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ABSTRACT

The kinematic and angular distributions are calculated for the decay Λb→ Λc`ν̄`. Deviations

from the standard model are expected given the apparent lepton flavor violation in the process

B̄→ D(∗)+τ−ν̄τ . Including these measured deviations from the SM, the upper and lower bounds

for RΛb =
B(Λb→ Λcτν̄τ)

B(Λb→ Λc`ν̄`)
are calculated along with other observables for a variety of new physics

Lorentz structures. Distributions are also calculated for H →W−W+∗(or H+∗)→ τ−ν̄ττ+ντ via

Type II and leptophilic 2HDM’s. Although, the Higgs was found at the LHC in 2012, the question

remains whether it is of the SM variety. A MadGraph simulation is performed confirming the

dihedral distribution calculation given the experimentally determined uncertainties in the Higgs’

couplings. The density matrix method and helicity formalism technique are employed for deriving

these distributions.
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CHAPTER 1: MOTIVATION

1.1 Introduction

This dissertation pertains to applying decay distribution techniques in the b-quark and Higgs sec-

tors to identify potential signatures for new physics. The first part of the dissertation covers decay

distributions. Decay distribution techniques herein consist of the density matrix method and the

helicity formalism. The second and third parts of the dissertation are the applications of these tech-

niques to decays in the b-quark sector and the Higgs sector in light of possible new physics. In the

b-quark sector, B meson decays and a Λb decay are covered in light of the R(D(∗)) and RK puzzles.

A pertinent subtopic is lepton flavor non-universality. In the Higgs sector, a charged Higgs, H±, is

sought after in the decay H→W−W+∗(or H+∗)→ τ−ν̄ττ+ντ .

The density matrix method and helicity formalism techniques are demonstrated in the context

of the decays H →W+∗(→ τ+ντ)W−(→ τ−ν̄τ) and B̄→ D∗+τ−ν̄τ , respectively. These tech-

niques are extremely useful for sequential decay processes. Although the calculated distributions

are ultimately just formulas, much care in accounting is required given the multiple decay channels

between the initial and final states. Chapter 2 covers these techniques.

The relevant hadronic B decays investigated have a pair of final state leptons plus a final state

meson. The final state pair of leptons belong to one of the three generations of leptons. With respect

to the standard model (SM), experimentalists have found a discrepancy in the ratio of decay rates

of B mesons between different generations of final state leptons. When the final state meson is a D

or D∗ meson, a combined 4σ discrepancy occurs with respect to the standard model[1, 2]. This is

known by the name R(D(∗)) puzzle. When the final state meson is a K+ meson, the discrepancy is

2.6σ with respect to the standard model [3]. This is known as the RK puzzle. Given the similarity of

these B meson decays to a particular Λb decay, i.e. Λb→ Λc(→ Λsπ
+) W−∗(→ τ−ν̄τ), the latter
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is expected to carry the same anomaly. These anomalies may be explained by significant new

physics effects in the second and third generation of leptons, i.e. lepton flavor non-universality.

These puzzles along with the expected anomaly in a Λb decay are covered in chapters 3 and 4 with

lepton flavor non-universality being a possible resolution. Lorentz structures are used for the new

physics effects and couplings (or interaction strengths) are constrained given the experimental data

of the R(D(∗)) puzzle. For the b-quark sector, two papers have been completed [4, 5].

The next investigation is in the Higgs’ sector. There are multiple non-composite spin-
1
2

(fermions)

and spin-1 particles (e.g. a photon). Yet, the Higgs boson is the only known non-composite spin-0

particle. As of now, no principle prevents other Higgs-like particles from existing. Discover-

ing such particles would not only be new physics beyond the standard model, but explain the

gulf between the Planck and electroweak scale amongst other things. Although the Higgs has

been discovered in various decay processes, the Higgs couplings have a sizable uncertainty allow-

ing room for new physics effects. In chapter 5, an investigation is made into the existence of a

charged Higgs. The Type II and Leptophilic two-Higgs-doublet models [88, 103] with the SM

decay H →W+∗(→ τ+ντ)W−(→ τ−ν̄τ) are analyzed for signatures indicating the existence of a

charged Higgs.

1.2 General Remarks

From the macroscopic scale down to the microscopic scale, fundamental forces govern the dynam-

ics of physical phenomena. The four known fundamental forces in nature consist of the gravita-

tional, weak, electromagnetic and strong forces. In space gravity keeps our planets in orbit about

the sun while explaining the range of a projectile on earth. The weak force explains the source of

heat from the sun, namely fusing protons and neutrons. Electromagnetism consists of all electrical

and magnetic phenomena such as electronic circuits and the orbit of an electron about a nucleus.

The strong force holds together an atom’s nucleus.

Unlike gravity, the other three forces can thus far be very well explained with a quantum field

theory. The specific form of this theory has the name standard model (SM). This model’s elemen-

2



Figure 1: Standard Model of elementary particles. Source: https://en.wikipedia.org/
wiki/Standard_Model
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tary particles are fermions, gauge bosons, and a Higgs boson. Roughly speaking, visible matter is

made up of fermions with the gauge bosons serving as their force carriers. Figure 1 depicts the SM

particles along with their properties of mass, charge, and spin. Leptons and quarks are fermions,

i.e. half-integral spin particles. Bosons are integral spin particles. Two up and one antidown quark

can make a proton or hydrogen nucleus via gluons, the force carriers. The Higgs boson explains

why some of the particles have mass via a process known as symmetry breaking, where nature

chooses a vacuum energy.

However successful, the SM is not complete. The particles making up SM are only about

five percent of the visible universe1. Since right handed neutrinos are not observed, the neutrinos

within the model are assumed massless. This means one may not boost to a reference frame

where a right handed neutrino becomes a left handed neutrino. One can think of handedness as

pertaining to a particle’s screwlike motion or spin projected onto momentum. Yet, neutrino flavor

oscillations imply neutrinos must have mass. Also, SM does not explain the gulf between the

Planck (1019 GeV) and electroweak (102 GeV) scales, otherwise known as the hierarchy problem.

A resolution to the hierarchy problem and an explanation of the failure to detect right handed

neutrinos may require supersymmetry, which includes two-Higgs-doublet models (2HDM’s). Type

II and leptophilic 2HDM’s are explored in this dissertation in the context of the decay channel

H→W+∗(→ τ+ντ)W−(→ τ−ν̄τ). As mentioned above, flavor physics is another area of interest

for finding physics beyond SM. The quark-flavor channels b→ c and b→ s are pursued herein via

B mesons. Material from past and current papers are used in this disseration [4, 5, 6]

1The remaining amount consists of dark matter and dark energy. Dark simply means hidden. Dark matter keeps a
galaxy intact while dark energy explains the accelerating expansion of the universe.
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CHAPTER 2: HELICITY DISTRIBUTIONS

2.1 Introduction

H z

x

W+∗(H+∗)W−

τ−

ν̄τ

θp

τ+

ντ

θq

χ

Figure 2: Four body decay of H: H→W+∗(or H+∗),W−→ (τ+,ντ),(τ
−, ν̄τ). θq and θp are the

decay angles in the center of momentum frame of τ+ and ντ and the rest frame of W−, respectively.
χ is the dihedral angle between the decay planes.

Consider the decay process in Figure 2. A Higgs, H, decays to a pair of bosons, either W+∗W− or

H+∗W−. Both bosons then decay to a pair of leptons. Sequential decay processes such as this one

can be handled quite compactly via the density matrix method. Exploiting Lorentz invariants, the

calculation is simplified by rotating and boosting to the rest frame of the decaying particle.

The method relies on writing decay amplitudes for each part of the sequential decay process

and summing over possible helicities. Helicity is the particle’s spin projected onto its direction of

motion. For massless particles or in the relativistic regime, helicity is conserved and indicates the
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particle’s chirality, i.e. handedness. Massless fermions and antifermions are left-handed and right-

handed, respectively. An elementary example is a negative pion decaying into either a negative

muon or electron with an anti-neutrino. The initial helicity is zero since the pion has a spin of

zero. Given that the decay is back to back in the rest frame of the pion, there is no orbital angular

momentum. It follows that spin (or the total angular momentum) and helicity are conserved. Since

the mass of the electron is 1/200 the mass of the muon, production of electrons would favor left-

handedness but that choice would violate conservation of total angular momentum. Hence, helicity

suppression occurs, and the negative pion decay extremely favors negative muons over electrons.

Furthermore, it is helicity that guides the sequential decay process.

Before giving the outline for the density matrix method, an explanation of polarization is re-

quired. Given the polarization-spin correspondence, the three polarizations of the on-shell W−

boson correspond to three helicities. This is one more than for a photon since the photon has the

Coulomb gauge as a constraint. Also, the off-shell W+∗ boson will have four polarizations where

the fourth pertains to time. The new physics particle H+ has a helicity of zero. The resulting

probability amplitudes will have pure and mixed helicities/polarizations. Some terms can give CP

violation. Ignoring H+, the SM process H →W+∗(→ τ+ντ)W−(→ τ−ν̄τ) of Figure 2 has the

following four-fold distribution prescription.

2.2 Density Matrix Method

W− and W+∗ are on-shell and off-shell W bosons, respectively. The positive z-axis points in the

direction of W+’s momentum. θp is the polar angle of τ− in W−’s rest frame. Since W+∗ is

off-shell, θq is the polar angle of τ+ in the center of mass frame of τ+ and ντ . χ is the dihedral

angle between the decay planes of W−→ τ−ν̄τ and W+∗→ τ+ντ . The four-fold distribution can

be calculated below by the density matrix method, including the lepton mass. Spins, helicities,

polarization vectors, and four momenta are defined as follows.

• Spins of bosons: sH = 0, sW+ = 0,1, sW− = 1

6



• Helicities of bosons: λH = λW+−λW− = 0, λW+ = 0,±1, t, λW− = 0,±1

• Lepton helicities: λ` =±1
2 , `= τ+,τ−

• Four-momenta of W+∗,W−: q, p

• Polarization vectors

of W+∗ boson: ε
µ

1 (±1) =
1√
2
(0;∓1,−i,0) , ε

µ

1 (0) =
1√
q2

(|~q |;0,0,q0),

ε
µ

1 (t) =
1√
q2

(q0;0,0, |~q |),

• Polarization vectors

of W− boson: ε
µ

2 (±1) =
1√
2
(0;±1,−i,0) , ε

µ

2 (0) =
1

MW
(|~q |;0,0,−p0)

The four-fold angular distribution is

dΓ

(
H→W+∗(→ τ+ντ)W−(→ τ−ν̄τ)

)
dq2d(cosθq)d(cosθp)dχ

(1)

=
BrWτντ

(2π)4

(1− m2

q2 )|~q|

25M2
H

∑
λW− ,λW+ ,λ ′W− ,λ

′
W+ ,sW+ ,s′W+

D
λW− ,λW+ ,λ ′W− ,λ

′
W+

sW+ ,s′W+

The Hermetian density matrix is

D
λW− ,λW+ ,λ ′W− ,λ

′
W+

sW+ ,s′W+
= ∑

λ
τ− ,λν̄τ ,λτ+ ,λντ

M
λW− ,λW+ ,sW+

λ
τ− ,λν̄τ ,λτ+ ,λντ

[M
λ ′

W− ,λ
′
W+ ,s

′
W+

λ
τ− ,λν̄τ ,λτ+ ,λντ

]†,where

M
λW− ,λW+ ,sW+

λ
τ− ,λν̄τ ,λτ+ ,λντ

= (−1+
q2

M2
W
)1−sW+ AλW+λW−

B
λW+

λ
τ+ ,λντ

C
λW−
λ

τ− ,λν̄τ

7



A, B, and C are the decay amplitudes of H, W−, and W+∗, respectively, and are written as

follows. (1+ γ5/n) is the spin or helicity projection operator.

AλW+λW−
= igMW ε

µ∗
1 (λW+)εν∗

2 (λW−)gµν (2a)

B
λW+

λ
τ+ ,λντ

=
−ig
2
√

2
ū(p1,λντ

)
i/ε1(λW+)

(q2−M2
W + iMW ΓW )

(1− γ5)v(p2,λτ+) (2b)

C
λW−
λ

τ− ,λν̄τ

=
−ig
2
√

2
ū(p3,λτ−)

i/ε2(λW−)

MW ΓW
(1− γ5)v(p4,λν̄τ

). (2c)

2.3 Helicity Formalism

Now consider the B meson decay in Figure 3. Ignoring the subsequent D∗ decay, the three-fold

distribution of the decay rate is expressed below by the helicity formalism. The prescription follows

the treatment in [7].

The three-fold angular distribution is

dΓ

(
B̄→ D∗+τ−ν̄τ

)
dq2d(cosθ`)dχ

=
1

(2π)4 |Vbc|2
1

26M2
B
(1− m2

`

q2 )|~q| LµνHµν .

Lµν and Hµν are the leptonic and hadronic tensors, respectively. Hµν is written in terms of a

general second rank tensor T D∗
µα .

Hµν = ∑
helicities

< D∗, p2| jµ |B̄, p1 >< D∗, p2| jν |B̄, p1 >
∗

8



B̄ z

x

W−∗

D∗

D(∗)

D

π+

θD

ℓ−

ν̄ℓ

θℓ

χ

Figure 3: Four body decay of a B meson: B̄→ D(∗)(→ Dπ+) W−∗(→ `−ν̄`). θD and θ` are the
decay angles in the rest frame of D and the center of momentum frame of `− and ν̄`, respectively.
χ is the dihedral angle between the decay planes.

= T D∗
µα (T

D∗
νβ

)∗ (−gαβ +
pα

2 pβ

2
M2

2
),

where

T D∗
µα = FA

1 gµα +FA
2 p1µ p1α +FA

3 qµ p1α + iFV εµαρσ pρ

1 pσ
2 .

εµαρσ is the Levi-Civita antisymmetric tensor. FA
1,2,3 and FV are the form factors. qµ is the

momentum of W−∗.

Lµν is written in terms of Wigner d-functions as

Lµν = ∑
λ`,m,m′,J,J′

|h
λ`,λ`′=

1
2
|2ei(m−m′)χdJ

m,λ`− 1
2
(θ`)dJ′

m′,λ`− 1
2
(θ`)ε

∗
µ(m)εν(m′).

λ`′ =
1
2

since the anti-neutrino,ν̄`, is right-handed. ε(.) is the polarization vector of W−∗. J = 0,1

9



and m = 0± represent the spin and helicities, respectively of W−∗.

h
λ`,λ`′=

1
2

is the decay amplitude for W−∗ in the dilepton center of momentum frame. |h
λ`,λ`′=

1
2
|2

denotes the spin-flip (λ` =
1
2

) and spin non-flip (λ` =−
1
2

) helicity amplitudes. d-functions rotate

the dilepton decay with respect to the W−∗ trajectory in the B rest frame (see Figure 3), giving

the final orientation of the dilepton decay in the dilepton center of momentum frame. Hence, the

leptonic decay angle θ` is in the dilepton center of momentum frame.
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CHAPTER 3: LEPTON FLAVOR NON-UNIVERSALITY

3.1 Introduction

B+

K+

ℓ−ℓ+

Figure 4: Feynman diagram for the three body decay of a B+ meson: B+→ K+ `−`+. The circle
with an X represents both the box and penguin channels.

To date, the standard model (SM) has been extremely successful in describing experimental data.

There are, however, a few measurements that are in disagreement with the predictions of the SM.

For example, the LHCb Collaboration recently measured the ratio of decay rates for B+→K+`+`−

(`= e,µ) in the dilepton invariant mass-squared range 1 GeV2 ≤ q2 ≤ 6 GeV2 [8] (see Figure 4).

They found

RK ≡
B(B+→ K+µ+µ−)
B(B+→ K+e+e−)

= 0.745+0.090
−0.074 (stat)±0.036 (syst) , (3)

which is a 2.6σ difference from the SM prediction of RK = 1±O(10−4) [3]. Notice that the ratio

RK drops the uncertainties associated with the CKM matrix elements while the uncertainties asso-

ciated with the hadronic form factors are reduced. Combining RK with other anomalies associated

with b→ s transitions, e.g. Bs→ φ µ+µ−, yields a 4-5σ discrepancy with respect to the SM [9].
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B̄
D(∗)

W−∗

ℓ−

ν̄ℓ

Figure 5: Feynman Diagram for the three body decay of a B meson: B̄→ D(∗) W−∗(→ `−ν̄`).

Another example is the process B̄→ D(∗) W−∗(→ `−ν̄`) (see Figure 5). The Heavy-Flavor

Averaging Group has evaluated the averages of R(D) and R(D∗) [1]:

R(D) ≡ B(B̄→ D+τ−ν̄τ)

B(B̄→ D+`−ν̄`)
= 0.397±0.040±0.028 ,

R(D∗) ≡ B(B̄→ D∗+τ−ν̄τ)

B(B̄→ D∗+`−ν̄`)
= 0.316±0.016±0.010 , (4)

where ` = e,µ . The SM predictions are R(D) = 0.305± 0.012 and R(D∗) = 0.252± 0.004 [10].

