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Abstract

The aim of the present work is to study the nuclear structure and orientation effects

on the decay of the hot and rotating compound system formed in heavy ion reac-

tions, using the dynamical cluster decay model (DCM) which is based on collective

clusterization approach. The neck length parameter, ∆R, is the only parameter of

the DCM and is related to “barrier lowering”. Within the DCM, the deformation

and orientation effects of the reaction partners and decay products are explicitly

included along with temperature and angular momentum contributions. The ad-

vantage of the DCM over the other statistical models is that, the DCM contains the

structural information of the decaying nucleus via the relative preformation proba-

bility P0 of the decaying fragments, before penetrating the interaction barrier. The

thesis is organized into the following seven chapters.

Chapter 1, presents the general introduction which includes the status of the

experimental and theoretical developments to understand the dynamics of fusion-

fission and associated nuclear structure effects. Study of formation and decay of

compound nucleus (CN) and noncompound nucleus (nCN) processes is discussed

and total fusion cross-section σfusion is given as a sum of σCN and σnCN , each calcu-

lated as the dynamical fragmentation process. The CN cross section σCN is the sum

of the evaporation residues (ER) and fusion-fission (ff) (including the intermediate

mass fragments, IMFs), cross sections. For studying the formation and decay of

CN, the precise and systematic understanding of various nucleus-nucleus interac-

tion potentials is necessary, a brief account of such interactions is summarized in

this chapter. Beside this, the role of angular momentum, entrance channels, de-

formations and orientations, fusion hindrance, etc., have been discussed. Concepts

of Compound Nucleus fusion/ formation probability PCN and Compound Nucleus

survival probability Psurv are also introduced and discussed in this chapter.

xvii



Chapter 2 gives the details of the methodology used, the dynamical cluster

decay model (DCM) which is based on the Quantum Mechanical Fragmentation

Theory (QMFT). Within the DCM, the process of binary decay like neutron evap-

oration, α-decay, cluster decay, etc., is treated in two steps: In the first step, quan-

tum mechanical preformation probability of the cluster in the mother nucleus is

calculated and in the second step the penetration of this cluster through the inter-

action barrier is calculated. In the DCM, the preformation probability P0 (which

contains information about nuclear structure) of all preformed clusters within the

mother nucleus is calculated by solving the stationary Schrödinger equation in mass

asymmetry (η) coordinate. The role of temperature dependence of the proximity

potential, Coulomb interaction potential, rotational energy and binding energies is

also briefly discussed here. Discussion on the Compound Nucleus fusion/ forma-

tion probability PCN and the Compound Nucleus survival probability Psurv is also

there in this chapter. For the interaction potential between the two colliding nuclei,

the well known proximity pocket formula, and details of the Skyrme energy density

formalism (SEDF) are also described. Finally the Wong formula and its extended

version are also described in brief.

In Chapter 3, the dynamical cluster-decay model (DCM), an extended version

of preformed cluster model (PCM) for ground-state (T=0) decays, is applied to study

the decay of proton-rich compound nucleus 124Ce∗ formed in 32S+92Mo reaction at an

above barrier beam energy of 150 MeV. Using the DCM, with effects of deformations

up to hexadecapole and “compact” orientations included, for the best fitted cross-

sections of 2p, 3p evaporation residues (ERs) and of 5Li, 6Be intermediate mass

fragments (IMFs), the, α-nuclei clusters are populated strongly relative to non-α

clusters, similar to what was predicted by Gupta and collaborators for ground-state

decays of such nuclei, and decay of 116Ba∗ formed in 58Ni+58Ni reaction at various

compound nucleus excitation energies. The compound nucleus formation probability

and “barrier lowering/ modification” effects are analyzed, and the role of varying the
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deformations of 6Be and/ or 8Be nuclei on relative cross-sections is studied, since

the measured deformations are not available. Calculations are also presented for

another beam energy of 140 MeV, supporting the above result.

In Chapter 4, we have extended the study of 124Ce∗ formed in 32S+92Mo reac-

tion at beam energy of 150 MeV, using the pocket formula of Blocki et al. for nuclear

proximity potential, to the use of other nuclear interaction potentials derived from

Skyrme energy density functional (SEDF) based on semiclassical extended Thomas

Fermi (ETF) approach under the frozen density approximation. The Skyrme forces

used are the old SII, SIII, SIV, SKa, SkM and SLy4 and new GSkI and KDE0(v1).

α-nucleus structure, over non-α nucleus structure, is preferred for only two Skyrme

forces, the SIII and KDE0(v1). The intermediate mass fragments (IMFs) window,

heavy mass fragments (HMFs) and the near-symmetric and symmetric fission frag-

ments of fusion-fission (ff) process are predicted by considering cross sections of

orders observed in the experiment under study. The compound nucleus (CN) for-

mation probability PCN and the survival probability Psurv of the CN against fission

are also calculated. The extended-Wong model of Gupta and collaborators is also

applied, and it is noticed that the ℓmax values and total fusion cross sections are of

same order as for the DCM.

In Chapter 5, in order to check the behavior of neutron-rich exotic nature

of 9Li projectile on the total fusion cross section σfus, we study the decay mech-

anism of 217At∗ formed in 9Li+208Pb reaction within the dynamical cluster-decay

model (DCM) at various center-of-mass energies. For a fixed ∆R, we are able to

fit σfus =
∑6

x=1 σxn almost exactly for 9Li on 208Pb and other targets, with σfus

depending strongly on the target mass and its (magic) shell structure. But, the

unobserved channels (1n, 2n) and σff are strongly over-estimated and the observed

individual decay channels (3n-6n) are very poorly fitted. So, different ∆R values,

meaning thereby different reaction time scales, are required to fit individually both

the observed and unobserved evaporation residue channels (1n-6n) and the ff cross
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section σff . The non-compound nucleus (nCN) decay cross section σnCN contributes

the most towards total σfus and due to this CN formation probability PCN <<1 and

CN survival probability Psurv ≈1 (due to small σff ). Also, optimum choice of the

“cold” (target, projectile) combinations, forming the “hot” compact configuration,

is analyzed for the synthesis of CN 217At∗.

In Chapter 6, the compound nucleus (CN) fusion/ formation probability PCN is

determined and its detailed variations given with CN excitation energy E∗, center-

of-mass energy Ec.m., fissility parameter χ, CN mass number ACN and the Coulomb

interaction parameter Z1Z2. The DCM, with effects of deformations and orienta-

tions of nuclei included in it, is used to study the PCN for a number of “hot” fusion

reactions forming CN of mass number A ∼ 100 to super-heavy nuclei, and for vari-

ous different nuclear interaction potentials. Interesting results are that the PCN=1

for complete fusion, but PCN <1 or <<1 due to the nCN contribution, depend-

ing strongly on different parameters of the entrance channel reaction, but found

independent of nuclear interaction potentials used.

Finally, in chapter 7, conclusions are summarized and an outlook of our work

is presented.
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Chapter 1

Introduction

1.1 Introduction

In recent times, large number of experimental and theoretical facilities have been

made available making it an ideal time for scientific developments. The universe

we live in, the nature around us, is due to various ideas, theories and observations

being merged together to explain our own existence. To understand the basics of the

origin of physical world, it is necessary to understand the properties of nuclei, i.e.,

Nuclear Physics. Nuclear Physics started with some theoretical modelling and a few

experiments, about a century ago. We know that all the matter in the universe is

made of atoms and the atoms are composed of protons, neutrons and electrons and

these protons and neutrons are enclosed in a small volume, which we call nucleus

and the electrons go around that. The question is: How did we come to know about

all this?

In 1909, H. Geiger and E. Mardsen did some experiments [1], where α particles

were bombarded on different metals and they found that a small fraction of α par-

ticles falling on the metal plates reflects back to such an extent that they emerge

again at the side of incident α particles. These authors performed the experiments

using different metals of varying thickness. It may be reminded here that, at that

time there was nothing like atomic number or Z protons or any of these kinds of
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things. This was the beginning of nuclear physics. At the time of this experiment,

the atomic model, called the ”plum pudding” model given by Thomson was in prac-

tice, where the positive and negative charges in an atom are distributed over entire

volume. This model was discarded as it was not able to explain the discrete wave-

lengths in the spectra of light from excited atoms. Also, if charges are distributed

or discrete, then the associated electric fields are quite weak. In these experiments,

the velocities of α particles were noticed that α particles being heavy and the veloc-

ity with which they are coming out of radioactive material are quite high, so they

carry large momentum and they are going in as a smeared cloud like thing and then

coming back. At that time, some surprise was expressed, but no explanation was

conceived. Then came the genius of Rutherford who was in same group of Geiger

and Mardsen; his genius was that, from the data of that experiment, he could see

that this large deflection is possible only if large electric field is encountered, and

such a large electric field can not be created by a distributed charge. So, this charge

(either positive or negative) must be concentrated in a small volume to produce

such a large electric field. So, Rutherford came out with a new model in 1911 [2].

In his theory he assumed (or established) that atom has positive charge at centre

and there is compensatory negative charge around it such that the whole atom is

neutral. So, the ”nucleus” comes for the first time in the scientific world and there

starts the Nuclear Physics. In his paper, Rutherford didn’t talk about the stability

of the nucleus (or atom) but made a hint that electrons must move in such a way

that they are stable. Then, there were a series of papers after that because after the

nuclear model of atom came into existence, number of researches and publications

were made through.

However, many outstanding achievements were also made before Rutherford:

like in 1895, Roengten discovered X-rays and in the following year Becquerel iden-

tified radioactivity. A year later J. J. Thomson discovered electron. In the next

year, in 1898, Marie Curie separated radium and polonium from their ores. After

Rutherford’s discovery of nucleus in 1911, the concept of atomic number Z came
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from Moseley’s study of X- ray spectra which became the basis of identification of

elements in periodic table. In the same year N. Bohr gave the theory of atomic

spectra where he explained the hydrogen spectrum by giving a model of atom. This

discovery of nucleus by Rutherford and atomic model of N. Bohr was followed by the

advent of quantum mechanics where various atomic phenomenons were explained.

A great amount of work was done on quantum theory by numerous Physicists like

deBroglie, Schrödinger, Heisenberg, Pauli, Born and Dirac.

With the discovery of nucleus in 1911, Rutherford found that almost the whole

of mass and all the positive charge of atom is located in its very small central

core within the radius of the order of 10−12 cm. Since that time, many methods

have been developed to calculate nuclear size and structure. The values of nuclear

radius determined are dependent on the methods used like the nuclear radius found

by alpha scattering experiment disagrees with that of electron scattering method.

This is because the former case gives the interaction radius, whereas the later case

determines the density of charge distribution of the nucleus. The shape of the

nucleus was first investigated by Schüler and Schmidt [3] where they determined

the nuclear quadrupole moment, which is the measure of the deviation of nuclear

charge distribution from spherical symmetry and provides the information about

the nuclear shape, from the hyperfine structure in atomic spectra.

The phenomenon of nuclear reactions was first demonstrated by Rutherford in

1919 by the disintegration of nitrogen given as 14N+4He→17O+1H. The major event

in the history of nuclear physics occurred in 1932, with the discovery of neutron by

Chadwick, until then the concept of nuclear structure remained unexplained. After

this important discovery, the composition of nucleus was proposed and this concept

of nucleus is still valid today where nucleus is made up of neutrons and protons

which are called nucleons and they have almost same mass and these nucleons are

spin half particles obeying Fermi Dirac statistics.

Nuclear reactions were proposed to be a two step process, consisting of formation

of Compound Nucleus (CN) in the first step and then its decay in the second step
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where all the memory of the entrance channel is lost. This CN model successfully

explained nuclear reactions mainly induced by low energy projectile. The projectile

loses all its energy to the target nucleus to form a new, excited, rotating and unstable

nucleus called CN. After its formation, the CN excitation energy is transferred to

intrinsic degrees of freedom of fragments and angular momentum along with their

relative motion. In general, CN loses its excitation energy either by emitting few

neutrons or multiple light particles (LPs) to go to the ground state.

The information about the nature of forces existing between nucleons in the

nucleus is important to ascertain different properties of nuclei, like nuclear struc-

ture, binding energies, etc. Many theoretical predictions and experiments have been

performed to predict the nuclear properties accurately. The strong nuclear force

binding the nucleons together allow us to derive information on nuclear structure.

This short ranged force is saturated in nature and with the assumption of charge

independence and saturation, each nucleon occupies almost same size within the

nucleus. Then, to solve a paradox in the decay of nucleus, Wolfgang Pauli proposed

the existence of neutrino which was confirmed decades later by Clyde L. Cowan and

Frederick Reines in 1957.

Study of nuclear reactions and CN decays are the sole probes of nuclear structure.

Along with this, model building always played a very vital role. Different model

approaches explained (or tried to explain) different aspects of nuclear structure

systematically and in a simpler way. Historically, the first model to describe nuclear

properties was the liquid drop model (a macroscopic approach). The binding energy

per nucleon gave the indication about nuclear forces being saturated in nature from

where the idea for this model arose as the nuclear binding energy systematics are

similar to the energy of a charged liquid drop. Though this liquid drop model,

taken as a classical model, could not be extrapolated to a large extent in the atomic

nucleus, yet this model successfully explained the general trends in binding energies

w.r.t. mass number and the nuclear fission and fusion processes. But this model

does not account for the different shapes of atomic nuclei and apart from this a
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number of indications show the need for the specific shell model corrections to this

liquid drop model.

Also, there is a Fermi gas model, where all nucleons are considered to move

within the nuclear volume as elements of a Fermi gas. In this approach the energy

levels are widely spaced and only the lowest levels are occupied. A simple inde-

pendent particle approach required by the Fermi gas model does not contain the

detailed features of nucleon-nucleon forces acting inside the nucleus. The difference

in energy between the liquid drop nuclear mass and the experimental nuclear mass

indicates the presence of certain configurations where the nucleus is more strongly

bound than the indications by the uniform filling of orbitals in the Fermi gas model.

The existence of shell structure came from the analogous picture of electrons mov-

ing in an atom. The precise shell structure inside the nucleus and its associated

excitation spectra are of great importance for an overall understanding of nuclear

systems. Until the nuclear shell model (a microscopic approach), given by Mayor

and Jensen, no other model was able to explain that why nucleons with certain

number of protons and neutrons are more stable (i.e., no explanation for so-called

magic numbers, given as N=2,8,20,28,50,82 and 126 and Z=2,8,20,28,50 and 82).

Shell model treats each nucleon as an independent particle explaining the reaction

data nicely, and successfully explained various properties like spin, magnetic mo-

ment and nuclear spectra. The properties of nuclei which can not be explained

by the models mentioned above, can be explained either by the unified approach

of these models, known as collective or unified model or by the Strutinsky macro-

microscopic approach of combining Liquid drop model and nuclear shell model (i.e.,

by normalizing the sum of shell model energy states to an appropriate Liquid drop

model energies). Different properties and aspects of nuclear structure like electric

quadrupole moments, rotational and vibrational spectrums were nicely explained

here. Over the years various developments have been made in the area of nuclear

models enriching our knowledge of nuclear structure and various advancements in

nuclear physics.

5



With the development of modern accelerator techniques, which impart higher

energies to heavier projectiles, the study of new branch of nuclear physics, i.e.,

“Heavy Ion Physics” became possible. The nuclei having Z≥2 and A≥4 , i.e., α

nucleus or heavier than α nucleus are called Heavy ions, which means that α-particle

is the lightest heavy ion. Study of Heavy Ion Reactions (HIR) played a vital role in

providing ion-ion interaction potential, which is the very important component in

the study of nuclear structure, its stability and decay, elastic or inelastic scattering,

estimation of cross section for heavy element synthesis, etc. Basic features of HIR

are better understood in terms of interaction potential acting between the centre

of mass of two colliding nuclei which consists of long range Coulomb repulsions

and short range nuclear attractions. Coulomb force, though plays important role,

but is not enough to describe the formation of a stable system. The existence of

nucleus is due to the presence of strong nuclear attractive force which overpowered

the Coulomb repulsive force between protons. The short range of nuclear force (∼2

fm) puts a severe obstacle to its experimental investigation as compared to other

fundamental forces.

Nuclear Physics acts as a bridge between most fundamental and applied topics

as it has many potential applications, like ones in science, medicine, technology,

radiocarbon dating, material engineering and many more. Before 1980, due to

limited ability to produce unstable nuclei, the knowledge on nuclear physics was

mainly based on about 300 stable nuclei (compared to about 6000 nuclei). The

extension of nuclear phenomenon to unstable nuclei has greatly improved in last 2

to 3 decades as about one third of all known isotopes has been discovered during

this period. The nuclear chart, known as “nuclear landscape”, is given in Fig. 1.1,

where it is shown that around 8000 combinations of nucleons lying between neutron

and proton “drip lines” are possible and out of which our knowledge is restricted to

around 3000 only. Any unstable nucleus will spontaneously transfer into more stable

nucleus if the transformation is allowed by the laws of Physics. This process is known

as radioactive decay of the nucleus which is accompanied by the release of ionizing
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Figure 1.1: An illustrative Nuclear chart.

radiations. Nuclei exhibiting this property are called unstable or radioactive nuclei.

This process of nuclear transformation carries important information about nuclear

structure and nuclear dynamics. Nuclei can also undergo artificial transformation

in nuclear reactions.

The research in nuclear physics related to the study of nuclei having high spin

and excitation energy, i.e., nuclei under extreme conditions, may have extreme N:Z

(created artificially) or extreme shapes having multi-pole deformations (i.e., βλ with

λ=2,3,4) as shown in Fig. 1.2, where different oscillations of nuclear surface are

shown. Generally, elongated (prolate) and flattened (oblate) are the most com-

monly observed nuclear deformations. λ=2 (lowest multipole) gives the quadrupole

oscillations of nuclear surface corresponding to spheroidal shape and quadrupole de-

formations. Higher multipoles, λ=3,4 represent octopole, hexadecupole oscillations

of nuclear surface. These multipole deformations along with the appropriate choice

of orientations contributes to the study of enormous exotic shapes which in turn are
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Figure 1.2: Schematic diagrams for various multipole deformations in nuclei. For
quadrupole deformations, there are two choices i.e. nuclear matter rotates on short
axis (oblate) and on long axis (prolate).

very significant to understand various aspects of nuclear structure and other related

nuclear dynamics. Also, whenever deformed configuration is considered for nuclear

systems, their orientational behavior can not be ignored.

On the basis of Quantum Mechanical Fragmentation Theory (QMFT) [4–6],

Gupta and collaborators showed that nuclear interaction barriers (i.e., barrier po-

sition and height) are greatly affected in collisions of deformed and oriented nu-

clei, making the fusion process more probable at lower energies. On the basis of

quadrupole deformations alone, this study provides the “optimum” orientations for

the fusion of deformed nuclei and it also investigated the role of hexadecupole defor-

mation in fusion reactions. The optimum orientations are given for ”hot-compact”

and ”cold-elongated” configurations corresponding, respectively, to highest barrier

(or smallest interaction radius) and lowest barrier (or largest interaction radius)

which are discussed later. A schematic representation for prolate-prolate and oblate-
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Figure 1.3: Schematic diagrams for deformed nuclei [(a),(b) oblate and (c),(d)
prolate only] with corresponding optimum orientations along collision axis for “cold,
elongated”[(a), (d)] or “hot, compact”[(b), (c)] configurations, from Table 1 of Ref.
[7].

oblate deformed nuclei colliding along collision axis for both ”hot compact” and ”cold

elongated” configurations, is given in Fig 1.3. The orientations θopti are optimized

or uniquely fixed, based on the signs of quadrupole deformations β2i alone (i.e., +, -

or zero) and it is not affected by signs of hexadecupole deformations [7]. Generally,

compact orientations θci , referring to collisions taking place at smallest interaction

radius (”hot” or ”cold” fusion depending on their barrier height) may be used [7,8].

The deformations and orientation effects of nuclei are extremely important and needs

be incorporated explicitly for the proper study of nuclear dynamics. Along with the

temperature and angular momentum effects in the Dynamical Cluster decay model

(DCM) [7–12], the deformations and orientation effects of the reaction partners and

decay fragments are also taken care of.

Description of nuclear reactions requires identification of projectile with associ-

ated incident energy, target nucleus and decay fragments or the reaction products.

Broadly, nuclear reactions are categorized into two types: (i) Fusion reactions and
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(ii) Fusion-Fission reactions. Both these processes play significant role in the pro-

duction of new elements and their further studies and applications. In the nuclear

fusion process, two nuclei fuse together to form a compound nucleus. In the low

energy heavy ion reactions, during the interaction between two stable nuclei at an

energy above Coulomb barrier, nuclear fusion takes place where all the angular mo-

mentum of initial system is retained. Sufficient amount of kinetic energy in the

entrance channel is required to overcome the Coulomb repulsions and to form an ex-

cited CN. The energy barrier consisting of Coulomb and nuclear potentials opposes

the fusion reaction but the long range repulsive Coulomb force is offset by stronger

and attractive, but short range, nuclear force. The fusion process is the quantum

mechanical tunnelling through the one dimensional barrier formed by the Coulomb

potential, centrifugal potential and the nuclear potential. So the knowledge of po-

tential barrier between two nuclei is utmost important for the systematic study of

nuclear reactions. Also, for the successful formation of heavy nuclei, a thorough

understanding of fusion-fission process is very essential.

Fusion reactions, which initially included only light nuclei, have now been ex-

tended to include heavier targets and projectiles. For example, in hot fusion reac-

tions, actinides are used as targets and, in cold fusion reactions, 208Pb are used as

projectiles in the inverse kinematics. In the production of Super Heavy Elements

(SHEs), where increase in nuclear charge decreases its stability against fission, the

only successful method for such a synthesis is the complete fusion reactions, where

the projectile and target merge to form a CN. This CN if de-excite with the emission

of 1-2 neutrons and have excitation energy from 10-20 MeV, is called “cold fusion”.

If the excitation energy of the CN lies in the range of 40-50 MeV and number of

neutrons emitted are more than 2, then it is called “hot fusion” reactions. The

idea of “cold fusion” was first given by Gupta and Greiner and their collaborators

in 1974-75 in terms of Quantum Mechanical Fragmentation Theory QMFT [4–6].

“Cold fusion” reactions have lowest interaction barrier and largest interaction radius

having elongated, i.e., “non compact” nuclear shape. These reactions correspond to
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minima in fragmentation potential energy surface. The “hot fusion” reactions are

characterized by largest interaction barrier and smallest interaction radius, i.e., a

“compact” nuclear shape.

Nuclear decay studies play an important, indispensable role in understanding

of nuclear phenomenon and properties in general, and about nuclear structure in

particular. The phenomenon of cluster decay, which is the spontaneous emission of

fragments heavier than α particles, is the Quantum mechanical tunnelling process

where the clusters penetrates the potential barrier and come out of the parent nu-

cleus. Based on the QMFT, the successful description of cluster decay was given by

Sǎndulescu et al. [13], few years prior to its experimental discovery. Phenomenon

of cluster decay is the intermediate step between α radioactivity and fission and is

different from fission by the fact that in fission process, nucleus continuously deforms

as it passes over the Coulomb barrier breaking itself into the comparable fragments

and reaches saddle point configuration whereas, in cluster decay [14], the α particle

and clusters heavier than α particle but smaller than the lightest fission fragments

are preformed in the parent nucleus with relative preformation probability P0, which

then penetrate the confining interaction barrier. The nuclear shell structure play a

very vital role in cluster decay process. Also, in addition to nuclear shell effects, the

nuclear deformations and orientations play a very significant role in cluster decay

process.

In 1928, Gamow discovered Quantum mechanical tunnelling as a phenomenon

associated with α decay, which further could be used to understand various con-

cepts of nuclear reaction dynamics and other related aspects of Nuclear Physics.

This was basically the first application of Quantum mechanics to nuclear physics.

Based on Gamow’s theory of barrier penetration, there are two kinds of models to

describe cluster decay process. First one is the Unified Fission Model (UFM), like

the Analytic Super-Asymmetric Fission Model (ASAFM) of Sǎndulescu, Poenaru,

and Greiner [13], where, they calculated cluster formation probability as a part of

interaction barrier penetration, and the second one is the Preformed Cluster Model
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(PCM) based on QMFT of Gupta and Collaborators [14] where the process of binary

decay is explained in two steps: In the first step quantum mechanical preformation

probability of the cluster in CN is calculated followed by the penetration of the clus-

ter through the barrier in second step. Here, the cluster preformation is calculated

by solving the Schrödinger equation for dynamic flow of masses and charges. The

square well potential was used for Gamow’s theory of α decay whereas, UFM and

PCM use the more realistic nuclear interaction potentials. It is to be noted that,

in terms of potential barrier, cluster decay is in fact a fission process where the

structure effects of the CN are included via the preformation of fragments but with

no level density calculations, i.e., without any phase space arguments.

With the inclusion of orientation and deformation effects, the barrier height gets

lowered which means that the nuclear structure effects of projectile and target and

their relative orientations influence the interaction potential and hence fusion cross-

sections to a large extent. To establish the effect of orientations and deformations

on fusion reactions, various theoretical and experimental studies have been made for

the collision between deformed as well as oriented nuclei [7,15–22], where it is shown

that during the collision of deformed and oriented nuclei, the fusion barrier height

changes leading to barrier height distribution around spherical Coulomb barrier.

The main research tool of nuclear reaction’s physics is the high energy beam

of particles like neutrons, protons, α-particles or other heavy ions projected on

different nuclear targets. On the basis of energy of incident projectile, the nu-

clear reaction dynamics is usually classified into three groups namely low energy (E

≤15 MeV/nucleon), intermediate energy (15<E<500 MeV/nucleon)and high energy

nuclear reactions (E≥500 MeV/nucleon). In high energy reactions direct nucleon-

nucleon interactions take place whereas in low energy reactions the average nuclear

force field between the two nucleons dominates which ensures the possibility of more

than one decay channel. The average nuclear force field mentioned here is highly

influenced by entrance channel, temperature and angular momentum considerations

along with the inclusion of deformations and orientation effects. In intermediate
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energy nuclear reactions, both the above mentioned aspects are included. Here, in

this thesis, we have confined ourselves to low energy nuclear reactions, where the

decay process of different nuclei are explored via a collective clusterization process.

In low energy reactions, a comprehensive study of different types of emissions from

the excited state of CN as well as ground state of parent nuclei is highly desirable, as

it provides information about nuclear structure and nuclear forces. The concept of

preformation probability P0 is used in the collective clusterization approach, which

implies that structure effects are included via P0 and it depends not only on the

decay products but on all possible fragmentation of decaying nucleus.

In a complete fusion reaction, the kinetic energy, mass and angular momentum

are completely transferred between target and projectile and the so formed compos-

ite system completes a number of rotations during which it equilibrates in all degrees

of freedom. The kinetic energy of projectile in centre of mass frame is converted into

excitation energy of CN and the hot and rotating CN so formed in low energy heavy-

ion reactions (HIR), having high excitation energy and carrying large angular mo-

mentum, disintegrates or loses its excitation energy and decays by emitting various

evaporation residue ER consisting of multiple light particles LPs (n, p, α) and (or) γ

rays; Intermediate Mass fragments (IMFs) having 5≤A≤20 and 2≤Z≤10; symmet-

ric and near symmetric fission fragments (SF and nSF) depending on its mass. The

contribution of IMFs to cross section is only 5-10% of LPs. Different mass regions

of CN give different combinations of these above mentioned processes. In heavy

systems ACN ∼ 200, fission mode dominates but in case of light compound systems,

there is a competition between fission and fusion ER decay modes. For example, in

64Ni+100Mo →164Yb∗ [24] and 9Li+208Pb →217At∗ [25, 26], only ERs are observed,

whereas in 12C+93Nb →105Ag∗ [27, 28] and 32S+92Mo →124Ce∗ [29], some IMFs

along with ERs are also observed. In 64Ni+112,118,124,132Sn →176,182,188,196Pt∗ [30] and

48Ca+154Sm →202Pb∗ [31] both ERs and ff are observed. So, we can say that for

different CN, different combinations of the above mentioned processes are possible.
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Dynamical cluster-decay model (DCM) of Gupta and collaborators [7–12] which

is a reformulation of PCM [14,32] and is based on well known QMFT [4–6], is used to

study the decay of hot (Temperature T ̸=0) and rotating (angular momentum ℓ ̸=0)

compound system formed in HIR. QMFT is the unified description of two body

channels in both fission and fusion of nuclei. It is the only theory, given prior to

the experiments, that brings out clearly the applicability of the quantum concept of

probability and the role of shell effects for the fusion reactions and also for the other

two related processes of fission and the cluster radioactivity. Like PCM, the DCM

also gives the relative probability of all different channels through which the CN

decays. Within the DCM, the decay is studied as a collective clusterisation process

for the emission of ERs and IMFs, where each decay path is treated on equal footing

as dynamical collective mass motion of preformed clusters or fragments through the

barrier, contrary to statistical models where each type of emission is treated as a

different process. Also, within the DCM there is an advantage over other statistical

fission models, that the structure effects of CN are included through the prefor-

mation of fragments with associated preformation probabilities before penetrating

the barrier. It is to be noted that the nucleus-nucleus potential used in DCM is

either through the proximity potential pocket formula with temperature effects in-

cluded via the nuclear radii and surface width [33, 34] or with semiclassical ETF

approach of SEDF where the temperature dependence is taken from Ref. [35]. Also,

Wong formula [36] is used for calculation of fusion cross section, which is a special

case of the DCM with preformation probability P0=1. The difference between two

models (Wong and DCM) is that the penetrability P in Wong formula is calculated

in Hill-Wheeler [37] approximation of inverted harmonic oscillator for the the in-

coming channel interaction potential Vℓ(R), whereas in DCM the same is based on

Wentzel-Kramers-Brillouin (WKB) approximation.

