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Abstract

CP violation in singly Cabibbo-Suppressed (SCS) weak decays of charged D

mesons is predicted in the Standard Model (SM) to have asymmetries on the order

of 10−3. CP violation has not yet been observed in the Charm sector; however, the

BaBar experiment now has extremely large data samples of charged D mesons which

may have the sensitivity to make such a measurement. The CP asymmetry will be

measured by studying the asymmetry of the Dalitz plot for D+ and D−. A fit of the

Dalitz plot will give insight of the underlying physics of the decay by measuring the

amplitudes and relative phases of resonant (i.e. φ and K∗0) and the non-resonant

states.
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Preface

From our observations of the universe, we believe that we live in an almost

empty expanse of matter. Our nieve assumption is that indeed the entire universe

is dominated by matter and so little anti-matter exists that we must create small

amounts of it in a laboratory in order to study its properties. The physicists’ quest

to understand this asymmetry between matter and anti-matter is an underlying

motivation behind today’s particle physics experiments. Theory cannot provide a

definitive answer as to why we live in such a world but does provide a guide as to

what experimentalists should look for.

In 1967, before much of the theoretical work began in Grand-Unification Theory

(GUT) and shortly after two very important experimental observations were an-

nounced, Andrei Sakharov [1] published his seminal paper entitled “Violation of CP

Invariance, C Asymmetry, and Baryon Asymmetry of the Universe”. This work was

most likely inspired by the observation of Cosmic Microwave Background Radiation

(CMBR), an observational signature of the Big Bang, and the discovery of Charge-

Parity (CP) violation in the decays of neutral kaons, an unexpected violation of the

symmetry thought to be obeyed by the weak nuclear force. Sakharov explained how

there must be three conditions that were satisfied simulataneously during the early

universe which lead to the non-zero baryon density that we observe today:

1) There must be baryon number violating transitions.

2) CP invariance must be broken.

3) The baryon number and CP violating transitions must proceed out of thermal

equilibrium.
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We have not observed any baryon-number violating process, but CP violating

decays in the kaon and B mesons have been established. Our knowledge of the

fundamental forces and the constituent particles which make up matter, known as

the Standard Model, allows for a tiny amount of CP violation through a single

weak phase. All measurements of either direct or indirect CP violating decays agree

with the predictions of the Standard Model. This agreement between theory and

observations creates an even greater mystery because the amount of anti-matter that

could have been generated from such CP violating transitions can only account for

a tiny fraction of anti-matter. This suggests that we do not have a theory which can

describe the origins of the universe.

As an experimentalist, this is actually encouraging, because theory and experi-

ment give us an indication of where to look for other CP violating transitions. De-

cays of charm mesons provide a unique laboratory to look for CP violation because

charm changing neutral currents are hugely suppressed and the CP violating asym-

metries are extremely small. Therefore, charm decays with potential for observing

CP violation have almost zero-background with respect to New Physics!
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Chapter 1

Introduction

Charm mesons provide a unique probe for Charge-Parity (CP) symmetry viola-

tion and new physics beyond the Standard Model (SM). The Wolfenstein parametriza-

tion [3] of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix expresses

the elements in terms of four real quantities λ, A, ρ, and η. The unitarity of the

matrix leads to six triangles, one of which is related to quantities describing charm

decays

VudV
∗
cd + VusV

∗
cs + VubV

∗
cb = δuc = 0 (1.0.1)

where the ratio of two sides of the triangle

VubV
∗
cb

VusV ∗
cs

�
O(λ5)

O(λ)
≈ 2.3 · 10−3 (1.0.2)

is the angle corresponding to CP asymmetry shown in powers of λ (the CP-nonconserving

term), and suggests that a significant observation of CP asymmetry of order 1% or

higher in a charm decay would be an indication of new physics. The weak phases

of charm decays within the SM are expected to be small, and background SM pro-

cesses (with respect to new physics processes) attributed to CP violating effects will

be minimal. On theoretical grounds this makes charm decays an ideal laboratory to

search for new physics. Experimentally, there are a number of reasons why charm

decays are optimal for CP studies. (i) BABAR is producing charm states in large

numbers. (ii) Their branching ratios to kaon and pion final states are large. (iii)

They reside in a resonance region where direct CP asymmetries can be enhanced by

final state interactions (FSI); these can be determined by analyzing π-π, π−K, and

K −K rescattering [4].
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1.1. Theoretical Motivation

CP violation in mesons is possible in two scenarios. (i) Direct CP violation –

the partial widths of the decay of A → f 6= Ā → f̄ . (ii) Indirect CP violation –

occurs either through mixing or the interference of mixing and direct decays. The

focus of this research is the study of direct CP violation of charged singly Cabibbo-

supressed (SCS) D± meson decays. Since strong and electromagnetic forces conserve

CP, there must exist at least two weak amplitudes in order to exhibit direct CP

violation. This cannot occur via Cabibbo allowed and doubly Cabibbo-supressed

decays (DCSD) since they are fed by a single weak amplitude. In the decays of

D± → K±K∓π± , interference between tree-level and penguin-level processes leads

to decay-rate asymmetries ( Figure 1.1).
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Figure 1.1: Tree-level (left) and penguin-level (right) feynman diagrams

Consider the transition D → f , which decays coherently via the tree-level and

penguin-level quark transition amplitudes a1 and a2

A(D → f) ≡ Af = |a1|ei(δ1+φ1) + |a2|ei(δ2+φ2) (1.1.1)

where δi are the CP conserving strong phases which may arise from FSI, while φi

are the complex weak phases in the CKM matrix (or may arise from new physics).

The CP conjugate decay amplitude is given by

Ā(D̄ → f̄) ≡ Āf̄ = |a1|ei(δ1−φ1) + |a2|ei(δ2−φ2) (1.1.2)

The CP asymmetry is defined as
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ACP =
|Af |2 − |Āf̄ |2
|Af |2 + |Āf̄ |2

(1.1.3)

and using the decay amplitudes Af and Āf̄ , the CP asymmetry in charged meson

decays is then given by [5]

ACP =
2|a1a2| sin(δ2 − δ1) sin(φ2 − φ1)

|a1|2 + |a2|2 + 2|a1a2| cos(δ2 − δ1)
(1.1.4)

In order for CP violation to occur, two conditions must be met regardless of the

underlying dynamics of the decay. (i) There must be a relative phase , φ2 − φ1 6= 0,

between the weak couplings which arises from the fact that such an effect can only

occur in SCS decays within the SM. (ii) FSI must induce a phase shift , δ2 − δ1 6= 0,

between the amplitudes which implies that the FSI is nontrivial.

D decays proceed in an environment with many hadronic resonances, and there

is no reason to suggest that strong FSI are absent or even small [6]. However, the

complication arises that these effects are not calculable. The strong phase difference,

δ2 − δ1, must be measured along with the amplitude ratio a2

a1
in order to extract the

CP violating weak phase difference.

1.2. Analysis Technique

Previous searches for direct CP violation in SCS decays of charm mesons have not

observed a signal [7] . These searches measured the partial widths to the resonant

and non-resonant decay channels, integrating over phase space. CP violating effects

that occur in regions of a Dalitz plot may not be revealed in phase-space integrated

measurements.

Weak nonleptonic decays of D mesons proceed dominantly through resonant two-

body channels. The amplitudes, Af and Āf̄ , of these decays can be measured using a

Dalitz plot analysis technique [11], which uses the minimum number of independent

observables. For three-body decays of a spin-0 particle to all pseudoscalar final states
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D → abc, the decay rate is

Γ =
1

(2π)332
√
s3
|M|2dm2

abdm
2
bc (1.2.1)

where mij is the invariant mass of particles i and j. The coefficient of the amplitude

contains all the kinematics of the decay, while the |M|2 contains the dynamics. The

scatter plot m2
ab versus m2

bc is the Dalitz plot ( Figure 1.2). If |M|2 is constant,

the kinematically allowed region of the Dalitz plot will be uniformly populated.

Variations in the population over the Dalitz plot will be due to dynamical effects

rather than kinematical effects. These dynamical effects are attributed to scattering

such as quasi two-body intermediate resonant states.
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Figure 1.2: Dalitz plot of the decay D± → K±K∓π± shows dynamical structure
around 1 GeV2 in m2(K±K∓) and 800 MeV2 in m2(K∓π±), indicating the presence
of resonant states φ(1020) and various K̄∗0 states.

The modeling of the dynamical and kinematical effects in the Dalitz plot is

required to extract the CP violating weak phases of the decay as well as the phase

shift due to FSI. The amplitude for the decay of the D meson to some intermediate

state, D → rc, r → ab, where r is the intermediate resonance, and a,b, and c are

pseudoscalar particles, is given by

(1.2.2)
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The sum is over the helicity states λ of r, J is the total angular momentum of D

(which is zero), L is the orbital angular momentum between the resonance r and

the spectator c, l is orbital angular momentum between a and b (the spin of r), ~p

and ~q are the momenta of c and a in the rest frame of r, Z describes the angular

distribution of the final-state particles, BR
L and Br

L are the centrifugal barrier factors

for the production of rc and ab, and Tr is the dynamical function describing the

intermediate resonance r. The angular distributions, barrier factors, and dynamical

functions have various parametrizations.

1.3. Experiment and Data

The analysis uses 460 fb−1 integrated luminosity of e+e− colliding beam data

recorded on or below the Υ(4S) resonance with the BABAR detector located at the

PEP-II asymmetric storage ring facility at the Stanford Linear Accelerator Center

(SLAC). The entire data set from runs 1 through 6, using the latest BABAR software

release will provide the largest sample of singly Cabibbo-suppressed charm decays in

the world. The reconstruction efficiency of the decay is about 10% which results in a

sample size on the order of 300,000 signal events above background. The combined

D+ and D− Dalitz plots will be fit to extract resonant and non-resonant amplitudes

in D± decays in this mode assuming no CP violation, while seperate fits of the D+

and D− Dalitz plots will be performed to search for CP-violation.

The BABAR detector [21] is comprised of a Silicon-Vertex Tracker (SVT) at the

innermost layer surrounded by a Drift Chamber (DCH) embedded in a 1.5-T solonoid

magnetic field which measures charge track momenta and energy loss (dE/dx). A

ring-imaging Cherenkov detector (DIRC) is used for particle identification. Photons

are detected and electrons identified in the Electromagnetic Calorimeter (EMC). The

outermost detector system is the muon detector which is made of Limited-Streamer

Tubes (LSTs).

Although muon detection is not important in the Dalitz plot analysis of D± →

K±K∓π± , the outermost part of the BABAR detector is crucial to the physics goals of
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the experiment. The previous muon chambers were resistive plate chambers (RPCs)

which had been failing since the start of BABAR . As a service project, I participated

in the installation of the new LST muon chambers during the fall of 2006. Additional

service work with the Particle Identification Group resulted in a Masters Thesis in

the summer of 2005 on the topic of systematic errors in particle ID.

1.4. Conclusion

Previous searches using phase-space integrated measurements of partial widths

did not show evidence of CP violation. The search for CP violation in the Dalitz

plot of D± → K±K∓π± may reveal asymmetries in regions of phase space that were

previously integrated over. A measurement of ACP greater than 1% would be a clear

indication of the presence of the new physics. The study of the Dalitz plot with such

high statistics has also never been performed, and comparisons to previous analyses

by FOCUS [29] may lead to a greater understanding of the underlying dynamics in

three-body charm decays.
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Chapter 2

Babar Detector

2.1. Introduction

The primary goal of the Babar detector is the systematic study of CP-violating

decays of neutral B mesons which provide a sensitive measurement of the CKM

matrix element, Vub, and to measure a number of rare B meson decays. Together, the

goals of the Babar experiment will enable constraints to be placed on fundamental

parameters within the Standard Model. The secondary goals of the experiment

include other B physics, the physics of charm mesons, tau leptons, and two-photon

physics, which are accessible due to the high luminosity of the PEP-II B Factory.

The design of the detector is optimized for CP violation studies but is well suited

for these other studies as well.

The PEP-II B Factory is an asymmetric e+e− storage ring facility operating at

a center of mass (c.m.) energy of 10.58 GeV, which is the Υ(4S) resonance. The

Υ(4S) resonance decays exclusively to B0B
0

and B+B− pairs and serves as an ideal

laboratory for the study of B mesons. The PEP-II electron beam operates at 9.0

GeV, while the positron beam operates at 3.1 GeV. The two beams collide head-

on, resulting in a Lorentz boost to the Υ(4S) resonance of βγ = 0.56. The boost

makes it possible to fully reconstruct the decay vertices of the B mesons; doing so

will determine their relative decays and thus provide a means to determine the time

dependence of the decay rates.

The comparison of the time-dependent decay rates for the B0 and B
0

to self-

conjugate states is the crucial test for CP invariance. This requires events in which

one of Bs decays to a fully reconstructed CP eigenstate, while the other B is tagged
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from its decay products: charged lepton and a charged kaon, as well as the slow pion

(πs) from a D∗.

The particular modes Babar uses to measure CP asymmetries, which correspond

to the angles α, β, and γ of the unitary triangle, include the following:

• For sin 2β: B0 → J/ψK0
S, B0 → J/ψK0

L, B0 → J/ψK∗0, B0 → D+D−,

B0 → D∗+D∗−, etc.

• For sin 2α: B0 → π+π−, B0 → π+π−π0, B0 → a1π

• For γ: B0 → D0(∗)K(∗)−, D∗−ρ+, ...

The small branching fraction of the B mesons, on the order of 10−6 to 10−4,

as well as the requirement to fully reconstruct one of the final CP eigenstates while

tagging the other B from decay products, places stringent requirements on the Babar

detector, which include the following:

• The maximum possible acceptance in the center of mass system, resulting in a

large uniform acceptance down to small polar angles relative to the boost direction.

As a requirement of the boost, the detector is asymmetric.

• Detector components must be very close to the interaction region. The high

luminosity provided at PEP-II to achieve the physics goals of Babar involve the use

of unusual beam optics.

• Vertex resolution down to 80 µm transverse to the beam direction and 100 µm

parallel to the beam direction. The B mesons travel almost parallel to the z-axis,

and their decay time difference is measured from the difference in the z-components

of their decay positions. Excellent vertex resolution helps in the discrimination

of beauty, charm, and light quark vertices. Vertex resolution minimizes multiple

scattering.

• High track reconstruction efficiency over a range of 60 MeV/c < pT < 4 GeV/c

for charged particles.

• Momentum resolution better than 7% to separate small signal from back-

ground.

8



• Energy resolution below 5σ and angular resolution between 12 mrad and 3

mrad over a range of 20 MeV to 4 GeV for the detection of photons from π0 and η0

decays as well as radiative decays.

• 80% efficient in electron and muon identification while maintaining low misiden-

tification probabilities for hadrons. This is neccesary to properly tag the B flavor,

reconstruct the charmonium states, as well as the study of decays involving leptons.

• Identification of hadrons over a wide kinematic range is also neccesary for B

tagging. Reconstruction of final states for modes such asB0 → K±π∓ orB0 → π+π−

also require hadron identification.

• Detection of π0s over a range of 20 MeV < E < 5 GeV.

• Detection of neutral hadrons.

• Flexible, redundant, and selective trigger system.

• Low noise electronics.

• High bandwidth data-acquisition and control system.

• Detailed monitoring and automated calibration.

• Online computing and network system which controls, processes, and stores

the high volume of data.

• The detector components must also tolerate significant radiation doses and op-

erate reliably under high background conditions. The Babar experiment is conducted

at a B factory, so shutdown time is minimal to ensure high integrated luminosities.

The Babar detector was designed and built by an international team of scientists

and engineers to provide all of the features described above. Figure 2.2 shows a

longitudinal section through the detector center and an end view of the detector.

The detector surrounds the PEP-II interaction region. The entire detector is offset

relative to the beam-beam interaction point by 0.37 m in the direction of the lower

energy beam, maximizing the geometric acceptance for the boosted Υ(4S) decays.

The major subsystems of the detector include (see Figure 2.1):
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Figure 2.1: Babar Detector Systems

1. Silicon Vertex Tracker (SVT) - The innermost component of the detector

provides precise position information in charged tracks, and also is the sole tracking

device for very low-energy charged particles.

2. Drift Chamber (DCH) - The DCH provides the main momentum measure-

ments for charged particles as well as providing particle identification through dE/dx

measurements for p > 180 MeV/c.

3. Detector of Internally Reflected Cherenkov Light (DIRC) - The primary

component for particle identification, designed and optimized for charged hadron.

4. Cesium Iodide Calorimeter (EMC) - Measures electromagnetic showers for

neutral hadron identification. The EMC also provides good electron identification

down to about 0.5 GeV. The resolution of EMC is on the order of 1% to 2%.

5. Super-conducting coil which surrounds the inner detector systems, producing

a 1.5 T solenoidal magnetic field.

6. Instrumented Flux Return (IFR) - Muon identification down to about 0.6 GeV

and neutral hadron identification. The latter is of importance in the CP-violating

time-dependent asymmetries in B0 → J/ψK0
L as a cross-check to the result in the

B0 → J/ψK0
S channel.
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Figure 2.3: Aerial view of the Linac and PEP-II storage ring system

2.1.1. Linac, PEP-II, and the Interaction Region. The Babar experiment

rests on the ability to produce B0B
0

pairs at the Υ(4S) resonance, fully reconstruct

final CP eigenstates of the B mesons, as well as measure the relative decay rates.

The first requirement is satisfied by an e+e− collider, the second is satisfied from

high-luminosity beams, and the third is accomplished by using asymmetric beam

energies.

The Linac produces e+e− pairs that are injected into the PEP-II storage rings.

PEP-II is an asymmetric e+e− storage ring facility that collides e− at 9.0 GeV

with e+ at 3.1 GeV to annihilate at the Interaction Point (IP). The Linac, PEP-

II, and the Interaction Region at the Babar detector, shown in Figure 2.3 met the

requirements of the experiment and surpassed early expectations of the performance

of the machine.

The SLAC Linear Accelerator (Linac) is a two mile-long accelerator, consisting of

a cylindrical, disc-loaded, copper waveguide placed on concrete girders in a tunnel

about 25 feet underground. The machine consists of an electron gun, the Linac,

damping rings, a positron source, klystrons, and bypass tunnels for the injection of

particles into the PEP-II storage rings. The electron gun is used to produce the

bunches of electrons to inject into the Linac. Some of the electrons produced are

accelerated and smashed into a tungsten target, which produces e+e− pairs. The

positrons are captured and sent back to the portion of the Linac that accelerates

the particles to be fed into the damping rings.
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The damping rings are used to cool the electrons and refocus the beam to produce

the positrons. Once the positrons are produced the damping rings are used by both

particles. After the first ten feet of the Linac the bunches are already at energies

of 10 MeV, which means the electrons and positrons are already traveling at nearly

the speed of light. During the acceleration process, these bunches have a tendency

to spread out. The more spread the beams become the less the collisions are likely

to occur. The damping rings are used to focus the beams so that more collisions

may occur.

Once the beams are focused the particles are fed into the Linac. The Linac accel-

erates electrons and positrons inside a copper waveguide with an electronmagnetic

wave. The particles ride the crest of the wave analogous to a surfer on a water

wave, where, in this case, the wave is electromagnetic and travels less than c due to

the waveguide. The electromagnetic waves are intense microwaves produced by the

klystrons which feed into the accelerator via the copper waveguide. The electrons

are accelerated to an energy of 9.0 GeV and the positrons are accelerated to an

energy of 3.1 GeV. Once the particles reach these energies, they are sent into the

bypass tunnels to be injected into the PEP-II storage rings.

The PEP-II e+e− storage ring system is designed to produce a luminosity of at

least 3 × 1033cm−2s−1 and operate at a c.m. energy of 10.58 GeV, corresponding

to to the mass of the Υ(4S) resonance. The electrons feed into the high energy

ring (HER) at 9.0 GeV with a current of 0.75 A, and the positrons feed into the

low energy ring (LER) with a current of 2.15 A. The PEP-II is designed for 1658

bunches, containing 2.1× 1010 electrons (HER) and 5.9× 1010 positrons, spaced 4.2

ns apart. PEP-II typically operates on 40 to 50 minute fill cycles, taking about 3

minutes to replenish the beams.

The high beam currents and the large number of closely spaced bunches neccesary

to produce the high luminosity of PEP-II couple detector design and interaction

region layout. The two beams must collide only at the interaction point (IP) which

is surrounded by the detector. The bunches collide head-on and are magnetically
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Figure 2.4: Layout of the Interaction Region

held in the horizontal plane by a pair of dipole magnets (B1), followed by offset

quadrupole magnets. The layout of the interaction region is shown in Figure 2.4

which illustrates the position of the magnets used to collide the bunches at the IP.

The IP spans of distance of less than 300 µm and is located at the center of the

interaction region.

The interaction region is enclosed by a water-cooled beam pipe with a 27.9

mm outer radius. The beam pipe is made of two layers of beryllium with a water

channel between them. The inner surface is coated with a 4 µm thin layer of gold to

attenuate synchrotron radiation. The beam pipe is wrapped with 150 µm tantalum

foil on either side of the IP.

2.2. Silicon Vertex Tracker

2.2.1. Introduction. The SVT ( Figure 2.5) is the innermost subsystem of the

Babar detector, providing precise position and momentum measurements for recon-

struction of charged particle trajectory and decay vertices near the IP. Precision

measurements on momentum and angles allow for full reconstruction of B and D

meson decays, which is an essential design requirement of Babar. The SVT provides
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Figure 2.5: Assembled Silicon Vertex Tracker

high resolution tracking measurements at higher momenta, allowing for full recon-

struction of charged tracks. The track measurements of the SVT are also important

for extrapolation to the DIRC, EMC, and IFR.

2.2.1.1. Design Requirements and Constraints. The majority of B decays have

low pT , thus requiring the SVT to have excellent vertex resolution along z, the axis

along the beam direction. To fully reconstruct the B, the mean vertex resolution

along z is better than 80 µm . Resolution, on the order of 100 µm, in the x − y

plane allows for reconstruction of the B, τ , and charm decays.

The SVT has efficient tracking greater than 70% for low pT . In order to track the

slow pion (πS) fromD∗ decays, tracking is achieved for particles less than 120 MeV/c.

The SVT also provides the best measurement for track angles. Measurements of

track angles are essential to achieve the design resolution for the Cherenkov angle of

high momentum tracks. The SVT extends 200 in polar angle from the beam in the

forward direction and 300 in the backward direction, maximizing the overall angle

coverage of the tracker.

Due to the high luminosity and continual run time of PEP-II, the SVT must

withstand 2 MRad of ionizing radiation. The SVT is located completely inside the

innermost portion of the detector and is inaccessible during operation, so reliability

and robustness are important factors in the design as well.
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Figure 2.6: Longitudinal schematic view of the SVT. The Roman numerals denote
the six different types of sensors.

2.2.2. Layout of the SVT. The design requirements and constraints discussed

previously led to a design of five 300-µm-thick double-sided layers of silicon strips.

To fulfill the physics requirements for transverse tracks, the spatial resolution is

10-15 µm in three inner layers which perform the impact parameter measurements.

The outer layers have a resolution of 40 µm, providing low pT tracking and pattern

recognition. See Figure 2.6 and Figure 2.7.

The double-sided silicon strips are organized in 6 modules for the first three

layers, 16 modules for the fourth layer, and 18 modules for the outermost layer. The

strips on opposite sides of each sensor are orthogonal to each other. The φ measuring

strips run parallel to the beam and the z measuring strips are perpendicular to the

beam axis. The inner three modules are straight and tilted in φ by 50, forming an

overlap region between adjacent modules which provides full azimuthal coverage and

aids with alignment. The two outer modules are arch shaped and cannot be tilted

due to this geometry. Thus to avoid gaps and to have overlapping in φ, layers 4

and 5 are divided into sublayers and placed at slightly different radii. Five different

sensor shapes are required to assemble the planar sections of the layers, satisfying

the different geometric requirements of the five SVT layers.

The readout electronics are mounted entirely outside the active detector volume,

minimizing the material in the acceptance region. There are approximately 150,000
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Figure 2.7: Transverse schematic view of the SVT

readout channels. The remaining components are the fanout circuits and the Front

End Electronics (FEE). The FEE retain signals from all the strips, improving spatial

resolution. The ampliflier for the electronics is sensitive to both positive and negative

charge. The overall peaking time is at a minimum of 100 ns for the inner layer and

up to 400 ns for the outer layer. The FEEs have small dimensions and can withstand

up to 2.5 MRad of ionizing radiation.

The SVT has a rigid support structure composed of two carbon-fiber cones con-

nected to a frame also made of carbon fiber. The SVT is attached to the B1 magnets

in such a way to allow for relative motion of the two magnets. The support tube

structure is mounted to the PEP-II accelerator supports, allowing for movement

between the SVT and Babar.

The five-layer SVT, comprised of double-sided silicon strips, satisfies the design

goals and meets the needs of the experiment. The SVT provides high tracking

efficiency, excellent hit resolution, and low pT track reconstruction.

2.3. Drift Chamber

2.3.1. Purpose and Design Requirements. The purpose of the DCH, like

the SVT, is the efficient detection of charged particles and precision measurements of

their momenta and angles. The DCH complements the SVT measurements for the
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impact parameter and particle trajectory near the IP. As well, DCH measurements

extrapolate charged tracks to the DIRC, EMC, and IFR.

The reconstruction of decay and interaction vertices outside the SVT volume

rely solely on DCH measurements. In order to provide accurate measurements of

decays, such as the K0
S, the chamber measures transverse momenta and direction,

as well as longitudinal position of tracks, all with a resolution of about 1 mm.

The DCH provides particle identification for low momentum particles through

ionization loss (dE/dx) with a resolution around 7%, allowing for π/K separation up

to 700 MeV/c. This ability complements the DIRC, but in the extreme forward and

backward region, the DCH is the only detector subsystem providing discrimination

between particles of different mass.

The material of the DCH is minimal on the inside and front end of the chamber

volume, reducing the amount of mutiple scattering. The DCH is operational under

the presence of large backgrounds. The large beam-generated backgrounds have

rates about 5 kHz/cell in the innermost region of the chamber.

2.3.2. Drift Chamber Layout. The DCH is small in diameter, with an inner

radius of 23.6 cm and an outer radius of 80.9 cm, but extends 2.8 m in length. A

schematic drawing is shown in Figure 2.8. The chamber is comprised of 40 layers of

small hexagonal cells, providing up to 40 spatial and ionization loss measurements for

charged particles with transverse momenta greater than 180 MeV/c. Longitudinal

position is accomplished by placing 24 of the 40 innermost layers of wires at small

angles with respect to the z-axis.

Reduction of multiple scattering is accomplished inside the chamber by using

low-mass aluminum wires and a helium-based gas mixture. The gas is an 80:20

mixture of helium:isobutane with a radiation length of 807 m and dE/dx resolution

of 6.9%. The gas system maintains the mixture at constant pressure of 4 mbar. The

chamber volume is about 5.3 m3. During normal operation, the entire gas volume

is recirculated in six hours, and one volume of gas is added every 36 hours.
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Figure 2.8: Longitudinal section of the DCH with dimensions in mm; the chamber
is offset from the IP by 370 mm

The DCH has a thin inner cylindrical wall which facilitates the matching of SVT

and DCH tracks, improves track resolution for high momenta tracks, and minimizes

background from electromagnetic interactions. The inner wall, carrying 40% of

the load, is made of five sections, a central 1 mm-thick beryllium tube with two

aluminum extensions and two aluminum end flanges to form a 3 m-long cylindrical

part.

The outer wall bears 60% of the axial wire load between the end plates. The

material on the outer wall and in the forward direction is minimized to ensure

performance of the DIRC and EMC. All of the readout electronics are placed on the

backward end plate of the chamber.
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The DCH is bounded radially by the support tube

at its inner radius and the DIRC at its outer radius.

The center of the chamber is displaced by 36.7 cm in

the forward direction due to the boost. This allows for

particles emitted at polar angles of 17.20 to traverse

at least half of the layers before exiting through the

front end plate. In the backward direction, particles

with a polar angle of 152.60 traverse at least half of

the layers of the chamber.
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The DCH has a total of 7,104 drift cells, arranged

in 40 cylindrical layers. The layers are arranged by

four into ten super layers (see 2.3.2). Each layer of a

super layer has the same wire orientation and equal

numbers of cells. The drift cells are hexagonal in

shape, 11.9 mm and 19.0 mm along the radial and azimuthal directions, approx-

imating a circular symmetry over a large portion of the cell.

Each cell consists of one sense wire surrounded by six field wires, shown in 2.3.2.

The sense wires are made of tungsten-rhenium, 20 µm in diameter and tensioned

with a 30 g weight. The field wires, made of aluminum, are held at ground potential

while a positive high voltage is applied to the sense wires.

The DCH electronic system provides a measurement of the drift time and the

charge, and sends a single bit to the trigger system for every wire with a signal. The

electronics are compact and highly modular to accommodate the small cell size and

difficult access through the DIRC support tube.

High precision position measurements are obtained from the relation between

the measured drift time and drift distance. For each signal, the drift distance is

estimated by computing the distance of closest approach between the track and the

wire.

The energy loss, dE/dx, for charged particles traversing the chamber is found

from the total charge deposited in each drift cell. The individual dE/dx measure-

ments are truncated at 80%, and the specific energy loss per track is taken as mean

of the remaining measurements. Figure 2.10 shows the distribution of dE/dx mea-

surements as a function of track momenta. The Bethe-Bloch predictions for particles

of different masses are superimposed.

