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i. INTRODUCTION

The general topic of this paper is the vector theory of gauge fields, but
I like to think that these lectures are really concerned with the future of the
relativistic field theory as an effective force in the development of funda-
mental physics. Two basic positions are at present under investigation as
the possible organizing forces for the rapidly growing empirical data on
elementary particles, To put it as extremely as possible, we might call
these two positions:

(i) The particle point of view,

(ii) The field point of view.

By the particle point of view,I mean those investigations in which the
physical particles, as we see them, are the basic elements. This is the
whole line of development associated with the S-matrix, with the idea that
the only function of the theory is to compute and to correlate the results of
scattering measurements. It also underlies those further attempts intended
to give a physical content to this essentially empty framework, such as dis-
persion relations, Regge poles, etc. And, to adopt this point of view system-
atically, one must necessarily accept the Orwellian philosophy that no parti-
cle is more fundamental than any other. That is the strict particle point of
view ; the particles are unanalysable. To our mmd it is an extremely con-
servative position.

Opposed to this is the field point of view which supports the idea that
there is a deeper dynamical level, that the empirical information we have
is very complicated and that the purpose of theory is to discover simplicity -
not necessarily in terms of the observed properties, but in terms of con-
cepts, of properties which are at the moment not directly observable but
which undoubtedly will become so in the course of future developments, This
is the way that physics has always proceeded. The field point of view is thus
the idea that there exists something more fundamental than the phenomeno-
logical particles. This is a very general statement and we should say that
field theory as it now stands is based upon the tentative identification of these
more fundamental entities with some localizable fields. We would almost
try to make a distinction between the idea that there is something dynamical-
ly deeper than the particles, and the particular.association of the deeper
structure with localizable fields. Such fields may be what is required, but
the important thing to our mind is the alternative between accepting the
particles as they are and seeking for something more fundamental, At the
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moment, the latter is identified with the idea of fields which are operator
functions of the space and time coordinates. But even within this frame-
work,there are various possible viewpoints. There is the extreme viewpoint -
this is Heisenberg's attitude - that there is only one fundamental field. Every-
thing we know must come out of this one field. This is rather hard to ac-
cept, and I myself will adopt here the intermediate position that there are
several fundamental fields. As to which fundamental fields are necessary

I would say that the clue must be found in the exact, or almost exact, con-
servation laws we know in nature. This is the line of thought that leads to

the idea of vector gauge fields which I am going to explore.

It should be emphasized that in the field viewpoint the fundamental fields
are not immediately correlated with observable things. This is the deeper
dynamical level; out of the interplay of the dynamics that govern these en-
tities emerges the world of particles as we know it. In other words, the
important thing is to recognize that the fields we begin with in this view-
point are not necessarily directly correlated in a simple way with the ob-
served particles. It has become fasionable to describe field theory as "old-
fashioned". I would insist upon the following : what is old-fashioned is the
naive confusion of these two points of view, in which one speaks indiscri-
minatly of particles and fields and associates with every particle a field
which is inserted in some Lagrangian for the purpose of applying pertur-
bation theory. This is the old-fasioned, naive point of view but it is not the
one I am advocating here. We must clearly understand that we are dealing
with a much more sophisticated approach, in which the fundamental fields
are not simply correlated with particles, although there may be an ardent
relation in some individual cases. The basic physical problem, from this
" point of view, is to explore the possibilities of postulating various funda-
mental fields with their dynamics and by proving the existence of special
states of definite or almost definite energy-momentum relations to identify
these with physical particles.

Such are the two extreme viewpoints, and obviously it is the second one
which is adopted here. I shall try to indicate some of the possibilities that
are inherent within it. Now,I said that the clue to which fields are funda-
mental is given by the exact, or perhaps almost exact, conservation laws.
And I point here, inevitably, to the example upon which the whole fieldtheory
has been built more or less by analogy, i.e. electrodynamics. The electro- *
magnetic field has the very special feature of gauge variation; while it might:
be possible to advocate, as Heisenberg does, that there is no fundamental F
electromagnetic field, I regard this property of gauge variation to be so
basic that it seems necessary to postulate a fundamental electromagnetic
field.

It should be remembered that the electromagnetic field is one such that
the vector potential must be allowed freedom of transformation by gradients
of an arbitrary scalar function, at the moment a numerical scalar function,
say:

Au(x) > Au(x) + 3uA(x). (1.1)
Now we know that as the theory has been constructed to be invariant under
such a gauge transformation, it follows automatically that the current vector
j#(x), which is the source of this field, must be conserved:
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a0, (1.2)

This is the important aspect of gauge invariance: the concept of the absolute
conservation of the electrical charge is not explained as the result of speci-
fic dynamical restrictions on every conceivable system, but is understood
in terms of the structure of the Maxwell field itself. To put it in another
way, we know that the field strength tensor F*’ is antisymmetrical and obeys
the equation:

9, F¥V =3 (1.3)

and in virtue ofthat antisymmetry, a structural property of the field, it
follows automatically that the current obeys

. f=0. (1.4)

That is, the equation of local electrical charge conservation is an identity
characteristic of the structure of the Maxwell equations,and, therefore, once
the Maxwell field is introduced, non-conservation of the electrical charge

is inconceivable., This is the perfect model of a dynamical explanation of

an absolute conservation law,

One may attempt to build an explanation of another absolute conserva-
tion law along these lines. One may say that what has been explained here
is, in a sense, the absolute stability of the electron. The electron, being
the lightest object that carries an electrical charge, is a stable object in
virtue of the conservation of the electrical charge, since there is nothing
lighter for it to go into while maintaining its charge. There is an analogy
between the stability of the electron and the conservation of electrical charge,
on the one hand, and the stability of nuclear matter and the conservation
of the nuclear charge, on the other. This nucleonic charge must be possessed
by all the heavy baryons and is handed on from the cascade particle to the A,
the L and the nucleon in the process of all their disintegrations. But with
a nucleon, or more precisely with a proton, as the lightest object carrying
this nucleonic charge, the process of decay ceases because there is nowhere
else to transmit the nucleonic charge. That is, in the absolute conservation
of nucleonic charge we have a description of the stability of matter and one
would like to have an understanding of this most fundamental of all conserva-
tion laws on some general dynamic grounds rather than merely as a state-
ment, since it is a rule which has to be superimposed on every possible
interaction, It is natural, then, to introduce a hypothetical vector field, a
gauge field analogous to the electromagnetic field and to insist that its dyna-
mics be governed by the requirement of gauge invariance from -which would
follow the existence of an absolute conservation law. This dynamical expla-
nation involves a new field and the question now is what will be the dynamic
consequences of that field. Here is where the idea appears to run into im-
mediate difficulties. If the analogy with the electromagnetic field is com-
plete, a physical particle with zero mass, analogous to the photon should
exist, and we know of no such particle. One could assume that the coupling
to the new field is arbitrarily weak, there are arguments that the field must
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be unobservable even on a cosmological scale. That is hardly the kind of
fundamental field which should be introduced to explain the conservation of
the strongly interacting particles. This was the great objection: gauge in--
variance should imply the existence of a zero mass particle, And this is
the decisive point at which we want to introduce the ideas of the new field
theory.

It may be helpful to give a simple form of the argument relating gauge
invariance to a massless particle. Using the notation of electrodynamics,
we have the charge density equation

- =

V.E=p (1.5)

and an integration over a large volume gives:
. N __) '
ﬁdr)p=Q=fds.E’ (1.6)

where Q is the total charge of the system and a constant of the motion, There-
fore, the electric field at large distances must fall off like

E ~ (Q/4m)(n/r?) (1.7)

which is a long range field. This is a static field, but one could argue, not
incorrectly, that if one finds a static field which is long range, there must
be a zero-mass particle or the field would be of finite range. But it is im-
plicitly assumed here that the total charge Q is different from zero. And

it is precisely at this point that the argument fails. When a charge is in-
serted into the vacuum, the accompanying electric field polarizes the vacuum
producing a partial compensation of the charge. That is the origin of charge
renormalization, But it is conceivable that the compensation of charge is

not partial, but complete is present, That is, if a charge is placed in the
system, there may come into being in the course of time a vacuum polari-
zation in which, loosely speaking, one part of the charge escapes to infinity
and the compensating charge exactly balances the charge that was originally
inserted. Under these conditions, the constant total charge that will be ob-
servable in any arbitrarily large volume will be zero. This is not intended
as a convincing argument, but merely an indication that there is a loophole
in the assertion that there must be a long-range field - or massless particle-
for this depends upon the assumption that there is no complete compensation
charge. The massless physical particle disappears when a non-zero total
charge can no longer be maintained in the vacuum.

2. THE ONE DIMENSIONAL MODEL

Rather than indicate by general agreements that this is a very real pos-
sibility, a very simple physical model will be used to show that such a new
situation can occur,

The model 1 want to discuss is completely physical, in the sense that
no general principles of physics are violated. On the other hand, it is an
unworldly one, since it is a special case of electrodynamics in one spatial
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dimension. Of course, all the arguments we have given until now about gauge
invariance apply equally well to one spatial dimension, apart from specifi-
cally geometrical factors.

Let me write down the basic equations we shall be concerned with for
electrodynamics, and then we shall specialize and solve exactly in one-di-
mensional space. We shall begin with the Lagrange function

£ = -(1/2)F¥(3, A, -3,A,) +(e?/4)FMF,,
+(i/2)¥c# 8,¥ + (i mo/2)¥BY +(1/2)A Mo q¥ (2.1)

where we have introduced two fundamental fields, a gauge field characteri-
zed by a vector Ay and an antisymmetric tensor F,,, and a Fermi field ¥.
The matrices « and $ are connected with the usual Dirac y-matrices by

ia*= By*. The o are all real and symmetrical, and a® = 1; 8 is real and anti-
symmetrical; e is the coupling constant and m; the mass constant asso-
ciated with the field ¥. The antisymmetric matrix

=[]

is specifically associated with the charge, and is introduced here in order to
work with Hermitian¥fieldsUnder the transformation A = e Ay, Fy = (i/ e)Fy,
the Lagrangia.nof goes back to its more familiar form (i.e.the coupling
constant e appears at its usual place in the coupling term e A*j,). The Fermi
field obeys the anticommutation relation

[ Pad -_>I !
{‘Pa(X),Ye (x )} = 648 6(x-%), X = X,

where the indices o and B refer to spin and charge.

The one essential point to be emphasized about the distinction between
three dimensions and one dimension is the question of the dimensionality
of the charge, i.e. of the coupling constant. The action operator

w =ﬁdx)£

is dimensionless in the system of units where h = 1, Then the dimension
of the Lagrangian

[£] = 1/(L™)

where L is length and n the number of spatial dimensions. From this, we
obtain the dimensionality of e2:

[d =1/(L°™)
and hence for the particular case n = 3, e is dimensionless, while for n=1,
fe2q] =1/L2

i.e. the coupling constant itself carries a length, carries a mass.
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We shall now show that it is possible to find an exact solation of the
one-dimensional problem in the special case in which the mass constant
associated with the Fermi field vanishes, mg = 0. In this one-dimensional
model there are only two @-matrices, o® = 1 and al = @;, which can be re-
presented by 2 X 2 matrices. The spatial metric adopted is positive and
the time metric negative.