In addition to compound nucleus decay (the ER and ff), various non-Compound

nucleus decay (nCN) processes, like quasi fission (qf), Deep Inelastic Collision (DIC),
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Incomplete Fusion (ICF), etc., are also observed, depending on the beam energy

and mass asymmetry. When the entrance channel nuclei do not loose their identity

and the non-equilibrated CN is formed which decays into projectile- and target-like

fragments, with only a few nucleon exchange between them, then as the surfaces of

two colliding nuclei overlap for a very short time corresponding to a partial rotation

of a nuclear molecule, this process is called qf. It is known from literature that when

the interaction between two nuclei is via their lateral surfaces (near-side collision),

formation of spherical CN is more probable, whereas, in the elongated configuration,

when interaction between two nuclei is via their poles (i.e., near-tip collision), a

high qf probability is expected [38, 39]. In case of DIC, the target and projectile

stick together for a longer time dissipating ample amount of energy, and significant

number of nucleons are exchanged between target and projectile during this long

interaction time. Mass asymmetry of entrance channel is mostly preserved in DIC.

For the symmetric target projectile combinations, i.e., nuclear systems having large

Coulomb repulsion in the entrance channel, DIC is the major contributor to nCN

channel. DIC has reaction time scale less than qf which is further less than CN

process.

ICF is the another contributing mechanism towards the nCN process, where the

projectile nucleus break up into two fragments near the surface of target nucleus.

Out of the two fragments one retreats with unchanged velocity, whereas the other

fragment fuses with the target nucleus to form intermediate complex system in

the excited state which de-excites by particle evaporation [40, 41]. It differs from

complete fusion (CF) by the fact that in CF, entire projectile fuses with the target

nucleus forming fully equilibrated CN. In case of CF, linear momentum is totally

transferred to the target nucleus, whereas, in ICF, there is only partial transfer

of projectile angular momentum. For the systems having entrance channel mass

asymmetry, ICF is the dominant nCN process. So, the total fusion cross section is

the sum total of CN cross section and nCN decay cross section (which could be any

one of the qf, DIC or ICF processes).
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Thus, the properties of entrance channel nuclei, like mass asymmetry plays a

vital role in nuclear reaction dynamics of nCN process. These processes mentioned

here generally depend on excitation energy, angular momentum, impact parameter,

atomic charges and masses of participating nuclei, etc. It is equally important

to investigate nCN process along with CN process as it also provides important

information regarding nuclear structure and other implications in nuclear dynamics

and related phenomenons. Fig. 1.4 illustrates schematically the various components

of compound nucleus (CN) decay/ fusion cross section, also called the CN production

cross section, or simply the (total) fusion cross section σfusion, given as sum of σCN

and σnCN .

In nuclear reactions, the concept of compound nucleus fusion/ formation proba-

bility PCN [42] arises from the compound nucleus (CN) model of N. Bohr [43] wherein

for the complete fusion in entrance channel he assumed PCN=1, and treated the CN

decay statistically. However, in the decay channel, non-compound nucleus (nCN)

decays, as mentioned above, also contribute to the overall (fusion) cross section,

which means PCN <1 for the CN content, and hence Bohr’s CN-model needs an

extention/ re-examination. The PCN is the least understood quantity, but quite im-

portant for the study of heavy ion reactions. Another quantity of interest in heavy

ion reactions, not fully understood, is the CN survival probability Psurv, [44] intro-

duced to account for the emission of light particles (LPs) or neutrons with respect

to the fusion-fission process. In other words, Psurv is the probability that the fused

system will de-excite by emission of neutrons or LPs (equivalently, the evaporation

residue ER) rather than fission. For a fissionless decay, Psurv=1, i.e., the CN de-

cays via neutrons or LPs emission alone. On the other hand, if only fission takes

place, then Psurv=0, implying that no neutrons (or LPs) emission occur and there

is a complete instability against fission. It is evident from above that PCN takes

care of the nCN effects, and Psurv looks after the ff process. Within DCM we have

successfully studied PCN [42] and Psurv [44] for various ”hot” fusion reactions.
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Figure 1.4: Schematic diagram of the formation/ decay path used to calculate the
compound nucleus and non-compound nucleus decay cross sections, taken from Ref.
[42].

For the proper understanding of nuclear phenomena, the nucleon-nucleon inter-

action plays the major role. The (total) interaction potential, which is the function

of relative separation distance, comprises of the sum of the long range Coulomb

repulsive interaction, centrifugal interaction and the nuclear potential terms. The

Coulomb and centrifugal part of the interaction potential are very well known, how-

ever the nuclear interaction part is not that much understood. Also, the Coulomb

potential alone cannot define the barrier, so a proper choice of nuclear potential

is necessary to understand heavy ion reaction dynamics. The direct information

about fusion barriers can not be imparted by experiments alone as all experiments

measure the fusion cross-sections and then using theoretical models, one can extract

the fusion barriers. Theoretical models are useful in the study of the nuclear in-
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teractions at a microscopic/ macroscopic level. So, there is a need of an accurate

and microscopic methods to calculate the ion-ion interaction between the colliding

nuclei. Out of the several nuclear potentials used in literature, the two commonly

used approaches for calculating the ion-ion potentials are:

(a) Phenomenological models: A simple analytical expression for calculating

nucleus-nucleus interaction potential is used in these models, known as proximity

potential. These proximity potentials, which are based on the proximity force the-

orem, implying that the nuclear part of the interaction potential is the product of

factors depending on the mean curvature of the interaction surface and a universal

function (which depends on the separation distance) and is independent of colliding

nuclei masses, play very significant role for majority of microscopic/ macroscopic

fusion models. This process plays important role for understanding nuclear reac-

tion dynamics at low energies. At first, Bass [45, 46] introduced an expression for

calculating the interaction potential and following that Blocki [47] gave a formula

(which is a function of separation between the surfaces of the two colliding nuclei),

known as the pocket formula of proximity potential. With time, a number of modi-

fications were made in the proximity potential through the surface energy coefficient

or universal function and/ or through nuclear radius to explain experimental data.

(b) Energy density formalism (EDF): In EDF, the nucleus-nucleus interaction

potential is calculated as a function of separation distance and is defined as the

energy expectation value difference of the colliding nuclei that are overlapping (i.e.,

at a finite separation R) and when they are completely separated (i.e., at R= ∞)

[48, 49]. The microscopic background to construct the EDF model is considered to

be the Hartree-Fock (HF) method. HF was first adopted by Vautherin and Brink

[50] to study the ground state properties of some spherical nuclei by using Skyrme

interaction [51]. The complete HF calculations were not possible in EDF because

of the non-availability of expressing kinetic energy density (τ) of the compound

nucleus at HF level. To do away with this problem, semiclassical approaches to
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this quantity based on Thomas-Fermi (TF) method or its extensions, the Extended

Thomas Fermi method (ETF) have been used to obtain τ .

ETF approach of Grammaticos and Voros [52] is the semiclassical expansions

based on the Wigner transformation and was applied to fermions governed by a

one-body Hamiltonian. To provide an accurate description of the nuclear surface

expansions upto fourth order in h̄ of density matrix for different spin-independent po-

tentials were taken. Using the semiclassical expression the total energy of the system

becomes a function of the nucleon density alone. At first no spin dependent term is

considered in the calculations but in the later Grammaticos and Voros [53], the spin

orbit part is included by extending the semiclassical expansions to a case where the

effective one-body Hamiltonian for the nucleons containing spin-dependent terms.

Thereupon, Gupta and collaborators [54–57], studied the role of spin-orbit density

of interaction potential in microscopic shell model formulation of the Skyrme en-

ergy density formalism (SEDF) which has a significant contribution to fusion cross

sections and also in the α-nucleus structure of colliding N=Z nuclei, α-nuclei and

its suppression for the colliding non-α-nuclei. In Ref. [58], it was shown that both

approaches (semiclassical Formulation and microscopic shell model) can reproduce

exact shell effects if results of the semiclassical SEDF calculations are normalized

with respect to the (one or both) spin saturated nuclei.

In this thesis we have used EDF given by Vautherin and Brink which make

use of density dependent Skyrme interactions consisting of spin dependent and spin

independent part with in semiclassical ETF approach [52,59,60]. The Skyrme force

depends on limited number of parameters and is an effective interaction providing a

zero-range potential. In literature there are some 240 Skyrme interaction parameter

out of which only 16 satisfy the present understanding of physics of nuclear matter

over a wide range of applications [61]. These 16 forces are obtained by using the

Generalized Skyrme effective force (GSEF) [62,63] hamiltonian and satisfy a number

of properties like rms radii, binding energy, charge, etc., mostly for spherical and or
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neutron rich nuclei. For nuclei which are neutron deficient, other forces having single

spin-orbit term may play important role in the calculation of fusion cross-sections.

There are two main assumptions for calculating interaction potential by EDF;

the first approximation is where the collision is very slow and at each stage of colli-

sion, the nucleons of the colliding systems reach the equilibrium configuration, called

the ’adiabatic approximation’; and the second approximation is that the time of col-

lision is so small that the internal structure of two ions is unchanged and nuclear

density overlap without changing their shapes, known as ’sudden density approx-

imation’ which includes the effect of exchange terms due to anti-symmetrization.

The sudden density approximation minus the effect of exchange terms is called as

frozen density approximation [64]. The exchange effects occur for a composite sys-

tem as kinetic energy density τ(ρ) and spin orbit density J(ρ) are expressed as the

functions of ρi (i=1,2 for two nuclei), which in turn, is the sum of their nucleon den-

sities (ρi=ρin+ρip) with ρ=ρ1+ρ2, whereas, in frozen density, the combined nucleon

densities are simply expressed as the sum of the densities of two incoming nuclei.

It is shown in literature [65] that the barriers obtained by the frozen densities ap-

proximation are more realistic than that obtained from the sudden approximation.

Following this systematic study, we follow frozen density approximation in our work.

Since, in semiclassical ETF approach, the kinetic energy density τ(r⃗) and spin-orbit

density J(r⃗) are expressed as functions of nucleon density ρ(r⃗) and its derivatives,

used in self-consistent variational approach taking nucleon densities as the varia-

tional quantities, the SEDF becomes a functional of nucleon densities alone, and so

eliminates completely the use of single particle wave functions. The (variational)

nucleon densities are taken as modified two-parameter Fermi density with an addi-

tional parameter [59, 60, 66, 67]. Though the higher order contributions [53, 59, 60]

to both kinetic energy density τ(r⃗) and spin-orbit density J(r⃗) are available in semi-

classical approach at ETF level, yet second order terms are enough for numerical

convergence [60] as τ(r⃗) and J(r⃗) are taken up to second order only.
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1.2 Organization of the Thesis

The thesis is organized as follows:

Chapter 2 gives the details of the dynamical cluster-decay model (DCM) for

the decay of hot and rotating compound nucleus. DCM is a reformulation of the

preformed cluster model (PCM) for ground state decay, based on the Quantum Me-

chanical Fragmentation Theory (QMFT) for binary fragmentation, using a collective

mass transfer process. The orientation and deformation effects are duly incorporated

in DCM as well as in PCM, along with the use of “optimum” or “compact” orienta-

tions, for incoming as well as for decaying fragments. The DCM is a two step process:

The first step is the formation of the cluster in CN, and in the second step the pre-

formed cluster penetrates the barrier. In this model the preformation probability

P0 of all possible clusters within the mother nucleus is calculated. The temperature

dependence of proximity potential, Coulomb interaction potential, binding energies

and rotational energy are also discussed. Different types of the nuclear potentials,

one using proximity theorem and other using Skyrme energy density formalism of

Vautherin and Brink are also discussed. Wong model for calculation of fusion reac-

tion cross sections, which is a special case of the DCM with preformation probability

P0=1, is also given in this chapter.

InChapter 3, the dynamical cluster-decay model (DCM), an extended version of

preformed cluster model (PCM) for ground-state (T=0) decays, is applied to study

the decay of proton-rich compound nucleus 124Ce∗ formed in 32S+92Mo reaction at an

above barrier beam energy of 150 MeV. Application of the statistical code PACE4 to

experimental data shows large deviations in all cases of proton cluster’s (2p, 3p and

4p) evaporation residue (ER) and the non-α nucleus 6Be intermediate mass fragment

(IMF). Furthermore, the α-nucleus 8Be decay is not observed in this experiment

(not even the upper limit is given). Using the DCM, with effects of deformations

up to hexadecapole and “compact” orientations included, for the best fitted cross-

sections of 2p, 3p ERs and of 5Li, 6Be IMFs, the relative cross-section of 8Be is
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found to be more than that of 6Be, possibly due to the α-nucleus structure of 8Be.

The same is shown to be true for 12C vs. 10C, i.e., α-nuclei clusters are populated

strongly relative to non-α clusters, similar to what was predicted by Gupta et al. [70]

for ground-state decays of such nuclei, and decay of 116Ba∗ formed in 58Ni+58Ni

reaction at various compound nucleus excitation energies [71]. The only parameter

of the DCM is the neck-length ∆R, related to “barrier lowering” parameter. The

compound nucleus formation probability and “barrier lowering/ modification” effects

are analyzed, and the role of varying the deformations of 6Be and/ or 8Be nuclei on

relative cross-sections is studied, since the measured deformations are not available.

The ones used here are from relativistic mean-field calculations [β2(
6Be)=-0.087 and

β2(
8Be)=-0.094]. Calculations are also presented for a beam energy of 140 MeV,

supporting the above result.

Chapter 4 extends the above noted study of 124Ce∗ formed in 32S+92Mo reaction

at an above barrier beam energy of 150 MeV, using the pocket formula of Blocki

et al. for nuclear proximity potential in the dynamical cluster-decay model (DCM)

(Chapter 3), to the use of other nuclear interaction potentials derived from Skyrme

energy density functional (SEDF) based on semiclassical extended Thomas Fermi

(ETF) approach under the frozen density approximation. The Skyrme forces used

are the old SII, SIII, SIV, SKa, SkM and SLy4 and new GSkI and KDE0(v1), given

for both normal and isospin-rich nuclei. It is found that the α-nucleus structure,

over non-α nucleus structure, is preferred for only two Skyrme forces, the SIII and

KDE0(v1). An extended intermediate mass fragments (IMFs) window, along with

the new decay region of heavy mass fragments (HMFs) and the near-symmetric and

symmetric fission fragments, which on adding the complementary heavy fragments,

refers to (A/2)±12 mass region of fusion-fission (ff) process are predicted by con-

sidering cross sections of orders observed in the experiment under study. For the

predicted (total) fusion cross-section, the survival probability Psurv of the compound

nucleus (CN) against fission is shown to be very small because of the very large pre-
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dicted ff component. On the other hand, the CN formation probability PCN is found

to be nearly equal to one, and hence the decay under study is a pure CN decay for

all the nuclear potentials considered, since the estimated non-compound nucleus

(nCN) content is almost negligible. We have also applied the extended-Wong model

of Gupta and collaborators, and find that the ℓmax values and total fusion cross

sections are of same order as for the DCM. Thus, the extended-Wong model, which

describes only the total fusion cross section in terms of the barrier characteristics of

the entrance channel nuclei, could be useful for an initial estimate for experiments,

to be fully treated on the DCM for all the observed decay products.

In contrast to the decay of a proton-rich CN 124Ce∗ (Chapter 3 and 4), in Chap-

ter 5 we study the decay mechanism of 217At∗ formed by neutron-rich projectile 9Li

in 9Li+208Pb reaction within the dynamical cluster-decay model (DCM) at various

center-of-mass energies. The idea is to check the behavior of the neutron-rich exotic

nature of 9Li projectile on the (total) fusion cross section σfus. Experimentally, only

the isotopic yield of heavy mass residues 211−214At∗ [equivalently, the light-particles

(LPs) evaporation residue cross sections σxn, x=3-6 neutrons emission] are mea-

sured, with the fusion-fission (ff) component σff taken zero. For a fixed neck-length

parameter ∆R, the only parameter in the DCM, we are able to fit σfus =
∑6

x=1 σxn

almost exactly for 9Li on 208Pb and other targets, with σfus depending strongly on

the target mass and its (magic) shell structure. However, the observed individual

decay channels (3n-6n) are very poorly fitted, with unobserved channels (1n, 2n)

and σff strongly over-estimated. Different ∆R values, meaning thereby different re-

action time scales, are required to fit individually both the observed and unobserved

evaporation residue channels (1n-6n) and σff , but then the compound nucleus (CN)

contribution σCN is very small (< 1%), and the non-compound nucleus (nCN) decay

cross section σnCN contributes the most towards total σfus (=σCN+σnCN). Thus,
9Li

induced reaction is more of a quasi-fission-like nCN decay. Then, the CN formation

probability PCN <<1 and CN survival probability Psurv ≈1. Also, optimum choice
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of a “cold” (target, projectile) combination, forming “hot” compact configuration,

is analyzed for the synthesis of CN 217At∗.

In Chapter 6, the compound nucleus (CN) fusion/ formation probability PCN

is defined and its detailed variations with CN excitation energy E∗, center-of-mass

energy Ec.m., fissility parameter χ, CN mass number ACN and the Coulomb inter-

action parameter Z1Z2 are studied for the first time within the dynamical cluster-

decay model (DCM). The model is a non-statistical description for the decay of

CN to all possible processes. The (total) fusion cross section σfusion is sum of the

CN and non-compound nucleus (nCN) decay cross sections, each calculated as the

dynamical fragmentation process. The CN cross section σCN is constituted of the

evaporation residues (ER) and fusion-fission (ff), including the intermediate mass

fragments (IMFs), each calculated for all contributing decay fragments (A1, A2) in

terms of their formation and barrier penetration probabilities P0 and P . The nCN

cross section σnCN is determined as the quasi-fission (qf) process where P0=1 and P

is calculated for the entrance channel nuclei. The DCM, with effects of deformations

and orientations of nuclei included in it, is used to study the PCN for about a dozen

“hot” fusion reactions forming CN of mass number A ∼ 100 to super-heavy nuclei,

and for various different nuclear interaction potentials. Interesting result is that

the PCN=1 for complete fusion, but PCN <1 or <<1 due to the nCN contribution,

depending strongly on different parameters of the entrance channel reaction, but

found independent of nuclear interaction potentials used.

Finally, in Chapter 7, we summarize the results of this work.
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Chapter 2

Methodology

2.1 Introduction

In this work, we study the nuclear structure and orientation effects in the decay

of hot and rotating compound system. There are a number of emission processes

from the ground states of parent nuclei and also from the excited compound nuclei

(CN) formed in low energy heavy ion nuclear reactions. The aim here is to study

the nuclear reaction dynamics, especially the dis-integration of the excited CN using

the dynamical cluster-decay model (DCM) [1] - [16]. In DCM, the deformation and

orientation effects of reaction partners and the decay products are explicitly included

along with the temperature and angular momentum contributions. The ground state

cluster/ spontaneous decay of radioactive nuclei have also been studied within the

preformed cluster model (PCM) [17] - [22], including deformation and orientation

effects of the clusters as well as of daughter nuclei. For the decay of excited CN,

the DCM [1] - [16], a reformulation of the PCM for the ground state decay, has an

advantage that it gives the relative probability of all the channels through which an

excited CN can decay.

Both PCM and DCM originate from the Quantum Mechanical Fragmentation

Theory, (QMFT) [23] - [36] (Section 2.2), which is based on collective co-ordinate

picture. QMFT is the only theory, given prior to experiments, which brings out the
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applicability of quantum concept of probability and the role of shell effects for fusion

reactants and also for the other related processes of fission and cluster radioactivity.

In QMFT the potential is calculated using the macro-microscopic method of Struti-

nsky [37]. This average two body potential is successful in explaining the cold and

hot fusion reaction dynamics. QMFT is based on the fact that the fragments are

pre-born prior to the decay of the CN. The quantum mechanical preformation prob-

ability P0 of the decaying fragments or clusters formed in the mother nucleus can be

calculated by solving a stationary Schrödinger equation in mass fragmentation coor-

dinate. This preformation probability allows us to make significant remarks on the

nuclear structure of CN and its decaying fragments. Once the clusters are formed,

their penetration probability P across the interaction barrier can be calculated by

using the WKB approximation.

To understand the formation and decay of nuclear systems, the precise and sys-

tematic understanding of ion-ion interaction between the colliding nuclei is required.

In this thesis, we present the calculations using two kinds of nuclear potentials; one

using proximity theorem and other using energy density formalism. With in energy

density formalism, two different functional forms of Hamiltonian density are avail-

able, one due to Bruckner et al. [38–41] and other due to Vautherin and Brink [42]

which uses the density dependent Skyrme interactions [43]. Here, the later one

is used due to an advantage that it is capable of explaining and reproducing the

ground state properties of a large number of nuclei. The energy density formalism

is used with Skyrme interaction with in an extended Thomas-Fermi (ETF) approx-

imations for the kinetic energies and spin-orbit terms, upto second order in the

spatial derivatives with nucleon density, calculated from two parameter Fermi den-

sity. The details of ETF method of SEDF are given in Section 2.5. The preformed

cluster model (PCM) for ground-state decay, and its extension to the dynamical

cluster-decay model for decay of excited CN are described in Sections 2.3 and 2.4,

respectively. Finally, the Wong formula for ℓ=0 and its extention to include all

contributing ℓ-values are described in Section 2.5 for estimating fusion cross-section.
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SECTION 2.2: QUANTUM MECHANICAL FRAGMENTATION
THEORY

2.2 Quantum Mechanical Fragmentation Theory

QMFT [23] - [36] is a unified description of two body channels in both fusion and

fission processes. The quantities essential for the description of nuclear reaction

dynamics are the potential energy surfaces along with the mass parameters defining

the kinetic energy of the system. The potential energy alone can determine the

static properties of nuclear system. In QMFT, the quantum mechanical concept of

probability is used to investigate the role of shell effects in fusion, fission and cluster

radioactivity. QMFT is worked out in terms of the following collective variables:

(i) Relative separation coordinate R between the two nuclei or, in general, two

fragments (or, equivalently, length parameter λ = L/2R0, with L as length of the

nucleus and R0 as the radius of an equivalent spherical nucleus).

(ii) The deformations co-ordinates βλi (λ=2,3.4... and i=1,2) of the colliding nuclei.

(iii) The orientation degrees of freedom θi, i=1,2 of deformed nuclei (see Fig. 2.1).

(iv) Azimuthal angle Φ between the principal planes of two colliding nuclei.

(v) Neck parameter ε, defined by the ratio ε = E0/E
′ for interaction region (R <

(R1 + R2), Ri i=1,2, the radii of two nuclei). Here E0 is the actual height of the

barrier and E ′ is the fixed barrier of two center oscillator. ϵ = 0 represents a broad

neck formation, whereas ϵ = 1 gives that the neck is fully squeezed in, corresponding

to the asymptotic region (R > R1 +R2).

(vi) Mass and charge fragmentation co-ordinates [23, 24, 35], which for two body

channels, i.e., for separated nuclei/ fragments are defined by the mass and charge-

asymmetry coordinates as

η =
A1 − A2

A
; ηZ =

Z1 − Z2

Z
(2.1)

Similarly,

ηN =
N1 −N2

N
, (2.2)
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the neutron asymmetry coordinate [24], can also be used, but it is sufficient to treat

only two of them as dynamical co-ordinates since they are related as

η =
Z

A
ηZ +

N

A
ηN . (2.3)

Here A = A1 + A2, Z = Z1 + Z2 and N = N1 + N2. Ai, Zi and Ni (i = 1, 2)

are, respectively, the mass number, charge number and neutron number of two

fragments. A, Z and N are, respectively, the mass number, charge number and

neutron number of CN. The limiting values of η are 0 ≤ |η| ≤ 1 which allows a unified

description of a few-nucleon, multi-nucleon (a cluster) transfer, large-mass transfer,

the complete fusion (|η| = 1) of nuclei and the symmetric (η = 0), asymmetric

and super-asymmetric fission of a compound nucleus. The ηZ coordinate gives the

associated charge distribution effects.

In terms of these collective coordinates and their velocities, the collective Hamil-

tonian can be written as:

H = K(R, β, ε, η, ηZ ; Ṙ, β̇, ε̇, η̇, η̇Z) + V (R, β, ε, η, ηZ). (2.4)

Here, β stands for βλ1 and βλ2; λ=2,3,4 and so on, K refers to the Kinetic energy

and V gives the collective potential energy.

For the compound nucleus formation, the neck parameter ϵ is assumed to be

zero, since once the neck formation starts between two colliding nuclei, then fission

phenomenon can never be stopped, i.e., excited CN will proceed towards the disin-

tegration process. For the fixed ϵ and β, and for the potential V (η, ηZ , R) minimized

in ηZ co-ordinate, Schrödinger wave equation in terms of mass asymmetry parameter

η and relative separation R co-ordinates can be written as:

H(η,R)ψ(η,R) = E(η,R)ψ(η,R) (2.5)
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SECTION 2.2: QUANTUM MECHANICAL FRAGMENTATION
THEORY

with the Hamiltonian,

H(η,R) = K(η) +K(R) +K(η,R) + V (η) + V (R) + V (η,R) (2.6)

The mass parameters Bij, defining K in the above Eqs. (2.4) and (2.6) are either

the consistently calculated cranking masses using the Asymmetric Two-Center Shell

Model (ATCSM) or classical hydrodynamical masses, which are shown to have

good agreement with the microscopic cranking calculations. The coupling term of

the kinetic energy K(η,R), proportional to ∂2

∂η∂R
, is neglected here, because the

coupled cranking masses are very small [23, 24], (BRη ≪ (BRRBηη)
1/2 and BRηZ ≪

(BRRBηZηZ )
1/2 ). Same is true for the coupling term of potential energy V (η,R).

Therefore, in a decoupled approximation [36], the Schrödinger equation (2.5) can

be solved using the Hamiltonian given the form:

H = − h̄2

2
√
Bηη

∂

∂η

1√
Bηη

∂

∂η
− h̄2

2
√
BRR

∂

∂R

1√
BRR

∂

∂R
+ V (η) + V (R). (2.7)

For decoupled Hamiltonian (2.7), Schrödinger wave equation (2.5) can be separated

for two co-ordinates η and R given as,

− h̄2

2
√
Bηη

∂

∂η

1√
Bηη

∂

∂η
+ V (η)

ψν(η) = Eν
ηψ

ν(η) (2.8)

and [
− h̄2

2
√
BRR

∂

∂R

1√
BRR

∂

∂R
+ V (R)

]
ψν(R) = Eν

Rψ
ν(R) (2.9)

with

ψ(η,R) = ψ(η)ψ(R) (2.10)
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and

E = Eη + ER (2.11)

The states ψν(η) are the vibrational states in potential V (η) and are labelled by

quantum numbers ν = 0, 1, 2, etc. In following subsections, we first discuss various

terms of Schrödinger wave equations (2.8) and (2.9) and then give the solution of

Eq. (2.8) for the determination of preformation probability P0 ∝ |ψ0(η)|2.

2.2.1 The Scattering Potential V (R)

For a fixed η, i.e., for a given target projectile (A1, A2) combination, the scattering

potential V (R) in Eq. (2.9) is defined as the sum of temperature-, deformations-

and orientations-dependent Coulomb, proximity and angular momentum-dependent

potentials, i.e.,

V (R, ℓ, T ) = Vc(R,Zi, βλi, θi,Φ, T ) + Vp(R,Ai, βλi, θi,Φ, T )

+ Vℓ(R,Ai, βλi, θi,Φ, T ) (2.12)

For co-planar nuclei, i.e., nuclei lying in same plane, (Fig. 2.1) Φ=00, and for

spherical-plus-deformed nuclear collisions, only one orientation angle θ is enough,

referring to the rotationally-symmetric deformed nucleus.

