
GAUGE THEORIES OF VECTOR PARTICLES*

J. SCHWINGER 
HARVARD UNIVERSITY, CAMBRIDGE, MASS. 

UNITED STATES OF AMERICA

1. INTRODUCTION

The general top ic  o f th is paper is  the vecto r  theory o f gauge fie ld s , but 
I like to think that these le ctu res  are rea lly  concerned  with the future o f the 
re la tiv is t ic  fie ld  th eory  as an e ffective  fo r c e  in the developm ent o f funda­
m ental p h y sics . Tw o basic  positions are at present under investigation as 
the p oss ib le  organ izing fo r c e s  fo r  the rapidly grow ing em p irica l data on 
elem entary p a rtic le s . T o  put it as extrem ely  as p ossib le , we might ca ll 
these two p o s it io n s :

(i) The p article  point o f v ie w ,
(ii) The fie ld  point o f view .
By the p a rtic le  point o f view,I mean those investigations in which the 

physica l p a rtic le s , as we see them , are the basic  elem ents. This is the 
whole line o f developm ent associa ted  with the S -m atrix , with the idea that 
the only function o f the theory is  to com pute and to corre la te  the results of 
scattering m easurem ents. It a lso  underlies those further attempts intended 
to give a physica l content to th is essentiaH y empty fram ew ork , such as d is ­
p ers ion  re la tion s, R egge p o le s , e tc . And, to adopt this point o f view system ­
a tica lly , one must n ecessa r ily  accept the O rw ellian philosophy that no parti­
c le  is  m ore  fundamental than any other. That is  the strict particle  point of 
v ie w ; the p a rtic les  are unanalysable. To our mind it is  an extrem ely con ­
servative position .

Opposed to this is  the fie ld  point o f view  which supports the idea that 
there is  a deeper dynam ical le v e l , that the em p irica l inform ation we have 
is  very  com plicated  and that the purpose o f theory is  to d iscov er  sim plicity - 
not n ecessa rily  in te rm s o f the observed  p rop erties , but in term s of con ­
cep ts, o f  p rop erties  which are  at the m om ent not d irectly  observable but 
which undoubtedly w ill becom e so in the cou rse  of future developm ents. This 
is  the way that ph ysics  has always p roceed ed . The fie ld  point o f view is  thus 
the idea that there ex ists  som ething m ore  fundamental than the phenom eno­
lo g ica l p a rtic le s . T h is is  a very  general statement and we should say that 
fie ld  theory as it now stands is  based upon the tentative identification o f these 
m ore  fundamental entities with som e loca liza b le  fie ld s . We would alm ost 
try  to make a d istinction  between the idea that there is  something dynam ical­
ly  deeper than the p a rtic le s , and the p articu lar.associa tion  of the deeper 
structure with lo ca liza b le  fie ld s . Such fie ld s  m ay be what is  required , but 
the im portant thing to our mind is  the alternative between accepting the 
p a rtic les  as they are  and seeking fo r  som ething m ore  fundamental. At the
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m om ent, the latter is  identified with the idea of fie ld s which are operator 
functions o f the space and tim e coord in ates. But even within this fra m e­
w ork ,there are various p oss ib le  view points. T here is  the extrem e viewpoint - 
this is  H eisenberg ’ s attitude - that there is  only one fundamental fie ld . E very­
thing we know must com e  out o f th is one fie ld . This is  rather hard to a c ­
cept, and I m yse lf w ill adopt here the interm ediate position  that there are 
severa l fundamental fie ld s . A s to which fundamental fie ld s  are necessary  
I would say that the clue must be found in the exact, o r  alm ost exact, con ­
servation  law s we know in nature. This is  the line of thought that leads to 
the idea o f v e c to r  gauge fie ld s  which I am going to exp lore.

It should be em phasized that in the fie ld  viewpoint the fundamental fie lds 
are  not im m ediately corre la ted  with observable  things. This is  the deeper 
dynam ical le v e l ; out of the interplay o f the dynam ics that govern these en­
tities  em erges  the w orld  o f p a rtic les  as we know it. In other w ords, the 
im portant thing is  to recogn ize  that the fie ld s  we begin with in this v iew ­
point are  not n ecessa r ily  d irectly  corre la ted  in a sim ple way with the o b ­
served  p a rtic le s . It has becom e fasionable to d escr ib e  fie ld  theory as "o ld - 
fash ion ed". I would insist upon the fo llow in g : what is  old -fash ioned  is  the 
naive con fusion  o f these two points o f v iew , in which one speaks in d iscr i- 
m inatly of p a rtic le s  and fie ld s  and a ssoc ia tes  with every particle  a fie ld  
which is  inserted  in som e Lagrangian fo r  the purpose of applying pertu r­
bation th eory . This is  the o ld -fas ion ed , naive point of view but it is  not the 
one I am  advocating h ere . We must c lea r ly  understand that we are dealing 
with a much m ore  sophisticated  approach, in which the fundamental fields 
a re  not sim ply co rre la ted  with p a rtic les , although there may be an ardent 
relation  in som e individual ca s e s . The basic  physica l problem , from  this 
point o f v iew , is  to exp lore  the p oss ib ilit ie s  o f postulating various funda- <> 
m ental fie ld s  with th eir  dynam ics and by proving the existence of specia l 
states of definite o r  a lm ost definite energy-m om entum  relations to identify 
these with physica l p a rtic le s .

