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Abstract The covariant generalizations of the background dark sector coupling
suggested in Mangano, Miele and Pettorino (Mod Phys Lett A 18:831, 2003) are
considered. The evolution of perturbations is studied with detailed attention to
interaction rate that is proportional to the product of dark matter and dark energy
densities. It is shown that some classes of models with coupling of this type do
not suffer from early time instabilities in strong coupling regime.

Keyword Cosmology

1 Introduction

Recent observations have shown that the Universe is spatially flat and presently
accelerating. Most attempts to explain this acceleration involve the introduction
of dark energy, as a source in the Einstein field equations. In addition, the impor-
tant contribution to the total density is the dark matter, whose existence is inferred
indirectly by observing its gravitational influence on normal matter, such as stars,
gas and dust. Standard ΛCDM model, in which dark energy is considered as a
small positive cosmological constant and dark matter treated as gas of cold non-
baryonic particles, provides a very good fit to the supernovae data [1] as well as
CMB measurements [2] and observations of large scale structure [3], but the small
and fine-tuned value of the cosmological constant cannot be explained within cur-
rent particle physics [4]. As a result a lot of other more expected from theoretical
point of view cosmological models have been proposed to giving a dynamical
origin to dark energy.

Models with non-minimal coupling of dark matter and dark energy have called
attention in the last decade. The nature of both dark energy and dark matter are
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still unknown, and in principle, the additional interaction between them is possi-
ble. Moreover, the coupling between matter and quintessence is motivated by high
energy particle physics considerations (see [5] for a set of references). There are a
large number of works in where the interaction is seen in models with quintessence
[5; 6; 7; 8; 9; 10; 11; 12] field. Also available the phenomenological approach, in
which the interaction is introduced into the conservation equations for dark mat-
ter (c) and dark energy (x), considered as perfect fluids. The background energy
exchange in the dark sector can be represented by

ρ̄
′
c =−3H ρ̄c +aQ̄, (1)

ρ̄
′
x =−3H (1+wx)ρ̄x−aQ̄, (2)

where the prime denotes derivative with respect to conformal time τ , the bars
mark the background quantities, a is the scale factor, H = a′/a, wx = P̄x/ρ̄x and
the coupling Q̄ is some function of background variables.

In the simplest models the quantity Q̄ is a linear combination of the dark sector
densities

Q̄ = Acρ̄c +Axρ̄x, (3)

where AI = 3αIH or AI = ΓI . Here αI are the dimensionless constants and ΓI are
constant interaction rates [13]. There are a large number of works in which for
coupling (3) was considered the background [13; 14; 15] and the perturbations
evolution [16; 17; 18; 19; 20; 21].

In the paper [22] in the context of the stimulated decay of dark energy into
dark matter had been proposed the interaction of the form

Q̄ = γρ̄
α
c ρ̄

β
x , (4)

where α, β are the dimensionless constants, and γ is a constant parameter with
dimension [density1−α−β× time −1]. This coupling provide a mechanism to allevi-
ate the cosmic coincidence problem [23; 24], namely why the dark energy density
nearly coincides with the dark matter density presently. The models with interac-
tion (4) also have been studied in the framework of holographic dark energy [25].
By assuming that α = 1,β = 0 or α = 0,β = 1 one obtains the particular cases of
coupling (3).

Although the basic properties of background solutions for the interaction (4)
are previously considered, the perturbation evolution in such scenarios is not
examined except the mentioned above special cases. In this paper we shall cover
the perturbation equations and investigate the solutions of them with detailed
attention to the most physically reasonable choice of parameters α = β = 1.

2 Background

We consider the spatially flat Universe filled with radiation (r), massless neutrino
(ν), baryonic matter (b), cold dark matter (c) and dark energy (x). We choose the
linear parametrization of the dark energy equation of state [26]

wx(a) = w0 +w1(1−a) (5)
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with constants w0 > −1 and 0 < w1 < −w0, so the dark energy is subdominant
with respect to the radiation at early times and the phantom divide line wx = −1
crossing does not occur. Since w′x/H =−aw1, in the radiation dominated era the
dark energy equation of state parameter wx is well approximated by a constant
w0 +w1.