2.2.2 The Fragmentation potential V (η)

The temperature dependent collective potential energy, or the fragmentation poten-

tial V (η,R, T ), is calculated as,

V (η,R, ℓ, T ) = −
2∑

i=1

Bi(Ai, Zi, βλi, T ) + Vc(R,Zi, βλi, θi,Φ, T )

+ Vp(R,Ai, βλi, θi,Φ, T ) + Vℓ(R,Ai, βλi, θi,Φ, T ) (2.13)
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R 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

θ2 
180+θ2-α2 
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Figure 2.1: Schematic configurations of two (equal/ unequal) axially symmetric
deformed, oriented nuclei, lying in the same plane (co-planar nuclei) and for various
θ1 and θ2 values in the range 00 to 1800.

V (η), appearing in Eq. (2.8), is calculated at a fixed distance R = R1 + R2 + ∆R

for consideration of deformed and oriented reaction products, with

Ri(αi, T ) = R0i(T )[1 +
∑
λ

βλiY
(0)
λ (αi)], (2.14)

and

R0i(T ) = [1.28A
1/3
i − 0.76 + 0.8A

−1/3
i ]× (1 + 0.0007T 2). (2.15)
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Here λ=2,3,4... and αi is the angle that the radius vector Ri of colliding nuclei

makes with the symmetry axis (see Fig. 2.1), measured clockwise.

Bi (i=1,2) appearing in Eq. (2.13), are the binding energies of two nuclei, avail-

able from experimental data of Audi-Wapstra [44]. Wherever the experimental B’s

are not available, theoretical binding energies of Möller et al. [45] are used. Note

that within the Strutinsky renormalization procedure [37], the binding energies con-

tain both the macroscopic (liquid drop part) and the microscopic (shell correction)

part, which allows us to define binding energy B of a nucleus at temperature T as

the sum of liquid drop energy VLDM(T ) and shell correction δU(T ), i.e.,

B(Ai, Zi, βλi, T ) =
2∑

i=1

VLDM(Ai, Zi, T ) +
2∑

i=1

δUexp
(
− T 2

T0
2

)
. (2.16)

The calculations of fragmentation potential comprises of all the possible decay

channels and a number of all such possible decay channels increases with the increas-

ing mass of the parent nucleus. The nuclear temperature T (in MeV ) is related to

excitation energy E∗
CN of CN, through a semi-empirical statistical relation as:

E∗
CN = Ec.m. +Qin =

1

a
AT 2 − T (MeV ). (2.17)

where a = 9-11 depending on the mass of CN. Qin is the entrance channel Q-value

given by Qin = B1 +B2 −BCN where B’s are the binding energies.
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2.2.3 Liquid drop energies and their temperature depen-

dence

Temperature dependent liquid drop part of binding energy VLDM(T ) is taken from

Davidson et al. [46], based on semi-empirical mass formula of Seeger [47], as

VLDM(A,Z, T ) = α(T )A+ β(T )A
2
3 +

(
γ(T )− η(T )

A
1
3

)(
I2 + 2 | I |

A

)

+
Z2

R0(T )A
1
3

(
1− 0.7636

Z
2
3

− 2.29

[R0(T )A
1
3 ]2

)
+ δ(T )

f(Z,A)

A
3
4

,

(2.18)

where

I = aa(Z −N), aa =1.0,

and, respectively, for even-even, even-odd, and odd-odd nuclei,

f(Z,A) = (−1, 0, 1).

For T = 0, Seeger [47] obtained the values of constants, by fitting all even-even

nuclei and 488 odd-A nuclei available at that time, as

α(0) = −16.11MeV, β(0) = 20.21MeV,

γ(0) = 20.65MeV, η(0) = 48.00MeV,

with the pairing energy term from Ref. [48],

δ(0) = 33.0MeV.

As large amount of data are now available on ground-state binding energies, these

constants of VLDM(T = 0) needed re-fitting, which was done [1,2,6] to get the exper-
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imental binding energies with shell corrections calculated from Myers and Swiate-

cki [49]. This was first done in [1,2] for the 1995 Audi Wapstra Tables [50] of binding

energies, and more recently in [6] for 2003 Tables [44].

For neutron and proton clusters of x(≥ 1) nucleons, we define [51,52] the binding

energy of the cluster with x-neutrons as x times the binding energy of one-neutron

(equivalently, the mass excess ∆mn=8.0713 MeV),

B(A2 = xn) = x∆mn, (2.19)

and the same for proton-clusters, as

B(A2 = xp) = x∆mp − acA
5/3
2 (2.20)

with ∆mp=7.2880 MeV, the one-proton mass excess or equivalently the binding

energy of single proton. The additional term due to ac (=0.7053 MeV [49]) is

disruptive Coulomb energy (=−ac( Z2
2

A
1/3
2

)) between x-protons (here xp = Z2 = A2).

2.2.4 Shell corrections and their temperature dependence

The shell corrections according to the “empirical” formula of Myers and Swiatecki

[49], for spherical shapes, are

δU = C

[
F (N) + F (Z)

(A/2)
2
3

− cA
1
3

]
(2.21)

where

F (X) =
3

5

M 5
3
i −M

5
3
i−1

Mi −Mi−1

 (X −Mi−1)−
3

5

(
X

5
3 −M

5
3
i−1

)
(2.22)
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with X = N or Z, Mi−1 < X < Mi and Mi as the magic numbers 2, 8, 14 (or

20), 28, 50, 82, 126 and 184 for both neutrons and protons. The value of constant

C = 5.8 MeV and c = 0.26. Temperature dependence of shell corrections δU is

obtained as given in Eq. (2.16), which decreases exponentially with T0=1.5 MeV.

At higher excitation energies, shell corrections vanish completely and only liq-

uid drop part of energy is present. The shell corrections play an important role in

determining or empirical fitting of nuclear masses, because nuclear masses given by

the smooth liquid drop formula show large deviations with respect to the experi-

mental masses. This means that in experimental masses there exists a deep minima

at specific neutron and/or proton numbers pointing the presence of shell structure,

the so-called magic numbers. This characteristic behavior cannot be reproduced by

liquid drop part alone, meaning that the introduction of microscopic shell correc-

tion in the mass formula is required. Thus, shell corrections accounts for removal of

deviation from liquid drop calculations (uniform distribution of nucleons), and are

defined, within Strutinsky [37] method as

δU = U − Ũ (2.23)

where, U =
∑

ν Eν2nν is the sum over all occupied single particle states and

Ũ = 2

λ̃∫
−∞

Eg̃(E)dE. (2.24)

is the average energy for uniform distribution. Generally, the microscopic shell

correction, along with the liquid drop part, give a proper description of binding

energy of the nucleus. However, this method does not give proper description for

light mass nuclei. The difficulty is the inadequacy of shell model for very light

nuclei. Due to this fact, the macro-microscopic calculations of Möller et al. [45]

are tabulated for Z ≥ 8 only. Alternatively, one can also use the empirical shell
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correction method of Myers-Swiatecki [49] which again is not satisfactory for light

nuclei (Z ≤ 16). Gupta and collaborators have modified this empirical method and

obtained a better description of shell corrections for light as well as heavy mass

region, i.e, 1 ≤ Z ≤ 118 [2].

2.2.5 Proximity Potential for deformed, oriented, co-planar

nuclei

When two surfaces approach each other within a small distance of less than ∼ 2fm,

comparable with the surface thickness of interacting nuclei, or when a nucleus is at

the verge of dividing into two fragments, then two surfaces actually face each other

across a small gap or crevice. In both cases, the surface energy term alone could

not give rise to the strong attraction that is observed when two surfaces are brought

in close proximity. Such additional attractive forces are called proximity forces and

the additional potential due to these forces is called the proximity potential. Blocki

et al. [53] have reanalyzed and extended a theorem, originally due to Deryagin [54],

according to which the force between two gently curved surfaces in close proximity is

proportional to the interaction potential per unit area between the two flat surfaces.

The original expression of Blocki based on pocket formula was for spherical nuclei,

and is given by

VP (s0) = f(sh., geo.)ϕ(s0)

= 4πR̄γbϕ(s0). (2.25)

ϕ(s0) is the universal function, independent of shapes of nuclei or the geometry of

nuclear system, but depends on the minimum separation distance s0, as

ϕ(s0) =

 −1
2
(s0 − 2.54)2 − 0.0852(s0 − 2.54)3

−3.437exp(− s0
0.75

)
(2.26)
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respectively, for s0 ≤ 1.2511 and s0 ≥ 1.2511. Here, s0 is defined in units of b, i.e.

s0 is s0/b. This function is defined for negative (the overlap region), zero (touching

configuration) and positive values of s0. For a fixed R, the minimum distance s0 is

defined as

s0 = R−R1 −R2 (2.27)

where Ri is defined in Eq. (2.14). b is the diffuseness of the nuclear surface given

by

b =
[
π/2

√
3 ln 9

]
t10−90

(2.28)

where t10−90 is the thickness of the surface in which the density profile changes from

90% to 10%. The value of b∼1 fm. γ is the specific nuclear surface tension given by

γ = 0.9517

[
1− 1.7826

(
N − Z

A

)2
]
MeV fm−2 (2.29)

and R is the mean curvature radius of reaction partners, characterizing the gap,

which for spherical nuclei is given by

R =
R1R2

R1 +R2

(2.30)

The proximity potential for hot deformed nuclei [55] is given as

Vp(Ai, βλi, θi, T ) = 4πR̄(T )γb(T )ϕ(s0(T )). (2.31)

and surface thickness parameter,

b(T ) = 0.99(1 + 0.009T 2) (2.32)
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Fig. 2.1 shows a schematic configuration of two axially symmetric deformed, oriented

nuclei, lying in same plane (Φ = 00), for various θ1 and θ2 values in the range 00 to

1800. θi is the angle of orientation, defined as an angle between the symmetry axis

and the axis of collision, with it’s rotation measured in anti-clockwise direction from

the axis of collision. αi is an angle between the symmetric axis and radius vector

Ri(αi) of colliding nuclei, measured in clockwise direction from symmetry axis of

the nucleus.

For axially symmetric shapes, the nuclear radius parameter (to all higher mul-

tipole orders λ=2,3,4,....) is given by Eqs. (2.14) and (2.15). In terms of radii of

curvature Ri1 and Ri2 in the principal planes of curvature of each of the two nuclei

(i=1,2) at the points of closest approach (defining s0 in Fig. 2.1), mean curvature

radius R̄ for deformed, oriented nuclei is given by

1

R̄2
=

1

R11R12

+
1

R21R22

+
[

1

R11R21

+
1

R12R22

]
sin2Φ

+
[

1

R11R22

+
1

R21R12

]
cos2ϕ. (2.33)

Here, Φ is the azimuthal angle between the principal planes of curvature of two

nuclei (for co-planar nuclei Φ=00). The four principal radii of curvature are

Ri1(αi) =
[R2

i (αi) +R′
i
2(αi)]

3/2

R2
i (αi) + 2R′

i
2(αi)−Ri(αi)R′′

i (αi)

Ri2(αi) =
Ri(αi)sinαi

cos(π/2− αi − δi)
. (2.34)

where, R′
i(αi) and R

′′
i (αi) are the first and second order derivatives of Ri(αi) with

respect to αi, respectively. For the derivation of the radius of curvature Ri1, see [56].

It follows from Fig. 2.2, and Ref. [57], that Ri2 = h/cosωi, with h = Ri(αi)sinαi
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and ωi = π/2− αi − δi. Also, for n to be a normal vector

tanδi = −R
′
i(αi)

Ri(αi)
. (2.35)

Note that Ri1(αi) = Ri2(αi), respectively, for α1 = 00 or 1800 and α2 = 1800 or

3600. For deformed and oriented nuclei configuration, the minimum distance s0 (see

Fig. 2.1) in Eq. (2.26) is

s0 = R−X1 −X2 (2.36)

with the projections Xi along Z-axis givn as

X1 = R1(α1)cos(θ1 − α1)

X2 = R2(α2)cos(180 + θ2 − α2) (2.37)

and the minimization conditions on s0,

∂s0
∂α1

=
∂s0
∂α2

= 0, (2.38)

resulting in

tan(θ1 − α1) = −R
′
1(α1)

R1(α1)

tan(180 + θ2 − α2) = −R
′
2(α2)

R2(α2)
. (2.39)

Comparing Eqs. (2.35) and (2.39), we get

δ1 = θ1 − α1

δ2 = 180 + θ2 − α2, (2.40)
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Figure 2.2: An axially symmetric (quadrupole) deformed and oriented nucleus,
showing the nuclear radius parameter R1(α1) and the geometry associated with the
principal radius of curvature R12(α1).

to be used in Eq. (2.34). Thus, for given θ1 and θ2, X1 and X2 are obtained for

angles α1 and α2 satisfying the minimization conditions Eq. (2.39). Note that

the conditions Eq. (2.39) refer to perpendiculars (normal vectors) at the points P1

and P2. In other words, if the distance s0 were to be shortest, the perpendicular

conditions Eq. (2.39) must be used which would apparently give Eq. (2.37) for Xi.

Eq. (2.31) is valid for zero (touching configuration) and positive values of s0, but

is also used for negative s0. As two nuclei overlap (s0 < 0), a crevice is formed and,

in an adiabatic approximation, the system adjusts its shape parameters such that

two colliding nuclei form a single indented body in the form of a single hyperboloid

of one sheet with a hyperboloidal crevice [58], as shown in Fig. 2.3(a). For such

a necked system, shown in Fig. 2.3(b), following Blocki et al. [53], the proximity

potential is obtained by Gupta and collaborators [18,59] as

VP (s0) = πγb2ϕ1(s0 = 0)
(c21 + c22 − 2ϵ2)

(z21 + z22)
(2.41)
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Figure 2.3: (a) Schematic representation of a hyperboloid of revolution in one sheet.
(b) Sample nuclear shape formed in two center shell model.

where ϕ1(s0 = 0)=-2.0306 is the first moment of the universal function ϕ at s0 = 0,

and ci, zi and ϵ are the shape parameters in Fig. 2.3(b). Apparently, for two equal

nuclei, z1 = z2 and c1 = c2.

2.2.6 The Coulomb potential

Coulomb potential describes the force of repulsion between two interacting nuclei due

to their charges. It acts along the line of collision Z-axis. For deformed and oriented

interacting nuclei, different authors [55,60–62] have given different expressions, and

the ne due to Ref. [55] is given as:

Vc(Zi, βλi, θi, T ) =
Z1Z2e

2

R(T )
+ 3Z1Z2e

2
∑

λ,i=1,2

Rλ
i (αi, T )

(2λ+ 1)R(T )λ+1
Y

(0)
λ (θi)

[
βλi +

4

7
β2
λiY

(0)
λ (θi)

]
, (2.42)
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with Ri defined in Eq. (2.14) and Y
(0)
λ (θi) are the spherical harmonics function.

2.2.7 Rotational Energy due to angular momentum

Rotational motion gives an additional energy due to the angular momentum ℓ,

defined as

Vℓ(R,Ai, βλi, θi, T ) =
h̄2ℓ(ℓ+ 1)

2I(T )
(2.43)

where I is the moment of inertia. µ = A1A2

A1+A2
m is the reduced mass and m is the

nucleon mass. I(T )=INS=µR
2, is non-sticking limit of moment of inertia. In the

complete sticking limit, the moment of inertia I is given as,

Is(T ) = µR2 +
2

5
A1mR

2
1(α1, T ) +

2

5
A2mR

2
2(α2, T ). (2.44)

with Ri from Eq. (2.14). For relative separation of interest here, we use the sticking

limit. It is relevant to mention here that value of angular momentum extracted

experimentally, is based on moment of inertia in non-sticking limit (i.e. INS =

µR2) [63]. It means that fragment emission is punctual. In our recent study [10]

we find that non-sticking limit is more appropriate for the anisotropy calculations

whereas the sticking limit is more appropriate for obtaining the fission cross-sections

which consequently results in to a large limiting value of angular momentum.

2.2.8 Classical Hydrodynamical Mass Parameters

The kinetic energy part of the Hamiltonian in Eq. (2.8) enters through the mass

parameters. We use here the classical mass parameters of Kröger and Scheid [64].

The model of Kröger and Scheid is based on hydrodynamical flow, as shown in Fig.

2.4. This model gives a simple analytical expression, whose predictions are shown

to compare nicely with the microscopic cranking model calculations. For the Bηη
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ϑϑ1 ϑϑ2 

Figure 2.4: The geometry of the classical hydrodynamical model of Kröger and
Scheid for calculating the mass parameter Bηη.

mass we get,

Bηη =
AmR2

4

[
vt(1 + γ)

vc(1 + δ2)
− 1

]
(2.45)

with

γ =
Rc

2R

[
1

1 + cosϑ1

(
1− Rc

R1

)
+

1

1 + cosϑ2

(
1− Rc

R2

)]
(2.46)

δ =
1

2R
[(1− cosϑ1)(R1 −Rc) + (1− cosϑ2)(R2 −Rc)] (2.47)

vc = πR2
cR (2.48)

ϑ1 and ϑ2 and geometry of the model are shown in Fig. 2.4. For ϑ1 = ϑ2 = 0, δ = 0

which corresponds to two touching spheres. Rc(̸= 0) is the radius of a cylinder of

length R, having a homogeneous flow in it; whose existence is assumed for the mass

transfer between two spherical fragments. We have generalized this expression for
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deformed nuclei by using radii R1 and R2 for hot deformed nuclei, given by Eq.

(2.14).

2.2.9 Solution of the stationary Schrödinger equation and

the fragment’s preformation probability P0

Once the Hamiltonian (2.7) is established, Schrödinger equation in mass fragmen-

tation co-ordinate η can be solved. On solving Eq. (2.8) numerically, |ψν(η)|2 gives

the probability P0 of finding the mass fragmentation η at a fixed R on the decay

path.

P0(A2) ∝ |ψν(A2)|2 (2.49)

For fission studies like the spontaneous fission and fission through the barrier,

the motion in R at saddle point is adiabatically slow as compared to the η mo-

tion. Therefore, the potential is minimized in neck ε and deformation coordinates

β1 and β2 at each R and η values. Starting from the nuclear ground state in spon-

taneous fission or cluster decay, and to have complete adiabatically, only the lowest

vibrational state ν = 0 is occupied. Then, the mass (or charge) distribution yield,

proportional to the probability |ψ(0)(η)|2 (or |ψ(0)(ηZ)|2) of finding a certain mass

(or charge) fragmentation η (or ηZ) at a position R on the decay path, when scaled

to, say, mass A2 of one of the fragments (dη = 2
A
) is given by:

P0 = |ψ(0)
R (A2)|2

2

A

√
Bηη(A2)). (2.50)

However, if the system is excited or we allow interaction between various degrees of

freedom, higher values of ν would also contribute. These enter via the excitation of

higher vibrational states, and through the temperature dependent potential V and

masses Bij.

The effect of adding temperature on potential V and masses Bij is to reduce the
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shell effects in them, resulting finally in the liquid drop potential VLDM and smoothed

(averaged) masses B̄ij for the systems to be very hot. Apparently, cold fission means

taking both the potential V and masses Bij with full shell effects included in them

and hot fission means using the VLDM and smoothed (averaged) masses B̄ij. The

possible consequence of such excitations are included here by assuming a Boltzmann

like occupation of excited states

|ψ(η)|2 =
∞∑
ν=0

|ψν(η)|2 exp
(
−
Eν

η

T

)
(2.51)

Note that we are dealing here with a directly measurable quantity, the mass (or

charge) asymmetry, which works dynamically as mass (or charge) transfer coordi-

nate. Thus, the calculated yields P0(Ai) (or P0(Zi)) are directly comparable with

experiments. The nuclear shape, once minimized in the neck ε and deformation

coordinates β1 and β2 at a given R (≈ Rsaddle), remains fixed for both the mass and

charge distributions of fission fragments.

For the competing, noncompound, quasi-fission (qf) decay channel, the incoming

nuclei keep their identity, and hence the preformation factor P0=1 for ηi in case of

qf.

2.2.10 Penetration Probability P

For R-motion, instead of solving the Schrödinger Eq. (2.9), we use the WKB

approximation to calculate the penetration probability, P . For each η-value, the

potential V (R) for R ≥ Rt is calculated by using Eq. (2.12) and for R < Rt it is

parameterized simply as a polynomial of degree two in R, so that

V (R) =

 a1R + a2R
2 for R0 ≤ R ≤ Rt

Vc + Vp + Vℓ for R ≥ Rt

(2.52)
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Figure 2.5: The scattering potential for 14C cluster decay of parent nucleus 226Ra,
with multipole deformations included up to hexadecapole, and orientation angles θci
of “compact” cold configurations [21].

A typical scattering potential, for 223Ra→209Pb+14C is shown in Fig. 2.5, calcu-

lated by using Eq. (2.12) for the case of ℓ=0. The path of the penetration and the

related quantities are also shown. The deformation parameters βλi are taken from

the tables of Möller et al. [45] with “compact” orientations θci for “cold elongated”

configurations. A compact configuration is one occurring with the minimum inter-

action radius, and is “cold” or “hot” depending on if the barrier is the lowest or

highest [55,65].

The constants ai (i = 1, 2) occurring in the polynomial, are determined by using

the following boundary conditions:
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1. At R = R0, V (R) = Q

2. At R = Rt, V (R) = V (Rt)

The first (inner) turning point Ra is chosen at Ra= Rt + ∆R, and the outer turning

point is taken at Rb to give the Q-value of the reaction, i.e., V (Rb) = Q. This means

that the transmission probability P consists of three contributions

1. The penetrability Pi from Ra to Ri,

2. the (inner) de-excitation probability Wi at Ri and

3. the penetrability Pb from Ri to Rb

giving the penetration probability as

P = PiWiPb. (2.53)

The shifting of first turning point from Rt to R0 gives the penetrability calcula-

tions similar to Shi and Swiatecki [66] for spherical nuclei, which is known not to fit

the experimental data without the adjustment of assault frequency.

Following the excitation model of M. Greiner and W. Scheid [67], de-excitation

probability Wi is given as

Wi = exp(−bEi) (2.54)

This means that the de-excitation process is restricted to only a single transition. If

the parameter b were allowed to depend on Ri, it should then become a process of

multiple de-excitation and proceed as step-like process. For a heavy cluster decay

into the excited states of daughter nucleus, b = 0 is assumed [67], which means

Wi = 1, (2.55)

so that,

P = PiPb, (2.56)
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where Pi and Pb are calculated by using WKB approximation, as

Pi = exp

−2

h̄

Ri∫
Ra

{2µ[V (R)− V (Ri)]}1/2dR

 (2.57)

and

Pb = exp

−2

h̄

Rb∫
Ri

{2µ[V (R)−Q]}1/2dR

 . (2.58)

Here Ra and Rb are, respectively, the first and second turning points. This means

that the tunneling begins at R = Ra and terminates at R = Rb, with V (Rb) = Q-

value for ground state decay. The integrals of the Eqs. (2.57) and (2.58) are solved

analytically by parameterizing the above calculated potential V (R), as follows:

V (R) =



a1R + a2R
2, R0 ≤ R ≤ Rt,

V (Rt) +m(R−Rt), Rt ≤ R ≤ Rm,

VB − 1
2
k(R−RB)

2, Rm ≤ R ≤ Rh,

V (Rh)− c1
R−Rh

R
, Rh ≤ R ≤ Ri,

V (Ri)− c2
R−Ri

R
, Ri ≤ R ≤ Rb,

(2.59)

For a polynomial of degree higher than two, analytical solutions of WKB inte-

grals could not be obtained. The above equation is true for any inner turning point

and hence Rt could be chosen empirically at any point on the polynomial part, as

was shown in [18]. Eq. (2.59) means that, the first part of the potential from R0

to Rt (or Remp) is a polynomial of degree two in R, the second part from Rt to Rm

is a straight line of slope ‘m′, the top part between Rm and Rh being an inverted

harmonic oscillator and the rest from Rh to Ri and Ri to Rb are the Coulomb po-

tentials of the type 1/R. Finally, VB and RB give the height and position of the
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barrier. The analytical solution for the integrals are obtained as

∫ Rt

Rb

V (R)dR =
∫ Rt

Rm

V (R)dR+
∫ Rm

Rh

V (R)dR+
∫ Rh

Ri

V (R)dR+
∫ Ri

Rb

V (R)dR (2.60)

For different components of Eq.(2.56), we have

Pi = exp[−2

h̄

√
2µ{

√
a2
2

[t1(t
2
1 − L2)

1
2 − t2(t

2
2 − L2)

1
2

−L2(cosh−1(
t1
L
)− cosh−1(

t2
L
)]

+
2

3
(

Rm −Rt

V (Rm)− V (Rt)
)[(V (Rm)− V (Ri))

3
2 − (V (Rt)− V (Ri))

3
2 ]

− 1√
2k

[VB − V (Ri)][Θ2 −
1

2
sin2Θ2 −Θ1 +

1

2
sin2Θ1]

+
√
C1RhRi[Θ3 −

1

2
sin2Θ3]}] (2.61)

with

a1 =
R0(Q− V (Rt))

Rt(Rt −R0)
, a2 = − a1

R0

, t1 = Rt −
1

2
R0, t2 = Remp −

1

2
R0

L2 =
1

4
R2

0 +Rt(Rt −R0)

[
Q− V (Ri)

Q− V (Rt)

]

Θ1 = cos−1 Rm −RB√
α2

,Θ2 = cos−1 Rh −RB√
α2

,Θ3 = tan−1
(
Ri −Rh

Rh

)1/2

α2 =
2

k
[VB − V (Ri)]

k =
2{[(VB − V (Rm)]

1/2 + [VB − V (Rh)]
1/2}2

(Rm −Rh)2
, C1 = Ri

(V (Rh)− V (Ri))

Ri −Rh
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and

Pb = exp
[
−2

h

√
2µ
√
C2RiRb

{
Θ4 −

1

2
sin 2Θ4

}]
(2.62)

with

Θ4 = tan−1
[
Rb −Ri

Ri

]1/2
,

C2 =
Rb[V (Ri)− V (Rb)]

Rb −Ri

.

Substituting these values in Eqs. (2.61) and (2.62) we get Pi and Pb. Further

substituting Pi and Pb in Eq. (2.56) we get the probability of penetration or the

tunneling probability P .

2.2.11 Assault Frequency ν0

For the cluster decay studies (the following section), another quantity of interest is

the assault frequency ν0, defined as,

ν0 =
v

R0

=
(2E2/µ)

1/2

R0

, (2.63)

where R0 is the radius of parent nucleus and E2 = 1
2
µv2 is the kinetic energy

of the emitted cluster. Since both the emitted cluster and the daughter nucleus

are produced in the ground state, the entire positive Q-value is the total kinetic

energy (Q = E1 + E2) available for the decay process, which is shared between two

fragments, such that for the emitted cluster,

E2 =
A1

A
Q (2.64)
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and, E1 = Q− E2 is the recoil energy of the daughter nucleus.

In the following section, we use Eqs. (2.50), (2.56) and (2.63) for P0, P and ν0

for calculating the decay constant and the corresponding half-life for the emitted

fragments treated as clusters.

2.3 The Preformed Cluster Model for ground

state decay of nuclei

Many theoretical models are advanced [17, 66, 68–71] to understand the process of

exotic cluster decay in terms of nuclear α-decay or nuclear fission. These models

are mainly categorized into two groups: i) Unified fission models (UFM), and ii)

Preformed cluster models (PCM). In UFM, the cluster decay is dealt simply as a

barrier penetration problem, whereas in PCM, it is considered to happen in two

steps as mentioned in the Introduction of this chapter. The Preformed Cluster

Model [17] - [22] has been developed by adopting mainly the Gamow’s theory of

α-decay. Here, instead of a square well potential, a more realistic nuclear potential,

the nuclear proximity potential, is used and also a preformation probability P0 is

associated with each of the emitted cluster. In Gamow’s theory of α-decay, P0=1

for α-decay, since only α-cluster is considered to be emitted. In PCM, P0 is different

for every cluster and it decreases with the increase in size of cluster. It is relevant to

mention here that in PCM P0 for all the possible clusters can be obtained, whereas

in the other model, like that of Blendowske et al. [69, 72], the P0 are calculated for

the cluster mass of up to A = 28 only.