2.4. DIRC

2.4.1. Purpose and Design Requirements. The Particle Identification (PID)

system of Babar relies primarily on a new kind of ring-imaging Cherenkov detector
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Figure 2.10: Measurement of dE/dx in the DCH as a function of track momenta.
The curves show the Bethe-Bloch predictions derived from control samples of parti-
cles of different masses.

known as the DIRC. PID below 700 MeV/c is accomplished with dE/dx measure-

ments from the SVT and DCH. The DIRC provides the ability to tag the flavor

of one B meson from the cascade decay b → c → s. The momenta of the kaons

used for flavor tagging extend beyond 2 GeV/c with most below 1 GeV/c. Pions

and kaons from the rare two-body decays B0 → π+π− and B0 → K+π− are well

separated. The DIRC provides π/K separation of 4 σ or more for all tracks from

B-meson decays from the pion Cherenkov threshold of up to 4.2 GeV/c.

The DIRC is thin and uniform in terms of radiation length and small in the

radial dimension, reducing the volume. Also, the system has fast signal response

and operates under high backgrounds.

The DIRC geometry and radiator material is chosen so that the magnitudes

of angles are maintained upon reflection from a flat surface. Figure 2.11 shows

the schematic of the DIRC geometry, illustrating the principles of light production,

transport and imaging. The DIRC is a three-dimensional imaging device, relying on

the position and arrival time from photo-multiplier tubes (PMTs).
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Figure 2.11: Schematic drawing of the DIRC fused silica radiator bar and imaging
region

Figure 2.12: DIRC support struc-

ture

The principal components of the DIRC are

shown in Figure 2.12. The radiator mate-

rial of the DIRC is synthetic, fused silica in

the form of long, thin bars with rectangular

cross sections. The bars serve as both the ra-

diative material and as light pipes for light

trapped in the radiator due to total internal

reflection. The refractive index of the bars is

n = 1.473, and the Cherenkov angle is given

by cosθC = 1/nβ, where β = v/c. The bars

are arranged in a 12-sided polygonal barrel.

Each side of the barrel contains an hermeti-

cally sealed container, known as the bar boxes. Each barbox contains 12 bars, for a

total of 144 bars. The bars are 17 mm-thick, 33 mm-wide, and 4.9m long, and each

bar is made of four 1.225 m pieces glued together (see Figure 2.13).

Mirrors are placed at the front end of the radiators to reflect the light to the

back end. The radiator bars subtend a solid angle of about 94% of the azimuth and

83% of the c.m. polar angle.
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Figure 2.13: DIRC bar box assembly (left) and transverse section of bar box (right)

2.4.1.1. Layout and Function. A fused silica wedge is glued to the readout end

of the bar to reflect photons at large angles relative to the bar axis. The wedge is

nearly the same width as the bars with a trapezoidal profile. The twelve wedges in

each bar box are glued to a 10 mm-thick fused silica window, providing a seal to the

purified water in the standoff box.

The back end of the detector is instrumented with photon detectors, minimizing

interference with other detector systems in the forward region. Once photons arrive

at the instrumented end of the detector, they emerge into a water filled region known

as the standoff box. The standoff box contains 6,000 liters of purified water. Water

is cost effective and has nearly the same refractive index (n = 1.346) as the fused

silica, which minimizes total internal reflection at the silica-water interface. The

water volume is exchanged every ten hours to ensure purity and resistivity.

Once the photons pass through the standoff box they are detected by closely

packed PMTs. The PMTs at the rear of the standoff box lie in a toroidal-shaped

surface. There are 12 PMT sections, each containing 896 PMTs. The PMTs are

surrounded by light catcher cones to capture light that might otherwise miss the

PMT. The PMTs are located 1.2 m from the bar end. The cones provide an effective

active surface area light collection fraction of 90%.

The DIRC FEE is mounted on the outside of the standoff box. The FEE mea-

sures the arrival time of each Cherenkov photon detected by the PMT array to an
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Figure 2.14: [

Elevation view of the DIRC system geometry. All dimensions are in mm.

accuracy of the transit time spread in the PMTs of 1.5 ns. The geometry of the

DIRC is shown in Figure 2.14.

2.5. Electromagnetic Calorimeter

2.5.1. Purpose and Design Requirements. The EMC measures electromag-

netic showers with excellent efficiency, energy resolution, and angular resolution over

the energy range of 20 MeV to 9 GeV. The energy range is bounded on the upper

end by QED processes, such as e+e− → e+e−(γ) or e+e− → γγ, and by the need for

efficient reconstruction of B-meson decays, containing multiple π0s and η0s, on the

low end of the energy range. This energy range of the EMC allows for detection of

photons from π0 and η decays, as well as radiative, and electromagnetic processes.

The EMC contributes to flavor tagging of neutral B mesons by identifying electrons

from semi-leptonic and rare decays.

The EMC’s most stringent requirement is the measurement of extremely rare

decays of B mesons containing π0s, placing an energy resolution for the EMC at

about 1% to 2%. The calorimeter operates reliably within the 1.5 T field of the

solenoid.
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Figure 2.15: Longitudinal cross section of the EMC (top half). The detector is
axially asymmetric around the z-axis.

2.5.2. EMC Layout. The calorimeter is a hermetic, total absorption device

made of an array of thallium-doped cesium iodide (CsI(Tl)) crystals. The crystals’

intrinsic efficiency for photon detection is nearly 100% down to a few MeV. But

to ensure sensitivity to the π0 efficiency, material at the front end of the EMC is

minimized. The thallium-doped crystals provide a light yield of 50,000 γ/MeV and

a Moliére radius of 3.8 cm, allowing for excellent energy and angular resolution. The

crystals have a tapered trapezoidal shape, limiting the effects of shower leakage from

higher energetic particles.

The EMC has a conical forward end cap and a cylindrical barrel. The detector

covers the entire azimuth and extends in polar angle from 15.80 to 141.80, corre-

sponding to a coverage of 90% in the c.m. system (see Figure 2.15). The barrel

contains 5,760 crystals arranged in 48 rings with 120 crystals each. The end cap

contains 6,580 crystals arranged in eight rings with 820 crystals each.

The crystals are read out with silicon photodiodes that are matched to the spec-

trum of scintillation light. The actual photon detector contains two silicon PIN

diodes glued to a transparent polystyrene substrate which is glued to the rear face

of the crystal.
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The entire calorimeter is surrounded by a double Faraday shield composed of two

1 mm-thick aluminum sheets, shielding the diodes and pre-amplifiers. The EMC is

maintained at constant temperature.

2.6. Detector for Muons and Neutral Hadrons

2.6.1. Purpose and Design Requirements. The outer most piece of the

Babar detector is the IFR, providing a large solid angle coverage, good efficiency,

and high background rejection for muons and neutral hadrons. The IFR identifies

muons with high efficiency down to about 1 GeV/c, and detects neutral hadrons,

primarily K0
L and neutrons, over a wide range of momenta and angles.

Muon detection is neccesary for tagging the flavor of the B meson from semi-

leptonic decays, for the study of semi-leptonic decays involving leptons from B and

D mesons and τ leptons, and also for reconstruction of vector mesons. Detection

of the K0
L allows for the study of exclusive B decays to CP eigenstates. Detection

of muons relies almost entirely on the IFR with other detector systems providing

complimentary information. Charged tracks that are reconstructed in the tracking

system (SVT and DCH) are extrapolated to the IFR.

K0
Ls and other neutral hadrons interact with the steel of the IFR and are iden-

tified as clusters that are not associated with a charged track.

The system is reliable and has extensive monitoring due to size and lack of

accessibility.

2.6.2. Steel Flux Return and Limited Streamer Tubes. The IFR covers

a total active area of about 2000 m3, and uses the steel flux return of the magnet

as a muon filter and hadron absorber. The steel flux return is segmented into 18

plates, increasing in thickness from 2 cm for the inner nine plates to 10 cm for the

outer plates. In the original IFR, single gap resistive plate chamber (RPC) detectors

were used. The RPCs were replaced with plastic Limited Streamer Tubes (LSTs)

to detect streamers from ionizing particles.
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Figure 2.16: Overview of the IFR. Barrel sector and backward (BW) and forward
(FW) end doors indicated here. The RPCs are replaced with the LSTs

Figure 2.17: Standard LST

The standard LST configuration consists of a

silver plated 100 µm diameter wire, located at the

center of a 9×9 mm2 section. A plastic structure,

or profile, contains eight cells, open on one side (

Figure 2.17). The profile is coated with a resistive

layer of graphite.

The IFR previously contained 19 layers of

RPCs. All the layers of RPCs were removed, ex-

cept for layer 19 since it is inaccessible. In layers

5, 7, 9, 11, 13, and 15, 2-cm thick brass absorber

plates replaced the RPCs. The remaining layers contain the LST modules.

2.7. Trigger

The trigger system selects events of interest with a high, stable, and well-

understood efficiency while rejecting background events, keeping the total event

rate under 120 Hz. The total trigger efficiency must exceed 99% efficiency for all

BB events and is at least 95% for continuum events. The trigger is a robust and

flexible system, able to perform under extreme background conditions. The trigger

contributes less than 1% to the overall dead-time.
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The trigger is implemented as a two-level hierarchy, with the Level 1 (L1) hard-

ware trigger followed by the Level 3 (L3) in software. The trigger can accommodate

up to ten times the projected design luminosity of PEP-II. The L1 is set to have a

typical output rate of 1 kHz, during normal operation. The L3 receives the output

from L1 and performs a second stage rate reduction for the main physics sources.

2.8. Online Computing System

The computing system provides data acquisition, supporting an L1 trigger accept

rate up to 2 kHz and a maximum output rate of 120 Hz. The system does not

contribute more than 3% of the overall dead time. The online computing system is

a set of subsystems with dedicated hardware components with a common software

infrastructure. The subsystems are outlined below:

• Online Dataflow (ODF) - Communication and control of detector systems’

FEEs for data acquisition and building of event data.

• Online Event Processing (OEP) - Processes complete events; performs data

quality monitoring and final stage calibrations.

• Logging Manager (LM) - Selects and writes events to disk for input to the

Online Prompt Reconstruction (OPR) processing.

• Online Detector Control (ODC) - Controls and monitors environmental condi-

tions of the detector systems.

• Online Run Control (ORC) - Sequences the operations of the computing system

components. Provides the graphical user interface for operator control.
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Chapter 3

Conservative Estimate of Particle

Identification Systematic Uncertainties

3.1. Introduction

We outline how estimates of systematic errors on PID efficiencies may be obtained

and present results for the simplest cases.

First, we outline possible sources of systematic error on the PID efficiency of a

signal yield:

(1) Flaws in simulation of PID-related aspects of detectors, e.g., incorrect sim-

ulation of dE/dx, DIRC photons, incorrect simulation of material interac-

tions.

(2) MC may not simulate all runs equally well (time dependence).

(3) Dependence on event environment, such as the track multiplicity, may be

somewhat different in the signal mode (analysis sample) and the PID control

sample mode on which PID tables are based.

(4) Dependence on Λ, K0
S flight length, if any, could be different in the signal

mode (analysis sample) and the PID control sample mode on which PID

tables are based.

(5) Possibly incorrect p, θ spectra of final state particles because the true signal

PDF is not completely known, (e.g., polarization in decay).

(6) Bin-centering corrections due to differences between signal and PID sample

spectra within bins.

(7) Problems intrinsic to the PID tweaking procedure.
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Items 1, 2 should be covered by errors in the PID tweaking / weighting pro-

cedures. Items 3, 4 can be examined using data if signal is copious, from similar

copious decay modes in data, or from MC.

In this note, we focus on items 1-4. Items 5, 6 must necessarily be handled by

the analyst by varying the true pdf. Item 7 can be addressed by adjusting the PID

tweaking procedure: this could be a project for someone eager to improve existing

PID selectors.
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3.2. Alternative PID tables

In this section we describe how alternative PID tables are obtained for the various

particle types.

(1) e and µ: We use leptonic decays of the J/Ψ in B → J/ΨK(∗) decays.

The statistical precision of these tables is far poorer than the standard PID

tables.

(2) π and K: We use the copious charm decay D+ → K−π+π+. The statistical

precision of these tables is comparable to the standard PID tables derived

from D0 → K−π+ decays where the D0 arises from D∗+ decays.

(3) p: We use Λ+
c → pK∗ and Λ+

c → pK0
S decays. [Yet to be implemented].
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3.3. Procedures for estimating Systematic Errors

We will describe the procedures by referring to one or more of the tables that

constitute the results of this note. Consider Table Table 3.1. The table lists estimates

of systematic errors for the PID efficiency for a given selector, typically LH for the

hadrons, NN for muons and Micro for electrons, at different tightness levels indicated

by the column heading. The table is derived for a given sample of tracks. Currently

we use electrons and muons from J/Ψ decay in the B → J/ΨK(∗) mode, and kaons

and pions from D0 decay in the B → D0π mode.

Note that we refer to one or more of three distinct samples in this note. The

“PID control sample” (or “fine” binned sample) is the standard control sample used

by the PID group. The “alternative PID sample” (or “coarse” binned sample) is the

alternative PID sample mentioned in the section above. Finally, we pretend to be

analysts finding an average PID efficiency and use an “analysis sample” (typically

from signal MC) to define the (p, θ, φ) spectrum of the particles being studied.

The first row of errors is simply the statistical error due to the PID table sta-

tistics. Even with an infinitely large sample, the PID efficiency errors will make a

finite contribution.

The second row reflects the statistics of the analysis sample.

The third row is an estimate of the error due to the statistics of the PID tweaking

procedure.

The remaining rows are all derived from the difference in efficiency obtained

from the standard PID table and from an alternative PID table. For leptons, the

alternative PID table is obtained from a data sample of B → J/ΨK(∗) decays. Since

this has limited statistics, the binning of these tables is necessarily coarse. For this

reason, in the following, we shall often refer to the alternative PID table as the

“coarse binned” table, and the regular PID table as the “fine binned” table (even

though for K and π the binning is the same). For K and π the alternative PID

table is derived from D+ → K−π+π+ decays.
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Rows 4 through 6 are estimated from the slope of the (coarse - fine) difference vs.

momentum, theta and time respectively. For time, we use the integrated luminosity,

normalized to 1.

Row 7 lists the difference of average efficiencies. In all cases, we only use bins

where the coarse-binned table has non-zero entries for comparison.

Adding all rows in quadrature implies double counting. Therefore, we take only

the largest of the last 4 rows in quadrature with the first three to form the total

error.

The expressions used for the various errors are as follows. The average efficiency

is defined by

〈ǫ〉 =
∑

i

fiǫi (3.3.1)

where fi is the fraction of events in bin i and ǫi is the efficiency in that bin. Note

that the index i runs over all bins and is “multi-dimensional” in that sense. We

chose not to use separate indices for p, θ and φ. Of course, since there are many

runs, labeled by j = 1 . . . nR, we should write

〈ǫ〉 =
∑

j

lj
∑

i

fjiǫji (3.3.2)

where lj is the fractional integrated luminosity in each run:
∑

j lj = 1. In

actual practice, the efficiency is only averaged over bins in which both the “fine”

and “coarse” binning values exist; such bins are labeled by i′ to distinguish them

from all bins.

The error on this average efficiency is defined by

∆〈ǫ〉 =

√

∑

j

l2j
∑

i′

[(∆fji′)2ǫ2ji′ + f 2
ji′(∆ǫji′)

2] (3.3.3)
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Similarly, the error on the difference between average efficiencies δǫ ≡ ǫ1 − ǫ2

based on two different PID tables (1 and 2) is given by

(∆(δǫ))2 =
∑

j

l2j
∑

i′

[(∆fji′)
2(δǫji′)

2 + f 2
ji′(∆(δǫji′))

2] (3.3.4)

The error due to the tweaking procedure is defined by

(∆ǫtw)2 =
∑

j

l2j
∑

i′

[(fji′ǫ
MC
ji′ )2∆r2

i′] (3.3.5)

where ǫMC
ji′ is the MC efficiency in a bin and ∆rji′ is the error on the ratio

ǫMC
ji′ /ǫji′. For purposes of error estimation, we replace ǫMC

ji′ in equation (3.3.5) above

with ǫji′.

For the momentum, angle and time dependence, we plot the difference defined

above vs. the relevant quantity and fit a straight line to this plot. The probability

psl for the slope to be non-zero is defined as the χ2-derived probability, using χ2 =

(a/∆a)2, where a is the slope and 1 degree of freedom. Then, the error is defined as

∆ǫ = (1 − psl)aσ (3.3.6)

where σ is the rms of the independent variable (momentum, angle or time).

Why use this formula and where did it come from? Initially, we chose to examine

the χ2/DF for the constant difference hypothesis (no dependence) and assign a

systematic error when the χ2/DF exceeded unity. However, this caused the errors

to jump from being zero to significantly non-zero values for selectors of different

tightness. The formula above seeks to avoid such behavior.

This formula was our best guess. We knew that a low probability implied we

should assign a systematic error, and a high probability meant we shouldn’t, but

didn’t know how to smoothly go from one extreme to the other. This formula is

something we just invented. We’re still looking for a better one, so if you have a

better argument, we can change it.
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3.4. Conclusions and Remaining Issues

We find that the electron (and positron) errors are ∼1%. Considering all the

problems the other particles display, this may be considered surprisingly good. In

any case, it assures us that the code, which is essentially the same for all particle

types, does not automatically create large systematic errors.

The muon alternative tables do not agree with the standard tables to better than

5%. The effect seems real since it can be reproduced by an independent program.

Perhaps there is a magical cut one can apply to bring the numbers closer. Our

search for a significant hadronic peaking background did not yield a positive result.

We have checked that the difference in muon efficiencies is not a simple program-

ming error. First, one of us doing the analysis wrote separate programs to check

the difference in the average efficiency for the full sample of µ+ using the VeryLoose

selector. They gave exactly the same result. Then, we had different people repeat

the efficiency calculation for this same sample using yet other programs, one each

for the “fine” and “coarse” binned samples. Once again, they obtained exactly the

same numerical values for the PID efficiencies.

Pions and Kaons agree very well for the usual selectors (VL, L, T, VT) but

not for the GLH Tight selector. It seems that the GLH Tight selector standard

PID tables are a lot different from those for the usual Tight selector, so perhaps the

problem lies with the GLH Tight selector. One remaining issue with the pions is

why the momentum dependence is peculiar above 1.5 GeV.

Proton statistics are poor, and the alternative tables are ∼10% different from

the standard tables. The only cut which gives a clear mass peak for the Λ+
c → pK0

S

channel is the proton PID cut, so fits without this cut tend to exhibit all the ills of

poor statistics. Perhaps we should switch to the Λ+
c → pK−π+ mode where PID

cuts on the charged kaon can be made.
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3.5. Appendix I: Tables

Table 3.1: Summary of systematic errors in % for e−.

PidLH VLoose Loose Tight VTight

PID Efficiency Statistics 0.00 0.00 0.00 0.00 0.00
Analysis Sample Statistics 0.00 0.00 0.00 0.00 0.00

Data/MC Effy. Ratio statistics 0.00 0.00 0.00 0.00 0.00
Momentum dependence 0.11 0.26 0.39 0.12 0.33

Theta dependence 1.03 0.32 0.12 1.08 0.41
Run dependence 0.85 0.78 1.26 0.27 0.26
Other PID table 0.84 1.35 2.51 2.27 2.46

Total 1.03 1.35 2.51 2.27 2.46

Table 3.2: Summary of systematic errors in % for e+.

PidLH VLoose Loose Tight VTight

PID Efficiency Statistics 0.00 0.00 0.00 0.00 0.00
Analysis Sample Statistics 0.00 0.00 0.00 0.00 0.00

Data/MC Effy. Ratio statistics 0.00 0.00 0.00 0.00 0.00
Momentum dependence 0.18 0.15 0.08 0.02 0.01

Theta dependence 0.00 0.18 0.01 0.29 0.11
Run dependence 0.18 0.37 0.44 0.37 0.07
Other PID table 0.69 0.07 0.08 0.34 0.37

Total 0.69 0.37 0.44 0.37 0.37

Table 3.3: Summary of asymmetries and errors in % for e.

PidLH VLoose Loose Tight VTight

Fine Asymmetry 0.31 ± 0.02 2.44 ± 0.03 0.20 ± 0.03 0.05 ± 0.03 0.12 ± 0.03
Coarse Asymmetry 0.21 ± 0.12 2.88 ± 0.06 0.93 ± 3.15 0.41 ± 0.47 0.72 ± 0.15

CrsAsym - FineAsym −0.09 ± 0.12 0.43 ± 0.07 0.73 ± 3.15 0.36 ± 0.47 0.61 ± 0.15
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Table 3.4: Summary of systematic errors in % for µ−.

MinIon VLoose Loose Tight VTight

PID Efficiency Statistics 0.00 0.00 0.00 0.00 0.00
Analysis Sample Statistics 0.00 0.00 0.00 0.00 0.00

Data/MC Effy. Ratio statistics 0.00 0.00 0.00 0.00 0.00
Momentum dependence 0.20 0.35 0.12 0.30 0.00

Theta dependence 1.14 0.01 0.00 0.66 1.25
Run dependence 0.05 1.52 1.80 0.20 0.08
Other PID table 2.45 4.61 5.20 4.53 5.11

Total 2.45 4.61 5.20 4.53 5.11

Table 3.5: Summary of systematic errors in % for µ+.

MinIon VLoose Loose Tight VTight

PID Efficiency Statistics 0.00 0.00 0.00 0.00 0.00
Analysis Sample Statistics 0.00 0.00 0.00 0.00 0.00

Data/MC Effy. Ratio statistics 0.00 0.00 0.00 0.00 0.00
Momentum dependence 0.04 0.01 0.05 0.03 2.24

Theta dependence 0.85 0.42 0.94 2.89 0.83
Run dependence 0.02 0.05 2.21 0.94 0.06
Other PID table 0.59 3.68 5.08 3.99 3.17

Total 0.85 3.68 5.08 3.99 3.17

Table 3.6: Summary of asymmetries and errors in % for µ.

MinIon VLoose Loose Tight VTight

Fine Asymmetry 0.02 ± 0.03 1.25 ± 0.02 1.24 ± 0.02 1.50 ± 0.03 1.56 ± 0.03
Coarse Asymmetry 1.36 ± 0.05 1.87 ± 0.17 1.40 ± 1.71 2.00 ± 1.21 3.15 ± 0.18

CrsAsym - FineAsym 1.35 ± 0.06 0.62 ± 0.17 0.16 ± 1.71 0.51 ± 1.21 1.60 ± 0.18
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Table 3.7: Summary of systematic errors in % for π−.

VLoose Loose Tight VTight

PID Efficiency Statistics 0.00 0.00 0.00 0.00
Analysis Sample Statistics 0.01 0.01 0.00 0.00

Data/MC Effy. Ratio statistics 0.00 0.00 0.00 0.00
Momentum dependence 1.11 0.47 0.48 0.78

Theta dependence 0.53 0.37 0.00 0.24
Run dependence 0.03 0.00 0.20 0.03
Other PID table 0.27 0.05 0.01 0.00

Total 1.11 0.47 0.48 0.78

Table 3.8: Summary of systematic errors in % for π+.

VLoose Loose Tight VTight

PID Efficiency Statistics 0.00 0.00 0.00 0.00
Analysis Sample Statistics 0.01 0.01 0.00 0.00

Data/MC Effy. Ratio statistics 0.00 0.00 0.00 0.00
Momentum dependence 0.94 0.45 0.52 0.87

Theta dependence 0.44 0.25 0.30 0.32
Run dependence 0.19 0.01 0.26 0.25
Other PID table 0.02 0.00 0.00 0.00

Total 0.94 0.45 0.52 0.87

Table 3.9: Summary of asymmetries and errors in % for π.

VLoose Loose Tight VTight

Fine Asymmetry −0.03 ± 0.04 0.13 ± 0.04 0.05 ± 0.03 −0.34 ± 0.03
Coarse Asymmetry 0.02 ± 0.01 0.39 ± 0.00 0.25 ± 0.00 −0.20 ± 0.00

CrsAsym - FineAsym 0.05 ± 0.04 0.26 ± 0.04 0.20 ± 0.03 0.14 ± 0.03
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Table 3.10: Summary of systematic errors in % for K−.

VLoose Loose Tight VTight

PID Efficiency Statistics 0.00 0.00 0.00 0.00
Analysis Sample Statistics 0.00 0.00 0.00 0.00

Data/MC Effy. Ratio statistics 0.00 0.00 0.00 0.00
Momentum dependence 0.62 0.15 0.18 0.30

Theta dependence 0.41 0.52 0.68 0.73
Run dependence 0.02 0.07 0.00 0.00
Other PID table 0.00 0.55 1.98 2.05

Total 0.62 0.55 1.98 2.05

Table 3.11: Summary of systematic errors in % for K+.

VLoose Loose Tight VTight

PID Efficiency Statistics 0.00 0.00 0.00 0.00
Analysis Sample Statistics 0.00 0.00 0.00 0.00

Data/MC Effy. Ratio statistics 0.00 0.00 0.00 0.00
Momentum dependence 0.48 0.15 0.01 0.11

Theta dependence 0.19 0.83 0.87 0.91
Run dependence 0.15 0.04 0.00 0.00
Other PID table 0.00 0.26 1.46 1.56

Total 0.48 0.83 1.46 1.56

Table 3.12: Summary of asymmetries and errors in % for K.

VLoose Loose Tight VTight

Fine Asymmetry 0.32 ± 0.04 0.22 ± 0.04 0.31 ± 0.04 0.29 ± 0.04
Coarse Asymmetry 0.11 ± 0.00 0.21 ± 0.00 0.39 ± 0.00 0.39 ± 0.00

CrsAsym - FineAsym −0.20 ± 0.04 −0.01± 0.04 0.08 ± 0.04 0.10 ± 0.04
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Table 3.13: Summary of systematic errors in % for p−.

GLHT VLoose Loose Tight VTight

PID Efficiency Statistics 0.00 0.00 0.00 0.00 0.00
Analysis Sample Statistics 0.00 0.00 0.00 0.00 0.00

Data/MC Effy. Ratio statistics 0.00 0.00 0.00 0.00 0.00
Momentum dependence 0.01 0.89 4.05 4.74 0.67

Theta dependence 4.63 0.00 0.55 0.14 0.85
Run dependence 4.94 7.59 9.42 7.53 6.37
Other PID table 1.10 5.30 10.93 10.13 7.77

Total 4.94 7.59 10.93 10.13 7.77

Table 3.14: Summary of systematic errors in % for p+.

GLHT VLoose Loose Tight VTight

PID Efficiency Statistics 0.00 0.00 0.00 0.00 0.00
Analysis Sample Statistics 0.00 0.00 0.00 0.00 0.00

Data/MC Effy. Ratio statistics 0.00 0.00 0.00 0.00 0.00
Momentum dependence 0.01 1.42 0.28 0.01 1.14

Theta dependence 0.03 3.00 4.15 4.82 4.64
Run dependence 8.85 0.59 2.39 3.39 0.86
Other PID table 3.29 15.75 12.57 9.37 8.32

Total 8.85 15.75 12.57 9.37 8.32

Table 3.15: Summary of asymmetries and errors in % for p.

GLHT VLoose Loose Tight VTight

Fine Asymmetry 2.20 ± 0.01 2.75 ± 0.02 2.03 ± 0.01 1.66 ± 0.01 0.82 ± 0.01
Coarse Asymmetry 0.91 ± 0.07 −3.65 ± 0.11 1.25 ± 0.09 2.40 ± 0.06 0.50 ± 0.07

CrsAsym - FineAsym −1.29 ± 0.07 −6.40 ± 0.11 −0.78± 0.09 0.73 ± 0.07 −0.33 ± 0.07
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Figure 3.1: p, θ and run dependence of differences in PID efficiencies for electrons
(NotPi).

3.6. Appendix II: Figures

We include here all the figures showing the momentum, angle and time depen-

dence of differences between PID efficiencies obtained using two different control

samples. In all cases the quantity plotted is the standard PID efficiency minus the

alternative PID efficiency, in %. Only point-to-point statistical errors are shown and

used in the linear fit, with the correlated errors removed.
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Figure 3.2: p, θ and run dependence of differences in PID efficiencies for electrons
(VLoose).
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Figure 3.3: p, θ and run dependence of differences in PID efficiencies for electrons
(Loose).
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Figure 3.4: p, θ and run dependence of differences in PID efficiencies for electrons
(Tight).
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Figure 3.5: p, θ and run dependence of differences in PID efficiencies for electrons
(VTight).
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Figure 3.6: p, θ and run dependence of differences in PID efficiencies for muons
(MinIon).
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Figure 3.7: p, θ and run dependence of differences in PID efficiencies for muons
(VLoose).