Hence, the R(D) and R(D∗) experimental averages deviate from the SM by 1.9σ and 3.3σ , respec-

tively. (A combined analysis of R(D) and R(D∗), including correlations, gives a 4σ deviation from

the SM [1, 2].) These two measurements of lepton flavor non-universality, respectively referred to

as the RK and R(D(∗)) puzzles, may be providing a hint of the new physics (NP) believed to exist

beyond the SM. Recent reviews of the anomalies in RK and RD∗ may be found in Refs. [11].

Recently, the ratio RK∗ has also been measured by the LHCb Collaboration and shows a similar

tension with respect to the standard model as RK [12]. The process is B0→ K∗`+`−, i.e. a neutral

B meson decay.

Rexpt
K∗ =

 0.660+0.110
−0.070 (stat)±0.024 (syst) , 0.045≤ q2 ≤ 1.1 GeV2 , (low q2)

0.685+0.113
−0.069 (stat)±0.047 (syst) , 1.1≤ q2 ≤ 6.0 GeV2 , (central q2) .

(5)
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The ratios differ from the standard model by 2.2-2.4σ at low q2 and 2.4-2.5σ at central q2.

This further hints at b anomalies pointing towards new physics. Refs. [13] and [14] try reconciling

the RK and RK∗ puzzles.

In addition, note that the three-body decay B0→ K∗µ+µ− by itself offers a large number of

observables in the kinematic and angular distributions of the final-state particles, and it has been

argued that some of these distributions are less affected by hadronic uncertainties [15]. Interest-

ingly, the measurement of one of these observables shows a deviation from the SM prediction

[16]. However, the situation is not clear whether this anomaly is truly a first sign of new physics.

There are unknown hadronic uncertainties that must be taken into account before one can draw this

conclusion [17, 18, 19].

3.2 GGL

To search for an explanation of RK , in Ref. [20] Hiller and Schmaltz perform a model-independent

analysis of b→ s`+`−. They consider NP operators of the form (s̄Ob)( ¯̀O ′`), where O and O ′

span all Lorentz structures. They find that the only NP operator that can reproduce the exper-

imental value of RK is (s̄γµPLb)( ¯̀γµPL`). This is consistent with the NP explanations for the

B→ K(∗)µ+µ− angular distributions measured by LHCb [18].

Typically, lepton-flavour non-universality implies LFV [4], but not always [21]. In Ref. [22],

Glashow, Guadagnoli and Lane (GGL) note that lepton flavor non-universality is necessarily as-

sociated with lepton flavor violation (LFV). With this in mind, they assume that the NP couples

preferentially to the third generation, giving rise to the operator

G(b̄′Lγµb′L)(τ̄
′
Lγ

µ
τ
′
L) , (6)

where G = O(1)/Λ2
NPλ`GF , and the primed fields are the fermion eigenstates in the gauge ba-

sis. The gauge eigenstates are related to the physical mass eigenstates by unitary transformations
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involving Ud
L and U`

L:

d′L3 ≡ b′L =
3

∑
i=1

Ud
L3idi , `′L3 ≡ τ

′
L =

3

∑
i=1

U`
L3i`i . (7)

With this, Eq. (6) generates an NP operator that contributes to b̄→ s̄µ+µ−:

G
[
Ud

L33Ud∗
L32|U`

L32|2(b̄LγµsL)(µ̄Lγ
µ

µL)+h.c.
]
. (8)

Because the coefficient of this operator involves elements of the mixing matrices, which are un-

known, one cannot make a precise evaluation of the effect of this operator on B(B+→K+µ+µ−),

and hence on RK . Still, GGL note that the hierarchy of the elements of Cabibbo-Kobayashi-

Maskawa quark mixing matrix, along with the apparent preference of the NP for muons over

electrons, suggests that |Ud,`
L33| ' 1 and |Ud,`

L31|2 << |Ud,`
L32|2 << 1. Furthermore, there are limits on

some ratios of magnitudes of matrix elements. Taken together, GGL find that the observed value

of RK can be accommodated with the addition of the NP operator in Eq. (8).

In any case, GGL’s main point is not so much to offer Eq. (6) as an explanation of RK , but

rather to stress that the NP responsible for the lepton flavor non-universality will generally also

lead to an enhancement of the rates for lepton-flavor-violating processes such as B→ Kµe,Kµτ

and Bs → µe,µτ . In the case of Eq. (6), it is clear how LFV arises. This operator is written in

terms of the fermion fields in the gauge basis and does not respect lepton-flavor universality. In

transforming to the mass basis, the GIM mechanism [23] is broken, and processes with LFV are

generated.

In fact, this behavior is quite general. In writing down effective Lagrangians, it is usually only

required that the operators respect SU(3)C×U(1)em gauge invariance. However, it was argued

in Refs. [20, 24] that if the scale of NP is much larger than the weak scale, the operators gener-

ated (when one integrates out the heavy NP degrees of freedom) must be invariant under the full

SU(3)C×SU(2)L×U(1)Y gauge group. In the same vein, the operators should be written in terms

of the fermion fields in the gauge basis – after all, above the weak scale, the mass eigenstates do
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not (yet) exist. If these operators break lepton universality, lepton-flavor-violating interactions will

appear at low energy when one transforms to the mass basis. (Note, however, that in explicit mod-

els one can avoid lepton flavor non-universality and lepton flavor violation through the imposition

of additional symmetries. One such example can be found in Ref. [25].)

There have been a number of analyses, both model-independent and model-dependent, ex-

amining explanations of the RK puzzle. (Sometimes the data from the B→ K(∗)µ+µ− angular

distributions were also included.) In all cases, the low-energy operators were written in terms

of mass eigenstates, and lepton-flavor-violating operators were not included. However, as argued

above, such operators will appear when lepton universality is broken. Now, the model-independent

analyses [18, 20, 24, 26] will be little changed by the inclusion of such operators. However, con-

siderations of such lepton-flavor-violating interactions would be useful in the context of model-

dependent analyses. Leptoquarks [20, 27] and R-parity-violating SUSY [28] have been proposed

as possible solutions to the RK puzzle. In both cases, it would be interesting to examine the pre-

dictions for the lepton-flavor-violating processes.

Coming back to the GGL operator of Eq. (6), it too must be made invariant under SU(3)C×

SU(2)L×U(1)Y . There are two consequences. First, the left-handed fermion fields must be re-

placed by SU(2)L doublets: b′L→Q′L and τ ′L→ L′L, where Q′≡ (t ′,b′)T and L′≡ (ν ′τ ,τ
′)T . Second,

there are two NP operators that are invariant under SU(2)L and contain Eq. (6):

O
(1)
NP = G1(Q̄′LγµQ′L)(L̄

′
Lγ

µL′L) ,

O
(2)
NP = G2(Q̄′Lγµσ

IQ′L)(L̄
′
Lγ

µ
σ

IL′L) , (9)

where G1 and G2 are both O(1)/Λ2
NP (but not equal to one another), and σ I are the Pauli matrices

(the generators of SU(2)). Using the identity

σ
I
i jσ

I
kl = 2δilδk j−δi jδkl , (10)
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where i, j are SU(2)L indices, the second operator can be written as

O
(2)
NP = G2

[
2(Q̄′iLγµQ′ jL )(L̄

′ j
L γ

µL′iL)− (Q̄′LγµQ′L)(L̄
′
Lγ

µL′L)
]
. (11)

The two operators correspond to different types of underlying NP. Specifically, O
(1)
NP contains only

neutral-current (NC) interactions, while O
(2)
NP contains both neutral-current and charged-current

(CC) interactions. O
(2)
NP therefore offers the potential to simultaneously explain both the RK and

R(D(∗)) puzzles, and one may examine the effects of including this NP operator.

Writing O
(2)
NP explicitly in terms of the up-type and down-type fields, there are four NC opera-

tors and one CC operator:

O
(2)
NP = Ottντ ντ

+Obbττ +Ottττ +Obbντ ντ
+Otbτντ

, (12)

with

Ottντ ντ
= G2(t̄ ′Lγµt ′L)(ν̄

′
τL

γ
µ

ν
′
τL
) ,

Obbττ = G2(b̄′Lγµb′L)(τ̄
′
Lγ

µ
τ
′
L) ,

Ottττ = −G2(t̄ ′Lγµt ′L)(τ̄
′
Lγ

µ
τ
′
L) ,

Obbντ ντ
= −G2(b̄′Lγµb′L)(ν̄

′
τLγ

µ
ν
′
τL) ,

Otbτντ
= 2G2(t̄ ′Lγµb′L)(τ̄

′
Lγ

µ
ν
′
τL). (13)

If both O
(1)
NP and O

(2)
NP are present then the NC interactions receive contributions from both NP

operators.

Above, notice that the NC part of O
(2)
NP contains Obbττ , which is the GGL operator of Eq. (6).

In transforming to the mass basis, the GGL piece therefore contributes to b̄→ s̄ transitions through

the quark-level decays b̄→ s̄`+`− and b̄→ s̄`+`′−. These generate the meson-level decays B→

K(∗)µ+µ−,B→K(∗)µ±e∓,B→K(∗)µ±τ∓,Bs→ µ+µ−,B0→Xsµ
+µ−,B0

s→ µ+µ−γ, etc. (Many

of these decays are discussed by GGL.) The largest effects will be an enhancement of the SM con-
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tribution to b̄→ s̄τ+τ−, and the generation of the lepton-flavor-violating decays b̄→ s̄τ±µ∓[31].

Thus far, LFV has been only observed in neutrino oscillations. Ref. [32] relates possible LFV in

B decays to the CP phase δ in neutrino oscillations.

3.3 RK

Let us begin by discussing the effect of O
(2)
NP on RK . The amplitude for b̄→ s̄`+i `

−
i (`1 = e, `2 = µ)

can be expressed as

A`i
= ASM

(
1+V bs`i

L

)
, V bs`i

L =
κ

C9

Ud
L33Ud∗

L32
VtbV ∗ts

|U`
L3i|2 , κ =

4π

αEM

g2
2

g2
M2

W

Λ2
NP

. (14)

Here ASM is the lepton-flavor-universal (SM) contribution, the Vi j are Cabibbo-Kobayashi-Maskawa

(CKM) matrix elements, C9 is a Wilson coefficient, and G2 = g2
2/Λ2

NP. Neglecting the masses of

the leptons one arrives at the following result:

RK =
1+2Re[V bsµ

L ]+ |V bsµ

L |2
1+2Re[V bse

L ]+ |V bse
L |2

≈ 1+
8π

C9αEM

g2
2

g2
M2

W

Λ2
NP

Ud
L32|U`

L32|2
λ 2 , (15)

where λ is the sine of the Cabibbo angle. The usual hierarchy of CKM matrix elements is assumed

and all CP-violating phases are ignored. The 5σ limit on RK from LHCb then implies

−2×10−4 <∼
1

C9

g2
2

g2
M2

W

Λ2
NP

Ud
L32|U`

L32|2
λ 2

<∼ 7×10−5 . (16)

It is clear that the LHCb measurement [8] constrains the magnitudes of the down-type and lepton

mixing-matrix elements. However, a further set of constraints will be obtained below.

In addition to the decays produced by the GGL operator, one now also has the quark-level

decay b̄→ s̄νν̄ that contributes to B→ K(∗)νν̄ . The amplitude for b̄→ s̄νiν̄ j can be expressed as

Ai j = Ci j(b̄LγµsL)(ν̄iLγ
µ

ν jL) . (17)
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The SM contributes only to terms diagonal in neutrino flavor (i = j), while the NP operator also

gives rise to off-diagonal terms that violate lepton flavor (i 6= j). Then

Ci j = κSM

(
δi j−

κ

CSM
L

Ud
L33Ud∗

L32
VtbV ∗ts

U∗νL3iU
ν
L3 j

)
, (18)

where

κSM =

√
2GFαEM

π
VtbV ∗tsC

SM
L . (19)

In the above, CSM
L is a Wilson coefficient [19]. The square of the amplitude for the process is thus

proportional to

∑
i, j
|Ci j|2 = 3|κSM|2

(
1− 2κ

3
Re [x]+

κ2

3
|x|2
)

, (20)

where x =
(
Ud

L33Ud∗
L32
)
/
(
VtbV ∗ts

)
.

Ignore all CP-violating phases, so that x is real. Taking |Ud
L33| ∼ 1, then x ∼ Ud

L32/λ 2. The

decay rate for B→ K(∗)νν̄ is given by

Γ = ΓSM

(
1− 2κUd

L32
3λ 2 +

(κUd
L32)

2

3λ 4

)
. (21)

The SM decay rate can be expressed as follows:

ΓSM =
mB|κSM|2

64π3

q2|max∫
0

ρK(∗)(q
2)dq2 , (22)

where q represents the sum of four momenta of the neutrino and the antineutrino, and ρ
K(∗) is the

appropriate B→ K(∗) transition form factor. (Note that neutrinos are treated as massless particles.)

Thus the NP term simply modifies the SM rate for B→ Kνν̄ by an overall numerical factor.

One can use the above result to get an estimate of how large the NP couplings and mixing
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matrix elements can be. A precise calculation of the SM branching ratio for B+ → K+νν̄ was

performed in Ref. [19]. It was found that

B(B+→ K+
νν̄)SM = (4.20±0.33±0.15)×10−6 . (23)

The strongest experimental bounds from the BaBar Collaboration [30] at present set an upper limit

of 3.7×10−5 at the 90% confidence level. Thus there is still room for the measured decay rate to be

larger than the SM prediction. Taking CSM
L ≈−6.13 [19], it follows κ '−281(g2/g)2(MW/ΛNP)

2.

A factor of five enhancement in the decay rate due to the NP operator O
(2)
NP would then imply

−1.6×10−2 <∼
g2

2
g2

M2
W

Λ2
NP

Ud
L32

λ 2
<∼ 9.3×10−3 . (24)

If ΛNP' 10MW then (g2
2/g2)(Ud

L32/λ 2) must be O(1). In this case, a NP coupling of the same order

as that of the SM will still allow a reasonably large value for Ud
L32. For example, if g/2 <∼ g2 <∼ g,

one can have λ >∼Ud
L32 >∼ λ 2. In addition, combine Eqs. (16) and (24). Since C9 is an O(1) number,

this implies that an O(10−1) value for |U l
L32| is still allowed. A more precise measurement of both

RK and B+ → K+νν̄ will put stricter bounds on both the down-type and lepton mixing-matrix

elements.

Finally, the neutral-current part of O
(2)
NP also contributes to the decays t → c`+`−, t → c`+`′−

and t → cνν̄ . The branching ratios for these decays are negligible in the SM, so any observation

would be a clear sign of NP. For decays to charged leptons, the most promising is t → cτ+τ−. In

the mass basis, the contributing NP operator is

G
[
Uu∗

L32Uu
L33 |U`

L33|2 (c̄Lγ
µtL)(τ̄LγµτL)+h.c.

]
, (25)

which gives a partial width of

g4
2|Uu

L32|2 |Uu
L33|2 |U`

L33|4
16Λ4

NP

m5
t

48π3 . (26)
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Taking g2 ∼ g, |Uu
L33| ' |U`

L33| ' 1, |Uu
L32| ' λ , and ΛNP = 800 GeV, this gives

Γ(t→ cτ
+

τ
−) = 1×10−7 GeV . (27)

The full width of the t quark is 2 GeV, so this corresponds to a branching ratio of 5× 10−8.

This is much larger than the SM branching ratio (O(10−16)), but is still tiny. The branching ratio

for t → cνν̄ takes the same value, while those for all other t → c`+`− and t → c`+`′− decays

are considerably smaller. Thus, while the branching ratios for these decays can be enormously

enhanced compared to the SM, they are still probably unmeasurable. (This point is also noted in

Ref. [20].)

Another process involving t quarks that could potentially reveal the presence of NP with LFV

is pp→ tt̄, followed by the radiation of a τ±µ∓ pair. At the LHC with a 13 TeV center-of-

mass energy, gluon fusion dominates the production of tt̄ pairs. MadGraph 5 [33] has been used

to calculate the cross section for gg→ tt̄τ±µ∓, taking g2 ∼ g. The result is σtt̄τµ ≈ 0.4|U`
L32|2

fb. By contrast, the SM cross section for tt̄ pair production is σtt̄ ≈ 450 pb, so that σtt̄τµ/σtt̄ ≈

10−6|U`
L32|2, which is extremely small. With a luminosity of 100 f b−1 /year at the 13 TeV LHC

[34], one may therefore expect about 40 events/year for gg→ tt̄τ±µ∓ if |U`
L32| ∼ 1, or about two

events/year if |U`
L32| ∼ λ . Thus, even though the final-state signal is striking, pp→ tt̄τ±µ∓ is

probably unobservable.