3. EXACT SOLUTION OF THE ONE-DIMENSIONAL PROBLEM

What we want to do now is to solve-a preliminary problem : the polari-
zation of the vacuum of a Fermi field ¥ by an externally imposed field A,
We must then introduce a certain requirement of self-consistency : the charge
brought in creates a field, this field polarizes the vacuum which creates a
charge that polarizes the vacuum and so on. The problem can be solved
exactly in our model, because of the assumption of one spatial dimension
and the zero mass of the fermion field. This is familiar, for example, from
the discussions that have gone on about the Thirring model which is also
a one-dimensional model though not electrodynamic.

Our preliminary problem is then a Dirac field ¥ plus an external (elec-
tromagnetic) field Ay, In terms of its solution we shall have the exact solu-
tion to our problem. We begin with a simplified Lagrange function

= (i/2)¥a*(o, - i A,)Y. (3.1)

We want to find the current induced in the vacuum by the external field
Ay . Let this be:

Gy = 1/2¢¥ (x)aq¥ (x) Y. (3.2)

Since j,(x) is a bilinear combination of fields taken at the same point x, we
construct its expectation value by first solving another problem, which is
to find the expectation value of a bilinear combination of fields at arbitrary
points of space and time. This is, in other words, the construction of the
Green's function associated with the field., We define this Green's function
as

G(x, x; A) =¥ (¥ (x)), D€ (x-x) (3.3)

which is the vacuum expectation value of the time ordered product of the
fields, €(x-x/) is a sign function. This is the basic physical quantity in terms
of which we extract physical information about the states that are created
in the vacuum of the field ¥, and in terms of which, by a 11m1t1ng process
with x/= x, we shall construct the current operator.

The Green's function obeys an inhomogeneous differential equation which
incorporates the field equations and the anti-commutation relations

ak(d, - iq Ay(x))G(x, x) = 6(x-x/). (3.4)

Under a gauge transformation Eq. (1) this Green's function transforms
according to
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G(x, x) = exp [iqMx)]G(x, x)exp [ -igh (x)]. (3.5)
The current operation ju(x) is given by :
B = (1/2)¥(x)e, ¥ (x). (3.6)

This is a singular expression and therefore it must be defined by a suitable
limiting process as stated above. We must let x'— x along a space-like
direction, since we do not want to bring dynamics into the definition of an
operator. We must carry out this definition in such a way that gauge in-
variance is guaranteed and then we must check the covariance of the pro-
cedure,.

We now rewrite the expectation value Eq.(3.2) in terms of a Green’s
function. We get:

<j“(x)>'=-(1/2)Tr ay G{x,x) (3.7)
where G (X, x) is defined by :
X
G(x, x) = lim G(x, x) exp| -iqdeAu(E)]. (3.8)
X~ ¥
the limit being taken from a spatial direction maintaining all symmetries,
i.e. taking an average of the values of the limits attained from the left and
from the right. The exponential factor is required in order to maintain gauge

invariance for x # x.
The solution of Eq.(3.3) can be written as:

G(x, x4 = G%(x, x') exp iq[®(x) - (x)] (3.9)
where & (x) satisfies:
atd,0(x) = o# Au(x). (3.10)
and G° is the Green’s function for Ay=0
ak g, G%x, x) = 6(x-x'). (3.11)
The solution of this equation with the proper boundary conditions is:
Go%x,x) = (1/2 ﬂ)fwdp exp[ip ak(x,-x}) , x%> x0'
=-(1/2 ﬂ)(?‘/‘mdp exp[ip o#(x,-x,) , x0< x0° (3.12)
0

To perform the limiting process (along a space-like direction), let us con-
sider the right hand side of Eq. (3. 8) for x, = x4:

G(x, x') {exp iq[® (x) -d>(x')]}{exp[-iqf ldEAﬂ} .

X'
But, for equal times
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G = (1/2m)e, /(x;-x"].
Expanding the exponentials in a Taylor series for x;— x], we get:
G=(i/27) [a/(x1-x)][1 +iq(x;,-x1)(8: -Ay). (3.13)
Taking now the symmetrical limit as explained above, we obtain:
G(x, %) = - (1/27)a; q[d &(x)-A1(x)] = (1/27) q(3® (x)-Aq(x)). (3.14)

Inserting this into Eq.(3.7), we obtain the covariant expression:

3ux)> = ~(1/m[A,(x) -3,(1/4) Tr ¢ (x)]- (3.15)
Writing explicitly Eq. (3.10)
(3 +a! 3;)®(x) = Ag(x) +a! A (x) (3.16)

and multiplying it from the left by (3,-a'9,), we obtain the second order
differential equation:

- 0(x) = -9, A¥(x) +al[dg A (x) - 9 Ag(x)] « (3.17)
By taking the trace, this reduces to
-3%(1/4) Tro(x) = -3, A(x) (3.18)

which we can solve for Tr ® by means for the corresponding Green’s func-
tion D(x, x') :

(1/9)Tr o) = - flax)Ds, x93, 2 x) (3.19)
or, symbolically:
(1/4) Trd(x) = -Da, & (x). (3.20)
Hence, our final result in this notation is:
Cig®)>= - (1/7)[A,(x) +3, Do, A°]. (3.21)
This is an obviously covariant expression, it is also conserved and it is
gauge invariant. To show that it is conserved, let us take the divergence
of Eq.(3.21). We get:
Mju=-(1/m)[or Ay-or ALl = 0.
Let us now indicate some of ité physical implications by a simple but

not wrong method. We will then justify it. Let us think of the idea of self-
consistency in the simplest possible way. Ap has been until now an external
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field, but suppose this field somehow is brought into existence propagating
in accordance with Maxwell’s equations. Then this field induces a current
and this current in turn reacts back to change the nature of the field. What
then is the condition of self-consistency ?

We go back to Maxwell equations

avall = i“

BuAy-d Ay = e2F,

From here, e?j#= -92AK 3k 3 A, Adopting now the Lorentz gauge 3, A =0.
and using Eq.(3.21), we get the propagation equation for the vector potential:

(-92 + “2)Au(x) =0 (3.22)
where
u2 = (e2/m). (3.23)

This is an equation describing non- interacting particles of finite mass
= J(€?/7) and shows that gauge invariance of a vector field does not neces-
sarlly require zero-mass particles.
The expression found for the vacuum expectation value of the current
in the presence of an external vector potential A is

G0 = (1A + [ Dix-x)0) ()] (3.24)

where j* is the electrical current carried by the fermion field. This may be
symbolically written

= -(1/m)(1+0D0) A, (3.25)

where the projection operator (1+ 3[_]a guarantees the conservation of
charge and gauge invariance. We also found, by a simple self-consistency
argument, that the condition for the vector potential to maintain itself is
that it satisfy the field equation

& -(e?/m)]A = 0. © (3.26)

Here e?/7 =42 plays the part of the square of a mass; so the result is - at
least in a simple-minded way - that the propagation equation for A is the
same as that for a particle of mass u. We shall give a precise derivation
of this result here and also show how to calculate all other properties of
the system.

But before we begin the precise derivation, let me come back to an-
other general qualitative remark that ] made. The equation V.E = p implies
that at great distances from the sources the electric field E satisfiesE~Q
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in the one-dimensional case and E ~Q/47rr2 in the three-dimensional case,
where Q is the total charge. It is argued, quite correctly, that a long-range
electrical field can only be maintained and propagated by zero-mass parti-
cles. However, the course of the argument is that the total charge should
be different from zero, and this is not the case under the conditions we are
talking about because the vacuum polarizalion effect acts to annihilate any
given charge.
Suppose that we insert a static external charge density J° whith total
charge Q, into the vacuum. A charge density j% will then be induced, whose
- expectation value, in the Lorentz gauge, is given by our previous equation

38D = -(1/m) A%, (3.27)
The potential A’ has its source in the total charge density JO +{jo>;
SFA0 = e (IO +GOD), (3.28)

Substituting for {j®>, and using the fact that the fields are time independent,
we get

(d%/dx2-u?) A0 = -e2J9, » (3.29)

The solution of this is:

A° = (e?/2u) f (dx'Y) (exp [-p (x'- x')] 13 (x'). (3.30)
The total charge induced inthe vacuum is therefore

f(jO(X’DdX’ = [-e®/(2u W)[de’dX’l[exP (- u|x- x*|1330 (x) = -Q
‘ (3.31)

which exactly cancels the inserted charge Q. Thus there is no long-range
field and no longer an argument for a zero-mass particle.

4, SOLUTIONS OF THE GENERAL EQUATIONS WITH EXTERNAL
SOURCES AND THE GREEN'S FUNCTIONAL.

Now we must write down the general equations of this relativistic field
system and solve them exactly. The method we shall use is that of external
sources and the Green's function. This is the general technique for dealing
with any field problem. It depends on the idea of introducing simple exci-
tations into the system, in terms of which all possible states can be created.

To the Lagrangian written down previously we add the source terms

A(x) J, (x) - W(x)n(x). (4.1)

The total Lagrangian must still be gauge invariant, which implies that the
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external current J, is conserved (this external current can be considered
simply as an idealization of other dynamic systems which act upon our sys-
tem). As for the Fermi source term 0, it is a fully anticommutative quantity
.(just as the boson source J*is fully commutative)., The source n{x) anti-
commutes with n(x’) and ¢(x’) for all x and x'. Such quantities can be perfectly
well realized in terms of familiar algebraic structures. The change in n(x)
under a gauge transformation must be just such as to compensate the change
in ¢. .

With the addition of the source terms, the field equations become in-
homogeneous. That for the Fermi-field.- written for the case of zero-mass
constant - is

af(a,-ie Ay = n, (4.2)
while that for the electroniagnetic field tensor is
9, F¥ = J¢ + ji. ' (4.3)

Notice that this is jé‘, and not j®& The quantity j* = $¥ o*qy is no longer con-
served in the presence of sources and therefore it would be inconsistant to
write J¥ + j* as the right hand side of our previous equation. A proper cal-
culation, which takes account of the fact that there is a transfer of charge
from outside the system we are considering, shows that one must extract
from j* its conserved part j*. :

The point of introducing these external source terms is that one can
convert the Hilbert-space operator field equations by their aid into nume-
rical functional differential operator equations. For our problem the latter
equations turn out to be soluble. But how do we make the transition from
one kind of equation to the other? Well, we consider that the system begins
in the vacuum state and the sources are, so to speak, turned on. The sys-
tem is then disturbed and by choosing the disturbance correctly one may
generate any state into which the vacuum may be thrown by the action of
the field operators. By watching how these states propagate in time we see
their properties. Finally, we switch off the sources and return to the vacuum
state. The mathematical quantity which contains all the information about
this process is the transformation function which relates the vacuum state
IO . > before the disturbance to the vacuum state |0 +» after it. I shall call
this transformation function the Green's functional: it is the generating
functional of all the Green's functions, or propagation functions, which des-
cribe processes in our system, We write it:

GlnJl =¢o,]od". (4.4)

We must find how the Green's functional depends on the external sources

n and J. The idea is to consider its response to infinitesimal changes
6n,6 J,. These produce a change in the Lagrangian:

SyyL= MG T iy bn, (4.5)

and a change in the Green's functional
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65GInJl = 6,0, JoF =4 >0+|/(dx)A“6 J-igén|0.>.  (4.6)

(The matrix elements are always taken between vacuum states). If one ima-
gines a disturbance §J,, én localized around the point x and if one some-
how knows 6;;G[nJ], then immediately one gets the matrix elements of the
operators A*(x) and ¢ (x). If this can be repeated at all points of space-time,
one gets a general correspondance between matrix elements of the field .
operators and functional derivatives of G[nJ]. This gives the general dif-
ferential operator representation of the field operators, very much analo-
gous to the representation of p's by differential operators with respect to
q's.
Now we come to an important point. I have written down the variation

8§J*. To find one differential operator representation we should like to make
arbitrary infinitesimal variations of the J¥, But this we cannot do: the J*
are not independent. If we vary the m independently we shall violate charge
conservation and therefore gauge invariance. The way to overcome this
difficulty is to work in a specific gauge. By choosing a suitable gauge we
shall be able to vary our J* arbitrarily while conserving charge.