44



muons-      Loose

Norm. Int Lum              
0 0.2 0.4 0.6 0.8 1

E
rr

or
 (

%
)

-40

-30

-20

-10

0

10

20

30

40

50

muons-      Loose

p (GeV)  
1 1.5 2 2.5 3 3.5

E
rr

or
 (

%
)

-30

-20

-10

0

10

20

30

40

50

muons-      Loose

  (degrees)    θ
40 60 80 100 120 140

E
rr

or
 (

%
)

-20

-10

0

10

20

30

muons+      Loose

Norm. Int Lum              
0 0.2 0.4 0.6 0.8 1

E
rr

or
 (

%
)

-80

-60

-40

-20

0

20

40

60

80

muons+      Loose

p (GeV)  
1 1.5 2 2.5 3 3.5

E
rr

or
 (

%
)

-30

-20

-10

0

10

20

30

40

muons+      Loose

  (degrees)    θ
40 60 80 100 120 140

E
rr

or
 (

%
)

-20

-10

0

10

20

30

Figure 3.8: p, θ and run dependence of differences in PID efficiencies for muons
(Loose).
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Figure 3.9: p, θ and run dependence of differences in PID efficiencies for muons
(Tight).
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Figure 3.10: p, θ and run dependence of differences in PID efficiencies for muons
(VTight).
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Figure 3.11: p, θ and run dependence of differences in PID efficiencies for pions
(VLoose).
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Figure 3.12: p, θ and run dependence of differences in PID efficiencies for pions
(Loose).

47



pions-      Tight

Norm. Int Lum              
0 0.2 0.4 0.6 0.8 1

E
rr

or
 (

%
)

0

0.5

1

1.5

2

2.5

3

pions-      Tight

p (GeV)  
0.5 1 1.5 2 2.5 3 3.5

E
rr

or
 (

%
)

0

2

4

6

8

10

12

14

pions-      Tight

  (degrees)    θ
30 40 50 60 70 80 90 100 110 120

E
rr

or
 (

%
)

0

2

4

6

8

10

12

14

16

18

pions+      Tight

Norm. Int Lum              
0 0.2 0.4 0.6 0.8 1

E
rr

or
 (

%
)

0

0.5

1

1.5

2

pions+      Tight

p (GeV)  
0.5 1 1.5 2 2.5 3 3.5

E
rr

or
 (

%
)

0

2

4

6

8

10

12

pions+      Tight

  (degrees)    θ
30 40 50 60 70 80 90 100 110 120

E
rr

or
 (

%
)

-0.5

0

0.5

1

1.5

Figure 3.13: p, θ and run dependence of differences in PID efficiencies for pions
(Tight).
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Figure 3.14: p, θ and run dependence of differences in PID efficiencies for pions
(VTight).
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Figure 3.15: p, θ and run dependence of differences in PID efficiencies for kaons
(VLoose).
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Figure 3.16: p, θ and run dependence of differences in PID efficiencies for kaons
(Loose).
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Figure 3.17: p, θ and run dependence of differences in PID efficiencies for kaons
(Tight).
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Figure 3.18: p, θ and run dependence of differences in PID efficiencies for kaons
(VTight).
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Figure 3.19: p, θ and run dependence of differences in PID efficiencies for protons
(VLoose).
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Figure 3.20: p, θ and run dependence of differences in PID efficiencies for protons
(Loose).

51



protons-      Tight

Norm. Int Lum              
0 0.2 0.4 0.6 0.8 1

E
rr

or
 (

%
)

-5

0

5

10

15

20

25

30

protons-      Tight

p (GeV)  
1 1.5 2 2.5 3 3.5

E
rr

or
 (

%
)

-10

0

10

20

30

40

50

protons-      Tight

  (degrees)    θ
30 40 50 60 70 80 90 100 110 120

E
rr

or
 (

%
)

0

5

10

15

20

25

30

35

40

45

protons+      Tight

Norm. Int Lum              
0 0.2 0.4 0.6 0.8 1

E
rr

or
 (

%
)

-5

0

5

10

15

20

25

protons+      Tight

p (GeV)  
1 1.5 2 2.5 3 3.5

E
rr

or
 (

%
)

0

10

20

30

40

50

60

protons+      Tight

  (degrees)    θ
30 40 50 60 70 80 90 100 110 120

E
rr

or
 (

%
)

0

5

10

15

20

25

30

35

40

Figure 3.21: p, θ and run dependence of differences in PID efficiencies for protons
(Tight).
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Figure 3.22: p, θ and run dependence of differences in PID efficiencies for protons
(VTight).
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3.7. Appendix III: Alternative Control Samples

The following section describes the event selection for the skims, cuts used to

produce the control samples, and the additional cuts used to produce the efficiency

tables. Additional variables stored in the ntuple that are not previously documented

are described as well.

3.7.1. Lepton Control Sample. We use the already existing BaBar skim Jp-

sitoll. Refer to the FilterTools sequence in JpsitollPath.tcl. The skim provides us

with one lepton track identified with PID, while the other track does not have PID

requirements.

The lepton control sample comes decays of J/Ψ, where the J/Ψ originates from

various B decays:

•B+ → J/ΨK+

•B → J/ΨKs

•B → J/ΨK∗

The selection criteria for the sample is as follows:

•Electron from eBremRecoELNC

•Muon from muNNVeryLoose

•Other lepton from GoodTracksLoose

•K+ from KLHLoose

•Ks from KsDefault

•K∗ from KstarKPiDefaultPID

•BGFMultiHadron

•ntracks > 4

•R2 < 0.7

•2.9 GeV/c2 < m(J/Ψ) < 3.2 GeV/c2

•5.2 GeV/c2 < mES < 5.3 GeV/c2

•-0.15 GeV/c2 < ∆E < 0.15 GeV/c2
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To increase the purity of the control samples before the efficiency tables are

made, tighter requirements are placed on the pid identified lepton track, the mass

of the J/Ψ, and the event helicity.

The following cuts required for the electron sample:

•Prob(vertexχ2) > 0.02

•2.95 GeV/c2 < m(J/Ψ) < 3.14 GeV/c2

•-0.05 GeV/c2 < ∆E < 0.05 GeV/c2

•Require the identified electron to be PidLHElectron

•-0.7 < Helicity < 0.7

The following cuts required for the muon sample:

•Prob(vertexχ2) > 0.02

•3.06 GeV/c2 < m(J/Ψ) < 3.14 GeV/c2

•-0.05 GeV/c2 < ∆E < 0.05 GeV/c2

•Require the identified electron to be MuNNTight

•-0.7 < Helicity < 0.7

Below are the variables stored in the ntuple tress for B → J/ΨK decays.

The tree associated with the electron is identified as ntp901.

•otherp: Pid identified electron track’s momentum

•othertheta: Pid identified electron track’s polar angle

•otherphi: Pid identified electron track’s azimuthal angle

•othercharge: Pid identified electron track’s charge

•otheriselh: Pid identified electron also passes PidLHElectron selector

•kmass: Kaon mass

•kmode: Decay type, K+ decay = 1, Ks = 2, K∗ decay = 3

•kp: Kaon track’s momentum

•mPsi: Mass of J/Ψ candidate

•mES: Energy substituted mass

•deltaE: ∆E

•R2: Second to zeroth Fox-Wolfram moment
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•nTrk: Number of charged tracks in the event

•helicity: Angle between one of the lepton daughters and the K
(+,∗)
(s) in the J/Ψ

rest frame

The tree associated with the muon is identified as ntp902.

•otherp: Pid identified muon track’s momentum

•othertheta: Pid identified muon track’s polar angle

•otherphi: Pid identified muon track’s azimuthal angle

•othercharge: Pid identified muon track’s charge

•otherismunnt: Pid identified muon also passes MuNNTight selector

•kmass: Kaon mass

•kmode: Decay type, K+ decay = 1, Ks = 2, K∗ decay = 3

•kp: Kaon track’s momentum

•mPsi: Mass of J/Ψ candidate

•mES: Energy substituted mass

•deltaE: ∆E

•R2: Second to zeroth Fox-Wolfram moment

•nTrk: Number of charged tracks in the event

•helicity: Angle between one of the lepton daughters and the K
(+,∗)
(s) in the J/Ψ

rest frame

3.7.2. D+ → K−π+π+ Control Sample. In order to obtain a high statistics

sample of kaons and pions, which do not come fromD0 decays, the most copius mode

available are charged D meson decays. There was no existing charm skim for such a

decay. In FilterTools, the skim is defined in DcToKPiPiPromptNoPidPath.tcl and

the selection criteria for the skim is described here:

•GoodTracksVeryLoose for all tracks

•Cascade vertexer

•Geometric constraint

•p∗ > 2.7 GeV/c

•1.7 GeV/c2 < m(D+) < 2.1 GeV/c2
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•χ2(vertex) > 0.005

The decays of charmed D mesons provide a relatively high statistics control

sample for kaons and pions. With the use of DTaggingTools, we are able to provide

a high purity sample. We require at least 3 charged tracks in the event along with

the following requirements:

•BGFMultiHadron

•R2 > 0.2

•Sphericity < 0.5

•Thrust > 0.7

We obtain the likelihood from DTaggingTools for the Beam fit and the Dalitz fit.

Both likelihoods are stored in the ntuple, but we only cut on the Beam fit likelihood

which is required to be greater than 1.

To further increase the purity of the sample before creating the efficiency tables,

we impose an additional cut using the Dalitz likelihood cut from DTaggingTools.

•likelihdDalitz > 3.5

Below are the variables stored in the D+ → K−π+π+ trees

The tree associated with the kaon track is identified as ntp401.

•dpcms: D center of mass momentum

•likelihdDalitz: Value of likelihood from Dalitz fit in DTaggingTools

•likelihdBeam: Value of likelihood from Beam fit in DTaggingTools

•nTrk: Number of charged tracks in the event

•kpi1Mass: kaon and first pion daughters’ pair mass

•kpi2Mass: kaon and second pion daughters’ pair mass

•pi1pi2Mass: pion daughters’ pair mass

The tree associated with the first pion daughter is identified as ntp402, and the

second pion daughter tree is identified as ntp403.

3.7.3. Proton Control Sample. We use protons from Λ+
c → pK−π+, how-

ever, in an effort to achieve a pure sample we require that the Λc candidates come
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from decays of Σ++,0
c → Λ+

c π
+,−. The skim defined in SigmaCToLambdaCNoPid-

ProtonPath.tcl includes the pKπ decay mode along with the pKs decay mode. The

latter is not used as part of the control sample due to such low statistics.

•Ks default list

•0.455 GeV/c2 < m(Ks) < 0.54 GeV/c2

•GoodTracksVeryLoose for proton track

•Kaon and pion tracks from LHTight lists

•Cascade vertexer for Λc

•Geometric constraint

•p∗(Λc) > 2.7 GeV/c

•2.18 GeV/c2 < m(Λc) < 2.38 GeV/c2

•Add4 Λc and pion

•p∗(Σc) > 2.7 GeV/c

•m(Σc) −m(Λc) < 300 MeV/c2

The Σc candidate is formed by simply adding the four vectors of the Λc candidate,

which has the same requirements as the skim, with a pion from a tight Pid list. To

remove Λc candidates that do not come from Σc we place cuts on the p∗ of the Σc

candidate and the mass difference between the Σc and the Λc:

•p∗(Σc) > 3.2 GeV/c

•160 MeV/c2 < m(Σc) −m(Λc) < 175 MeV/c2

The Λc candidates may contain reflections from charm mesons D+, Ds, or D∗

which may affect proton efficiency. To look for reflections we recalculate the proton

track’s energy either with a kaon or pion hypothesis (denoted as Kp or πp) and form

either a D+ or Ds. A D0 may be formed using the kaon track with the proton track

as a pion(πp), we can then find the q value of the D∗ decay. Efficiency tables were

produced with and without removing the reflections. The reflections can be removed

using the following cuts:

•1.859 GeV/c2 < m(Kππp) < 1.879 GeV/c2

•4 MeV/c2 < m(Kππp) −m(Kπp) −m(π) < 8 MeV/c2
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•1.959 GeV/c2 < m(KπKp) < 1.979 GeV/c2

Below are the variables stored in the ntuples for the Λc → pKπ tree. This control

sample contains just one tree for the proton track, identified as ntp501.

•LambdaCpcms: Λc center of mass momentum

•SigmaCpcms: Σc center of mass momentum

•massDiff: m(Σc) - m(Λc)

•KKpiMass: Recalculated mass of Λc daughters using a kaon hypothesis for the

proton track

•KpipiMass: Recalculated mass of Λc daughters using a pion hypothesis for the

proton track

•Qvalue: m(Kππp) −m(Kπp) −m(π)

3.7.4. Mass Distributions.
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Figure 3.23: Top: D+ mass distribution at the ntuple level; Bottom: D+

mass distribution with Dalitz likelihood cut imposed for producing effi-

ciency tables; taken from Run4 OnPeak data
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Figure 3.24: Top: mES Distribution for J/Ψ → e+e− Bottom: mES Distri-

bution with further cuts imposed for producing efficiency tables; taken

from Run4 OnPeak data
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Figure 3.25: Top: mES Distribution for J/Ψ → µ+µ− Bottom: mES Distri-

bution with further cuts imposed for producing efficiency tables; taken

from Run4 OnPeak data

61



h_vtxmass
Entries  2024270

Mean    2.283

RMS    0.05632

Underflow       0

Overflow        0
Integral  2.024e+06

2 Mass GeV/ccΛ
2.18 2.2 2.22 2.24 2.26 2.28 2.3 2.32 2.34 2.36 2.380

5000

10000

15000

20000

25000

30000

h_vtxmass
Entries  2024270

Mean    2.283

RMS    0.05632

Underflow       0

Overflow        0
Integral  2.024e+06

h_TrueMass
Entries  1817463

Mean    2.283

RMS    0.05656

Underflow       0

Overflow        0
Integral  1.817e+06

2 Mass GeV/ccΛ
2.18 2.2 2.22 2.24 2.26 2.28 2.3 2.32 2.34 2.36 2.380

5000

10000

15000

20000

25000

h_TrueMass
Entries  1817463

Mean    2.283

RMS    0.05656

Underflow       0

Overflow        0
Integral  1.817e+06

Figure 3.26: Top: Mass distribution of Λc candidate Bottom: Λc mass

distribution after cutting out the reflections; taken from the entire dataset
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Figure 3.27: Recalculated mass of Λc daughters using either kaon or pion

hypothesis for the proton track. The KπKp and q value are plotted after

a cut around the D+ mass peak from Kππp
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Chapter 4

Charged Pion Tracking Efficiency and

Asymmetry

4.1. Introduction

The goal of the study described in this note is to measure the asymmetry in

the pion tracking efficiency as a function of lab momentum directly from data.

This asymmetry is the dominant systematic uncertainty for direct CP asymmetry

measurements. Two methods from different types of physics events provide us with

the tracking asymmetry as a function of lab momentum. The first method relies

upon decays of τ leptons to 3 hadron tracks, denoted as Tau31, and also provides

a measurement of the absolute tracking efficiency. The second method exploits

rotational invariance in the form of isotropy of two-body decays of spin-zero mesons.

While we use flavor-tagged D0 → π+π− decays in principle any two-body decays

(such as from K-shorts, B0, D+ etc.) can be used. The method provides the tracking

asymmetry as a function of any desirable quantity, such as the pion lab momentum.

This study is essential for our study of direct CP violation in charm decays where

we aim for sensitivity below 1%, a level now possible with BaBar’s data set of 540

fb−1 of integrated luminosity. New physics would be indicated for direct CP asym-

metries greater than 1%. Additional asymmetries arise from detector asymmetries,

particle identification, and tracking.
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4.2. Charge Asymmetry in Pion Tracking Efficiency from

Monte Carlo

Although our methods measure the efficiency and asymmetry directly from data,

we begin by displaying the asymmetry obtained directly using the BaBar Monte

Carlo. One reason for this is that in our meson decay method we assume that the

asymmetry at high lab momenta (> 2 GeV) is zero, or even if slightly non-zero, the

Monte Carlo can be trusted because we are out of the region of rapidly oscillating

cross-sections as a function of energy. Above 2 GeV in pion lab momentum we enter

the slowly-varying regime. The major uncertainty in asymmetry determined from

Monte Carlo at high energies is in the amount and nature of detector material; a

20% systematic error should cover that. The average tracking asymmetry from the

Monte Carlo is −6 × 10−5 ± 0.00023.

Another reason for studying the MC-derived asymmetry is to establish a baseline,

an expectation for the result from data.

Finally, by plotting and fitting the MC asymmetry (which has higher statistics

than data) to various functions we can select a function that fits well but whose

parameters can then be determined directly from a fit to data. We finally chose to

parameterize the efficiency with the following formula:

ǫ(pLab) = 1 − A0e
(pLab−p0)

τ0 −B0e
(pLab−p1)

τ1 (4.2.1)

Figures Figure 4.1, Figure 4.2 show the pion track efficiency and asymmetry

respectively. Here and elsewhere in the document the asymmetry is defined as

a(pLab) ≡
ǫ(pπ+) − ǫ(pπ−)

ǫ(pπ+) + ǫ(pπ−)
(4.2.2)
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Figure 4.1: Monte Carlo Tracking Efficiency for π+ and π−

4.3. Methods

4.3.1. The Tau31 Method. BAD 931 describes how tracking efficiency can

be measured using “Tau31” decays, i.e., decays in which one of two taus decays to

a lepton (the “1” in Tau31) and the other to 3 prongs. The leptonic decay is used

to tag the event as a tau-tau event. Some of the 3-prongs are missing a track due

to tracking inefficiency and the tracking efficiency can be estimated by diviing the

number of two-prongs by the total number of 2- and 3-prong decays.

Unfortunately, when a hadronic track is missing, we do not know its 3-momentum,

making the efficiency determination as a function of momentum and angle difficult.

The best one can do is to estimate the track’s angles from the visible remaining

tracks, and a momentum scale from the missing momentum or missing pt. We call

these variables pseudo-theta (and pseudo-phi) and ptmiss.

The Tau31 decays can be used to determine the efficiency as a function of p

and theta by creating an acceptance-transfer matrix from the true momenta to the
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Figure 4.2: Monte Carlo Tracking Asymmetry as a function of lab momentum. The
inset plot shows the asymmetry up to 2 GeV, where our measurements from data
are applicable.

observed quantities using MC, and thereby determining the true distribution of

momenta as well as the efficiency from data.

We realized there is an easier way: if a track has an efficiency ǫ, the probability

for the event to be 2-prong is proportional to ǫ2(1−ǫ), while the probability for it to

be a 3-prong is proportional to ǫ3, assuming all tracks are distinguishable. Therefore,

we could populate a 2-dimensional ptmiss-pseudo-theta histogram for 2-prongs by

starting with the 3-prong sample and weighting every event by the ratio (1 − ǫ)/ǫ,

where epsilon can be parameterized as a function of the observed 3-momentum of the

third prong. The resulting matrix can then be fit to the observed, binned, 2-prong

events. To the extent that the background in 2-prongs is due to inefficiency in the

3-prong background, this automatically takes care of the background and reduces

background subtraction issues.

Unfortunately, there are substantial backgrounds in the tau samples. This makes

it difficult to directly implement the method described above. The problems were
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eventually circumvented by first developing an understanding of these backgrounds

using MC and focusing on parts of the ptmiss-pseudo-theta space where contamina-

tion is lower. Details can be found in the sections below, particularly in section 4.7.

4.3.2. The Method of Two-body Decays of Spinless Mesons.

4.4. Monte Carlo and Data sets

We briefly summarize the various Monte Carlo samples used for the study and

the final data sets used to measure the tracking efficiency and asymmetry. All data

and Monte Carlo samples are produced from Release-24 series skims. The Tau data

and MC are taken from R24a2-v03 tags, and the charm samples are from R24c-v07

tags.

4.4.1. Signal Monte Carlo. We obtain Monte Carlo tracking efficiencies and

asymmetries using signal Monte Carlo events of D+ → K+K−π+. The sample

contains 25 million generated events for both D+ and D−, using the release-24

SP10. The decays are modeled using phase space only.

4.4.2. Tau31. Tau31 data was obtained from the tracking group which gener-

ates ntuples from Tau31Tracking skim. Runs 1-6 R24a2-v03 On and Off peak data

were used. For the Monte Carlo, we use the corresponding B+B− Generic, B0B̄0

Generic, e+e− → µ+µ−γ (KK2F), e+e− → τ+τ−γ (KK2F), e+e− → uū/dd̄/ss̄,

e+e− → cc̄ MC samples scaled to the luminosity of the full data set.

4.4.3. Two-Body Charm Samples. Two-body charm decays are available

from the Charm mixing group, which uses the D0To2ProngDcj skim as input for

both tagged and untagged D0 decays. R24c-v07 data sets for runs 1 through 6 On

and Off peak were recently made available. Monte Carlo samples were not used in

this part of the study.
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4.5. Event Selection

Event selection criteria for both methods are based on analyses performed by the

BaBar tracking group (BAD 931) and the BaBar charm mixing group (BAD 1754).

Differences or additions to the original selection criteria are indicated below.

4.5.1. Tau31 Event Selection. The event selection for Tau31 decays is based

upon the selection that is described in BAD 931. The primary difference between

the event selection for R24 data and what is currently being used by the Tau group

is additional criteria to limit contamination of lepton tracks into the 3-prong side of

the event. We limit ourselves to a maximum number of four tracks in the event. We

only search for τ → µ to tag the event. On the 3-prong side, we search for events

with two oppositely-charged tracks consistent with the mass of the ρ0.

Only events with 3 or 4 Charged tracks and a total charge of +1, 0, or -1 are

analyzed. The total charge requirement suppresses backgrounds from beam gas

events. Contamination from photon conversions and Ks decays are suppressed.

Photon conversions are suppressed by rejecting events containining two charged

tracks with an invariant mass less than 100 MeV where one of the tracks passes the

Electron Super Loose KM selector. Ks decays are suppressed by rejecting events

which contain two tracks with a vertex more than 2 cm from the beam spot, a χ2

> 0.01, and an invariant mass within 10 MeV of the Ks mass.

The events that passed the initial selection criteria are now required to have

either 4 tracks (3-prong) or 3 tracks (2-prong). We search for the most isolated

track with a minimum of 1200 in the center-of-mass frame from all other tracks in

the event. We further isolate the track by requiring that no neutral clusters, with an

energy of 100MeV, be within 900 of the track in the lab frame. The isolated track

is also constrained to have a lab momentum between 20% and 80% of the beam

energy. Next, we search for only good quality muon tracks, such that they satisfy

GoodTracksLoose requirements, have a transverse momentum of greater than 200
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MeV, and have both a transverse impact parameter less than 1mm and a z impact

parameter less than 3 cm. Finally, the track must satisfy a tight muon ID selector.

Once the muon tag of the 1-prong τ decay is identified, we search for decays of

τ+ → ρh+, where h is a hadron. We search for two oppositely charged tracks which

have a dE/dx pull less than 3σ. The total missing momentum of the two pion tracks

and the lepton is constrained by requiring that the -0.80 < cos(θmiss) < 0.80 defined

as follows.

Using

~p(ππµ) ≡ ~p(π+) + ~p(π−) + ~p(µ+) (4.5.1)

we define

cos(θmiss) =
pz(ππµ))

p(ππµ)
(4.5.2)

and that the transverse component is greater than 300 MeV. The mass of the

two pion tracks is required to be consistent with that of the ρ0 within 100 MeV.

The following criteria, which were not used in the original Tau31 study, are

applied to further reduce our backgrounds. We veto events where either of the

ρ0 daughter tracks are consistent with a loose muon or loose electron particle ID

to reduce contamination from lepton tracks. Finally, we require tracks to have a

minimum DCH dE/dx of 300.

4.5.2. D0 → π+π− tagged D∗+ → D0π+
slow. D0 → π+π− events are obtained

from samples provided by the Charm mixing group. This sample uses slow pions

associated with the decay of D∗+ to tag the flavor of the D0 meson and reduce

background. The event selection is described in detail in BAD 1754. The final sample

we obtain by skimming the “primary” ntuples generated from the D0To2ProngDcj

skim. The sample has already passed the initial reskimming selection criteria with

super loose PID requirements on two-body decay tracks.

•1.78 GeV < m(D0) < 1.94
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Figure 4.3: Distribution of events for 2-prong and 3-prong after event selection

•χ2 Probability, P (χ2), from the D0 vertex fit to satisfy 0.001 < P (χ2) < 1

•p∗(D0) > 2.5 GeV

•Require a minimum of 12 hits in the drift chamber for each daughter track

•Require the D0 decay time error,σt, (obtained from TreeFitter vertex fit) to be

> 0.5 psec.

The following criteria are required for the tagged sample:

•0.14 GeV < ∆m < 0.16 GeV

•Momentum of slow pion, pπs
> 100 MeV

•The minimum number of SVT and DCH hits on the slow pion track, NSV T
πs

and

NDCH
πs

, must satisfy NSV T
πs

≥ 6 and NDCH
πs

> 0.

•The slow pion must be inconsistent with an electron ID. Refer to section 4.4 in

BAD 1754 for further description

The following criteria required for asymmetry measurement:

•One of the daughter tracks satisfy pLab > 2 GeV, while the opposite charged

track satisfy pLab < 2 GeV
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4.6. Signal and Background Studies

4.6.1. Tau31. In order to correctly model the 2-prong distribution of events

by weighting the 3-prong events, the 2-prong backgrounds must be well-understood.

Using the Tau31 generic MC, we use the truth information to classify events. The

backgrounds found in the 2-prong distributions are entirely from feed-up of 1-prong

tau decays ( Table 4.1). The dominant backgrounds typically occur when one of the

reconstructed tracks is the 1-prong daughter track while the other track is a lepton

associated with a γ conversion or the decay of a π0.

Type % Events
True τ± → ρh±miss 93%
γ → e+e− 5%
π0 → e+e−(γ) 1%
Material Interactions < 1%
Other < 1%

Table 4.1: Composition of generic 2-prong decays, which survive all cuts listed above,
from the Monte Carlo truth information

Signal events in the 2-prong distribution are the result of either tracking inef-

ficiency or acceptance loss. Using the MC, we determine the percentage of events

where the hadron track is generated outside the acceptance of the detector ( Ta-

ble 4.2).

Generated Angle % Events
25◦ < θ(hadron) < 147◦ 30%

θ(hadron) < 25◦ 54%
θ(hadron) > 147◦ 16%

Table 4.2: Composition of true 2-prong tau decays, which survive all the cuts listed
above, with respect to the detector acceptance

We further categorize the acceptance loss events into the signal types of events

generated in the MC ( Table 4.3). We obtain distributions of acceptance loss events

from generic tau MC which are separated into the various tau decays either through

the a1 resonance, via the W± boson or through another channel.
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MC Decay % Events
τ → a1 85%
τ →W 14%
other 1%

Table 4.3: Composition of Acceptance Loss events in generic tau MC
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Figure 4.4: Monte Carlo Distributions
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Selection Criteria N(τ MC) N(Generic MC) N(Data) ǫ (τ MC) ǫ(Generic MC) ǫ(Data)
Reject Conversions 74740426 30794057 115526215 94.73 98.44 81.47
Reject Ks 74540987 30360638 114869656 99.73 98.59 99.43
Isolated tracks 60655230 9697066 68382228 81.37 31.94 59.53
No Neutral Clusters 31980972 453555 33924680 52.73 4.68 49.61
Beam energy cut 31970522 449413 33660732 99.97 99.09 99.22
Tight PID muons 9586402 28692 6056028 29.99 6.38 17.99
MultiProng Events 3973991 4634 2015038 41.45 16.15 33.27
e veto π(ρ0) 3229750 3548 1646054 81.27 76.56 81.69
mu veto π(ρ0) 3229750 3548 1646054 100.00 100.00 100.00
dE/dx > 300 π(ρ0) 3229750 3548 1646054 100.00 100.00 100.00
3prong 3069630 2866 1559962 95.04 80.78 94.77
e veto (hadron track) 3036008 2733 1540412 98.90 95.36 98.75
mu veto (hadron track) 2824468 2507 1441170 93.03 91.76 93.56
proton veto (all prongs) 2753076 2219 1398801 97.47 88.52 97.06
dE/dx > 300 (hadron track) 2694417 2161 1365922 97.87 97.38 97.65
2prong 160120 682 86092 4.95 19.22 5.23

Table 4.4: Relative selection efficiencies for τ Monte Carlo, generic background Monte Carlo (luminosity weighted), and data. ǫ
is the relative efficiency w/ respect to the previous selection criteria. The relative efficiency for 2 prong events is compared to the
selection dE/dx > 300 on pions from rho0.
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4.6.2. Dalitz Re-weighting of Tau events in MC. Hadronic decays of tau

leptons are not well understood, and the distribution of events in Monte Carlo does

not properly model the data. Using the the 3-prong distribution of events in data,

we can re-weight the acceptance loss events from Monte Carlo which are used to

model the acceptance loss in the data.

To correctly account for the differences in Monte Carlo and data, an iterative

procedure is used to re-weight the Monte Carlo events as a function the tau mass,

the ρ0 mass m12(π
+
ρ π

−
ρ ), and m23(π

−
ρ h

+
missing) The final weight applied to the Monte

Carlo events is the product of three weights: 3π mass, ρ mass, and π−h+ mass.

