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1. Introduction

K → πlν (Kl3) decays provide an excellent avenue for an accurate determination of the
Cabibbo-Kobayashi-Maskawa (CKM) [1] quark mixing matrix element, |Vus|. This is done by
observing that the experimental rate for K`3 decays is proportional to |Vus|2| f+(0)|2,

ΓK→πlν = C2
K

G2
Fm5

K
192π3 I SEW

[

1+2∆SU(2) +2∆EM
]

|Vus|2| f+(0)|2 , (1.1)

where I is the phase space integral which can be evaluated from the shape of the experimental
form factor, and ∆SU(2), SEW , ∆EM contain the isospin breaking, short distance electroweak and
long distance electromagnetic corrections, respectively. f+(0) is the form factor defined from the
K → π matrix element of the weak vector current, Vµ = s̄γµu, evaluated at zero momentum transfer

〈π(p′)
∣

∣Vµ
∣

∣K(p)〉 = (pµ + p′µ) f+(q2)+(pµ − p′µ) f−(q2) , (1.2)

where q2 = (p− p′)2. PDG(2006) quotes [2]1

|Vus f+(0)| = 0.2169(9) , (1.3)

hence in order to obtain |Vus| at a precision commensurate with current experiments, we need to
determine f+(0) with an error of less than 1%.

In chiral perturbation theory (ChPT), f+(0) is expanded in terms of the light pseudoscalar
meson masses

f+(0) = 1+ f2 + f4 + . . . , ( fn = O(mn
π,K,η)) . (1.4)

Current conservation ensures that in the SU(3)flavour limit f+(0) = 1, hence f2 and f4 are small.
Additionally, as a result of the Ademollo-Gatto Theorem [4], which states that f2 receives no
contribution from local operators appearing in the effective theory, f2 is determined unambiguously
in terms of mπ , mK and fπ , and takes the value f2 = −0.023 at the physical values of the meson
masses [5]. Our task is now reduced to one of finding

∆ f = f+(0)− (1+ f2) . (1.5)

Until recently, the canonical estimate of ∆ f = −0.016(8) was due to Leutwyler & Roos (LR) [5],
whereas more recent ChPT based phenomenological analyses favour a value consistent with zero
∆ f = 0.001(10) [6], ∆ f = 0.007(12) [7], ∆ f = −0.003(11) [8]. These determinations, however,
require model input; the 50% error in the LR result, for example, was estimated within the context
of a simple quark model. Hence a lattice determination of ∆ f is essential.

The last few years have seen an improvement in the accuracy of lattice calculations of this
quantity [9, 10, 11, 12, 13] (see [14] for a review), with the results favouring a negative value for
∆ f in agreement with Leutwyler & Roos.

The UKQCD and RBC collaborations have recently completed the first unitary (i.e. N f = 2+1
flavour) lattice calculation of the K → π form factor using dynamical domain wall fermions at light
quark masses and on large volumes [15]. In this paper we summarise these findings and discuss a
recent development which promises to provide further improvement by removing the extrapolation
to q2 = 0 [16].

1A more recent analysis finds |Vus f+(0)| = 0.21673(46) [3].
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2. Simulation Details

We simulate with N f = 2+1 dynamical flavours generated with the Iwasaki gauge action [17]
at β = 2.13, which corresponds to an inverse lattice spacing a−1 = 1.73(3)GeV (a = 0.114(2) fm)
[18, 19], and the domain wall fermion action [20] with domain wall height M5 = 1.8 and fifth
dimension length Ls = 16. This results in a residual mass of amres = 0.00315(2) [18, 19]. The
simulated strange quark mass, ams = 0.04, is close to its physical value [19], and we choose four
values for the light quark masses, amud = 0.03, 0.02, 0.01, 0.005, which correspond to pion masses
mπ ≈ 670, 560, 420, 330 MeV [18, 19]. The calculations are performed on two volumes, 163

((1.83)3 fm3) and 243 ((2.74)3 fm3), at each quark mass, except the lightest mass which is only
simulated on the larger volume. Further simulation details can be found in [18, 19].