_ How is this to be accomplished? Take an arbitrary vector J and project
it by means of a projection operator Il into a vector J, which is conserved

J.= nJ. (4.7)

[
I want to make this projection so that it does not upset the temporal de-
velopment of the system, so we shall choose a projection operator which
is local in time, Let us introduce, in addition to the usual space-time gra-
dient 9, the purely spatial gradient V,. The spatial components, or com-
ponent since what we say applies to both one and‘three dimensions, of V,
are the same as those of 8“, but the time component is-zero, The projectioa
equation will be taken to be

Je = (1+VD6)J, (4.8)
where@ is the Green's function associated with the spatial gradient
v2Dix, ) = - 6(x-x). (4.9)

The conservation equation 3J, = 0 follows immediately,
The conservation of charge can now be ensured by replacing 6J by éJ;
in the J termr of our variational integral

if(dx)A(l +vDa)s. (4.10)

We can now certainly perform arbitrary variations of J, but at the cost of
some awkwardness, However, if we now choose the radiation gauge, in
which V. A = 0, and perform an integration by parts (this must be validated
by, appropriate restrictions, which we will not go into), then the extra term
V //9 simply disappears. So we have exploited the gauge freedom of the the-
ory in such a way that we can replace the variation of the conserved current
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by the variation of an arbitrary vector. This is true only for our special
choice of gauge. Other gauges are possible, but the projection operator
will no longer be local in time. However, once we have presented the whole
formalism in terms of functional differentials, we shall be quite free to
change the gauge as we whish. In fact, I shall immediately switch over from
the radiation gauge to the Lorentz gauge, which is much more symmetrical.

Treating J as arbitrary, whichis justified with our particular choice of
gauge, we can write down a correspondence between the variational deri-
vative with respect to J* and the vector potential A

\ .

(1/1)(6/83,(x)] = A*(x). (4.11)

(The coefficient of 6 J, in the variational integral is just iA*), In the same
way, considering the ¥ 6 n term in the variational integral, we find the cor-
respondence

-6, /6n(x) = ¥ (x). (4.12)

The £ suffix indicates that this is a left derivative. In making the corres-
pondence we must bring 67 to the left of ¢, which accounts for the minus
sign (Y én = -6n.9¥).

These correspondences suggest that one can convert the field equations
for ¢ and A* into functional differential equations for GinJ] by simply substi-
tuting 6/6 J, for i A¥ and /60 for ¢. First, from the Dirac equation we get:

o
[a’ (a“ qGJp(x) )6T)(X)

Secondly, there is the Maxwell set and at this point we shall change over
to the Lorentz gauge. The radiation gauge was described first because it
is most immediate, but now lel us define the conserved current J. by

+n(x)IGlnJ] = 0. (4.13)

J. = (1+0D3)J, , (4.14)

where D is the Green's function associated with - 8, This equation for J,
is not local in time, but it does have the advantage of being manifestly re-
lativistically invariant. I shall not go through the mechanics of the gauge
transfor.'mation, but the result is

é

ot 2 .5 % (1 +9Da)(I + 35 aqﬁ—n)]G[nJ]' . (4.15)

21
i é6J i

where J is the external current, (3)(6/6n)aq(6/6n) corresponds to the physi-
cal fermion current 3¢ e qy and the projection operator (1 +3D3) ensures
charge conservation. We still have to write the transcription for the last
equation, corresponding to the choice of gauge. The final gauge equation is

5
3 37 GinJl =0, (4.16)

which says that the Lorentz gauge is the chosen one.
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We must now solve the functional equations for the Green'!s function.
Let us first consider the Dirac equation, The variational derivative §/6J
can be treated as c-numbers-(and they behave like c-numbers in the sense
that they are commutative). For the moment we shall call them iA“, i, e.

—_——
=3 A (4.17)

The Green's function now obeys an equation in the presence of an external
field A, Treatmg this field as a parameter we can convert the differential
equat1on

3% GinJl =-fdx’G(x,x', A)n(x)GInJ], (4.18)

where G(x, x’. A) i s the Green's function for the Dirac equation in the pre-
sence of an external potential A,

The formal solution of the last equation can immediately be written
down. It is, of course, an exponential

GinJ] = Gl J] exp{ fdxdx G(x,x, : )n(x’)} (4.19)

where GLJ[ is a constant of integration. We can now transfer this partial
solution to the Maxwell equation in order to determine also the J dependence
of G: '

oo+ _52.8

T 57 %}--e(l+ 9D AJ - 7 Tr a qG(x, x/, )]G[J] = 0.

(4.20)
Taking this equation with the characteristic condition for the Lorentz gauge
9(6G/8J) = 0, (4.21)
we see that the previous equation is equivalent to
[(-a +e2/1r)(1/i)6/6.] -2 (1+ BDB)J:IG =0 (4.22)
in which,uge has been made of the known structure of the current
(2) Tr aqG(x, x5 A) = j(A) (4.23)
in the case of the external potential, for which the current (in the Lorentz
gauge) was proportional to A,. Again, the differential equation can be re-
placed by an integral funct1onal equation by using the Green's function for
the problem:
(-8° + /1) G(x, x') = 6(x, ). (4.24)

The Green!s functional G[J] is therefore given exactly by

GlJ] = exp[ 5 fdx dx’ J*(x) G,,,,(x,x)J”(x')] (4.25)
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where

Gy = (1 +3D 3), G. (4.26)

All the physical characteristics are contained in G. The projector (1+3D0d)
assures the fulfilment of the Lorentz gauge condition.

The expansion of the exponential in the solution of the Green!s functional
produces, in a sense, all the possible states of the system. The coefficients
of the expansion refer to the physical propagation of the system giving the
multiple Green'!s functions for them,

At this point it may be instructive to consider one example: This is
the comparison of:

(1) The quantum electrodynamic case with its gauge invariance; and
(2) The vector field case with new zero mass and no gauge condition,

5. COMPARISON OF THE QUANTUM ELECTRODYNAMIC CASE AND THE
VECTOR FIELD CASE

It has been shown that one may, under suitable physical conditions, have
a gauge invariant theory, exact conservation laws and yet no zero mass vec-
tor particle,

In the two simple theories which have been considered (pure electro-
dynamics which is gauge invariant and a vector field which already has a
mass constant and therefore is not gauge invariant) a distinct difference
in the nature of the spectra has been found. In the gauge invariant case one
has a particle with a non-zero mass, which depends on the coupling con-
stant, whereas in the non-gauge invariant case one has both a vector par-
ticle with non-zero mass and a scalar particle with mass zero.

The complete set of Green’s functions, which in principle contain the
answers to all possible physical questions, are finite in the electrodynamic
case and meet all general requirements in a perfectly reasonable way.With
these Green’s functions one can go on to discuss scattering and radiation
properties of the Fermi particles in interaction with the Bose field.

In the non-gauge invariant case one meets ''divergences', which does
not mean that anything is infinite, but rather that almost everything is zero.
The system does not respond to Fermi excitations in a way that is formally
characterized by the vanishing of the Fermi field renormalization constant.

This does not mean that we have just two different theories. We have
the choice between one field theory, where everything is finite and reason-
able, and another field theory which is unphysical, even though it is "re-
normalizable',

The mere possibility of renormalizability is not sufficient for physical
acceptability if the renormalization constants are zero. Renormalization
is part of the process of physical interpretation, not a mathematical means
of suppressing divergencies.

The general technique in the investigation of the simle model has been
the use of the Green’s functional G[n, J] which is the response of the sys-
tem to elementary disturbances. »

The dependence of the Green®s functional on the Fermi sources is given

by:
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Gin,J] = G[J] exp{- %fn(x)G(x, X, 1l66_J> n (x’)}. (5.1)

This formula is completely general. In the simple model G[J] is given by:

G[J] = exp{-ifffJ" (%) G,y (x, %) J"(r)}. (5.2)

It is possible to evaluate all the Fermi Green’s functions. In the electro-
dynamic case they will be finite, whereas in the non-gauge invariant case
they all vanish.

The Green’s function in the presence of an external electro-magnetic
field Ay (x)is:

G(x,x;A) = G (x,x') expiiql{¢ (x) - ¢ (X’)]}, (5.3)

where
—B exp[ipc® (x4 -x/)],  for x> x
0
el (x,x) = 0 (5.4)
dp - , 0 ,
-\Z:o_2; exp [ipa¥(x, -x)], for x0 < x’y -
is the Green’s function for the non-interacting case, This Green’s function
corresponds to a Fermi particle with zero mass moving in one dimension.

There is an invariant distinction between a particle moving to the right or
to the left.

The function ¢ (x) satisfies the differential equation
a"a, ¢ (x) = oA, (x) _ (5.5)
from which we can construct ¢ (X) as a linear functional of A, (x). Multi-
plying Eq.(5.5) from the left with the operator (3¢ -a!9;) one obtains the
second order differential equation:
-0%¢ = (99 -ald; )at A, : (5.6)

This equation has the solution:

o) = [(c8)D(x 5’<ag°'“ 27) A (). (5.7)
The exponential in Equ. (3. 3) may now be written:

exp iq[¢(x)-¢ (¥)] = exp i f (d£) A% (£) & (£ 5 x, ) (5.8)
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where ju(&; x,x) is a definite numerical function, which acts as a current
in connection with the vector field. The following explicit expression for
the current is obtained from Eqs{5.7) and (5. 8):

i €%, %) = qay ('35 - 555) [D(-)-DE-)] . (5.9

The divergence of the current is:
o I* (& x,x") = q[6 (x-8) -6 (x' - £)]. (5.10)
The current is seen to have two sources with opposite signs at x and x’ res-
pectively, corresponding to the effect of the Fermi field at these points.
The different Green’s functions may be constructed by expanding the

Green's functional G[n, J] in powers of the sources n and J. Expanding the
Green’s functional in powers of the Fermi sources n one obtains:

G[n,J] =(1- %fﬂGn+é—jﬁnGGnn+. ] exp 2"/JGJ (5.11)

The integrands contain, apart from the Fermi sources, products of the
Green’s functions. The product in the third term, for example, may be writ-
ten:
G (x;,%,)G (%, %)) =GYUxp, x{) COxy, x5")
. N e / 6 |
-exp {ﬂdG)[J(E. Xy, %X, ) (€5 %, %4 )] _—BJ(E)} (5.12)

where GO-(xl, x;) and lex (x4, X9') are the free field Green's functions. The
dependence on the external potential is contained in the exponential, which

‘ is of the form
{eXP[f(dE)éJ(g)}f(Jhf(J+j) . (5.13)

so that the exponentials act as simple displacement operators.
The first purely fermion Green’s function is

6 ‘ [ie2

G (x,x) = G'x, X’){eXp Ujp(s;x,x JGJ h ’! (5.14

Performing the variational differentiation, one obtains in the limit
J=0:

¢
ﬁexpt

_ . .
G (x, %) = G(x, x) exp {—lf—fj“(g;x,x’)Guu(s,s')j"(s' ; x,x')] (5.15)
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This expression is still purely formal. The question of existence depends
on the specific form of G, which has a tensor structure and may thus be
written:

Guw(€. &) = gwGi(E, &) + 8, 9G2(E, &) (5.16)

where g, is the metric tensor and G, and G, are scalar functions. Sub-
stituting Eq.(5.16) in Eq. (5.15) one obtains

G (x, x) = G’(x, x) exp (iTeZJ’nj“ (85 %,%')8,8,G, (€, 8) V(€ x, x’)} (5.16a)

where use has been made of
Fig = g ...=0 (5.17)

After performing partial integrations Eq.(5.16a) becomes

=0 ie? : I sV I
G (x,x) = G'(x,x) eXP[-"é—fa,,J“(ﬁ; %, %) Gol§.8) 8 5 (£ x,X)] (5.17a)

where the divergence of the current is given by Eq. (5.10). What is really
involved in the calculation of the Green's function G (x, x') is thus the struc-
ture of the scalar function Gg(€,&’).