When re-weighting the acceptance loss events, the true MC track four-vector of the

missing hadron is used when calculating m23(π
−
ρ h

+
missing).

wi = w3π × wρ × wπ−h+ (4.6.1)

75



0.6 0.8 1 1.2 1.4 1.6 1.80

50

100

150

200

250

3
10×

h_3pi h_3pi
Entries  2694417
Mean    1.143
RMS    0.1433

h_3pi

0.6 0.65 0.7 0.75 0.8 0.85 0.90

20

40

60

80

100

120

140

3
10×

h_rho h_rho
Entries  2694417
Mean   0.7622
RMS    0.05007

h_rho

0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

20

40

60

80

100

120

140

160

180

200
3

10×
h_m23 h_m23

Entries  2694417
Mean   0.5852
RMS    0.1968

h_m23

0.6 0.8 1 1.2 1.4 1.6 1.80

0.2

0.4

0.6

0.8

1

ratio_3pimass ratio_3pimass
Entries  1365922
Mean    1.277
RMS    0.2938

ratio_3pimass

0.6 0.65 0.7 0.75 0.8 0.85 0.90

0.2

0.4

0.6

0.8

1

1.2

ratio_rho ratio_rho
Entries  1365922
Mean   0.7848
RMS    0.06068

ratio_rho

0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ratio_m23 ratio_m23
Entries  1365922
Mean   0.9968
RMS    0.3659

ratio_m23

0.6 0.8 1 1.2 1.4 1.6 1.80

20

40

60

80

100

120

140

160

180

200

220

3
10×

w_3pi w_3pi
Entries  2694417
Mean     1.16
RMS    0.1457

w_3pi

0.6 0.65 0.7 0.75 0.8 0.85 0.90

20

40

60

80

100

120

140

3
10×

w_rho w_rho
Entries  2694417
Mean   0.7654
RMS    0.05078

w_rho

0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

20

40

60

80

100

120

140

160

180

3
10×

w_m23 w_m23
Entries  2694417
Mean   0.6156
RMS    0.2061

w_m23

0.6 0.8 1 1.2 1.4 1.6 1.80.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

rw_3pi rw_3pi
Entries  1365922
Mean    1.237
RMS    0.2944

rw_3pi

0.6 0.65 0.7 0.75 0.8 0.85 0.90.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

rw_rho rw_rho
Entries  1365922
Mean     0.78
RMS    0.06054

rw_rho

0.2 0.4 0.6 0.8 1 1.2 1.4 1.60.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

rw_m23 rw_m23
Entries  1365922
Mean    0.935
RMS    0.3834

rw_m23

Figure 4.5: Data versus Monte Carlo events before re-weighting

4.6.3. D0 → π+π−. The dominant background in D0 → π+π− is D0 → K−π+,

which typically can be removed with the application of particle identification. In

our case, we must restrict the use of particle ID since we want to know the tracking

asymmetry. Another method to remove the Kπ background is to cut on the reflected

mass of the D0 by assuming the kaon mass for one of the tracks and cut out the

reflection (Figure 4.8). The long tail of the background still remains under the

signal region, and therefore must still be accounted for. To resolve this, we take

the shape of the Kπ background directly from data by applying tight kaon particle
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Figure 4.6: τ+ Data versus Monte Carlo events after re-weighting

identification. The mass peak of D0 → π+π− is removed, but the large signal of Kπ

remains. The shape is used in the fit with an overall scale factor floated and we do

not remove the reflection with a kinematic cut. The reflection only appears when the

faster track is the right-sign kaon. For D0 decays, the K−π+ background appears

when the faster track is negative; for D̄0 decays, the K+π− reflection appears when

the faster track is positive.
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Figure 4.7: τ− Data versus Monte Carlo events after re-weighting

4.7. Fit Methodology

In this section, we briefly summarize the various components in each model and

the minimization strategy.

4.7.1. Tau31. The model for tau31 decays is made of three components: 3-

prong events which are reconstructed as 2-prong due to tracking inefficiency, 3-prong

events which are reconstructed as 2-prong events because one track is missing due to

detector acceptance loss, and 1-prong backgrounds found only in the 2-prong events.
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Figure 4.8: Reflected Kπ mass for D0 and D̄0 decays when we assume a kaon mass
hypothesis for the faster track.

Any extra part of the 2-prong background is assumed to be described by MC.

Low acceptance regions are excluded by kinematic cuts on the visible prongs and

opposite-side lepton.[*] Optimal cuts are determined from MC. A similar procedure

yields the fake rate using 4-prong events.

Errors on the number of events in each bin need to be evaluated correctly since

most of the weights are far from 1 (in the 0.05 - 0.15 range typically). Bins are chosen

to populate the histogram uniformly. A piecewise-linear interpolation in momentum

is used to parameterize the tracking efficiency.
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We define the efficiency for positive and negative tracks

ǫ±(pLab) = ǫpLab
(1 ± ai) (4.7.1)

where ai is the asymmetry at momentum bin edge i, and ǫpLab
is the six parameter

efficiency as a function of the lab momentum taken from the MC. We assume a piece-

wise linear function of the lab momentum for the asymmetry using interpolation

between bin edges. To obtain the expected distribution of 2-prong events which are

due to tracking inefficiency, we weight each 3-prong event. The weight, wǫ, is defined

as

wǫ =
1 − ǫ±hadron

ǫπ±
1
× ǫπ∓

2
× ǫhadron±

(4.7.2)

Acceptance loss events are modeled using the distributions taken from the Monte

Carlo. Different shapes are used for positive and negative events, and we have three

shapes associated with the different type of signal events: τ → a1, τ → W , and

remaining signal events that are not classified. The overall scale of the distribution

for each type of acceptance loss event is floated in the fit.

The background shapes are taken from the MC for positive and negative tracks

and split into two categories. The dominant background of γ → e+e− is one distri-

bution while the remaining background categories are combined into a single distri-

bution.

Additional distributions from generic bb̄, cc̄, and uds MC are also included in the

fit but fixed to the relative luminosity. These contributions are small.

We minimize a two-dimensional χ2 function in pseudo-theta (θ′) and ptmiss over

20x20 bins as the sum of χ2 for τ+ events and τ− events:

χ2 =
∑

i

[

Nobserved −Nexpected

∆expected

]2

(4.7.3)
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where the expected number of events is comprised of the number of events due to

tracking inefficiency, the number of events due to acceptance loss, and the number

of events due to 1-prong backgrounds.

We find θ′ and ptmiss from the two reconstructed tracks on the 2-prong side of

the event.

Using

~p(ππ) ≡ ~p(π+) + ~p(π−) (4.7.4)

cos(θ′) =
pz(ππ)

p(ππ)
(4.7.5)

ptmiss = pT (ππ) (4.7.6)

The distribution of 2-prong events with the bins overlaid can be seen in Fig-

ure 4.9.

The total error in each bin for the expected number of events is given by

σ2
Total =

nbackground
∑

i=1

w2
i +

Nacceptance
∑

i=1

w2
i +Nǫ (4.7.7)

The minimization of the χ2 function is performed using MINUIT, with a total

of 20 free parameters and 780 degrees of freedom.

4.7.2. D0 → π+π−. To measure the tracking asymmetry in two body decays, we

assume that the asymmetry for faster tracks, pLab > 2 GeV, is zero as indicated from

Monte Carlo. With this assumption, we find the yield ofD0(D̄0) events for the slower

daughter track in bins of momentum up to 2 GeV. We obtain two measurements of

tracking asymmetry for each momentum bin, since the pion asymmetry is measured

from either D0 or D̄0.

For each slower pion momentum bin we fit for yield of D0 by minimizing χ2

over the 1-dimensional mass plot, for a D0 mass between 1.78 GeV and 1.94 GeV.
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Figure 4.9: Distribution of the observed 2-prong events for the full BaBar data set.
The bins, shown in red, are chosen such that the number of events in each bin is
statistically equivalent. Each bin contains approximately 215 events.

The background includes an overall scale factor for the Kπ background plus an

additional linear term to fit the remaining combinatorial background. The signal

function is a double-Gaussian function where the two Gaussians share a mean. The

Kπ background distribution is a histogram of the D0 mass in each momentum bin

with tight kaon particle id applied to the faster track.

We measure the asymmetry for D0 and D̄0

Aǫ =
N(D0

π+
slower

) −N(D0
π−

slower

)

N(D0
π+

slower

) +N(D0
π−

slower

)
(4.7.8)
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4.8. Results

The results for the average asymmetry for Tau31, D0 and D̄0 are listed below

and are found to be consistent with zero ( Table 4.5).

Table 4.5: Average Tracking Asymmetry

Mode Asymmetry (%)
Tau31 0.10 ± 0.26
D0 → π+π− 0.24 ± 0.72
D̄0 → π+π− -0.46 ± 0.69
MC -0.006 ± 0.023

4.8.1. Tau31 Results. The MINUIT output is included in appendix A.

Parameter description:

A_0, p0, tau, B_0, p1, tau_prime

a_0

a_1

a_2

a_3

plus(minus)_acceptanceloss

plus(minus)_acceptancelosscat1

plus(minus)_acceptanceloscat2

plus(minus)_conversions

plus(minus)_bgd

plus(minus)_uds

plus(minus)_cc

plus(minus)_bb

The final result for the tracking efficiency versus lab momentum is shown in

Figure 4.10, and the tracking asymmetry at four momentum points is found in

Figure 4.10. The black curve in Figure 4.10 indicates the equation 1 with the
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parameters taken from the fit. The red curves indicate the 1 sigma error bands

obtained from the correlation error matrix with respect to the six parameters of

the tracking efficiency function. We do not include correlations from the other

parameters in the fit.
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Figure 4.10: Tracking Efficiency as a function of Lab Momentum with 1 sigma error
bands shown in red. The Tracking Asymmetry as a function of Lab Momentum is
inset.
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Figure 4.11: τ+ χ2 distribution as a function of cos(θ) prime in bins of p prime

4.8.2. D0 → π+π−.
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Figure 4.12: Fit result for τ+ residual distributions as a function of cos(θ) prime in
bins of p prime

4.8.3. Expected Tracking Asymmetries based on known nuclear cross

section measurements.
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Figure 4.13: Fit result for τ− χ2 distribution as a function of cos(θ) prime in bins
of p prime
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Figure 4.14: Fit result for τ− residual distributions as a function of cos(θ) prime in
bins of p prime
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Figure 4.15: Model using parameters of final fit for π+ and π− distribution as a
function of cos(θ) prime in bins of p prime
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Figure 4.16: Fits to D0 mass in bins of lab momentum of slower π+ track.
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Figure 4.17: Fits to D0 mass in bins of lab momentum of slower π− track.
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Figure 4.18: Fits to D̄0 bar mass in bins of lab momentum of slower π+ track.
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Figure 4.19: Fits to D̄0 mass in bins of lab momentum of slower π− track.
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Figure 4.21: Nuclear cross section measurements for pion on proton and pion on
deteurium as a function of lab momentum
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Chapter 5

Measurment of Direct CP Asymmetry in the

decay of D+ → K+K−π+

5.1. Data sets and Event Selection

The data used are all from runs 1-6, including both on-resonance and off-resonance

running. We also use “Signal” MC (generated useing a phase space decay model),

a 2xData R24 generic MC and a 5xData R26 generic MC.

Data and Monte Carlo collections for this analysis were produced from the

Release-24 series, using analysis-51 and con24boot09 conditions. Additional generic

Monte Carlo for cc̄ and bb̄ events are available in the Release-26 series. We combine

R24 and R26 Monte Carlo to increase statistics for modeling the background as

a function of the Dalitz plot position. Refer to Table 5.1 for data luminosity and

equivalent MC luminosity for these data sets.

Collection Luminosity (fb−1)
PR Data R24c-v07 476.083
uds SP Data R24c-v07 1133.063
cc̄ SP Data R24c-v07 951.183
cc̄ SP Data R26a-v02 3659.497
B+B− SP Data R24c-v07 1347.204
B0B̄0 SP Data R24c-v07 1364.227
B+B− SP Data R26a-v02 1731.983
B0B̄0 SP Data R26a-v02 1570.589

Table 5.1: Integrated luminosity collected from the BaBar experiment (PR Data)
and equivalent luminosity of generic Monte Carlo data sets used in this analysis.
The PR Data collection is a fully reprocessed data set which includes all of the
improvements in software and tracking over the life of the experiment. The R26a
SP collections are Monte Carlo collections equivalent to to R24c MC collections,
however, these data sets have a significant increase in statistics for the charm Monte
Carlo.
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The candidate reconstruction is split into three stages, the first being the skim-

ming of All-Events data. An official skim which selects D+ and D+
s exists in the

R24 skimming cycle [14]. The second stage is the pre-selection criteria that are im-

posed during the ntuple production process while running over the skimmed events.

Vertexing, particle id, mass, and momentum cuts are applied to reduce background

and sample size. The third stage is the Candidate selection which has requirements

on track quality, and a Likelihood Ratio (LR) test is performed to discriminate be-

tween signal and background which tunes the purity and signifcance of signal events

in data. Description of the discriminant can be found in appendix B.

Skim Selection [14]:

•Kaon particle ID KCombinedSuperLoose

•Pion Track: GoodTracksVeryLoose

•pCM > 2.4 GeV

•Vertex Probability > 0.005

•1.7 GeV < m(D) < 2.1

Pre-Selection Criteria:

•Kaon Particle ID KaonBDTTight

•Pion track is GoodTracksLoose

•1.7 GeV < m(D) < 2.1

•pCM > 2.4 GeV

•Vertex fit probability > 0.5%

Candidate Selection Criteria:

•2.4 GeV < pCM < 5 GeV

•1.8 GeV < m(D) < 1.94

•Drift Chamber dE/dx > 300 for all daughter tracks

•Number of DIRC photons associated with daughter tracks is at least 1

•pT of pion track > 300 MeV

•q-value cut m(K+K−π+) - m(K−π+) - m(π(PDG)) > 15 MeV
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•D0 mass cut —m(K+K−) - m(D0(PDG)— > 5(D0 PDG width)

•Select 1 candidate per event with largest vertex fit probability

•Dalitz boundary cut on mass-constrained Dalitz plot variables m2
KK and m2

Kπ

•Likelihood Ratio (LR) LR > 0.85
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5.2. Background Studies

This section describes our preliminary look at the background and various back-

ground models that have been fit to the sideband data.

Several studies are performed on Monte Carlo and data to determine the sources

of backgrounds within the signal region, the amount of asymmetry present in the

background, and the distribution of background events in data. We find that while

the background consists of over 40 distinct sources the amount of asymmetry in

the background is small. In addition, the shape of the background does change

dramatically as a function of the D+ mass.

5.2.1. Generic Monte Carlo Background Analysis. Generic Monte Carlo

is a useful tool in understanding the types of backgrounds that are present in the

data. The classification of these backbrounds has been determined for the various

generic MC data sets, and we provide of the breakdown of these backgrounds for

D+ and D− events after passing all event selection criteria. The backgrounds are

categorized seperately for the lower mass sideband region and upper mass sideband

region and by the charge of the D meson. The detailed of the background are

included in appendix B. Here, we summarize our findings of the background analysis:

•5% electron or muon is mis-identified as a pion

•7% kaon is mis-identified as a pion

•3% pion is mis-identified as a kaon

•UDS MC 16% K̄∗0 Resonance

•UDS MC 12% Φ Resonance

•cc̄ MC 5% K̄∗0 Resonance

•cc̄ MC 9% Φ Resonance

•cc̄ MC 5% D0 Semileptonic Decays

•cc̄ MC 5% D0 → K−π+π0

•Signal decays mis-reconstructed with random pion account for 3%
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5.2.2. Background Asymmetry in Sideband Data. This section shows the

results of various comparisons of sideband data (using χ2 tests) of D+ vs D− and

for different mass regions. Before proceeding with a study of the CP asymmetry

in the signal decay we need to ensure that the asymmetry in the background is

negligible. To do so, we evaluate the χ2 over 441 bins. The binning is chosen

from the the reconstruction efficiency so that a comparison can also be made using

background events which have been corrected by phase space and efficiency. The

largest contribution to the χ2 is from comparing the combined D+ and D− events

for the lower mass sideband (left) to the upper mass sideband (right). The results

are reported in Table 5.2.

Charge Sideband Correction χ2/ndof Probability
D+ Left-Right none 1.10 0.065
D− Left-Right none 1.24 0.000
D± Left none 0.94 0.822
D± Right none 1.05 0.237
D± Left-Right none 1.36 0.000
D+ Left-Right Phase-Space 1.10 0.066
D− Left-Right Phase-Space 1.24 0.001
D± Left Phase-Space 0.94 0.817
D± Right Phase-Space 1.05 0.206
D+ Left-Right Phase-Space X Efficiency 1.10 0.067
D− Left-Right Phase-Space X Efficiency 1.24 0.001
D± Left Phase-Space X Efficiency 0.95 0.777
D± Right Phase-Space X Efficiency 1.07 0.155

Table 5.2: Sideband asymmetry analysis for data, with and without correcting for
phase-space and efficiency. The largest differences are due to comparing the upper
and lower sideband data. This behavior is expected since the background varies
linearly with respect to the D+ mass. The sidebands with respect to charge do not
exhibit any asymmetry over the Dalitz plot.

5.2.3. Background Slices. Profiles of background shapes are made in various

dimensions with respect to the Dalitz plot m2 variables and helicity angles. For

example, course bins are chosen in m2(K+K−) ( Figure G.1). For each bin in

m2(K+K−) the m2(K−π+) is plotted ( Figure G.3). Several of these slices are made
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for the low mass and high mass sideband region with respect to the charge of the

D± meson:

•slices in m2(K+K−) corresponding to plots in m2(K−π+) (Appendix G)

•slices in m2(K+K−) corresponding to plots in cos(θ)K+K− (Appendix H)

•slices in m2(K−π+) corresponding to plots in m2(K+K−) (Appendix G)

•slices in m2(K−π+) corresponding to plots in cos(θ)K−π+ (Appendix H)

5.2.4. Background with Phase-Space Profiles. In addition to plotting raw

distributions of background events in various dimensions, Dalitz plot projections

(with phase-space events for comparison) are another useful tool in determining the

structure of the background. Since the shape of phase-space is known, enhanced

structure above a flat phase-space indicate which structures are significant. Plots of

background events in the sideband regions for D+ and D− with phase-space events

from signal MC (scaled to the number of events int the sideband) show structure that

is not due to phase-space alone. The efficiency-corrected signal MC is also plotted,

giving a clear indication of the shapes which need to be described in a background

PDF.
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Figure 5.1: D+ low mass sideband region Dalitz plot projections of background
events and reconstructed signal MC phase-space events. Clear φ(1020) and K̄∗(892)
peaks are visible.
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Figure 5.2: D− low mass sideband region Dalitz plot projections of background
events and reconstructed signal MC phase-space events. Clear φ(1020) and K∗(892)
peaks are visible.
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Figure 5.3: D+ high mass sideband region Dalitz plot projections of background
events and reconstructed signal MC phase-space events. Clear φ(1020) and K̄∗(892)
peaks are visible.
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Figure 5.4: D− high mass sideband region Dalitz plot projections of background
events and reconstructed signal MC phase-space events. Clear φ(1020) and K∗(892)
peaks are visible.
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5.2.5. Background shape as a function of D+ mass. We compare the

Dalitz plot projections of sideband data in slices of the D+ mass to look for vari-

ation within each sideband. The comparisons are shown in Figure 5.5,Figure 5.6,

Figure 5.7, and Figure 5.8. The mass windows extend as far away as 8σ from the

mean of D+ down to 4.5σ. Plots of the projections are provided for a 2σ mass

window and for mass windows of 0.5σ. Qualitatively, the shape of the Dalitz plot

projections do not differ from mass regions far away from D+ signal region and close

to the signal region. The charge of the D+ is not considered in this study since

the background asymmetry has been discussed in previous sections. No significant

variation with mass is apparent.

5.2.6. Background Model. Several choices for the modeling of the back-

ground over the Dalitz plot within the signal region are possible. Two steps are

neccesary in determining the model of the background:

•Mass dependence of the background shape

•Accurate description of sideband data over the Dalitz plot

The mass dependence of the background shape can be determined directly from

data with an accurate fit of the entire D mass spectrum. From the previous sec-

tion, we know that the mass dependence is linear, while the signal depends on three

seperate components. However, an accurate description of the background shape

over the Dalitz plot requires fitting and validating various possible models. These

include using the BaBar Monte Carlo, re-normalization of the Monte Carlo to de-

scribe data or fitting directly to the sideband data. The preferred method in this

analysis is to find a model which can be fit directly to the data and then be validated

with data which gives a goodness-of-fit close to or equal to one. We fit the sideband

with different models:

•Monte Carlo Model

•Dalitz plot model

•k Nearest Neighbor
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Figure 5.5: Unnormalized D low mass sideband region Dalitz plot projections of
background events in slices of the D mass. The black points represent a 2σ mass,
while the remaining points are taken from 0.5σ mass regions.

•3-region model

5.2.6.1. Monte Carlo Model. This model consists of a sum of histograms, each

of which describes a particular MC component as a pdf. The pdfs we consider are

11 in number: 3 pdfs from uds MC, 6 pdfs from cc̄ MC, 1 pdf for B+B− MC, and

1 pdf for B0B̄0 MC. A description of these follows in Table 5.3 below.
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Figure 5.6: Normalized D low mass sideband region Dalitz plot projections of back-
ground events in slices of the D mass. The black points representa 2σ mass, while
the remaining points are taken from 0.5σ mass regions.

Since the MC description of the data may not be perfect, we float the fractions of

each pdf incoherently in our fit to sideband data and report the results in Table 5.3,

Table 5.4, Table 5.5, and Table 5.6.

The results of the fits are shown in Figure 5.9, Figure 5.10, Figure 5.11, and

Figure 5.12. The χ2/ndof for the fits varies between 1.2 and 1.4. We find this

unacceptably high; also, we find that the fit fractions are considerably different from

the MC which further calls this model into question.
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Figure 5.7: Unnormalized D high mass sideband region Dalitz plot projections of
background events in slices of the D mass. The black points represent a 2σ mass,
while the remaining points are taken from 0.5σ mass regions.

The sideband regions used in our fits are 2σ on the lower and upper mass regions,

and since the D mass dependence is linear (determined from the integrated mass

fit) we take the sum of the lower and upper parameter as the number of events

corresponding to a given background pdf. We combine R24 and R26 generic Monte

Carlo for cc̄ and bb̄ events to increase the statistics of the background. The data set

for uds Monte Carlo is R24 only. The fit results is shown in Figure 5.13.
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Figure 5.8: Normalized D high mass sideband region Dalitz plot projections of
background events in slices of the D mass. The black points representa 2σ mass,
while the remaining points are taken from 0.5σ mass regions.

To further clarify the difference in the generic Monte Carlo composition before

and after the fit, we show the Dalitz plot projections with the contributions from

each pdf stacked ( Figure 5.14 and Figure 5.15. The backgrounds generated in the

BaBar Monte Carlo do not accurately model either the overall normalization or the

shape of the background.
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MC background pdf Fraction in MC (%) Fraction in data after fit (%)

uds(other) 6.78 4.53
uds(K̄∗(892) 4.78 2.15
uds(φ(1020) 5.89 8.69
cc̄(D+) 12.77 13.55
cc̄(Ds) 6.82 2.58
cc̄(D0) 12.96 6.82
cc̄(K̄∗) 9.06 18.76

cc̄(φ(1020)) 9.21 11.94
cc̄(other) 22.54 23.29
B+B− 5.28 0.00
B0B̄0 3.91 7.71

Table 5.3: Fractions of pdfs in the background from MC and after a fit to the D+

lower data sidebands.

MC background pdf Fraction in MC (%) Fraction in data after fit (%)

uds(other) 6.79 3.13
uds(K̄∗(892) 4.40 4.33
uds(φ(1020) 5.43 9.33
cc̄(D+) 13.36 8.05
cc̄(Ds) 10.98 10.12
cc̄(D0) 13.82 25.07
cc̄(K̄∗) 7.32 10.44

cc̄(φ(1020)) 6.91 10.00
cc̄(other) 21.64 19.52
B+B− 5.59 0.00
B0B̄0 3.77 0.00

Table 5.4: Fractions of pdfs in the background from MC and after a fit to the D+

upper data sidebands.

5.2.6.2. Alternative Models to the Monte Carlo. As an alternative to the Monte

Carlo as a description of the background, we fit the sideband data using a phe-

nomenological model and a multivariate density estimator. The details of the phe-

nomenological model may be found in section 5.6.4 and the k nearest-neighbor al-

gorithm (kNN) in appendix ??.

In brief, the phenomenological (parametric) model for the background is com-

prised of several resonances, such as the φ(1020) and K̄∗0. In addition we allow for
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MC background pdf Fraction in MC (%) Fraction in data after fit (%)

uds(other) 5.77 2.53
uds(K̄∗(892) 4.97 0.00
uds(φ(1020) 5.60 4.49
cc̄(D+) 12.85 0.00
cc̄(Ds) 6.81 12.80
cc̄(D0) 13.06 21.84
cc̄(K̄∗) 9.28 17.62

cc̄(φ(1020)) 9.45 12.32
cc̄(other) 22.76 20.08
B+B− 5.42 0.00
B0B̄0 4.03 8.33

Table 5.5: Fractions of pdfs in the background from MC and after a fit to the D−

lower data sidebands.

MC background pdf Fraction in MC (%) Fraction in data after fit (%)

uds(other) 6.35 0.00
uds(K̄∗(892) 4.44 6.67
uds(φ(1020) 5.31 9.81
cc̄(D+) 13.90 0.00
cc̄(Ds) 11.08 15.02
cc̄(D0) 13.99 30.18
cc̄(K̄∗) 7.16 0.40

cc̄(φ(1020)) 6.80 5.89
cc̄(other) 21.57 17.87
B+B− 5.71 4.58
B0B̄0 3.70 9.60

Table 5.6: Fractions of pdfs in the background from MC and after a fit to the D−

upper data sidebands.

resonances to interfere if they decay to the same final-state particles. The follow-

ing resonances are included in the amplitude: φ(1020), f0(980), f0(1370), f0(1710),

K̄∗0(892), and K̄∗0(1430). The total amplitude squared is

|A|2 =|Aφ(1020)e
iφφ(1020) |2+

|Af0(980)e
iφf0(980) + Af0(1370)e

iφf0(1370) + Af0(1710)e
iφf0(1710) |2+

|AK̄∗0(892)e
iφK̄∗0(892) + AK̄∗0(1430)e

iφ
K̄∗0(1430) |2

(5.2.1)
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Figure 5.9: Fit results to validation sample of low mass sideband for D+ events. The
upper left plot is the data. The upper right plot is the Monte Carlo model fit result.
The bottom plots show the corresponding projections of the Dalitz plot. Data are
the black points, and the fit result is the red histogram.

with the magnitude and phase of K̄∗0 fixed to 1,0. Due to the mass constraint

imposed on the data, the dominant resonant masses are shifted by several MeV. We

float the φ(1020) and K̄∗0 masses in the fit and minimize the likelihood function

−2 lnL = −2

Nfit
∑

i=1

ln

(

B(xi, yi)
s
B(xi, yi)dxdy

)

. (5.2.2)
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Figure 5.10: Fit results to validation sample of high mass sideband for D+ events.
The upper left plot is the data. The upper right plot is the Monte Carlo model
fit result. The bottom plots show the corresponding projections of the Dalitz plot.
Data are the black points, and the fit result is the red histogram.

The kNN model is a non-parametric model, based on multivariate kernel estimate

techniques [34], which measures the density of a given data set by searching for k

neighbors within a hyper-sphere of a given radius. The only parameter in the model

is the number of nearest neighbors, k, to a given data point within the hyper-sphere.

To fit the sideband samples, the events are randomly split into a fitting and

validation sample. We measure the χ2 of the model and the validation sample with
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Figure 5.11: Fit results to validation sample of low mass sideband for D− events.
The upper left plot is the data. The upper right plot is the Monte Carlo model
fit result. The bottom plots show the corresponding projections of the Dalitz plot.
Data are the black points, and the fit result is the red histogram.

25 equally populated bins [33]. The χ2 ( Table 5.7) is smaller for the kNN which

has only one parameter, k, the number of nearest neighbors.

χ2 =

Nbins
∑

i=1

(Nobs
i −Npred

i )2

Npred
i

(5.2.3)

where Npred
i is the number of predicted events from our model for a given bin i

determined from integrating the model over the bin limits
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Figure 5.12: Fit results to validation sample of high mass sideband for D− events.
The upper left plot is the data. The upper right plot is the Monte Carlo model
fit result. The bottom plots show the corresponding projections of the Dalitz plot.
Data are the black points, and the fit result is the red histogram.

Npred
i =

x

dxdyB(x, y). (5.2.4)

5.2.6.3. 3-region Background Model. The models described previously do not

provide an accurate description over the entire region of the Dalitz plot. Our fi-

nal approach was to fit sidebands using unconstrained masses in the φ(1020) and

K̄∗0(892) regions with a constrained kNN model used for the rest of the Dalitz plot.
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Figure 5.13: Background model and projections that results from the fit.

Model Sideband χ2 Ndof
Dalitz Low 69.96 11
kNN Low 64.16 24
Dalitz High 45.36 11
kNN High 38.34 24

Table 5.7: Comparison of goodness-of-fit of sideband data fit with a phenomelogical
model and kNN.

This has the advantage that the resonance regions are described by data shapes

without the shifting of resonance masses that occurs with a D mass constraint. The
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Figure 5.14: D+ Dalitz plot projections for mKK (left) and mKπ (right) for the MC
(top) and after the fit to the data (bottom).

rest of the Dalitz plot shows no sharp structures and is more easily described by

constrained mass variables.

In the region of the φ(1020) and K̄∗0(892) we fit the “square Dalitz plot” (mass

and cos(θ)Helicity) region with a fit function described below. The model consists

of a Breit-Wigner(BW) and a constant plus linear (BG) term in mass times a sum

of Legendre polynomials plus a term linear in cos(θ)Helicity. The additional term in

cos(θ)Helicity allows for any forward-background asymmetry. We fit the combined

data of the upper and lower sideband D mass regions, selecting events which lie
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Figure 5.15: D− Dalitz plot projections for mKK (left) and mKπ (right) for the MC
(top) and after the fit to the data (bottom).

within 2σ of the PDG mass of the φ and the K̄∗0. In the case of the K̄∗0 region, the

coefficients of the Legendre polynomials and the mass terms are the same. However,

this does not work for the φ(1020) and so we allow the coefficients to be different

in this case. The masses and widths of the φ and K̄∗0 are floated in the fit. A

penalty term is added to the likelihood function when floating the resonant masses

and widths; this term constrains these quantities to be consistent with the PDG.