The decay constant in the PCM is defined as,

λ = ν0PP0. (2.65)

with the corresponding half-life given as: T 1
2
= ln2

λ
.
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Here ν0 is the impinging frequency with which the cluster hits the barrier, P , the

penetration probability, gives the probability of penetration of the barrier formed by

outgoing deformed and oriented fragments and P0, the preformation probability of

the cluster giving the probability of the formation of the cluster within the mother

nucleus, which is also shown to carry the effects of deformations and orientations

of outgoing fragments. For a pure Coulomb potential and P0 = 1, the above Eq.

(2.65) will give the Gamow factor ‘λG’. Thus, the clusters in PCM are considered

to be preformed with probability P0, at a relative separation measured in terms of

co-ordinate R before the penetration of potential barrier.

More recently, the T-dependence is also included in PCM [73], and the PCM(T)

is applied to α-decay chains of recoiling (T̸=0, ℓ=0) superheavy nucleus formed after

x-neutrons emission from excited CN.

2.4 The Dynamical Cluster-decay Model (DCM)

for hot and rotating compound nucleus

The dynamical cluster-decay model (DCM) [1] - [16] for the decay of a hot and

rotating compound nucleus (i.e., angular momentum ℓ̸=0 and temperature T ̸=0) is

a reformulation of the preformed cluster model (PCM) [17] - [22] for ground-state

(ℓ=0, T=0) decay of a nucleus in cluster radioactivity (CR) and related phenomena.

So, like PCM, the DCM is also based on the dynamical (or quantum mechanical)

fragmentation theory of cold phenomenon in heavy ion reactions and fission dynam-

ics. Besides the temperature and angular momentum effects in the decay of excited

CN, the deformation and orientation effects of the decay products are also taken

care in DCM. The co-ordinates η and R of the fragmentation theory in DCM, char-

acterize, respectively,

(i) the nucleon-division (or -exchange) between outgoing fragments, and

(ii) the transfer of kinetic energy of incident channel (Ec.m.) to internal excitation

58



SECTION 2.4: THE DYNAMICAL CLUSTER-DECAY MODEL
(DCM) FOR HOT AND ROTATING COMPOUND NUCLEUS

(total excitation or total kinetic energy, TXE or TKE) of the outgoing channel,

since the fixed R = Ra, at which the process is calculated, depends on temperature

T as well as on η, i.e., R(T, η). This energy transfer process follows the relation

E∗
CN +Qout(T ) = TKE(T ) + TXE(T ). (2.66)

The CN excitation energy E∗
CN is related to temperature T (in MeV) via Eq.(2.17).

Using the decoupled approximation to R- and η-motions, DCM defines the decay

cross-section, in terms of partial waves, as [1] - [16]

σ =
ℓmax∑
ℓ=0

σℓ =
π

k2

ℓmax∑
ℓ=0

(2ℓ+ 1)P0P ; k =

√
2µEc.m.

h̄2
(2.67)

where, P0, the preformation probability, refers to η-motion and P, the penetrability,

to R-motion, discussed in Sec. 2.2.9 and Sec. 2.2.10, respectively. Apparently, for

ℓ=0 (s-wave) σ0 = π
k2
P0P , which is an equivalent of decay constant λ = ν0P0P

(or decay half-life T1/2 = ln2/λ) with ν0 as the barrier assault frequency. In other

words, σ0 and λ differ through a constant only. Thus, like in PCM, here the complex

fragments (both light and heavy fragments) are treated as the dynamical collective

mass motion of preformed clusters or fragments through the barrier. The structure

information of the CN enters the model via the preformation probabilities P0 (also

known as the spectroscopic factors) of the fragments given by the solution of sta-

tionary Schrödinger equation in η (see Eq. (2.8)), at a fixed R=Ra, the first turning

point of the penetration path shown in Fig. 2.5.

For the decay of a hot CN , we use the postulate for the first turning point

Ra(T ) = Rt +∆R(η, T ) (2.68)
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where

Rt = R1(α1, T ) +R2(α1, T ) (2.69)

∆R(T ) is the neck-length parameter that assimilates the neck formation effects.

This method of introducing a neck length parameter is similar to that used in both

the scission-point [74] and saddle-point [75,76] statistical fission models. The Ri are

radius vectors given by Eqs. (2.14) and (2.15).

The corresponding potential V (Ra) acts like an effective Q-value, Qeff , for the

decay of the hot CN at temperature T, to two exit-channel fragments observed in

ground state (T=0), defined by

Qeff (T ) = B(T )− [BL(T = 0) +BH(T = 0)]

= TKE(T ) = V (Ra(T )) (2.70)

with B’s as the respective binding energies.

The above defined decay of a hot CN into two cold (T=0) fragments, via Eq.

(2.70), could apparently be achieved only by emitting some light particle(s) (LPs),

like n, p, α, or γ-rays of energy

Ex = B(T )−B(0) = Qeff (T )−Qout(T = 0)

= TKE(T )− TKE(T = 0), (2.71)

which is zero for the g.s. decay, like for exotic CR. Note that the second equality

in Eq. (2.71) is not defined for a negative Qout(T = 0) system since the negative

TKE(T=0) has no meaning. Apparently, Eq. (2.71) w.r.t (2.70) suggest that the

emission of light-particles starts early in the decay process. The exit channel frag-

ments in Eq. (2.70) are then obtained in the ground-state with TKE(T=0), as can
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be seen by calculating E∗
CN − Ex:

E∗
CN − Ex = |Qout(T )|+ TKE(T = 0) + TXE(T ). (2.72)

The excitation energy TXE(T) (not treated here) is used in, the secondary emission

of light particles from the fragments which are otherwise in their ground states with

TKE(T=0) in the radial motion. Thus, by defining Qeff (T ) as in Eq. (2.70), in this

model we treat the LP emission at par with the heavy fragments, called intermediate

mass fragments (IMFs) emission. Thus, in this model a non-statistical dynamical

treatment is attempted for not only the emission of IMFs but also of multiple LPs,

understood generally as the statistically evaporated particles in a CN emission. It

may be reminded here that the statistical model (CN emission) interpretation of

IMFs is not as good as it is for the LP production [74] - [79].

In terms of Qeff (T ), the second turning Rb satisfies

V (Ra, ℓ) = V (Rb, ℓ) = Qeff (T, ℓ) = TKE(T ). (2.73)

with the ℓ-dependence of Ra defined by

V (Ra, ℓ) = Qeff (T, ℓ = 0), (2.74)

i.e., Ra is the same for all ℓ-values, given by the above equation, and that V (Ra, ℓ)

acts like an effective Q-value, Qeff (T, ℓ), given by the total kinetic energy TKE(T ).

Then, using Eq. (2.73), Rb(ℓ) is given by the ℓ-dependent scattering potentials, at

fixed T for coplanar nuclei, as in Eq. (2.12), which is normalized to the exit channel

binding energy. This means that all energies are measured w.r.t BL(T )+BH(T ). The

scattering potential, illustrated in Fig. 3.6 of Chapter 3, for 124Ce∗ →116Xe+8Be, at

different ℓ-values, shows that as the ℓ-value increases, the Qeff (T )-value (=TKE(T))

increases and hence V (Ra, ℓ) increases, since the decay path for all the ℓ-values begins
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at R = Ra.

Finally, the ℓmax-value in Eq. (2.68) is the critical ℓ-value, in terms of the

bombarding energy Ec.m., the reduced mass µ and the first turning point Ra of the

entrance channel ηin, given by

ℓc = Ra

√
2µ[Ec.m. − V (Ra, ηin, ℓ = 0)]/h̄, (2.75)

or, alternatively, it could be fixed for the vanishing of fusion barrier of the incom-

ing channel, called ℓfus, or else the ℓ-value where the light-particle cross-section

σLP (ℓ) → 0. This, however, could also be taken as a variable parameter [75,80].

2.4.1 Concept of “barrier lowering” in DCM

The Fusion hindrance phenomenon in the coupled channel calculations (ccc) at

extreme sub-barrier energies for the fusion-evaporation cross-sections in reactions

such as 58Ni+58Ni, 64Ni+64Ni and 64Ni+100Mo, and capture (equivalently, quasi-

fission) cross-sections for 48Ca+238U, 244Pu and 248Cm reactions are one of the topic

of current research in Nuclear Physics. DCM also supports the only acceptable

explanation for the above said hindrance phenomenon in ccc, in terms of the ‘barrier

modification’ at sub-barrier energies [81] since the property of ‘lowering of barrier’

(without modifying the depth of potential pocket) at sub-barrier energies arises in

DCM in a simple way via its fitting of the neck-length parameter. The choice of

parameter Ra (equivalently, ∆R) for a best fit to data corresponds to the effects of

“barrier lowering” in it for each decay channel, defined for each ℓ as the difference

between VB(ℓ) and V (Ra, ℓ), the barrier height and the actually used barrier, as

∆VB(ℓ) = V (Ra, ℓ)− VB(ℓ). (2.76)
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Note, ∆VB for each ℓ is defined as a negative quantity as the actual barrier height

is effectively lowered, as is also illustrated in Fig. 3.6 of Chapter 3 for different ℓ

values.

2.4.2 Compound Nucleus fusion (or formation) probability

PCN and Survival Probability Psurv

Recently, using the dynamical cluster-decay model (DCM), we have estimated the

compound nucleus (CN) fusion/ formation probability PCN [82], and the CN survival

probability Psurv [83] against fission, i.e., the probability of fused system to de-excite

by emission of neutrons or light particles (LPs) (equivalently, the evaporation residue

ER), rather than fission, each defined as

PCN =
σCN

σfusion
= 1− σnCN

σfusion
, (2.77)

and

Psurv =
σER

σCN

= 1− σff
σCN

, (2.78)

where the (total) fusion cross section σfusion = σCN + σnCN with σCN as the CN

formation cross section (given as the sum of evaporation residue ER and fusion-

fission (ff) cross sections σCN = σER+σff ), and σnCN as the non-compound nucleus

(nCN) cross section such as the quasi-fission (qf), deep-inelastic collisions/ orbiting

(DIC), incomplete fusion (ICF) or pre-equilibrium decay.

Note that all the above mentioned components of fusion cross section σfusion

are individually measurable quantities. In case, the nCN component σnCN were

not measured, it can be estimated empirically from the calculated and measured

quantities, as

σnCN = σExpt.
fusion − σCal.

fusion. (2.79)
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It may be pointed out that different mass regions of compound nuclei constitute

different combinations of these processes (ER, IMFs, ff and nCN) or a single one of

them as the dominant mode. PCN takes care of the nCN effects, and Psurv, the ff

process. In other words, PCN=1 if σnCN=0, and Psurv=1 if σff=0. Thus, including

the effects of both the nCN and ff processes, Eqs. (2.77) and (2.78) allow us to write

the evaporation residue cross section σER, in terms of the product PCNPsurv [84], as

σER = σCNPsurv

= σfusionPCNPsurv. (2.80)

2.4.3 Skyrme Energy Density Formalism in semiclassical ex-

tended Thomas Fermi approach

For Skyrme Hamiltonian density H(r⃗), defining the energy expectation value

E(R) =
∫
H(r⃗)dr⃗, as already stated in the Introduction, the nuclear interaction

potential VN(R) is the difference of the energy expectation values E of colliding nu-

clei that are overlapping (i.e., at a finite separation R) and those that are completely

separated (i.e., at R =∞) [85–88],

VN(R) = E(R)− E(∞)

=
∫
H(r⃗)dr⃗ −

[∫
H1(r⃗)dr⃗ +

∫
H2(r⃗)dr⃗

]
(2.81)

with the Skyrme Hamiltonian density [42,88]

H(ρ, τ, J⃗) =
h̄2

2m
τ +

1

2
t0

[
(1 +

1

2
x0)ρ

2 − (x0 +
1

2
)(ρ2n + ρ2p)

]

+
1

2

3∑
i=1

t3iρ
αi

[
(1 +

1

2
x3i)ρ

2 − (x3i +
1

2
)(ρ2n + ρ2p)

]
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+
1

4

[
t1(1 +

1

2
x1) + t2(1 +

1

2
x2)

]
ρτ

−1

4

[
t1(x1 +

1

2
)− t2(x2 +

1

2
)
]
(ρnτn + ρpτp)

+
1

16

[
3t1(1 +

1

2
x1)− t2(1 +

1

2
x2)

]
(∇⃗ρ)2

− 1

16

[
3t1(x1 +

1

2
) + t2(x2 +

1

2
)
]

×
[
(∇⃗ρn)2 + (∇⃗ρp)2

]

−1

2
W0

[
ρ∇⃗ · J⃗ + ρn∇⃗ · J⃗n + ρp∇⃗ · J⃗p

]

−A
[
1

16
(t1x1 + t2x2)J⃗

2 − 1

16
(t1 − t2)(J⃗

2
p + J⃗2

n)
]
. (2.82)

Here, Hi(ρi, τi, J⃗i) is given in terms of the nuclear, kinetic energy and spin-orbit

densities, respectively, as ρ = ρn+ρp, τ = τn+ τp, and J⃗ = J⃗n+ J⃗p, and the Skyrme

force parameters [xj, tj (j=0,1,2), x3i, t3i, αi (i=1,2,3), W0 and A] fitted by different

authors to ground state properties of various nuclei. For the old forces [89, 90], like

SIII, SIV, SKa, etc., some constants [A, x3i, t3i and αi (i=2,3)] are zero, and t31=
1
6
t3,

x31=x3, and α1=α. Then, for new forces of Agrawal et al. [91, 92], like GSkI and

KDE0(v1), etc., we have A=1 and six additional constants [two each of x3i, t3i, and

αi], determined by a fit to several properties of the normal and isospin-rich nuclei.

For the composite system, densities are added as ρ = ρ1 + ρ2 and, as per frozen

density approximation [93],

τ(ρ) = τ1(ρ1) + τ2(ρ2),

J⃗(ρ) = J⃗1(ρ1) + J⃗2(ρ2), (2.83)
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with ρi = ρin + ρip, τi(ρi) = τin(ρin) + τip(ρip), and J⃗i(ρi) = J⃗in(ρin) + J⃗ip(ρip). For

more details, see, e.g., Ref. [88].

Then, the nucleus-nucleus interaction potential VN is written as the nuclear

proximity potential, following Blocki et al. [94] and Gupta et al. [86,95], we introduce

the slab approximation of semi-infinite nuclear matter with surfaces parallel to x−y

plane, moving in z-direction, and separated by distance s having minimum value s0,

and define the proximity interaction potential VN(R) between two nuclei, separated

by R = R1 +R2 + s, as

VN (R) = 2πR̄

∫ ∞

s0

e(s)ds

= 2πR̄

∫ {
H(ρ, τ, J⃗)− [H1(ρ1, τ1, J⃗1) +H2(ρ2, τ2, J⃗2)]

}
dz

= 4πR̄γbϕ(D) = VP (R) + VJ (R), (2.84)

where, VP (R) and VJ(R) are the spin-density independent and spin-density depen-

dent parts of the nuclear interaction potential, and e(s) is the interaction energy

per unit area between the flat slabs giving the universal function ϕ(D) in terms of

a dimensionless variable D = s/b with b as the surface width which is T-dependent.

ϕ(D) in Eq. (2.84) can be calculated “exactly” or parameterized in terms of expo-

nential and/ or polynomial functions. Since the polynomial functions are obtained

for some older forces only [86], here we solve Eq. (6.3) “exactly”. For more details,

refer to Refs. [86, 87].

In the semiclassical ETF theory, based on SEDF, we have seen that Eq. (2.82)

can be written as

H(ρ, τ, J⃗) = H(ρ) +H(J⃗) (2.85)

where H(ρ) and H(J⃗) refer to terms depending on ρ and/ or τ (τ is also a function

of ρ) and J⃗ , respectively. Note that, though J⃗ is also a function of ρ only but the
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terms that depend on J⃗ behave differently from those dependent on ρ and τ .

The kinetic energy density in ETF method, taken up to second order terms for

reasons of being enough for numerical convergence [96], is (q=n or p)

τq(r⃗) =
3

5
(3π2)2/3ρ5/3q +

1

36

(∇⃗ρq)2

ρq
+

1

3
∆ρq +

1

6

∇⃗ρq · ∇⃗fq + ρq∆fq
fq

− 1

12
ρq

∇⃗fq
fq

2

+
1

2
ρq

(
2m

h̄2

)2
W0

2

∇⃗(ρ+ ρq)

fq

2

, (2.86)

with fq as the effective mass form factor,

fq(r⃗) = 1 +
2m

h̄2
1

4

{
t1(1 +

x1
2
) + t2(1 +

x2
2
)
}
ρ(r⃗)

−2m

h̄2
1

4

{
t1(x1 +

1

2
)− t2(x2 +

1

2
)
}
ρq(r⃗). (2.87)

Note that both τq and fq are each functions of ρq and/ or ρ only. The spin J⃗ is a

purely quantal property, and hence has no contribution in the lowest (TF) order.

However, at the ETF level, the second order contribution gives

J⃗q(r⃗) = −2m

h̄2
1

2
W0

1

fq
ρq∇⃗(ρ+ ρq), (2.88)

also a function of ρq and/ or ρ alone.

The temperature T-dependence is introduced in the formalism, by using for

nuclear density ρi of each nucleus, the T-dependent, two-parameter Fermi density

(FD) distribution, which for the slab approximation is given by

ρi(zi) = ρ0i(T )

[
1 + exp

(
zi −Ri(T )

ai(T )

)]−1

−∞ ≤ z ≤ ∞ (2.89)

67



with z2 = R− z1 = [R1(α1) +R2(α2) + s]− z1, and central density

ρ0i(T ) =
3Ai

4πR3
i (T )

[1 +
π2a2i (T )

R2
i (T )

]−1. (2.90)

Then, since ρi = ρni
+ ρpi , following our earlier work, for nucleon density we define

ρni
= (Ni/Ai)ρi and ρpi = (Zi/Ai)ρi, (2.91)

with half density radii R0i and surface thickness parameters ai at T=0, obtained

by fitting the experimental data to respective polynomials in nuclear mass region

A=4-238, as [97, 98]

R0i(T = 0) = 0.9543 + 0.0994Ai − 9.8851× 10−4A2
i

+4.8399× 10−6A3
i − 8.4366× 10−9A4

i

ai(T = 0) = 0.3719 + 0.0086Ai − 1.1898× 10−4A2
i

+6.1678× 10−7A3
i − 1.0721× 10−9A4

i . (2.92)

The T-dependence in the above formulas are then introduced as in Ref. [99],

R0i(T ) = R0i(T = 0)[1 + 0.0005T 2],

ai(T ) = ai(T = 0)[1 + 0.01T 2]. (2.93)
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2.5 Wong Formula for fusion cross-section and its

extension for explicit ℓ-summation effects

2.5.1 Wong formula

According to Wong [62], the fusion cross-section, in terms of ℓ partial waves, for two

deformed and oriented nuclei (with orientation angles θi), lying in the same plane

and colliding with center-of-mass (c.m.) energy Ec.m., is

σ(Ec.m., θi) =
π

k2

ℓmax∑
ℓ=0

(2ℓ+ 1)Pℓ(Ec.m., θi), (2.94)

with k =
√

2µEc.m.

h̄2 , and µ as the reduced mass. Here, Pℓ is the transmission

coefficient for each ℓ which describes the penetration of barrier V ℓ
T (R,Ec.m., θi)[=

VN(R,Ai, βλi, T, θi)+VC(R,Zi, βλi, T, θi)+Vℓ(R,Ai, βλi, T, θi)], and ℓmax is the max-

imum angular momentum, defined later. Using Hill-Wheeler [100] approximation of

assimilating the shape of the interaction barrier Vℓ(R,Ec.m., θi) through an inverted

harmonic oscillator [V ℓ
T (R,Ec.m., θi) = V ℓ

B(Ec.m., θi) − 1
2
µω2(R − Rℓ

B)
2], the pene-

trability Pℓ, in terms of its barrier height V ℓ
B(Ec.m., θi) and curvature h̄ωℓ(Ec.m., θi),

is

Pℓ =

[
1 + exp

(
2π(V ℓ

B(Ec.m., θi)− Ec.m.)

h̄ωℓ(Ec.m., θi)

)]−1

, (2.95)

with h̄ωℓ(Ec.m., θi,Φ), evaluated at the barrier position R = Rℓ
B corresponding to

the maximum barrier height V ℓ
B(Ec.m., θi,Φ), given as

h̄ωℓ(Ec.m., θi) = h̄
[
|d2V ℓ(R)/dR2|R=Rℓ

B
/µ
]1/2

, (2.96)
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and, the Rℓ
B obtained from the condition

|dV ℓ
T (R)/dR|R=Rℓ

B
= 0.

Instead of solving Eq. (2.94) explicitly, which requires the complete ℓ-dependent

potentials V ℓ
T (R,Ec.m., θi), Wong [62] carried out the ℓ-summation in Eq. (2.94)

approximately under the conditions:

(i) h̄ωℓ ≈ h̄ω0, and (ii) V ℓ
B ≈ V 0

B + h̄2ℓ(ℓ+1)

2µR0
B

2 ,

which means to assume Rℓ
B ≈ R0

B also. In other words, both V ℓ
B and h̄ωℓ are obtained

in terms of its ℓ=0 values, with V 0
B given as the sum of nuclear proximity potential

VP and Coulomb potential VC at R = R0
B,

V 0
B = VP (R = R0

B, Ai, βλi, Ec.m., θi) + VC(R = R0
B, Zi, βλi, Ec.m., θi) (2.97)

where βλi, λ=2,3,4 are the static quadrupole, octupole and hexadecapole deforma-

tions.

Using the above two approximations, and replacing the ℓ-summation in Eq.

(2.94) by an integral, gives on integration the Wong formula [62]

σ(Ec.m., θi) =
R0

B
2
h̄ω0

2Ec.m.

ln
[
1 + exp

(
2π

h̄ω0

(Ec.m. − V 0
B)
)]
, (2.98)

which on integrating over the orientation angles θi, gives the fusion cross-section

σ(Ec.m.) =
∫ π/2

θi=0
σ(Ec.m., θi)sinθ1dθ1sinθ2dθ2. (2.99)

It is important to remind here that the characteristics of only the ℓ=0 barrier play

role in Wong formula.
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2.5.2 Extended-Wong model including ℓ-summation explic-

itly

In 2009, Gupta and collaborators [101] calculated the barrier characteristics (the

barrier height, position as well as the oscillator frequency) for the illustrative case

48Ca+238U (48Ca being a spherical nucleus, only the deformations of 238U comes into

play) at various ℓ values and noticed that angular momentum plays an important

role in changing barrier characteristics, as shown in Fig. 2 of Ref. [101]. Hence,

the ℓ summation is carried out explicitly, for the ℓmax determined empirically for a

best fit to the measured cross-section, as shown in Fig. 1 of Ref. [101]. Here the θ

integrated cross section, summed up to ℓ, are plotted as a function of ℓ itself.

This procedure of explicit ℓ summation works very well at above barrier energies

whereas it fails to reproduce the data at sub-barrier energies and, as in Misicu and

Esbensen [102] for M3Y potential, demands modification of the barrier, which we

carry out here in various ways: (i) keeping the curvature h̄ωℓ same and modifying

the barrier height V ℓ
B, by ∆V emp

B , i.e., define

V ℓ
B(modified) = V ℓ

B +∆V emp
B ,

or (ii) keep the barrier height V ℓ
B same and modify the curvature h̄ωℓ as

h̄ωℓ(modified) = h̄ωℓ +∆h̄ωemp.

or (iii) with the use of different interaction potentials like ones based on different

Skyrme forces, or by using different proximity potentials. In this thesis, various

versions of nuclear interaction potentials are used to modify the barrier for the best

fit of fusion cross-section at below barrier region.

The main point of difference in the two models (DCM and Wong) is that in

Wong model, the pre-formation probability P0=1 and penetrability is calculated by
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the Hill-Wheeler approximation [100] and the same in DCM is obtained by WKB

integral. On the other hand preformation probability P0 is used to address the

formation probability of decaying fragments of CN state in DCM. DCM is the gen-

eralized form of Wong model in which we address individual cross-sections of various

decay channels as well as the total fusion cross-sections, whereas Wong formula or

extended-Wong model handles only the fusion cross-section.
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F. Haas, A. Hachem, D. Mahboub, V. Rauch, M. Rousseau, S.J. Sanders, and

A. Szanto de Toledo, Phys. Rev. C 63, 014607 (2001).

[80] S.J. Sanders, D.G. Kovar, B.B. Back, C. Beck, B.K. Dichter, D. Henderson,

R.V.F. Janssens, J.G. Keller, S. Kaufman, T.-F. Wang, B. Wilkins, and F.

Videbaek, Phys. Rev. Lett. 59, 2856 (1987).

[81] S. Misicu and H. Esbensen, Phys. Rev. Lett. 96, 112701 (2006); ibid Phys.

Rev. C 75, 034606 (2007).

78



BIBLIOGRAPHY

[82] A. Kaur, S. Chopra, and R. K. Gupta, Phys. Rev. C 90, 024619 (2014).

[83] S. Chopra, A. Kaur, and R. K. Gupta, Phys. Rev. C 91, 034613 (2015).

[84] S. Chopra, A. Kaur, Hemdeep and R. K. Gupta, Phys. Rev. C 93, 044604

(2016).

[85] S. Chopra, A. Kaur, and R. K. Gupta, Phys. Rev. C 91, 014602 (2015).

[86] R. K. Gupta, D. Singh, R. Kumar, and W. Greiner, J. Phys. G: Nucl. Part.

Phys. 36, 075104 (2009).

[87] R. Kumar, M. K. Sharma, and R. K. Gupta, Nucl. Phys. A 870-871, 42

(2011).

[88] D. Jain, R. Kumar, M. K. Sharma, and R. K. Gupta, Phys. Rev. C 85, 024615

(2012).

[89] M. Brack, C. Guet, and H.-B. Hakansson, Phys. Rep. 123, 275 (1985).

[90] J. Friedrich and P.-G. Reinhardt, Phys. Rev. C 33, 335 (1986).

[91] B. K. Agrawal, S. K. Dhiman, and R. Kumar, Phys. Rev. C. 73, 034319 (2006).

[92] B. K. Agrawal, S. Shlomo, and V. K. Au, Phys. Rev. C. 72, 014310 (2005).

[93] G.-Q. Li, J. Phys. G: Nucl. Part. Phys. 17, 1 (1991).

[94] J. Blocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang, Ann. Phys. (N.Y.)

105, 427 (1977).

[95] R. K. Gupta, D. Singh, and W. Greiner, Phys. Rev. C 75, 024603 (2007).

[96] J. Bartel and K. Bencheikh, Eur. Phys. J. A. 14, 179 (2002).

[97] L. R. B. Elton, Nuclear Sizes (Oxford University Press, London, 1961).

79



[98] H. de Vries, C. W. de Jager, and C. de Vries, At. Data Nucl. Data Tables 36,

495 (1987).

[99] S. Shlomo and J. B. Natowitz, Phys. Rev. C 44, 2878 (1991).

[100] D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953); T D Thomas, Phys.

Rev. 116, 703 (1959).

[101] R. Kumar, M. Bansal, S. K. Arun, and R. K. Gupta, Phys. Rev. C. 80, 034618

(2009).

[102] S. Misicu and H. Esbensen, Phys. Rev. Lett. 96, 112701 (2006).

80



Chapter 3

α vs. non-α cluster decay of exci-

ted compound nucleus 124Ce∗ using

the dynamical cluster-decay model

3.1 Introduction:

The Dynamical Cluster-decay Model (DCM) [1–14] is used here for the first time to

study the decay of any proton-rich excited (T>0) compound nucleus (CN). Ground-

state (T=0) decays of proton-rich 116−124Ce and other neighboring nuclei 108−116Xe,

112−120Ba, 120−124Nd, 124−128Sm, and 128−132Gd have been studied by Gupta et al.

[15,16] on the basis of preformed cluster model (PCM) of Gupta and Malik [17,18].