3. Lattice Techniques

We start by rewriting the vector form factors given in (1.2) to define the scalar form factor

f0(q2) = f+(q2)+
q2

m2
K −m2

π
f−(q2) , (3.1)

which can be obtained on the lattice at q2
max = (mK −mπ)2 with high statistical accuracy [9, 21].

For each quark mass, in addition to evaluating f0(q2) at q2 = q2
max, we determine the form

factor at several negative values of q2, allowing us to interpolate the results to q2 = 0. Specifically,
in the notation of (1.2), we evaluate the form factor with |~p ′| = 0, |~p | = pL or |~p | =

√
2 pL where

pL = 2π/L and L is the spatial extent of the lattice, and also with |~p | = 0, |~p ′| = pL or |~p ′| =√
2 pL . To obtain the f0(q2) we use standard ratio techniques [21, 9, 12], which do not require

normalisation of the vector current.
In order to gain the maximum amount of information from limited data, we perform a simul-

taneous fit to both the q2 and quark mass dependencies using the ansatz [15]

f0(q2,m2
π ,m2

K) =
1+ f2 +(m2

K −m2
π)2(A0 +A1(m2

K +m2
π))

1−q2/(M0 +M1(m2
K +m2

π))2 , (3.2)

with four fit parameters A0, A1, M0, M1, and is simply a modification of the standard pole domi-
nance form

f0(q2) = f0(0)/(1−q2/M2) , (3.3)

where M is a pole mass, which has been shown to describe the q2-dependence of lattice results of
f0(q2) very well [12, 9].

We find that fitting the 243 data using (3.2) provides excellent agreement with the traditional
approach of sequentially interpolating in q2 via (3.3) followed by chiral extrapolation of f+(0) to
the physical quark masses.

We present the results from a fit to the 243 × 64 data sets using (3.2) in the left plot of
Fig. 1. Here the curve shows the fit function at the physical meson masses, while the difference
f0(q2,mlatt

π ,mlatt
K )− f0(q2,mphys

π ,mphys
K ) has been subtracted from our raw data points and the small

scatter is indicative of the quality of our fit.
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Figure 1: Scalar form factor, f0(0), together with the simultaneous fit (solid line) on the 243 data (red
circles) using (3.2).

The quark mass dependence of (3.2) is presented in the right plot of Fig. 1. The solid line
represents the fit function evaluated at q2 = 0, plotted as a function of m2

π , while the dashed line is
the contribution coming from the O(p4) terms in the chiral expansion, 1 + f2. Our results clearly
indicate a sizeable, negative value for ∆ f =−0.013(3), in contrast to the recent ChPT based results
of [6, 7, 8]. In right side of Fig. 1 we also overlay the results obtained from individual pole fits on
each of our ensembles and earlier N f = 2 results [12].

So far, we have assumed a pole dominance behaviour in our lattice data. In order to estimate
the systematic error due to this choice, we fit f0(q2) at each quark mass with a linear form, a
quadratic form, and a parameterisation proposed in Ref. [22]. In Fig. 2 we compare these different
fit forms for bare quark mass amud = 0.005 since this is the dataset that requires the largest extrap-
olation from q2

max. In the inset, we can see the sensitivity of the resulting value at q2 = 0 to the
choice of fit form. We find that all four parameterisations agree reasonably well, except the linear
ansatz which anyway has the largest χ2/do f .

Hence we estimate the systematic error due to the choice of (3.2) as our prefered fit form by
using a simultaneous quadratic fit similar to (3.2)

f0(q2,m2
π ,m2

K) = 1+ f2 +(m2
K −m2

π)2(A0 +A1 +A2(m2
K +m2

π))+

(A3 +(2A0 +A1)(m2
K +m2

π))q2 +(A4 −A0 +A5(m2
K +m2

π))q4 . (3.4)

The form of this ansatz is motivated by the expression obtained in ChPT [6]. We find that the
results of the two fits, (3.2) and (3.4), agree within statistical precision and we take the difference
(0.0034) as an estimate of the systematic error in choosing (3.2) as our preferred ansatz.