Such are the two extrem e view points, and obviously it is  the second one 
which is  adopted here. I shall try  to indicate som e o f the p ossib ilities  that 
are  inherent within it. Now, I said that the clue to which fie ld s  are funda­
m ental is  given by the exact, o r  perhaps alm ost exact, conservation  law s. 
And I point h ere , inevitably, to the exam ple upon which the whole fie ld theory  
has been built m ore  o r  le s s  by analogy, i . e .  e lectrodynam ics. The e le c tro - 1 
m agnetic fie ld  has the very  sp ecia l feature o f gauge varia tion ; while it might: 
be p oss ib le  to advocate, as H eisenberg does, that there is  no fundamental I 
e lectrom agn etic  fie ld , I regard  th is property  of gauge variation to be so 
b a sic  that it seem s n ecessa ry  to postulate a fundamental electrom agnetic 
fie ld .

It should be rem em bered  that the electrom agnetic fie ld  is  one such that 
the v ecto r  potential must be aUowed freedom  o f transform ation  by gradients 
o f an arb itrary  sca la r  function, at the mom ent a num erical sca lar function, 
s a y :

Aj,(x) A(j(x) + a ,A (x ). ( i - 1)
Now we know that as the theory has been constructed  to be invariant under 
such a gauge transform ation , it fo llow s autom atically that the current vector 
jw(x), which is  the sou rce  of th is fie ld , must be conserved  :
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ajijKx) = 0. ( i .2 )

This is  the im portant aspect o f  gauge in v a ria n ce : the concept o f the absolute 
conservation  o f the e le c tr ica l charge is  not explained as the result of sp ec i­
fic  dynam ical re s tr ic tion s  on every  con ceivab le  system , but is  understood 
in te rm s of the structure o f the M äxw ell fie ld  itse lf. To put it in another 
way, we know that the fie ld  strength ten sor F ,J,; is  antisym m etrical and obeys 
the equation :

(1 .3 )

and in virtue ofthat antisym m etry, ä structural property of the fie ld , it 
fo llow s autom atically that the current obeys

-  o • (1.4)

That is , the equation o f lo ca l e le c tr ica l charge conservation  is  an identity 
ch a ra cte r is t ic  o f the structure o f the M axwell equations,and, th erefore , once 
the M axwell fie ld  is  introduced, n on-con servation  of the e le ctr ica l charge 
is  in con ceivab le . T h is is  the p erfect m odel o f a dynam ical explanation of 
an absolute con servation  law .

One may attempt to build an explanation of another absolute con serva ­
tion law along these lin es . One may say that what has been explained here 
is , in a sense, the absolute stability of the e lectron . The electron , being 
the lightest ob ject that c a r r ie s  an e le c tr ica l charge, is  a stable ob ject in 
virtue of the con servation  o f the e le c tr ica l charge, since there is  nothing 
lighter fo r  it to  go into while m aintaining its ch arge. T here is an analogy 
between the stability o f the e lectron  and the conservation  of e le ctr ica l charge, 
on the one hand, and the stability o f nuclear m atter and the conservation 
o f the nuclear charge, on the other. This nucleonic charge must be possessed  
by a ll the heavy baryons and is  handed on from  the cascade particle  to the A, 
the £ and the nucleon in the p ro ce s s  o f a ll their d isintegrations. But with 
a nucleon, o r  m ore  p re c ise ly  with a proton, as the lightest object carrying 
this nucleonic charge, the p ro ce s s  o f decay cea ses  because there is nowhere 
e lse  to transm it the nucleon ic ch arge . That is , in the absolute conservation 
o f nucleonic charge we have a descrip tion  of the stability of matter and one 
would like to have an understanding o f th is m ost fundamental o f all con serva ­
tion law s on som e general dynam ic grounds rather than m erely  as a state­
ment, since it is  a ru le which has to be superim posed on every possib le  
in teraction . It is  natural, then, to introduce a hypothetical vector  field , a 
gauge fie ld  analogous to the electrom agn etic fie ld  and to insist that its dyna­
m ics  be governed by the requirem ent of gauge invariance from  which would 
follow  the ex istence  o f an absolute conservation  law . This dynam ical expla­
nation involves a new fie ld  and the question now is  what w ill be the dynamic 
con sequences o f that fie ld . H ere is  w here the idea appears to run into im ­
m ediate d ifficu lties . If the analogy with the electrom agnetic fie ld  is  co m ­
plete, a ph ysica l p a rtic le  with z e ro  m ass, analogous to the photon should 
exist, and we know o f no such p a rtic le . One could assum e that the coupling 
to the new fie ld  is  arb itrarily  weak, there are argum ents that the field  must
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be unobservable even on a co sm o log ica l s ca le . That is  hardly the kind of 
fundamental fie ld  which should be introduced to explain the conservation of 
the strongly interacting p a rtic le s . T his was the great ob jection : gauge in­
variance should im ply the existence of a z e ro  m ass p a rtic le . And this is 
the d ec is iv e  point at which we want to introduce the ideas o f the new field  
theory .