In the electrodynamic case the function Gy in the Lorentz gauge is
given by

\

Gy = (1+3D3) -G ) (5.18)

where (1 +aDa_);,,, is a projection operator and G is a scalar function corre-
sponding to the mass u = e/ /7. In the non-electrodynamic situation the
function Gy is:

Gy = (1+23D3),, *G-(1/ud)8,9,D (5.19)
where the scalar function G corresponds to the mass .J;ﬁ(;ﬂe?]ﬂ while the

D function is associated with mass zero. In the electromagnetic case the
exponential in Eq. (5.15) may be written:

. 1 i
exp {-ief[(;i—ﬂrj)i[l-exp ip (x-x')] @*-ie)  (@¥*u?-ie) } (5.20)

The integral in the exponent is convergent, i. e. neither ultraviolet nor infra-
red divergences occur. The simplest Green's function has now been con-
structed. It is entirely finite and one would now ask for its physical inter-
pretation.
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The Green'’s function G% has a pole at mass zero. The exponential fac-
tor changes this pole into a singular branch point. This corresponds to the
fact that we are dealing with particles of mass zero. When the source oper-
ates, it may produce one particle with mass zero, but in addition it may
produce any number of pairs of particles, i.e.there is a continuous spec-
trum,

The physical particle with mass zero can be identified only to the ex-
tent that one can effectively isolate the initial point from the continuous spec-
trum. Thus, in ordinary quantum electrodynamics the electron can, strictly
speaking, not be uniquely identified. If a charge is created, any number
of photons of arbitrary small frequencies may also be created. The identi-
fication of the electron is attually the identification of a localized excita-
tion carrying a unit charge and with a certain lattitude in the mass set by
the experimental circumstances. ,

In the one-dimensional situation there is a zero-mass particle super-
imposed on a continuous background of pairs. This is the approximate phy-
sical transcription of the structure of the Green’s function in which there
appears, not a pole at zero mass, but a singular branch point. The physical
interpretation is thus complicated by this quite irrelevant question, as far
as the general picture is concerned, of the "infrared problem' which in-
volves the identification of zero-mass particle states, despite the fact that
mass zero is not separated by any finite gap from the other masses.

One can now go on to compute all the other Green’s functions and to
calculate how particles moving along on a line interact with each other and
with vector particles of mass u. )

For the non-electromagnetic vector field, where a "bare' mass has
been inserted, the exponential in Eq/(5.15)may be written:

exp{—ie2

This integral is convergent for -p2—> 0, but logarithmically divergent for
-p2->co. From EqJ515)it then follows that the Green’s function G(x, x') va-
nishes, This is also true for every Fermi Green’s function, i.e. the sys-
tem cannot be excited as far as Fermi responses are concerned. This con-
tradicts the formal properties of the Green’s functions as vacuum expec-
tation values of field products, so that this theory must be rejected des-
pite the fact that the theory would be considered renormalizable.

After this discussion of a simple model we shall turn to some general
considerations of which the model can be taken as an example. The one-
dimensional model is over-simplified in one essential respect, since it con-
tains no critical dependence on the coupling constant. We have two different
situations. One is electrodynamic, i.e. a vector field coupled by a gauge
invariant mechanism to a charge. In this case there is azero-mass particle.
The other is a hypothetical vector field coupled to a nucleonic charge also
by a gauge invariant mechanism. In this case there is nozero-mass particle.
In other words, there must be a critical coupling strength such that below
this the zero-mass particle remains and above this the zero-mass particle
disappears.

! 1 1
dp f-l-exp ip (x-x') p’- e (Pz“ ui-ie “Zo) -\’ . (5.21)
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Now I will give a general discussion of the simplest Green’s function,
which gives an account of the vector particle spectra. If one has a weak
external current J¢ , the expectation value of A (x) may be written as

<M (x)> = fG‘“’ (x-¥) I () + . ... (5.22)

where non-linear terms have been omitted since the external current is
assumed to be weak.

The Green's function G* (x-x') describes free particles. The Fourier
tranform of G*” may be written:

Guw (p) = N (p) G (p) (5.23)

where [y, (p) is a projection operator, which is determined by the choice
of gauge. The scalar function G (p) contains the specific propagation prop-
erties of the system. We are studying here the response of the system to
excitation by an external current. The excitation will in general produce

a spectrum of possible states. This spectrum will be represented by the
spectral structure of the Green's function. The scalar function in Eq. (5.23)
may be represented by

p2 + m?2-ie

where B (m?2)dn? is the probability that the excitation produces a transfer
of energy and momentum which is characterized by the mass m. Since B(m?)
is a probability density it must be non-negative

B(m*)2 0. (5.25)
The probability density B (m?) is assumed to satisfy the sum rule

fdsz(mz) =1, (5.26)

This assumption may be justified in the following way.
In the Lorentz gauge

3, A (x) = 0 (5.27)
and the propagation equation is -
-3%A = J+ j (5.28)

where J is the external current and j the other physical currents. These
currents would of course in turn be determined by suitable fields. I want

to insist that the fundamental vector fields shall be observable for very
short times (or very high frequencies). The time intervals must be so short,
that the interaction effects do not have time to obscur the underlying field.
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The response of the system to the current of the Green's function must then
have the following asymptotic behaviour:

G~1/p*(1+...) for -P'=ew (5.29)

where the omitted terms vanish for —p2—> ». The rate at which these terms
vanish depends on the dynamics of the system and cannot be asserted in
advance. It now follows from Eq. (5.24) that this asymptotic behaviour is
only possible if Eq.(5.26) holds. No other sum rule can be stated in general,
because that depends on an assumption of how the current behaves, i.e.
of the dynamics. :

It is of interest to find a representation of G (p) which incorporates the
required asymptotic behaviour. Introducing the complex variable z, Eq.
(5.24) may be written

_ B(mz) dm’
G(z) -fﬁ‘—‘— (5.30)

This function is regular everywhere except on the positive real axis. The
singularities correspond to the physical values of m. The boundary value
of the function G (z) is G (p) for z2— -p2+ ie. If z tends to infinity, except
along the real axis, one has:

G(z)~-1/z. . (5.31)
For the inverse function we have:

Gz) ~-z. (5.32)
Since G (z) has no complex zeros, G(z)lwill have no complex poles or com-
plex singularities. In addition

(1/z)(GF +z) >0, (5.33)

-for z tending to infinity.

The function (1/z)(G™+ z) has only singularities along the positive real
axis, which includes a pole at z-= 0. Hence

(1/z)0{G1+2z) = A2 /z -~/ﬂdmzs(m)2/(m2 -z)™ (5.34)
from which we obtain the following representation, on placing z =-p?+ ie:

2 2 -1
dm’ s (m’) } . (5.35)

G(p) = [pz-ie”@ +(p2-i<)fm

This representation of G (p) has the correct asymptotic behaviour. Com-
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paring Eq. (5.24) and Eq.- (5.35) one sees that s(m?) must be non-negative
since B(m?) is non-negative:

s(m?) > 0. (5.36)

From Eq. (5.24) one obtains

2 2
G(0) =fﬂm]-35(£n—)—> 0 (5.37)

whereas from Eq. (5.35) it follows that
- . 2 ‘
G(0) = 1/X (5.38)

so that A*> 9, -

As far as the physical properties we have inserted are concerned, any
non-negative A2 and any non-negative s(m?2) for which the integral in EqJ5.34)
exists, will give a possible Green’s function, If one requ1res zero mass to
be part of the physical spectrum the parameters X and s(m ) can no longer
be chosen arbitrarily. If zero mass is in the spectrum it follows from Eq.
(5.37) that G(0) is infinite. Comparing with Eq. (5.38) one then obtains A=0
as a necessary condition. For A= 0 Eq. (5.35) may be written:

G(p) = [1/(p - m} [1/< f;;’j I‘:‘fzmll J . (5.39)

For p? ~ 0 this equation leads to:

Glp) = [1/<p2-ie)}[1/(1 +fd—mz—;%nz—’)} . (5.40)

For mass zero to be present in the physical spectrum as an isolated sin-
gularity, the residue of the pole in Eq. (40) must not vanish, i.e.

m

2 2
f dmsfm) o, (5.41)
-0

I now want to examine what dynamical changes are necessary in order to

go from a situation where these conditions are satisfied to a situation where
they cease to be valid. That would be the continuous change from electro-
dynamics where there is zero-mass particle to a theory where this particle
ceases to exist.

We have found the form (see 5. 35):

“dm? s(m? )] (5.42)

G(p) = 1/[}) 1E+7\2+(p2 -1€J ?——2-—1(
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for the gauge independent part of the "photon Green’s function', where A2
and s(m®) are non-negative quantities. The (-it) refers to the boundary con-
dition of outgoing waves in time. The sum rule /y dm? B(m?) = 1 requires that
,,*dm? s(m? )< . If we put p?= 0, we obtain 0< 1A% = *[B(m?)/m?] dm?,
assuming the existence of [ [s(m?)/m?]dm?. Now we want to find the neces-
sary conditions for the existence of a physical particle with zero mass, so
that we can imagine conditions under which such a particle would cease to
exisit. Then, we could suppose a continuous variation as we go from the
electromagnetic field with its physical photon to the hypothetic vector field
associated with nuclear charge which does not possess a zero-mass particle,
and investigate how the photon ceases to exist. »

If we have a photon, then it is necessary that A2 = 0, The resultant Green’s
function is then

Glp) = [1/(6? - 1€)] [1/<1 =) (5.43)

‘and, in the neighbourhood of p?= 0,

£ 2 2
Go)= [1/p*-se)1[1/1+ [ EE . (5.44)
: |

Then, the residue of the pole, By, is

= 1/[1 +£”‘E%zé93] (5.45)

which must be greater than zero for the existence of a pole, i.e.
f dm?[s(m?)/m?]< ®
0

is the second necessary condition for a physical particle of zero mass. The
integral up to infinity certainly exists, since the representation itself was
based on the existence of the integral /i dm? s(m?), What can vary from one
physical situation to another is the integration down to zero. Then we must
have : .

s(m?) 5= 0" (5.46)

The structure of B(m?) when a photon exists is
B(m?) = Byé(m?) + B, (m?) (5.47)

where B, (m?) is continuous and
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1= Bo+fowdrn?131(m2 ). (5.48)

The photon exists only if 0 < By. {In the usual language, By=z3). If we
calculate the long-range Coulomb interaction, we find that the effective
charge is given by

e?= Byed (5.49)

- A zero renormalization constant is not to be interpreted as a mathematical
problem but as a physical statement of the absence of a particle.