Background dynamics in the presence of coupling (4) is completely described
by Friedmann’s equation

H 2 =
8πG

3
a2

ρ̄ (6)

and continuity equations

ρ̄
′
r =−4H ρ̄r, ρ̄

′
ν =−4H ρ̄ν , (7)

ρ̄
′
b =−3H ρ̄b, (8)

ρ̄
′
c =−3H ρ̄c−aγρ̄

α
c ρ̄

β
x , (9)

ρ̄
′
x =−3H (1+wx)ρ̄x +aγρ̄

α
c ρ̄

β
x . (10)

To determines the characteristic strength of the dark sector coupling it is con-
venient to introduce the dimensionless parameter λ defined by [25]

λ = γρ
α+β−1
0cr H−1

0 (11)

where ρ0cr = 3H2
0 /(8πG) is the current critical density.

System of equations (6)–(10) can be numerically solved, as was done in [22]
for α = 1 and the dark energy equation of state wx =−1. However, the equations
(9) and (10) immediately suggest several analytical conclusions.

When γ < 0, the dark energy density drops with the scale factor a(τ) not slower
than a−3(1+w0) and the dark matter density can increase under |aγρ̄α−1

c ρ̄
β
x /H |>

3 condition. These features offer a simple way out to the cosmic coincidence prob-
lem, since in this models the present situation of ρ̄x∼ ρ̄c have occurred many times
in the past [22].

The class of models with positive γ also describe a interesting scenarios, as it
allow to consider the dark energy grew out due the dark matter decay. However,
the interaction of this type potentially leads to unphysical results, because at early
times the dark energy density could be driven to negative value in some models
with decaying dark matter [16].

Figure 1 shows the time evolution of the dark matter and dark energy densities
at values parameters α = β = 1. The pattern of the solutions varies depending
on the model parameters. When wx < −1/3 at high redshifts and γ < 0, one can
obtain a sequence of regimes of the weak max(|aγρ̄c/H |, |aγρ̄x/H |)� 1 and
strong max(|aγρ̄c/H |, |aγρ̄x/H |) ≥ 1 dark sector coupling. At the stage of the
weak interaction under the condition wx < −1/3 the dark energy density decays
more slowly than a−2(τ), and hence in the radiation dominated era the inequality
|aγρ̄x/H |> 3 will be reached at some time, from which the density of dark mat-
ter increases. The increased dark matter density increases the dark energy decay
rate, the condition |aγρ̄x/H | � 1 recovers and dark energy has no longer sig-
nificant impact on the evolution of dark matter. Moreover, since the dark matter
density is now reduced proportional to the inverse third degree of the scale factor,
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Fig. 1 Background energy densities in units of ρ0cr for α = β = 1, H0 =
70 km s−1 Mpc−1, Ωx = 0.70, Ωc = 0.2538, Ωb = 0.0462. Examples of dark sector den-
sities evolution at negative and positive coupling are shown on left and right panels, respectively

there comes a point when the influence of dark matter to dark energy also becomes
negligible, i.e. a next stage of a weak interaction begins. For −1/3 < wx however,
if the interaction is weak initially, it will remain so through the subsequent evolu-
tion. This means that the stage of strong interaction in such models is only one.
Accordingly, in such models the density of dark matter in the radiation dominated
era is extremely small.

The right panel of Fig. 1 depicts the time evolution of the density of dark
matter and dark energy at values parameters α = β = 1 and positive γ . In this
case, the density of dark energy is always positive.

3 Model and perturbed equations

Let us consider a spatially flat FLRW Universe with small scalar type perturba-
tions. The line element may be written as

ds2 = a2(τ)
{
−(1+2φ)dτ

2 +2B,idτdxi +[(1−2ψ)δi j +2E,i j]dxidx j} .