3.4 R(D(∗))

Turning to the charged-current interactions, these contribute to both b and t semileptonic decays.

Even with the enhancement from NP, the decay t → bτν̄τ will still be difficult to observe, as it is

swamped by the two-body decay t → bW . On the other hand, the decay b→ cτν̄i (i = τ,µ,e) is

particularly interesting, since it contributes to the decay B̄→ D(∗)+τ−ν̄τ and the R(D(∗)) puzzle

[Eq. (4)], and provides a source of lepton flavor non-universality in such decays.
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In the SM, the effective Hamiltonian for the quark-level transition b→ cτν̄τ is

He f f =
4GFVcb√

2
(c̄LγµbL)(τ̄Lγ

µ
ντL)+h.c. . (28)

Now, if O
(2)
NP is also present, in addition to τν̄τ in the final state, the NP operator also produces

τν̄µ and τν̄e. However, as the final-state neutrino is not observed, one must sum over the neutrino

species. That is, the squared-amplitude for b→ cτ−ν̄i can be written as

|A|2 = ∑
i=τ,µ,e

|Ai|2 , (29)

with

Ai =
4GFVcb√

2

[
δiτ +V cbτνi

L

]
, V cbτνi

L = 4
g2

2
g2

M2
W

Λ2
NP

Ud
L33Uu

L32U`
L33Uν

L3i
Vcb

. (30)

As was done above, it is written G2 ≡ g2
2/Λ2

NP and used GF/
√

2 = g2/8M2
W . One then has

|A|2 = |A|2SM

[
1+2Re(V cbτντ

L )+ |V cbτ
L |2

]
, (31)

where

|V cbτ
L |2 ≡∑

i
|V cbτνi

L |2 =
∣∣∣∣∣4 g2

2
g2

M2
W

Λ2
NP

Ud
L33Uu

L32U`
L33

Vcb

∣∣∣∣∣
2

. (32)

(Here the fact that ∑i |Uν
L3i|2 = 1 is used.) The addition of the NP operator thus has the effect

of modifying the SM prediction for Γ(b→ cτν̄i) by an overall factor that is lepton flavor non-

universal. In fact, if the elements of the charged-lepton mixing matrix obey the hierarchy suggested

by GGL, namely |U`
L33| ' 1 and |U`

L31|2 << |U`
L32|2 << 1, then b→ cτν̄i is affected by the NP,

but b→ cµν̄i and b→ ceν̄i are basically unchanged from the SM.

The simple prediction then follows.

[
R(D)

R(D∗)

]
exp

=

[
R(D)

R(D∗)

]
SM

. (33)
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Using Eq. (4), it is seen that

[
R(D)

R(D∗)

]
exp

= 1.26±0.17 ,

[
R(D)

R(D∗)

]
SM

= 1.21±0.05 . (34)

So this model is consistent with experiment, but a careful measurement of the double ratio can

rule it out. The double ratio in the SM is also likely to have less uncertainty from hadronic form

factors. Furthermore, all angular asymmetries, such as the D∗ polarization, forward-backward

asymmetries, and the azimuthal angle asymmetries including the triple products, will show no

deviation from the SM as these asymmetries probe non-SM operator structures.

If the ratios R(D(∗)) are defined with respect to the B→D(∗)µν decay mode, one can also write

[
R(D∗)exp

R(D∗)SM

]
=

[
R(D)exp

R(D)SM

]
=

[
1+2Re(V cbτντ

L )+ |V cbτ
L |2

]
[
1+2Re(V cbµνµ

L )+ |V cbµ

L |2
] . (35)

Again assuming a hierarchy in the mixing matrix, to leading order one has

[
R(D∗)exp

R(D∗)SM

]
=

[
R(D)exp

R(D)SM

]
≈
[

1+8
g2

2
g2

M2
W

Λ2
Uu

L32
Vcb

]
. (36)

Averaging [R(D∗)exp/R(D∗)SM] and [R(D)exp/R(D)SM], one gets

8
g2

2
g2

M2
W

Λ2
Uu

L32
Vcb

≈ 0.3 . (37)

Taking g/2 <∼ g2 <∼ g and Λ∼ 10MW , this gives 0.6 >∼Uu
L32 >∼ λ .

There have been numerous analyses examining NP explanations of the R(D(∗)) measurements

[35, 36]. Above, in the context of RK , it has been noted that, assuming the scale of NP is much

larger than the weak scale, all NP operators must be invariant under the full SU(3)C× SU(2)L×

U(1)Y gauge group. This same argument applies also to NP proposed to explain R(D(∗)). Such

considerations were applied to the semileptonic b→ c transitions in Ref. [37], but they could have

important implication for the various NP explanations of the R(D(∗)) puzzle.

22



Recent literature provides other avenues of investigating these possible flavor anomalies. Z′

models with FCNC’s at tree-level imply lepton-flavour non-universal couplings [38]. Ref. [39]

considers RGE’s from above the electroweak scale down to 1 GeV obtaining LFU breaking and

LFV effects in B-decays. Other papers considering radiative corrections can be found in Ref.

[40]. R-parity violating supersymmetric effects are probed in R(D(∗)) with sensitivity to the slep-

ton exchange coupling, but herein, R(D(∗)) does not reach the lower limit of the 95% confidence

level experimental average of BaBar, Belle, and LHCb [41]. Ref. [42] decreases the discrepan-

cies between inclusive and exclusive determinations of Vub and Vcb along with the tension between

the SM and experimental values of RK and R(D(∗)) with a triplet of massive vector bosons un-

der SU(2)L coupled to third generation fermions. Composite Higgs models with leptoquarks are

used to explain the RK anomaly [43]. RK and R(D(∗)) anomalies are correlated to B→ K(∗)νν̄

using gauge invariant dim-6 operators [44]. Leptoquark scenarios [45] are ubiquitous in the liter-

ature. Vector-like fermions have been pursued [46]. Testing lepton universality is possible in tau

neutrino scattering [110]. Finally, Ref. [47] uses the LFV in B(h→ τµ) through a scalar opera-

tor to predict RK while a calculation of the charged-lepton mixing matrices has also been done[49].

3.5 Conclusion for Lepton Flavor Non-Universality in RK and R(D(∗))

To sum up, the recent measurement of RK ≡ B(B+ → K+µ+µ−)/B(B+ → K+e+e−) by the

LHCb Collaboration differs from the SM prediction of RK = 1 by 2.6σ . And the Heavy-Flavor

Averaging Group has averaged the ratios R(D(∗)) ≡ B(B̄→ D(∗)+τ−ν̄τ)/ B(B̄→ D(∗)+`−ν̄`)

(` = e,µ), finding discrepancies with the SM of 1.9σ (R(D)) and 3.3σ (R(D∗)). The RK and

R(D(∗)) puzzles exhibit lepton flavor non-universality, and therefore hint at new physics (NP).

Recently, Glashow, Guadagnoli and Lane (GGL) [22] proposed an explanation of the RK puz-

zle. They assume that the NP couples preferentially to the third generation, and generates the

neutral-current operator (b̄′Lγµb′L)(τ̄
′
Lγµτ ′L), where the primed fields denote states in the gauge ba-

sis. When one transforms to the mass basis, one obtains operators that give rise to decays that
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violate lepton universality (and lepton flavor conservation).

It is known that, assuming the scale of NP is much larger than the weak scale, all NP operators

must be made invariant under the full SU(3)C×SU(2)L×U(1)Y gauge group. We find that when

this is applied to the GGL operator, there are two types of fully gauge-invariant NP operators

that are possible. And one of these contains both neutral-current and charged-current interactions.

While GGL has shown that the neutral-current piece of this NP operator can explain the RK puzzle,

another possibility is that the charged-current piece can simultaneously explain the R(D(∗)) puzzle.

This model makes a prediction for the double ratio R(D)/R(D∗), so that it can be ruled out with a

more precise measurement of this quantity.
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CHAPTER 4: IMPLICATIONS FOR Λb DECAY

4.1 Introduction

A major part of particle physics research is focused on finding physics beyond the standard model

(SM). In the flavor sector a key property of the SM gauge interactions is that they are lepton flavor

universal. Evidence for violation of this property would be a clear sign of new physics (NP) beyond

the SM. In the search for NP, the second and third generation quarks and leptons are quite special

because they are heavier and are expected to be relatively more sensitive to NP. As an example, in

certain versions of the two Higgs doublet models (2HDM) the couplings of the new Higgs bosons

are proportional to the masses and so NP effects are more pronounced for the heavier generations.

Moreover, the constraints on new physics, especially involving the third generation leptons and

quarks, are somewhat weaker allowing for larger new physics effects.

From BaBar [50, 51], Belle [52], and LHCb [53], the averages as evaluated by the Heavy-

Flavor Averaging Group are [1]:

R(D) ≡ B(B̄→ D+τ−ν̄τ)

B(B̄→ D+`−ν̄`)
= 0.397±0.040±0.028 ,

R(D∗) ≡ B(B̄→ D∗+τ−ν̄τ)

B(B̄→ D∗+`−ν̄`)
= 0.316±0.016±0.010 , (38)

where ` = e,µ . The SM predictions are R(D) = 0.305± 0.012 and R(D∗) = 0.252± 0.004 [10].

Hence, the R(D) and R(D∗) experimental averages deviate from the SM by 1.9σ and 3.3σ , respec-

tively. (A combined analysis of R(D) and R(D∗), including correlations, gives a 4σ deviation from

the SM [1, 2].) This measurement of lepton flavor non-universality, referred to as the R(D(∗)) puz-

zles, may be providing a hint of the new physics (NP) believed to exist beyond the SM. There have

been numerous analyses examining NP explanations of the R(D(∗)) measurements [4, 35, 36, 54].
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The underlying quark level transition b→ cτ−ν̄τ can be probed in both B and Λb decays [48].

Note that in the presence of lepton non-universality the flavor of the neutrino does not have to

match the flavor of the charged lepton [4]. Moreover the NP can affect all the lepton flavors.

The main assumption here is that the NP effect is largest for the τ sector and for simplicity one

may neglect the smaller NP effects in the µ and e leptons. The Λb being a spin 1/2 baryon has

a complex angular distribution for its decay products. As in B decays, several observables are

constructed from the angular distribution of the Λb decay which can be used to find evidence of

NP and to probe the structure of NP.

The decay Λb→ Λcτν̄τ has not been measured experimentally though it might be possible to

observe this decay at the LHCb. Λb baryons make up 20% of the b-hadrons produced at the LHC

and are comparable in number to the production of Bu and Bd mesons, but significantly higher than

Bs mesons [55]. The full angular distribution of this decay is experimentally challenging and thus,

for the sake of phenomenology, the focus is on the rate as well as the q2 differential distribution for

this decay. Using constraints on the new physics couplings obtained by using Eq. (38) predictions

are made for the effects of these couplings in Λb→ Λcτν̄τ decay. Recently, in Ref. [56] this decay

was discussed in the standard model and with new physics in Ref. [57]. Note that both the Belle

[58] and the BaBar [59] experiments have scanned close to the ΛbΛ̄b threshold.

The main uncertainty in the Λb→ Λcτν̄τ decays are the hadronic form factors for the Λb→ Λc

transition. These form factors can also be studied systematically in a heavy mb and mc expansion

[60]. However, unlike the B system the heavy baryon form factors have not been extensively

studied. Therefore ratios are constructed where the form factor uncertainties will mostly cancel

leaving behind a smaller uncertainty for the theoretical predictions. Then an investigation is done

to see if the NP effects are large enough to produce observable deviations from the SM predictions.

The topic is organized in the following manner. The effective Lagrangian is introduced to

parametrize the NP operators. The formalism of the decay process is described and the relevant

observables are introduced. Results and conclusions are presented.
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4.2 Formalism

In the presence of NP, the effective Hamiltonian for the quark-level transition b→ cl−ν̄l can be

written in the form [61]

He f f =
GFVcb√

2

{[
c̄γµ(1− γ5)b+gLc̄γµ(1− γ5)b+gRc̄γµ(1+ γ5)b

]
l̄γµ(1− γ5)νl

+
[
gSc̄b+gPc̄γ5b

]
l̄(1− γ5)νl +h.c

}
. (39)

where GF = 1.1663787×10−5 GeV−2 is the Fermi coupling constant, Vcb is the Cabibbo-Koboyashi-

Maskawa (CKM) matrix element and use σµν = i[γµ ,γν ]/2 later. The neutrinos are assumed to be

always left chiral and to introduce non-universality. The NP couplings are in general different for

different lepton flavors. The NP effect is assumed to occur mainly through the τ lepton while ten-

sor operators are not included in the analysis [62]. Further, no relation shall be assumed between

b→ ul−ν̄l and b→ cl−ν̄l transitions and hence do not include constraints from B→ τντ . The SM

effective Hamiltonian corresponds to gL = gR = gS = gP = 0.

In Ref.[54] the NP is parameterized in terms of the couplings gS, gP, gV = gR + gL and gA =

gR− gL while in this work gV and gA have been traded for gL,R to align our analysis closer to

realistic models [4]. The couplings gL,R,P contribute to R(D∗) while gL,R,S contribute to R(D).

One NP coupling shall be considered at a time, incorporating constraints on these couplings from

R(D(∗)).

4.2.1 Decay Process

The process under consideration is

Λb(pΛb)→ τ
−(p1)+ ν̄τ(p2)+Λc(pΛc)
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In the SM the amplitude for this process is

MSM =
GFVcb√

2
LµHµ , (40)

where the leptonic and hadronic currents are,

Lµ = ūτ(p1)γ
µ(1− γ5)vντ

(p2),

Hµ = 〈Λc| c̄γµ(1− γ5)b |Λb〉 . (41)

The hadronic current is expressed in terms of six form factors,

〈Λc| c̄γµb |Λb〉 = ūΛc( f1γµ + i f2σµνqν + f3qµ)uΛb,

〈Λc| c̄γµγ5b| |Λb〉 = ūΛc(g1γµγ5 + ig2σµνqν
γ5 +g3qµγ5)uΛb. (42)

Here q = pΛb − pΛc is the momentum transfer and the form factors are functions of q2. When

considering NP operators one may use the following relations obtained by using the equations of

motion.

〈Λc| c̄b |Λb〉 = ūΛc( f1
/q

mb−mc
+ f3

q2

mb−mc
)uΛb ,

〈Λc| c̄γ5b |Λb〉 = ūΛc(−g1
/qγ5

mb +mc
−g3

q2γ5

mb +mc
)uΛb. (43)

Define the following ratio.

RΛb =
B(Λb→ Λcτν̄τ)

B(Λb→ Λc`ν̄`)
(44)

Here ` represents µ or e. Also, define the ratio of differential distributions as

BΛb(q
2) =

dΓ[Λb→Λcτν̄τ ]
dq2

dΓ[Λb→Λc`ν̄`]
dq2

. (45)
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Λb z

x

W−∗Λ+
c

Λs

π+

θs

τ−

ν̄τ

θℓ

χ

Figure 6: Four body decay of Λb: Λb→ (Λsπ
+)Λ+

c (τ−ν̄τ)W−∗. θs and θ` are the decay angles
in the rest frame of Λc and the center of momentum frame of τ− and ν̄τ , respectively. χ is the
dihedral angle between the decay planes.

The results will show that these observables are not very sensitive to variations in the hadronic

form factors.

4.2.2 Helicity Amplitudes and the Full Angular Distribution

The decay Λb→ Λcτν̄τ proceeds via Λb→ ΛcW ∗(off-shell W) followed by W ∗→ τν̄τ . The full

decay process is Λb→ Λc(→ Λsπ)W ∗(→ τν̄τ) (see Figure 6). Following [63] one can analyze the

decay in terms of helicity amplitudes which are given by

Hλ2λW = Mµ(λ2)ε
∗µ(λW ), (46)

where λ2,λW are the polarizations of the daughter baryon and the W-boson, respectively and Mµ

is the hadronic current for Λb→ Λc transition. The helicity amplitudes can be expressed in terms

of form factors and the NP couplings.