The function B(m?) can be interpreted as the probability that a source
will produce excitations in the vacuum of mass m? . Now, we want to find
a physical interpretation for s(m?). s(m?) is the measure of excitations by
an established field. Consider the vacuum state with an external current,
Now, we ask for the probability that the vacuum is maintained, then the
relevant quantities.

<|§ ~ exp [(i/z)fJ#'prJ”]

where we have taken J to be weak,ignoring more complicated processes.
We use the exponential to take into account the possibility that many weak
processes are occurring all over space. If we use a conserved current,
3y J¥ =0, then the 7,y multiplying the scalar Green’s function becomes
effectively g,y and :

¢« expl(1/2) I (DG (P) 3, (p) cpl, (5. 50)

writing the integrals in momentum space. Now, we introduce the vector
potential

A" (p) = G(p)3* (p), ’ (5.51)
thus:

<l exp [(I/Z)fA*“ (1) G (p) Ay (p) dp, (5.52)

the probability of the vacuum’s remaining unexcited is:
<l ilz‘: exp| - f dp| &' (p)PIm G (p)), (5.53)
ImG™p) = - 7p? ﬁndmz s(m?) 6(m? +p?), (5.54)

We have transferred our attention from the current, which may lie far out-
P .
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side the region of interest to the field which lies in the region. In doing so,
we find that the inverse Green’s function becomes the important quantity

and s(m?) measures the excitations of the vacuum. The resultant expression
is

ISP exp[-ﬂfdp dm? § (p? + m?) s(m?) (-1/2)| F(p) ] (5.55)

’
The expression in the exponential gives a measure of the probability of exci-
tation of mass m by an external field F*V ,

The condition s(0) = 0 is characteristic of a normal threshold, i.e. (at
the beginning of the excitation spectrum) there is a zero probability of excit-
ing the vacuum by an external field. To put it another way, the condition
for the existence of a photon is that nothing unusual happens at the zero-
mass threshold. On the otherhand, if the photon is not to_ exist, then some-
thing must happen at zero mass.

If we have abnormal behaviour, we have two possibilities:

(1) s(0) is finite or singular such that g / dm? s(m?)/(m? -g),30

Then, we have no pole at p?= 0, but m = 0 is still in the spectrum,i.e. we
have a branch point at p“= 0, no pole and B(0) has a non- vamshlng weight.
Then, there is no recognizable particle of mass zero.

(2) The second possibility is that s{m?) possesses a delta function singu-
larity at m®= 0:

s(m?) =A% 6(m?) + 5 (m?), . (5.56)

Then m®= 0 is not in the spectrum at all. The inverse Green s function is
then

L 2
G'l(p)=p2-i€‘+K2+(ﬁ-i€)£gzm_—iest(—;‘;i, " (5.57)

our original form. Now, B(0) = 0,
To see this, we write:

B(m?) = (1/7)ImG(p) = (1/7) Im G¥* (p)/| G(p) |?

= m%s; (m?)/R(m?) + [rm?s, (m?)]2, (5.58)
where ‘
2y = 2 X2 4 2 “dri? s(nf2)
R(m*) = m®- A+ m’P \ I mE
then:

B(0) = lim m?s; (m®)/a%= 0
m—0

Now, consider the case where s; (m?) is zero for m*<mj. In the real
world, we might expect that this is never true, but it could be true as an
approximation for strong interactions. If R(m?) = 0, we will have a stable
particle for m < mgy. At -, R(m?) = - . Then, if R(m§)>0, we have a
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stable particle, since R must pass through zero. On the other hand, if
R(m%) < 0, there cannot be a stable particle, since R is a monotonic function
for m < my. If there is no stable particle, there must be an unstable parti-
cle, since R must pass through zero in the continuum. We would only be
able to recognize it as such if the width is sufficiently small. The width is
given by

v = mm? s (m? )}/ (dR/dm?). (5.60)

It is possible that R may cross through zero several times, giving more
than one resonance. These would emerge from the same Green’s function,
reflecting the long dynamic chain from the complicated spectrum of the ob-
served particle to the simpler underlying fields.

In the one-dimensional model, we had s(m?) = (e?/r) §(m?). This reflects
the possibility of creating pairs of fermions travelling along a line. The
function s(m?) is an example of the second case, and we find a single stable
particle of mass e?/7. This simplicity depends on two things: the geometry

. of one dimension and the fact that we only considered zero-mass fermions.
The dynamics are not so simple, it is merely the elementary kinematics
which allowed us to find solutions which fit the general dynamic framework.
The delta function of s(m?) at m?=0 is so because a fermion pair is.still
a particle of zero mass as opposed to the case in three dimensions, where
the pair has a mass spectrum. In three dimensions, the probability of a
photon going into three photons goes as something like the eighth power of .
the available energy assuring us that s{0) = 0 We would expect the photon
to disappear as the s(0) becomes an abnormal threshold, i.e. somethreshold
moves down to zero mass as the strength of the interaction builds up.

A crude mathematical model might be givenby a characteristic resonance
function

so (m?) = A2 /7?) mI/[(m? -m3K)* +m?I?] (5.61)

where
my= 2me , K= 1-02% /2, T~ 0®. (5.62)

In electrodynamics, sg certainly consists of such contributions., This could
be the positronium contribution, which for m? < m(z) K, would be the three
photon contribution (or virtual positronium). As the coupling increases, K
must decrease since the binding energy of positronium increases. At some
critical strength, K would become zero and p would also be zero since there
is nothing into which the positronium can decay. By then the language is
appropriate, since the multiple photon contribution would not be distinguish-
able from the "positronium',, but we shall continue our terminology ana-
lytically.

Since the binding energies are so large, we would also expect to find
other bound states corresponding to particles or resonances. Such particles
as the spin-zero mesons would then appear as a result of the complete
strongly interacting set of fields and there would be no need for a separate
field,
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We have not discussed the complete set of particles - there is more
than one type of baryon and the list of conservation laws includes suchquanti-
ties as isotopic spin. This is not an absolute conservation law, however,
so we would not insist strongly on a dynamic explanation. But we can ask
if a theory with a non-Abelian invariance group can be given a dynamic expla-
nation in terms of what we might call a non-Abelian gauge field. In order
1o investigate such a theory, we must investigate the mathematical- physical
problem of the formulation and quantization of such a theory.

In the case of electrodynamics the field is the dynamic means of mani-
festing an electrical charge, But the c.m. field itself doesnotcarryacharge.
On the other hand, the gravitational field interacts with all energy and mo-
mentum, including that which it carries itself. The non- Abelian gauge fields
are intermediate in that they carry the quantity of which they are the dynamic
manifestations, but this quantity is not a space-time property. Before we
can ask physical questions about the theory, we must verify that it fits within
the framework of possible quantum mechanical fields. In a theory in which
the question of commutation relations is not faced, there is no difficulty in
writing down a theory. Similarly, there is no difficulty in assuring appropri-
ate three dimensional invariance properties. The difficulty arises inassuring
the consistency of the commutation relations and the Lorentz invariance of
the theory. There is a criterion which states in one line a sufficient and, for
a certain class of theories, necessary condition for relativistic invariance,

The statement of relativistic invariance means that there exist operators,
constructed from the fundamental variables of the theory, whose commutators
obey the structure relations in the inhomogeneous Lorentz groups.The entire
structure of the theory will then remain invariant under the unitary trans-
formations generated by the operators. What is special about field theories
is that these generators are constructed additively from contributions by
small regions of space. That is:

P*= fd3x ™ (%), (5.63)

’ JHY =fd3x @ TV _x" 1), (5. 64)

The requirement that P¥ and J*Y obey the structure relations of the
Lorentz-group imposes restrictions on the commutation relations of the
densities. Since the three-dimensional case presents no problems, we as-
sume that we know T and that it gives Jk and P¥ which generate the in-
homogeneous rotation group in the correct way.

[Pk, PI] = 0, (5. 65)
[PK JOL]= i poskt (5. 66)

are assured: by the three-dimensional invariance, In order to assure such
relations as. -

[P% %] = iP¥, (5. 67)
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[J%, Joe] = igkt, (5. 68)

the qual—time energy density commutator must have the following form for
0 7
X'=Xx

(DIT®@), T®(x)] = (T%@ + T (&) as(x-x) +p(x,x)  (5.69)

where
W(X, XI) = - ¢(X,I X,)

fdax;b(x, x') = 0,=fd3x’xk w(x, x'). (5.70)

There is a class of theories for which 7 vanishes identically, which
includes spin 1/2 and spin 1 fields. Within this class then, the relation

x%= x0(-1) [T® (), T® ()] = - (T®(x)) 8 6(x-x')

is a necessary and sufficient condition for Lorentz invariance.

6. FUNDAMENTAL COMMUTATION RELATIONS

We are now going to give a general derivation of the fundamental com-
mutation relation which relates the energy densities of a relativistic field
theory at various points of space and the same time. We want to see in a
general way that there exists a class of physical systems, for which a simple
commutation relation relating the energy and momentum densities of a physi-
cal system is both necessary and sufficient for relativistic invariance. Much
- of what we shall be doing will be entirely by analogy to and in parallel with
similar considerations referring to the electric current vector.

Let us start with some remarks on the analogy between the electric
current vector on the one hand and the tensor of energy and momentum on
the other, with regard to the question of equal-time commutation relations.
Commutation relations are, of course, interpreted in quantum mechanics
as statements of measurability. Measurability is fundamentally a dynamical
process and therefore the underlying general dynamic properties that charac-
terize these two sets of operators should be pointed out. We are not talking
about any vector or any symmetrical tensor, but about these very special
quantities with their dynamical significance. First of all, the vector j*¥ and
the symmetrical tensor TH’ are locally conserved quantities:

a,i =0, 8,7 -0. (6.1)
. [ i
Secondly, these vectors are not just mathematically conserved quantities,
but they are also of immediate physical significance, because we understand
the electric current vector, for example, to have a dynamical meaning as
the source of the electromagnetic field. The operators j* and T*” have thus
in common the fact that they are the sources of important fields; j* is the
source of the electromagnetic field and T#” the source of the gravitational



GAUGE THEORIES OF VECTOR PARTICLES 117

field. That is their essential unique dynamical significance and it is uponthese
facts that we want to base the theory of their commutation relations, We
shall understand what can be called the kinematics of special relativity -

the equal-time commutation relations - in terms of the dynamics of some-
what more general systems.