(12)

The energy–momentum tensor of a perfect A-fluid is given by

T µ

Aν
= (ρA +PA)uµ

AuAν +PAδ
µ

ν , (13)

where ρA = ρ̄A(1 + δA) is density, PA = P̄A + δPA is pressure, and the fluid four-
velocity uµ

A = dxµ

A/ds at linear order of the perturbations is

uµ

A =
1
a

[
(1−φ), v,i

A

]
, uν = a [−(1+φ), vA,i +B,i]. (14)

We assume that the anisotropic stress of dark energy and dark matter vanishes,
so the dark species can be treated as perfect fluids. In the general case of coupling
fluids divergence of the energy–momentum tensor of each fluid yields

T µν

A;ν = Qµ

A , (15)

where 4-vectors Qµ

A are restricted by the constraint [27]

∑
A

Qµ

A = 0, (16)

which follow from the conservation law of the total energy–momentum tensor.
For convenience one can decompose these 4-vectors into two parts

Qµ

A = QAuµ +Fµ

A , QA = Q̄A +δQA, uµ Fµ

A = 0. (17)
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Here uµ is the total four-velocity, QA is the energy density transfer rate and Fµ

A
is the momentum density transfer rate of A-fluid in the total matter gauge. By
definition, Fµ

A = a−1(0, f ,i
A ), where fA is a momentum transfer potential [16].

The energy exchange in the background does not determine the covariant form
of energy exchange. Instead, an energy exchange four-vectors Qµ

A must be speci-
fied. The simplest scalars, which can be used to construct quantities Qµ

c , Qµ
x are

T σ
c σ = ρc, T σ

x σ = ρx−3px, T σ
c ν T ν

x σ = ρcρx (18)

where the last relation holds at linear order. Accordingly, the direct generalization
(4) with

Qc =−Qx =−γρ
α
c ρ

β
x , (19)

is covariant at the first order.

We are interested first of all in models with decaying dark matter or with
decaying dark energy. The most natural way is to choose a vector Fµ

A in the form

Fµ
c =−Fµ

x =
1
a

(
0,(γρ

α
c ρ

β
x (v− vc)),i

)
(20)
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or

Fµ
c =−Fµ

x =
1
a

(
0,(γρ

α
c ρ

β
x (v− vx)),i

)
. (21)

The momentum transfer vanishes in the dark matter rest frame or in the dark
energy rest frame, respectively. A few more general form of coupling can be writ-
ten as

Qµ
x =−Qµ

c = ρ
α
c ρ

β
x (γcuµ

c + γxuµ
x ), (22)

where γc and γx are arbitrary constants.
The continuity equations for coupled perfect fluids can be obtained by lin-

earization of equations (15). As a result, one can write [16]

δρ
′
A +3H (δρA +δPA)−3(ρ̄A + P̄A)ψ

′− k2 (ρ̄A + P̄A)
(
vA +E ′

)
= aQ̄Aφ +aδQA, (23)

[(ρ̄A+ P̄A)(vA +B)]′+4H (ρ̄A+ P̄A)(vA +B)+(ρ̄A+ P̄A)φ +δPA

= aQ̄A(v+B)+a fA, (24)

where for coupling (22)

δQc =−δQx =−(γc + γx)ρ̄α
c ρ̄

β
x (αδc +βδx), (25)

fc =− fx = ρ̄
α
c ρ̄

β
x (γc(v− vc)+ γx(v− vx)). (26)

Pressure perturbations in the general case can be expressed in terms of the
density perturbations and the velocity potentials

δPA = c2
sAδρA +(c2

sA− c2
sA(ad))

(
3H (1+wA)ρA−aQ̄A

) θA

k2 . (27)

where θA =−k2(B+vA), c2
As(ad) = P′A/ρ ′A is the adiabatic sound speed and the rest

frame sound speed ssA defined by

c2
sA =

δPA

δρA

∣∣∣∣
A− f luid rest f rame

. (28)

We will work in synchronous orthogonal gauge φ = 0, B = 0 in the Fourier
space, using the notation of [28]:

ψk = η , k2Ek =−h/2−3η . (29)

Now the conservation equations (15) for the dark energy and dark matter in
the synchronous gauge takes the form

δ
′
x +3H (c2

sx−wx)δx +(1+wx)θx +3H
[
3H (1+wx)(c2

sx−wx)+w′x
] θx

k2

+
1+wx

2
h′ = (γc+γx)aρ̄

α
c ρ̄

β−1
x

[
αδc+(β −1)δx+3H (c2

sx−wx)
θx

k2

]
, (30)

