suppressed compared to a scalar mediator.

From chapter 6 we know that the effective potential depends on the two-
particle state of the incoming and outgoing particles. Symbolically this means
that

〈J, S, P | G̃(4)A(5)G̃(4) |J ′′′, S ′′′, P ′′′〉 = 〈J, S, P | G̃(4)

×
∑
J ′,S′

|J ′, S ′, P ′〉 〈J ′, S ′, P ′| A(5)
∑
J ′′,S′′

|J ′′, S ′′, P ′′〉 〈J ′′, S ′′, P ′′| G̃(4) |J ′′′, S ′′′, P ′′′〉 ,

(7.31)

where in the second step we inserted a completeness relation. The combination
〈J, S, P | G̃(4) |J, S, P 〉 gives the solution to the Schrödinger equation correspond-
ing to the effective potential the state |J, S, P 〉 generates. This gives the ψ̃ and
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φ̃ functions in the amplitude (5.23) while

〈J ′, S ′, P ′| A(5) |J ′′, S ′′, P ′′〉 ⇒ 〈J ′, S ′, P ′|Mtrans |J ′′, S ′′, P ′′〉 . (7.32)

In chapter 6 we show that the only state that give an attractive potential
and/or has a minima to allow bound state solutions is |0, 0,−〉. This means that
the final 〈J, S, P | G̃(4) |J, S, P 〉 factor must be with |0, 0,−〉 to a bound state to
form. While the initial 〈J, S, P | G̃(4) |J, S, P 〉 factor can be with a different state,
only |0, 0,−〉 give a Sommerfeld enhancement, the others giving a suppression
due to the repulsive potentials. Therefore we must use the state |0, 0,−〉 for both
initial and final states

〈0, 0,−| G̃(4)MtransG̃
(4) |0, 0,−〉 = 〈0, 0,−| G̃(4) |0, 0,−〉

× 〈0, 0,−|Mtrans |0, 0,−〉 〈0, 0,−| G̃(4) |0, 0,−〉 .
(7.33)

The process U → Bϕ of Mtrans conserves CP and total angular momentum
J. The initial state U is entirely described by |0, 0,−〉, while for the final state,
only the fermion bound state has the quantum numbers of |0, 0,−〉. The initial
state has the conserved quantum numbers JCP = 0−. The final state will have
CP

CP (Bϕ) = CPB CPϕ (−1)lBϕ , (7.34)

where lBϕ is the angular momentum of the two-particle state of B and ϕ. The
bound state has CPB = (−1)l+S+1 while the pseudo-scalar has CPϕ = −1. Since
the bound state has l = 0 and S = 0, the angular momentum lBϕ must be a odd
number. Only the bound state contributes to the total spin of the final state

S(Bϕ) = JB = 0, (7.35)

while the total angular momentum can take the values

J(Bϕ) = 0 or 1. (7.36)

For J(Bϕ) = 1, the angular momentum must be lBϕ = 1 and CP is conserved.
However, J is a conserved quantity and the initial state has J = 0. This im-
plies that lBϕ = 0 which means that CP conservation is violated and the process
〈0, 0,−|Mtrans |0, 0,−〉 is not allowed.

The result is that for the potentials considered in this thesis, bound state
formation is suppressed by a Sommerfeld suppression from using an alternative
|J, S, P 〉 for the initial state, or from the amplitude Mtrans not being zeroth
order in momentum. This suggests that bound state formation is subdominant
to annihilation. Together with the enhancement of annihilation processes being
negligible, this suggests a significantly different phenomenology then that for a
scalar of vector mediator.
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Conclusions

In this thesis we take the procedure of Petraki et al. to derive the equations
for cross-sections for fermions in the non-relativistic regime. This has not been
done previously in the level of detail of this thesis, and is original work. We find
that the difference between the fermionic case and the scalar case is contained
in terms of the 1PI kernel W̃ , and the hard scattering amplitude Cϕ−amp of the
bound state formation process. It is this 1PI kernel W̃ that generates the effec-
tive potential for a given mediator.

Applying this method to the potential mediated by a pseudo-scalar we find
a dependence on the total angular momentum of the two-particle configuration
of the incoming and outgoing dark matter particles. For two dark matter par-
ticles there are five states that give effective potentials V1 - V5 (6.15 - 6.19).
Of these we consider the four potentials V1 - V4 (6.23 - 6.26) in this thesis, for
which only the two potentials V1 and V2 have the possibility of forming a bound
state solution. Potential V1 is strictly negative and therefore attractive. The
other potential, V2 scales as ∼ 1/x3 and is singular: this potential needs to be
renormalized. We do this by regulating the potential with a cutoff xcut, where
for x ≤ xcut we approximate the potential with a square well. We find that the
interplay between the cutoff and the centrifugal barrier moves the local minima
that is needed for a bound state solution to the non-relativistic regime, thereby
making the potential strictly positive and repulsive. This means that only the
potential V1 will give either a Sommerfeld enhancement or bound state formation.

We calculate the Sommerfeld factor for potential V1, and the enhancement
is found to be negligible. This is a significant difference from what we see with
scalar or vector mediators. There have been other studies on the Sommerfeld en-
hancement for a pseudo-scalar. Bedague et al. [46] study the enhancement from
a pseudo-scalar arising from Goldstone boson. They calculate the Sommerfeld
effect for an S-wave (l = 0) annihilation process, but they assume a potential
of the form ∼ 1/x3 which they regulate with a square well within a cutoff. We

71
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see in this thesis that the S-wave process does not have a singular component of
the form used by Bedague et al., and the P-wave (l = 1) process that does will
not give any enhancement. The negligible enhancement can be seen from the
suppression factor that scales the potential V1. This factor effectively scales the
coupling α to α′ where α′ = m2

ϕ/4m
2
χ α� α. This scales the potential such that

it goes to 0 faster as x→∞ than a non-scaled Yukawa potential, and the long-
range effects that become important in the non-relativistic regime get suppressed.