HλΛc ,λw = HV
λΛc ,λw

−HA
λΛc ,λw

,
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HV
1
2 0 = (1+gL +gR)

√
Q−√
q2

(
(M1 +M2) f1−q2 f2

)
,

HA
1
2 0 = (1+gL−gR)

√
Q+√
q2

(
(M1−M2)g1 +q2g2

)
,

HV
1
2 1 = (1+gL +gR)

√
2Q−

(
f1− (M1 +M2) f2

)
,

HA
1
2 1 = (1+gL−gR)

√
2Q+

(
g1 +(M1−M2)g2

)
,

HV
1
2 t = (1+gL +gR)

√
Q+√
q2

(
(M1−M2) f1 +q2 f3

)
,

HA
1
2 t = (1+gL−gR)

√
Q−√
q2

(
(M1 +M2)g1−q2g3

)
, (47)

where Q± = (M1±M2)
2− q2. In the maximum recoil limit, q2→ 0, the longitudinal and scalar

helicity amplitudes dominate. At minimum recoil, q2 → qmax or Q− → 0, the axial transverse

helicity amplitude is proportional to the axial longitudinal helicity amplitude. In other words, an

s-wave dominates at the phase boundaries of q = 0 and q = qmax [63].

Also,

HV
λΛc ,λw

= HV
−λΛc ,−λw

,

HA
λΛc ,λw

= −HA
−λΛc ,−λw

. (48)

The scalar and pseudo-scalar helicities associated with the new physics scalar and pseudo-

scalar interactions are

HSP
1/2,0 = HP

1/2,0 +HS
1/2,0,

HS
1/2,0 = gS

√
Q+

mb−mc

(
(M1−M2) f1 +q2 f3

)
,

HP
1/2,0 = −gP

√
Q−

mb +mc

(
(M1 +M2)g1−q2g3

)
. (49)
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The parity related amplitudes are,

HS
λΛc ,λNP = HS

−λΛc ,−λNP,

HP
λΛc ,λNP = −HP

−λΛc ,−λNP. (50)

With the W boson momentum defining the positive z-axis for the decay process (Λb→Λcτ−ντ ),

the twofold angular distribution2 can be written as

dΓ(Λb→ Λcτ−ντ)

dq2d(cosθl)
=

GF
2|Vcb|2q2|pΛc

|
512π3M1

2

(
1− ml

2

q2

)2 [
ASM

1 +
ml

2

q2 ASM
2 +2ANP

3

+
4ml√

q2
AInt

4

]
(51)

where,

ASM
1 = 2sin2

θl(|H1/2,0|2 + |H−1/2,0|2)+(1− cosθl)
2|H1/2,1|2

+(1+ cosθl)
2|H−1/2,−1|2,

ASM
2 = 2cos2

θl(|H1/2,0|2 + |H−1/2,0|2)+ sin2
θl(|H1/2,1|2 + |H−1/2,−1|2)

+2(|H1/2,t |2 + |H−1/2,t |2)−4cosθlRe[(H1/2,t (H1/2,0)
∗+H−1/2,t (H−1/2,0)

∗)],

ANP
3 = |HSP

1/2,0|2 + |HSP
−1/2,0|2,

AInt
4 = −cosθlRe[(H1/2,0 (H

SP
1/2,0)

∗+H−1/2,0 (H
SP
−1/2,0)

∗)]

+Re[(H1/2,t (H
SP

1/2,0)
∗+H−1/2,t (H

SP
−1/2,0)

∗)]. (52)

A1
SM, A2

SM, A3
NP, and A4

Int are the standard model non-spin-flip, standard model spin-flip, new

physics, and interference terms, respectively apart from gL and gR. Note A1
SM, A2

SM have the same

structure as the SM contributions but the helicity amplitudes in these quantities include the new

physics contributions from gL,R. θl is the angle of the lepton in the W rest frame with respect to

2In 1.1, a general derivation is provided including tensor interactions.
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the W momentum.

The leptonic forward-backward asymmetry is

AFB(q2) =

∫ 1
0

dΓ

dq2d cosθl
d cosθl−

∫ 0
−1

dΓ

dq2d cosθl
d cosθl∫ 1

0
dΓ

dq2d cosθl
d cosθl +

∫ 0
−1

dΓ

dq2d cosθl
d cosθl

= −3
4

HP +
2ml

2

q2 HSL +
2ml√

q2
HL+SP

HU+L +
3
2HSP +

ml
2

2q2 (HU+L +3HS)+
3ml√

q2
HS+SP

,

(53)

where

HP = |H1/2,1|2−|H−1/2,−1|2,

HSL = Re[(H1/2,t (H1/2,0)
∗+H−1/2,t (H−1/2,0)

∗)],

HL+SP = Re[(H1/2,0 (H
SP

1/2,0)
∗+H−1/2,0 (H

SP
−1/2,0)

∗)],

HU+L = |H1/2,1|2 + |H−1/2,−1|2 + |H1/2,0|2 + |H−1/2,0|2,

HSP = |HSP
1/2,0|2 + |HSP

−1/2,0|2,

HS = |H1/2,t |2 + |H−1/2,t |2,

HS+SP = Re[(H1/2,t (H
SP

1/2,0)
∗+H−1/2,t (H

SP
−1/2,0)

∗)].

(54)

After integrating out cosθl , the kinematic differential distribution occurs.

dΓ(Λb→ Λcτ−ντ)

dq2 =
GF

2|Vcb|2q2|pΛc |
192π3M1

2

(
1− ml

2

q2

)2 [
BSM

1 +
ml

2

2q2 BSM
2 +

3
2

BNP
3

+
3ml√

q2
BInt

4

]
(55)
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where,

BSM
1 = |H1/2,0|2 + |H−1/2,0|2 + |H1/2,1|2 + |H−1/2,−1|2,

BSM
2 = |H1/2,0|2 + |H−1/2,0|2 + |H1/2,1|2 + |H−1/2,−1|2

+3(|H1/2,t |2 + |H−1/2,t |2),

BNP
3 = |HSP

1/2,0|2 + |HSP
−1/2,0|2,

BInt
4 = Re[(H1/2,t (H

SP
1/2,0)

∗+H−1/2,t (H
SP
−1/2,0)

∗)]. (56)

B1
SM, B2

SM, B3
NP, and B4

Int are the standard model non-spin-flip, standard model spin-flip, new

physics, and interference terms, respectively apart from gL and gR. Again, B1
SM, B2

SM have the

same structure as the SM contributions but the helicity amplitudes in these quantities include the

new physics contributions from gL,R. The gS,P operators generate new terms in the angular distri-

bution.

The angular distribution for the four body decay process
(

Λb → (Λs,π
+)Λcτ−ντ

)
can be

written as below where α is the asymmetry parameter for the process Λc→ Λsπ
+. θl is again the

same leptonic angle. θs is the angle of Λs in the Λc rest frame with respect to the Λc momentum.

χ is the dihedral angle between the decay planes of (τ−,ντ ) and (Λs,π
+) (see Figure 6).

dΓ(Λb→ (Λs,π
+)Λcτ−ντ)

dq2d(cosθl)dχd(cosθs)
=

GF
2|Vcb|2q2|pΛc |

27(2π)4M1
2

(
1− ml

2

q2

)2 [
CSM

1 +
ml

2

q2 CSM
2 +2CNP

3

+
4ml√

q2
CInt

4

]
BΛcΛsπ+ (57)
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where BΛcΛsπ+ is the branching ratio for the process Λc→ Λsπ
+ and

CSM
1 = 2sin2

θl

(
(1+α cosθs)|H1/2,0|2 +(1−α cosθs)|H−1/2,0|2

)
+(1+ cosθl)

2(1−α cosθs)|H−1/2,−1|2 +(1− cosθl)
2(1+α cosθs)|H1/2,1|2

− 4α√
2

sinθl sinθs cos χ

(
(1+ cosθl)Re[H1/2,0 (H−1/2,−1)

∗]

+(1− cosθl)Re[H−1/2,0 (H1/2,1)
∗]
)

− 4α√
2

sinθl sinθs sin χ

(
(1+ cosθl)Im[H1/2,0 (H−1/2,−1)

∗]

−(1− cosθl)Im[H−1/2,0 (H1/2,1)
∗]
)
.

CSM
2 = 2cos2

θl

(
(1+α cosθs)|H1/2,0|2 +(1−α cosθs)|H−1/2,0|2

)
+sin2

θl

(
(1+α cosθs)|H1/2,1|2 +(1−α cosθs)|H−1/2,−1|2

)
+

2α√
2

sin2θl sinθs cos χ

(
Re[H1/2,0 (H−1/2,−1)

∗]−Re[H−1/2,0 (H1/2,1)
∗]
)

+
2α√

2
sin2θl sinθs sin χ

(
Im[H1/2,0 (H−1/2,−1)

∗]+ Im[H−1/2,0 (H1/2,1)
∗]
)

−4cosθl

(
(1+α cosθs)Re[H1/2,t (H1/2,0)

∗]+ (1−α cosθs)Re[H−1/2,t (H−1/2,0)
∗]
)

− 4α√
2

sinθl sinθs cos χ

(
Re[H1/2,t (H−1/2,−1)

∗]−Re[H−1/2,t (H1/2,1)
∗]
)

− 4α√
2

sinθl sinθs sin χ

(
Im[H1/2,t (H−1/2,−1)

∗]+ Im[H−1/2,t (H1/2,1)
∗]
)

+2
(
(1+α cosθs)|H1/2,t |2 +(1−α cosθs)|H−1/2,t |2

)
.

CNP
3 = (1+α cosθs)|HSP

1/2,0|2 +(1−α cosθs)|HSP
−1/2,0|2,

CInt
4 = −cosθl

(
(1+α cosθs)Re[H1/2,0 (H

SP
1/2,0)

∗]

+(1−α cosθs)Re[H−1/2,0 (H
SP
−1/2,0)

∗]
)

+(1+α cosθs)Re[H1/2,t (H
SP

1/2,0)
∗]
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+(1−α cosθs)Re[H−1/2,t (H
SP
−1/2,0)

∗]

+
α sinθl sinθs cos χ√

2

(
Re[H−1/2,−1 (H

SP
1/2,0)

∗]−Re[H1/2,1 (H
SP
−1/2,0)

∗]
)

+
α sinθl sinθs sin χ√

2

(
Im[H−1/2,−1 (H

SP
1/2,0)

∗]− Im[H1/2,1 (H
SP
−1/2,0)

∗]
)
. (58)

C1
SM, C2

SM, C3
NP, and C4

Int are the standard model non-spin-flip, standard model spin-flip, new

physics, and interference terms, respectively apart from gL and gR. C1
SM and C2

SM have the same

structure as the SM contributions but the helicity amplitudes in these quantities include the new

physics contributions from gL,R. Several additional observables can be constructed from the an-

gular distributions, such as polarization asymmetries and CP violating triple product asymmetries

[64] which can be sensitive probes of new physics. T-odd asymmetries, which are based on triple

product correlations, are vanishing due to the SM and is a promising way for searching NP in

Λb→ Λcτν̄τ [65]. Note that the standard model portion of the twofold and fourfold distributions

above, Eq. 51 and Eq. (84b), are the same as in a recent paper [56] apart from a minus sign in CSM
2

above. 3

4.3 Numerical Results

4.3.1 New Physics Couplings

The constraints on the NP couplings from R(D(∗)) are first presented. The couplings gS only

contributes to R(D), gP only contributes to R(D∗) while gL,R contributes to both R(D) and R(D∗).

The details of the calculations for Figure 7 can be found in Refs. [36, 54]. Disentangling NP scalar

and vector interactions in b→ c(u)τν is done in Refs. [66, 67] through polarization of the final

particles τ and D∗ as well as decays Λb→ Λcτν̄τ and B̄→ Xcτ−ν̄τ .

3In [56] Eq. (51), the minus sign is required in front of sin2θ on the second line in the spin-flip term as can be seen
by the d−matrix elements.

35



-6 -4 -2 0 2
-4

-2

0

2

4

Re@gPD

Im
@g

P
D

Only gP present

-1.5 -1.0 -0.5 0.0 0.5

-1.0

-0.5

0.0

0.5

1.0

Re@gSD

Im
@g

S
D

Only gS present

-2.5-2.0-1.5-1.0-0.5 0.0 0.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Re@gLD

Im
@g

L
D

Only gL present

-3 -2 -1 0 1 2 3
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Re@gRD

Im
@g

R
D

Only gR present

Figure 7: The figures show the constraints on the NP couplings taken one at a time at the 95% CL
limit [36, 54]. When the couplings contribute to both R(D) and R(D∗) the green contour indicates
constraint from R(D∗) and blue from R(D).

36



4.3.2 Form Factors

One of the main inputs in our calculations are the form factors. As first principle, lattice calcula-

tions of the form factors are not yet available. The form factors used here are from QCD sum rules,

which is a well known approach to compute non-perturbative effects like form factors for systems

with both light and heavy quarks[68, 69].

In Ref. [69], various parametrizations of the form factors are used. They are shown below (

t = q2).

continuum model κ FV
1 (t) = f1 FV

2 (t)(GeV−1) = f2
rectangular 1 6.66/(20.27− t) −0.21/(15.15− t)
rectangular 2 8.13/(22.50− t) −0.22/(13.63− t)
triangular 3 13.74/(26.68− t) −0.41/(18.65− t)
triangular 4 16.17/(29.12− t) −0.45/(19.04− t)

Table 1: Various choices of Form Factors.

The form factors satisfy the heavy quark effective theory relations in the mb→ ∞ limit4.

f1 = g1 f2 = g2 f3 = g3 = f2. (59)

A recent paper includes lattice QCD tensor form factors [62].

4.3.3 Graphs and Results

The masses of the particles are mΛb = 5.6195 GeV, mτ = 1.77682 GeV, mµ = 0.10565837 GeV,

mλΛc
= 2.28646 GeV, mb = 4.18 GeV, mc = 1.275 GeV and Vcb = 0.0414 [80].

In the following the results are presented for RΛb , dΓ

dq2 and BΛb(q
2). For the first and third

observables different models of the form factors given in Table1 are used. For the differential

distribution dΓ

dq2 the average result over the form factors is presented.

The prediction herein for RΛb in the SM is shown in Table 2, for the various choices of the form

factors in Table 1. The results are compared with other calculations of this quantity by other groups

4In [5], it was incorrectly written that f3 = g3 = 0
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continuum model 1 2 3 4 Average Ref. [56] Ref. [57] Ref. [70]
RΛb(SM) 0.31 0.29 0.28 0.28 0.29± .02 0.29 0.31 0.34± .01

Table 2: Values of RΛb in the SM

using different form factors. Herein, the average value for RΛb in the SM is RΛb,SM = 0.29± .02.

This agrees very well with values for this quantity obtained in Ref. [56] which uses a covariant

confined quark model for the form factors, Ref. [57] which uses the form factor model in Ref. [71],

and Ref. [70] which uses the lattice QCD. This confirms our earlier assertion that the ratio RΛb is

largely free from form factor uncertainties making it an excellent probe to find new physics.

Results may now be interpreted. From the structure of Eq. (55) we can make some general

observations. Start with the case where only gL is present. In this case the NP has the same

structure as the SM and the SM amplitude gets modified by the factor (1+gL) [4]. Hence, if only

gL is present then

RΛb = RSM
Λb
|1+gL|2. (60)

Therefore in this case RΛb ≥ RSM
Λb

and one finds the range of RΛb to be 0.40− 0.27. The shape of

the differential distribution dΓ

dq2 is the same as the SM. In the left-side figures of Figure 8 the plots

are shown for RΛb , dΓ

dq2 and BΛb(q
2) when only gL is present. Then consider the case when only gR

is present. If only gR is present then from Eq. (86),

HV
λΛc ,λw

= (1+gR)
[
HV

λΛc ,λw

]
SM

,

HA
λΛc ,λw

= (1−gR)
[
HA

λΛc ,λw

]
SM

. (61)

In this case no clear relation between RΛb and RSM
Λb

can be obtained. However, for the allowed

gR couplings RΛb is greater than the SM value and is in the range 0.42− 0.30 . The shape of the

differential distribution dΓ

dq2 is the same as the SM. In the right-side figures of Figure 8 the plots are

shown for RΛb , dΓ

dq2 and BΛb(q
2) when only gR is present.
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Now consider the case when only gS,P are present. Using Eq. (55) and Eq. (88) one can write,

RΛb = RSM
Λb

+ |gP|2AP +2Re(gP)BP,

RΛb = RSM
Λb

+ |gS|2AS +2Re(gS)BS. (62)

The quantities AS,P and BS,P depend on masses and form factors and they are positive. Hence for

Re(gP) ≥ 0 or Re(gS) ≥ 0, RΛb is always greater than or equal to RSM
Λb

. But, for Re(gP) < 0 or

Re(gS) < 0, RΛb can be less than the SM value. However, given the constraints on gS,P one can

make RΛb only slightly less than the SM value. One finds RΛb is in the range 0.34− 0.28 when

only gS is present and in the range 0.39− 0.31 when only gP is present. 13 TeV LHC data rules

out a pseudoscalar, A, explaining R(D(∗)) and (g−2)µ by a FCNC t→ A c [72]

In Figure 9 we show the plots for RΛb , dΓ

dq2 and BΛb(q
2) when only gP is present. The shape

of the differential distribution dΓ

dq2 can be different from the SM. In Figure 10 the plots are shown

for RΛb , dΓ

dq2 and BΛb(q
2) when only gS is present. In this case also the shape of the differential

distribution dΓ

dq2 can be different from the SM. In Table 3 the minimum and maximum values for

the averaged RΛb are given with the corresponding NP couplings.