δ
′
c +

1
2

h′+θc = (γc + γx)aρ̄
α−1
c ρ̄

β
x [(1−α)δc−βδx], (31)

θ
′
x+H

(
1−3c2

sx
)

θx−
c2

sxk2

1+wx
δx =

aρ̄α
c ρ̄

β−1
x

1+wx

(
γc(θc−θx)−(γc+γx)c2

sxθx
)
, (32)

θ
′
c +H θc = γxaρ̄

α−1
c ρ̄

β
x [θc−θx]. (33)
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Note that in this phenomenological approach the sound speed csx is needed to be
fixed by hand [29]. In the case of quintessence dark energy one have to set csx = 1,
and we adopt this value in the following.

The perturbed Einstein equations are well known, and can be found in [28].
We reproduce here only one of them

h′′+H h′ =−8πG2a2(δρ +3δP). (34)

Equations (30)–(33) provide a set of coupled equations covering the dark sector
density evolution.

4 Large scale perturbations

The coupling terms appearing in the dark energy pressure perturbations may lead
to the early time instabilities, as was first pointed out in [16]. The similar phe-
nomenon is well known in inflationary multi-fields models, where on large scales
entropy perturbations can source adiabatic ones [30]. To study this phenomenon
here we write the second order differential equations for the dark energy density
perturbations. This approach [18] allows to identify areas of possible instabilities
before solving the perturbation equations.

The perturbed fluid equations (30)–(32) and equation (34) can be combined to

δ
′′
x +AxH δ

′
x +BxH

2
δx = CxH

2, (35)

where on large scales (k�H )

Ax = 1−3wx−
2H ′

H 2 +
(

γc + γ+

1+wx
− (β −1)γ+

)
aρ̄α

c ρ̄
β−1
x

H
− f , (36)
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Bx = 3(1−wx)

(
1− H ′

H 2 +
γcaρ̄α

c ρ̄
β−1
x

(1+wx)H
− f

)
− 3wxw′x

(1+wx)H

+(β −1)γ+
aρ̄α

c ρ̄
β−1
x

H

(
2+

H ′

H 2 −
γc + γ+

1+wx

aρ̄α
c ρ̄

β−1
x

H
+ f

)

−(β −1)γ+
1

H

(
aρ̄α

c ρ̄
β−1
x

H

)′
+ γ

2
+αβ

a2ρ̄2α−1
c ρ̄

2β−1
x

H 2 , (37)

Cx =
1
2
(1+wx)

(
3+

2H ′

H 2 −
γc+γ+(α+1)

1+wx

aρ̄α
c ρ̄

β−1
x

H
+ f

)
h′

H
− w′xh′

2H 2

−3H

(
3−3wx+

w′x
(1+wx)H

−1−wx

1+wx

γ+aρ̄α
c ρ̄

β−1
x

H

)
γcaρ̄α

c ρ̄
β−1
x

H

θc

k2

+
γ+

H

(
aρ̄α

c ρ̄
β−1
x

H

)′
αδc−

(
2+

H ′

H 2−
γc+γ+

1+wx

aρ̄α
c ρ̄

β−1
x

H
+ f

)
γ+aρ̄α

c ρ̄
β−1
x

H
αδc

+(1−α)
γ2
+a2ρ̄2α−1

c ρ̄
2β−1
x

H 2 αδc +
3
2
(1+wx)

(
δ +3

δP
ρ

)
, (38)

and

f =
1

H

[
ln

∣∣∣∣∣(1−wx)

(
3+3wx−

γ+aρ̄α
c ρ̄

β−1
x

H

)
+

w′x
H

∣∣∣∣∣
]′

, γ+ = γc + γx. (39)

In case of minimal coupling and a constant dark energy equation of state the
quantity f is zero at all times. When γc = 0 or γx = 0, terms with θc can be ignored,
since in the latter case one can work in particular synchronous orthogonal gauge
in which the dark matter fluid has a vanishing velocity.