The calculated preformation probabilities P0 and decay half-lives T1/2 show a clear

preference for A=4n, α-nuclei, like 4He, 8Be, 12C, 16O, etc., emitted from N=Z

parents. Stressing the importance of doubly magic 100Sn daughter, 8Be decay of

108Xe, 12C decay of 112Ba, and 16O decay of 116Ce, etc., were predicted to be the most

probable (smallest decay half-life) cluster-decay cases, in addition to α-decay in each

case. Motivated by these calculations on PCM [15,16], and of other authors [19,20]

on unified fission model (UFM), an unsuccessful experimental attempt on 12C-decay
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of 114Ba was also made [21]. As the N/Z ratio becomes larger than one, i.e., N/Z>>1

for parent nuclei, the A=4n+2, non-α nuclei clusters, like the one observed in exotic

cluster-decays of radioactive nuclei (with doubly magic 208Pb daughter), also become

prominent, though still less probable than the A=4n, α-nuclei clusters [15]. Faced

with such a situation, the decay of excited (T>0) compound nuclei 116,118,122Ba∗ were

studied both experimentally [22–27] and theoretically [5,8,13], which resulted in the

observation and interpretation of a new phenomenon of intermediate mass fragments

(IMFs, 5≤A≤20, 3≤Z≤10), in addition to multiple light-particles (LPs, like n, p,

α) evaporation residues (ER, A≤4, Z≤2) and near-symmetric and symmetric fission

fragments, termed fusion-fission (ff), at a given excitation energy E∗. Here, in the

following, we present our published work of the decay of 124Ce∗ [28,29] and study the

relative production of A=4n, α-nuclei like 8Be, 12C, 16O, etc., w.r.t. A ̸=4n, non-α

nuclei like 6Be, 10C, 14N, etc., for the hot CN decay of 124Ce∗ at a fixed E∗. We

choose to use the DCM [1–14], an extended version of PCM for T ̸=0 systems.

124Ce∗, formed in 32S+92Mo reaction at the above Coulomb barrier (∼109 MeV)

beam energy of 150 MeV (equivalently, the center-of-mass energy Ec.m.=111.3 MeV),

has been studied experimentally [30] for its decays to various evaporation residues,

like 121La, 120−122Ba, 118−121Cs, 117−120Xe, 117I, and 114Te, which refer to complemen-

tary light particles A≤4, Z≤2 and intermediate mass fragments 5≤A≤10, 3≤Z≤6.

Specifically, 124Ce being a proton-rich, near the proton-drip line nucleus, 120Xe, 121Cs

and 122Ba residues are produced, respectively, due to the evaporation of 4p, 3p and

2p, and with enhanced cross-sections. The relative cross-sections of various decay

products are obtained by normalizing them with respect to that of 120Cs, which

itself could be populated only by the evaporation of 3pn, i.e., 4Li from the com-

pound nucleus. Application of the statistical code PACE4 to this data [30] shows

large deviations in all above cases of proton clusters (2p, 3p, 4p) as well as the

118Xe residue which refers to 6Be decay. Interestingly, 116Xe (≡8Be, the α-nucleus)
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SECTION 3.1: INTRODUCTION:

decay is not observed in this experiment (not even the upper limit is given), and the

decay mechanism of 118Xe (≡6Be, a non-α nucleus) is not fully established via the

statistical code.

Using the DCM, here we compare the population of 6Be (≡118Xe residue) and

8Be (≡116Xe residue) by studying the relative cross-sections of 6Be and 8Be w.r.t. 4Li

(≡120Cs). We find that relative populations of 8Be and 6Be are comparable, with

the α-nucleus 8Be dominating over the non-α nucleus 6Be because the α-nucleus

structure remains intact even at excitation energies where shell effects in binding

energies reduce to almost zero [31]. Also, our predictions of relative cross-sections

for the next α- vs. non-α nucleus clusters, i.e., 12C vs. 10C are compared. Note that

the DCM calculations include deformation effects up to hexadecapole deformations

(β2i, β3i, β4i) with “compact” orientations (θci, i=1, 2), for the case of co-planer

nuclei (azimuthal angle Φ=00; see Fig. 2.1), obtained as per prescription in [33] for

the hot fusion process.

Thus, this work is at least of three-fold interest, namely: (i) The compound

system 124Ce∗ lies near the proton-drip line, resulting in enhanced emission of mul-

tiple proton (2p, 3p, 4p) clusters. Such reactions are not studied very much and is

also being studied here for the first time on the DCM. (ii) The experiment shows a

predominant emission of 6Be, whereas our earlier theoretical work on ground-state

(T=0, ℓ=0) decay of proton-rich systems [15, 16] showed a strong preference for

α-nuclei clusters. Since the α-nucleus structure is present even for macroscopic en-

ergies [31], it is surprising that, the same for an excited (T>0) compound nucleus

shows a complete absence of 8Be in experiments. Note that even the upper limit of

8Be production cross-section is not obtained in the experiment. (iii) The ground-

state decay calculations for such nuclei on both the PCM and UFM [15, 16, 19, 20]

stress the possibility of doubly-magic 100Sn daughter radioactivity, which means that

an absence of 8Be in the decay of 124Ce is not only surprising but alarming. If 8Be

is not observed in the decay of proton-rich nucleus, there is no chance for heav-
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Figure 3.1: Mass fragmentation potential V (A2), minimized in charge fragmentation
coordinate ηZ , for the decay of 124Ce∗ formed in 32S+92Mo reaction at Ec.m.=111.29
MeV and at ℓmin and ℓmax values. Some of the most favored fragments are replaced
by fragments of topical interest (see text). The best fitted ∆R values are: 1, 0.15,
0.793, 0.575, 0.37 and 1, respectively, for A2=1, 2, 3, 4, 5, and 6-62.

ier clusters like 12C, 16O, etc., for 100Sn like daughter products. Since the present

experiment goes only up to 10C, further measurements are called for.

3.2 Calculations and discussion of the results

As stated above, in this work we attempt to study the relative population of α-

nucleus clusters like 8Be, 12C, etc., w.r.t. non-α nucleus clusters like 6Be, 10C, etc.,

in the decay of CN 124Ce∗, formed in 32S+92Mo reaction at a beam energy of 150

MeV. For this system, the relative cross-sections of various ERs (A≤4, Z≤2) and

IMFs (5≤A≤10, 3≤Z≤6) are observed w.r.t. 4Li, and for their use in the DCM,

we have fitted the two LPs (2p and 3p) and two IMFs (5Li and 6Be) cross-sections

in order to predict the behavior of the relative cross-sections of 7B, 8Be, 9B, 10C,
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Figure 3.2: Same as for Fig. 3.1, but for (a) charge fragmentation potential V (Z2)
and (b) preformation factor P0(Z2), for mass fragment A2=6 at ℓmin value.

and 12C, etc., clusters at a fixed temperature T=2.297 MeV, referring to 150 MeV

beam-energy of the experiment [30]. Specifically, in this reaction, from the observed

heavy residues, the light-particle ERs constitute 1n (not observed), 2p, 3p (or 3H

and 3He) and 4Li (or 4p and 4He), while the IMFs include 5Li (or 5Be), 6Be (or 6Li),

7B (or 7Be), and 10C. Apparently, the charge distribution effects (various isobars of

decay fragment) are observed, but the 8Be, 9B and 12C decays are not observed in

this experiment.

Fig. 3.1 shows the calculated fragmentation potential V as a function of light

fragment mass A2 for the decay of CN 124Ce∗ at Ec.m.=111.29 MeV (ELab=150 MeV

or T=2.297 MeV), illustrated for ℓmin and ℓmax values, using the best fitted ∆R-

values given in its figure caption and Table 3.1. In view of the observed charge

distribution effects, in Fig. 3.1, we have replaced the binding energy of the en-

ergetically most favored fragment (the minimum binding energy) with that of the

fragment of interest, i.e., fragment to be calculated. This is illustrated in Fig. 3.2(a)

for A2=6 where the minimized fragment is 6Li, with largest preformation yield P0

(Fig. 3.2(b)), but here we are interested in 6Be due to its being of topical interest

and/ or observed experimentally. Therefore, in Fig. 3.1, we have first replaced the

binding energy of 6Li by the corresponding binding energy of 6Be (and its comple-
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Table 3.1: DCM calculated relative cross-sections σ(Channel)/σ(120Cs) in the de-
cay of 124Ce∗ formed in 32S+92Mo reaction at ELab=150 and 140 MeV, compared
with the experimental data σExpt. [30] at ELab=150 MeV (≡Ec.m.=111.29 MeV,
T=2.297 MeV). The neck-length parameter ∆R is fitted to data at ELab=150 MeV,
taken same at ELab=140 MeV (≡Ec.m.=103.87 MeV, T=2.16 MeV). For qf com-

ponent, σEmpirical
qf = σ(Channel)Expt. − σ(Channel)Cal. compared with σCal.

qf using
DCM(P0=1) for entrance channel. We also define σfusion =

∑
σ(Channel) for both

the Expt. and Cal. cases, with σ(Channel) here being relative to σ(120Cs).

Decay-channel ∆R ELab=150 MeV ELab=140 MeV

σ (Channel)/σ(120Cs) σqf (≡ σnCN ) σ (Channel)/σ(120Cs)

Light Heavy (fm) Cal. Expt. Empirical Cal. ∆Rqf (fm) Cal.

2p 122Ba 0.15 0.44 0.46 0.02 0.02 0.2 0.47

3p 121Cs 0.793 1.19 1.19 0 0.05 0.2 1.19

4Li 120Cs 0.575 1.0 1.0 0 5.6×10−4 0.2 1.0

5Li 119Cs 0.37 0.18 0.18 0 4.1×10−4 0.2 0.198

6Be 118Xe 1.0 1.63 1.63 0 4.4×10−4 0.2 1.69

7B 117I 1.0 0.07 0.41 0.34 0.34 0.7 0.06

8Be 116Xe 1.0 3.28 - - 1.2×10−5 0.2 3.02

9B 115I 1.0 0.15 - - 1.4×10−5 0.2 0.14

10C 114Te 1.0 0.004 0.24 0.236 0.236 0.804 0.004

11C 113Te 1.0 0.55 - - 2.1×10−5 0.2 0.51

12C 112Te 1.0 12.25 - - 1.3×10−4 0.2 11.61

mentary heavy fragment). Similarly, for A2=2, 3, 7 and 10, the energetically most

favored fragments are, respectively, 2H, 3H, 7Li, and 10B which are replaced by the

corresponding binding energies of 2p, 3p, 7B and 10C, and their heavy complemen-

tary fragments, being here the fragments of relatively first importance. The same

procedure could subsequently be carried out for the other observed isobars, and the

properly normalized charge distributions calculated. Interestingly, we notice in Fig.

3.1 that, compared to 6Be and 10C, 8Be and 12C, respectively, occur at the deeper

minima in both ℓmin and ℓmax cases, establishing the result that, in the decay of
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Figure 3.3: Preformation probability P0 as a function of angular momentum ℓ for
LPs and some IMFs decays of 124Ce∗ formed in 32S+92Mo reaction at Ec.m.=111.29
MeV. ℓmax=72 h̄, except for 10C and 12C where it goes up to about 80 h̄.

124Ce∗, independent of ℓ-value, A= 4n, α-nuclei are preferred over A=4n+2, non-α

nuclei. Also, the ∆R values, equivalently the separation distance Ra, for 2p and

3p fragments are smaller (see, Fig. 3.1 Caption), such that the resulting Coulomb

repulsion help enhancing their decay cross-sections, compared to the neighboring

fragments. This is further shown more clearly in terms of the calculated preforma-

tion probability P0 and channel cross-section σℓ (see Figs. 3.3 and 3.5 below).

The ℓmax and ℓmin values are obtained, respectively, from P0 and P plotted as

functions of ℓ in Fig. 3.3 and Fig. 3.4 for LPs and some IMFs, or equivalently, the

channel cross-section σℓ as a function of ℓ, shown in Fig. 3.5. ℓmax and ℓmin are the

values of ℓ where the contributions of P0 and P to cross-section become negligible,

i.e., the channel cross-section becomes negligible. We limit ourselves to P0 >10
−15,

P >10−25, and σℓ >10
−11, giving ℓmin=0 h̄ and ℓmax=72 h̄. Note that in Figs. 3.4

and 3.5, some channels begin at ℓmin >0, which means that the lower ℓ-values do

not contribute to the calculated cross-section, discussed below. Similarly, for some

channels ℓmax >72 h̄, but again the contribution to the calculated cross-section is

negligible.
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Next, looking at the individual decay channels, Figs. 3.3 to 3.5 show that for

1n, though not observed in the experiment [30], the P0 and σℓ are nearly the largest

though the P is smallest. It may be reminded that here we have fitted only two

LPs and two IMFs. Very recently, Chopra et al. [14] have shown that if, instead of

σER alone, the sum σER + σIMFs were fitted then the, otherwise large, contribution

of σ1n reduces to nearly zero. 2p is also highly preformed though the penetrability

is again smaller. On the other hand, 3p is relatively, weekly preformed though its

penetrability is large (rather largest), such that the channel cross-sections are large

for both 2p and 3p decays (see Fig. 3.5). Also, 6Be and 8Be are though relatively,

weakly preformed but their penetrability being large make their cross-sections quite

large. Note that 8Be is preformed stronger than 6Be, and so also is 12C compared

to 10C, thereby making the 8Be and 12C channel cross-sections largest (see Fig.

3.5). This happens because of the inherent α-nucleus structure effects present in the

fragmentation potential (Fig. 3.2) that are independent of ℓ values as well as the

excitation energy, i.e., stay intact even at the above barrier energy, a macroscopic

energy effect, where shell effects become negligible (e.g., see [31]). The concept of

“barrier lowering”, as discussed in Chapter 1, is described with the help of Fig.

3.6 where we notice that, as the barrier is effectively lowered, ∆VB for each ℓ is

defined as a negative quantity, as shown in Fig. 3.7. Thus, the fitting parameter

∆R controls the “barrier lowering” ∆VB.

In Figs. 3.7 and 3.8, we have also plotted the preformation and penetration

probabilities as a function of fragment mass number Ai (i=1, 2), for ℓmin to ℓmax

values. We notice from Fig. 3.7 that the lower ℓ values contribute to LPs and the

IMFs (A2=5-16), and the higher ℓ values to heavy mass fragments (HMFs, A2=28-

46) and near-symmetric and symmetric fission region (nSF and SF, the ff region of

A2=53-62). On the other hand, P is almost of the same order for all ℓ values, and

contribute mainly towards the magnitude of cross-section. The same result is better

presented in Fig. 3.9 where the ℓ-summed P0, P and channel cross-section σ are
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plotted as a function of A2. Apparently, the ℓ-summed P contributes only to the

magnitude, and the ℓ-summed σ follow the behavior of ℓ-summed P0, containing the

structure effects of CN. Thus, in addition to the observed ER, for cross-sections of

similar orders, the IMFs window is shown extended up to A2=16 and a new decay

region of heavy mass fragments (HMFs) of A2=28 to 46, plus near-symmetric and

symmetric fission fragments A2=53-62 are clearly indicated, which on including the

complementary heavy fragments result in ff region of (A/2)±9.

Table 3.1 and Fig. 3.10 show our DCM calculated cross-sections at 150 MeV

laboratory energy, compared with the experimental data [30], given relative to 120Cs

(≡3pn or 4Li). First of all we notice that, for the best fitted 2p, 3p, 5Li and 6Be

cross-sections, 8Be (≡116Xe) and 12C (≡112Te) are shown to be relatively more popu-

lated than 6Be (≡118Xe) and 10C (≡114Te), respectively, as was found to be the case

for the ground-state decay [15,16], and decay of 116Ba∗ formed in 58Ni+58Ni reaction

at various Ec.m. [5]. ∆R-values used for various fragments are given in Table 3.1 and

figure caption of Fig. 3.1. Secondly, from the point of view of CN formation proba-

bility PCN , we notice that the overall comparison between the DCM calculations and

data are good, wherever observed. This means that the (relative) non-compound

qf-component is very small (the summed σempirical
qf =0.596, as obtained for only 2p,

7B and 10C for the empirically estimated σqf by using Eq. (2), given in Table 3.1 .

This is to be compared with σExpt.
fusion =

∑
σ(Channel)Expt.=5.11). Then, using Eq.

(3), PCN = 1− 0.596
5.11

= 0.883 ≈1 for both the experiments and the DCM calculations

of σqf for P0=1 case, as expected for the above barrier bombarding energy, which

is the case here. In Table 3.1, the DCM(P0=1) calculations for entrance channel fit

the empirical σqf almost exactly for a reasonable choice of neck-length parameter

∆R for qf process.

The authors of Ref. [30] state that a similar experiment was made at a below-

barrier beam energy of 140 MeV (Ec.m.=103.87 MeV), but did not publish the data
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for the same. Table 3.1 includes the results of our calculation at this energy also,

using ∆R-values determined for 150 MeV case. Interestingly, at this lower incident

energy also, the A=4n, 8Be and 12C decays of 124Ce∗ dominate over the A=4n+2,

6Be and 10C decays, respectively, as expected [31]. Furthermore, since this is a case

of below-barrier incident energy, we expect a significant qf-component, and hence

PCN should be much less than unity.

Knowing that ∆R controls the “barrier lowering” parameter ∆VB, we have plot-

ted ∆VB in Fig. 3.11 as a function of light fragment mass number A2 for two limiting

ℓ values. ∆VB is an in-built property of the DCM, considered to be the only possi-

ble explanation to account for fusion hindrance phenomenon [7,34,35] in heavy ion

reactions, particularly, at sub-barrier energies. This further speaks in favor of dif-

ferent nuclear interactions required for different heavy ion reactions [36]. We notice

in Fig. 3.11 that ∆VB is large (-8 to -18 MeV) for LPs (A2=1-4) and much smaller

(-6 to -11 MeV) for IMFs (A2 >4), and that ∆VB decreases with an increase in ℓ

value for all decay channels. The later result occurs because at higher ℓ’s the barrier
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shifts towards the lower R value (see Fig. 3.6), and hence the first turning point Ra

comes closer to barrier position VB, which means that V (Ra) increases and hence

the difference ∆VB decreases.

Another quantity of interest in this study is the deformation of, say, 6Be and/

or 8Be which are not known experimentally. The calculated cross-sections could,

however, depend on the deformations β2 used, which for the present calculations

are taken from relativistic mean-field calculations [37], namely: β2=-0.087 for 6Be

and -0.094 for 8Be. In Fig. 3.12, we vary the deformation of 6Be or 8Be (only

one at a time, keeping the other fixed), and calculate the relative cross-section of

6Be w.r.t. 8Be, i.e., σ(6Be)/σ(8Be). The interesting result is that the relative

cross-section of 6Be w.r.t. 8Be is nearly independent of the deformation of 8Be

(prolate/ oblate), but (depending on the deformation of 8Be) increases many fold

for prolate deformation of 6Be, though remaining almost un-affected for its oblate

deformations. The increase is large for small oblate deformation of 8Be (un-filled

circles), but becomes increasingly small for increasing prolate deformation of 8Be

(un-filled squares, and un-filled stars). Thus, it is clear from Fig. 3.12 that our

results on relative cross-sections in Fig. 3.10 depend on the values of deformations

used for the two nuclei.

3.3 Summary

Experimentally, the 32S+92Mo→124Ce∗ reaction has been studied at an incident

center-of-mass energy Ec.m.=111.29 MeV (equivalently, the laboratory energy 150

MeV), and heavy mass decay products observed, whose complementary light decay

products are the multiple proton clusters (2p, 3p, 4p) and intermediate mass frag-

ments like 5Li, 6Be, 7B, and 10C, plus their isobars like 3,4He, 5Be, 6Li, 7Be, etc. In

this paper, we have extended an application of the dynamical cluster-decay model

(DCM) to this system at two different incident energies of Ec.m.=111.29 MeV (≡150
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MeV beam energy) and 103.87 MeV (≡140 MeV beam energy), though the data

are available only at the first above barrier energy. The measured cross-sections are

given relative to 4Li decay, and our aim is to compare the measured relative cross-

sections of 6Be and 10C with 8Be and 12C, respectively, though both 8Be and 12C

decays are not observed in this experiment (even the upper limits are not given).

Neck-length is the only parameter of the model, whose value remains within ∼2

fm, the range of validity of proximity potential used here. For the best fitted neck-

length parameters of two LPs (2p and 3p) and two IMFs (5Li and 6Be), the relative

populations of 6Be and 8Be, and that of 10C and 12C are analyzed, showing thereby

that the compound nucleus 124Ce∗ decays preferentially via A=4n, α-nucleus clus-

ters as compared to A ̸=4n, non-α nucleus clusters, similar to what was predicted

for ground-state (T=0) decays, and shown earlier [5] for decay of 116Ba∗ formed in

58Ni+58Ni reaction at various Ec.m.. This confirms the excitation energy indepen-

dence of α-nucleus structure effects in 124Ce∗, similar to what was shown earlier

for a lighter system 56Ni∗ [31]. In the above barrier energy data, the possible non-

compound nucleus effects are shown to be small and the CN formation probability

calculated to be close to unity. However, the charge distribution due to observed

isobars is not yet investigated.
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Chapter 4

α vs. non-α cluster decays of

excited compound nucleus 124Ce*

using various formulations of

nuclear proximity potential.

4.1 Introduction

Continuing the work of Chapter 3 [1, 2], where it was shown that the α-nucleus

structure of the proton-rich 124Ce does not change in going from its ground-state

(temperature T=0) decay [3, 4] to the decay of excited (T>0) compound nucleus

124Ce∗. As also discussed in Chapter 3, experimentally, 124Ce∗, formed in 32S+92Mo

reaction at an above Coulomb barrier (barrier∼109 MeV) beam energy of 150 MeV

(equivalently, the center-of-mass energy Ec.m.=111.3 MeV), has been studied [5] for

its decays to various evaporation residues, like 121La, 120−122Ba, 118−121Cs, 117−120Xe,

117I, and 114Te, which refer to complementary light particles (LPs) A≤4, Z≤2 and in-

termediate mass fragments (IMFs) 5≤A≤10, 3≤Z≤6. Note, 116Xe and 112Te (≡8Be

and 12C, respectively, the α-nuclei clusters) decays are not observed in this experi-

ment (not even the upper limit is obtained). The relative cross sections of various
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decay products are obtained by normalizing the data with respect to 120Cs (≡4Li).

In our calculation [1, 2] in Chapter 3, based on the dynamical cluster-decay model

(DCM) [6,7] using, for nuclear proximity potential, the pocket formula of Blocki et

al. [8], we compared the population of 6Be, 10C (≡118Xe, 114Te residues, respectively)

with 8Be, 12C (≡116Xe, 112Te residues, respectively) by studying their relative cross

sections w.r.t. 4Li (≡120Cs). We find that, for the best fitted neck-length parameter

∆R’s (the only parameter of the model) up to A2=6, the relative populations of 8Be,

12C and 6Be, 10C are comparable, with the α-nuclei 8Be and 12C dominating over

the non-α nuclei 6Be and 10C. This means that the α-nucleus structure remains in-

tact even at excitation energies where shell effects in binding energies reduce almost

to zero [9]. Thus, in our DCM calculations, the excitation-energy independence of

α-nucleus structure effects in 124Ce∗ is confirmed. Note that, in all these studies,

the pocket formula of Blocki et al. [8] is used for the nuclear proximity potential,

and it would certainly be of interest to see if the above result is independent of (or

dependent on) the choice of nuclear interaction potential [10]. Therefore, in this

chapter, we extend the study of Chapter 3 to the use of various other nuclear prox-

imity potential functions derived from the Skyrme energy density formalism (SEDF)

based on the semiclassical extended Thomas Fermi (ETF) method under the frozen

density approximation [11–13].

The SEDF in ETF approach (as discussed in Sec. 2.4.3 in Chapter 2) provides

a convenient basis for calculating the interaction potential between two colliding

nuclei. In SEDF, the nucleus-nucleus interaction potential, as a function of separa-

tion distance R, is defined as the difference of the energy expectation value of the

Skyrme Hamiltonian density for the two nuclei at finite separation R and when they

are completely separated, i.e., R = ∞. Knowing that different nuclear interaction

potentials give rise to different barrier characteristics (barrier height, position, and

curvature), we can consider using different nuclear proximity potentials to introduce

“the barrier-modification effects” into the formalism. Skyrme forces provide the flex-
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SECTION 4.1: INTRODUCTION

ibility of a better comparison of the data, since large number of forces are available

that fit different ground state properties of nuclei from different mass regions. Here,

we have used the old Skyrme forces SII, SIII, SIV, SKa, SkM and Sly4 having a

mild spin-orbit dependence [14,15] and the very new GSkI and KDE0(v1) forces of

Agrawal et al. [16,17], having strong spin-orbit dependence. It would be of interest

to see the performance of the new forces, as compared to the old established forces.

Thus, in this Chapter, we study the role of different SEDF-based nuclear inter-

action potentials on the decay of 124Ce∗ formed in 32S+92Mo reaction, for checking

the relative population of A=4n, α-nuclei like 8Be, 12C, 16O, etc., w.r.t. A̸=4n,

non-α nuclei like 6Be, 10C, 14N, etc., using the DCM. We find that, similar to Blocki

et al. proximity potential, for all the Skyrme forces, compared to non-α nucleus

clusters, the α-nucleus clusters occur at deeper minima in mass fragmentation po-

tential, minimized in charge fragmentation coordinate ηZ , establishing once again

that α-nucleus clusters are energetically more favored over non-α nucleus clusters.

However, for the best fitted evaporation residue (ER) and IMFs cross sections up to

A2=6, 8Be is shown to be relatively more populated than 6Be for only two Skyrme

forces [SIII and KDE0(v1)], and 12C more populated than 10C for all Skyrme forces,

just as for the case of Blocki et al. pocket formula. Note that the DCM calcu-

lations include deformation effects up to hexadecapole deformations (β2i, β3i, β4i)

with “compact” orientations (θci, i=1, 2), for the case of co-planar nuclei [azimuthal

angle Φ=00, see Fig. 2.1], obtained as per prescription in Ref. [18] for the “hot”

fusion process.

We have also applied the ℓ-summed Wong model [19], also discussed in Sec. 2.5

of Chapter 2, to the above data [5], for the choice of nuclear proximity potential

of Blocki et al. and the above noted two Skyrme forces SIII and KDE0(v1). It

may be noted that, whereas DCM deals with each decay fragment x individually

such that it determines the evaporation residue cross section σER (=
∑4

x=1 σx), the

fusion-fission cross section σff (= 2
∑A/2

x=5 σx), and the non-compound nucleus (nCN)
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Table 4.1: ℓmax values and the neck-length parameters ∆R, best fitted to the ob-
served decay channel cross sections of 124Ce∗ at Ec.m.=111.29 MeV (T=2.297 MeV),
and the complementary heavier fragments, for all the nuclear interaction potentials
under consideration. The last column depicts ∆R-value for 6Be and all fragments
up to A/2.

Nuclear ℓmax ∆R (fm)

Potential (h̄) 2p 3p 4Li 5Li 6Be-A/2

SII 65 0.67 1.344 1.271 1.168 1.76

SIII 71 0.0575 0.9125 0.73 1.095 1.9375

SIV 64 0.65 1.286 1.31 1.225 1.774

SKa 65 0.585 1.332 1.269 1.14 1.792

SkM 66 0.437 1.245 1.055 0.937 1.664

SLy4 66 0.57 1.21 1.1 0.96 1.536

GSkI 64 0.272 1.189 0.572 0.633 1.6

KDE0(v1) 64 0.68 1.573 1.27 1.105 1.973

Blocki et al. 72 0.15 0.793 0.575 0.37 1.0

cross section σnCN calculated due to the quasi-fission process (σqf ), and their sum,

the total fusion cross section σfusion, in the Wong model, only the total fusion cross

section, σfusion, is determined in terms of the barrier characteristics of the entrance

channel nuclei. Thus, in DCM, the barrier modification is an inbuilt property via

the neck-length parameter ∆R but in the (ℓ-summed) extended-Wong model it is

taken care via the small, but important ℓ-dependence of the barrier and the same

could also be introduced empirically. Apparently, the (ℓ-summed) extended-Wong

model gives only the total fusion cross section and the DCM gives this as well as

the details of processes (ER, ff and nCN) comprising the total fusion cross-section.

Note that the extended-Wong model for the entrance channel is the same as the

DCM(P0=1), used for calculating the quasi-fission cross section σqf . This work is

published [20] and is also presented at 59th Department of Atomic Energy (DAE)

Symposium on Nuclear Physics held at Varanasi, India [21].
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SECTION 4.2: CALCULATIONS AND DISCUSSION OF THE
RESULTS
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Figure 4.1: Variation of: (a) neck-length parameter ∆R with A2 for chosen two
Skyrme forces and the Blocki et al. nuclear potential, and (b) barrier lowering
parameter ∆VB with A2 for the ℓmax value of each chosen nuclear potential, for the
decay of 124Ce∗ formed in 32S+92Mo reaction at Ec.m.=111.29 MeV. Note that only
a few points were plotted in Fig. 3.11 for Blocki et al. nuclear potential [1].