Now, the fact that these physical operators (or sets of operators) are
respectively sources of the two fields, electromagnetic and gravitational
also gives us the general basis for understanding why they satisfy conserva-
tion laws. These are not arbitrary restrictions, they flow from the structure
of the field equations, from the requirement of what we shall call generally
"gauge' invariance, although this will of course take different forms. It
is characteristic of both of these fields that they make use of more field
components than are necessary to describe the physical information and
there are corresponding freedoms of "'gauge' transformations. This corre-
sponds in the electromagnetic case to the usual gauge invariance, while '
for the gravitational case it is specifically the freedom of coordinate trans-
formations. Under these general ''gauge' transformations it follows that
the operators which are the sources of the fields must obey’ certain identities;
these are the laws of conservation of electrical charge and energy-momentum
in ordinary flat space, respectively. We now want to exploit, not just the
fact that these operators are the sources of the fields, but the reciprocal
aspect, that these operators are also measures of the response of a given
physical system to external fields.

Imagine a given physical system in an external electromagnetic field
or an external gravitational field. How do these two basic properties enter?
To answer this question, one may think of the action operator *

W =f(dx)L(x). 6.2)

Let the external vector potential be A, and Gyy be the external gravitational
potential, Infinitesimal variations of these external potentials produce cor-
responding variations in the action operator

5, W =f(dx) 8 A, (6.3)
5 W :f(dx)J_g‘ tsg, T (6.4)

where, as usual, g = det g,, . This is a way of defining the operators j* and
THY .Here we are studying the responses of the system to external potentials,
which must of course be such that they are consistent with the requirement
of general gauge invariance. A gauge transformation is not a physmal trans-
formation; if the change of a vector potential is

% All these ideas, of course, are characteristic of the local theory of fields.
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6A, = 9,61

then the action integral will not change, with appropriate boundary con-
ditions, which implies the conservation law

6Mj“ =0, (6.5)

Similarly, an infinitesimal co-ordinate transformation

2 = x* .8’ (6.6)
induces an infinitesimal change in the syinmetrical tensor g, :
A by A :
6guy = 6870,8,, +0,68 g, +0,68 g,,, (6.7)

and the action integral is invariant under this transformation. Then, upon
inserting Eq. (6.7) into Eq. (6.4) and integrating by parts with appropriate
boundary conditions, we get:

17

3, W gey T) = (1/2) 8¢, T . (6.8)

If we now specialize to the ordinary space time, the left-hand side vamshes
and we come back to the conservation law:

3,T" = 0. (6.9)

This expresses the fact that in an external electromagnetic field, charge
conservation still has its usual form, whereas Eq. (6.9) takes a slightly
different form given by Eq. (6.8) owing to the fact that the gravitational field
itself carries energy and momentum. Here we see how the response of the
system to an external field is the origin of these conservation laws.

Now we come back to the connection with commutation relations; we
want to base the theory of commutation relations for equal time on these
conservation laws (Egs. (6.5) and (6.8)). Both of them are equations of mo-
tion of the form :

9, Alx) = B(x) (6.10)
which maintains its structure independently of the values of the external
parameters (external potentials). The meaning of A and B will, of course,
change.

I want to show now that when we have such a situation, it immediately
implies an equal-time commutation relation. This is the connection be-
tween the dynamics implied in the conservation laws and the commu-
tation relations. To do this we shall first of all use the action principle
in the following way. Consider the expression

<t A |ty > =t | BX)|t, > (6.11)
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where t; >t >t, the matrix element of Eq. (6.10) between the states at times
t1 and ty. Let us now perform an infinitesimal parameter variation., The
matrix elements would change for two reasons. First, A(x) and B(x) may
be explicit functions of the parameters; we shall denote by §'A(x), say, the
corresponding variation. Then, there would be a change associated with

the change in dynamics of the system as a result of this parameter varia-
tion. The change in the transformation function will be given by

6<t1,t2>=i<t1ff(dx)6'i]t2>. (6.12)

Therefdre Eq. (6.11) would change into:
0, t, |8'A(x) + if(dx') (AL (x1), |t, >

= t1|81B(x) + i/(dx') (B(x)6X(x") | [ta) (6.13)

where we have dropped the ""dash" on & because this is the only change
in the Lagrangian we consider, Now, from Eq. (6.10) and the definition of
time ordered products we have

9, (A(x)8X (x), = (B(x)sL(x"),

+6(x0 - x0" ) [A(x), 6L (x!)]

and this gives us the equal-time commutation relation, written in operator
form as

i—lf(dax')[A(x), §Z(x) o o =8 6'A- 6B, (6.14)

Here we have an instrument, whenever we have an equat_ibn of motion
involving some parameters, to find a commutation relation at equal time
between the object that obeys the equation of motion and the measure of
the response of the system to the variation of parameters.

An alternative derivation (without using the action principle) can also
be given. We have:

9,A=8B

(1/D[A, P°] + B, A) xp (6.15)

where the last term refers to any explicit time dependence,
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A change in the parameters will induce the change:

8'B = (1/i)[6'A, PP] + (1/i)[A, 6'PO] + 8'(9, A) (6.186)

exp

but

s'PO = -fd3x 6%(x) (6.17)

and therefore: \

%[A,f(ds x')ai(x')]‘xozx,,, =9,6'A - §'B,

as established above. As an illustration, let us consider the electromagnetic
field. We have :

aojo = .9 jk, (6.18)
i.e. A(x) = j%(x) and B{x) = -9y j¥(x). The external parameters are the con-

tinuous set of values of the components of the external vector potential.
Therefore, Eq. (6.14) gives the equal-time commutation relation

—lif(dX') [06x), 3* ()54, (x)]
.0 .k
=9;6') (x)+ Bkb'J (x). (6.19)

Before evaluating the right-hand side we use first Eqs. (6.12) and (6.3) to
obtain

RAIDS i(tAllf(dx)juéA“ltz >. (6.20)
A second variation gives:
B <tylty = <t Iff(dx) (dx') 6 A" (x) 8 A" (x)
. l:(ju(X)j”(x'))‘ - 12—2,*,'&‘—2) ]|t2>. (6.21)

Now, the integral on the right-hand side is a quadratic form, symmetric
in x, 4 and x?, v. The first term can also be taken as such. We thus obtain
the reciprocity relation:

(8%, (x)] /(8 A" (x")] = (8%, (x")] /(6 &' (x)] . (6.22)
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We shall consider a special class of physical systems in which j, (x) islocal
in time in its explicit dependence on the extreme potential, i.e. in which
the current does not depend explicitly upon the time derivative of the ex-
ternal potential, 8y AY(x). Under this assumption it follows from Eq. (6.19)
that the charge density j, (x) does not depend explicitly on the potentials at
all. :

[61,(x) /[6A" (x")] = ©
and therefore, the reciprocity relation gives:

[6%, 1) /164° (x)] = o, (6.23)
i. e, the spatial current density is not an explicit function of the scalar po-
tential, A®. In what follows we shall show that the spatial current must

depend explicitly on the spatial part of the vector potential. Therefore &tjk(x)
may be written as

6'3" (x) :f(d3xr)[a'jk(x)] /16,4, (x")] A, (x") (6.24)

where the sub-index 3 indicates a three-dimensional variational derivative.
Inserting this into Eq. (6.19), we find the equal-time commutation relation

e, e =0 (6.25)
and
1 0 ) 8138 (x1)
e stenn =0, (2R (6.26)

where the right-hand side has been rewritten using the reciprocity relation,
The commutator of Eq. (6.26) cannot vanish, because if it were zero,

it would violate the physical requirement that there should be a vacuum state.

In order to prove this, we take the three-dimensional divergence of Eq.

(6.26) and use Eq. (6.18) to obtain:

.0 . 0 1
(3 (x), -18,3 (x*)] = -8,8][8' (x")]/[65A(x)]. (6.27)
Now, the commutator of an operator and its derivative is intrinsically posi-
tive, as can be seen in the following way. If A(x?) is a hermitian local opera-
tor, a spatial average of i’ (x) over an arbitrary test _function, then

(5,4, A] = [[A, P'], Al.

Taking the vacuum expectation value of this expression and using the property
of the vacuum state of having zero energy, we get.
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(118,A,A] = 2{ AP'A

and,as the operation of A on the vacuum produces higher excited states, the
right-hand side is intrinsically positive. Therefore, the commutator of Eq.
(6.27) cannot vanish identically and this implies (Eg. (6.26))that the vector
current is an explicit function of the external potentials.

This result apparently contradicts what one knows about the Dirac field,
where a vector current is given by

j o= (2)Va @ =Yy Y
u 1 u

and does not depend explicitly on the external fields. What in fact happens
is that this product is not really defined, and can be given a meaning only
by separating the points spatidlly and defining a suitable limiting procedure
which must maintain gauge invariance as in paragraph 1. In this limit the
dependence on the external potentials will appear.

Let us now give a similar discussion for the case of an external gravita-
tional field, The situation here is somewhat more complicated because the
corresponding conservation law (eq. (6.8)) contains explicitly the external
potential.

Eq. (6.8) can be rewritten as:

py v aB ‘
2,(g,, T )=(/2T" @B,g, - ¢,,8 9,84 - (6.28)
We now specialize to a particular gravitational field where
Bk "0 8ok ™0
and gy, is an arbitrary function of x. Eq. (6.28) then reduces, for A =0, to
00y _ o ) _ ok ; ok
((-g )T ) = -8, ((-g IT™) + (1/2)T°0 g (6.29)
while, for A = k, Eq. (6.8) gives _
FEo ™) - 0,0 g T + (1/2) Vg T 6.30
9 (N-8qo )= -9, M-85 T )+ (1/2)-gy 9y 8o - (6.30)

We shall use these relations to derive the commutation relation. As
in the electromagnetic case we shall consider a special class: T*! may (in
fact, it must ) be an explicit function of ggo at the same time, but it does
not depend on gy at different times, i.e. it does not depend explicitly on
the time derivatives (time locality). From this assumption it follows (Eqgs.
(6.29) and (6.30)) that the combinations (gg, ) T?° andJ-ggo T are not ex-
plicit functions of goo at -all. Performing the corresponding variation and
using Eq. (6.14), we obtain, after setting g, = -1:

(/DT (), T ()] = -8, 6, (x-x) (T () + T (x)) . (6.31)

This is the fundamental commutation relation which the energy density must
obey for the assumed class of physical systems . It is also a necessary and
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sufficient condition to guarantee the relativistic invariance for these systems.
Upon integration, we obtain from it the commutation relation for the genera-
tors of the Lorentz group.

7. CONSTRUCTION OF A RELATIVISTICALLY INVARIANT, CONSISTENT
THEORY OF NON-ABELIAN GAUGE FIELDS

We should mention here a few things about gauge invariance, because
this will again be the motivating consideration in the construction of such
a more general theory. For electromagnetic gauge invariance, we have

A,00= 8,00 + g2 (),
F,(x)-F, (), : (7.1)
_ X (x) = e X (x)

where X (x) is the field carrying an electrical charge. This transformation
forms an Abelian group.