NP RΛb,min RΛb,max
Only gL 0.27, gL =−0.0214 i 0.40, gL = 0.182 i
Only gR 0.30, gR =−0.0386+0.166 i 0.42, gR = 0.0472−0.692 i
Only gS 0.28, gS =−0.0352 0.34, gS = .270
Only gP 0.31, gP = 0.684 0.39, gP =−4.882

Table 3: Minimum and Maximum values for the averaged RΛb .

There has been recent work following our paper using leptoquarks [45]. A one TeV scalar

LQ transforming as (3, 1,-1
3 ) under the SM gauge group may address the RK , R(D(∗)), and (g−

2)µ anomalies [73]. One vector LQ transforming as (3, 3,2
3 ) under the SM gauge group may

address RK , R(D(∗)), and the angular observable P′5 in B̄→ K̄∗µ+µ− [74]. Λb→ Λcτν̄τ has been

considered in the literature since it has the same quark transition as B̄→ D∗+τ−ν̄τ . The two
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scenarios of using a scalar LQ or vector LQ give similar enhancements for the ratio RλΛc
and

the branching fraction B(Λb → Λcτν̄τ) [75]. Also for the latter Λb decay, these two scenarios

coincide nearly with the SM predictions of lepton forward-backward asymmetry and longitudinal

polarizations of λΛc and τ . Li et al. [75] conclude it is difficult to distinguish between these two

scenarios in Λb→ Λcτν̄τ .

Another pursuit in the recent literature has been τ identification. τ identification and de-

tection systematics are largely canceled by introducing the observable Rτ

D(∗) =
R(D(∗))

B(B−→ τ−ν̄τ)
.

According to BaBar and Belle, notwithstanding the uncertainty in the parameter Vub, the new

observables are consistent with the SM [76]. With a more precise measurement of Vub, these

new observables can further constrain the NP scalar and vector parameter space for R(D(∗)) and

B(B− → τ−ν̄τ) [77]. Finally, Ref. [78] extends the work herein on the NP implications for

Λb → Λc`ν̄` by performing a combined analysis of the latter and Λb → p`ν̄` and including the

anomaly R`
π =

τB0

τB−

B(B−→ τ−ν̄τ)

B(B0→ π+`−ν̄`)
. The latter ratio has more than a 2σ discrepancy with re-

spect to the standard model.

4.4 Conclusion of Lepton Flavor Non-Universality for Λb Decay

The SM and NP predictions are calculated for the decay Λb → Λcτν̄τ . Motivation to study this

decay comes from the recent hints of lepton flavor non-universality observed by the BaBar Col-

laboration [50, 51], Belle [52], and LHCb [53] in R(D(∗))≡ B(B̄→D(∗)+τ−ν̄τ )

B(B̄→D(∗)+`−ν̄`)
(`= e,µ). A general

parametrization of the NP operators has been used while the new physics couplings were fixed

from the experimental measurements of R(D) and R(D∗). Then predictions followed for RΛb (Eq.

(44)), dΓ

dq2 , and BΛb(q
2) (Eq. (45)) for the various NP couplings taken one at a time. It has been

found that gL,R couplings gave predictions larger than the SM values for all the three observables.

Also, the gP couplings produce larger effects than the gS couplings. Lastly, the general formula for

the various angular distributions in the presence of NP operators has been given.
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Figure 8: The graphs on the left-side (right-side) show the compared results between the standard
model and new physics with only gL (gR) present. The top and bottom row of graphs depict

RΛb =
B(Λb→Λcτν̄τ )
B(Λb→Λc`ν̄`)

and the ratio of differential distributions BΛb(q
2) =

dΓ

dq2 (Λb→Λcτν̄τ )

dΓ

dq2 (Λb→Λc`ν̄`)
as a function

of q2, respectively for the various form factors in Table 1. The middle graphs depict the average
differential decay rate with respect to q2 for the process Λb→ Λcτν̄τ . Some representative values
of the couplings have been chosen.
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Figure 9: The figures show the compared results between the standard model and new physics
with only gP present. The top and bottom row of graphs depict RΛb =

B(Λb→Λcτν̄τ )
B(Λb→Λc`ν̄`)

and the ratio of

differential distributions BΛb(q
2) =

dΓ

dq2 (Λb→Λcτν̄τ )

dΓ

dq2 (Λb→Λc`ν̄`)
as a function of q2, respectively for the various

form factors in Table 1. The middle graphs depict the average differential decay rate with respect
to q2 for the process Λb→ Λcτν̄τ . Some representative values of the couplings have been chosen.
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Figure 10: The figures show the compared results between the standard model and new physics
with only gS present. The top and bottom row of graphs depict RΛb =

B(Λb→Λcτν̄τ )
B(Λb→Λc`ν̄`)

and the ratio of

differential distributions BΛb(q
2) =

dΓ

dq2 (Λb→Λcτν̄τ )

dΓ

dq2 (Λb→Λc`ν̄`)
as a function of q2, respectively for the various

form factors in Table 1. The middle graphs depict the average differential decay rate with respect
to q2 for the process Λb→ Λcτν̄τ . Some representative values of the couplings have been chosen.
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CHAPTER 5: SEARCHING FOR A CHARGED HIGGS

5.1 Introduction

In 2012 ATLAS and CMS discovered the standard model Higgs boson in ZZ∗ and γγ final states

[79]. This discovery corroborates spontaneous symmetry breaking and the generation of mass

for the fermions and weak bosons. Yet, there is no principle forbidding other Higgs-like scalars.

Additional Higgs-like scalars appear in many extensions of the standard model (SM) such as su-

persymmetry that requires at least two Higgs doublets. Herein, the focus is on a charged Higgs,

H±, from the two Higgs Doublet Model (2HDM) of the Type II and leptophilic (L2HDM) variety.

There is a lower limit of 80 GeV for the charged Higgs mass at 95 % CL [80] coming from

LEP searches in e+e−→ H+H−. Older limits give charged Higgs mass greater than 92 GeV at

95 % CL [81]. Note that one can also put limits on the charged Higgs mass from the B→ Xsγ

measurement [82], but in principle there can be additional contributions to this decay in which

case the limits do not apply. Also if the charged Higgs has suppressed coupling to quarks then this

charged Higgs mass limit is weakened.

In the era of LHC there have been searches for the charged Higgs which can be turned into

exclusion regions for the parameters of a specific model. At ATLAS, in top quark-pair production,

the likelihood of a charged Higgs has been constrained in the mode t → b(τ+ντ)H+ to B(t →

bH+)×B(H+ → τ+ντ) < 1% for 80 GeV< MH± < 160 GeV while the standard model is in

agreement with the data [83]. For this search, most of tanβ values above one are ruled out in the

latter mass range under different scenarios of MSSM. In a vector-boson fusion produced H±, the

direct decay H±→W±Z is not observed for 200 GeV< MH± < 1000 GeV [84]. The latter charged

Higgs mass range has also been searched in associated top quark production without yielding
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promising results [85]. Recent results from CMS have also set similar upper limits on a charged

Higgs branching ratios and production cross sections [86].

In this work the main focus is the effect of a charged Higgs in the decay H→W−W+(or H+)→

4 leptons. At the standard model value of about 125 GeV, the mode H→W−W+ provides the sec-

ond highest branching ratio among standard model Higgs decays, though missing transverse mo-

mentum of the neutrinos and controlling for the background are challenges in the leptonic decays

of W± and H±. The four-fold distribution for the above process is provided via two-Higgs-doublet

models (2HDM’s) of the leptophilic (L2HDM) and Type II variety. Assume the mass of the charged

Higgs to be greater than the W boson mass. To be specific, W− and W+ are assumed on-shell and

off-shell, respectively and so channels H−W+ and H−H+ are not included in the process. The

other case where W+ and W− are assumed on-shell and off-shell, respectively, can be treated in a

similar manner.

The 2HDM models are an extension of the standard model Higgs doublet, and include the

standard model Higgs along with an usually heavier CP even version plus a CP odd scalar and

two charged Higgs. To avoid a flavor changing neutral current (FCNC) from the Higgs sector

a discrete symmetry is imposed which then leads to various types of 2HDM models. One of the

popular 2HDM is the type II model which cannot be completely fermiophobic (unlike Type I), does

not have FCNC’s (unlike Type III and triplet Higgs models) [87], and has the Yukawa couplings

of the Minimal Supersymmetric standard model (MSSM). Others have provided thorough reviews

of 2HDM’s [88, 89, 90].

The sections are ordered as follows. In section 5.2, for the standard model process H→W−(→

τ−ν̄τ)W+(→ τ+ντ), an alternative calculation of the general four-fold distribution with respect to

the literature is given via expansion by helicity amplitudes. Others have given formulas for this

decay or a similar decay via the helicity formalism (see [91, 92, 93]), but either ignore mass or new

physics terms. Section 5.3 provides general remarks about the Type II 2HDM and L2HDM. In

section 5.3.3, the charged Higgs is added to the decay process via the 2HDM 5. Plots of kinematic

5 The situation here is similar to B decays to a pair of vector mesons with scalar backgrounds [94].
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Figure 11: Four body decay of H: H→W+∗(or H+∗),W−→ (τ+,ντ),(τ
−, ν̄τ). θq and θp are the

decay angles in the center of momentum frame of τ+ and ντ and the rest frame of W−, respectively.
χ is the dihedral angle between the decay planes. In section 5.3.3, the charged Higgs, H+, is added.

and dihedral distributions are provided for various possible masses for the charged Higgs. Lastly,

a MadGraph 5 simulation is performed of the dihedral distribution.

5.2 Standard Model Decay

The process H →W+∗(→ τ+ντ)W−(→ τ−ν̄τ) is illustrated in Figure 11. W− and W+∗ are on-

shell and off-shell W bosons, respectively. The positive z-axis points in the direction of W+’s

momentum. θp is the polar angle of τ− in W−’s rest frame. Since W+∗ is off-shell, θq is the

polar angle of τ+ in the center of mass frame of τ+ and ντ . χ is the dihedral angle between the

decay planes of W− → τ−ν̄τ and W+∗ → τ+ντ . The four-fold distribution is calculated below

by the density matrix method, including the lepton mass. In H → ZZ∗→ `1`2`3`4, leptonic mass

effects are not as pronounced as in H→W+∗(→ τ+ντ)W−(→ τ−ν̄τ) [93]. Helicities, polarization

vectors, and four momenta are defined as follows.

• Helicities of bosons: λH = λW+−λW− = 0, λW+ = 0,±1, t, λW− = 0,±1
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• Lepton helicities: λ` =±1
2 , `= τ+,τ−

• Four-momenta of W+∗,W−: q, p

• Polarization vectors

of W+∗ boson: ε
µ

1 (±1) =
1√
2
(0;∓1,−i,0) , ε

µ

1 (0) =
1√
q2

(|~q |;0,0,q0),

ε
µ

1 (t) =
1√
q2

(q0;0,0, |~q |),

• Polarization vectors

of W− boson: ε
µ

2 (±1) =
1√
2
(0;±1,−i,0) , ε

µ

2 (0) =
1

MW
(|~q |;0,0,−p0)

The four-fold angular distribution is

dΓ

(
H→W+∗(→ τ+ντ)W−(→ τ−ν̄τ)

)
dq2d(cosθq)d(cosθp)dχ

(63)

=
BrWτντ

(2π)4

(1− m2

q2 )|~q|

25M2
H

∑
λ

τ− ,λτ+

| ∑
sW+ , λW±

(−1+
q2

M2
W
)1−sW+ AλW+λW−

B
λW+

λ
τ+ ,λντ

C
λW−
λ

τ− ,λν̄τ

|2.

BrWτντ
is the W−→ τ−ν̄τ branching ratio. Integrating with respect to χ and cosθp reduces Eq.

(63) into the three-body decay H → τ+ντW−. When sW+ = 0, the time helicity, λW+ = t, occurs.

For the latter case, −1+ q2

M2
W

appears in Eq. (63) [93]. When sW+ = 1, λW+ = 0,±.

The partial amplitudes are written as follows.

AλW+λW−
= igMW ε

µ∗
1 (λW+)εν∗

2 (λW−)gµν (64a)

B
λW+

λ
τ+ ,λντ

=
−ig
2
√

2
ū(p1,λντ

)
i/ε1(λW+)

(q2−M2
W + iMW ΓW )

(1− γ5)v(p2,λτ+) (64b)

C
λW−
λ

τ− ,λν̄τ

=
−ig
2
√

2
ū(p3,λτ−)

i/ε2(λW−)

MW ΓW
(1− γ5)v(p4,λν̄τ

). (64c)
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AλW+λW−
, B

λW+

λ
τ+ ,λντ

, and C
λW−
λ

τ− ,λν̄τ

above are the amplitudes for H →W+∗W−, W+∗ → τ+ντ , and

W−→ τ−ν̄τ , respectively. The leptonic amplitudes (Eqs. 64b and 64c) are written in Appendix

2.1. The general four-fold distribution is provided in Appendix 2.2. Therein, NP terms such as

triple products and parity violating terms are included.

If desired AλW−λW+ might be defined in the transversity basis as

AL = A0,0, A‖ =
A+,++A−,−√

2
, A⊥ =

A+,+−A−,−√
2

, At = A0,t .

Herein, this redefinition is not used. Normalized with respect to igMW , the helicity amplitudes are

written as

At0 =
MH |~q|√

q2MW
, A00 =

q · p√
q2MW

, A++ = A−− = 1.

Notice the HWW vertex may be generalized to include both CP even and CP odd terms [91, 92] as

follows,

V µν

HWW = igMW gµν → igMW (a1 gµν +a2 PµPν + ia3 ε
µναβ q1αq2β ), (65)

where a3 represents the CP odd triple product term [95]. HWW is only CP even if a3 = 0. Although

an admixture may be possible, pure CP odd is disfavored [96]. The standard model occurs for

a1 = 1,a2 = a3 = 0.

Dropping NP terms, the SM four-fold distribution may written from Eq. (105). It consists of

non-spin flip and spin flip terms. For massless leptons, the spin flip terms, the terms with leptonic

mass, become identically zero. After integrating Eq. (105) over the angles, the SM differential

distributions below are obtained.

The dihedral distribution is

dΓSM

dq2dχ
= f (q2) (γ1 + γ2), (66a)
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Figure 12: The above two plots show the kinematic and dihedral distributions for the SM process
H →W+∗(→ τ+ντ)W−(→ τ−ν̄τ). The black dashed curve is for massless leptons and the red
curve is for m = mτ .

where

γ1 = 6|At0|2 F2
s εq

(
εp

2
+1
)
,

γ2 = 4|A00|2
(

εp

2
+

εpεq

4
+

εq

2
+1
)

+4|A−−|2
(

εp

2
+

εpεq

4
+

εq

2
+1
)

+4|A++|2
(

εp

2
+

εpεq

4
+

εq

2
+1
)

− 9
16

π
2 Re

[
A−−A∗00

]
cos χ

− 9
16

π
2 Re

[
A++A∗00

]
cos χ

+2Re
[
A++A∗−−

]
cos2χ

(
1− εp− εq + εpεq

)
. (66b)

See Eq. (106) in Appendix 2.2 for definitions of f (q2),ε,εq,Fs.

The kinematic differential distribution is

dΓSM

dq2 = 8π f (q2) (β1 +β2), (67a)
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where

β1 =
3
2
|At0|2 F2

s εq

(
εp

2
+1
)
,

β2 = |A00|2
(

εp

2
+

εpεq

4
+

εq

2
+1
)

+|A−−|2
(

εp

2
+

εpεq

4
+

εq

2
+1
)

+|A++|2
(

εp

2
+

εpεq

4
+

εq

2
+1
)
. (67b)

Figure 12 shows the kinematic and dihedral distributions for a massless τ and τ’s mass. The

curves are the same except for about q2 < 100 GeV2 and χ = ±π . Apart from the scale, the

dihedral distribution is interpreted as number of events versus the dihedral angle in the Higgs rest

frame. Therefore, the events peak at χ =±π , which is when τ+ and τ− may be back to back. The

events are minimized at χ = 0.