4.2 Calculations and discussion of the results

As already mentioned in the Introduction, we have extended here our study of

the decay of CN 124Ce∗, formed in 32S+92Mo reaction at an Ec.m.=111.29 MeV,

to the use of various nuclear interaction potentials derived from SEDF based on

semiclassical ETF method, and compared with our earlier results [1, 2] of pocket

formula of Blocki et al. for nuclear proximity potential. Different Skyrme forces

give different barrier characteristics, and hence are used to fit the available data on

fusion cross-section. For 124Ce∗, the relative cross sections of various ERs (A≤4,

Z≤2) and IMFs (5≤A≤10, 3≤Z≤6) are observed w.r.t. 4Li, and for their use in the

DCM, we have fitted for different nuclear interaction potentials, the two LPs (2p and

3p) and two IMFs (5Li and 6Be) cross sections in order to predict the behavior of

the relative cross sections of A=4n (8Be and 12C, etc.) and A ̸=4n (6B and 10C, etc.)

clusters at a fixed temperature T=2.297 MeV, referring to experiment of Ref. [5].

Table 4.1 shows the best fitted ℓmax values and the neck-length parameter ∆R for

A2=2-6 on DCM, using all the nuclear interaction potentials under consideration.

Note, ℓmax values are close to each other for all the forces, and the ∆R values stay
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Figure 4.2: Mass fragmentation potential V (A2), minimized in charge fragmentation
coordinate ηZ , for the decay of 124Ce∗ formed in 32S+92Mo reaction at Ec.m.=111.29
MeV for various Skyrme forces and proximity potential due to Blocki et al.. Fig.
1(a) is for ℓmin=0 and Fig. 1(b) for ℓmax values of Table 4.1. Some energetically
favored fragments are replaced by ones of topical interest from the experiment point
of view. The various minimized fragments for all the forces are 1n, 2p, 3p, 4Li, 5Li,
6Be, 7Be (7B for Blocki et al.), 8Be, 9Be (9B for Blocki et al. and for all forces at
ℓmax values), 10C, 11C, 12C, at the two ℓ’s.
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and Blocki et al. pocket formula for nuclear interaction part of potential.
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A2 for 124Ce∗ formed in 32S+92Mo reaction at Ec.m.=111.29 MeV, using Skyrme
forces SIII, KDE0(v1) and proximity potential due to Blocki et al., for ℓmin and
ℓmax values.

within the limits of nuclear proximity of < 2 fm.

The neck-length ∆R is the only parameter of the model used to fit the data (Table

4.1), whose variation with light fragment mass number A2 is illustrated in Fig. 4.1(a)

for some selected three nuclear forces. We notice that different nuclear interactions

result in a similar functional dependence for ∆R(A2). The increase in ∆R means

a decrease of reaction time, i.e., the reaction becomes more prompt. Then, by

definition, the barrier lowering parameter ∆VB decreases, which is presented in

Fig. 4.1(b). For instance, say, for KDE0(v1) force, the increase in ∆R for 3p

(w.r.t. 2p) means that 3p decay is relatively more prompt, and ∆VB is smaller.

The same argument applies to decreased ∆R for mass 4 and 5 fragments. Note,

for KDE0(v1), ∆R’s are highest, and hence ∆VB’s are about the smallest. It may

be reminded that at sub-barrier energies, barrier-modification or barrier-lowering is

the only possible explanation to account for the fusion hinderance phenomenon in

heavy ion reactions [25–27].

Fig. 4.2 shows the calculated fragmentation potential V (A2), A2 being the mass

number of light fragment, for the decay of CN 124Ce∗ at Ec.m.=111.29 MeV, using the
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Figure 4.5: The ℓ-summed fragment preformation probability P0, the penetrability P
and the decay channel cross section σ as a function of the light fragment mass number
A2 for compound system 124Ce∗ formed in 32S+92Mo reaction at Ec.m.=111.29 MeV,
for Skyrme forces SIII and KDE0(v1), compared with the results of Blocki et al.
potential.

best fitted ∆R-values for eight Skyrme forces, compared with the potential due to

Blocki et al. used in our earlier work [1], illustrated for ℓmin=0 and ℓmax value from

Table 4.1. We notice that all the chosen forces behave alike since, for all of them,

the same fragments contribute to the decay processes, namely, the light particles 2p,

3p, 4Li and the IMFs 5Li, 6Be, 7Be, 8Be, 9Be (9B at ℓmax value for all forces), 10C,

11C and 12C, corresponding to the observed heavy residues. Note, for Blocki et al.

pocket formula 7B and 9B occur, instead of 7Be and 8Be, respectively, at both ℓmin

and ℓmax values. The interesting result is that, similar to the case of Blocki et al.

proximity potential, 8Be and 12C occur at deeper minima, as compared to 6Be and

10C, for all the Skyrme forces, establishing that in the decay of 124Ce∗, independent

of nuclear interaction potential, the A=4n, α-nucleus structure is preferred over the

A̸=4n, non-α nucleus structure. Also, the LPs and IMFs are energetically more

favorable at lower ℓ values and the ff at higher ℓ values.

Fig. 4.3 shows the comparison of interaction potentials V(R) for CN 124Ce∗,
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Table 4.2: DCM calculated relative cross sections σ(Channel)/σ(4Li) for LPs, IMFs,
HMFs, and ff in the decay of 124Ce∗, compared with the experimental data σExpt.

at ELab=150 MeV (≡Ec.m.=111.29 MeV, T=2.297 MeV) for 32S+92Mo reaction [5].
The (total) fusion cross section σFusion/σ(

4Li), the CN formation probability PCN

for the measured data (=ER+IMFs), and CN survival probability Psurv based on
DCM predicted ff data are also given.

Decay σ(Channel)/σ(4Li)

Channel

SII SIII SIV SKa SkM SLy4 GSkI KDE0(v1) Blocki Expt.

ERs (A2 = 1− 4)

2p 0.46 0.46 0.46 0.45 0.46 0.46 0.46 0.46 0.44 0.46

3p 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19

4Li 1 1 1 1 1 1 1 1 1 1

IMFs (A2 = 5− 13)

5Li 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18

6Be 1.63 1.63 1.65 1.63 1.63 1.63 1.63 1.63 1.63 1.63

7Be 7×10−3 1.04 5×10−3 9.8×10−3 0.12 8.37×10−3 1.28×10−2 2.19×10−2 0.07 0.36

8Be 0.54 109 0.34 0.82 1.06 0.571 0.94 2.23 3.28 -

9Be 2×10−3 0.18 9×10−4 3.23×10−3 4.8×10−3 1.5×10−3 5.2×10−3 6.4×10−3 0.15 -

10C 1.4×10−4 2.36×10−2 8.9×10−5 2.14×10−4 3.27×10−4 1.67×10−4 3.1×10−4 4.3×10−4 4×10−3 0.24

11C 4×10−3 0.81 1.47×10−3 8.6×10−3 1.5×10−2 6.32×10−3 1.46×10−2 2.05×10−2 0.55 -

12C 0.06 9.91 0.02 0.14 0.25 0.095 0.18 0.36 12.25 -

13C 0.044 6.97 0.019 0.10 0.22 0.066 0.13 0.32 15.1 -

Summed HMFs∑y
xHMF 363 1.57×106 174 690 2110 1140 1420 3580 1270 -

(x-y) (29-48) (27-48) (29-48) (29-48) (28-48) (29-48) (28-48) (28-48) (28-48) -

Summed ff

2
∑y

xff 106 1.18×106 44.3 216 831 365 629 2503 147 -

(x-y) (49-62) (49-62) (49-62) (49-62) (49-62) (49-62) (49-62) (49-62) (51-62) -

(Total) Fusion cross section (relative to 4Li)
σfusion

σ4Li
475.07 2.75×106 223.6 913.51 2951.26 1511.7 2056.86 6095.32 1644.63 -

PCN for the measured data

PCN 0.883 1.0 0.886 0.883 0.905 0.883 0.884 0.886 0.882 -

Psurv for DCM predicted fusion-fission

Psurv 0.006 0.96×10−6 0.012 0.003 0.001 0.002 0.001 0.43×10−3 0.002 -
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illustrated for the decay 116Xe+8Be at Ec.m.=111.29 MeV, for various Skyrme forces

and the Blocki et al. nuclear proximity potential. We notice that, similar to Blocki

et al., the short-range potential pocket is formed for all old forces, namely, SII,

SIII, SIV, SKa, SkM and SLy4 (for SIV, the pocket is much deeper, rather deepest;

not shown here), and the new forces GSkI and KDE0(v1) are the ever-increasingly

attractive forces. Also, the barrier characteristics, i.e., barrier height VB, position

RB and curvature h̄ω, are strongly force dependent, i.e., are different for different

Skyrme forces. On the basis of barrier height VB, however, in addition to Blocki

et al. pocket formula, two other groups could be identified: one consisting of all

the old Skyrme forces, and the other of two new Agrawal et al. forces. The force

SIII has the highest and KDE0(v1), the lowest barrier. Furthermore, we shall see

later (Table 4.2 and Fig. 4.6) that SIII and KDE0(v1) are the only two Skyrme

forces that result in a predominant α-nucleus structure. Therefore, we have chosen

to present our results for SIII and KDE0(v1) (one Skyrme force from each group),

compared with Blocki et al. pocket formula.

The results of fragmentation potential V (A2) in Fig. 4.2 can be better un-

derstood in terms of preformation factor P0 since it gives the dynamical yields of

fragments. Fig. 4.4 shows a plot of P0(A2) for SIII and KDE0(v1) forces and Blocki

et al. potential, at ℓmin and ℓmax values. We notice that lower ℓ values contribute

to LPs and IMFs (larger yields) and the higher ℓ values to ff region. Interestingly,

P0 for all the three forces give rise to a similar region for the ff process. For the

lighter mass region, evidently A=4n, α-nuclei like 8Be and 12C are relatively more

strongly preformed as compared to A ̸=4n, non-α nuclei like 6Be and 10C, indicating

preferred preformation for α-nuclei.

Fig. 4.5 presents the ℓ-summed P0, P and channel cross section σ plotted as

a function of A2 for the three chosen forces (Skyrme forces SIII and KDE0(v1),

and Blocki et al. potential). Apparently, the ℓ-summed P contributes only to the

magnitude, and the ℓ-summed σ follow the behavior of ℓ-summed P0, containing the
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structure effects of CN. Thus, in addition to the observed ER, for cross sections of

similar orders, the IMFs window is shown extended up to A2=16, though the data is

observed up to 10C only, and a new decay region of heavy mass fragments (HMFs) of

A2=27-48 or 28-48, plus a near-symmetric and symmetric fission fragments A2=49-

62 or 51-62 are clearly indicated, which on including the complementary heavy

fragments result in the ff region of (A/2)±12. The same result is presented in Table

4.2, where we have shown the ER, IMFs (up to A2=13), and the summed HMFs

and ff cross-sections, relative to 4Li, for all the eight chosen Skyrme forces and the

Blocki et al. potential, compared with experimental data [5]. Also, the (total)

fusion cross-section, relative to 4Li,
σfusion

σ4Li
, and the CN fusion probability PCN [22]

for the measured data (ER and IMFs), and CN survival probability Psurv [23] against

(the DCM estimated) ff process are calculated and given in Table 4.2. Apparently,

some of the calculated (relative) fusion cross sections
σfusion

σ4Li
are very large, and the

survival probability Psurv very small due to the predicted large ff component. On

the other hand, the PCN is close to unity in almost all cases (Skyrme forces and

Blocki et al. pocket formula) since the empirically determine σnCN is, in general,

very small.

Furthermore, Fig. 4.6 shows the DCM calculated relative cross section for the

three chosen forces, compared with the experimental data [5] given relative to 120Cs

((≡4Li). Note that 8Be, 9B, 11C and 12C decays are not observed in this experi-

ment. Also, it may be reminded that the energetically favored fragments for Blocki

et al. proximity potential are 7B and 9B, whereas for all the considered Skyrme

forces, these are 7Be and 9Be. Evidently, for the best fitted 2p, 3p, 5Li and 6Be

cross-sections, the A=4n, α-nuclei like 8Be and 12C are shown to be relatively more

populated than the A ̸=4n, non-α nuclei like 6Be and 10C for all cases, in agreement

with the results of the ground-state (T=0) decays [3, 4, 9].

Finally, Fig. 4.7 shows the extended-Wong model based, θi-integrated cross
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Figure 4.6: Comparison of DCM calculated relative cross sections of various heavy
residues w.r.t. 120Cs for two Skyrme forces compared with the proximity potential
due to Blocki et al. and the measured data [5]. The corresponding light product is
also shown in the bracket. It is relevant to note that the minimized fragments for
the Skyrme forces are 7Be and 9Be whereas the same for Blocki et al. proximity
potential are 7B and 9B. No error bars are available for the measured data.

section summed up to angular momentum ℓ, plotted as a function of ℓ itself using

nuclear proximity potential due to Blocki et al. and the SIII and KDE0(v1) Skyrme

forces, for 32S+92Mo reaction at Ec.m.=111.29 MeV. Note, Wong model gives only

the total fusion cross-section, and not the cross sections of the contributing processes

(ER, IMFs, HMFs and ff), whereas the DCM gives the decay/ fusion cross section

of each fragment and hence of various decay processes, and, of course, their sum,

the total fusion cross-section. Since the measured cross section for the system under

study is given relative to 120Cs (≡4Li) fragment, and not the absolute cross-sections,

the extended-Wong model predictions could not be compared with the measured

data. However, interestingly, we notice that the ℓmax values calculated for this

system by using DCM and extended-Wong model, lie close to each other (compare

ℓmax in Table 4.1 for DCM with ℓmax values given in Fig. 4.7 for extended-Wong

model). Also, the order of fusion cross section predicted by extended-Wong model

(900-1400 mb, see Fig. 4.7) is similar to that of the relative fusion cross sections

in Table 4.2 for many Skyrme forces and the Blocki et al. nuclear potential. Thus,
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Figure 4.7: Based on the extended-Wong model, the θi-integrated (for Φ=00 case)
cross section summed up to angular momentum ℓ, plotted as a function of ℓ itself
for 32S+92Mo reaction at Ec.m.=111.29 MeV, using nuclear proximity potential due
to Blocki et al. and the SIII and KDE0(v1) Skyrme forces.

extended-Wong model predictions could be useful for planning new experiments in

the mass region of CN under study.

4.3 Summary

In this Chapter, the earlier work of the decay of 124Ce∗ formed in 32S+92Mo reaction

at a beam energy of 150 MeV (T=2.297 MeV), using in DCM the pocket formula

of Blocki et al. for nuclear proximity potential given in Chapter 3, is extended to

the use of various other nuclear interaction potentials derived from the ETF-based

semiclassical SEDF method. Both the old and new Skyrme forces are considered. It

is interesting to find that the only parameter of the model, neck-length ∆R, remains

within ∼2 fm, the range of validity of proximity potential used here. For the best

fitted ∆R of two LPs (2p and 3p) and two IMFs (5Li and 6Be), similar to what was

obtained earlier for use of pocket formula of Blocki et al., the relative populations of

6Be vs. 8Be, and that of 10C vs. 12C show that the CN 124Ce∗ decays preferentially

via A=4n, α-nucleus clusters, as compared to A ̸=4n, non-α nucleus clusters, for only
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SIII and KDE0(v1) Skyrme forces. Considering the cross sections of orders similar

to observed ones for ER and IMFs, the IMF-window is shown extended to A2=16,

and a new decay region of HMFs of A2=27-48 or 28-48 and a near-symmetric and

symmetric fission fragments A2=49-62 or 51-62 are predicted, which on combining

with the complementary heavy fragments result in the ff region of (A/2)±12. Using

the predicted (total) fusion cross-section, the CN survival probability Psurv comes

out to be very small for all the considered nuclear interactions, due to large predicted

fusion-fission contribution. However, the CN fusion probability PCN is nearly unity

for all nuclear interactions, due to very small empirically estimated non-compound

nucleus content, establishing that 124Ce∗ decay is nearly a pure CN decay.

We have also applied the (ℓ-summed) extended-Wong model of Gupta and col-

laborators to this reaction, but the calculated total fusion cross sections could not

be compared with the measured data since only relative cross sections are given in

the experiment. However, the ℓmax values and the order of predicted fusion cross

sections for the two models (DCM and extended-Wong model) are similar, and thus

could be useful in planning further experiments in this mass region.
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Chapter 5

Non-compound nucleus effects in

measured decay channels of 217At∗

formed in neutron-rich exotic

9Li+208Pb reaction and its

synthesis within the dynamical

cluster-decay model

5.1 Introduction

In Chapters 3 and 4, we have studied the decay of proton-rich compound nucleus

(CN) 124Ce∗. In this chapter, we extend the application of the dynamical cluster-

decay model (DCM) [1] to the neutron-rich systems. In a recent work of Gupta

and Collaborators [2], it is shown that, within the DCM [1,2], σfus can be obtained

quite accurately as a pure CN process at a fixed value of the neck-length ∆R (the

only parameter in the DCM) for various reactions formed with the same loosely

bound projectile on different targets at a chosen incident laboratory energy, Elab.
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The reactions considered in this study [2] are with neutron-rich 7Li and 9Be, and

neutron-deficient 7Be projectiles on various targets forming compound nuclei in the

mass region ACN ∼ 30 − 200. It is relevant to remind here that, in DCM, the

dynamical collective mass motion of preformed light particles (LPs, A ≤4, referred

to as evaporation residues ER) and fusion-fission ff fragments (or clusters), through

the modified interaction potential barrier, are treated on the same footing, where

the modification of the barrier is introduced via empirical ∆R with corresponding

modified barrier heights ∆VB for such reactions being almost of the same order at,

respective, ℓmin or ℓmax value.

9Li projectile, chosen for the present study, is also a very neutron-rich (N = 2Z)

nucleus, with a significant amount of neutron skin (=0.48 fm in a neutron radius

of 2.59 fm [3]), whose fusion excitation function at near- and sub-barrier energies

are recently measured for only two neutron-rich 70Zn [4] and 208Pb [5] target nuclei.

Earlier experimental studies of the use of 9Li projectile were made at intermediate

energies (80 MeV/ nucleon), namely of the elastic scattering of 9Li [6] and total

interaction cross section of 9Li on intermediate mass targets, such as C, Al, Cu, Sn

and Pb [7]. Also, the fusion of 9Li with Si at 11.2A - 15.2A MeV, and at a projectile

energy of 36 MeV with 209Bi were studied at RIKEN [8,9], measuring the evaporation

residues and any associated neutrons, but no fusion cross sections were measured.

In the following, we analyze some of these 9Li based reactions at near- and above-

barrier energies, where the reaction dynamics of 9Li+208Pb→217At∗ is studied in

some detail. Note that in most of the above noted reactions at intermediate energies,

the isotopic mass of the target is not known, and that studying the reaction with

9Li as a projectile will help us understand the interactions with other neutron-rich

nuclei like 11Li since 9Li is known to be the core of 2n-halo nucleus 11Li. Apparently,

breakup effects could play a significant role on the fusion of halo-nucleus 11Li, as is

explicitly shown, for example, by Takigawa et al. [10] by incorporating the effect of

breakup in 11Li-induced reactions via a local dynamic polarization potential. Note,
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SECTION 5.1: INTRODUCTION

however, that such effects do not come in to play in beams of neutron-rich exotic

nucleus like 9Li used here.

For the 9Li+208Pb reaction [5], the fusion excitation function is measured for

near-barrier projectile center-of-mass energies Ec.m.=23.9 to 43.0 MeV. At some

nine of these Ec.m.’s, the evaporation residue cross sections σxn are measured for

x=3-6 neutrons emission from the CN 217At∗, i.e., the isotopic yields for heavy mass

residues 211−214At are measured, which are found to be in good agreement with the

predictions of a statistical model code HIVAP [11]. The only other theoretical calcu-

lation available for this reaction is that of Takigawa et al. [10] who simply assumed

the validity of the Wong formula [12]. The measured fusion excitation function

shows evidence for substantial sub-barrier fusion enhancement and a suppression

(hindrance) of the above-barrier cross sections relative to Takigawa et al. [10] and

the coupled channels (CCFULL code) [5] calculations. Another interesting result

of this work is that fusion-fission cross section σff is considered to be small, taken

zero [5], since σff ∼1% of total fusion cross section σExpt.
fus (σExpt.

fus = σER + σff ),

with σER (=
∑4

x=3 σxn) as the measured yield of the corresponding heavy evapora-

tion residues (212,213Rn) formed in a similar reaction 7Li+209Bi at 34.95 MeV, which

further compare nicely with the earlier measurements of Dasgupta et al. [13] for the

same reaction.

In this paper, using the DCM, we first focus our attention on the 9Li+208Pb

reaction with a view to extend our earlier work of the loosely bound projectile on

different targets at the same beam energy [2], i.e., calculate the total fusion cross

sections σfus for a given Elab energy at a fixed value of the neck-length ∆R, using 9Li

as a projectile on 208Pb target and various isotopes of other targets (Al, Cu, Zn and

Sn) from the intermediate energy regime of earlier experiments. In the 9Li+208Pb

experiment [5], however, the decay channels cross sections σxn, for x-neutrons xn,

x=3-6, are measured which allow us to fit each channel individually, keeping in

mind that σff is negligibly small. This calls for the possibility of hindrance/ en-
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hancement phenomenon due to the presence of other processes like quasi-fission (qf),

incomplete fusion (ICF), deep inelastic collisions (DIC), etc., which we refer to as

non-compound nucleus (nCN) effects, estimated empirically from the calculated and

measured fusion cross sections:

σnCN = σExpt.
fus − σCal.

fus .

Then, the total fusion cross-section is given as the sum of σCN and σnCN , as

σfus = σER + σff + σnCN = σCN + σnCN

where σCal.
fus ≡ σCN .

Furthermore, the calculated fragmentation potential V (η), with η = (A1 −

A2)/(A1 + A2), for the CN 217At∗ formed in 9Li+208Pb reaction, i.e., the fragmen-

tation process 9Li+208Pb→217At∗ → A1 + A2 at a fixed ∆R, or relative separation

R = R1+R2+∆R, can also be used to identify the various “cold” target + projectile

(t,p) combinations referring to potential energy minima for the synthesis of 217At∗

on the basis of the DCM or its founding theory QMFT, the quantum mechanical

fragmentation theory [14]. Then, the chosen “cold” (t,p) combinations are opti-

mised for largest cross section in terms of their calculated interaction barriers and

interaction radii. The role of binding energy of 9Li enters here via V (η), defined as

a sum of the binding energies of two fragments and the relevant Coulomb, nuclear

and centrifugal potentials. A brief report of this work was presented at the 2015

DAE-BRNS Nucl. Phys. Symposium [15].

5.2 Calculations and discussion of the results

As already mentioned in the Introduction, for the 9Li+208Pb→217At∗ reaction, fusion

excitation function is measured for x-neutrons (xn, x=3-6) emission at some nine
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SECTION 5.2: CALCULATIONS AND DISCUSSION OF THE
RESULTS

Ec.m.’s, in the energy range 23.9 to 43.0 MeV. Specifically, emission of 1n and 2n are

not observed, and that, depending on the Ec.m. value, σxn for some other x-values

are also zero. In other words, σxn for only some of the x=3-6 neutrons are observed,

and the light-particles evaporation residue cross section σER =
∑6

x=3 σxn, the sum

of measured σxn, and that, in the absence of nCN effects, σExpt.
fus ≡ σER since here

the fusion-fission cross section σff is also taken to be zero [5].

5.2.1 σfus for neutron-rich 9Li projectile on 208Pb and other

targets using fixed neck-length ∆R

In this sub-section, using the DCM, we first calculate (total) fusion cross section

σfus for
9Li+208Pb reaction at six of the nine incident Ec.m. (=23.9, 28.5, 33.4, 38.1,

40.6 and 43.0 MeV), for a fixed neck-length parameter ∆R at each Ec.m., given as

the sum of all decay channels (here, 1-6 neutrons) and compare our results with

measured σExpt.
fus (≡ σER, refer to Table 5.1 and 5.2, Cal.1). As a next step, we

extend this study of neutron-rich 9Li induced reaction to other target nuclei at a

fixed Elab energy, and the same fixed value of the neck-length parameter ∆R (refer

to Table 5.3).

Figure 5.1 illustrates the mass fragmentation potential V (A2), minimized in

charge fragmentation coordinate ηZ , for the decay of CN 217At∗ formed in 9Li+208Pb

reaction at Ec.m.=28.5 MeV (T=1.145 MeV), and at ℓmin and ℓmax values, for the

fixed ∆R=1.556 fm. Some of the minimized fragments in mass region A2=1-6 are

replaced by fragments of interest from the point of view of measured decay channels

(here 1n-6n). For example, the minimized fragments at ℓmin and ℓmax values corre-

sponding to A2= 4, 5 and 6 are 4H, 5He and 6Li, respectively, which are replaced

by the binding energies of observed 4n, 5n and 6n fragments. Using this poten-

tial of Fig. 5.1 and the scattering potential of like in Fig. 5.13, the preformation

probability P0 and penetrability P are calculated whose plots as a function of ℓ,
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Table 5.1: The DCM calculated (total) fusion cross section σfus at a fixed neck-
length parameter ∆R (Cal.1) and for each decay channel fitted as CN and nCN
contributions with different ∆R’s (Cal.2) at various center-of-mass energies Ec.m.’s.
Since here σff is negligibly small, σER (=

∑6
x=1 σxn)

∼=σfus. The experimental data
is from Ref. [5].

Cal.1 Cal.2

(Fixed ∆R) (Channel cross section Fitted ∆R)

CN contribution nCN contribution

Decay- σCal.1
fus σExpt

fus ∆R σCal.
CN σemp

nCN ∆R σCal.
nCN σCal.2

fus

channel (mb) (mb) (fm) (mb) (mb) (fm) (mb) (mb)

Ec.m.=23.9 MeV; T=1.046 MeV

(∆R = 1.246 fm)

1n 0.615 - 1.0 1.11×10−7 - - - 1.11×10−7

2n 2.23×10−2 - 1.0 8.91×10−7 - - - 8.91×10−7

3n 2.66×10−4 - 0.2 1.07×10−19 - - - 1.07×10−19

4n 2.35×10−6 0.61±0.61 1.839 0.61 0 - - 0.61

5n 8.32×10−9 - 1.0 1.16×10−27 - - - 1.16×10−27

6n 2.25×10−11 - 1.0 7.59×10−11 - - - 7.59×10−11

σfus 0.615 0.61 - 0.61 - - - 0.61

Ec.m.=28.5 MeV; T=1.145 MeV

(∆R = 1.556 fm)

1n 75.2 - 0.9 3.07×10−4 - 0.1 1.06×10−7 3.07×10−4

2n 2.35 - 0.9 6×10−6 - 0.1 1.18×10−8 6×10−6

3n 3.33×10−2 8.4±1.9 2.02 0.09 8.31 1.1971 8.31 8.4

4n 3.1×10−4 69.3±8.4 2.01 0.74 68.56 1.3475 68.6 69.34

5n 1.35×10−6 - -0.3 4.18×10−22 - 0.1 1.61×10−10 1.61×10−10

6n 7.83×10−9 - 1.5 2.8×10−3 - 0.1 3.92×10−11 2.8×10−3

σfus 77.55 77.7±8.6 0.833 76.87 76.91 77.743

Ec.m.=33.4 MeV; T=1.24 MeV

(∆R = 1.74 fm)

1n 433 - 1.05 5.02×10−3 - 0.1 1.38×10−7 5.02×10−3

2n 15.4 - 1.0 8.02×10−5 - 0.1 1.69×10−8 8.02×10−5

3n 0.272 - 0.4 6.58×10−11 - 0.1 3.24×10−9 3.24×10−9

4n 2.88×10−3 403±17 2.03 0.819 402.181 1.4949 402 402.819

5n 1.44×10−5 45±7.3 2.0 2.26×10−4 45 1.324 45.2 45.2

6n 1.55×10−7 - 1.7 4.6×10−5 - 0.1 7.33×10−11 4.6×10−5

σfus 448.6 448±19 0.824 447.181 447.2 448.024

Ec.m.=38.1 MeV; T=1.327 MeV

(∆R = 1.8121 fm)

1n 722 - 0.7 8.69×10−6 - 0.1 1.41×10−7 8.69×10−6

2n 29.6 - 1.0 2.47×10−5 - 0.1 1.83×10−8 2.47×10−5

3n 0.643 - 0.0 8.08×10−14 - 0.1 3.63×10−9 3.63×10−9

4n 8.6×10−3 218±22 2.02 1.04 216.96 1.4475 217 218.04

5n 5.34×10−5 534±29 2.0 2.2×10−4 534 1.5369 534 534

6n 6.19×10−7 - 1.7 3.46×10−10 - 0.1 8.75×10−11 3.46×10−10

σfus 752.243 752±37 1.04 750.96 751 752.04
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Table 5.2: Table 5.1 ...... continued
Cal.1 Cal.2

(Fixed ∆R) (Channel cross section Fitted ∆R)

CN contribution nCN contribution

Decay- σCal.1
fus σExpt

fus ∆R σCal.
CN σemp

nCN ∆R σCal.
nCN σCal.2

fus

channel (mb) (mb) (fm) (mb) (mb) (fm) (mb) (mb)

Ec.m.=40.6 MeV; T=1.371 MeV

(∆R = 1.8398 fm)

1n 844 - 0.9 9.92×10−5 - 0.1 1.63×10−7 9.92×10−5

2n 36.9 - 1.0 2.53×10−5 - 0.1 2.14×10−8 2.53×10−5

3n 0.884 - 0.0 9.33×10−14 - 0.1 4.51×10−9 4.51×10−9

4n 1.18×10−2 133±17 2.02 1.03 131.97 1.4057 132 133.03

5n 7.77×10−5 620±43 2.0 2.1×10−4 620 1.5537 620 620

6n 9.56×10−7 129±56 2.0 2.93×10−5 129 1.4188 129 129

σfus 881.784 882±73 1.03 880.97 881 882.03

Ec.m.=43 MeV; T=1.411 MeV

(∆R = 1.8507 fm)

1n 881 - 1.0 3.36×10−4 - 0.1 1.47×10−7 3.36×10−4

2n 41.6 - 1.0 2.86×10−5 - 0.1 1.95×10−8 2.86×10−5

3n 1.12 - 0.0 1.17×10−13 - 0.1 4.03×10−9 4.03×10−9

4n 1.74×10−2 72±8.4 2.03 1.07 70.93 1.3634 70.9 71.97

5n 1.29×10−4 669±23 2.0 2.17×10−4 669 1.5708 669 669

6n 1.58×10−6 182±29 2.01 4×10−5 182 1.4545 182 182

σfus 923.7374 923±39 1.07 921.93 921.9 922.97
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Figure 5.1: Mass fragmentation potential V (A2), minimized in charge fragmentation
coordinate ηZ , for the decay of 217At∗ formed in 9Li+208Pb reaction at Ec.m.=28.5
MeV (T=1.145 MeV), and at ℓmin and ℓmax values, for a fixed ∆R=1.556 fm. The
most favored fragments for A2=1-6 are replaced by fragments of topical interest
(here 1n-6n).
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Figure 5.4: The DCM calculated σfus (=σER =
∑6

x=1 σxn) for 217At∗ formed in
9Li+208Pb at various Ec.m. for a fixed ∆R=1.556 fm, referring to Cal.1 in Tables 5.1
and 5.2, compared with experimental data [5] and other earlier calculations [5, 10].

illustrated in Fig. 5.2 and 5.3, respectively, give ℓmax and ℓmin values for σxn →0.