For the bound state formation process we find the lowest order contribution
to the hard scattering process, figure 7.4. We calculate what the diagram gives
in the non-relativistic limit. With a pseudo-scalar mediator we find that there
is no zeroth order contribution in momentum, and that the amplitude for this
process will scale as ∼ |p|. We know that only one of the potentials can give a
Sommerfeld enhancement or bound state solution. This means that the initial
and final state of the particle pair is given by |J, S, P 〉 = |0, 0,−〉, where J is
the total angular momentum, S is the total spin, and P is the parity. Since we
consider a CP conserving theory this means that the conserved quantity in the
process is JCP . The pseudo-scalar is a CP odd particle which means the initial
two-particle state cannot be equal to the final two-particle state while conserving
CP. Since the final state must be |0, 0,−〉 for a bound state solution to exist, the
initial state must have a repulsive potential that gives a Sommerfeld suppression
factor. While the Sommerfeld suppression should be as negligible as the enhance-
ment, no enhancement means the process is sub-dominant.

We conclude that the BSF and Sommerfeld enhancement is negligible for a
pseudo-scalar mediator for the possible states studied in this thesis. This suggests
that a pseudo-scalar mediator cannot be used to be consistent with bounds for
the different velocity regimes shown in figure 2.4.

8.1 Outlook and discussion

The primary concern of this thesis is to explore the physics of a pseudo-scalar
mediator when considering annihilation and bound state formation. A further
analysis of the allowed parameter space is not considered but can be interesting
to look into. We have consistently used α = 0.5 throughout the calculations
done, irregardless of whether this gives a cross-section which satisfies the uni-
tarity limit (5.42) for all our parameter values. For scalar or vector mediators
the potential dependence on α is absorbed into the dimensionless variable ξ such
that the potential is a function of variables V = V (x, ξ). And while both σBSF

and σann depend on α, their ratio does not. As such they do not need to specify
a value for α in their analysis, as it is implicit included in the variable ξ. For
a pseudo-scalar mediator the potentials, V1 and V2, that occur do depend on α
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explicitly and its value needs to be set independent of ξ. By making use of the uni-
tarity limit (5.42) one can find a limit on our parameter space by further analysis.

If α could take the value 3/2π then a local minimum exist in the non-
relativistic regime. Such a coupling, though large, is still in principle in the
perturbative regime. This would mean that there is another final state that al-
lows for a bound state solution and bound state formation may no longer be
suppressed by CP conservation. One of the key assumptions used in this the-
sis is that the Bohr momentum, µα, for a bound state is of the same order as
the relative momentum µvrel in order power counting. Whether this equating of
terms looses validity when the value of α becomes to large is difficult to ascertain.
What we can more easily find is the upper limit of α is through the unitarity
limit (5.42) to determine if such high values are even allowed.

This could be tested by using an α that is high enough to give the two po-
tential, potentials for bound state solutions, and calculate the annihilation and
bound state formation cross-sections. Whether these cross-sections satisfy the
unitarity limit will still be dependent of the mass of the mediator mϕ, and as
such a numerical study would have to be implemented to find the upper bound
on α.

There is an additional difficulty in calculating the bound state formation
cross-section. The process in figure 7.4 has a final state mediating particle. This
means that the emitted pseudo-scalar will be off-shell. Therefore the z-direction
chosen for the initial singlet or triplet state will not be oriented in the same di-
rection as the final singlet or triplet state. With this taken into consideration
one needs to use the expansions of convolution integrals presented appendix B
of [31] to find bound state formation cross-section.

Finally one can go further by studying the potential (6.19). The corresponding
state |1, 1,−〉 can have both l = 0 and l = 2 modes and the potential will
couple these states together. This means that the different l-mode wavefunctions
that solve the Schrödinger equation with this potential couples together as well.
Solving a set of coupled differential equations is an often studied problem. Here
a further complication arises from the need to renormalize the potential, the
resulting interplay between terms, and finding when/if the resulting potential
has a minima to allow bound state formation. Looking at this potential

|1, 1,−〉 → V =

(
g̃1(r) + 1

4
g̃2(r) g̃3(r)

2
√

2Λ2r2
g̃3(r)

2
√

2Λ2r2
g̃1(r) + 1

4
g̃2(r)− g̃3(r)

4Λ2r2
− 3g̃7(r)

mχΛr2

)
1

4πr
,

we see that only the bottom right component has the possibility of being attrac-
tive, and having a minima. This would mean that the state with l = 2 can have
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a bound state solution, while the l = 0 state cannot. However, these states are
coupled and one cannot be solved without the other. Additionally one would
have to consider what it would mean for the cross-sections, and how to add the
contributions from the different modes. This problem is more involved and it is
unclear whether bound state formation exists or not. Further study would be
needed.

Bound state formation of dark matter particles have a rich phenomenology
and can be realized in nature. While being an active and popular field of study,
more work on this front is needed. This thesis is aimed at providing a detailed
look at the theory behind bound state formation for fermions, and making a con-
tribution in this direction by concentrating on the not-so-well studied pseudo-
scalar potentials. We find that the Sommerfeld enhancement is negligible for
annihilation and that the bound state formation is subdominant to the annihila-
tion process mediated by a pseudo-scalar. These results are important for future
studies of bound state formation phenomenology and model building for dark
matter.
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