The equation (35) is written in slightly different form then was discussed in the
Ref. [18]. In particular, it involves h′ instead of the time derivative of dark matter
density perturbations. This difference can be valuable, since both quantities h′, δ ′c
are related by equation (31) and, in the general case, may implicitly depend on the
dark energy perturbations. Used here notation is convenient to study of generations
of non-adiabatic perturbations in the radiation dominated era.

At first approximation, the source terms can be calculated using usual adiabatic
mode solutions. Since the dark species are subdominant in early Universe, the
corresponding contributions to h′ and total δ , δP are negligible. Actually, this is
the assumption about the initial conditions, but it is certainly satisfied if the initial
adiabatic conditions are imposed at the stage of weak coupling. This assumption
breaks down if the dark energy perturbations have increased dramatically. It means
that the right hand side of the equation (35) can be treated at early times and on
initial stages of dark energy inhomogeneities growth as an external force that is
independent of the dark energy perturbations. In this approach, the negative sign
of Ax, Bx or both of them indicate on the existence of large scale instabilities due
a anti-damping force or exponential growth of intrinsic dark energy perturbations.
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The nature of instability can be revealed by considering the time evolution of the
gauge-invariant curvature perturbation on uniform density hypersurfaces

ζ ≡−ψ−H
δρ

ρ̄
(40)

that is conserved on large scales for adiabatic perturbations.
We carry out the detailed analysis of perturbations for two cases: γc = γ,γx = 0

and γc = 0,γx = γ with α = β = 1, i.e. for

Qµ
x =−Qµ

c = γρcρx(buµ
c +(1−b)uµ

x ) (41)

where b = 1 for the first case and b = 0 for the second.
For coupling above

Ax = 1−3wx−
2H ′

H 2 +
b+1

1+wx

γaρ̄c

H
− f , (42)

Bx = 3(1−wx)
(

1−H ′

H 2 +b
γaρ̄c

(1+wx)H
− f
)
− 3wxw′x

(1+wx)H
+γ

2 a2ρ̄cρ̄x

H 2 . (43)

Using equations (5), (9), (10) and (39), the numerical values of these coefficients
can be calculated directly from the background solutions.

When γ > 0, in the radiation dominated era one can assume γaρ̄x
H � 1, γaρ̄c

H � 1
(see the right panel of Fig. 1). In this limiting case the dark energy has no effect
on the evolution of other fractions and their perturbations. By applying equation
(9), quantity f can be approximated as

f ≈−2− aγρ̄x

H
− H ′

H 2 . (44)

Keeping only the dominant terms, the equation (35) reduced to

δ
′′
x +H

b+1
1+wx

γaρ̄c

H
δ
′
x +3H 2(1−wx)

(
3+

b
1+wx

γaρ̄c

H

)
δx =H 2 b+1

1+wx

(
γaρ̄c

H

)2

δc. (45)

Coefficients Ax and Bx are positive and catastrophic growth perturbations do not
occurs. In order of magnitude, equation (45) implies the estimation

δx ∼
γaρ̄c

H
δc. (46)

For example, the “standard” adiabatic condition δρc/ρ̄ ′c = δρx/ρ̄ ′x taking into
account the background equations (9),(10) in the radiation dominated era yields
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Fig. 2 a The curvature perturbation ζ on super-Hubble scale in models with coupling (41) and
constant dark energy equation of state wx < −1/3. Growth of the non-adiabatic perturbations
begins at the stage of the strong interaction. b The density perturbation evolution in model with
wx > −1/3 in radiation dominated era. Initial dark sector conditions are set at τin = 2× 10−8

Mpc by δρc/ρ̄ ′c = δρx/ρ̄ ′x = δρr/ρ̄ ′r, θx(τin) = 0. In both cases the background densities corre-
sponds to present values Ωx = 0.70, Ωc = 0.2538, Ωb = 0.0462, the initial curvature perturba-
tion ζ (τin) equal to 1×10−25 and comoving wave number is k = 7×10−5 Mpc−1

δx =−γaρ̄c

3H
δc ∝ τ (47)

as for the adiabatic mode in the synchronous gauge δc ∝ τ2.
When γ < 0, the coefficients Ax, Bx can take large negative values in regime

of very strong coupling if |γaρ̄c/H | � 1. In scenarios with b = 1 and wx(a) <
−1/3 at early times they are becoming both negative together under this condition.
Hence such models suffer from the fast growth of non-adiabatic perturbations in
early Universe. However, constraints on coupling with b = 0 can be weakened,
because in this case in some range of parameters w0, w1 the coefficient Bx remains
positive and increases in the strong coupling regime.