Recently we have developed a promising method for removing this source of systematic error
[16]. On a lattice with periodic boundary conditions, the smallest possible momentum transfer (q)
available is 2π/L, where L is the lattice spatial extent. However, lower values of q2 can be obtained
by altering the boundary conditions (twisted boundary conditions) [23].

By twisting the boundary conditions of the valence quark field before (after) the operator
insertion by a twisting angle, ~θi (~θ f ), it is possible to obtain results with arbitrary momentum
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Figure 2: Comparison of different fits to the q2-dependence of the scalar form factor f0(q2) for bare quark
mass amud = 0.005. Solid, dashed, dotted and dot-dashed lines correspond to linear, quadratic, pole domi-
nance 3.3 and zfit[22], respectively.

transfer

q2 = (p f − pi)
2 =

{

[E f (~p f )−Ei(~pi)]
2 −

[

(~pFT, f +~θ f /L)− (~pFT,i +~θi/L)
]2

}

. (3.5)

where
E =

√

m2 +(~pFT +~θ/L)2, (3.6)

m is the mass of the meson and ~pFT is the meson momentum induced by Fourier summation (the
components of ~pFT are integer multiples of 2π/L). In this way, it is possible to tune ~θi and ~θ f such
that q2 = 0.

In Fig. 3 we display the results of a proof-of-principle investigation on 163 × 32 lattices with
two values of the light quark masses, aml = 0.02 and aml = 0.01. In the left plot we present results
for f0(q2) obtained from the standard procedure, together with a pole dominance fit. The right
plot displays a zoom into the region around q2 = 0. The two data points at q2 > 0 correspond to
the results for q2

max for which the pion and kaon are both at rest; they can be identified by their
strikingly small errors. We also show results for f0(q2 = 0) obtained from the pole fit (3.3) at each
quark mass. In addition the right plot of Fig. 3 contains the results from the new approach.

The results for f0(0) as determined from the conventional and the new approaches do not agree
exactly but the discrepancy is statistically not significant. The size of the statistical errors is similar
in the two approaches, while the new technique avoids the need for an extrapolation and hence is
important in removing one source of systematic error.

Finally, since we simulate at a single lattice spacing, we are unable to extrapolate to the con-
tinuum limit. However, leading lattice artefacts with domain wall fermions are of O(a2Λ2

QCD);
assuming ΛQCD ∼ 300 MeV we estimate these to be no larger than ≈ 4% (of 1− f+). Observations
that O(a2) effects in physical quantities, such as fπ , are consistent with this [19], and we will ex-
plicitly check this for K`3 decays on our new ensemble which is being generated on a finer lattice.
Note that our current uncertainty is dominated by statistics and the chiral and q2 extrapolations and
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Figure 3: Results for the form factor (aml = 0.02 as full black circles and aml = 0.01 as blue squares). Left:
All data points entering the conventional approach. Right: Zoom which shows the data points for both the
new (diamonds) and the conventional approach at q2 = 0 and the data points at q2

max.

not by the discretisation error. Hence our final result is

f+(0) = 0.9644(33)(34)(14) , (3.7)

where the first error is statistical, and the second and third are estimates of the systematic errors due
to our choice of parametrisation (3.2) and lattice artefacts, respectively. Our result agrees very well
with the Leutwyler-Roos value [5] and earlier lattice calculations [9, 10, 11, 12]. In particular, we
note that our findings prefer a sizeable, negative value for ∆ f = −0.0129(33)(34)(14), in contrast
to recent ChPT based phenomenological results [6, 7, 8].

Using |Vus f+(0)| = 0.2169(9) from PDG(2006) [2]2

|Vus| = 0.2249(9)exp(11) f+(0) , (3.8)

and combined with |Vud| = 0.97377(27) [2] we find

|Vud|2 + |Vus|2 + |Vub|2 = 1−δ , δ = 0.0012(8) , (3.9)

compared with the PDG(2006) [2] result, δ = 0.0008(10).
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