We notice in Fig. 5.2 that all n-clusters are favorably preformed for ℓ values from 0

to 130 h̄, and then drop suddenly to zero, setting the limiting value of P0 <10
−15 for

ℓmax=145 h̄. Similarly, P in Fig. 5.3 fixes ℓmin=44 h̄ for P <10−15 not contributing

to decay channel cross section. The decay channel cross section [or the production

cross-section for each fragmentation (A1, A2)] σ(A1,A2) is then calculated for A2=1-6,

whose sum gives σfus, presented as Cal.1 in Tables 5.1 and 5.2, compared with σExpt.
fus

for the chosen six Ec.m.’s. Apparently, the DCM calculated σCal.1
fus fits the measured

σExpt.
fus data very nicely, as is further depicted in Fig. 5.4, where other available cou-

pled channels calculations (CCFULL code) [5] and of Takigawa et al. [10] for Wong

formula are also shown for comparisons. Note that the DCM calculations are a

considerable improvement over the other available theoretical calculations, and also

the extrapolation to a lower Ec.m.=14.4 MeV works good by presenting a systematic

behavior (further discussed below in Table 5.5).

Extending the above work of 9Li projectile on 208Pb target, or that of Gupta

and collaborators [2] on weakly bound projectiles, we fix the value of ∆R=1.556 fm
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5.3 and 5.4).

Table 5.3: The DCM calculated σfus (≡ σER) for
9Li induced reactions at incident

energy ELab=29.86 MeV and for ∆R=1.556 fm, compared with experimental data.
† represents extrapolated value.

Reaction Ec.m. E∗
CN T σfus (mb)

(MeV) (MeV) (MeV) DCM Expt.

9Li+27Al→36S∗ 22.395 60.816 4.25 3232 -

9Li+67Cu→76Ge∗ 26.324 34.935 2.21 2349.82 -

9Li+70Zn→79As∗ 26.458 55.483 2.714 1992 2000 [4]†

9Li+120Sn→129I∗ 27.776 50.128 2.01 404.25 -

9Li+208Pb→217At∗ 28.5 27.309 1.145 77.55 77.7±8.6 [5]
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Table 5.4: Same as for Table 5.3, but for different isotopes of Cu and Zn targets.

Reaction Ec.m. E∗
CN T σfus

DCM

(MeV) (MeV) (MeV) (mb)

9Li+61Cu→70Ge∗ 26.021 59.553 2.989 87.27

9Li+63Cu→72Ge∗ 26.1275 58.0885 2.91 352.367

9Li+65Cu→74Ge∗ 23.593 54.706 2.787 974.3

9Li+67Cu→76Ge∗ 26.324 34.935 2.21 2349.82

9Li+73Cu→82Ge∗ 26.582 57.964 2.72 5326

9Li+77Cu→86Ge∗ 26.735 53.189 2.5457 9333

9Li+79Cu→88Ge∗ 26.806 50.06 2.44 2701

9Li+80Cu→89Ge∗ 26.84 49.194 2.408 2367

9Li+70Zn→79As∗ 26.458 55.483 2.714 1992

9Li+74Zn→83As∗ 26.62 55.485 2.646 4955

9Li+78Zn→87As∗ 26.77 38.441 2.16 8090

9Li+80Zn→89As∗ 26.84 47.046 2.356 3212

Table 5.5: Same as for Table 5.3, but for ELab=15 MeV and ∆R=1.1777 fm.

Reaction Ec.m. E∗
CN T σfus (mb)

(MeV) (MeV) (MeV) DCM Expt.

9Li+70Zn→79As∗ 13.3 42.31 2.38 341 341±36.3

9Li+208Pb→217At∗ 14.4 13.19 0.8 4.54×10−5 -

129



empirically for 9Li+208Pb reaction forming 217At∗ at, say, ELab=29.86 MeV (equiva-

lent of Ec.m.=28.5 MeV for 9Li+208Pb, refer to Tables 5.1 and 5.2, Cal.1) and choose

other stable isotope of targets like 27Al, 67Cu, 70ZN and 120Sn, that were used in

earlier studies of the use of 9Li projectile at intermediate energies [7], and calculate

σfus (≡ σER =
∑6

x=1 σxn) for all of these
9Li induced reactions at the above noted

fixed neck-length parameter ∆R and fixed incident laboratory energy ELab. Results

of this calculation are presented in Table 5.3, and the variation of σfus with target

mass shown in Fig. 5.5(a), compared with experimental data. If the data at the

chosen incident energy were not available, we have extrapolated or interpolated it.

Interestingly, in agreement with earlier study on weakly bound projectiles [2], the

(total) fusion cross section decreases as the mass of target nucleus increases. Appar-

ently, this procedure could be used to predict the fusion cross-section of reactions for

which the experimental data are not available. Note, however, that the calculated

σfus depends strongly on the target mass and its (magic) shell structure. This is

depicted in Fig. 5.5(b) and Table 5.4 for Cu and Zn isotopes. We notice that σfus

increases as the isotopic mass increases, but drops down suddenly at the neutron

magic number N=50. This means to suggest that the decreasing trend of σfus with

target mass is true only for target nuclei near the β-stability line.

We have also checked the above results of 9Li induced reactions on different target

nuclei, for another fixed value of ∆R=1.1777 fm and fixed beam energy ELab=15

MeV, which is the highest measured energy for 9Li+70Zn reaction [4] and the lowest

extrapolated value for 9Li+208Pb reaction [5]. The calculated results are shown in

Table 5.5 (and Fig. 5.4), compared with experimental data, supporting the above

results in Table 5.3 and Fig. 5.5(a). Note that the extrapolated data support the

DCM calculations and fit in with the systematics.

Another quantity of interest in reactions induced by neutron-rich projectile is

the near constancy of “barrier lowering” parameter ∆VB at ℓmin (or ℓmax) values,

listed in Table 5.6 for 1n and 2n decays of the CN formed in five chosen reactions
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Table 5.6: The barrier modification factor ∆VB(ℓ) [=V (Ra, ℓ) − VB(ℓ)] at different
ℓmin values for the interaction potentials calculated for 1n and 2n decay channels of
9Li induced reactions at ELab=29.86 MeV and ∆R=1.556 fm.

Reaction ℓmin ∆VB

(h̄) (MeV)

x=1 x=2

9Li+27Al→36S∗→xn+36−xS 12 -5.23 -5.863

9Li+67Cu→76Ge∗→xn+76−xGe 14 -5.208 -5.756

9Li+70Zn→79As∗→xn+79−xAs 15 -5.603 -5.8

9Li+120Sn→129I∗→xn+129−xI 21 -5.568 -5.908

9Li+208Pb→217At∗→xn+217−xAt 33 -5.107 -5.535

of 9Li with different targets at fixed ∆R=1.556 fm and fixed ELab.=29.86 MeV. We

observe in Table 5.6 that the barrier modification or lowering in barrier height is

almost of the same amount for 1n and 2n decays of all the 9Li induced reactions.

Note that, by definition, the effective “barrier lowering” parameter ∆VB, is defined

by the choice of ∆R, which is kept fixed here. Therefore, for the reactions having

same value of ∆R (like in Tables 5.1-5.5), ∆VB is of the similar order at the ℓmin

values. This means to say that almost same amount of modification in the barrier

takes place in reactions induced by the same projectile having the same incident

energy.

Fig. 5.6 shows the variation of ∆VB with Ec.m. at some arbitrary ℓ=50 h̄ for 1n

to 6n decay of 217At∗ formed in 9Li+208Pb at fixed ∆R value for each Ec.m. (Cal.1 in

Tables 5.1 and 5.2). We notice that magnitude of ∆VB decreases as Ec.m. increases,

being large ∼8-10 MeV for below barrier energies and is nearly constant ∼4 MeV at

higher energies which is rather large (compared to expected zero value). It is relevant

to remind here that the only acceptable explanation to hindrance phenomenon in

coupled-channels calculation at sub-barrier energies is the requirement of “barrier

lowering”, which is an in-built property of the DCM through ∆R.

131



20 25 30 35 40 45

-10

-9

-8

-7

-6

-5

-4

-3

-2

 

 

V
B

  (M
eV

)

E
c.m.

 (MeV)

 1n
 2n
 3n
 4n
 5n
 6n

DCM Cal.1
=50

9Li+208Pb 217At* xn+217-xAt

Fixed R

Figure 5.6: Variation of barrier modification parameter ∆VB(ℓ) with Ec.m. at an
arbitrary ℓ=50 h̄ at fixed ∆R value at each Ec.m. (Cal.1 in Tables 5.1 and 5.2) for
9Li+208Pb→217At∗→xn+217−xAt reaction with x=1-6.

0 30 60 90 120
10-34

10-26

10-18

10-10

10-2

106

(81-88)

ff
=0.47 mb

Ec.m.= 28.5 MeV
T= 1.145 MeV

 

 

(a)

ff
=4194 mb

(74-94)

Fixed R

ff

0 30 60 90 120
10-39

10-31

10-23

10-15

10-7

101
(b)Fitted R217At*

-Summed
 P0

 P
 

 

 

 

Fragment mass number A2

ff

Figure 5.7: The ℓ-summed fragment preformation probability P0, the penetrability
P and the decay channel cross section σA2 as a function of the light fragment mass
number A2 for compound system 217At∗ formed in 9Li+208Pb reaction at Ec.m.=28.5
MeV, for (a) fixed ∆R, and (b) fitted ∆R values.

132



SECTION 5.2: CALCULATIONS AND DISCUSSION OF THE
RESULTS

5.2.2 Decay of 217At∗ formed in 9Li+208Pb reaction using ∆R

fitted for each decay channel individually

The so far presented calculation in sub-section 5.2.1 is for a fixed value of ∆R

for all decay channels, i.e., same reaction time for all decay channels (xn, x=1-6

and ff channel) (refer to Cal.1 in Tables 5.1 and 5.2 and Fig. 5.1) and the details

illustrated are for Ec.m.=28.5 MeV (ELab.=29.86 MeV) at fixed ∆R=1.556 fm, where

calculated (total) fusion cross section σCal.1
fus as a pure CN decay process is compared

with σExpt.
fus . The comparisons are very nice (refer to Fig. 5.4 and Tables 5.3 and

5.5), but only when no care is taken for the fits obtained for individual channels. A

quick comparison of the calculated σCal.1
xn for individual decay channels (xn, x=1-6)

with measured ones show that most of the contribution to σCal.1
fus comes from the

un-observed 1n channel, and the calculated σCal.1
xn ’s for the observed decay channels

(3n and 4n in case of Ec.m.=28.5 MeV) is very small compared to experimental

numbers. In this context, we know from our earlier study [18] that 1n contribution

could be reduced to almost zero if the data for other, not yet observed or used,

channels were also included in the fitting procedure. Furthermore, in Fig. 5.7(a) is

plotted the ℓ-summed P0, P and channel cross section σA2 as a function of A2 for

CN 217At∗ at Ec.m.=28.5 MeV and fixed ∆R=1.556 fm, giving fusion-fission cross

section σff=4194 mb for the ff mass region A2=74-94 marked in Fig. 5.1 (plus the

complementary heavy fragments), which is much larger than σER (=
∑6

x=1 σxn=77.55

mb) and very large as compared to the experimentally expected negligibly small cross

section for this decay channel, i.e., compared to assumed σExpt.
ff =0. Apparently, these

results call for a different reaction time for each decay channel xn, x=1-6, and ff ,

i.e., instead of fixed, the fitted ∆R for each decay channel, which is done here in the

following.

Fig. 5.8 shows the fragmentation potential for decay of 217At∗ formed in the
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9Li+208Pb reaction at Ec.m.=28.5 MeV (T=1.145 MeV) and at ℓmin and ℓmax values

determined, just as in Figs. 5.2 and 5.3, for P0(ℓ) and P (ℓ) becoming negligibly

small for their contributions to cross-section (see Fig. 5.9 and Fig. 5.10). Since the

measured cross sections are of different 211−214At isotopes only [5], i.e., x-neutrons,

x=3-6, emission, here in Fig. 5.8 again we have replaced the binding energy of

energetically most favored fragment with the binding energy of respective 1n to 6n

neutron cluster. The best fitted values of ∆R obtained for xn and ff region are

given in the figure caption of Fig. 5.8. We notice in Fig. 5.8 that there is a strong

minimum at 5n cluster, and, hence for cross sections of similar orders, the ff region

for σff →0 also changes from A2=74-94 to 81-88. A similar result is presented

in Fig. 5.11 for the calculated preformation probability P0(A2), which gives the

fragment-formation dynamical yield for use of the fragmentation potential in Fig.

5.8. It is clear from Fig. 5.11 that at lower ℓ values, i.e., at ℓmin the LPs are favored

(higher P0 or energetically lower in fragmentation potential) and at higher ℓ values,

i.e., at ℓmax the near-symmetric and symmetric fission fragments are more preferred.

At ℓmin value, the yields P0 for 1n and 5n are even larger than the ff yields at ℓmax

value. The same result for best fitted ∆R is better illustrated in Fig. 5.7(b) for the

ℓ-summed P0, P and σA2 , showing, in agreement with experiments, very small σ5n

though P0 is large for 5n, but the ℓ-summed P is very small ∼10−20. The interesting

result is that now σff ∼0.47 mb, i.e., negligibly small compared to σER=77.743 mb

(refer to Tables 5.1 and 5.2, Cal.2), which fits with the experimental expectations.

Fig. 5.12 gives the ℓ-dependent scattering potential V (R) for 213At+4n in the

decay of 217At∗ formed in 9Li+208Pb reaction at Ec.m.=28.5 MeV. The first and

second turning points Ra and Rb are labelled, and the barrier lowering parameter

∆VB = V (Ra)− VB shown for both the ℓmax and ℓmin values. Note, ∆VB for each ℓ

is defined as a negative quantity since the actually used barrier is effectively lowered.

Thus, the fitting parameter ∆R controls the “barrier lowering” ∆VB.

The DCM result of calculation for the best possible fit to observed decay channels
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is presented in Tables 5.1 and 5.2, Cal.2 for (pure) CN contribution, σCal.2
CN , which

gives a very poor (under-estimated) comparison with the observed channel data,

though the contribution of un-observed xn-decays and ff channels is reduced con-

siderably. The only case of exact fitting is that of Ec.m.=23.9 MeV where only the 4n

decay channel is observed. Also, as already observed from Fig. 5.7(b), the ff chan-

nel cross section is now very small, σff=0.47 mb. The strong disagreement between

σCal.2
CN and σExpt.

fus calls for the empirical nCN contributions, σnCN (= σExpt.
fus −σCal.2

CN ).

The empirically obtained σemp
nCN were then fitted as the qf-like process, i.e., the DCM

with P0=1. In Tables 5.1 and 5.2, we find that σCal.2
nCN added to σCal.2

CN , giving σCal.2
fus ,

compare almost exactly with σExpt
fus , with σCal.2

nCN constituting most of the fusion cross

section for all the incident energies. This is further illustrated in Fig. 5.13, where

we find that, instead of CN, the nCN component contributes most towards the to-

tal fusion cross section. The nature of fits obtained between the DCM Cal.2 and

experimental data for the excitation functions of observed individual evaporation

channels, i.e., 3n, 4n, 5n and 6n decay channels, are also shown in Fig. 5.14. Both

individual xn decay channel cross sections σxn in Fig. 5.14 and their sum σfus in
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Fig. 5.13 compare nicely with data. The error bars in both the Figs. 5.13 and 5.14

are shown only for the cases where they are larger than the size of symbols. Solid

lines in Fig. 5.14 represent the DCM calculations for the best fitted ∆R’s, giving

σxn (=σCal.2
CN +σCal.2

nCN ) and the lines or curves are shown as the guide for eyes.

Furthermore, it is of interest to compare the best fitted neck-length parameters

∆R’s for CN and nCN processes, and study their variations with Ec.m.. This is

depicted in Fig. 5.15. Interestingly, ∆RCN > ∆RnCN which means that CN neu-

trons emission occurs earlier than the nCN qf-like decay, supported by our earlier

studies [19]. Also, both ∆RCN and ∆RnCN are nearly independent of Ec.m., where

∆RCN ∼2.02±0.01 fm and ∆RnCN ∼1.45±0.10 fm. This result is useful for further

experimental and theoretical studies.

Finally, we analyze our DCM calculations in Tables 5.1 and 5.2 in terms of the

CN formation probability PCN [16] and its survival probability Psurv [17]. For Cal.1

(fixed ∆R), the CN fusion cross sections σfus (=σER =
∑6

x=1 σxn) at each Ec.m.

fit the experimental data nearly exactly, and hence σnCN=0. On the other hand,

compared to σER, σff is very large (e.g., see in Fig. 5.7(a) and Table 5.1 and Table

5.2 for Ec.m.=28.5 MeV, σff=4194 mb and σER=77.55 mb). This means that, for
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Table 5.7: The DCM calculated ER, the nCN contribution, and ff cross sections for
the best fitted ∆R case (Cal.2) in decay of 217At∗ formed in 9Li+208Pb reaction at
various center of mass energies. The CN formation probability PCN is calculated
for the measured data (=σER), where as the CN survival probability Psurv ≈1 since
σff is relatively very small, except for Ec.m.=23.9 MeV (see text).

Ec.m. σER σnCN σff PCN

(MeV) (mb) (mb) (mb)

23.9 0.61 0 0.33 1.0

28.5 77.743 76.91 0.47 0.0107

33.4 448.024 447.2 1.42 0.0017

38.1 752.04 751 1.75 0.0014

40.6 882.03 881 2.79 0.0012

43.0 922.97 921.9 2.84 0.0011

Cal.1, PCN=1 and Psurv=0 at all Ec.m.’s. Similarly, for Cal.2 (fitted ∆R), we present

our results (from Tables 5.1 and 5.2 and Fig. 5.7(b)) for σER, the nCN contribution

σnCN and σff in Table 5.7. We notice that in this case σff is negligibly small,

compared to σER, and that σnCN is the main content in σER. This leads to Psurv ≈1

and PCN <<1, except for Ec.m.=23.9 MeV, where, like for Cal.1, σnCN=0 and hence

PCN=1. Apparently, Cal.2 presents the realistic experimental situation, with 9Li

induced reaction cross section being a more quasi-fission-like non-compound nucleus

decay process.

5.2.3 Synthesis of 217At∗: the “cold” (t,p) combinations for

fixed neck-length ∆R

In this subsection, we look for “cold” target-projectile (t,p) combinations (referring

to potential energy minima) for the formation of CN 217At∗. Figure 5.16 shows the

mass fragmentation potential V (Ai) for the formation of CN 217At∗ at ℓmax=145 h̄ for

the optimum “hot” fusion configurations at Ec.m.=28.5 MeV (equivalently, T= 1.145
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MeV) for a constant ∆R value. The minima in V (Ai) refer to possible (t,p) com-

binations, which are known to be nearly independent of ∆R value [14]. The “hot”

fusion configurations are used here because we know from the earlier Sub-sections

that the observed decay of 217At∗ emit more than one or two neutrons. The result-

ing projectile + target combinations include 6,8Li+211,209Pb, 12C+205Au, 22F+195Os,

27Mg+190Ta, 35P+182Yb, 38S+179Tm, 48Ca+169Tb, 54Ti+163Eu, 83As+134Te and

107Tc+110Mo. Interestingly, we propose here 8Li+209Pb as one of the reaction,

whereas we find that 8He+209Bi reaction is proposed to be studied at ISOLDE

facility [20]. Since we know from our calculations of Fig. 5.16 that 8Li lies lower

in energy than 8He, the fusion cross section for 8Li+209Pb reaction is expected to

be higher than for 8He+209Bi. Note that 8Li+209Pb and other proposed (t,p) com-

binations are based on a theory (QMFT), whereas the reactions like 8He+209Bi are

proposed simply on the basis of availability.

As a next step, in order to optimise our choice of a (t,p) combination for the

production of largest cross section, we have plotted in Fig. 5.17 the interaction

potentials V (R) for all (t,p) combinations referring to minima in Fig. 5.16, i.e.,
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Figure 5.17: Scattering potential V(R) for “cold fusion” reactions mentioned in
Fig. 16 with “hot compact” configurations at Ec.m.=28.5MeV (T=1.145 MeV) and
ℓmax=145 h̄.

to “cold fusion” reactions with “hot compact” configurations. This implies that

the optimum (t,p) combination is one with lowest interaction barrier and smallest

(most compact) interaction radius. We notice from Fig. 5.17 that the lowest bar-

rier and smallest radius occur for the most asymmetric 8Li+209Pb combination and

highest barrier and largest interaction radius occur for near symmetric 110Mo+107Tc

combination. However, it may be noted from our earlier study [14] that 48Ca based

reaction 48Ca+169Tb should produce the largest fusion cross section due to its double

magic character.

5.3 Summary

In this paper, we have studied the decay mechanism of CN 217At∗ formed in a

reaction induced by neutron-rich 9Li on doubly magic shell nucleus 208Pb at various

center-of-mass energies Ec.m., using the dynamical cluster-decay model (DCM). We
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aim at investigating the role of neutron-rich light projectile on (total) fusion cross

section σfus, knowing well that σfus is largest for a reaction with doubly magic

reaction partner. In 9Li+208Pb reaction, for the LPs evaporation residues, only 3n-

6n emissions are observed (i.e., 1n and 2n are not observed) whose sum of the cross

sections
∑6

x=1 σxn ≡ σfus (including the unobserved 1n and 2n cross sections), can be

fitted very nicely within the DCM as a pure CN decay process for a fixed value of the

only parameter of this model, the neck-length parameter ∆R. Similar calculations

of 9Li induced reactions on 70Zn and various isotopes of other targets used in earlier

experimental studies at intermediate energies, show a strong dependence of σfus on

mass and shell structure of the target nucleus, supporting the above stated effect

of closed magic shells. However, in this case of fixed ∆R, the unobserved decay

channels (1n, 2n) are strongly over-estimated, and hence the observed ones (3n-

6n) strongly under-estimated, with the ff cross section σff also being very large

compared to nearly zero, expected in experiments.

To improve upon the above result, we have fitted the individual decay channels

(both unobserved and observed ones), together with the ff channel, with different

∆R values, i.e., different reaction times for different decay channels. Interestingly,

now the fits for the pure CN decay cross section are very poor for LPs residue

channels (σCN < 1% of total σExpt.
fus ) with σff reduced nearly to zero. This calls

for the empirical nCN contribution, which is treated as the quasi-fission-like process

(channel preformation probability P0=1). Excellent fits are once again obtained for

∆RnCN < ∆RCN , with σnCN constituting most (99%) of the σfus at all the incident

energies. In terms of CN formation and CN survival probabilities, the above result

means PCN <<1 and Psurv ≈1. Thus, our DCM analysis shows that 9Li induced

reaction is more of a quasi-fission-like non-compound nucleus decay.

Furthermore, the synthesis of 217At∗ via various “cold” (t,p) combinations, ref-

ereeing to potential energy minima, for “hot” compact configurations, is carried

out and 8Li+209Pb as the optimum combination with lowest interaction barrier and
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smallest (most compact) interaction radius identified. In view of the role of double

magic shell, however, 48Ca+169Tb would result in largest fusion cross section.
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Chapter 6

Compound nucleus formation

probability PCN determined within

the dynamical cluster-decay model

for various “hot” fusion reactions

6.1 Introduction

In nuclear reactions, the concept of compound nucleus fusion/ formation probability

PCN [1] arises from the compound nucleus (CN) model of N. Bohr [2] wherein for the

complete fusion in entrance channel he assumed PCN=1, and treated the CN decay

statistically. However, in the decay channel, non-compound nucleus (nCN) decays

such as the quasi-fission (qf), deep-inelastic collisions/ orbiting (DIC), incomplete

fusion (ICF) or pre-equilibrium decay also contribute to the overall (fusion) cross

section, which means PCN <1 for the CN content, and hence Bohr’s CN-model needs

an extention/ re-examination.

The PCN is the least understood quantity, but quite important for the study

of heavy ion reactions. For quite some time, attempts are being made to use PCN

in determining the evaporation residue cross section σER (see, e.g., [3–5]), given as
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the product of the capture cross section σcapture, the CN formation probability PCN

and the survival probability Psurv, each term treated and calculated separately [3].

Note that, in the language of coupled channel calculations, σcapture includes the nCN

cross section σnCN , and hence is equivalent of (total) fusion cross sections σfusion,

if calculated as “barrier crossing” [5]. Psurv is the probability that the fused system

will de-excite by emission of neutrons or light particles (equivalently, evaporation

residue) rather than fission. This is another quantity, not fully understood [6,7]. In

our published work [1] and in a conference report [8], we defined PCN for the first time

on the basis of the dynamical cluster-decay model (DCM) of Gupta and collaborators

[9–30], which we extend here in this paper to a larger number of reactions (about

a dozen) having non-zero σnCN component, to more than one nuclear interaction

potential, and to a larger number of variables on which the PCN depends. It is

relevant to remind here that in DCM, the CN fusion cross section σCN depends not

only on “barrier penetrability” P , but also on fragment preformation factor P0.

Heavy-ion fusion reactions have received great attention in recent years, and this

is an important and exciting research area of nuclear physics. This study has fa-

cilitated to investigate the production and reaction mechanism of new heavy and

superheavy nuclei via fusion reactions. Heavy-ion reactions at below barrier ener-

gies give rise to highly excited compound nuclear systems that carry large angular

momentum, and hence decay by emitting neutrons or multiple light particles (LPs:

A≤4, Z≤2, like n, p, α), and their heavier counterparts and γ-rays, termed the

evaporation residue ER, and fusion-fission (ff) consisting of near-symmetric and

symmetric fission fragments (nSF and SF), including also the intermediate mass

fragments (IMFs) of masses 5≤A≤20 and 2<Z<10. In addition, many a times a

non-compound nucleus (nCN) decay process also contributes to the (total) fusion

cross section, and here in the following, we are interested in such reactions where

the nCN cross section σnCN is non-zero.