The MINUIT fit results are found in appendix K.
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Figure 5.16: D± Dalitz plot projections for each background fitted to the data.

|ABW |2 =
Γ

(mKK,Kπ −mφ,K̄∗0)2 + (Γ/2)2
(5.2.5)

P0 = 1 (5.2.6)

P1 = cos(θ)Helicity (5.2.7)

P2 =
3 cos2(θ)Helicity − 1

2
(5.2.8)
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Figure 5.17: D± Dalitz plot projections for each background fitted to the data.

BW =

[ |ABW |2
∫

|ABW |2dm

]

P 2
0 + bw11P

2
1 + bw22P

2
2 + bw01P0P1 + bw02P0P2 + bw21P2P1 + bwcos(θ) cos(θ)

2(1 + bw11/3 + bw22/5)

(5.2.9)

BG =

[

1
∫

dm
+ a(m − mφ,K̄∗0)

]

P 2
0 + p11P

2
1 + p22P

2
2 + p01P0P1 + p02P0P2 + p21P2P1 + pcos(θ) cos(θ)

2(1 + p11/3 + p22/5)

(5.2.10)

χ2
penalty =

(mR −mPDG
R )2

(∆mPDG
R )2

+
(ΓR − ΓPDG

R )2

(∆ΓPDG
R )2

(5.2.11)

119



−2 lnL = −2





Nfit
∑

i=1

ln(NBW BW + NBGBG) − (NBW + NBG)



+
[(NBW + NBG) − Nfit]

2

NBW + NBG

+χ2
penalty

(5.2.12)
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Figure 5.18: Square Dalitz plot of combined sideband data within 2σ of the φ mass
(top left). No mass constraint is imposed on the data, therefore, the fitted mass of
the φ is close to the PDG value, 1.01947 ± 0.00002 GeV. The upper right plot is the
square dalitz plot of generated events (10X data) of the fitted model. Projections are
shown in the bottom plots, where the data is indicated with black points and error
bars, while the model is shown as a red histogram. The coefficients of the Legendre
polynomials are floated for the background term (BG) and the Breit-Wigner term
(BW).
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Figure 5.19: Square Dalitz plot of combined sideband data within 2σ of the K̄∗0

mass (top left). No mass constraint is imposed on the data, therefore, the fitted
mass of the K̄∗0 is close to the PDG value, 0.896016 ± 0.00022 GeV. The upper
right plot is the square dalitz plot of generated events (10X data) of the fitted model.
Projections are shown in the bottom plots, where the data is indicated with black
points and error bars, while the model is shown as a red histogram. The coefficients
of the Legendre polynomials are common to the background term (BG) and the
Breit-Wigner (BW) term.

5.3. Reconstruction Efficiency

In this section we describe the components of the reconstruction efficiency func-

tion used in the Dalitz plot fit. This function derives from the phase space Monte

Carlo and is parameterized using a neural net as described below. The efficiency
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from the MC is first obtained as a binned (21x21) histogram. The events in this

histogram are weighted by the product of two ratios: a ratio of production distribu-

tions (data/MC in 10x10 bins of p∗ × cos θ∗) and of tracking efficiencies (which are

functions of lab momenta only, but include charge asymmetry) obtained as described

in a subsection below.

5.3.1. Dalitz Plot Efficiency. Our measurement of the CP asymmetry is a

function of the Dalitz plot position; therefore we require that our reconstruction

efficiency be known as a function of the Dalitz plot position. Since the efficiency

varies slowly over the Dalitz plot, an articial neural network (ANN) is used to provide

a precise determination of the efficiency as a function of the Dalitz plot position.

Here we use the ANN to approximate the efficiency as a continuous function using

a linear combination of sigmoid functions.

We estimate the efficiency in 441 bins over the Dalitz plot, using 24 million

generated events for both D+ and D−. The estimated efficiency at the bin centers

provide the artifical neural network an output target value which is required to be

a softmax function. The resulting function as a position of the Dalitz plot position

has a value between 0 and 1. To train and test the neural network, the ROOT class

TMultiLayerPerceptron [42] is used. The training and testing sample input values

and output efficiencies are determined first from randomly splitting the Monte Carlo

sample.
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Figure 5.20: The plots are produced from TMultiLayerPerceptronAnalyzer. D+

MultiLayerPerceptron input variables and architecture. The input variables x and
y correspond to the Dalitz plot variables m2(K+K−) and m2(K−π+).

5.3.2. Tracking Efficiency. The overall reconstruction efficiency is a product

of tracking efficiency for each daughter track of the D meson, vertexing efficiency,

detector acceptance, and the remaining efficiency is due to candidate selection. The

tracking efficiency is known from data [37], The final results of the study are shown

in Figure 5.24. the remaining efficiencies are taken from the Monte Carlo.

ǫMC = ǫ(−→p K1)ǫ(
−→p K2)ǫ(

−→p π)ǫV ertexAǫother(
−→p K1,

−→p K1,
−→p π) (5.3.1)
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Figure 5.21: D+ MultiLayerPerceptron Validation. A χ2 test is performed over 441
bins. The histograms are in bins of m2(K+K−) and are functions of the m2(K−π+).
The normalized residual distribution with a Gaussian fit is obtained.

In this section we describe detailed studies of tracking efficiencies and vertexing

probabilities as a function of the Dalitz plot position. The tracking efficiency as a

function of Dalitz plot position ( Figure 5.25) is determined by weighting phase-space

MC events with the product of the daughter track efficiencies, ǫ(−→p K1)ǫ(
−→p K2)ǫ(

−→p π),

which are known from Figure 5.24. The projections in m2(K+K−) and m2(K−π+)

are flat. We find the ratio of the tracking efficiency and the overall reconstruction

efficiency, ǫReconstruction/ǫTracking, shown in Figure 5.26.

124



0 0.002 0.004 0.006 0.008 0.01

1

10

differences (impact of variables on ANN)

0 0.002 0.004 0.006 0.008 0.01

1

10

x

y

differences (impact of variables on ANN)

x

y

epsilon!

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

50

100

150

200

250

300

350

400

Neural net output (neuron 0)

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

50

100

150

200

250

300

350

400

Background

Signal

Neural net output (neuron 0)

Figure 5.22: The plots are produced from TMultiLayerPerceptronAnalyzer. D−

MultiLayerPerceptron input variables and architecture. The input variables x and
y correspond to the Dalitz plot variables m2(K−K+) and m2(K+π−).

5.3.3. Efficiency as a function production angle. In order to measure the

integrated CP asymmetry and forward-backward asymmetry, we need the recon-

struction efficiency as a function of production angle bin. We measure the efficiency

in bins of cos(θ)CM after correcting for tracking and production. The error on the

efficiency is given by the following:

∆ǫ =

√

ǫ(1 − ǫ)

N
(5.3.2)
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Figure 5.23: D− MultiLayerPerceptron Validation. A χ2 test is performed over 441
bins. The histograms are in bins of m2(K−K+) and are functions of the m2(K+π−).
The normalized residual distribution with a Gaussian fit is obtained.

5.4. D+ Mass Fit

5.4.1. Radiative Decays in Monte Carlo. Using BaBar Monte Carlo, we

study the radiative decays of the D+ and D+
s mesons. The Monte Carlo provides the

radiated photon energy either due to a direct radiative decay or due to bremsstralung

of one the daughter particles of the D meson. Bremsstranlung radiation does not

significantly affect the mass distribution, but the radiative decays create a long tail
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Figure 5.24: The final Results of the tracking study using decays of τ leptons. The
details of the analysis can be found in BAD 2258 [37]. The analysis allows us to
measure the tracking efficiency and asymmetry as a function of lab momentum. The
black curve is the efficiency with the 1σ contour bands shown in red. The inset plot
is the asymmetry measured in 3 momentum bins.

in the lower mass due to the missing energy carried away from the photon. We

study the mass distribution as a function of photon energy and the angle between

the daughter tracks and the radiated photon. In addition, we estimate the mass

resolution of the D meson to correct the Monte Carlo.

We measure the full width at half maximum (FWHM) in data ( Figure 5.29) and

Monte Carlo ( Figure 5.30) to determine the resolution smearing width needed to
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Figure 5.25: Product of the daughter particle tracking efficiency as a function of the
Dalitz plot. Given the tracking efficiency determined from the τ31 study, we weight
the generated Phase-Space Monte Carlo events to arrive at the overall tracking
efficiency.

correct the Monte Carlo. To do so, we use bins of 0.1 MeV in width for data and 0.01

MeV in width for phase-space generated Monte Carlo. The maximum of the peak in

data and MC is determined by fitting a gaussian in the vicinity of the peak, taking

the maximum of the gaussian as the maximum for the FWHM measurement. In

MC, the half maximum of the peak is taken from zero, while in data we determine

the background level from a linear fit of the sideband regions and extrapolating

through the signal region. In data, we find that the FWHM is 11.40 MeV and the
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Figure 5.26: Comparison of the overall reconstruction efficiency, the tracking effi-
ciency ( Figure 5.25), and the ratio of reconstruction efficiency and tracking effi-
ciency. A clear structure in the projections of the efficiency ratio indicates there is
an additional effect in the Monte Carlo that requires further study, specifically the
vertexing.

Monte Carlo is narrower at 10.08 MeV. As a result, the resolution smearing factor

is 2.26 MeV. The same selection criteria is applied to data and Monte Carlo when

measuring the FWHM.

The distributions of the mass for radiative decays are studied in signal phase-

space MC ( Figure 5.31) and in generic phase-space ( Figure 5.32) events in MC. We

select events in both datasets which produce non-resonant K+, K−, π+ daughters
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cos(θ)CM ǫ(D+) (%) ∆ǫ(D+) (%) ǫ(D−) (%) ∆ǫ(D−) (%)
-1.00 to -0.60 5.27 0.01 5.29 0.01
-0.60 to -0.40 12.10 0.02 12.16 0.02
-0.40 to -0.20 13.78 0.02 13.82 0.03
-0.20 to 0.00 14.85 0.03 14.81 0.03
0.00 to 0.20 14.95 0.03 15.06 0.03
0.20 to 0.40 13.09 0.02 13.13 0.02
0.40 to 0.60 8.41 0.02 8.48 0.02
0.60 to 1.00 0.64 0.00 0.64 0.00

Table 5.8: Reconstruction efficiency as a function of the production angle. Tracking
and production corrections are included in these results.

with a single radiated photon from the D. These events are also selected for D(s)

decays in the generic Monte Carlo. The photon energy is the generated energy in

the Monte Carlo, and the angle between the daughter tracks is also measured from

the generated momenta of the particles. We find that the photons are not colinear

with any of the daughter tracks.

The mass distribution of phase-space generated single photon radiative decays

for Eγ > 1 MeV is a model that is included as an additional pdf in the mass fit

to data. The Monte Carlo distribution is corrected for resolution by smearing the

distribution by 2.26 MeV with a gaussian for each mass reconstructed in the Monte

Carlo. We generated an additional 1000 events for each MC event. The original

disrtibution from MC, the smeared distribution, and the PDF generated with an

additional 1000 randomly generated points are shown in Figure 5.33.
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Figure 5.27: Reconstruction efficiency as a function of the production angle
(cos(θ)CM). Tracking and production corrections are included in these measure-
ments. The top plots are the efficiencies for D+ and D−. The bottom left plot is the
asymmetry in the efficiency, and the bottom right plot shows the average efficiency.

5.4.2. Integrated Mass Fit. We perform an unbinned extended maximum

likelihood fit of the D± mass spectrum from 1.82 GeV2 to 1.92 GeV2. The model is

composed of three components:

•Shape of radiative decays ( Figure 5.33)

•Gaussian signal shape (double gaussian with same mean)

•Background polynomial (linear background)
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Figure 5.28: Reconstruction efficiency as a function of the production angle
(cos(θ)CM). Tracking and production corrections are included in these measure-
ments. The efficiency is estimated in 100 bins over the entire production range. The
lines at ±0.7 correspond to the symmetric range which we can ensure that D mesons
are reconstructed efficiently.

We use phase-space generated signal MC events to obtain the shape of radiative

decays. We search for reconstructed candidates which contain a single radiative

photon. We apply various cuts on the generated energy of the radiated photon to

find the shape associated with the lower tail of the D mass for hard photons which

significantly affect the signal shape ( Figure 5.31). For photons with energy greater
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Figure 5.29: Full width at half maximum measured in data. The dashed red lines
indicate the minimum, maximum, and half-maximum values. While the verticle
lines indicate the FWHM. The sideband fit to the background is indicated in the
blue linear curve, and the blue gaussian curve is the fit to determine the maximum.

than 10 MeV, we use the histogram with the MC mass smeared from the smearing

resolution gaussian as the pdf ( Figure 5.33) of the radiative events.

The model gives a χ2/ndof = 1.05 and a fit probability of 35%. The results are

shown in (Figure 5.34). The number of events due to each signal and background

component are found in Table 5.9.

The fit is re-performed to measure the total number of signal events. The pa-

rameters for each signal component are fractions that vary between 0 and 1. We
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Figure 5.30: Full width at half maximum measured in signal Monte Carlo. The
dashed red lines indicate the maximum, and half-maximum values. While the verti-
cle lines indicate the FWHM. The blue gaussian curve is fit to the peak to estimate
the maximum.

find an equivalent χ2 per degree of freedom of 1.05 and a probability of 35%. The

results of the fit are summarized in Table 5.10. The MINUIT output for both fits is

included in appendix J.

We select the signal and background regions from the total width and the mean

of the two gaussians. The signal region lies between ±2σ of the fitted D mass, and

the background regions lie between 6σ and 8σ of the D mass on the upper on lower
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Figure 5.31: Radiative D+ → K+K−π+γ in phase-space generated signal MC. The
upper left plot shows the D mass distribution for various cuts on the radiated photon
energy. The lower left plot is the angle between the radiated photon and the pion
track. The lower right plot indicates the various energy cuts on the photon in
dashed-red lines.

mass sideband regions ( Table 5.11). These are shown in Figure 5.35. The signal

region contains 227,874 events and the purity of events is 92%.
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Figure 5.32: Radiative D+,D+
s → K+K−π+γ in generic cc̄ MC. The upper left plot

shows the D mass without any photon energy cut and the D+ (red) and DS
+ (blue)

for E(γ) > 1 MeV. The upper right plot is the ratio of D+ to D+
s radiative decays.

Contamination of Ds decays in the signal region of D+ is negligiable.

5.5. CP Asymmetry Measurement in Decay

We describe and report measurements of the CP asymmetry A, where

A =
N(D+)/ǫ(D+) −N(D−)/ǫ(D−)

N(D+)/ǫ(D+) +N(D−)/ǫ(D−)
(5.5.1)

using various methods, both model-dependent and model-independent.
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Figure 5.33: Radiative D+ → K+K−π+γ in phase-space generated signal MC. The
upper left plot shows the D mass distribution for Eγ > 1 MeV. The MC distribution
is smeared with a gaussian with σ = 2.26 MeV. The lower right plot has an additional
1000 points randomly generated from the resolution smearing gaussian for each MC
event.

•CP asymmetry as a function of the production angle cos(θ)CM (the average of

or fit to which yields the integrated asymmetry ACP ).

•CP Asymmetry in 2-dimensional bins of the Dalitz Plot.

•Comparison of the Legendre moments in D+ and D−.

•CP asymmetry in resonance amplitudes from a Dalitz plot fit.
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Component N Error
Gaussian 1 79465 6382
Gaussian 2 141194 6486
Radiative 3226 343
Background 86726 486

Table 5.9: Signal and Background yields from the integrated mass fit. The signal
yields are reported for each signal component
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Figure 5.34: Results of the fit to integrated mass of D±. The normalized residual
at a given mass is shown in the lower right plot. The model gives a χ2/ndof = 1.05
and a fit probability of 35%.
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Component Value Error
N Signal 223881 586
Gaussian Fraction 0.638 0.043
Radiative Fraction 0.014 0.0028
Background 86733 530

Table 5.10: Signal and Background yields from the integrated mass fit. We measure
the total yield for signal and background, while each signal component is a fraction
of the total.

Signal Region (GeV2) Low Mass Sideband (GeV2) High Mass Sideband (GeV2)
1.85961 to 1.87978 1.82936 to 1.83944 1.89995 to 1.91004

Table 5.11: Signal and Background regions determined from fit to reconstructed D
mass. The mean and RMS of the two gaussians selects the mass windows.

5.5.1. CP Asymmetry measured as a function of cos(θ)CM . We measure

the asymmetry, A, in bins of the production angle. The yields and errors for D+ and

D− are obtained from binned χ2 fits of the D+ and D− mass. The fits are shown

in Figure 5.38, Figure 5.39, Figure 5.40, and Figure 5.41. Given the asymmetry in

each production bin, we measure the CP asymmetry as

ACP (θ) =
A(cos(θ)CM > 0) + A(cos(θ)CM < 0)

2
. (5.5.2)

and the foward-backward asymmetry as

AFB(θ) =
A(cos(θ)CM > 0) −A(cos(θ)CM < 0)

2
. (5.5.3)

The integrated CP asymmetry is measured as the average of the ACP in each

bin.

The forward-backward asymmetry, AFB, and the integrated CP asymmetry can

be measured simultaneously by fitting the asymmetry as a function of polar angle

to the following form [32]:

A(cos(θ)CM) = ACP + AFB
8

3

cos(θ)CM

1 + cos2(θ)CM
(5.5.4)
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Figure 5.35: Integrated mass fit with the signal and sideband regions shown in grey.
The signal region contains a total of 227,874 events.

In addition to binning the data in several production angle bins, we also measure

the asymmetry in the forward and backward regions, taking the average of asymme-

tries as ACP . We measure the asymmetry in a single bin for cos θCM between -0.7

to 0. in the backward region of the detector and in the forward region we measure

the asymmetry between 0. and 0.7. This ensures that we only consider events in

regions where we can reconstruct the D+ meson. In addition, the efficiency is taken

into account by weighting each event and fitting for the efficiency-corrected yields.

The efficiency as a function of production angle is shown in Figure 5.28. A summary
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Average cos θ Asymmetry ACP [%]
Average of ACP (θ) -0.14 ± 0.62
8 bins in cos θCM -0.17 ± 0.60
6 bins in cos θCM -0.05 ± 0.53

Table 5.12: Mean integrated CP asymmetry measured from 16 independent MC
samples. The RMS of these measurements is 0.2% larger than the statistical error
on each sample.

Method ACP [%] AFB[%]
FB regions ACP 1.12 ± 0.35 -2.12 ± 0.35
Average of ACP (θ) 1.13 ± 0.30 NA
From fit to A(cos(θ)CM) 1.12 ± 0.30 -2.92 ± 0.33

Table 5.13: Integrated CP asymmetry and forward-backward asymmetries measured
in data. The results of ACP are consistent from the three methods. The central
values for the ACP measurement are blinded by adding an unknown random number
generated from a uniform distribution between -1 and 1. The FB asymmetry is not
a blinded result.

of the asymmetries in data is found in Table 5.13, where the ACP measurement is

blinded.

We validate the procedure using 16 independent generic cc̄ MC samples. We

measure the CP asymmetry in a single bin for the forward and backward region,

taking the average CP asymmetry measured from 8 bins in cos θCM , and taking

the average CP asymmetry measured from 6 bins in cos θCM . The results of the

validation study are shown in Table 5.12. The statistical error on each of the MC

samples is 0.42%.
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Figure 5.36: Integrated CP asymmetry and forward-backward asymmetry.

5.5.2. CP Asymmetry in bins of the Dalitz plot. In addition to fitting for

the yields of D+ and D− in bins of the production angle, we also fit for the yields

in bins of the Dalitz plot. We split the Dalitz plot into four bins:

•φ(1020) region;

•K̄∗0(892) region;

•Below the K̄∗0(892) region;

•Above the φ(1020) and K̄∗0(892) region.

142



 < 0.0)
CM

)θ (-0.7 < cos(2) GeV/c+m(D
1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.9 1.91 1.92

E
ve

nt
s 

/ 1
.0

 M
eV

0

5000

10000

15000

20000

25000

30000

35000

40000

m
c

N
m

c
 -

 N
da

ta
N

 < 0.0)
CM

)θ (-0.7 < cos(2) GeV/c-m(D
1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.9 1.91 1.92

E
ve

nt
s 

/ 1
.0

 M
eV

0

5000

10000

15000

20000

25000

30000

35000

40000

m
c

N
m

c
 -

 N
da

ta
N

 < 0.7)
CM

)θ (0.0 < cos(2) GeV/c+m(D
1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.9 1.91 1.92

E
ve

nt
s 

/ 1
.0

 M
eV

0

5000

10000

15000

20000

25000

30000

35000

m
c

N
m

c
 -

 N
da

ta
N

 < 0.7)
CM

)θ (0.0 < cos(2) GeV/c-m(D
1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.9 1.91 1.92

E
ve

nt
s 

/ 1
.0

 M
eV

0

5000

10000

15000

20000

25000

30000

35000

m
c

N
m

c
 -

 N
da

ta
N

Figure 5.37: Fit results for the efficiency corrected D+ and D− mass in the backward
production bin (upper plots) and the forward production bin (lower plots). We
consider only candidates which have a production between -0.7 and 0.7.

•The entire Dalitz plot. The efficiency in each bin is determined from integrating

the ANN efficiency (which included the tracking and production corrections).

The analysis is performed on 16 independent R24c generic cc̄ MC and results are

reported in Table 5.14. We report the mean and RMS of the measurements after

adding a random number.
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Figure 5.38: Fit results for the D+ and D− mass in the backward production bin
(upper plots) and the forward production bin (lower plots).

Bin m2(KK) (GeV2) m2(Kπ) (GeV2) ACP [%] Aǫ[%]
1 1.5 to 3 0.35 to 0.6 0.45 ± 1.22 0.26
2 0.95 to 3 0.6 to 1. -0.13 ± 0.45 -0.008
3 0.95 to 1.3 1. to 1.9 -0.27 ± 0.39 0.14
4 1.3 to 3. 1. to 1.9 0.27 ± 1.20 0.07
5 0.95 to 3 0.35 to 1.9 0.08 ± 0.51 0.07

Table 5.14: CP Asymmetry measured with the R24c and R26a generic cc̄ data set.
We report the mean and RMS from 16 independent measurements. The Dalitz plot
is divided into four bins. The error is determined from the yields only. The last
entry in the corresponds to integrating over the entire Dalitz plot.
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Figure 5.39: Fit results for the D+ and D− mass in the backward production bin
(upper plots) and the forward production bin (lower plots).

5.5.3. CP Asymmetry in the Legendre Moments. We compare D+ and

D− in KK and Kπ mass with Legendre moment weighted events. We obtain

background-subtracted and efficiency corrected distributions as a function of the

two-body mass. For background subtraction, we take the Legendre moment weighted

mass-constrained events from the upper and lower D+ and D− mass sidebands and

subtract these distrbutions from the signal region distributions. The distributions

are then corrected for efficiency. The efficiency is computed by integrating the 2-

dimensional ANN efficiency function and dividing by the area for each bin of KK
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Figure 5.40: Fit results for the D+ and D− mass in the backward production bin
(upper plots) and the forward production bin (lower plots).

mass or Kπ mass. The normalized residuals are computed for each two-body mass

bin and moment.

Xi =
PD+

i − PD−

i
√

σ2

P D+
i

+ σ2

P D−
i

(5.5.5)

The errors are computed from the sum of the legendre moments weights-squared

and the efficiency:
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Figure 5.41: Fit results for the D+ and D− mass in the backward production bin
(upper plots) and the forward production bin (lower plots).

σ2
Pi

=

∑Nevents P 2
Signal +

∑Nevents P 2
Background

ǫ2i
(5.5.6)

We then calculate the χ2/ndof over all the bins in either the KK moments or

Kπ moments:

χ2 =
∑

bins

∑

i

∑

j

XiρijXj (5.5.7)
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Figure 5.42: Fit results for the D+ and D− mass in the Dalitz plot region below
K̄∗0(892).

where ρij is the correlation coefficient for the ij moment and the number of

degrees of freedom is the product of the number of bins in mass × the number of

moments.

ρij =
〈XiXj〉 − 〈Xi〉〈Xj〉

√

〈X2
i 〉 − 〈Xi〉2

√

〈X2
j 〉 − 〈Xj〉2

(5.5.8)

The expectation values 〈Xi〉, 〈X2
i 〉, and 〈XiXj〉 are evaluated from the mean of

10 measurements by splitting the sample into 10 subsamples.
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Figure 5.43: Fit results for theD+ andD− mass in the Dalitz plot region of K̄∗0(892).

We begin with a comparison of the charge-independent moments in the KK and

Kπ system for the D+ decay and the Cabibbo-favored mode Ds → K+K−π+. The

moments up to Y 0
7 for Ds are shown in Figure 5.47 and Figure 5.49 and for D+ are

shown in Figure 5.46 and Figure 5.48.

The R24c generic cc̄ sample is analyzed here, computing the χ2 up to the Y 0
7 mo-

ment in the KK and Kπ system. The results of the analysis are found in Table 5.15.
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Figure 5.44: Fit results for the D+ and D− mass in the Dalitz plot region of the
φ(1020).

System χ2 ndof χ2/ndof
KK 307.5 288 1.07
Kπ 409.3 288 1.42

Table 5.15: Results of moments analysis with the R24c generic cc̄ Monte Carlo data
set.

5.5.4. Dalitz plot Model Dependent CP Asymmetry. We describe this

measurement in the following sections.
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Figure 5.45: Fit results for the D+ and D− mass in the Dalitz plot region above the
φ and K̄∗0.

5.6. Dalitz Analysis Amplitudes

5.6.1. Overview. The analysis strategy to measure the CP asymmetry as a

function of Dalitz plot position for the decay of the D+ → K+K−π+ is similar to

the typical Dalitz plot analysis. We are required to have the following:

•Model of the background as function of the Dalitz plot position (section 5.2.6)

•Detector reconstruction efficiency as a function of the Dalitz plot position (sec-

tion 5.3.1)

•Model to describe the decay of D+ meson (section 5.6.4)
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Figure 5.46: D → K+K−π+ moments in the K+K− system
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Figure 5.47: Ds → K+K−π+ moments in the K+K− system

In order to measure the CP asymmetry we need to account for three possible

sources of systematic error

•Background Asymmetry (section 5.2.2)

•Tracking asymmetry (section 5.3.2
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Figure 5.48: D → K+K−π+ moments in the K−π+ system

0

1000

2000

0.5 0.7 0.9 1.1 1.3 1.5

m(K-π+)(GeV/c2)

<Y0
0>

ev
en

ts
/1

0 
M

eV
/c2

-1000

0

0.5 0.7 0.9 1.1 1.3 1.5

m(K-π+)(GeV/c2)

<Y0
1>

0

1000

2000

0.5 0.7 0.9 1.1 1.3 1.5

m(K-π+)(GeV/c2)

<Y0
2>

-2000

-1000

0

0.5 0.7 0.9 1.1 1.3 1.5

m(K-π+)(GeV/c2)

<Y0
3>

0

1000

2000

0.5 0.7 0.9 1.1 1.3 1.5

m(K-π+)(GeV/c2)

<Y0
4>

-2000

-1000

0

0.5 0.7 0.9 1.1 1.3 1.5

m(K-π+)(GeV/c2)

<Y0
5>

0

1000

2000

0.5 0.7 0.9 1.1 1.3 1.5

m(K-π+)(GeV/c2)

<Y0
6>

-2000

-1000

0

0.5 0.7 0.9 1.1 1.3 1.5

m(K-π+)(GeV/c2)

<Y0
7>

Figure 5.49: Ds → K+K−π+ moments in the K−π+ system

•Differences in the production distribution of the Monte Carlo (pCM and cos(θ)CM)

and what is observed in data (section 5.6.2)
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Figure 5.50: R24c generic cc̄ D → K+K−π+ moments and residuals in the K+K−

system for D+ and D− events.

The background asymmetry is removed through event selection and track quality

cuts, several studies are documented to show that the asymmetry in the background

is small.

We account for the two additional sources of systematic error by correcting the

Monte Carlo from what we observe in data, propagating the effects throughthe Dalitz

plot efficiency.
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Figure 5.51: R24c generic cc̄ D → K+K−π+ moments and residuals in the K+K−

system for D+ and D− events.

Using uncontrained Dalitz plot distributions from the sideband data, we employ

a k-Nearest Neighbor algorithm as an estimation of the probability density of the

background in the signal region of the Dalitz plot.

The efficiency is modeled by an artificial neural network which we train from a

two-dimensionally binned Dalitz plot efficiency.

As a starting point for the Dalitz plot model of D decays, we consider the Isobar

model, which is the coherent sum of complex amplitudes described by Relativistic

Breit-Wigner functions. All resonances up to the f0(1710) which decay either to

155



)-K+ m(K0
0Y

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

E
ve

nt
s 

/ 1
0.

0 
M

eV

0

10000

20000

30000

40000

50000

60000

70000

80000

2
-

Dσ
 +

 
2

+
Dσ

-
D

 -
 N

+
D

N

)
-

K+ m(K0
1Y

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

E
ve

nt
s 

/ 1
0.