Let us imagine a situation in which we have several charge-like proper-
ties, for instance the various components of isotopic spin, which are carried
by some field but which are also carried by the gauge field itself. Let T,,
a=1,.,..,n, be the charge like matrices associated with the field Xand t
the matrices associated with the gauge field ¢,, and G,,,. Consider the
the class of infinitesimal gauge transformations

n .
X=>[1+iZ T8, (x)]X, (7.2)
a=1
n .
G, —)[1+1aZ=)1t36)\a(x)] G,y (7.3)
‘:I>u -[1l+ 1a§1 ta 6)\3(3)]@11 + 8“ 8 (x). (7.4)

Note that the field G”,, transforms now according to Eq., (7.3), while in the
electromagnetic case the corresponding field strength F,, remains un-
changed because it does not carry an electrical charge. Also, the transfor-
mation of o, (Eq. (7.4)) expresses the fact that it carries a charge and is

a gauge field. These transformations must form a group (which we assume
to be compact). This requirement implies commutation relations for T, and
t:

a

[ b c] abc’ (7.5)

and

[ty.t.] (7.6)

w1
o
Ll
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where the t,,. are the structure constants of the groups. Also, for the in-
homogenous transformation (Eq. (7.4)) to belong to this group, we must have

(tb)ac : tabc . (7.7)

In order to keep the fields G”” hermitian, the finite hermitian matrices
t must be imaginary and therefore antisymmetrical. From this lastproper-
ty follows the antisymmetry of the structure constants in the indices a and
c. Furthermore, the commutation relations imply their antisymmetry in
the indices b and ¢. Therefore the structure constants are antisymmetrical
in all indices. From here follows the important remark that for a group
to be non- abelian (t,,. ¥ 0), it must at least be a three-parameter group.
In the three-dimensional case t ¢ = i€,4pc 5 €apc being the totally antisym-
metric unit tensor, and the commutation relations become the familiar angu-
lar momentum commutation relations for isotopic spin.

The infinitesimal gauge transformations which characterize a non-
abellian gauge field are:

X = (1+iTsN)x,
= (1 +it6 )Gy, (7.8)
oy = (1+itsN)@u+ 9y 6.

X is a Fermi field. The T’sare matr1ces andin TéA we understand that there
i8 summation over the n gauge functions:

TéX = )1: ToA, _ (7.9)

{sometimes, to avoid ambiguity, we shall use the bracket notation TéA =
*Té6XN), In the electromagnetic case the field G is gauge invariant, but here
it also undergoes gauge transformation with the characteristic n dimen-
sional matrices t. Thus G, is a vector with the n components (G,,);. The
components of the matrices t are given by the set of structure constants
tapc that are characteristic of the group:

(t),c = tope- (7.10)

The vector field ® is on the one hand a gauge field - to this property cor-
responds the term 9, A in the gauge transformation - and on the other hand
carries the internal properties and so responds linearly to gauge transfor-
mations in the term (1 +itsA)®,,

8. NOTATIONAL DEVELOPMENTS

Suppose that in an n dimensional space we have vectors A, C and matri-
ces t, and we form the scalar product At C. This has components corres-
sponding to the n matrices t, and we may formits scalar product with a third
vector B:
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(AtC)B = Astabe Ce By (8.1)

tabc is totally antisymmetric in the indices a, b, ¢ so L tabe AaBch is a to-
tally antisymmetric function of the three vectors. The product (AtC)B is
unchanged by cyclic permutation of its factors:

(AtC)B = (BtA)C etc., _ (8.2)
-and is changed in sign by anticyclic permutations of its factors:
(AtC)B = -(BtC)Aetc., . (8.3)

If we remove one of the vectors from these triple scalar products, say we
remove A from (AtC)B = -(AtB)C, we get a vector equation which can be
expressed in our previous notation as:

“twC'B = -'tB'C,
Now we return to the gauge transformation for @:
Oy = Oy +(0u - iMt BI)éA. (8.4)

We have used the last result to write‘téN®, = -*t®} 6A. The gauge transfor-
mation therefore involves, not just a simple gradient, but a sort of ex-
tended gradient in which a term involving &, has to be added (cf. electro-
magnetism, whence one introduces the electromagnetic interactions by re~
placﬁng 3, by 9, -eA,). We may call g, -"it @] the "gauge covariant deriva-
tive . :

Consider now some properties of the gauge covariant derivative, The
gauge transformation can be introduced in the following algebraic way. Let
us take 3-i't ®'(suppressing all indices) and apply to it an orthogonal trans-
formation in n dimensional space:

(1-itéx’)(9-itd)(1+it6A) = 9 -it{@-(9 -1*'tD’)8N). (8.5)

We shall call this an orthogonal transformation because the matrices t are
antisymmetric and imaginary. (The 8\ are a set of n arbitrary functions).
In the derivation of this equation we have used the commutation relation

[t O] = -t(@ tor). (8.6)

We see that the effect of the orthogonal transformation on 9-it® is to main-
tain its structure but to replace @ by the gauge-transformed operator cor-
responding to the gauge functions -6\, The invariance of 3-it & will thus
be maintained under the orthogonal transformation provided that we simul-
taneously subject ® to a gauge transformation corresponding to the gauge
function +6A.

Another important expression involving these gradients is:

[9, -I't®), 9, - i't @) = -1t £2G},, (definition of f2G,,), (8.7)
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from which emerges
2Gyy = 8,9, - 8,%, +i(d, D). (8.8)

Note that this commutation relation refers only to the n-dimensional matri-
ces. The commutation relations of the ®’s considered as operators will
be treated later.

Let us consider the effect of an orthogonal transformation on Gy -Multi-
plying [9, - i't &}, 3, - i't &}] from the left by 1-itéA and from the right by
1+itéA is equivalent to transforming the &’s by the gauge transformation
-8A . What we find is

(1-iM6M)t G(1+it'61)) = t(1-i*téA)G, (8.9)
and the gauge transformation of G under the gauge transformation - éA is
G = (1-ité))G. (8.10)

Replacing - 6A by 61, we see ‘that the transformation law of the G introduced
there is the same as that written down at the beginning of thispart. Later
we shall come to identify our present G with the previous one; but for the
moment the result is just that when & undergoes an inhomogeneous gauge
transformation, the structure G undergoes an homogeneous one.

Now we turn from the defining of objects with simple transformation
properties and go to dynamics, The dynamics, of course, consist of our
Fermi fields which carry a property we may as well call isotopic spin, inter-
acting with the vector fields. First we consider the Fermi field by itself,
treating &, effectively as an extended field. Of course, ®, is not really an
extended field, but we temporarily treat it as such, The Lagrange function
is

£ = (i/2)wa(p, -i'T «I:,;)\Ir+(i/m)\1;3\1/ (8.11)

whichcontains the gauge covariant derivative 9, -i'T &/, This Lagrange func-
tion is invariant under the infinitesimal gauge transformation:

T = (1+'T X),
(8.12)
T, >, +(3, -i'te)oN,

Note the two kinds of matrices: T for the spinor field and t for the vector
field., However, the charges induced involve the commutators of the matrices
and the commutators of the T are given in terms of the t, so that the charge
produced by the variation of ¥ can, and does, cancel that produced by the
variation of &. 3 )

Let us consider the charge in the Lagrange function induced by an in-
finitesimal charge in the vector ®. We can write it

by £ =8B, ki’ (8.13)
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where each k¥ is a vector with n components k,; and
kb= (1/2)¥e* T, ¥. (8.14)

The ki form a set of currents, since currents are always identified through
the effect of a change of potential, It is a great advantage of our way of writ-
ing currents that we clearly separate the kinematic vector which is asso-
ciated with flow from the object that flows. This is usually observed when
talking only about an electrical charge because it can be diagonalized; but
when there are n non-commuting objects they cannot all be diagonalized.

'  We next ask what restrictions are imposed on these currents k* by the -
requirement of gauge invariance. The action operator of the system is

W = [(dx).r (8.15)

and the infinitesimal in the action operator associated with an infinitesimal
charge 6 &, in the external field is:

oW =ﬁdx)1<u 5@, (8.16)

If the variation 6 ¢, is chosen to be that trivial charge which is associated
with a gauge transformation .

§ &y (9, -i't ®))60 (8.17)

with appropriate boundary conditions at infinity, ,then the variation of the
action must vanish locally and we find

(8, -i't ®)k* = 0 (8.18)

which is a kind of generalized conservation equation. Thus the current k#

is, strictly speaking, not conserved: there is an analogy here with the stress
tensor TH¥, which is not conserved in an external gravitational field because
the gravitational field transports energy and momentum. So here the cur-
rents k* of the Fermi field are not conserved because, if you like, they trans-
fer isotopic spin to the Bose field,

Our generalized conservation equation immediately implies commuta-
tion relations for the k¥, We employ the same device as used in the previous
sections to derive the commutation relations for the electrical charge den-
sity and for the energy density. We regard the &, as an external property
which is entirely consistent for the derivation of the commutation relations
for the Fermi fields alone. Proceeding as before, we write down the equa-
tion of motion for k%:

9 kO = 't &f kO- (9, - it @p)k’ (8.19)
Now we make use of two things: a parameter &, appears in this equation

of motion, and the effect upon the equations of motion of a variation of ®o,
which is coupled to k% in the Lagrange function, tells one the commutators
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at the same time between the object, k% which obeys the equation of mo-
tion, and the generator of those infinitesimal transformations. The com-
mutation relations can be read off from

L ﬁdx',(l/i)[kg(x), K116 8y () = -1 L tuned Duplx)kllx)
which implies, since the 6®'s are arbitrary, that at equal times

[K(x), K (x)] = 6(x-x) L t,, kd(x). (8.20)

abe
Thus the kO at different points commute and at the same point they obey some-
thing like the group commutation relations. If we define quantities K, by in-
tegrating kJ over all space:

K, = ﬁd?» x)k0(x) ‘ (8.21)
then the K, satisfy
[Ka, K] = Zc; tabc Kc = % Kcteab - (8.22)

which are just the group commutation relations. Or in other words, the Ka
furnish a representation of the group. But it is important to recognize that
the K; are not constants of the motion I'{af 0, This is because the kg do not
obey conservation equations or, in other words, K, is only a part of the
total isotopic spin (the vector field carries the rest).

9. DYNAMICS OF THE FULL SYSTEM

Now we turn to the dynamics of the full system. We use the notion of
~gauge invariance as a guide in writing down a tentative Lagrange function
for the whole system. Then we attempt to find the commutation relations
of the fundamental operators. Finally, we must ask whether our téntative
Lagrange function is really completely satisfactory,in the sense that it pro-
duces a Lorentz invariant theory. We will find that the original Lagrange
function was ambiguous within a certain class of Lagrange functions and
a particular one must be selected if we are to meet the requirement of re-
lativistic invariance. There is no guidance here to be gained from the cor-
respondence principle : the ambiguous terms are of the order of Planck’s
constant squared and are simply not determined by any requirement other
than that of relativistic invariance. We shall have to apply the test we de-
veloped in terms of the commutator of the energy density. ‘

The tentative Lagrange function is constructed so as to give first order
field equations. It must ‘therefore contain first derivatives

L= - (1/2)pr(ap &, -0y ®p+i(@ut 2))
HEZ/4)GHYGy, + (i 2)T ok (8, - i'T §)¥ +(i/2)¥8Tmy,. (9.1)

f is a characteristic coupling constant (dimensionless in the three-dimen-



GAUGE THEORIES OF VECTOR PARTICLES 129

sional case), The question of the order of multiplication of operators is of
course basic, but we cannot yet usefully discuss it.

Let us now take the Lagrangian function and write down the equations
of motion. If we vary G,, we obtain:

£2Gyy = 3, By -0y et (Bt @), (9.2)

It must be said at this point that we are using the variational principle
in a formal way. The purpose is to come back later to this point and criti-
cize and rectify what we are doing. At the moment we are applying a clas-
sical action principle without imposing any particular order upon the products
of operators.