Fig. 1.4 in Chapter 1 illustrates schematically the various components of com-
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SECTION 6.1: INTRODUCTION

pound nucleus (CN) decay/ fusion cross section, also called the CN production cross

section, or simply the (total) fusion cross section σfusion, given as

σfusion = σCN + σnCN

= σER + σff + σnCN (6.1)

In a fission-less decay, the contribution of σIMFs, that forms a part of σff , is in

general small, of the order of 5 to 10% of σER, i.e., σIMFs ≈ (5− 10%)σER. Note

that all these components of fusion cross section σfusion are individually measur-

able quantities. In case, the nCN component σnCN were not measured, it can be

estimated empirically from the calculated and measured quantities, as

σnCN = σExpt.
fusion − σCal.

fusion. (6.2)

It may be pointed out that different mass regions of compound nuclei constitute

different combinations of these processes (ER, IMFs, ff and nCN) or a single one of

them as the dominant mode.

Knowing the cross sections for CN and nCN processes, i.e., σCN (=σER + σff )

and σnCN , of the (total) fusion cross section σfusion, the CN formation probability

PCN is defined [8,24] as the ratio of CN formation cross section σCN and the (total)

fusion cross section σfusion which includes the non-compound nucleus component

σnCN ,

PCN =
σCN

σfusion
= 1− σnCN

σfusion
. (6.3)

Clearly, PCN gives the content of CN formation in the total fusion cross section, or

its deviation from unity by the nCN content. In other words, if σnCN=0, PCN=1

and the reaction is a pure CN reaction. Thus, the determination of PCN gives a

possibility to understand the role of σnCN component in σfusion.

In the following, we consider an application of Eq. (6.3) to a set of some
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reactions with different entrance channels leading to different compound nuclei.

The calculations are made for various center-of-mass energies, and are based on

the systematic analysis of measured data using the dynamical cluster-decay model

(DCM) [15–24,26–30]. The possible role of different nuclear proximity interactions,

and deformed, oriented configurations is also analyzed in these works. The DCM

calculations include deformation effects up to hexadecapole deformations (β2, β3,

β4), with compact orientations θci, i=1, 2 [31], or up to only quadrupole deforma-

tion (β2i) with optimum orientations θopt.i [32], of “hot” fusion process, for both the

cases of co-planar (azimuthal angle Φ=00) and non-coplanar nuclei (Φ ̸=00).

6.2 Calculations and discussion of the result

In this section, we present the results of our calculations for the compound nucleus

formation probability PCN , based on calculations made by using the DCM. The cho-

sen reactions, giving different compound nuclei, studied on the DCM for all possible

decay processes at different center-of-mass energies Ec.m., are:

12C+93Nb→105Ag∗ including both co-planar(azimuthal angle, Φ = 0) [23] and

non co-planar (Φ ̸=0) [26] configurations, 32S+92Mo→124Ce∗ [24], 11B+238U→246Bk∗

and 14N+232Th→246Bk∗ [15], 19F+198Pt→217Fr∗ [27,28], 19F+1984Pt→213Fr∗ [27,28],

11B+204Pb→215Fr∗ [29], 18O+197Au→215Fr∗ [29], 9Li+208Pb→217At∗ [30], the 64Ni-

based reactions 64Ni+100Mo→164Yb∗ [16, 21], 112,118,124Sn+64Ni→176,182,188Pt∗ and

64Ni+132Sn→196Pt∗ [20,22], and the 48Ca-based reactions 48Ca+154Sm→202Pb∗ [17],

48Ca+238U→286Cn∗ [19], and 48Ca+244Pu→292Fl∗ [18]. It may be reminded that

these are all “hot” fusion reactions, and the nCN-component is calculated as the

quasi-fission (qf) process, i.e., σnCN ≡ σqf . Best fit to data were made for σER, σff

(or σIMFs), and the measured or empirically obtained σqf . The possible role of use

of different nuclear proximity potentials (pocket formula or Skyrme forces in SEDF)

and different azimuthal angle Φ (=00 or ̸=00) are also investigated. Deformed, ori-
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SECTION 6.2: CALCULATIONS AND DISCUSSION OF THE
RESULT

Table 6.1: Characteristic properties of chosen reactions investigated on the DCM,
using pocket formula of Blocki et al. [45] and Skyrme energy density formalism
(SEDF) [21, 22], for the c.m. energy range Ec.m.=41.1-201.3 MeV, arranged as per
two groups in Fig. 6.5 and the two nuclear interactions used.

Reactions Φ ZCN ACN Ec.m. E∗ Z1Z2 χ PCN Ref.

(deg.) (MeV) (MeV)

Blocki et al. formula

64Ni+100Mo→164Yb∗ 0 70 164 122.9-158.8 30.6-66.5 1176 0.622 0.62-0.94 [16]

64Ni+100Mo→164Yb∗ ̸=0 70 164 122.9-158.8 30.6-66.5 1176 0.622 0.784-1 [21]

48Ca+154Sm→202Pb∗ 0 82 202 135.5-156.8 44.5-65.3 1240 0.693 0.77-0.89 [17]

12C+93Nb→105Ag∗ 0 47 105 41.09-54.21 40.95-54.06 246 0.438 0.13-0.25 [23]

12C+93Nb→105Ag∗ ̸=0 47 105 41.09-54.21 40.95-54.06 246 0.438 0.296-0.091 [26]

32S+92Mo→124Ce∗ 0 58 124 111.3 46.5 672 0.565 0.88 [24]

48Ca+238U→286Cn∗ 0 112 286 187.1-201.3 26.5-40.6 1840 0.91 0.005-0.2 [18]

244Pu+48Ca→292Fl∗ 0 114 292 190.8-200.2 27.4-36.9 1880 0.93 0.113-0.14 [19]

14N+232U→246Bk∗ 0 97 246 68.5-86.4 43-60.9 630 0.796 0.978-1 [15]

11B+235U→246Bk∗ 0 97 246 49-70.6 34.3-55.9 460 0.796 1-0.78 [15]

64Ni+112Sn→176Pt∗ 0 78 176 149.75-188.25 22.92-61.42 1400 0.72 1-0.927 [20]

64Ni+118Sn→182Pt∗ 0 78 182 155.8-193.05 33.215-70.465 1400 0.696 1-0.91 [20]

64Ni+124Sn→188Pt∗ 0 78 188 161.85-195.84 44.337-77.487 1400 0.674 1-0.543 [20]

132Sn+64Ni→196Pt∗ 0 78 196 165.5-195.2 54.498-84.2 1400 0.646 1-0.696 [20]

19F+194Pt→213Fr∗ 0 87 213 80.093-93.755 47.397-61.059 702 0.740 1 [27]

19F+198Pt→217Fr∗ 0 87 217 79.184-105.355 47.479-69.650 702 0.727 1 [28]

11B+204Pb→215Fr∗ 0 87 215 47.97-60.24 31.21-43.48 410 0.733 1 [29]

18O+197Au→215Fr∗ 0 87 215 71.34-88.81 39.10-56.57 632 0.733 1 [29]

9Li+208Pb→217At∗ 0 85 217 23.9-43.0 22.709-41.809 246 0.694 1-0.0011 [30]

SEDF(SIII/ GSkI)

132Sn+64Ni→196Pt∗ 0 78 196 165.5-195.2 56.2-84.2 1400 0.646 1-0.41 [22]

64Ni+100Mo→164Yb∗ 0 70 164 122.9-158.8 30.6-66.5 1176 0.622 0.94-1 [21]

ented configurations are allowed in all above stated works on the DCM, except in

48Ca + 154Sm reaction where only spherical nuclei are considered.

Table 6.1 lists the characteristic properties of all the chosen reactions. The

limiting values of the calculated PCN are also given in this table. Since the de-

pendence of PCN on incident channel reaction characteristics is not yet investigated

in detail, it is of interest to see its variation with center-of-mass energy Ec.m., CN

charge ZCN (or mass ACN) number, its excitation energy E∗, the fissility parameter

χ (=(Z2/A)/48), the reaction entrance channels in terms of quantities such as the
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Figure 6.1: The DCM calculated PCN as a function of compound nucleus excitation
energy E∗, using Blocki et al. [45] pocket formula for nuclear proximity potential.
The reactions are given in the body of figure.

Coulomb interaction parameter Z1Z2, etc. We present some of these results in the

following for the DCM calculated PCN .

Fig. 6.1 presents the variation of PCN with CN excitation energy E∗ for the

chosen ”hot fusion” reactions whose DCM calculations are based on pocket formula

for the nuclear proximity potential of Blocki et al. [45]. The not-included 124Ce∗ is

studied at one E∗ only. The same results for PCN are presented in Fig. 6.2 as a

function of center-of-mass energy Ec.m.. A few interesting results follow from these

figures: (i) The compound systems form two groups, one consisting of reactions

presented explicitly in Fig. 6.1(a), showing an increasing behavior of PCN with

increase of E∗ (or Ec.m.), approaching unity at higher excitation energies (or c.m.

energies) meaning thereby complete fusion at high E∗ (or Ec.m.). (ii) The second

group presented explicitly in Fig. 6.1(b), consisting of the reactions, which show a

reverse behavior of PCN=1 for lower excitation or c.m. energies, which decreases

continuously as the excitation energy E∗ (or c.m. energy Ec.m.) increases. This

means that the content of CN decreases, or equivalently, the nCN content increases
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Figure 6.2: Same as for Fig. 6.1, but for its variation with center-of-mass energy
Ec.m..

with increase of E∗ or Ec.m.. Interestingly, for
105Ag∗ in going from Φ=00 to Φ not

equal to 00, i.e., with the Φ degree of freedom included, the trend of variation of PCN

with E∗ for 105Ag∗ becomes decreasing instead of increasing. Note that, in the Φ=00

case for PCN ,
105Ag∗ belongs to a group of nuclei which includes strongly fissioning

superheavy nuclei Z=112, 286Cn∗ and Z=114, 292Fl∗ all having PCN <<1, but for

Φ̸=00 it belongs to the other group of weakly fissioning nuclei such as 164Yb∗, 202Pb∗,

176−196Pt∗, and 13,217Fr∗ which is actually the case, i.e., 105Ag∗ is a weakly fissioning

nucleus. PCN for 217At∗ (formed by projecting neutron-rich 9Li on 208Pb) is also

found to be far less than unity at higher energies as it is found to decay mainly via

nCN. Apparently, it will be interesting to extend the cases of PCN <<1 to higher

excitation or c.m. energies and those of PCN=1 to both lower and higher excitation

or c.m. energies.

Fig. 6.3 shows the role of using different nuclear interaction potentials on PCN ,

and co-planar versus non-coplanar nuclei, where its variation with E∗ is presented

for Skyrme energy density formalism (SEDF) dependent potentials (using Skyrme

forces SIII and GSkI) in comparison with pocket formula of Blocki et al. for both
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Figure 6.3: Variation of PCN with E∗, showing comparison for use of different nu-
clear interaction potentials (pocket formula of Blocki et al. versus potentials based
on SEDF using SIII and GSkI forces) for Φ=0, and for two 64Ni-based compound
systems 164Yb∗ and 186Pt∗. The case of Φ ̸=0 is also added for 164Yb∗.

Φ=0 and Φ ̸=0 cases, and for two systems 164Yb∗ and 196Pt∗, both using 64Ni,

one with a deformed 100Mo and other with doubly-magic spherical 132Sn nucleus.

The interesting result is that, independent of azimuthal angle Φ, different nuclear

potentials have almost no effect on PCN , for both the spherical and deformed systems

belonging to two different groups of one with PCN <<1 and another with PCN=1 at

lower excitation energies (refer to Fig. 6.4). In other words, the compound nucleus

fusion probability PCN is nearly independent of co-planarity/ non-coplanarity of

nuclei, and of different nuclear interaction potentials. The small miss-match in cases

of 164Yb∗ and 202Pb∗ is possibly due to the difference in fittings of the data, which

could happen because of large error-bars in these data at very low energies [16,17,21].

Fig. 6.4 shows the variation of PCN with the fissility parameter χ (=(Z2/A)/48)

for CN 105Ag∗ (both co-planar and non-co-planar configurations), 124Ce∗, 164Yb∗,

176−196Pt∗, 202Pb∗, 213,215,217Fr∗, 217At∗, 246Bk∗, 286Cn∗ and 292Fl∗, marked in the

body of the figure, studied at various excitation energies E∗, forming two energy

groups of ranges E∗=22-55 and 56-88 MeV. We have also added in this figure, the
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Figure 6.4: Variation of PCN with the fissility parameter χ for all the reactions under
consideration.

reaction 32S+92Mo→124Ce∗, studied very recently [24] on the DCM at one excitation

energy E∗=46.5 MeV only. We notice in Fig. 6.4 that for the high energy range

(E∗=56-88 MeV; open star), PCN ≈1 for all the systems with χ lying between

0.62 and 0.8. On the other hand, for the low energy range (E∗=22-55 MeV, filled

squares), PCN varies from ∼0.13 to almost zero (0.005), going through nearly unity,

as χ increases from 0.45-0.9. Thus, for CN having χ=0.62-0.8, the PCN=1 but for

the superheavy systems, like 286Cn and 292Fl with higher χ (=0.914 and 0.927),

the PCN <<1, indicating the presence of large nCN effects. Similar to the cases

of superheavy systems, PCN <<1 for a very low-χ (almost half; =0.44) case of CN

105Ag∗. Interestingly, a similar behavior is observed by Yanez et al. [5], except for

the case of low χ compound system where PCN <<1.

Next, Fig. 6.5 shows the variation of PCN with compound nucleus mass number

ACN . Interestingly, like for Fig. 6.1, the chosen reactions fall in two groups, one

with PCN →1 as the excitation energy E∗ increases (open circles) and another

with PCN →1 as the excitation energy E∗ decreases (filled circles). This is shown

explicitly in Fig. 6.5(a) and 6.5(b), respectively. In other words, for one group
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Figure 6.5: Variation of PCN with compound nucleus mass number ACN .

(Fig. 6.5(a)) PCN=1 at the highest E∗, whereas for the second group (Fig. 6.5(b)),

the same happens at the lowest E∗. The same result is obtained for PCN as a

function of compound nucleus charge ZCN , except that in this case the isotopic or

target+projectile dependence could not be studied.

Fig. 6.6 gives a better presentation of the above result where PCN is plotted

as a function of target-projectile charge numbers product Z1Z2, the Coulomb in-

teraction parameter. We notice that PCN →1 for 400< Z1Z2 <1400, and that in

the two limiting Z1Z2 values, PCN=1 at the lowest E∗. Two groups are again ev-

ident, one of PCN →1 as E∗ increases (open circles) and other of PCN →1 as E∗

decreases (filled circles). Knowing that the fusion probability PCN depends strongly

on Coulomb repulsion, we notice in Fig. 6.6 that, as expected, PCN decreases rapidly

for Z1Z2 >1400 and, although completely unexpected, also for Z1Z2 <460, possibly

due to large empirical nCN component in this case.

6.3 Summary

Concluding, the compound nucleus (CN) fusion/ formation probability PCN is de-

fined and detailed analysis carried out for the first time on the basis of the dynamical

cluster-decay model (DCM) where the fusion cross section σfusion is calculated as
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the dynamical fragmentation process. The fusion cross section σfusion is taken as

the sum of CN formation cross section σCN and the possible non-compound nu-

cleus (nCN) contribution σnCN , calculated for each contributing fragmentation (A1,

A2) in terms of its formation and barrier penetration probabilities P0 and P . The

compound nucleus decay cross section σCN is the sum of cross sections due to the

evaporation residues (ER) and fusion-fission (ff) processes, where ER is made up of

light particles A2 ≤4 or neutrons (plus the complementary heavy fragments) and

the ff are the near-symmetric and symmetric (A1 = A2 = A/2) fragments (nSF and

SF), including the IMFs (5≤ A2 ≤20, 2< Z2 <10). The non-compound nucleus

decay cross section σnCN , on the other hand, is determined as the quasi-fission (qf)

process where the incoming nuclei do not loose their identity, and hence P0=1 with

P calculated for incoming channel.

The DCM is applied to some ”hot” fusion reactions at various incident energies,

covering the mass region from A∼100 to superheavy nuclei. The PCN is calculated

for various nuclear interaction potentials (Blocki et al. pocket formula and SEDF

based potentials due to Skyrme SIII and GSkI forces), and its variation with CN

excitation energy E∗, c.m. energy Ec.m., fissility parameter χ, CN mass number
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ACN and target-projectile charge numbers product Z1Z2 are studied. The interest-

ing result is that, independent of the nuclear interaction potential used, for some

compound systems PCN=1 at lower E∗ (or Ec.m.) values but decreases (equivalently,

nCN component increases) as E∗ (or Ec.m.) increases, whereas for other compound

systems the variation of PCN with E∗ (or Ec.m.) is reversed, i.e., PCN <<1 at lower

E∗ (or Ec.m.) values but it increases as E∗ (or Ec.m.) increases. Variation of PCN

with χ is also interesting in that it is almost unity for systems with χ=0.62-0.8,

but is <<1 for systems with very high or very low χ values. The same two group

behavior is also evident in its variation with CN mass number ACN or product Z1Z2,

with PCN=1 at the lowest E∗ for one group and at the highest E∗ for another. The

role of Coulomb interaction is also seen in decreasing PCN strongly for Z1Z2 >1400

and Z1Z2 <460, but PCN →1 for 400< Z1Z2 <1400, although the lower limit here

needs further investigation.

This study is further extended by our group to the calculations of Psurv [7], and

the reduced ERs via the product of PCN and Psurv [62]. It will be interesting to

extend these calculations to more and more reactions, and see if the above noted

trends are kept the same or some new trends get added. Based on only a few “cold”

fusion reactions, some authors [4] have even given a mathematical formulation of

such trends, hoping for the universality of their results. On the DCM, further studies

are needed for such formulations.
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Chapter 7

Summary

The Dynamical Cluster-decay Model (DCM) has been used successfully to address

the formation and decay process of heavy ion collisions at low energy region. The

DCM is based on well known Quantum Mechanical Fragmentation Theory (QMFT)

and has been developed to study the effects of nuclear structure, deformation and

orientation degrees of freedom of outgoing fragments/ nuclei in the decay of hot

and rotating compound nuclei (CN). Within the DCM, fragments are preformed

with certain preformation probabilityP0 before penetrating the interaction barrier.

P0 contains the structure effects of CN providing the possibility of studying fine

or sub-structure in fission products. Nuclear shapes, i.e., the deformations and the

orientations of nuclei, during fusion reactions change the interaction barrier (i.e.,

height as well as position) thereby affecting the dynamics of reaction process The

only parameter of DCM is the neck-length parameter ∆R representing the reaction

time scale and also referring to the actual used barrier height which consequently

introduces the concept of barrier lowering ∆ VB, explaining the fusion hindrance/

enhancement phenomena.

An overview of relevant status of research and related aspects of nuclear physics

are discussed in Chapter 1. A broad classification of heavy ion reactions and various

approaches to handle the nuclear interactions are described, in addition to the outline
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of thesis in this chapter. The details of the methodology used, i.e., the dynamical

cluster-decay model and ℓ-summed Wong model are discussed in Chapter 2 with

nuclear interaction potential obtained from various proximity potentials as well as

from Skyrme energy density formalism. The methodology has been employed to

address the fusion-fission dynamics governed via heavy ion collisions at low energy

region. Different components of σfusion, i.e., CN decay processes and non-compound

(nCN) decay processes are also explained. The concept of CN fusion/ formation

probability PCN and CN survival probability Psurv are also introduced for the first

time within the DCM.

An application of the DCM is first made to a proton-rich CN 124Ce∗ formed in

32S+92Mo reaction at two different incident energies of Ec.m.=111.29 MeV (≡150

MeV beam energy) and 103.87 MeV (≡140 MeV beam energy), though the data are

available only at the first above barrier energy. In other words, experimentally, this

system is studied at an incident center-of-mass energy Ec.m.=111.29 MeV (equiva-

lently, the laboratory energy 150 MeV), and heavy mass decay products observed,

whose complementary light decay products are the multiple proton clusters (2p, 3p,

4p) and intermediate mass fragments like 5Li, 6Be, 7B, and 10C, plus their isobars

like 3,4He, 5Be, 6Li, 7Be, etc. The measured cross-sections are given relative to 4Li

decay, and we compare the measured relative cross-sections of 6Be and 10C with

8Be and 12C, respectively, though both 8Be and 12C decays are not observed in this

experiment (even the upper limits are not given). For the best fitted neck-length

parameters of two LPs (2p and 3p) and two IMFs (5Li and 6Be), the relative pop-

ulations of 6Be and 8Be, and that of 10C and 12C are analyzed, showing thereby

that the compound nucleus 124Ce∗ decays preferentially via A=4n, α-nucleus clus-

ters as compared to A ̸=4n, non-α nucleus clusters, similar to what was predicted for

ground-state (T=0) decays, and also earlier for decay of 116Ba∗ formed in 58Ni+58Ni

reaction at various Ec.m.. This confirms the excitation energy independence of α-

nucleus structure effects in 124Ce∗, similar to what was shown earlier for a lighter
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system 56Ni∗ In the above barrier energy data, the possible non-compound nucleus

effects are shown to be small and the CN formation probability calculated to be

close to unity. However, the charge distribution due to observed isobars is not yet

investigated. This study was made by using the pocket formula of Blocki et al. for

the nuclear proximity potential.

The above study is then extended to the use of various other nuclear interaction

potentials derived from the ETF-based semiclassical SEDF method. Both the old

and new Skyrme forces are considered. It is interesting to find that the only param-

eter of the model, neck-length ∆R, remains within ∼2 fm, the range of validity of

proximity potential used here. Again, for the best fitted ∆R of two LPs (2p and

3p) and two IMFs (5Li and 6Be), similar to what was obtained earlier for use of

pocket formula of Blocki et al., the relative populations of 6Be vs. 8Be, and that

of 10C vs. 12C show that the CN 124Ce∗ decays preferentially via A=4n, α-nucleus

clusters, as compared to A ̸=4n, non-α nucleus clusters, for only SIII and KDE0(v1)

Skyrme forces. Considering the cross sections of orders similar to observed ones

for ER and IMFs, the IMF-window is shown extended to A2=16, and a new decay

region of HMFs A2=27-48 or 28-48 and a near-symmetric and symmetric fission

fragments A2=49-62 or 51-62 are predicted, which on combining with the comple-

mentary heavy fragments result in the ff region of (A/2)±12. Using the predicted

(total) fusion cross-section, the CN survival probability Psurv comes out to be very

small for all the considered nuclear interactions, due to large predicted fusion-fission

contribution. However, the CN fusion probability PCN is nearly unity for all nu-

clear interactions, due to very small empirically estimated non-compound nucleus

content, establishing that 124Ce∗ decay is nearly a pure CN decay. We have also

applied the (ℓ-summed) extended-Wong model of Gupta and collaborators to this

reaction, but the calculated total fusion cross sections could not be compared with

the measured data since only relative cross sections are given in the experiment.

However, the ℓmax values and the order of predicted fusion cross sections for the two
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models (DCM and extended-Wong model) are similar, and thus could be useful in

planning further experiments in this mass region.

The next application of the DCM is to the study of the decay mechanism of CN

217At∗ formed in a reaction induced by neutron-rich 9Li on a doubly magic shell

nucleus 208Pb at various center-of-mass energies Ec.m.. The aim here is to inves-

tigate the role of neutron-rich light projectile on (total) fusion cross section σfus,

knowing well that σfus is largest for a reaction with doubly magic reaction part-

ner. In 9Li+208Pb reaction, for the LPs evaporation residues, only 3n-6n emissions

are observed (i.e., 1n and 2n are not observed) whose sum of the cross sections∑6
x=1 σxn ≡ σfus (including the unobserved 1n and 2n cross sections), can be fit-

ted very nicely within the DCM as a pure CN decay process for a fixed value of

the only parameter of this model, the neck-length parameter ∆R. Similar calcula-

tions of 9Li induced reactions on 70Zn and various isotopes of other targets used in

earlier experimental studies at intermediate energies, show a strong dependence of

σfus on mass and shell structure of the target nucleus, supporting the above stated

effect of closed magic shells. However, in this case of fixed ∆R, the unobserved

decay channels (1n, 2n) are strongly over-estimated, and hence the observed ones

(3n-6n) strongly under-estimated, with the ff cross section σff also being very large

compared to nearly zero, expected in experiments.

To improve upon the above result, we have fitted the individual decay channels

(both unobserved and observed ones), together with the ff channel, with different

∆R values, i.e., different reaction times for different decay channels. Interestingly,

now the fits for the pure CN decay cross section are very poor for LPs residue

channels (σCN < 1% of total σExpt.
fus ) with σff reduced nearly to zero. This calls

for the empirical nCN contribution, which is treated as the quasi-fission-like process

(channel preformation probability P0=1). Excellent fits are once again obtained for

∆RnCN < ∆RCN , with σnCN constituting most (99%) of the σfus at all the incident

energies. In terms of CN formation and CN survival probabilities, the above result
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means PCN <<1 and Psurv ≈1. Thus, our DCM analysis shows that the neutron-rich

9Li induced reaction is more of a quasi-fission-like non-compound nucleus decay.

Furthermore, the synthesis of 217At∗ via various “cold” (t,p) combinations, ref-

ereeing to potential energy minima, for “hot” compact configurations, is carried

out and 8Li+209Pb as the optimum combination with lowest interaction barrier and

smallest (most compact) interaction radius identified. In view of the role of double

magic shell, however, 48Ca+169Tb would result in the largest fusion cross section.

Within the DCM, various “hot” fusion reactions have been studied till to-date.

For analyzing this data in terms of the CN fusion/ formation probability PCN , we

have picked up some of these “hot” fusion reaction calculations and carried out the

detailed analysis for the very first time using the DCM. In DCM, the fusion cross

section σfusion is calculated as the dynamical fragmentation process. The fusion

cross section σfusion is taken as the sum of CN formation cross section σCN and

the possible non-compound nucleus (nCN) contribution σnCN , calculated for each

contributing fragmentation (A1, A2) in terms of its formation and barrier penetration

probabilities P0 and P . The compound nucleus decay cross section σCN is the sum of

cross sections due to the evaporation residues (ER) and fusion-fission (ff) processes,

where ER is made up of light particles A2 ≤4 or neutrons (plus the complementary

heavy fragments) and the ff are the near-symmetric and symmetric (A1 = A2 = A/2)

fragments (nSF and SF), including the IMFs (5≤ A2 ≤20, 2< Z2 <10). The non-

compound nucleus decay cross section σnCN , on the other hand, is determined as

the quasi-fission (qf) process where the incoming nuclei do not loose their identity,

and hence P0=1 with P calculated for the considered exit channel.

The DCM is applied to various fusion reactions at different incident energies,

covering the mass region from A∼100 to superheavy nuclei. The PCN is calculated

for various nuclear interaction potentials (Blocki et al. pocket formula and SEDF

based potentials due to Skyrme SIII and GSkI forces), and its variation with CN

excitation energy E∗, c.m. energy Ec.m., fissility parameter χ, CN mass number
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ACN and target-projectile charge numbers product Z1Z2 are studied. The interest-

ing result is that, independent of the nuclear interaction potential used, for some

compound systems PCN=1 at lower E∗ (or Ec.m.) values but decreases (equivalently,

nCN component increases) as E∗ (or Ec.m.) increases, whereas for other compound

systems the variation of PCN with E∗ (or Ec.m.) is reversed, i.e., PCN <<1 at lower

E∗ (or Ec.m.) values but it increases as E∗ (or Ec.m.) increases. Variation of PCN

with χ is also interesting in that it is almost unity for systems with χ=0.62-0.8,

but is <<1 for systems with very high or very low χ values. The same two group

behavior is also evident in its variation with CN mass number ACN or product Z1Z2,

with PCN=1 at the lowest E∗ for one group and at the highest E∗ for another. The

role of Coulomb interaction is also seen in decreasing PCN strongly for Z1Z2 >1400

and Z1Z2 <460, but PCN →1 for 400< Z1Z2 <1400, although the lower limit here

needs further investigation. This study is also extended further by our group to the

study of CN survival against fission, i.e., CN survival probability Psurv.

The present work has the potential of extending it to other mass regions, for

obtaining a good understanding of nuclear structure in general and nuclear reaction

dynamics in particular. It may be noticed that all the calculations done in the

present work, except the ones included in the analysis of PCN , are for two nuclei taken

in the same plane (co-planar nuclei, with azimuthal angle Φ=00), with deformation

effects, and orientations included. It would certainly be interesting to further extend

this study to non-coplanar (Φ ̸=00) configurations.
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