0 
M

eV

0

20

40

60

80

100

3
10×

2
-

Dσ
 +

 
2

+
Dσ

-
D

 -
 N

+
D

N

)
-

K+ m(K0
2Y

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

E
ve

nt
s 

/ 1
0.

0 
M

eV

0

20

40

60

80

100

120

3
10×

2
-

Dσ
 +

 
2

+
Dσ

-
D

 -
 N

+
D

N

)
-

K+ m(K0
3Y

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

E
ve

nt
s 

/ 1
0.

0 
M

eV

0

20

40

60

80

100

120

3
10×

2
-

Dσ
 +

 
2

+
Dσ

-
D

 -
 N

+
D

N

Figure 5.52: R24c generic cc̄ D → K+K−π+ moments and residuals in the K−π+

system for D+ and D− events.

K−π+ or K+K− are included in the fit to the observed data from the entire Υ(4S)

BaBar data set, including any additional Off-Peak data recorded during Runs 1

through 6.

5.6.2. Production Distribution of the D+ Meson. We rely on the BaBar

Monte Carlo as a model for the production of the D meson. The model is only valid

if

N(D+(cos(θ)CM)) = N(D−(− cos(θ)CM )) (5.6.1)
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Figure 5.53: R24c generic cc̄ D → K+K−π+ moments and residuals in the K−π+

system for D+ and D− events.

We measure the χ2 over the two-dimensional production space (pCM , cos(θ)CM)),

with the production angle of the D− mapped to the D+ production angle. The χ2

is 3025.21 for 2500 bins. The two-dimensional residual distribution is shown in Fig-

ure 5.54. The production asymmetry before and after mapping the D− production

angle is shown in Figure 5.55.

To account for differences in the BaBar Monte Carlo production model and what

is observed in data, we begin with a probability distribution function that describes
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Figure 5.54: Top left plot is the production distribution for D+ events, and the
top right is the production distribution for D− events where the production angle
is taken as − cos(θ)CM . The bottom shows the residual distribution of the D+ and
D− model.

the generated BaBar Monte Carlo. We model the 2-dimensional generated distrub-

tion of pCM and cos(θ)CM with a k Nearest-Neighbor (kNN) algorithm (Purohit).

We randomly select a sub-sample of 500,000 events from the 50 million generated

events in our sample. We achieve a description of the production distribution in the

Monte Carlo with k = 6. The Monte Carlo and kNN model are shown in Figure 5.56.

We obtain the distrbution of the production variables (pCM , cos(θ)CM) of sig-

nal events in data using background subtraction. The background events are taken

158



CM
)θcos(

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

350

400

450

500

550

600

650

700

750

800
310×

CM
)θcos(

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

350

400

450

500

550

600

650

700

750

800
310×

CM
)θcos(

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0.97

0.98

0.99

1

1.01

1.02

1.03

CM
)θcos(

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

Figure 5.55: The left plots show the forward-backward asymmetry in the production
of the D meson. The right plot shows the asymmetry removed after mapping the
D− production angle to − cos(θ)CM .

from the upper and lower mass sideband regions, and the signal events are taken

between ±2σ of the mean of D. The distributions of events in the signal region

(SR) (PSR(pCM , cos(θ)CM)) and in the sibeband (BR) (PBR(pCM , cos(θ)CM)) con-

tain fractions of signal events α and β. α and β are known from the mass fit, using

the signal pdf S(m(D)) and the background pdf B(m(D)). We can obtain the signal

(S) (PS(pCM , cos(θ)CM) and background (B) (PB(pCM , cos(θ)CM) distributions from

the following relationship:
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Figure 5.56: k Nearest-Neighbor model as a function of pCM and cos(θ)CM . The
BaBar MC is shown in the top left, top right are events generated from the kNN.
The lower plots are the projections with the kNN model shown in red.

α =

∫

SR
S(m(D))

∫

SR
S(m(D)) +

∫

SR
B(m(D))

(5.6.2)

β =

∫

BR
S(m(D))

∫

BR
S(m(D)) +

∫

BR
B(m(D))

(5.6.3)
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PSR(pCM , cos(θ)CM)

PBR(pCM , cos(θ)CM)



 =





α (1 − α)

β (1 − β)









PS(pCM , cos(θ)CM)

PB(pCM , cos(θ)CM)



 (5.6.4)

We obtain the distribution of signal events according to equation 5.6.4 as a

function of cos(θ)CM in equally populated bins of pCM . The binning of the data

in pCM and cos(θ)CM are shown in Figure 5.57. The two dimensional PS and PB

distributions and their projections are shown in Figure 5.58. The equally populated

histograms are shown in Figure 5.59. The distribution of Monte Carlo events with

respect to the binning in data is shown in Figure 5.60.

0

10

20

30

40

50

60

70

2.5 3 3.5 4 4.5 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.57: Binning of the distribution of production variables for events in the
signal region. The same binning is used for the background events
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Figure 5.58: Two-dimensional histogram of PS (top left) and PB (top right). The
projections are shown in the bottom plots, where the background is shown in red.

Now that we have the signal distributions in data, we can find the ratio of data

and Monte Carlo, PR(pCM , cos(θ)CM . The ratio is a correction that can be applied

to the signal Monte Carlo when meauring the reconstruction efficiency. The ratio

plots are shown in Figure 5.62. The ratios are obtained from the ratio of plots in

data ( Figure 5.59) and the Monte Carlo plots ( Figure 5.60) scaled to the number

of events in data.

5.6.3. Data Corrections to the Monte Carlo. We correct for tracking asym-

metries and production modeling in the Monte Carlo, using data to Monte Carlo
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Figure 5.59: Equally populated histrograms as a function of cos(θ)CM in bins of
pCM .

ratios. The first correction applied is the tracking asymmetry correction, which in-

cludes the tracking efficiency and asymmetry measured from the decays of τ leptons.

The tracking ratio is taken as the following ratio of tracking efficiencies:

RTrack =
[ǫ±K1

(p3(K1))ǫ
∓
K2

(p3(K2))ǫ
±
π (p3(π))]Data

[ǫ±K1
(p3(K1))ǫ

∓
K2

(p3(K2))ǫ±π (p3(π))]MC

(5.6.5)

The tracking efficiencies are obtained from the Tau31 study which is documented

in BAD 2258 [37]. The production ratios PR(pCM , cos(θ)CM) are found in Fig-

ure 5.62.
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Figure 5.60: Production distributions in data and reconstructed signal Monte Carlo
(re-weighted by the Isobar model). The top histograms show the Monte Carlo distr-
butions. The projections of data (black histogram) and Monte Carlo (red histogram)
are shown along the bottom.

The Dalitz plot efficienecy ǫMC(x, y) now becomes the following:

ǫMC → ǫ′MC = PR(pCM , cos(θ)CM)RTrack(p3(K
±
1 ), p3(K

∓
2 ), p3(π

±
3 )ǫMC (5.6.6)

The Monte Carlo underestimates the tracking efficiency, which is evident in the

plots which compares the following Dalitz plot efficiencies

•Monte Carlo efficiency
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Figure 5.61: Monte Carlo histrograms as a function of cos(θ)CM in bins of pCM . The
binning is chosen from data.

•Monte Carlo efficiency corrected for tracking

•Monte Carlo efficiency corrected for tracking and production modeling

The comparison plots of these effiencies are shown in Figure 5.63 and Figure 5.64
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Figure 5.62: Data to Monte Carlo ratios as a function of the production variables
(pCM ,cos(θ)CM).

5.6.4. Parameterization of the D+ Decay Amplitude [11]. As discussed

in the introduction, the amplitude of the decay of the D+ is described as a coherent

sum of a number of intermediate quasi-two-body amplitudes (resonance and bachelor

particle) where the bachelor particle is one of three final-state particles while the

resonance decays into the remaining pair

A =
∑

i

cie
iφiAi × Z (5.6.7)
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Figure 5.63: Dalitz plot Monte Carlo Efficiencies. The top left is the Monte Carlo
efficiency. The top right is the Monte Carlo efficiency corrected for tracking effi-
ciency and asymmetry from τ decays. The bottom plot is the Monte Carlo effi-
ciency corrected for production modeling and tracking. The scale in the bottom
plot corresponds to all the plots shown.

Z describes the angular distribution of the decay and Ai are complex ampli-

tudes described as a product of centrifugal barrier factors and a dynamical function

describing the intermediate resonance. In this section we describe in detail the kine-

matics of the Dalitz plot, the Zemach tensors which describe the angular dependence
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Figure 5.64: Monte Carlo efficiency projections. The production modeling does
not affect the Dalitz plot efficiency significantly, however, the tracking correction
increases the efficiency.

of the decay, the Blatt-Weisskopf form factors which describe the centrifugal bar-

rier effects of decaying mesons, and various models to describe the dynamics of a

resonance or scattering of final-state particles.

5.6.4.1. Kinematics. We define several kinematic quantities that are used through-

out the discussion of the Dalitz plot decay amplitude. Consider the decay of the

D+, with an intermediate resonance R, such that D+ → RC and R→ AB as shown

in Figure 5.65.
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Figure 5.65: Diagram for the decay D+ → CR(R → AB). R is the resonance
particle of spin 0, 1, or 2. FD and FR are the Blatt-Weisskopf barrier form factors
for D+ and R, respectively. Each vertex contains a spin factor ǫλ, and the decay
amplitude depends on the spin-sum

∑

λ ǫ
∗
λǫλ.

•s The invariant 2-body mass-squared m2
AB.

•q The momentum of the child particle in the resonance rest frame.

q =

√

(m2
AB −m2

B +m2
A)2 − 4m2

ABm
2
A

2mAB
(5.6.8)

•p The momemtum of the bachelor particle in the resonance rest frame.

p =

√

(m2
D −m2

C +m2
AB)2 − 4m2

ABm
2
C

2mAB

(5.6.9)

•q0 The momentum of the child in the resonance rest frame at the resonant mass,

mR.

q0 =

√

(m2
R − (mA −mB)2)(m2

R − (mA +mB)2)

2mR
(5.6.10)

•cos(θ)H The helicity angle, defined as
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~q · ~p
qp

(5.6.11)

5.6.4.2. Blatt-Weisskopf Penetration Factors. In strong decays, the shape and

partial width of any resonance into any decay channel is influenced by ”centrifugal

barrier effects”. This arises due to the angular momentum of a resonance being

limited by the momentum q. The dependence of the orbital angular momentum L

with q is apparent if we consider the semiclassical impact parameter,

b = [L(L+ 1)]1/2/q (5.6.12)

and consider the effective meson potential with an effective radius R,

UL(r) = V (r) +
~

2L(L+ 1)

2µr2
, r > R (5.6.13)

UL(r) ∼ −U0, r < R (5.6.14)

where V(r) is the nuclear potential, and the typical meson effective radius is 1.5

GeV−1. The solutions of the non-relativistic Schrödinger equation are known as the

Blatt-Weisskopf penetration factors BL(q) ([12],[19]) found in Table 5.16.

Angular Momentum BL(q, q0)

0 1

1

√
1+z2

0√
1+z2

2

√
9+3z2

0+z4
0√

9+3z2+z4

Table 5.16: Blatt-Weisskopf Penetration Factors. z = Rq and z0 = Rq0, where
R = 1.5 GeV−1.

5.6.4.3. Angular Distribution. The angular dependence of the decay products

must be taken into account to describe the decay amplitude. The typical form of
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the angular dependence, shown in Table 5.17, are known as Zemach tensors [16].

The derivation of the angular dependence begins with evaluating the spin-sum [18]:

Spin− Sum =
∑

λ

ǫµ∗λ ǫ
ν
λ, (5.6.15)

where ǫλ is a spin factor which depends on the type of decay, i.e. scalar, vector

or tensor.

Angular Momentum Z

0 1

1 −2qp cos(θ)H

2 4q2p2(3
2
cos2(θ)H − 1

2
)

Table 5.17: Angular Dependence based on the helicity angle, q the momentum of the
child in resonance rest frame, and p the momentum of the bachelor in the resonance
rest frame.

5.6.4.4. Dynamical Functions for Intermediate Resonances. For a resonance R →

AB with an invariant mass,
√
s, TR is a Relativistic Breit-Wigner (RBW)[12]

TR =
FrFD

m2
0 − s− im0Γ(q)

(5.6.16)

where Γ(q) is a function of
√
s, the momentum q, the spin of the resonance l,

and the width of the resonance Γ0. The expression is:

Γ(q) = Γ0(
q

q0
)(2l+1)m0√

s
B2

L. (5.6.17)

Resonances near the KK̄ thresholds, namely the f0(980) and a0(980) are de-

scribed by a coupled-channel Breit-Wigner, known as a Flatté [20] distribution:

TR =
1

m2
0 − s− im0(gππρππ + gKK̄ρKK̄)

(5.6.18)

where ρ is Lorentz invariant phase-space, 2q/
√
s, and reduces to the following

form
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ρi =

√

1 − 4m2
i

s
. (5.6.19)

The coupling constants for the a0(980) are taken from the analysis of p̄p annihi-

lation to the KLK
±π∓ final state [23].

m(a0(980)) = 0.982 ± 0.003GeV

g1 = gπη = 0.324 ± 0.015GeV 2/c4

g2
2/g

2
1 = 1.03 ± 0.14

The f0(980) coupling constants are taken from BES measurement [24].

m0 = 0.965 ± 0.008 ± 0.006GeV/c2

g2
ππ = 0.165 ± 0.010 ± 0.015GeV 2/c4

g2
KK/g

2
ππ = 4.21 ± 0.25 ± 0.21

5.6.4.5. Isobar Model. We consider, as an initial model, the Isobar Model which is

described by the coherent sum of overlapping Breit-Wigner resonances in the K−π+

and K+K− systems and a non-resonant term, c0e
iφ0 . As a model for the s-wave of

the K−π+ system, we include the K̄∗0(1430) and a broad s-wave state referred to

as the κ [22]. Several masses and widths are floated, namely for resonances which

have poorly determined measurements.

5.6.4.6. Elastic K−π+ Scattering. As an alternative to the assumption that the

S-wave in the K−π+ can be described by a combination of s-wave resonances and

a non-resonant contribution, we consider a purely elastic amplitude [25] and take
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Fit Range (GeV/c2) mR (GeV/c2) ΓR (GeV/c2) a GeV/c −1 b GeV/c −1

LASS A 0.825 <
√

s < 1.450 1.435 ± 0.005 0.279 ± 0.006 1.95 ± 0.09 1.76 ± 0.36
LASS B 0.825 <

√
s < 1.455 1.415 ± 0.005 0.300 ± 0.006 2.07 ± 0.09 3.32 ± 0.34

Table 5.18: Parameters measured by the LASS collaboration from fit to S-wave
amplitudes from K−π+ scattering

parameters measured from the LASS experiment. The details of the s-wave parame-

terization, comparisons from various experiments and analyses, and parameters used

from the LASS have been summarized by William Dunwoodie [27]. However, the fol-

lowing form of the S-wave amplitude we take directly from reference [25] while using

parameters documented in [27]. The Lorentz-invariant amplitude, which describes

the decay rather than the scattering amplitude as measured in LASS is detailed

here:

TR(s) = (

√
s

p
) sin[γ(s) − γ0]e

i[γ(s)−γ0] (5.6.20)

γs = γR + γB + γ0 (5.6.21)

cot γB =
1

pa
+

1

2
bp (5.6.22)

cot γR =
m2

R − s

mRΓ(rR, s)
(5.6.23)

γ0 = 0 (5.6.24)

The parameters for mR, ΓR, a, and b are shown in Table 5.18. An additional

arbitrary phase, γ0, is included and fixed to zero.

5.6.4.7. Generalized K−π+ S-wave Model. The previous section applies only to

elastic scattering, and the final-state interactions which occur in the decay of the

D+ meson may not be purely elastic. Therefore, there may be a relative phase

between the non-resonant component of the s-wave and the resonant component.
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The formulalism has been described in detail and fitted to decays of D0 → Ksπ
+π−

decays from BaBar data [28].

TR = BeiφB
(cosφB + cot δB sinφB)

√
s

q(s) cot δB − iq(s)
+ReiφRei2(δB+φB) mRΓRmR/q0

m2
R − s− imRΓ(s)

(5.6.25)

with

q(s) cot δB =
1

a
+
rq(s)2

2
(5.6.26)

and

ei2δB =
q(s) cot δB + iq(s)

q(s) cot δB − iq(s)
(5.6.27)

This form reduces back to the elastic case when B = R = 1, φB = φR = 0.

5.6.4.8. S-wave Model in φ(1020) mass region. Recently, a model-independent

partial wave analysis was performed on BaBar data for the decay Ds → K+K−π+ in

the vicinity of the φ(1020) resonance [31]. The authors show that there is indeed a

scalar contribution in the low K+K− mass region which interferes with the φ(1020).

The scalar contribution is usually referred to as the f0(980), which is a resonance

typically modeled with the Flatté distribution described previously. The lineshape

of this resonance is not well-known. To determine the line-shape more precisely, the

authors extract an effective parameterization of the f0(980) by fitting simultaneoulsy

plots of the S-wave, P-wave, and the cosine S-P phase difference. They model the

f0(980) with a RBW of the form

Af0(980) =
1

m2
0 −m2 − im0Γ0ρKK̄

(5.6.28)

They obtain a mass and width for the f0(980)

m0 = 0.922 ± 0.003GeV/c2
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Γ0 = 0.26 ± 0.08GeV/c2

We include here the moment distributions in the K+K− mass region for the

Ds → K+K−π+ decay, the first moment in the decays of Ds → K+K−e+ν and

D0 → K̄0K+K−.
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Figure 5.66: Ds → K+K−π+ 〈Y 0
0 〉, 〈Y 0

1 〉 and 〈Y 0
2 〉 moments with background sub-

tracted and corrected for efficiency and phase space.

Figure 5.67: 〈Y 0
1 〉 moment of a) D+

s → K+K−e+ν and b) D0 → K̄0K+K− decays.
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5.7. Charge Independent Dalitz Plot Fits

The model we use to describe the data is 3-dimensional and consists of a com-

ponent to describe the decay of the D meson and the reconstructed mass of the D

meson. We perform an unbinned maximum likelihood fit with the following three

variables:

•The mass of the D meson

•m2(K+K−)

•m2(K−π+)

5.7.1. Fit Fractions. The fraction of each resonance (FFi) is determined from

the signal pdf, and is defined as the integral of a single amplitude divided by the

integral of the full amplitude over the entire Dalitz plot.

FFi =

s
|ciMi|2dxdy

s
|∑j cjMj |2dxdy

(5.7.1)

In the case of the K−π+ S-wave, we only determine the fraction of the entire

S-wave since this is not described by individual resonances.

5.7.2. Goodness of Fit. For the goodness-of-fit we have three measures of the

χ2

χ2 =

Nbins
∑

i=1

(Nobs
i −Npred

i )2

Npred
i

. (5.7.2)

The best measure of goodness-of-fit, from a quantitative point-of-view, is mea-

sured in bins of equal population. The Dalitz plot density varies dramatically, es-

pecially in the region of the φ(1020), and therefore requires variable bin sizes in the

two-dimensional Dalitz plot. The number of bins chosen to measure the χ2 depends

on the sample size n [33]

B = 2n2/5. (5.7.3)

176



•Carolitz adaptive binning which creates 289 equally populated bins. The χ2

is found from the estimating the number of predicted events of the model with

integration. The error in the χ2 we take as the number of predicted events,

Npred
i =

x

fǫMC(xi, yi)S(xi, yi)dxdy + (1 − f)
x

B(xi, yi)dxdy (5.7.4)

where f is the fraction of signal events.

•2-dimensional χ2 over the Dalitz plot from histograms of data and MC generated

events from the model. We generate ten times the amount of events in data. The

error in the χ2 is taken as the number of predicted events divided by 10.

•1-dimensional χ2 from projections of the data and the MC generated events in

all three Dalitz plot variables, m2(K+K−), m2(K−π+), and m2(K+π+).

5.7.3. Background Pdf. The background probability distribution is composed

of 5 components which describe the shape of the background within the φ(1020) mass

region (section 5.2.6.3), the K̄∗0 mass region (section 5.2.6.3) and the remaining

region of the Dalitz plot (section 5.2.6.2). In regions of the φ(1020) and K̄∗0, the

parameters of the background model are determed previously from the fit to the

sideband data, except that we now assume the PDG masses and widths for the

Breit-Wigner. The kNN is trained with mass-constrained Dalitz plot variables from

the sideband regions. In the fit of the signal and background, we float the fraction

of each of the background components.

5.7.4. Likelihood Function. We perform an unbinned maximum likelihood

fit to the constrained Dalitz plot variables, m2(K+K−) and m2(K−π+), minimizing

−2lnL, where L is the likelihood function describing the density over the Dalitz

plot. The likelihood function contains a mass-dependent probability p(mi) which is

multiplied by the parameter C. Depending on the background model, the likelihood

function has additional parameters to vary different components of the background.
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We minimize the following likelihood function to determine the nominal model

of the Dalitz plot.

−2 lnL = −2

Nob
∑

i=1

ln

(

Cp(mi)
ǫMC(xi, yi)S(xi, yi)s
ǫMC(xi, yi)S(xi, yi)dxdy

+ (1 − Cp(mi))B(xi, yi)

)

(5.7.5)

The reconstructed D+ mass-dependent probability p(m) is defined as

p(mi) =
S(mi)

S(mi) +B(mi)
(5.7.6)

where S(m) and B(m) are determined from the mass fit described in section

5.4.2.

Penalty terms may also be added to the likelihood function when allowing the

masses and widths of resonances to float in the fit. We form the χ2 from the floated

mass and width, mR and ΓR, and the PDG average value and error. No limits are

imposed are the parameters in fit.

χ2
penalty =

(mR −mPDG
R )2

(∆mPDG
R )2

+
(ΓR − ΓPDG

R )2

(∆ΓPDG
R )2

(5.7.7)

5.7.4.1. kNN Background Density.

B(xi, yi) =
kNN(xi, yi)s
kNN(xi, yi)dxdy

(5.7.8)

5.7.4.2. Alternative Background Density (TBD).

B(xi, yi) =f1
BWφP02s
BWφP02dxdy

+ f2
BGφP02s
BGφP02dxdy

+ f3
BWK̄∗0P02

s
BWK̄∗0P02dxdy

+ f4
BGφP02

s
BGφP02dxdy

+ f5
kNN

s
kNNdxdy

(5.7.9)

where

f5 = 1 − f1 − f2 − f3 − f4 (5.7.10)

and
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BW =
1

4mx,yqp
|ABW |2

P 2
0 + bw11P

2
1 + bw22P

2
2 + bw01P0P1 + bw02P0P2 + bw21P2P1 + bwcos(θ) cos(θ)

2(1 + bw11/3 + bw22/5)

(5.7.11)

BG =
1

4mx,yqp

[

1
∫

dm
+ a(m−mφ,K̄∗0)

]

P 2
0 + p11P

2
1 + p22P

2
2 + p01P0P1 + p02P0P2 + p21P2P1 + pcos(θ) cos(θ)

2(1 + p11/3 + p22/5)
.

(5.7.12)

What needs to be noted here is that the Jacobian

|J | =
1

4mx,yqp
(5.7.13)

has been included in the background functions, since we are now in the space of

m2
x, m

2
y rather than mx,y, cos(θ)x,y.

5.7.5. Fit Procedure. We take the mass dependent signal and background

pdfs from the integrated mass fit. For the Dalitz plot model, we consider all res-

onances up to the D mass. The following 16 resonances are included in the fit:

K̄∗0(892), K̄∗0(1430), φ(1020), a0(1450), φ(1680), K̄∗2
0 (1430), K̄∗1

0 (1410), f2(1270),

f0(1370), f0(1500), f2(1525), κ, f0(980), a0(980), f0(1710), and a non-resonant term.

The f0(980) and a0(980) are modeled with coupled-channel Breit-Wigner (Flatte)

resonances, and other resonances are considered relativistic Breit-Wigners. We pro-

vide Table 5.19 of masses and widths used in the preliminary fit.

The fitting of the Dalitz plot is performed in two steps. The first fit we assume

that the reconstruction efficiency over the Dalizt plot obtained from the Monte Carlo

is correct. We train the artificial neural network based on the ratio of reconstructed

events to what is generated. The second fit is performed with a corrected efficiency.

The reconstructed Monte Carlo events are weighted by the product of two data to

Monte Carlo ratios. The neural network is retrained for the second fit.
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Resonance Mass (MeV) Width (MeV)
K̄∗0(892) 895.94 ± 0.22 48.7 ± 0.8
K̄∗0(1430) 1425 ± 50 270 ± 80
φ(1020) 1019.455 ± 0.02 4.26 ± 0.04
a0(1450) 1474 ± 19 265 ± 13
φ(1680) 1680 ± 20 150 ± 50
K̄∗2

0 (1430) 1432.4 ± 1.3 109 ± 5
K̄∗1

0 (1410) 1414 ± 15 232 ± 21
K̄∗0(1680) 1717 ± 27 322 ± 110
f2(1270) 1275 ± 1.2 185 ± 2.9
f0(1370) 1370 ± 300 350 ± 300
f0(1500) 1505 ± 6 109 ± 7
f2(1525) 1525 ± 5 73 ± 6
κ 672 ± 40 550 ± 34
f0(980) 965 ± 10 70 ± 100
a0(980) 984.7 ± 20 100 ± 50
f0(1710) 1720 ± 6 135 ± 8
non-resonant 0 0

Table 5.19: Resonance masses and widths fixed in the preliminary fit to the charge
independent Dalitz plot distribution

5.7.6. Fit Results for Various Models. In this section we describe several

models that have been fit to the data, and we report the results of each fit. The

various models are different with respect to the s-wave in the Kπ system, which

are described below. The s-wave in the KK system, typically referred to as the

f0(980), is modeled with the effective parameterization decribed in section 5.6.4.8.

The relativistic Breit-Wigner resonances included in each fit are listed in Table 5.20,

indicating whether the mass and width is floated in the fit. For resonances with

floated parameters, the PDG values and errors are used to constrain the parameters

in the fit. The background model used in these fits is the 3-region background model

described in section 5.2.6.3. The artificial neural network efficiency with both the

tracking and production correction is included in these fits. The results of each fit

are reported in Table 5.21, with the exception of the κ model which is in progress.

The traditional “isobar” model provides the best description of the data, with the

exception that the κ fit is in progress. The projections and moments of the isobar

fit are included in this section.
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Resonance Mass,Width
K̄∗0(892) floated
φ(1020) floated
a0(1450) floated
φ(1680) fixed
K̄∗2

0 (1430) fixed
K̄∗1

0 (1410) fixed
K̄∗0(1680) floated
f2(1270) fixed
f0(1370) floated
f0(1500) fixed
f2(1525) fixed
f0(1710) fixed

Table 5.20: Resonance masses and widths fixed in the preliminary fit to the charge
independent Dalitz plot distribution

Model 1 (Isobar Model):

•K̄∗0(1430) (mass and width floated)

•Non-resonant magnitude and phase

Model 2 (Resonance Model):

•K̄∗0(1430) (mass and width floated)

Model 3 (LASS Model A):

•LASS A parameters

•LASS resonance mass and width floated

Model 4 (LASS Model B):

•LASS B parameters

•LASS resonance mass and width floated

Model 5 (κ Model - TBD):

•Broad low Kπ-mass scalar (κ mass and width floated)
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Model Carolitz (χ2/ndof) Likelihood
1 734.3 (3.00) -266512
2
3 1565.3 (6.29) -264944
4 1924.03 (7.73) -264902
5

Table 5.21: Goodness of Fit values for various models used to describe the data.
The traditional “isobar” model provides the best fit to the data, and the projections
of the model and data are found in Figure 5.68

5.8. Charge-Dependent Dalitz Plot Fits and CP asymme-

try
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Figure 5.68: Dalitz plot fit projections for the current fit, corresponding to the last
entry in Table 5.21. The Dalitz plot shown is the data, the projections of three
dimensions are plotted with the normalized residual below each plot. The data are
shown in black points, the model is the red histogram. The color bands of the
residual plots correspond to 1σ, 3σ, and 5σ.

5.9. Systematics and Cross-Checks

Preliminary list of possible sources of systematic error that need to be investi-

gated.

•Particle Identification of Kaons. Comparison of K+ and K− spectra from data

for D+ and D− events.
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Figure 5.69: Dalitz plot fit K+K− moments and projection in the φ(1020) region for
the current fit, corresponding to the last entry in Table 5.21. The data are shown in
black points, the model is the red histogram. The color bands of the residual plots
correspond to 1σ, 3σ, and 5σ.

•Monte Carlo Simulation. Tracking asymmetry and production distributions

simluated in Monte Carlo are corrected from data.

•Choice of binning for the production correction.

•Background. Choice of binning in nominal model. Choice of a different model.

•Event selection. pCM cut, vertexing cut, and Likelihood Ratio cut.

184



)+π-m(K
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

E
ve

nt
s 

/ 1
0.

0 
M

eV

0

1000

2000

3000

4000

5000

6000

7000

m
c

N
m

c
 -

 N
da

ta
N

)+π-(K2m
0.4 0.5 0.6 0.7 0.8 0.9 1

2
E

ve
nt

s 
/ 1

0.
0 

M
eV

0

1000

2000

3000

4000

5000

m
c

N
m

c
 -

 N
da

ta
N

)+π-m(K
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

E
ve

nt
s 

/ 1
0.