To verify the analytical conclusions we have modified the public available
CAMB code [31]. The initial adiabatic conditions for all non-dark species are
imposed the same as in the non-interacting case. The initial values of dark sector
perturbations are taken in accordance with δρc/ρ̄ ′c = δρx/ρ̄ ′x = δρr/ρ̄ ′r. In the
presence γx 6= 0 the cold dark mater rest frame and synchronous frame are not
coincide and it is not possible to adopt the CAMB conventions θc≡ 0 consistently.
In our numerical calculations the residual synchronous gauge freedom was fixed
by choosing θc(τin) = 0, where τin is the time moment of the initial conditions
setting. The results are shown in Fig. 2.

5 Special case

The special case of (22) is the interaction

Qµ = γρcρx(uµ
c −uµ

x ). (48)

In the linear perturbation theory the velocity potential is a first order quantity, and
hence the spatial components of 4-vector Qµ are proportional to the product of the
densities of both dark species and relative velocity. In components

Q0 = 0, Qi =
γρcρx

a
(v,i

c − v,i
x ). (49)

The background dynamics here is the same as at minimal coupling, but the
perturbation evolution is different. The coefficients of second-order equation (35)
for the large scale perturbations are

Ax = 1−3wx−
2H ′

H 2 +
γaρ̄c

(1+wx)H
− f , (50)

Bx = 3
(

(1−wx)
(

1− H ′

H 2 − f
)
− wxw′x

(1+wx)H
+

1−wx

1+wx

γaρ̄c

H

)
. (51)
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Since now ρ̄c = ρc0a−3, we have |γaρ̄c/H | � 1 in early Universe. Thus, at
γ < 0 the coefficients Ax, Bx are both negative and there is a rapid growth of
non-adiabatic perturbations in the radiation dominated era. At positive γ the non-
adiabatic growth of long-wavelength perturbations do not occurs. These analytical
results are confirmed by numerical computations.

In the short-wave approximation the equations (30)–(34) can be combined into

δ
′′
x +H

(
1−3wx−

w′x
(1+wx)H

+
γaρc

(1+wx)H

)
δ
′
x + k2

δx

= H 2(1+wx)
(

3
2

(
δ +3

δP
ρ

)
−
(

3− γaρc

(1+wx)H

)
δ ′c
H

−3
θc

H

)
, (52)

δ
′′
c +H

(
1+

γaρ̄x

H

)
δ
′
c

= H 2
(

3
2

(
δ +3

δP
ρ

)
+

γaρ̄x

(1+wx)H

(
3(1−wx)δx +

δ ′x
H

))
. (53)

At positive γ all coefficients in the left hand side of these equations are also
positive, what excludes the presence of small scale adiabatic instabilities. For
instance, at early times in the strong coupling regime with aγρ̄c

H H 2 � k2 �H 2

the first equation gives at leading order

δ
′
x = (1+wx)δ ′c. (54)

Equations (52) and (53) take the same form as in the minimal coupling case
under conditions aγρ̄c

H � 1 and aγρ̄x
H � 1, respectively. In particular, when γ → 0,

the second one reduced to the standard growth equation.

6 Conclusions

We examined the covariant generalization of the coupling (4). The evolution of
perturbations is studied paying particular attention to the most favored interaction
rate that is proportional to the product of dark matter and dark energy densities.
It is shown that the models of the form (41) with b = 1 and wx(τ) < −1/3 in
radiation dominated era suffers from early time instabilities due fast growth of
large scale non-adiabatic perturbations. Models with wx(τ) > −1/3 in radiation
dominated Universe are free from this defect. Also an interesting coupling (48)
with positive γ is viable.
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