If we vary @, we get:

(0, - it @)GHY = Kk,

This completes the full.set of the vector field equations. We also have the
Dirac equation obtained by variations of ¥: '

(e 9, -1'T @;+Bm)¥ = 0,

completing the preliminary set of field equations.

We have always said that the structure of the Maxwell field equations
must guarantee as an identity the conservation of charge. The same condi-
tion must be imposed here. The structure of the non-abelian vector gauge
field must guarantee as an identity the extended conservation equations of
the vector current. Observe that if we take the gauge covariant divergence
of k* we will have:

(9, -1t @K+ = (3, - 't B)(3, - i't B/)GH

(1/2)a, - i't &), (8, - i't ®)]GHY

= (1/2)(i't GL)G*=(i/2)G**t G 0. (9.3)

In the electromagnetic case the term't@’is absent and the result is evi-
dent. Here it follows from the antisymmetry of G*” and the fact that t is to-
tally antisymmetrical. The result obtained is so far formal, because it is
necessary to take into account the possibility that the different components
of ® may not commute. In other words, the question of operator multipli-
cation obscures the simplicity of the derivation and the simple result no
longer obviously follows withinthe framework of operator equations, although
it is true in the classical derivation. All this is preliminary to an actual
derivation of the identification of the fundamental variables and their basic
commutation relations.

We will now introduce source terms in the Lagrangian, to make use
of a uniform technique and exploit the device we have been using so far, in
which, from equations of motion in the presence of a suitably disturbed
system, we infer commutation relations in such a way that we can identify
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the fundamental variables. We go back to the Lagrangian and introduce there
the simple linear source terms

7 G*'Muf(®) +¢* I4@)

where M, is the external source for the field intensities Gy, and 3, is the
external current for the potential #¥, However, the addition of these terms
must not violate the general gauge invariance of the Lagrangian. This means
that M, and 3, must respond to the gauge transformations of the vector field
and for that reason the sources are functions of ®t. Note also that here the
situation ismore complicated than in the electrodynamic case because ®
undergoes an homogeneous as well as an inhomogeneous gauge transforma-
tion. But the relation between the sources and the vector field must be simple
in order not to destroy the utility of this technique. We have to exhibit, for
example, M(®) in such a way that it responds properly to a gauge transfor-
mation but also in such a form that, at least for particular calculations,
the ® dependence disappears. That means that in a particular gauge the
sources are independent of ®. In other words, we shall not insist upon full
gauge invariance for M, but only explicit invariance in the neighbourhood
of the specific chosen gauge. We also want the connection betweenthe sources
and the field quantities to be instantaneous, i.e., we must impose time loca-
lity. All the relations between sources and the vector field must then be
local in time,

Let us again write the infinitesimal gauge transformation properties
of Qp :

&y By + (3 -1t BN, (9.4)

We see that the time component changes by the time derivative, so that if
we want time locality, we must use only the space part and not the time
component which carries the time derivative. The spatial part is:

- - '
@ P+ (V-i't )N, (9.5)

We are interested in exhibiting a function of the vector 3 which finally
will depend only on éA. Isolating this dependence to counter the gauge trans-
formation of ®, the gauge variation of the vector [ contains the gradient
of 6A, but we want to construct a scalar equation and, naturally, we take
the divergence of 3

e I s
V.2 =V, 2+V(V-i't®')s. (9.6)
Having once done that, the natural gauge about which we have to perform
the infinitesimal variation of gauge appears to be the one in which V. @ = 0,
i.e. the radiation gauge. In an infinitesimal neighbourhood of this-gauge
we have: .

V.2 = V.(V-i't®)ér. 9.7)

The characteristic Green's function for this differential equation satisfies:
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-V(V- it 210 (x, X'} = 85(x-x). {9.8)

where 9 is real and symmetric
Dyplx, x) = D, (x!, x) (9.10)

and replaces the Coulomb-gauge function for the electromagnetic case. The
solution for A is

o = - v, e, (9.11)

This solution gives the gauge variation A for an infinitesimal neigh-
bourhood of the radiation gauge V. ® = 0.

We can now write down explicitly what M,,(®)must be, not for any gauge
but specifically for the consideration of infinitesimal variations about the
radiation gauge. It must be such a function of & that it responds by the coun-
ter transformation

M,,(®) = (1-it Yp V. B)M,, (9.12)

where the M, are just simple numbers. This form for the source satisfies
all our three requirements. First of all, these gauge variant sources are
related to arbitrary numerical quantities only at the same time. Secondly,
in the radiation gauge that dependence disappears and the sources are arbi-
trary numbers, Thirdly, for infinitesimal variations about the radiation
gauge, they vary by the factor (1+itéA) which just compensates the gauge
variation of G*% We have achieved gauge invariance in an effective compu-
tational form for infinitesimal variations about the radiation gauge. And
when we actually work in the radiation gauge the ® dependence disappears.

Let us now construct J,(®) by the same procedure:
Fu(®) = (1-it DaV. 2)7,. (9.13)

J, is independent of ¢ but, since there are two parts to the gauge variation
of &, one is inhomogeneous and for the gauge invariance of this part it must
be §, F# = 0. Thus we have invariance under infinitesimal gauge transfor-
mation about the radiation gauge.

Returning now to the equations of motion and adding the extracontribu-
tions from the external sources, we can read all the equal time commutation
relations by merely inspecting the structure of the field equations.

The new equations are, first for &:

3 @y~ 8y @ +i®ut @, = £2Gy, + My, (9.14)

The My, are here numbers independent of @ because we are now workmg
in the radiation gauge. Secondly, the equation for Gy,

(5, -1t B,)GHY = k#+I0 +W¥ Dy [(1/2)GMit M, +@¥it 3] (9.15)
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where V#is the four component vector of which the time component is zero.
Let us now take the two terms involving 3;:

J+vd (-it@)I=[1+VvH(3-i't &)] 7. (9. 16)

the derivative & has been added to obtain the "covariant gradient” 3 -it®.
Its contribution is zero because 7 is conserved. This last equation interests
us because the operator that acts upon 7 is a projector operator that picks
up exactly the right properties of the vector 74 in the following sense: we
observe that the right side, as a current, should be conserved in the ex -~
tended sens that, applying the gauge covariant divergence, one must obtain
zero and this is in fact the case:

(9-1t®)-[1+V D(5-it ®)] = (9-it®)-(5-it @) = O, (9.17)
because |
(8-it®). V = V.[V-it ®) +it V. &. (9. 18)

The firstterm on the right-hand side is the differential operator defining

& and in the radiation gauge V., & = 0, This is the importance of the projec -
tion operator that guarantees charge conservation in the extended sense.
The derivative 3, acting upon 9* may be said to be optional, but if we use
the projector in the form we wrote it, then for all variations of ¥ the con-
straint equation 9y #* =0 needs no longer be considered. Obviously, since
the divergence of J*is equal to zero, not all variations of 9% can be inde-
pendent. In particular:

3 6J%= -v.8J (9.19)

and the variation of the longitudinal part V. 7 is completely determined by
the constraint. But now, the structure:

[1+vD (5-it®)) I (9. 20)
does not depend at all upon the longitudinal part of 7.
[1+VD(9-it®)]. v = V-V =0 (9.21)

(an integration by parts is involved in the proof of this equality). So it is
not necessary to make use of the constraint equation and we can vary ¥
freely.

We will now examine the field equations to see which of them are equa-
tions of motion and which of them are only equations of constraint. Let us
first write down ihe field equations which are equations of motion, i.e.equa-
tions having time derivatives in it. They are: - N

8y B = (3 - it &) +2Gy, + Mgy,
(9.22)
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(8, -1t @)GKO= -(3-it B)GK +k !+ [1+VH (3-1t @) 7+8? (1/2)G it M.
On the other hand, the constraint equations are:

F2G My = 8, 8 p- 9p B+ (B it P
ket Myg= 0k @ g- 8y Bt (it @) (9. 23)

(8, -1t )GOk = K0 +30,

They tell us of course that neither the divergence of the "electric field" G
nor the components of the "magnetic field" Gk can be treated as independent
variables.

We will now look at the equations of motion and vary the parameters.
We then automatically get a commutation relation with the operators asso-
ciated with the parameters in the Lagrange function, And since we have
equations of motion for the fields &, and Gy, we will get commutation re-
lations between these operators and the operators that appear in the action
integral, .

It should be mentioned that the first equation of motion contains a hidden
constraint, because in the radiation gauge V. ® = 0 and so, taking the di-
vergence of that equation, the time derivative disappears and we are left
with

V. (V-it 8)®, = 3K(E2Gyy + M) (9.24)
which eliminates ®, as an independent variable. This is an indication that
only the transverse part of @ and the transverse part of Gokcan be considered
to be the fundamental variables, and all this occurs exactly as in the electro-
magnetic case.

We will now look at the structure of the equations of motion and simply
read off the commutation relations. Let us vary the chosen set of para-
meters starting with 9y, Looking at the equation of motion for &, we see
that 7, does not appear nor is it even hidden in the dependent variable so
that the coefficient of the variation of 7, is zero:

5(3,,) = (0)8 3, (9.25)

and from this follows the equal4imes commutation relation
[@yx), ®y(x")] = 0. (9. 26)
Next, looking at the equation of motion for G% and considering the effect
of the variation of 7, which only appears explicitly and multiplied by a pro-
jection operator, we see that
6 3 G% = - §(Projector)d (9.27)

from which we can read off the commutation relation

i[GO%(x), ®y(x)] = 51+ V3 (a-it &) (x, X)), (9.28)
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or, showing explicitly the different components of Gok and Ql’;
G 2M(x), @y, (x)] = & 6, 6(x-x) +3K[Dylx, x)(-3) -t @4(x)] . (9.30)

Last of all, we should find the commutation relations between the G% them-
selves. Once we know these, the other commutation relations can be com-
puted, knowing the way in which the other fields depend upon the fundamen-
tal ones. The last commutation relations can be obtained considering the
variations of MO%, The first equation of motion does not give anything new,

it merely repeats the commutation relation just found (showing, of course,
that the procedure is consistent). The other equation of motion gives the
information we require. It containg MO explicitly in the last term and also
implicitly in the dependent variable &, Taking into account both dependences
we arrive at: :

1[G%(x), GU(x)] = a%D (x, ¥)it GO%x") +it GOKx)D(x, x4 ¥,  (9.31)

These commutation relations seem to be complicated but it must be realized
that we have derived them for the full operator GOk which consists of a de-
pendent longitudinal part and the independent transverse part G%T which is
the fundamental variable. It is possible to extract the commutation relation
for G%T only. We can see that the right-hand side of the commutation re-
lation does not contain any purely transverse part and thersfore

[G%T(x), GO%x)T] = 0 (9.32)
which,together with
[@(x), ®y(x")] = 0 (9.33)
and
i[GOT(x), & (x)] = k8 (x-x)]T, » (9.34)

form the canonical commutation relations between the fundamental field
quantities. By comparison with the electromagnetic case, we see that it
still contains the essential simplicity which consists of the fact that the
fundamental variables are exactly the same transverse parts of the potential
and the electric field. The commutation relations have the same appearance
except of course for the fact that in the electromagnetic field we have only
one such equation and here we have n X n such equations. In other words,
the equations just found are really matrix equations in the "'internal" vector
space.

x