0 
M

eV

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

)+π-m(K
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

E
ve

nt
s 

/ 1
0.

0 
M

eV

0

2000

4000

6000

8000

10000

Figure 5.70: Dalitz plot fit K−π+ moments and projection in the K̄∗0(892) region
for the current fit, corresponding to the last entry in Table 5.21. The data are shown
in black points, the model is the red histogram. The color bands of the residual plots
correspond to 1σ, 3σ, and 5σ.

5.9.1. Kaon Particle Identifition Asymmetry. Previous studies of system-

atic uncertainties due to kaon particle indentification [38] showed that asymme-

tries are small, around 0.3%. These asymmetries were measured from the decays

D0 → K−π+ and D+ → K−π+π+.

We compare the momentum spectra of kaons after background subtraction, us-

ing the same method that is described in section on production. We measure the

asymmetry as a function of lab momentum
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Yield (S) Error (∆S) S/∆S Cut
223631.55 626.22 357.11 0.85
218928.38 567.89 385.51 0.86
214001.37 584.88 365.89 0.87
202338.58 518.47 390.26 0.89
195683.80 494.23 395.94 0.90
188372.31 501.97 375.27 0.91
180539.03 464.84 388.39 0.92
171594.15 435.76 393.78 0.93
160922.39 410.69 391.83 0.94
148586.71 389.21 381.77 0.95
133396.25 359.05 371.53 0.96
112781.13 318.66 353.93 0.97
85452.49 276.96 308.54 0.98
42705.90 187.07 228.28 0.99

Table 5.22: Signal yield and significance as a function of the likelihood ratio cut

Aplab
(K±) =

NK+(plab) −NK−(plab)

NK+(plab) +NK−(plab)
(5.9.1)

The asymmetry is measured for the following:

•Asymmetry in first daughter track, K+(D+),K−(D−)

•Asymmetry in second daughter track, K+(D−),K−(D+)

•Asymmetry in first and second daughter tracks from D+, K+(D+),K−(D+)

•Asymmetry in first and second daughter tracks from D−, K+(D−),K−(D−)

The mean kaon momenta does not show any diffence in charge except at very

high momenta, greater than 5 GeV/c. In this region, there are very few events. Any

effect due to particle momenta would be dominant up to 3 GeV/c, and the K+ and

K− do not exhibit differences in their spectra.

5.9.2. Likelihood Ratio Cut. We evaluate the signal yield and signal signif-

icance as a function of the likelihood ratio cut to determine the appropiate change

in the cut to evaluate a systematic uncertainty.

5.9.3. CP Asymmetry measured as a function of cos(θ)CM . We study

various systematic effects on the CP asymmetry in data. The following systematic

studies were performed on the data sample:
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Figure 5.71: Kaon Particle Id asymmetry for KBDT Tight selector used in this
analysis. The corresponding asymmetry plots lie below the comparison plot. The
final row of plots represent the mean kaon momenta in each bin rather than the
value at the bin center, as the 1st and 3rd row show.

•vary the likelihood ratio cut from 0.85 to 0.86;

•measure the asymmetry in a single bin for the forward region and backward

region;

•measure the asymmetry using 6 bins in cos θCM

•remove the tracking correction from the efficiency;

•apply a different tracking correction;

•remove the production correction from the efficiency;
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Average cos θ Asymmetry ∆ACP [%] AFB[%]
Average of ACP (θ) 0.0 -2.92 ± 0.33
Vary LH ratio 0.07 -2.96 ± 0.30
Single forward and backward bin 0.01 -2.12 ± 0.35
Change in binning 0.04 -2.76 ± 0.33
No tracking correction 0.03 -2.90 ± 0.33
No Production correction 0.0 -2.92 ± 0.33
D+ → Ksπ

+ Tracking Correction 0.23 -2.82 ± 0.33
Efficiency Weighted Mass Fit 0.0 -2.38 ± 0.41

Table 5.23: Systematic uncertainties for the integrated CP asymmetry as a function
of production angle and forward-backward asymmetries. We fit for the yields in the
forward region and backward region as a function of production angle, averaging the
asymmetries to obtain ACP . The difference between the central value and average
ACP after testing for a systematic shift is reported here.

•fit to the efficiency-corrected yields in bins of the production angle.

To study the systematic effect due to tracking efficiency and asymmetry, we

reevaluate the efficiency without applying a tracking correction and applying a dif-

ferent correction. As an alternative to measuring the tracking asymmetry from τ

decays, we use the tracking asymmetry correction that is documented in the analy-

sis of D+ → Ksπ
+ [?]. We weight each D− reconstructed event with the correction

factor according to the pion lab momentum and polar angle cos θ. The tracking

correction as a function of lab momentum and polar angle is shown in Figure 5.72.
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Chapter 6

Summary and Conclusions

The analysis of the singly-Cabibbo suppressed decay of D+ → K+K−π+, us-

ing data collected from the BaBar experiment, is the most precise measurement of

direct CP asymmetry in this channel to date. The integrated CP asymmetry mea-

surement is competitive in both statistical uncertainty and systematic uncertainty

when compared to other existing CP asymmetry measurements, which are tabulated

in Table 6.1. The final, unblinded measurement of direct CP asymmetry is

ACP = 0.30 ± 0.31 ± 0.24 (6.0.2)

where the first error is statistical and the second error is the sytematic uncer-

tainty.

The notable feature of this analysis is the consideration of detector-related track-

ing asymmetries, which represent the largest contribution to the systematic uncer-

tainty. Two independent analyses based on extracting the detector tracking asymme-

try from data are used to correct the Monte Carlo efficiency. The corrected efficiency

is then incorporated into the CP asymmetry measurement. Previous measurements

from other experiments, including the CLEO-c measurement, did not consider the

impact of detector asymmetries on the measurement.

In addition, corrections to the Monte Carlo with respect to the production of

charm mesons, is also an important ascpect of this work. The distributions of

production variables in Monte Carlo are known to inaccurately describe these dis-

tributions in data.

Establishing the integrated CP asymmetry measurement is a milestone in this

research, removing the assumption that the asymmetry is zero when fitting the
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Analysis ACP [%]
Standard Model Prediction 0.23
This analysis 0.30 ± 0.31 ± 0.24
BaBar Runs 1-2 1.4 ± 1.0 ± 0.8
E-791 -1.4 ± 2.9
CLEO-c -0.03 ± 0.84 ± 0.29
D+ → Ksπ

+ -0.44 ± 0.13 ± 0.10
D0 → K+K− 0.00 ± 0.34 ± 0.13
D0 → π+π− -0.24 ± 0.52 ± 0.22
D0 → K+K−π0 1.00 ± 1.67 ± 0.25
D0 → π+π−π0 -0.31 ± 0.41 ± 0.17

Table 6.1: Summary of current integrated CP asymmetry measurements in Charm
decays. The result in this analysis is blinded with a random number added to the
central value.

Dalitz plot. Several models to describe the Dalitz plot with no CP asymmetry have

been presented here, and an accurate description of the Dalitz plot decay of the D±

meson is now within reach. Suprisingly, the traditional “Isobar” model provides the

best description of the data. The data is also sensitive to masses and widths of the

well-measured K̄∗0(892) and φ(1020) resonances and to several resonances whose

parameters have not been measured accurately before.

This research compliments many analyses within the BaBar experiment, where

direct and indirect CP asymmetry have been measured in several charm decays.

Establishing the level of CP violation in charm decays is an integral part of flavor

physics research which will provide physicists on future flavor physics experiments a

guide of both where and how to measure these asymmetries in data with much higher

sensitivity. Two such experiments are possibilities in the near future, BELLE-II and

the proposed Super-B experiment to be conducted in Italy.
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Appendix A

Minuit Fit Results for Tau 31 sample

NO. NAME VALUE ERROR

1 A_0 7.27808e-01 1.30456e-01

2 p0 5.93713e-03 8.72436e-03

3 tau 7.54981e-02 1.43502e-02

4 B_0 1.71287e-02 2.09114e-03

5 p1 7.81093e-01 3.71042e-02

6 tau_prime 8.80375e-01 2.00866e-01

7 asymmetry_0 8.21539e-03 1.41094e-02

8 asymmetry_1 -4.54376e-03 6.27107e-03

9 asymmetry_2 2.96776e-03 2.99234e-03

10 asymmetry_3 -1.31572e-02 1.13516e-02

11 plus_acceptanceloss 3.70700e-01

12 plus_acceptancelosscat1 5.47188e-01

13 plus_acceptancelosscat2 5.07692e-01

14 plus_conversions 2.25882e-01 1.44893e-01

15 plus_bgd 9.95527e-02 3.01867e-01

16 plus_uds 5.45207e-01 fixed

17 plus_cc 4.90112e-01 fixed

18 plus_bb 3.13119e-01 fixed

19 minus_acceptanceloss 6.13923e-11 2.76052e-01

20 minus_acceptancelosscat1 5.88997e-01 1.84777e-02

21 minus_acceptancelosscat2 3.66294e-01 9.12865e-02

22 minus_conversions 2.41900e-01 1.50836e-01

23 minus_bgd 1.27923e-01 3.68920e-01
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24 minus_uds 5.45207e-01 fixed

25 minus_cc 4.90112e-01 fixed

26 minus_bb 3.13119e-01 fixed
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Appendix B

Likelihood Based Event Selection

In the case of charm events at e+e− B-factories, bb̄ events can be removed with momen-

tum and event shape cuts, however, contributions from uds and other non-signal charm

events produce extreme levels of background.

A multivariate classifier, based on machine learning techniques, is used in this analysis

to extract significant and pure signal samples of Singly-Cabibbo suppressed charm decays.

In particular, the projective likelihood estimator, which consists of building a model out of

probability density functions (PDFs) of various input variables for signal and background

events, provides signal event classification with excellent stability. We base our likelihood

technique on the software package TMVA [40].

The method of maximum likelihood requires that a model be built from PDFs that

describe the input variables for signal and background. For any given event, the likelihood

for being of signal type is obtained by multiplying all the signal probability densities of

the input variables, and normalizing this by the sum of signal and background likelihoods.

Correlations among input variables are ignored, which is valid if the input variables are not

highly correlated (correlation scatter plots are shown in figures Figure B.4 and Figure B.5).

If they were, the likelihood would require a multidimensional PDF.

The likelihood ratio R for a given event i is given by

R =
Ls(i)

LS(i) + LB(i)
(B.0.3)

The likelihoods are defined as

LS(B)(i) =

nvar
∏

k=1

pS(B),k(xk(i)) (B.0.4)

where pS(B),k is the signal (background) PDF for the kth input variable xk. The PDFs

are normalized
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∫ +∞

−∞
pS(B),k(xk)dxk = 1,∀k (B.0.5)

The PDFs for signal and background discriminating variables are obtained as follows:

•Determine the signal and background regions of events in the mass plot. The signal

and background regions are defined by σTotal from the fit to the mass plot. Signal regions

are taken to ±2σTotal from the mean µ. The background regions are taken from ±6σTotal

to ±10σTotal from the mean µ. The background histograms are taken as is, but a sideband

subtraction technique must be applied to the signal histograms. Therefore, the background

histograms are scaled by a factor of 1/2 (the background area is twice as large as the signal

area) and subtracted from the signal histogram. The result is a signal distribution for a

given discriminating variable.

•The background-subtracted signal histograms and the background histograms are

smoothed, using the ROOT [41] smoothing function “TH1::SmoothArray”, which is an

implementation of the algorithm 353QH twice.

•The parametric form of the PDFs are typically unknown, therefore the PDF shapes

are empirically approximated from the smoothed histgrams by nonparametric functions,

which are polynomial splines of second order. The spline functions are taken from TMVA

[40].

Histograms of the discriminating variables are shown in figures Figure B.2 and Fig-

ure B.3. The figures also show the smoothed histogram and the resulting PDF for signal

and background.

For a given event i, the probabality that the event is signal or background is computed

based on the value of the discriminating varible. These probabilities are used in equation

B.0.4 to compute the likelihood, and then the likelihood ratio is found from equation B.0.3.

The distribution should peak at 1 for signal events and at 0 for background events (figure

Figure B.6).

The likelihood PDFs are derived from two variables. The following discriminant vari-

ables are with respect to the parent D meson candidate.

•Signed decay distance in the transverse plane (Dxy), defined in equation B.0.6. The

distributions of signal and background are shown in figure Figure B.2.
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Figure B.1: Multivariate discriminant training regions for signal (red) and back-
ground (blue) events. Regions are determined from the σTotal of the fit to this mass
distribution. The signal region is ±2σTotal from the D mass and the background
regions are 6σTotal to 10σTotal from the D mass in the lower and upper sideband
regions.

Dxy =
~dxy • p̂D

σdxy

(B.0.6)

The signed decay distance is calculated as follows. Fit the D candidate with the

requirement that it originate from the beam spot, so that the momentum vector of the D

points from the beam spot to the decay vertex. Calculate the vector from the beam spot

to the decay vertex in the x-y plane. Determine the sign of this vector by dotting it with

the unit vector in the direction of the D momentum. Finally, determine the error in the
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distance calculation. The signed, scaled decay “distance” is the signed distance in units

of error (see reference [43]).

•Center-of-mass momentum (p∗). The distributions of signal and background are

shown in figure Figure B.3.
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Figure B.2: Probability distribution function of the decay distance measured in the
transverse plane Dxy (right)

The likelihood classifier provides a tool to remove multiple candidates per event. Before

measuring the overall performance of the classifier, the candidate with the largest R per

event is kept and the remaining candidates are rejected. Table Table B.6 summarizes the

number of candidates per event and the fraction of those events in the data. 11% of events

have zero candidates after the initial Q value cut and m(KK) cut, leaving 72% of events
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Figure B.3: Probability distribution functions of the center-of-mass momentum p∗.

with exactly one candidate. Events that have more than one candidate typically have

poorly measured D candidates and are rejected later by the tight cut on R.

CandidatesEvent Fraction of Events (%)
0 11.4
1 71.7
2 13.1
3 or more 3.4

Table B.6: Breakdown of the number of candidates per event and the fraction of
those events in the data set. Most of the events have exactly one candidate.

Using ten independent samples of 10 fb−1, a measure of the fractional error on the

significance is found. The training of the estimator is performed on one of the ten samples,
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Figure B.4: Correlation scatter plots for signal + background discriminating vari-
ables. The correlation factor for the signal pdfs of p* and Dxy is 17%. Since the
pdfs are taken directly from data, we cannot produce a scatter plot of the pdfs for
signal due to the background subtraction that needs to be applied to obtain the
signal pdfs.

and the resulting PDFs are used to test the remaining nine samples. The RMS deviation

calculated from independent samples leads to a measurement of the fractional error. The

RMS for a given likelihood ratio i is given by

σSi
=

√

(Si − S̄i)2

n
(B.0.7)

where n is the number of samples, in this case nine. Therefore, the error on S is given

by

202



)±(D*p

2.5 3 3.5 4 4.5 5

dσ
p •

xyd

-5

0

5

10

15

Correlation Factor = -0.0045 

Figure B.5: Correlation scatter plots for background discriminating variables. The
correlation factor for the background pdfs is nearly zero.

∆Si =
σSi√

n
(B.0.8)

and the fractional error

∆si

si
(B.0.9)

The fractional error as a function of the cut R, shown in figure Figure B.7, has a mean

of 0.45%.
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Figure B.6: Signal and background distributions of the likelihood ratio R. Signal
events are expected to peak at one, while the background events are expected to
peak around zero.
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Appendix C

uds Monte Carlo Backgrounds

N N/Nb Decay K+ K− π+

1461
35 228 0.16 K∗ → Kπ N/A K−(K∗0) π+(K∗0)
36 8 0.01 K∗Ln→ K−π N/A K−(K∗0) π+(K∗0)
37 1 0.00 K∗ → Kπ π+(K∗0) K−(K∗0) N/A
38 4 0.00 K∗ → Kπ K+(K∗0) N/A π−(K∗0)
40 166 0.11 K∗ → Kπ N/A K−(K∗0) π+

r

43 170 0.12 Φ → K+K− K+ K− N/A
44 71 0.05 Φ → K+K− N/A K−(Φ) K+(Φ)
45 12 0.01 Φ → K+K− K+

r K−(Φ) N/A
46 21 0.01 Φ → K+K− K+(Φ) K−

r N/A
47 223 0.15 KK̄ Resonance K+ K− N/A
48 6 0.00 ∆++ → pπ+ p+(∆++) N/A π+i(∆++)
49 5 0.00 γ → e+e−

50 148 0.10 K∗+ → K+π0

52 1 0.00 ρ0 → π+π−

53 13 0.01 ρ+ → π+π0 π+(ρ+)
54 30 0.02 ρ0 → π+π− π+(ρ+)
55 354 0.24 Other

Table C.0: Breakdown of uds MC background events for D+ in the lower mass
sideband region.
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N N/Nb Decay K+ K− π+

1336
35 248 0.19 K∗ → Kπ N/A K−(K∗0) π+(K∗0)
36 8 0.01 K∗Ln→ K−π N/A K−(K∗0) π+(K∗0)
37 5 0.00 K∗ → Kπ π+(K∗0) K−(K∗0) N/A
38 8 0.01 K∗ → Kπ K+(K∗0) N/A π−(K∗0)
40 139 0.10 K∗ → Kπ N/A K−(K∗0) π+

r

43 155 0.12 Φ → K+K− K+ K− N/A
44 62 0.05 Φ → K+K− N/A K−(Φ) K+(Φ)
45 8 0.01 Φ → K+K− K+

r K−(Φ) N/A
46 18 0.01 Φ → K+K− K+(Φ) K−

r N/A
47 211 0.16 KK̄ Resonance K+ K− N/A
48 6 0.00 ∆++ → pπ+ p+(∆++) N/A π+i(∆++)
49 1 0.00 γ → e+e−

50 148 0.11 K∗+ → K+π0

52 3 0.00 ρ0 → π+π−

53 9 0.01 ρ+ → π+π0 π+(ρ+)
54 22 0.02 ρ0 → π+π− π+(ρ+)
55 285 0.21 Other

Table C.0: Breakdown of uds MC background events for D− in the lower mass
sideband region.

N N/Nb Decay K+ K− π+

1267
35 203 0.16 K∗ → Kπ N/A K−(K∗0) π+(K∗0)
36 14 0.01 K∗Ln→ K−π N/A K−(K∗0) π+(K∗0)
37 1 0.00 K∗ → Kπ π+(K∗0) K−(K∗0) N/A
38 3 0.00 K∗ → Kπ K+(K∗0) N/A π−(K∗0)
40 118 0.09 K∗ → Kπ N/A K−(K∗0) π+

r

43 150 0.12 Φ → K+K− K+ K− N/A
44 50 0.04 Φ → K+K− N/A K−(Φ) K+(Φ)
45 7 0.01 Φ → K+K− K+

r K−(Φ) N/A
46 14 0.01 Φ → K+K− K+(Φ) K−

r N/A
47 191 0.15 KK̄ Resonance K+ K− N/A
48 4 0.00 ∆++ → pπ+ p+(∆++) N/A π+i(∆++)
49 3 0.00 γ → e+e−

50 144 0.11 K∗+ → K+π0

52 3 0.00 ρ0 → π+π−

53 19 0.01 ρ+ → π+π0 π+(ρ+)
54 28 0.02 ρ0 → π+π− π+(ρ+)
55 315 0.25 Other

Table C.0: Breakdown of uds MC background events for D+ in the upper mass
sideband region.
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N N/Nb Decay K+ K− π+

1258
35 180 0.14 K∗ → Kπ N/A K−(K∗0) π+(K∗0)
36 11 0.01 K∗Ln→ K−π N/A K−(K∗0) π+(K∗0)
37 5 0.00 K∗ → Kπ π+(K∗0) K−(K∗0) N/A
38 3 0.00 K∗ → Kπ K+(K∗0) N/A π−(K∗0)
40 145 0.12 K∗ → Kπ N/A K−(K∗0) π+

r

43 131 0.10 Φ → K+K− K+ K− N/A
44 50 0.04 Φ → K+K− N/A K−(Φ) K+(Φ)
45 8 0.01 Φ → K+K− K+

r K−(Φ) N/A
46 20 0.02 Φ → K+K− K+(Φ) K−

r N/A
47 211 0.17 KK̄ Resonance K+ K− N/A
48 14 0.01 ∆++ → pπ+ p+(∆++) N/A π+i(∆++)
49 1 0.00 γ → e+e−

50 132 0.10 K∗+ → K+π0

52 3 0.00 ρ0 → π+π−

53 17 0.01 ρ+ → π+π0 π+(ρ+)
54 21 0.02 ρ0 → π+π− π+(ρ+)
55 306 0.24 Other

Table C.0: Breakdown of uds MC background events for D− in the upper mass
sideband region.
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Appendix D

ccbar Monte Carlo Backgrounds
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N N/Nb Decay K+ K− π+

6397
1 203 0.03 D+ → K+K−π+ K+(D+) K−(D+) π+

r

2 45 0.01 D+ → K+K−π+ K+(D+) K−(D+) not π+

3 489 0.08 D+ → K+π−π+ K+
r K−(D+) π+(D+)

4 3 0.00 D+ → K+K−π+ K+(D+) K−

r π+(D+

5 2 0.00 D+ → K+π−π+ K+(D+) π−(D+) π+(D+)
7 206 0.03 D+ → K+K−π+ π+(D+) K−(D+) π+(D+)
8 6 0.00 D+ → K−π+e+(µ+)νe,µ e+(µ+)(D+) π+

r K−(D+)
10 11 0.00 D+ → K−π+e+(µ+)νe,µ π+(D+) K−(D+) e+(µ+)(D+)
11 176 0.03 D+ → K+K∗0 K+ K−(K∗0) π+

r

12 113 0.02 D+
s → K+K−π+ K+ K− π+

13 3 0.00 D+
s → K+K−π+ π+ K− K+

14 107 0.02 D+
s → K+K−K+ K+ K− K+

15 34 0.01 D+
s → K+K∗0 K+ K−

r π+(K∗0)
16 161 0.03 D+

s → K+K∗0 K+ K−(K∗0) π+
r

17 61 0.01 D+
s → K+K−π+ K+ K− π+

r

18 47 0.01 D+
s → K+K−π+ K+ K− π+

19 85 0.01 D+
s → K+K−π+

20 1 0.00 D∗ → D0 → Kπ(K) π+, K+(D0 K−(D0 π+(D∗+)
21 191 0.03 D0 → K+K− K+ K− N/A
22 25 0.00 D0 → K+K− N/A K− K+

23 233 0.04 D0 → K−π+π0 K+
r K− π+

24 152 0.02 D0 → K−π+ K+
r K− π+

25 11 0.00 D0 → Ke(µ)ν K+ e−(µ−) N/A
26 309 0.05 D0 → Ke(µ)ν N/A K− e+(µ+)
27 36 0.01 D0 → K−π+ π+ K− N/A
28 2 0.00 D0 → K−π+ N/A π− K+

29 48 0.01 D0 → K∗0π+π− K+
r K−(K∗) π+

31 88 0.01 D0 Decay
32 6 0.00 Λc → pK−π+ p K− π+

33 2 0.00 ΛcDecay
34 286 0.04 K∗ → Kπ (Charm) N/A K−(K∗0) π+(K∗0)
35 86 0.01 K∗ → Kπ N/A K−(K∗0) π+(K∗0)
36 5 0.00 K∗Ln → K−π N/A K−(K∗0) π+(K∗0)
37 121 0.02 K∗ → Kπ π+(K∗0) K−(K∗0) N/A
38 30 0.00 K∗ → Kπ K+(K∗0) N/A π−(K∗0)
40 105 0.02 K∗ → Kπ N/A K−(K∗0) π+

r

41 163 0.03 K∗ → Kπ N/A K−(K∗0) π+
r

42 492 0.08 Φ → K+K−(Charm) K+ K− N/A
43 33 0.01 Φ → K+K− K+ K− N/A
44 88 0.01 Φ → K+K− N/A K−(Φ) K+(Φ)
45 28 0.00 Φ → K+K− K+

r K−(Φ) N/A
46 136 0.02 Φ → K+K− K+(Φ) K−

r N/A
47 53 0.01 KK̄ Resonance K+ K− N/A
48 3 0.00 ∆++ → pπ+ p+(∆++) N/A π+i(∆++)
49 4 0.00 γ → e+e−

50 522 0.08 K∗+ → K+π0

51 1 0.00 τ Decay
52 85 0.01 ρ0 → π+π−

53 181 0.03 ρ+ → π+π0 π+(ρ+)
54 308 0.05 ρ0 → π+π− π+(ρ+)
55 811 0.13 Other

Table D.0: Breakdown of background events for ccbar MC for D− events in the
lower mass sideband region.

209



N N/Nb Decay K+ K− π+

6268
1 202 0.03 D+ → K+K−π+ K+(D+) K−(D+) π+

r

2 53 0.01 D+ → K+K−π+ K+(D+) K−(D+) not π+

3 442 0.07 D+ → K+π−π+ K+
r K−(D+) π+(D+)

4 3 0.00 D+ → K+K−π+ K+(D+) K−

r π+(D+

5 2 0.00 D+ → K+π−π+ K+(D+) π−(D+) π+(D+)
7 179 0.03 D+ → K+K−π+ π+(D+) K−(D+) π+(D+)
8 14 0.00 D+ → K−π+e+(µ+)νe,µ e+(µ+)(D+) π+

r K−(D+)
10 9 0.00 D+ → K−π+e+(µ+)νe,µ π+(D+) K−(D+) e+(µ+)(D+)
11 171 0.03 D+ → K+K∗0 K+ K−(K∗0) π+

r

12 128 0.02 D+
s → K+K−π+ K+ K− π+

13 2 0.00 D+
s → K+K−π+ π+ K− K+

14 79 0.01 D+
s → K+K−K+ K+ K− K+

15 36 0.01 D+
s → K+K∗0 K+ K−

r π+(K∗0)
16 164 0.03 D+

s → K+K∗0 K+ K−(K∗0) π+
r

17 63 0.01 D+
s → K+K−π+ K+ K− π+

r

18 41 0.01 D+
s → K+K−π+ K+ K− π+

19 81 0.01 D+
s → K+K−π+

20 4 0.00 D∗ → D0 → Kπ(K) π+, K+(D0 K−(D0 π+(D∗+)
21 158 0.03 D0 → K+K− K+ K− N/A
22 19 0.00 D0 → K+K− N/A K− K+

23 268 0.04 D0 → K−π+π0 K+
r K− π+

24 150 0.02 D0 → K−π+ K+
r K− π+

25 5 0.00 D0 → Ke(µ)ν K+ e−(µ−) N/A
26 276 0.04 D0 → Ke(µ)ν N/A K− e+(µ+)
27 36 0.01 D0 → K−π+ π+ K− N/A
29 49 0.01 D0 → K∗0π+π− K+

r K−(K∗) π+

31 102 0.02 D0 Decay
32 2 0.00 Λc → pK−π+ p K− π+

33 3 0.00 ΛcDecay
34 289 0.05 K∗ → Kπ (Charm) N/A K−(K∗0) π+(K∗0)
35 72 0.01 K∗ → Kπ N/A K−(K∗0) π+(K∗0)
36 7 0.00 K∗Ln → K−π N/A K−(K∗0) π+(K∗0)
37 118 0.02 K∗ → Kπ π+(K∗0) K−(K∗0) N/A
38 33 0.01 K∗ → Kπ K+(K∗0) N/A π−(K∗0)
40 106 0.02 K∗ → Kπ N/A K−(K∗0) π+

r

41 116 0.02 K∗ → Kπ N/A K−(K∗0) π+
r

42 498 0.08 Φ → K+K−(Charm) K+ K− N/A
43 21 0.00 Φ → K+K− K+ K− N/A
44 73 0.01 Φ → K+K− N/A K−(Φ) K+(Φ)
45 24 0.00 Φ → K+K− K+

r K−(Φ) N/A
46 139 0.02 Φ → K+K− K+(Φ) K−

r N/A
47 43 0.01 KK̄ Resonance K+ K− N/A
48 6 0.00 ∆++ → pπ+ p+(∆++) N/A π+i(∆++)
49 5 0.00 γ → e+e−

50 553 0.09 K∗+ → K+π0

51 1 0.00 τ Decay
52 101 0.02 ρ0 → π+π−

53 183 0.03 ρ+ → π+π0 π+(ρ+)
54 367 0.06 ρ0 → π+π− π+(ρ+)
55 772 0.12 Other

Table D.0: Breakdown of background events of ccbar MC for D+ events in the lower
mass sideband region.