5.3 Type II 2HDM and L2HDM

5.3.1 Type II 2HDM

In the Type II 2HDM model, Φ1 and Φ2 designate the two Higgs doublets. One doublet couples

to leptons and down-type quarks whereas the other doublet couples to up-type quarks. Acquiring

a vev, (υ1,2), the doublets are written as

Φ1 =

 Φ
+
1

h1 +υ1 + ig1√
2

 ; Φ2 =

 Φ
+
2

h2 +υ2 + ig2√
2

 . (68)

The Type II 2HDM Lagrangian is L Φ = Lkin - L leptons
Y - V . The kinetic Lagrangian, Yukawa

Lagrangian, and potential are
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Lkin = (DµΦ1)
+(Dµ

Φ1)+(DµΦ2)
+(Dµ

Φ2),

−LY = η
E,0
i j

¯̀0
iLΦ1E0

jR +η
D,0
i j Q0

iLΦ1D0
jR +ξ

U,0
i j Q̄0

iLΦ̃2U0
jR +h.c.

V = −µ
2
1 |Φ1|2−µ

2
2 |Φ2|2−µ

2
3 Re(Φ+

1 Φ2)+λ1 |Φ1|4 +λ2 |Φ2|4

+λ3 ([Re(Φ+
1 Φ2)]

2 +[Im(Φ+
1 Φ2)]

2)+λ5 |Φ1|2|Φ2|2 . (69)

¯̀0
iL and E0

jR are the left-handed doublet and right-handed singlet of leptons, respectively. η is a

non-diagonal 3x3 matrix. Not being involved in W± and H± decays in this section, quarks are not

discussed. Notice FCNC’s would occur if ξ
E,0
i j

¯̀0
iLΦ2E0

jR was added to LY since η and ξ may not

be simultaneously diagonalized [88]6.

The potential above, V , is CP conserving. Unlike the standard model case, there is freedom

in choosing the potential. Having invariance under Z2 symmetry (Φ1,Φ2 → Φ1,−Φ2) or global

symmetry (Φ2→ eiφ Φ2) allows for the minimum potential to be CP invariant [98].

The full Lagrangian is L = L leptons +L bosons +L Φ. Under electroweak symmetry breaking

two charge-neutral vacuum expectation values (υ1,υ2) occur.

< Φ1 >=

 0
υ1√

2

 ; < Φ2 >=

 0
υ2√

2

 . (70)

The vevs are constrained by the standard model expectation υ2≡ υ2
1 +υ2

2 = 246 GeV2. After SSB,

masses for the Higgs bosons are generated and all the vertices for the interactions can be written

down [89, 99]. The physical mass eigenstates are related to the gauge eigenstates as follows where

6Alternate mechanism to avoid FCNC in 2HDM is discussed in Ref. [97].
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α is the mixing angle between the light and heavy CP-even Higgs and tan β ≡ υ2

υ1
.

 cosβ sinβ

−sinβ cosβ


φ

+
1

φ
+
2

=

G+

H+

 .

 cosα sinα

−sinα cosα


h1

h2

=

H0

h0

 .

 cosβ sinβ

−sinβ cosβ


g1

g2

=

G0

A0

 . (71)

H±,H0,h0,A0 are the five physical Higgs particles. The light CP even Higgs h0 is labeled H. In

the R-gauge, the Goldstone bosons, G± and G0, would be useful in processes involving highly

energetic longitudinal vector bosons [100].

In Ref. [88] the relations amongst the various parameters of Type II 2HDM can be found. The

following notation for the relevant vertices7 of type II are from Ref. [89].

Interaction : Vertex

W+W−H : ig mW sin(β −α) gµν

W±H∓H :
∓ig

2
cos(β −α)(p+ p′)µ

7See Appendix A.1.3 in Ref. [88] for conversion of parameters to the usage in Ref. [89].
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H+H−H : −ig[mW sin(β −α)+
mZ

2cosθW
cos2β sin(β +α)]

τ
+

ντH+ :
ig mτ tanβ

2
√

2MW
[1+ γ5] =

i
√

2mτ

υ
tanβ PR

τ
−

ν̄τH− :
ig mτ tanβ

2
√

2MW
[1− γ5] =

i
√

2mτ

υ
tanβ PL

For example the amplitude for W±H∓H is
∓ig

2
cos(β −α) ε

µ∗
2 (pH + pH+)µ where pH and pH+

are the 4-momenta of H and H∓, respectively. All the interactions are specified in terms of the

mixing angles β and α . For the W+W−H vertex, sin(β −α) can be constrained from experiment

[80]. The H+H−H interaction will contribute to the H → γγ rate though the charged Higgs loop

[101]. Hence the measured H→ γγ rate puts constraints on the mixing angles α and β .

5.3.2 L2HDM

Treatments of L2HDM have already been given in the literature [102, 103]. The charged Higgs

leptonic interaction in L2HDM is the same as in Type II since one doublet couples to leptons in

both models. However, unlike in the Type II case, L2HDM has the other Higgs doublet coupling

exclusively to up-type and down-type quarks. After EWSB,

LY =−
√

2Vud

tanβ υ
d̄(muPL−mdPR) u H−−

√
2tanβ

υ
ν̄(m`PR) e H+ + neutral Higgs + h.c.

LY above implies L2HDM becomes truly leptophilic in the charged Higgs as tanβ grows [102].

In comparison to Eq. (69), the potential in L2HDM 8 has an additional term. This only trivially

changes the parametrization of the Higgs masses relative to Type II. Hence the other charged

Higgs vertices are the same as in Type II 2HDM except when quarks are involved. By using L Φ,

8See Buckley et al. [102], Eq. (2). Eq. (69) above has a common parameter for [Re(Φ+
1 Φ2)]

2 and [Im(Φ+
1 Φ2)]

unlike Buckley et al.
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Eqs. (68) and (71), and the unitary gauge, the derivation of interactions in L2HDM easily follow.

Recently L2HDM has been discussed for the resolution of the (g− 2)µ anomaly and the galactic

center γ-ray excess from a light pseudoscalar and large tanβ [102].

5.3.3 Type II 2HDM and L2HDM Distributions for

H→W−W+∗(or H+∗)→ τ−ν̄ττ+ντ

Now add new physics channels H+ via 2HDM (see Figure 11). The four-fold angular distribution

is

dΓ(H→W−W+∗(or H+∗)→ τ−ν̄ττ+ντ)

dq2d(cosθq)d(cosθp)dχ
(72)

=
BrWτντ

(2π)4

(1− m2

q2 )|~q|

25M2
H

∑
λ

τ− ,λτ+

| ∑
sW+ ,λW± ,λH+

A |2,

where

A = sin(β −α)(−Fs)
1−sW+AλW− ,λW+

B
λW−
λ

τ− ,λν̄τ

C
λW+

λ
τ+ ,λντ

+ (73)

DλW− ,λH+
B

λW−
λ

τ− ,λν̄τ

EλH+

λ
τ+ ,λντ

.

Apart from coupling constants, the NP amplitudes are
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D00 = ε
µ∗
2 (0)(pH + pH+)µ =

2MH |~q|
MW

E0 = ū(1+ γ5)v. (74)

Here the contribution from the H+H− intermediate states has been neglected. This is justified

as the H+H−H coupling is small and both the charged Higgs are off-shell for mH± greater than

mH . Both the SM and 2HDM leptonic amplitudes are written in Appendix 2.1.

Suppressing λ` subscripts,

| ∑
λW− ,λW+ ,λH+

A |2 =

sin2(β −α) | A+,+B+C++A−,−B−C−+A0,0B0C0 +(−Fs)A0,tB0Ct |2

+

| D0,0B0E0 |2+

sin(β −α) 2Re
[
(A+,+B+C++A−,−B−C−+A0,0B0C0 +(−Fs)A0,tB0Ct)(D0,0B0E0)∗

]
.

Expanding the latter equation yields 25 terms. The last term in brackets is the interference

between the standard model and NP. For massless leptons, the distribution is the same as Eq. (105)

apart from an overall factor sin2(β −α). The interference terms are expected to be more sizable

than the purely NP term, i.e. cos(β −α)> cos2(β −α).

The momentum of the mediators is again

|~q|=

√
((q2−M2

W )2 +M4
H−2M2

H M2
W −2M2

H q2)

2MH
, if m2

τ < q2 < (MH−MW )2. (75)

From Eqs. (72), (73), (64), (74), and appendices 2.1, 2.2, and 2.3, the total distribution with
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respect to q2 and χ can now be written as

d2Γ2HDM

dq2 dχ
= sin2(β −α)

d2ΓSM

dq2 dχ
+

d2ΓNP

dq2 dχ
, (76)

d2ΓNP

dq2 dχ
= − 12√

q2
mFs BWτνDH+

1 (q2) (At0D00)
(

1+
εp

2

)
+

6 BWτνDH+

2 (q2)|D00|2
(

1+
ε

2

)
, (77)

where
d2ΓSM

dq2 dχ
is given in Eq. (66a).

See Appendix 2.3 for DH+

1 (q2) and DH+

2 (q2). The total decay width ΓH+ is within the latter

two kinematic variables and is defined as the partial width Γ(H+→ τ+ντ) (see appendix in [89]),

which is on the order of one tenth of the standard model Higgs total decay width for 90 GeV<

MH+ < 200 GeV. The first and second terms of Eq. (77) represent SM-NP interference and pure

NP, respectively. No resonance will occur in Eq. (77) since
√

q2 < MH± .

After integrating with respect to χ , the total distribution with respect to q2 is

dΓ2HDM

dq2 = sin2(β −α)
dΓSM

dq2 +
dΓNP

dq2 , (78)

where

dΓNP

dq2 = − 24π√
q2

mFs BWτνDH+

1 (q2)(At0D00)(1+
ε

2
)

+12π BWτνDH+

2 (q2)|D00|2(1+
ε

2
), (79)

and
dΓSM

dq2 is in Eq. (67a). There is both SM-NP and pure NP interference for
dΓ

dq2 .
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Figure 13: The above two plots depict the kinematic distribution and relative contribution of NP
to the SM for various masses of MH+ . Only channels W−W+ and W−H+ are relevant since W− is
taken as on-shell.
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5.4 Plots

Only channels W−W+∗ and W−H+∗ have been considered since W− is taken as on-shell. Let the

charged Higgs mass range from 90 GeV to 180 GeV. This mass range is chosen since H±→ τν is

a dominant decay mode over H±→ tb when mH± < mt +mb ≈ 180 GeV and tanβ > 2 [83, 104].

The relevant standard model input parameters are listed in Table 4 [80].

Table 4: Standard Model Parameters
G BrWτντ

ΓW MW MH

1.1663787×10−5 GeV−2 0.1138 2.085 GeV 80.385 GeV 125.09 GeV

Table 5: New Physics Parameters
tanβ sin(β −α) cos(β −α) |gHW−H+|= g

2 cos(β −α) |gH+τντ
|= g mτ

2
√

2 MW
tanβ

80 0.90 0.44 0.14 0.41

Table 5 lists the new physics parameters. The mixing angles, α and β , are chosen as follows.

The normalized coupling of HW−W+ in the standard model is expected to be unity. ATLAS and

CMS have found the normalized coupling of HW−W+ at 68% confidence interval to have ranges

(1.05, 1.22) and (0.81, 0.97), respectively [105]. With vertex HW−W+ being ig mW sin(β −α)

and considering the latter CMS confidence interval, let sin(β −α) = 0.9. To have an appreciable

effect from the charged Higgs states a large tanβ is required and so the type II 2HDM will not be

considered since it disfavors large tanβ [106]. The type II 2HDM may also be ruled out from mea-

surements in semileptonic B decays of RD(∗) ≡B(B̄→ D(∗)τ−ν̄τ)/B(B̄→ D(∗)`−ν̄`) (` = e,µ)

which are difficult to understand in the SM and in Type II 2HDM [50, 51].

Focus on the L2HDM and choose tanβ = 80 which is allowed by present measurements [102]

since a large tanβ can help explain the (g− 2)µ anomaly and the galactic center γ-ray excess in

the L2HDM. This then gives β = 89.3◦, α = 25.1◦, and cos(β −α) = 0.44. For the choices of the
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mixing angles, the H+H−H coupling from Eq. (72) is around gH+H−H
v ∼−0.06 and the correction

to the H→ γγ signal strength is small and within the measured experimental error [80].

Plots of
dΓ2HDM

dq2 and (
dΓ2HDM

dq2 /
dΓSM

dq2 − 1) (see Eqs. 78 and 79) are shown in Figure 13

for 90 GeV< MH± < 180 GeV. Essentially,
dΓ2HDM

dq2 is a scaled down version of
dΓSM

dq2 owing to

the factor sin2(β −α). The maximum relative contribution of NP to the SM in magnitude, i.e.

|dΓ2HDM

dq2 /
dΓSM

dq2 −1|x100%, is over 21%. For the specified charged Higgs mass range, this latter

relative contribution is dominantly from sin2(α−β )−1≈−0.19.

Plots of
dΓ2HDM

dχ
and (

dΓ2HDM

dχ
/

dΓSM

dχ
− 1) are shown in Figure 14. The deviation between

2HDM and SM is conspicuous at χ =±π . The maximum relative contribution of NP to the SM in

magnitude, i.e. |dΓ2HDM

dχ
/

dΓSM

dχ
−1|x100%, is over 19%.

A MadGraph 5 analysis is performed for a Higgs decay from rest, namely H →W− W+∗ (or

H+∗)→ τ−τ+ν̄τντ . Figure 15 shows a MadGraph distribution for the dihedral angle χ . Mass of

the charged Higgs is taken as MH+ = 150 GeV. Only events where W− is on-shell are included.

Figure 15 shows a deviation between the SM and the 2HDM at χ = π . This plot is invariant to a

boost along the W± momenta, hence also the same in the Higgs rest frame. A boost along one of

the W bosons would only change the directions of the leptons within their respective decay planes.

See Figure 11. One might also consider looking in the channel H → ZZ∗ → `1`2`3`4. Therein,

leptonic mass effects are not as pronounced as in H →W+∗(→ τ+ντ)W−(→ τ−ν̄τ) [93]. Note

that at the LHC, gluon-gluon fusion is the dominant mode for Higgs production. Relative to a

normalized coupling in the standard model, the Hgg vertex in the models L2HDM and Type II

have the common factor
cosα

sinβ
= .91 for a light CP-even Higgs.

5.5 Conclusion of Searching for a Charged Higgs

2HDM’s are a simple extension of the standard model which have an extended Higgs sector in-

cluding charged Higgs. In particular, ATLAS and CMS have been recently constraining scenarios

with a charged Higgs, H±. The charged Higgs might also be seen at lepton colliders [107] in the

channel `+`−→W±H∓.
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Figure 14: The above two plots depict the dihedral distribution and relative contribution of NP to
the SM for various masses of MH+ . Only channels W−W+ and W−H+ are relevant since W− is
on-shell. The top plot shows the curves for different values of MH+ , i.e. 90 GeV< MH+ < 180
GeV, as bunched together.
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Figure 15: The above depicts the dihedral distribution versus dihedral angle, χ . The dihedral angle
is the angle between the decay planes of W+∗ (or H+∗) and W− with MH+ = 150 GeV. See Figure
11. The full process is H→W−W+∗(or H+∗)→ τ−ν̄ττ+ντ .
The vertical scale is in arbitrary units.
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Given the uncertainty in the standard model Higgs couplings, there may exist a charged Higgs.

A discovery can aid in resolving many problems in physics, one possibly being the hierarchy

problem by suggesting supersymmetry. A venue that should be considered is the Higgs decay

H→W−W+∗(or H+∗)→ τ−ν̄ττ+ντ .

The four-fold distribution for the latter process has been calculated via helicity amplitudes. It

is written in a general manner allowing for new physics, e.g. an admixture of CP even and CP odd

terms in the Higgs coupling to two standard model vector bosons. A charged Higgs is considered

in the context of Type II 2HDM and L2HDM models. Recent experimental results suggest the

L2HDM is somewhat less constrained over Type II. Differential decay distribution plots of the new

physics and the standard model are provided. Kinematic and dihedral distributions show deviations

from the standard model when a charged Higgs is present in L2HDM. At tree level, the NP decay

amplitude, H→W−H+, becomes more pronounced if the dihedral angle, or angle between decay

planes of the leptons, approaches ±π . A MadGraph 5 simulation confirms the latter.
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CHAPTER 6: CONCLUSION

There are signs that lepton flavor universality within the standard model may be violated. Re-

cently, the LHCb Collaboration measurement of RK ≡B(B+→ K+µ+µ−)/B(B+→ K+e+e−)

differs from the SM prediction of RK = 1 by 2.6σ [3]. Also, the Heavy-Flavor Averaging Group has

averaged the BaBar, Belle, and LHCb ratios R(D(∗))≡B(B̄→ D(∗)+τ−ν̄τ)/ B(B̄→ D(∗)+`−ν̄`)

(` = e,µ), finding discrepancies with respect to the SM by 1.9σ (R(D)) and 3.3σ (R(D∗)) [1].