210



N N/Nb Decay K+ K− π+

5786
1 187 0.03 D+ → K+K−π+ K+(D+) K−(D+) π+

r

2 21 0.00 D+ → K+K−π+ K+(D+) K−(D+) not π+

3 453 0.08 D+ → K+π−π+ K+
r K−(D+) π+(D+)

4 2 0.00 D+ → K+K−π+ K+(D+) K−

r π+(D+

5 8 0.00 D+ → K+π−π+ K+(D+) π−(D+) π+(D+)
7 170 0.03 D+ → K+K−π+ π+(D+) K−(D+) π+(D+)
8 9 0.00 D+ → K−π+e+(µ+)νe,µ e+(µ+)(D+) π+

r K−(D+)
10 9 0.00 D+ → K−π+e+(µ+)νe,µ π+(D+) K−(D+) e+(µ+)(D+)
11 172 0.03 D+ → K+K∗0 K+ K−(K∗0) π+

r

12 271 0.05 D+
s → K+K−π+ K+ K− π+

13 8 0.00 D+
s → K+K−π+ π+ K− K+

15 80 0.01 D+
s → K+K∗0 K+ K−

r π+(K∗0)
16 305 0.05 D+

s → K+K∗0 K+ K−(K∗0) π+
r

17 66 0.01 D+
s → K+K−π+ K+ K− π+

r

18 39 0.01 D+
s → K+K−π+ K+ K− π+

19 111 0.02 D+
s → K+K−π+

20 2 0.00 D∗ → D0 → Kπ(K) π+, K+(D0 K−(D0 π+(D∗+)
21 139 0.02 D0 → K+K− K+ K− N/A
22 15 0.00 D0 → K+K− N/A K− K+

23 216 0.04 D0 → K−π+π0 K+
r K− π+

24 152 0.03 D0 → K−π+ K+
r K− π+

25 12 0.00 D0 → Ke(µ)ν K+ e−(µ−) N/A
26 373 0.06 D0 → Ke(µ)ν N/A K− e+(µ+)
27 54 0.01 D0 → K−π+ π+ K− N/A
28 2 0.00 D0 → K−π+ N/A π− K+

29 44 0.01 D0 → K∗0π+π− K+
r K−(K∗) π+

31 90 0.02 D0 Decay
32 9 0.00 Λc → pK−π+ p K− π+

33 1 0.00 ΛcDecay
34 183 0.03 K∗ → Kπ (Charm) N/A K−(K∗0) π+(K∗0)
35 73 0.01 K∗ → Kπ N/A K−(K∗0) π+(K∗0)
36 4 0.00 K∗Ln → K−π N/A K−(K∗0) π+(K∗0)
37 77 0.01 K∗ → Kπ π+(K∗0) K−(K∗0) N/A
38 20 0.00 K∗ → Kπ K+(K∗0) N/A π−(K∗0)
40 80 0.01 K∗ → Kπ N/A K−(K∗0) π+

r

41 111 0.02 K∗ → Kπ N/A K−(K∗0) π+
r

42 213 0.04 Φ → K+K−(Charm) K+ K− N/A
43 22 0.00 Φ → K+K− K+ K− N/A
44 64 0.01 Φ → K+K− N/A K−(Φ) K+(Φ)
45 16 0.00 Φ → K+K− K+

r K−(Φ) N/A
46 179 0.03 Φ → K+K− K+(Φ) K−

r N/A
47 59 0.01 KK̄ Resonance K+ K− N/A
48 11 0.00 ∆++ → pπ+ p+(∆++) N/A π+i(∆++)
49 3 0.00 γ → e+e−

50 476 0.08 K∗+ → K+π0

51 4 0.00 τ Decay
52 49 0.01 ρ0 → π+π−

53 165 0.03 ρ+ → π+π0 π+(ρ+)
54 296 0.05 ρ0 → π+π− π+(ρ+)
55 661 0.11 Other

Table D.0: Breakdown of background events for ccbar MC events for D+ events in
the upper mass sideband region.
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N N/Nb Decay K+ K− π+

5929
1 180 0.03 D+ → K+K−π+ K+(D+) K−(D+) π+

r

2 24 0.00 D+ → K+K−π+ K+(D+) K−(D+) not π+

3 461 0.08 D+ → K+π−π+ K+
r K−(D+) π+(D+)

4 2 0.00 D+ → K+K−π+ K+(D+) K−

r π+(D+

5 8 0.00 D+ → K+π−π+ K+(D+) π−(D+) π+(D+)
7 169 0.03 D+ → K+K−π+ π+(D+) K−(D+) π+(D+)
8 12 0.00 D+ → K−π+e+(µ+)νe,µ e+(µ+)(D+) π+

r K−(D+)
10 8 0.00 D+ → K−π+e+(µ+)νe,µ π+(D+) K−(D+) e+(µ+)(D+)
11 187 0.03 D+ → K+K∗0 K+ K−(K∗0) π+

r

12 275 0.05 D+
s → K+K−π+ K+ K− π+

13 7 0.00 D+
s → K+K−π+ π+ K− K+

14 1 0.00 D+
s → K+K−K+ K+ K− K+

15 95 0.02 D+
s → K+K∗0 K+ K−

r π+(K∗0)
16 341 0.06 D+

s → K+K∗0 K+ K−(K∗0) π+
r

17 66 0.01 D+
s → K+K−π+ K+ K− π+

r

18 48 0.01 D+
s → K+K−π+ K+ K− π+

19 99 0.02 D+
s → K+K−π+

21 135 0.02 D0 → K+K− K+ K− N/A
22 18 0.00 D0 → K+K− N/A K− K+

23 250 0.04 D0 → K−π+π0 K+
r K− π+

24 145 0.02 D0 → K−π+ K+
r K− π+

25 16 0.00 D0 → Ke(µ)ν K+ e−(µ−) N/A
26 367 0.06 D0 → Ke(µ)ν N/A K− e+(µ+)
27 46 0.01 D0 → K−π+ π+ K− N/A
28 2 0.00 D0 → K−π+ N/A π− K+

29 41 0.01 D0 → K∗0π+π− K+
r K−(K∗) π+

31 77 0.01 D0 Decay
32 8 0.00 Λc → pK−π+ p K− π+

33 1 0.00 ΛcDecay
34 192 0.03 K∗ → Kπ (Charm) N/A K−(K∗0) π+(K∗0)
35 65 0.01 K∗ → Kπ N/A K−(K∗0) π+(K∗0)
36 15 0.00 K∗Ln → K−π N/A K−(K∗0) π+(K∗0)
37 84 0.01 K∗ → Kπ π+(K∗0) K−(K∗0) N/A
38 13 0.00 K∗ → Kπ K+(K∗0) N/A π−(K∗0)
40 102 0.02 K∗ → Kπ N/A K−(K∗0) π+

r

41 116 0.02 K∗ → Kπ N/A K−(K∗0) π+
r

42 236 0.04 Φ → K+K−(Charm) K+ K− N/A
43 23 0.00 Φ → K+K− K+ K− N/A
44 58 0.01 Φ → K+K− N/A K−(Φ) K+(Φ)
45 28 0.00 Φ → K+K− K+

r K−(Φ) N/A
46 151 0.03 Φ → K+K− K+(Φ) K−

r N/A
47 56 0.01 KK̄ Resonance K+ K− N/A
48 1 0.00 ∆++ → pπ+ p+(∆++) N/A π+i(∆++)
49 5 0.00 γ → e+e−

50 492 0.08 K∗+ → K+π0

51 1 0.00 τ Decay
52 50 0.01 ρ0 → π+π−

53 159 0.03 ρ+ → π+π0 π+(ρ+)
54 325 0.05 ρ0 → π+π− π+(ρ+)
55 668 0.11 Other

Table D.0: Breakdown of background events for ccbar MC for D− events in the
upper mass sideband region.
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Appendix E

B+B− Monte Carlo Backgrounds

N N/Nb Decay K+ K− π+

449
1 1 0.00 D+ → K+K−π+ K+(D+) K−(D+) π+

r

2 1 0.00 D+ → K+K−π+ K+(D+) K−(D+) not π+

3 13 0.03 D+ → K+π−π+ K+
r K−(D+) π+(D+)

7 1 0.00 D+ → K+K−π+ π+(D+) K−(D+) π+(D+)
11 1 0.00 D+ → K+K∗0 K+ K−(K∗0) π+

r

15 2 0.00 D+
s → K+K∗0 K+ K−

r π+(K∗0)
16 6 0.01 D+

s → K+K∗0 K+ K−(K∗0) π+
r

19 1 0.00 D+
s → K+K−π+

21 18 0.04 D0 → K+K− K+ K− N/A
22 2 0.00 D0 → K+K− N/A K− K+

23 57 0.13 D0 → K−π+π0 K+
r K− π+

24 20 0.04 D0 → K−π+ K+
r K− π+

26 30 0.07 D0 → Ke(µ)ν N/A K− e+(µ+)
27 1 0.00 D0 → K−π+ π+ K− N/A
29 4 0.01 D0 → K∗0π+π− K+

r K−(K∗) π+

31 5 0.01 D0 Decay
34 10 0.02 K∗ → Kπ (Charm) N/A K−(K∗0) π+(K∗0)
36 1 0.00 K∗Ln → K−π N/A K−(K∗0) π+(K∗0)
37 1 0.00 K∗ → Kπ π+(K∗0) K−(K∗0) N/A
41 16 0.04 K∗ → Kπ N/A K−(K∗0) π+

r

42 41 0.09 Φ → K+K−(Charm) K+ K− N/A
43 2 0.00 Φ → K+K− K+ K− N/A
44 5 0.01 Φ → K+K− N/A K−(Φ) K+(Φ)
46 4 0.01 Φ → K+K− K+(Φ) K−

r N/A
47 7 0.02 KK̄ Resonance K+ K− N/A
50 33 0.07 K∗+ → K+π0

51 5 0.01 τ Decay
53 20 0.04 ρ+ → π+π0 π+(ρ+)
54 23 0.05 ρ0 → π+π− π+(ρ+)
55 118 0.26 Other

Table E.0: Breakdown of background events of bpbm MC for D+ events in the lower
mass sideband region.
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N N/Nb Decay K+ K− π+

442
1 1 0.00 D+ → K+K−π+ K+(D+) K−(D+) π+

r

2 1 0.00 D+ → K+K−π+ K+(D+) K−(D+) not π+

3 23 0.05 D+ → K+π−π+ K+
r K−(D+) π+(D+)

7 1 0.00 D+ → K+K−π+ π+(D+) K−(D+) π+(D+)
11 1 0.00 D+ → K+K∗0 K+ K−(K∗0) π+

r

16 6 0.01 D+
s → K+K∗0 K+ K−(K∗0) π+

r

17 2 0.00 D+
s → K+K−π+ K+ K− π+

r

19 2 0.00 D+
s → K+K−π+

21 17 0.04 D0 → K+K− K+ K− N/A
22 3 0.01 D0 → K+K− N/A K− K+

23 32 0.07 D0 → K−π+π0 K+
r K− π+

24 19 0.04 D0 → K−π+ K+
r K− π+

26 30 0.07 D0 → Ke(µ)ν N/A K− e+(µ+)
29 3 0.01 D0 → K∗0π+π− K+

r K−(K∗) π+

31 7 0.02 D0 Decay
34 11 0.02 K∗ → Kπ (Charm) N/A K−(K∗0) π+(K∗0)
37 1 0.00 K∗ → Kπ π+(K∗0) K−(K∗0) N/A
41 6 0.01 K∗ → Kπ N/A K−(K∗0) π+

r

42 43 0.10 Φ → K+K−(Charm) K+ K− N/A
43 4 0.01 Φ → K+K− K+ K− N/A
44 4 0.01 Φ → K+K− N/A K−(Φ) K+(Φ)
45 4 0.01 Φ → K+K− K+

r K−(Φ) N/A
46 3 0.01 Φ → K+K− K+(Φ) K−

r N/A
47 7 0.02 KK̄ Resonance K+ K− N/A
50 43 0.10 K∗+ → K+π0

51 2 0.00 τ Decay
53 19 0.04 ρ+ → π+π0 π+(ρ+)
54 31 0.07 ρ0 → π+π− π+(ρ+)
55 116 0.26 Other

Table E.0: Breakdown of background events for bpbm MC for D− events in the
lower mass sideband region.
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N N/Nb Decay K+ K− π+

467
1 2 0.00 D+ → K+K−π+ K+(D+) K−(D+) π+

r

2 2 0.00 D+ → K+K−π+ K+(D+) K−(D+) not π+

3 12 0.03 D+ → K+π−π+ K+
r K−(D+) π+(D+)

7 1 0.00 D+ → K+K−π+ π+(D+) K−(D+) π+(D+)
15 2 0.00 D+

s → K+K∗0 K+ K−
r π+(K∗0)

16 2 0.00 D+
s → K+K∗0 K+ K−(K∗0) π+

r

17 1 0.00 D+
s → K+K−π+ K+ K− π+

r

18 2 0.00 D+
s → K+K−π+ K+ K− π+

19 2 0.00 D+
s → K+K−π+

21 12 0.03 D0 → K+K− K+ K− N/A
22 2 0.00 D0 → K+K− N/A K− K+

23 37 0.08 D0 → K−π+π0 K+
r K− π+

24 20 0.04 D0 → K−π+ K+
r K− π+

26 34 0.07 D0 → Ke(µ)ν N/A K− e+(µ+)
27 3 0.01 D0 → K−π+ π+ K− N/A
29 3 0.01 D0 → K∗0π+π− K+

r K−(K∗) π+

31 4 0.01 D0 Decay
34 15 0.03 K∗ → Kπ (Charm) N/A K−(K∗0) π+(K∗0)
35 2 0.00 K∗ → Kπ N/A K−(K∗0) π+(K∗0)
41 14 0.03 K∗ → Kπ N/A K−(K∗0) π+

r

42 36 0.08 Φ → K+K−(Charm) K+ K− N/A
43 3 0.01 Φ → K+K− K+ K− N/A
44 4 0.01 Φ → K+K− N/A K−(Φ) K+(Φ)
45 2 0.00 Φ → K+K− K+

r K−(Φ) N/A
46 7 0.01 Φ → K+K− K+(Φ) K−

r N/A
47 11 0.02 KK̄ Resonance K+ K− N/A
50 44 0.09 K∗+ → K+π0

51 4 0.01 τ Decay
53 29 0.06 ρ+ → π+π0 π+(ρ+)
54 40 0.09 ρ0 → π+π− π+(ρ+)
55 115 0.25 Other

Table E.0: Breakdown of background events for bpbm MC for D− events in the
upper mass sideband region.
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N N/Nb Decay K+ K− π+

455
1 1 0.00 D+ → K+K−π+ K+(D+) K−(D+) π+

r

3 11 0.02 D+ → K+π−π+ K+
r K−(D+) π+(D+)

7 5 0.01 D+ → K+K−π+ π+(D+) K−(D+) π+(D+)
15 1 0.00 D+

s → K+K∗0 K+ K−
r π+(K∗0)

16 5 0.01 D+
s → K+K∗0 K+ K−(K∗0) π+

r

17 1 0.00 D+
s → K+K−π+ K+ K− π+

r

19 1 0.00 D+
s → K+K−π+

21 18 0.04 D0 → K+K− K+ K− N/A
22 2 0.00 D0 → K+K− N/A K− K+

23 47 0.10 D0 → K−π+π0 K+
r K− π+

24 24 0.05 D0 → K−π+ K+
r K− π+

26 38 0.08 D0 → Ke(µ)ν N/A K− e+(µ+)
27 1 0.00 D0 → K−π+ π+ K− N/A
29 4 0.01 D0 → K∗0π+π− K+

r K−(K∗) π+

31 7 0.02 D0 Decay
34 15 0.03 K∗ → Kπ (Charm) N/A K−(K∗0) π+(K∗0)
35 4 0.01 K∗ → Kπ N/A K−(K∗0) π+(K∗0)
41 18 0.04 K∗ → Kπ N/A K−(K∗0) π+

r

42 32 0.07 Φ → K+K−(Charm) K+ K− N/A
43 3 0.01 Φ → K+K− K+ K− N/A
44 5 0.01 Φ → K+K− N/A K−(Φ) K+(Φ)
45 2 0.00 Φ → K+K− K+

r K−(Φ) N/A
47 7 0.02 KK̄ Resonance K+ K− N/A
50 27 0.06 K∗+ → K+π0

51 2 0.00 τ Decay
53 17 0.04 ρ+ → π+π0 π+(ρ+)
54 35 0.08 ρ0 → π+π− π+(ρ+)
55 122 0.27 Other

Table E.0: Breakdown of background events for bpbm MC for D+ events in the
upper mass sideband region.
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Appendix F

B0B̄0 Monte Carlo Backgrounds

N N/Nb Decay K+ K− π+

468
1 12 0.03 D+ → K+K−π+ K+(D+) K−(D+) π+

r

2 7 0.01 D+ → K+K−π+ K+(D+) K−(D+) not π+

3 133 0.28 D+ → K+π−π+ K+
r K−(D+) π+(D+)

7 36 0.08 D+ → K+K−π+ π+(D+) K−(D+) π+(D+)
11 12 0.03 D+ → K+K∗0 K+ K−(K∗0) π+

r

16 6 0.01 D+
s → K+K∗0 K+ K−(K∗0) π+

r

19 1 0.00 D+
s → K+K−π+

21 3 0.01 D0 → K+K− K+ K− N/A
22 2 0.00 D0 → K+K− N/A K− K+

23 8 0.02 D0 → K−π+π0 K+
r K− π+

24 3 0.01 D0 → K−π+ K+
r K− π+

26 4 0.01 D0 → Ke(µ)ν N/A K− e+(µ+)
29 2 0.00 D0 → K∗0π+π− K+

r K−(K∗) π+

31 1 0.00 D0 Decay
34 15 0.03 K∗ → Kπ (Charm) N/A K−(K∗0) π+(K∗0)
35 5 0.01 K∗ → Kπ N/A K−(K∗0) π+(K∗0)
37 1 0.00 K∗ → Kπ π+(K∗0) K−(K∗0) N/A
41 9 0.02 K∗ → Kπ N/A K−(K∗0) π+

r

42 56 0.12 Φ → K+K−(Charm) K+ K− N/A
43 3 0.01 Φ → K+K− K+ K− N/A
44 2 0.00 Φ → K+K− N/A K−(Φ) K+(Φ)
45 2 0.00 Φ → K+K− K+

r K−(Φ) N/A
46 4 0.01 Φ → K+K− K+(Φ) K−

r N/A
47 9 0.02 KK̄ Resonance K+ K− N/A
50 30 0.06 K∗+ → K+π0

51 3 0.01 τ Decay
53 9 0.02 ρ+ → π+π0 π+(ρ+)
54 4 0.01 ρ0 → π+π− π+(ρ+)
55 86 0.18 Other

Table F.0: Breakdown of background events for b0b0bar MC events for D+ events
in the lower mass sideband region.
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N N/Nb Decay K+ K− π+

511
1 10 0.02 D+ → K+K−π+ K+(D+) K−(D+) π+

r

2 3 0.01 D+ → K+K−π+ K+(D+) K−(D+) not π+

3 130 0.25 D+ → K+π−π+ K+
r K−(D+) π+(D+)

7 40 0.08 D+ → K+K−π+ π+(D+) K−(D+) π+(D+)
11 14 0.03 D+ → K+K∗0 K+ K−(K∗0) π+

r

16 7 0.01 D+
s → K+K∗0 K+ K−(K∗0) π+

r

17 3 0.01 D+
s → K+K−π+ K+ K− π+

r

19 1 0.00 D+
s → K+K−π+

21 8 0.02 D0 → K+K− K+ K− N/A
22 1 0.00 D0 → K+K− N/A K− K+

23 2 0.00 D0 → K−π+π0 K+
r K− π+

24 1 0.00 D0 → K−π+ K+
r K− π+

26 8 0.02 D0 → Ke(µ)ν N/A K− e+(µ+)
27 1 0.00 D0 → K−π+ π+ K− N/A
31 1 0.00 D0 Decay
34 14 0.03 K∗ → Kπ (Charm) N/A K−(K∗0) π+(K∗0)
35 10 0.02 K∗ → Kπ N/A K−(K∗0) π+(K∗0)
41 16 0.03 K∗ → Kπ N/A K−(K∗0) π+

r

42 72 0.14 Φ → K+K−(Charm) K+ K− N/A
43 1 0.00 Φ → K+K− K+ K− N/A
44 2 0.00 Φ → K+K− N/A K−(Φ) K+(Φ)
45 6 0.01 Φ → K+K− K+

r K−(Φ) N/A
46 3 0.01 Φ → K+K− K+(Φ) K−

r N/A
47 13 0.03 KK̄ Resonance K+ K− N/A
50 40 0.08 K∗+ → K+π0

53 12 0.02 ρ+ → π+π0 π+(ρ+)
54 7 0.01 ρ0 → π+π− π+(ρ+)
55 85 0.17 Other

Table F.0: Breakdown of background events for b0b0bar MC for D− in the lower
mass sideband region
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N N/Nb Decay K+ K− π+

452
1 15 0.03 D+ → K+K−π+ K+(D+) K−(D+) π+

r

2 13 0.03 D+ → K+K−π+ K+(D+) K−(D+) not π+

3 129 0.29 D+ → K+π−π+ K+
r K−(D+) π+(D+)

7 40 0.09 D+ → K+K−π+ π+(D+) K−(D+) π+(D+)
11 12 0.03 D+ → K+K∗0 K+ K−(K∗0) π+

r

16 5 0.01 D+
s → K+K∗0 K+ K−(K∗0) π+

r

17 2 0.00 D+
s → K+K−π+ K+ K− π+

r

18 2 0.00 D+
s → K+K−π+ K+ K− π+

21 4 0.01 D0 → K+K− K+ K− N/A
23 6 0.01 D0 → K−π+π0 K+

r K− π+

24 4 0.01 D0 → K−π+ K+
r K− π+

26 1 0.00 D0 → Ke(µ)ν N/A K− e+(µ+)
27 1 0.00 D0 → K−π+ π+ K− N/A
34 13 0.03 K∗ → Kπ (Charm) N/A K−(K∗0) π+(K∗0)
35 6 0.01 K∗ → Kπ N/A K−(K∗0) π+(K∗0)
36 1 0.00 K∗Ln → K−π N/A K−(K∗0) π+(K∗0)
41 6 0.01 K∗ → Kπ N/A K−(K∗0) π+

r

42 50 0.11 Φ → K+K−(Charm) K+ K− N/A
44 2 0.00 Φ → K+K− N/A K−(Φ) K+(Φ)
45 6 0.01 Φ → K+K− K+

r K−(Φ) N/A
46 3 0.01 Φ → K+K− K+(Φ) K−

r N/A
47 10 0.02 KK̄ Resonance K+ K− N/A
50 25 0.06 K∗+ → K+π0

53 8 0.02 ρ+ → π+π0 π+(ρ+)
54 4 0.01 ρ0 → π+π− π+(ρ+)
55 84 0.19 Other

Table F.0: Breakdown of background events for b0b0bar MC for D− events in the
upper mass sideband region.
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N N/Nb Decay K+ K− π+

428
1 13 0.03 D+ → K+K−π+ K+(D+) K−(D+) π+

r

2 7 0.02 D+ → K+K−π+ K+(D+) K−(D+) not π+

3 109 0.25 D+ → K+π−π+ K+
r K−(D+) π+(D+)

7 32 0.07 D+ → K+K−π+ π+(D+) K−(D+) π+(D+)
11 11 0.03 D+ → K+K∗0 K+ K−(K∗0) π+

r

16 7 0.02 D+
s → K+K∗0 K+ K−(K∗0) π+

r

17 1 0.00 D+
s → K+K−π+ K+ K− π+

r

19 1 0.00 D+
s → K+K−π+

21 6 0.01 D0 → K+K− K+ K− N/A
23 10 0.02 D0 → K−π+π0 K+

r K− π+

24 4 0.01 D0 → K−π+ K+
r K− π+

26 9 0.02 D0 → Ke(µ)ν N/A K− e+(µ+)
34 15 0.04 K∗ → Kπ (Charm) N/A K−(K∗0) π+(K∗0)
35 8 0.02 K∗ → Kπ N/A K−(K∗0) π+(K∗0)
41 10 0.02 K∗ → Kπ N/A K−(K∗0) π+

r

42 38 0.09 Φ → K+K−(Charm) K+ K− N/A
43 2 0.00 Φ → K+K− K+ K− N/A
44 2 0.00 Φ → K+K− N/A K−(Φ) K+(Φ)
45 2 0.00 Φ → K+K− K+

r K−(Φ) N/A
46 1 0.00 Φ → K+K− K+(Φ) K−

r N/A
47 10 0.02 KK̄ Resonance K+ K− N/A
50 21 0.05 K∗+ → K+π0

52 1 0.00 ρ0 → π+π−

53 11 0.03 ρ+ → π+π0 π+(ρ+)
54 10 0.02 ρ0 → π+π− π+(ρ+)
55 87 0.20 Other

Table F.0: Breakdown of background events for b0b0bar MC for D+ events in the
upper mass sideband region.
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Appendix G

Background slices of m2(K+K−) and m2(K−π+)
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Figure G.1: D+ low mass sideband region binning scheme for slices of Dalitz plot
variables.
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Figure G.2: D+ low mass sideband region plots form2(K+K−) in slices ofm2(K−π+)
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Figure G.3: D+ low mass sideband region plots form2(K−π+) in slices ofm2(K+K−)
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Figure G.4: D− low mass sideband region binning scheme for slices of Dalitz plot
variables.
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Figure G.5: D− low mass sideband region plots form2(K+K−) in slices ofm2(K−π+)
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Figure G.6: D− low mass sideband region plots form2(K−π+) in slices ofm2(K+K−)
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Figure G.7: D+ high mass sideband region binning scheme for slices of Dalitz plot
variables.
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Figure G.8: D+ high mass sideband region plots for m2(K+K−) in slices of
m2(K−π+)
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Figure G.9: D+ high mass sideband region plots for m2(K−π+) in slices of
m2(K+K−)
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variables.
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Figure G.11: D− high mass sideband region plots for m2(K+K−) in slices of
m2(K−π+)
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Figure G.12: D− high mass sideband region plots for m2(K−π+) in slices of
m2(K+K−)
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Appendix H

Background slices of Square Dalitz plot
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Figure H.1: D+ low mass sideband region Square Dalitz plot and projections
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Figure H.3: D+ low mass sideband regionK−π+ helicity angle in slices of m2(K−π+)
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Figure H.5: D− low mass sideband region K+K− helicity angle in slices of
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Figure H.6: D− low mass sideband regionK−π+ helicity angle in slices of m2(K−π+)
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Figure H.8: D+ high mass sideband region K+K− helicity angle in slices of
m2(K+K−)
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Figure H.11: D− high mass sideband region K+K− helicity angle in slices of
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Appendix I

Monte Carlo Background Pdfs
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Figure I.1: Low mass sideband distributions for D+ from uds, cc̄, and bb̄ MC.
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Figure I.2: High mass sideband distributions for D+ from uds, cc̄, and bb̄ MC.
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Figure I.3: Low mass sideband distributions for D− from uds, cc̄, and bb̄ MC.
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Figure I.4: High mass sideband distributions for D− from uds, cc̄, and bb̄ MC.
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Appendix J

MINUIT Fit Results for Integrated Mass Fit

NO. NAME VALUE ERROR

1 NGaus1 7.94657e+04 6.38215e+03

2 NGaus2 1.41195e+05 6.48617e+03

3 NRad 3.22637e+03 3.43341e+02

4 Mean 1.86970e+00 1.17808e-05

5 Sigma 6.38494e-03 1.17389e-04

6 GauRatio 6.32122e-01 5.78273e-03

7 PolyHeight 8.67262e+04 4.86502e+02

8 Slope -4.13447e-02 6.94614e-03

9 Quad 0.00000e+00 constant

10 Cube 0.00000e+00 constant

NO. NAME VALUE ERROR

1 NSignal 2.23881e+05 5.86252e+02

2 GausFraction 6.28353e-01 4.30828e-02

3 RadFraction 1.44316e-02 2.77732e-03

4 Mean 1.86970e+00 1.34527e-05

5 Sigma 6.37496e-03 1.97515e-04

6 GauRatio 6.32532e-01 1.05709e-02

7 PolyHeight 8.67333e+04 5.30318e+02

8 Slope -4.13299e-02 8.79571e-03

9 Quad 0.00000e+00 constant

10 Cube 0.00000e+00 constant
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Appendix K

MINUIT Fit Results for Square Dalitz plot

Fits of φ and K̄∗0

K.1. φ(1020) Background Fit Results

NO. NAME VALUE ERROR

1 N 1.29121e+03 5.45347e+01

2 mass 1.01946e+00 1.94627e-05

3 Gamma 4.26251e-03 3.98380e-05

4 P11 1.08036e+00 4.01117e-01

5 P22 -5.58669e-03 3.72069e-01

6 P01 1.43289e-01 9.42705e-02

7 P02 8.17260e-01 9.70063e-02

8 P21 -5.18170e-02 2.76934e-01

9 PcosH 6.82893e-02 9.42705e-02

10 Nbg 4.89758e+02 5.01530e+01

11 bgSlope 2.36925e+03 6.74319e+02

12 bgP11 7.07148e-01 2.84395e-01

13 bgP22 5.91817e-01 9.10204e-01

14 bgP01 -7.07839e-01 8.25889e-01

15 bgP02 2.87482e-01 2.63192e-01

16 bgP21 -6.78455e-02 6.34893e-01

17 bgPcosH 0.00000e+00 1.41421e+00

K.2. K̄∗0(892) Background Fit Results

NO. NAME VALUE ERROR

1 N 1.35870e+03 8.58198e+01
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2 mass 8.95936e-01 2.16261e-04

3 Gamma 4.88148e-02 7.85438e-04

4 P11 7.43240e-01 1.01901e-01

5 P22 9.41479e-02 1.10915e-01

6 P01 2.22209e-01 1.25641e-01

7 P02 3.54901e-01 3.88916e-02

8 P21 1.73242e-01 8.70966e-02

9 PcosH 1.42918e-01 2.24769e-01

10 Nbg 3.29330e+03 9.14721e+01

11 bgSlope 1.06382e+01 1.69368e+00
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