These RK and R(D(∗)) puzzles suggest lepton flavor non-universality, and therefore may signal

physics beyond the standard model. In light of the measured RK∗ anomaly by the LHCb this year,

this topic of lepton flavor universality takes on added importance [12].

Glashow, Guadagnoli and Lane (GGL) [22] propose an explanation for the RK puzzle. They

assume that the NP couples preferentially to the third generation, generating a neutral-current op-

erator (b̄′Lγµb′L)(τ̄
′
Lγµτ ′L), wherein the primed fields denote states in the gauge basis. When trans-

forming to the mass basis, operators arise giving decays that violate lepton flavor universality (and

lepton flavor conservation). Futhermore, assuming the scale of NP is much larger than the weak

scale, all NP operators must be made invariant under the full SU(3)C× SU(2)L×U(1)Y gauge

group. When the latter is applied to the GGL operator, there are two types of fully gauge-invariant

NP operators that may occur. One of these contains both neutral-current and charged-current in-

teractions. While GGL has shown that the neutral-current piece of this NP operator can explain

the RK puzzle, another possibility is that the charged-current piece can simultaneously explain the

R(D(∗)) puzzle. This model in section 3.4 makes a prediction for the double ratio R(D)/R(D∗),

thus this very model can be ruled out with a more precise measurement of this quantity. From

current measurements, the model also implies bounds on the new physics parameters that are as-

sociated with these new physics operators.
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Since the decays B̄→D(∗)+τ−ν̄τ and Λb→ Λcτν̄τ share the same quark-level transition b→ c

and given the recent hints of lepton flavor non-universality observed in R(D(∗)), this dissertation

studies the decay process Λb → Λcτν̄τ . SM and NP predictions are derived for this decay. The

general parametrization of the NP operators has been made to include scalar, pseudoscalar, vector,

and axial vector interactions while the new physics couplings are fixed from the experimental

measurements of R(D) and R(D∗). The general formulas for the various angular distributions in

the presence of NP operators has been calculated via the helicity formalism technique. Predictions

follow in terms of RΛb ≡
B(Λb→ Λcτν̄τ)

B(Λb→ Λc`ν̄`)
(`= e,µ),

dΓ

dq2 , and BΛb(q
2)≡

dΓ[Λb→Λcτν̄τ ]
dq2

dΓ[Λb→Λc`ν̄`]
dq2

(`= e,µ)

for the various NP couplings taken one at a time. It has been found that gL,R couplings gave

predictions larger than the SM values for all the three observables. Also, the gP couplings produce

larger effects than the gS couplings. Future confirmation of anomalies in these observables such as

at the LHCb would make new physics even more compelling.

Lastly, distributions are applied in the Higgs sector. 2HDM’s are a simple extension of the

standard model which have an extended Higgs sector including the charged Higgs. Notwithstand-

ing that ATLAS and CMS have been recently constraining scenarios of a charged Higgs, H±, the

charged Higgs might also be seen at lepton colliders [107] in the channel `+`− →W±H∓. The

uncertainty in the standard model Higgs couplings allows for a charged Higgs. A discovery can

aid in resolving many problems in physics, one possibly being the hierarchy problem by suggest-

ing supersymmetry. In this dissertation, the Higgs decay H →W−W+∗(or H+∗)→ τ−ν̄ττ+ντ is

explored.

The four-fold distribution for the latter process has been calculated via the density matrix

method. It is written in a general manner allowing for new physics, e.g. an admixture of CP

even and CP odd terms in the Higgs coupling to two standard model vector bosons. A charged

Higgs is considered in the context of Type II 2HDM and L2HDM models. Recent experimental re-

sults suggest that L2HDM is somewhat less constrained with respect to Type II [50, 51, 102, 106].

Plots of differential decay distributions are provided. Kinematic and dihedral distributions show

deviations from the standard model when a charged Higgs is present in L2HDM. At tree level,
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the NP decay amplitude, H →W−H+, becomes more pronounced if the dihedral angle, or angle

between decay planes of the leptons, approaches ±π . A MadGraph 5 simulation is performed

confirming the latter theoretical result.
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−ν̄`
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1.1 Introduction

The general Hamiltonian for the decay process Λb→ Λc `
−ν̄` (see Figure 16) containing all four-

Fermi operators may be written as

He f f =
GFVcb√

2

{[
c̄γµ(1− γ5)b+gLc̄γµ(1− γ5)b+gRc̄γµ(1+ γ5)b

]
l̄γµ(1− γ5)νl

+
[
gSc̄b+gPc̄γ5b

]
l̄(1− γ5)νl

+
[
c̄ σ

µν(1− γ5)b
]

l̄σµν(1− γ5)νl +h.c.
}
. (80)

where GF = 1.1663787×10−5 GeV−2 is the Fermi coupling constant, Vcb is the Cabibbo-Koboyashi-

Maskawa (CKM) matrix element, and σµν = i[γµ ,γν ]/2. ` represents the charged leptons τ, µ, or

e. Vector, scalar, and pseudo-tensor interactions make up the first, second, and third lines of Eq.

(80), respectively. The NP coefficients gL,gR,gS,gP, and gT , represent pure left, pure right, scalar,

pseudo-scalar, and tensor interactions, respectively. When these NP couplings are set to zero, the

SM effective Hamiltonian occurs. For the tensor interaction, notice opposite quark chiralities,

namely (c̄L σ µνbR) (l̄R σµννlL), has not been included since it is zero9.

It is assumed that the neutrinos are always left chiral and to introduce non-universality, the NP

couplings are in general different for different lepton flavors. The NP effect by assumption occurs

mainly through the third generation or the τ lepton. Further, no relation between b→ ul−ν̄l and

b→ cl−ν̄l transitions is assumed and hence constraints from B→ τντ are not included.

The two-fold angular distribution is

dΓ

(
Λb→ Λc `

−ν̄`

)
dq2d(cosθ`)

=
G2

F
(2π)3 |Vbc|2

(1− m2

q2 )|~q|

26M2
1

[ 1
2 ∑

λΛb ,λΛc ,λ`

|M|2
]
. (81)

In the latter sum, final state particles’ helicities are summed while the initial state is averaged,

9Since γ5 = iγ0γ1γ2γ3, then σ13 = −iσ02γ5. Therefore, (c̄Lσ13bR) (l̄Rσ13νlL) = −(c̄Lσ02bR) (l̄Rσ02νlL). The
others follow similarly.
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Λb z
W−∗Λ+

c

ℓ−

ν̄ℓ

θℓ

Figure 16: Three body decay of Λb: Λb → Λc `−ν̄`. The positive z-axis coincides with the mo-
mentum of the off-shell boson W−. θ` is the decay angle in the dilepton center of momentum
frame.

hence the factor of
1
2

. M is the amplitude and written as follows wherein the helicities and momenta

have been suppressed.

M = < Λc|c̄γµ(1− γ5)b|Λb > < l̄ν̄l|l̄γµ(1− γ5)νl|0 >

+
[

gL < Λc|c̄γµ(1− γ5)b|Λb >+gR < Λc|c̄γµ(1+ γ5)b|Λb >
]
< l̄ν̄l|l̄γµ(1− γ5)νl|0 >

+
[

gS < Λc|c̄b|Λb >+gP < Λc|c̄γ5b|Λb >
]
< l̄ν̄l|l̄(1− γ5)νl|0 >

+gT < Λc|c̄ σ
µν(1− γ5)b|Λb > < l̄ν̄l|l̄σµν(1− γ5)νl|0 > .

The W− boson polarization vectors, εµ(
.), can be included in the vector, axial vector, and pseudo-

tensor interactions via the identity

∑
λ ,λ ′

εµ(λ )ε
∗
ν(λ

′)gλλ ′ = gµν ,

where gµν = diag(+1,−1−1−1) and λ is the W− boson helicity. For example, given a hadronic-
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leptonic contraction HµLµ ,

HµLµ = gµαHαLµ = ∑
λ ,λ ′

gλλ ′(ε
∗α(λ )Hα)(ε

µ(λ ′)Lµ)

= ∑
λ

ηλ (ε
∗α(λ )Hα)(ε

µ(λ )Lµ),

where ηλ = 1 for λ = t and ηλ =−1 for λ = 0,±1.

In terms of these polarization vectors, M becomes

M = ∑
λ

ηλ

(
1+gL +gR

) [
ε
∗µ(λ )< Λc|c̄γµb|Λb >

][
ε

ν(λ )< l̄ν̄l|l̄γν(1− γ5)νl|0 >
]

−∑
λ

ηλ

(
1+gL−gR)

[
ε
∗µ(λ )< Λc|c̄γµγ5)b|Λb >

][
ε

ν(λ )< l̄ν̄l|l̄γν(1− γ5)νl|0 >
]

+
[

gS < Λc|c̄b|Λb >+gP < Λc|c̄γ5b|Λb >
]
< l̄ν̄l|l̄(1− γ5)νl|0 >

+ ∑
λ ,λ ′

ηλ ηλ ′gT

[
ε
∗α(λ )ε∗β (λ ′)< Λc|c̄ iσαβ (1− γ5)b|Λb >

]
∗[

ε
µ(λ )εν(λ ′)< l̄ν̄l|l̄ (−i)σµν(1− γ5)νl|0 >

]
.

Note that −i2 has been inserted into the previous tensor interaction.

Define the helicity form factors as

HλΛc ,λ
= HV

λΛc ,λ
−HA

λΛc ,λ

HV
λΛc ,λ

= (1+gL +gR
) [

ε
∗µ(λ )< Λc|c̄γµb|Λb >

]
HA

λΛc ,λ
=
(
1+gL−gR)

[
ε
∗µ(λ )< Λc|c̄γµγ5)b|Λb >

]
,

HSP
λΛc ,λ=0 = HS

λΛc ,λ=0 +HP
λΛc ,λ=0
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HS
λΛc ,λ=0 = gS < Λc|c̄b|Λb >

HP
λΛc ,λ=0 = gP < Λc|c̄γ5b|Λb >,

and

H
T (λΛb)

λΛc ,λ ,λ
′ = H

T 1(λΛb)

λΛc ,λ ,λ
′−H

T 2(λΛb)

λΛc ,λ ,λ
′

H
T 1(λΛb)

λΛc ,λ ,λ
′ = ε

∗α(λ )ε∗β (λ ′)< Λc|c̄ iσαβ b|Λb >

H
T 2(λΛb)

λΛc ,λ ,λ
′ = ε

∗α(λ )ε∗β (λ ′)< Λc|c̄ iσαβ γ5b|Λb > . (82)

Define the leptonic amplitudes as

Lλ`
λ

= ε
µ < l̄ν̄l|l̄γµ(1− γ5)νl|0 >,

Lλ` = < l̄ν̄l|l̄(1− γ5)νl|0 >,

Lλ`
λ ,λ ′ = ε

µ(λ )εν(λ ′)< l̄ν̄l|l̄ (−i)σµν(1− γ5)νl|0 > .

Therefore, M can be written succinctly as

M = ∑
λ

ηλ HλΛc ,λ
Lλ`

λ
+HSP

λΛc ,λ=0Lλ` + ∑
λ ,λ ′

ηλ ηλ ′H
T (λΛb)

λΛc ,λ ,λ
′L

λ`
λ ,λ ′ (83)

for a given λΛb . Note that for HλΛc ,λ
and HSP

λΛc ,λ=0, helicity is conserved, namely λΛb = λ −λΛc

with λΛb,λΛc = ±
1
2

and λ = t,0,±1. In appendices 1.2-1.3, the helicity form factors HλΛc ,λ
,

HSP
λΛc ,λ=0, and H

T (λΛb)

λΛc ,λ ,λ
′ are listed. In Appendix 1.4, the leptonic amplitudes are listed.
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Finally, the two-fold distribution for Λb→ Λc `
−ν̄` may be written:

dΓ

(
Λb→ Λcτ−ν̄τ

)
dq2d(cosθ`)

= A1 +A2, (84a)

with

A1 = eqn. (51) (84b)

and

A2 =
G2

F
(2π)3 |Vbc|2

(1− m2

q2 )|~q|

26M2
1
∗[ 1

2 ∑
λΛb ,λΛc ,λ`

(
2Re[(∑

λ

ηλ HλΛc ,λ
Lλ`

λ
)∗(∑

λ ,λ ′
ηλ ηλ ′H

T (λΛb)

λΛc ,λ ,λ
′L

λ`
λ ,λ ′)]

+2Re[(HSP
λΛc ,λ=0Lλ`)∗(∑

λ ,λ ′
ηλ ηλ ′H

T (λΛb)

λΛc ,λ ,λ
′L

λ`
λ ,λ ′)]

+|∑
λ ,λ ′

ηλ ηλ ′H
T (λΛb)

λΛc ,λ ,λ
′L

λ`
λ ,λ ′|

2
)]

. (84c)

A1 is derived in [108]. A2 is rather long and not written herein. The tensor helicity form factors

for A2 are given below in section 1.3.

1.2 Scalar and Vector Helicity Form Factors

The scalar and vector helicity form factors are taken from [5] (on page 4). The decay Λb→Λc `
−ν̄`

proceeds via Λb→ ΛcW ∗(off-shell W) followed by W ∗→ `−ν̄`. Following [63] one can analyze

the decay in terms of helicity amplitudes which are given by

HλcλW = Mµ(λ2)ε
∗µ(λW ), (85)

where λc,λW are the polarizations of the daughter baryon and the W-boson respectively and Mµ is

the hadronic current for Λb→ Λc transition. The helicity amplitudes can be expressed in terms of
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form factors and the NP couplings.

HλΛc ,λw = HV
λΛc ,λw

−HA
λΛc ,λw

,

HV
1
2 0 = (1+gL +gR)

√
Q−√
q2

(
(M1 +M2) f1−q2 f2

)
,

HA
1
2 0 = (1+gL−gR)

√
Q+√
q2

(
(M1−M2)g1 +q2g2

)
,

HV
1
2 1 = (1+gL +gR)

√
2Q−

(
f1− (M1 +M2) f2

)
,

HA
1
2 1 = (1+gL−gR)

√
2Q+

(
g1 +(M1−M2)g2

)
,

HV
1
2 t = (1+gL +gR)

√
Q+√
q2

(
(M1−M2) f1 +q2 f3

)
,

HA
1
2 t = (1+gL−gR)

√
Q−√
q2

(
(M1 +M2)g1−q2g3

)
, (86)

where Q± = (M1±M2)
2−q2.

Also,

HV
λΛc ,λw

= HV
−λΛc ,−λw

,

HA
λΛc ,λw

= −HA
−λΛc ,−λw

. (87)

The scalar and pseudo-scalar helicities associated with the new physics scalar and pseudo-

scalar interactions are

HSP
1/2,0 = HP

1/2,0 +HS
1/2,0,

HS
1/2,0 = gS

√
Q+

mb−mc

(
(M1−M2) f1 +q2 f3

)
,

HP
1/2,0 = −gP

√
Q−

mb +mc

(
(M1 +M2)g1−q2g3

)
. (88)

The parity related amplitudes are,

HS
λΛc ,λNP = HS

−λΛc ,−λNP,
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HP
λΛc ,λNP = −HP

−λΛc ,−λNP. (89)

1.3 Tensor Helicity Form Factors

Before listing the tensor helicity form factors (see Eq. (82)), note the following relations.

H
T (λΛb)

λΛc ,λ ,λ
′ = −H

T (λΛb)

λΛc ,λ
′,λ ,

= H
T 1(λΛb)

λΛc ,λ ,λ
′−H

T 2(λΛb)

λΛc ,λ ,λ
′,

qµ = pµ

Λb
− pµ

Λc
,

< Λc|c̄ iσ µνb|Λb > = ūλΛc

[
2h+(q2)

pµ

Λb
pν

Λc
− pν

Λb
pµ

Λc

Q+

+h⊥(q2)
(M1 +M2

q2 (qµ
γ

ν −qν
γ

µ)−2(
1
q2 +

1
Q+

)(pµ

Λb
pν

Λc
− pν

Λb
pµ

Λc
)
)

+h̃+(q2)
(

iσ µν − 2
Q−

(M1(pµ

Λc
γ

ν − pν
Λc

γ
µ)

−M2(pµ

Λb
γ

ν − pν
Λb

γ
µ)+ pµ

Λb
pν

Λc
− pν

Λb
pµ

Λc
)
)

+h̃⊥(q2)
M1−M2

q2Q−

(
(M2

1 −M2
2 −q2)(γµ pν

Λb
− γ

ν pµ

Λb
)

−(M2
1 −M2

2 +q2)(γµ pν
Λc
− γ

ν pµ

Λc
)+2(M1−M2)(pµ

Λb
pν

Λc
− pν

Λb
pµ

Λc
)
)

]
uΛb (See eqn. (2.14) in Ref.[62].),

σ
µν

γ5 = − i
2

ε
µναβ

σαβ ,

p =

√
Q−Q+

2M1
(momentum of W− in Λb’s rest frame),

EΛc =
M2

1 +M2
2 −q2

2M1
(energy of Λc in Λb’s rest frame),

a =
√

EΛc +M2, b =
1

EΛc +M2
,
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Q± = (M1±M2)
2−q2

There are 64 possibilities in listing the tensor helicities H
T (λΛb)

λΛc ,λ ,λ
′ since λ ,λ ′ ∈ (t,0,±) and

λΛb,λΛc ∈ (±1
2
). However, only 24 possibilities require calculation since H

T (λΛb)

λΛc ,λ ,λ
′ is asymmetric

under (λ ,λ ′)→ (λ ′,λ ). 12 of these 24 are non-zero.

λ = t,λ ′ = 0

HT (−1/2)
−1/2,t,0 = − 1

q2Q−Q+
2aM1 p(bp+1)

[
Q+

(
q2h̃1− h̃2(M1−M2)

2
)

+Q−
(

h2(M1
2 +M2

2)−h1q2
)]

HT (−1/2)
+1/2,t,0 = − 1

2M1q2Q−Q+
ap
[
Q+

(
2bM1q2h̃1(M1

2−2M1M2−2M1 p+M2
2−q2)

+h̃2(M1−M2)(bM1
4 +M1

3(−2+4bp)−2M1
2(bM2

2−M2(2−2bp)+bq2)

+b(M2
2−q2)2−2M1(M2

2−q2))
)

+Q−
(

4M1
2q2(bp−1)(h1−h2)−h2Q+(bM1

3 +M1
2(bM2 +4bp−2)

+M1(−bM2
2 +bq2 +2M2)+bM2(q2−M2

2))
)]

HT (+1/2)
−1/2,t,0 =

1
2M1q2Q−Q+

ap
[
Q+

(
−2bM1q2h̃1(M1

2−2M1(M2− p)+M2
2−q2)

−h̃2(M1−M2)(bM1
4−M1

3(4bp+2)−2M1
2(bM2

2−2M2(bp+1)+bq2)

+b(M2
2−q2)2−2M1(M2

2−q2))
)

+Q−
(

4M1
2q2(bp+1)(h1−h2)+h2Q+(bM1

3 +M1
2(bM2−4bp−2)

+M1(−bM2
2 +bq2 +2M2)+bM2(q2−M2

2))
)]

HT (+1/2)
+1/2,t,0 =

1
q2Q−Q+

2aM1 p(bp−1)
[
Q+

(
q2h̃1− h̃2(M1−M2)

2
)
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+Q−
(

h2(M1
2 +M2

2)−h1q2
)]

λ = t,λ ′ =+

HT (−1/2)
−1/2,t,+ = 0

HT (−1/2)
+1/2,t,+ = 0

HT (+1/2)
−1/2,t,+ = 0

HT (+1/2)
+1/2,t,+ =

√
2abp(M1 +M2)(h2− h̃1)√

q2
+

2
√

2abM1 p2(M1−M2)(h̃1− h̃2)√
q2Q−

λ = t,λ ′ =−

HT (−1/2)
−1/2,t,− = +

√
2abp(M1 +M2)(h2− h̃1)√

q2
− 2
√

2abM1 p2(M1−M2)(h̃1− h̃2)√
q2Q−

HT (−1/2)
+1/2,t,− = 0

HT (+1/2)
−1/2,t,− = 0
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HT (+1/2)
+1/2,t,− = 0

λ = 0,λ ′ =+

HT (−1/2)
−1/2,0,+ = 0

HT (−1/2)
+1/2,0,+ = 0

HT (+1/2)
−1/2,0,+ = 0

HT (+1/2)
+1/2,0,+ = −2

√
2abM1 p2(M1−M2)(h̃1− h̃2)√

q2Q−
−
√

2abp(M1 +M2)(h2− h̃1)√
q2

λ = 0,λ ′ =−

HT (−1/2)
−1/2,0,− = −2

√
2abM1 p2(M1−M2)(h̃1− h̃2)√

q2Q−
+

√
2abp(M1 +M2)(h2− h̃1)√

q2

HT (−1/2)
+1/2,0,− = 0

HT (+1/2)
−1/2,0,− = 0
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HT (+1/2)
+1/2,0,− = 0

λ =+,λ ′ =−

HT (−1/2)
−1/2,t,+,− = − 1

q2Q−Q+
2aM1 p(bp+1)

[
Q+

(
q2h̃1− h̃2(M1−M2)

2
)

+Q−
(

h2(M2
1 +M2

2)−h1q2
)]

HT (−1/2)
+1/2,+,− = − 1

2M1q2Q−Q+
ap
[
Q+

(
2bM1q2h̃1(M2

1 −2M1M2−2M1 p+M2
2 −q2)

−h̃2(M1−M2)(bM4
1 −M3

1(2−4bp)−2M2
1(bM2

2 −M2(2−2bp)+bq2)

+b(M2
2 −q2)2−2M1(M2

2 −q2))
)

+Q−
(

4M2
1q2(bp−1)(h1−h2)−h2Q+(bM3

1 +M2
1(bM2 +4bp−2)

+M1(−bM2
2 +bq2 +2M2)+bM2(q2−M2

2))
)]

HT (+1/2)
−1/2,+,− =

1
2M1q2Q−Q+

ap
[
Q+

(
−2bM1q2h̃1(M2

1 −2M1(M2− p)+M2
2 −q2)

−h̃2(M1−M2)(bM4
1 −M3

1(4bp+2)−2M2
1(bM2

2 −2M2(bp+1)+bq2)

+b(M2
2 −q2)2−2M1(M2

2 −q2))
)

+Q−
(

4M2
1q2(bp+1)(h1−h2)+h2Q+(bM3

1 +M2
1(bM2−4bp−2)

+M1(−bM2
2 +bq2 +2M2)+bM2(q2−M2

2))
)]

HT (+1/2)
+1/2,+,− =

1
q2Q−Q+

2aM1 p(bp−1)
[
Q+

(
q2h̃1− h̃2(M1−M2)

2
)

+Q−
(

h2(M2
1 +M2

2)−h1q2
)]
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1.4 Leptonic Amplitudes

The vector type leptonic amplitudes are given by

L+
± = ∓

√
2m`vsinθ` , (90)

L+
0 = −2m`vcosθ` , (91)

L+
s = −2m`v , (92)

L−± = −
√

2
√

q2v(1∓ cosθ`) , (93)

L−0 = −2
√

q2vsinθ` , (94)

L−s = 0 , (95)

where v =
√

1−m2
`/q2.

The scalar type leptonic amplitudes are written as

L+ = −2
√

q2v , (96)

L− = 0 . (97)

The tensor type leptonic amplitudes are

L±
λλ

= 0 , (98)

L+
0± = −L+

±0 =
√

2
√

q2vsinθ` , (99)

L+
+− = −L+

−+ = L+
s0 =−L+

0s = 2
√

q2vcosθ` , (100)

L+
±s = −L+

s± =±
√

2
√

q2vsinθ` , (101)

L−0± = −L−±0 =±
√

2m`v(1∓ cosθ`) , (102)

L−+− = −L−−+ = L−s0 =−L−0s =−2m`vsinθ` , (103)

L−±s = −L−s± =
√

2m`v(1∓ cosθ`) . (104)
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The above are confirmed in Ref. [109], Appendix A. Therein, the W boson moves in the -z

direction with the leptonic angle defined with respect to the +z axis, hence our θ would become

π − θ . Also, there is a minus sign difference between our transverse leptonic amplitudes and

those of Ref. [109]. However, the partial amplitudes HL would be the same since the transverse

polarization vector occurs in both H and L.
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APPENDIX 2: H→W−W+∗(or H+∗)→ τ−ν̄ττ+ντ
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2.1 Leptonic Amplitudes for H→W+∗(→ τ+ντ)W−(→ τ−ν̄τ)

The leptonic amplitudes (see Eqs. (64b) and (64c)) are written below, normalizing with respect to

the coupling and propagator denominator. Note vq = 1− m2

q2 and vp = 1− m2

M2
W

.

B
λW+

λ
τ+ ,λντ

= ū(p1,λντ
)/ε1(λW+)(1− γ5)v(p2,λτ+)

C
λW−
λ

τ− ,λν̄τ

= ū(p3,λτ−)/ε2(λW−)(1− γ5)v(p4,λν̄τ
)

EλH+

λ
τ− ,λν̄τ

= ū(1+ γ5)v

B
λW+

λ
τ+ ,λντ

C
λW−
λ

τ− ,λν̄τ

EλH+

λ
τ+ ,λντ

B±+,− =
√

2q2vq(1± cosθq) e±iχ C±−,+ =
√

2M2
W vp(1∓ cosθp) E0

−,− = 2
√

q2vq

B0
+,− =−

√
2q2vq sinθq C0

−,+ =
√

2M2
W vp sinθp

Bt
−,− =−2m√vq C±+,+ =∓m

√
2vp sinθp

B±−,− =∓m
√

2vq sinθq e±iχ C0
+,+ =−2m√vp cosθp

B0
−,− =−2m√vq cosθq

2.2 Standard Model Distribution: H→W+∗(→ τ+ντ)W−(→ τ−ν̄τ)

The full four-fold distribution is written below for H → W+∗(→ τ+ντ)W−(→ τ−ν̄τ) without

dropping NP terms, such as parity violating terms (, |A++|2− |A−−|2,(A++−A−−)A∗t0, (A++−
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A−−)A∗00) or triple product terms (sin χ or sin2χ)10. By writing the angular distribution in terms

of P2(cosθ) =
3cos2 θ −1

2
, which is the Legendre polynomial, it simplifies the integration over

the polar angles.

dΓSM
(

H→W+∗(→ τ+ντ)W−(→ τ−ν̄τ)
)

dq2d(cosθq)d(cosθp)dφ
= f (q2) (α1 +α2 +α3), (105)

where

f (q2) = BWτν CW (q2)
1

2π

M2
W q2

1+ εp/2
, (106)

CW (q2) =
g4|~q|v2

q

1536π3 M2
H

1
(q2−M2

W )2 +M2
W Γ2

W
,

|~q| =

√
((q2−M2

W )2 +M4
H−2M2

H M2
W −2M2

H q2)

2MH
,

vq = 1− m2

q2 ,

εq =
m2

q2 , εp =
m2

M2
W
,

Fs = 1− q2

M2
W
,

α1 =
3
2
|At0|2 F2

s εq

(
P2(cosθp)(εp−1)+

εp

2
+1
)
, (107)

α2 = 2Fs εq Re
[

3
2

A00A∗t0
(
(P2(cosθp)−1)cosθq− (P2(cosθp)+

1
2
)εp cosθq

)
(108)

+
9
16

A−−A∗t0 e−iχ
(

2sinθp sinθq

+sin2θp sinθq− εp sin2θp sinθq

)
10See [93] for SM derivation. In this latter paper, NP terms and

m2

M2
W

terms are dropped
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+
9
16

A++A∗t0 eiχ
(
−2sinθp sinθq + sin2θp sinθq

−εp sin2θp sinθq

)
]
,

α3 = |A00|2
(

P2(cosθq)P2(cosθp)−P2(cosθq)εpP2(cosθp)

+εpP2(cosθp)−P2(cosθq)εqP2(cosθp)+P2(cosθq)εpεqP2(cosθp)

+
1
2

εpεqP2(cosθp)−
εqP2(cosθp)

2
−P2(cosθp)−P2(cosθq)

−P2(cosθq)εp

2
+

εp

2
+P2(cosθq)εq +

1
2

P2(cosθq)εpεq

+
εpεq

4
+

εq

2
+1
)

+|A−−|2
(
− 9

4
cosθq cosθp +

3
4

P2(cosθq)cosθp−
3
4

P2(cosθq)εq cosθp

+
3
4

εq cosθp +
3cosθp

2
− 3cosθq

2
− 3

4
cosθqP2(cosθp)

+
P2(cosθp)

2
+

P2(cosθp)P2(cosθq)

4
+

P2(cosθq)

2
− 3

4
cosθqεp

+
3
4

cosθqP2(cosθp)εp−
P2(cosθp)εp

2

−1
4

P2(cosθp)P2(cosθq)εp +
P2(cosθq)εp

4
+

εp

2
+

P2(cosθp)εq

4

−1
4

P2(cosθp)P2(cosθq)εq−
P2(cosθq)εq

2
− 1

4
P2(cosθp)εpεq

+
1
4

P2(cosθp)P2(cosθq)εpεq−
1
4

P2(cosθq)εpεq +
εpεq

4
+

εq

2
+1
)

+|A++|2
(
− 9

4
cosθq cosθp−

3
4

P2(cosθq)cos(θp)+
3
4

P2(cosθq)εq cosθp

−3
4

εq cosθp−
3cosθp

2
+

3cos(θq)

2
+

3
4

cosθqP2(cosθp)+
P2(cosθp)

2

+
P2(cosθp)P2(cosθq)

4
+

P2(cosθq)

2
+

3
4

cosθqεp

−3
4

cos(θq)P2(cosθp)εp−
P2(cosθp)εp

2

−1
4

P2(cosθp)P2(cosθq)εp +
P2(cosθq)εp

4
+

εp

2
+

P2(cosθp)εq

4

−1
4

P2(cosθp)P2(cosθq)εq−
P2(cosθq)εq

2
− 1

4
P2(cosθp)εpεq

+
1
4

P2(cosθp)P2(cosθq)εpεq−
1
4

P2(cosθq)εpεq +
εpεq

4
+

εq

2
+1
)
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+2Re
[9

8
A−−A∗00 e−iχ

]
∗(

− sinθp sinθq−
1
2

sin2θp sin(θq)+
1
2

sin2θpεp sinθq

+
1
2

sinθp sin2θq +
1
4

sin2θp sin2θq−
1
4

sin2θp sin2θqεp

−1
2

sinθp sin2θqεq−
1
4

sin2θp sin2θqεq +
1
4

sin2θp sin2θqεpεq

)
+2Re

[9
8

A++A∗00 eiχ
]
∗(

− sinθp sinθq +
1
2

sin2θp sinθq−
1
2

sin2θpεp sinθq

−1
2

sinθp sin2θq +
1
4

sin2θp sin2θq−
1
4

sin2θp sin2θqεp

+
1
2

sinθp sin2θqεq−
1
4

sin2θp sin2θqεq +
1
4

sin2θp sin2θqεpεq

)
+2Re

[1
4

A++A∗−− e2iχ
]
∗(

−P2(cosθp)+P2(cosθq)P2(cosθp)+ εpP2(cosθp)

−P2(cosθq)εpP2(cosθp)+ εqP2(cosθp)

−P2(cosθq)εqP2(cosθp)− εpεqP2(cosθp)

+P2(cosθq)εpεqP2(cosθp)+1−P2(cosθq)− εp

+P2(cosθq)εp− εq +P2(cosθq)εq + εpεq

−P2(cosθq)εpεq

)
.

2.3 2HDM Distribution:

H→W−W+∗(or H+∗)→ τ−ν̄ττ+ντ

dΓ2HDM
(

H→W−W+∗(or H+∗)→ τ−ν̄ττ+ντ

)
dq2d(cosθq)d(cosθp)dφ

= (109a)

A1−BWτνDH+

1 (q2)A2 +BWτνDH+

2 (q2)A3, (109b)
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where

DH+

1 (q2) = − 1
211π4 ·3

m v2
q|~q|

M2
H

g4 sin(β −α)cos(β −α) tanβ

(q2−M2
W+)(q2−M2

H+)+ΓW+ΓH+MW+MH+

q2

1+
ε

2

,

DH+

2 (q2) =
1

212π4 ·3
m2 v2

q|~q|
M2

W M2
H

g4 cos2(β −α) tan2 β

(q2−M2
H+)2 +(ΓH+MH+)2

q2

1+
ε

2

,

ΓH+ = Γ(H+→ τ
+

ντ) =
g2 (M2

H+−m2
τ)

2

32πM2
W M3

H+

(mτ tanβ )2,

A1 = equation(105) · sin2(α−β ),

A2 =
3m√

q2
Re(A00D∗00)

(
−pp cosθq +ppεp cosθq +

εp cosθq

2

+cosθq

)
+

9

8
√

q2
m Re

(
A−−D∗00 e−iχ)(2sinθp sinθq + sin(2θp)sinθq

−εp sin(2θp)sinθq

)
+

9

8
√

q2
m Re(A++D∗00 eiχ)

(
−2sinθp sinθq + sin(2θp)sinθq

−εp sin(2θp)sinθq

)
+

3√
q2

mFs Re(At0D∗00)
(

ppεp +
εp

2
−pp +1

)
,

A3 =
3
2
|D00|2

(
(pp +

1
2
)εp− (pp−1)

)
.
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