It may be helpful to give a sim ple fo rm  of the argument relating gauge 
invariance to a m a ss less  p a rtic le . Using the notation o f electrodynam ics, 
we have the charge density equation

V .  E = p (1. 5)

and an integration over a la rge  volum e g iv e s :

ßdr)p = Q =Jd S . E (1 .6 )

w here Q is  the total charge of the system  and a constant o f the motion. T h ere ­
fo r e , the e le c tr ic  fie ld  at la rge  d istances must fa ll o ff like

E ~  (Q /4 tt) (n /r 2) (1 .7 )

which is  a long range fie ld . T h is  is  a static fie ld , but one could argue, not
in co rre ct ly , that if one finds a static fie ld  which is  long range, there must 
be a z e r o -m a s s  p a rtic le  o r  the fie ld  would be o f finite range. But it is  im ­
p lic it ly  assum ed h ere  that the total charge Q is  different from  z e ro . And 
it is  p re c ise ly  at th is point that the argument fa ils . When a charge is  in ­
serted  into ,the vacuum , the accom panying e le c tr ic  fie ld  p olarizes  the vacuum 
producing a partia l com pensation  o f the ch arge . That is  the origin  of charge 
renorm alization . But it is  con ceivable  that the com pensation o f charge is 
not partial, but com plete  is  p resen t. That is , if a charge is  placed in the 
system , there m ay com e  into being in the cou rse  o f tim e a vacuum p o la r i­
zation in which, lo o se ly  speaking, one part o f the charge escapes to infinity 
and the com pensating charge exactly balances the charge that was originally 
in serted . Under th ese conditions, the constant total charge, that w ill be ob ­
servab le  in any a rb itra rily  la rge  volum e w ill be z e r o . This is  not intended 
as a convincing argum ent, but m erely  an indication that there is  a loophole 
in the assertion  that there must be a lon g-ran ge fie ld  - o r  m assless  p artic le - 
fo r  th is depends upon the assum ption that there is  no com plete com pensation 
ch arge . The m a ss le ss  ph ysica l p article  d isappears when a n on -zero  total 
charge can no lon ger be maintained in the vacuum .

2. THE ONE DIMENSIONAL MODEL

Rather than indicate by genera l agreem ents that this is  a very  rea l p os ­
sib ility , a very  sim ple ph ysica l m odel w ill be used to show that such a new 
situation can o ccu r .

The m odel I want to d iscu ss  is  com pletely  physical, in the sense that 
no general p rin cip les  o f ph ysics are v iolated . On the other hand, it is  an 
unworldly one, sin ce  it is  a specia l ca se  o f electrodynam ics in one spatial
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dim ension . Of cou rse , a ll the argum ents we have given until now about gauge 
invariance apply equally w ell to  one spatial dim ension, apart from  sp e c ifi­
ca lly  geom etrica l fa c to rs .

Let m e w rite  down the basic  equations we shall be concerned with fo r  
e lectrodynam ics, and then we shall sp ecia lize  and solve exactly in on e -d i­
m ensional space . We shall begin with the Lagrange function

w here we have introduced two fundamental fie ld s , a gauge fie ld  ch a ra cter i­
zed  by a v ecto r  A,j and an antisym m etric tensor and a F erm i field  ? .  
The m a trices  a and ß a re  connected with the usual D irac y -m a tn ce s  by 
itt^s ß yP. The a  ̂ a re a ll rea l and sym m etrica l, and a0 = 1; ß is  rea l and anti- 
sym m etrica l; e is  the coupling constant and m 0 the m ass constant a sso ­
ciated with the fie ld*?. The antisym m etric m atrix

is  sp ec ifica lly  associa ted  with the charge, and is  introduced here in order to 
w ork with Herm itianYfields-Under the transform ation  AM-» e A^F^y - » (i/e)FM„, 
the L agrangian^  goes back to its m ore  fam ilia r  fo rm  (i .e .th e  coupling 
constant e appears at its usual p lace  in the coupling term  e AMjp).T h e  F erm i 
fie ld  obeys the anticom m utation relation

w here the in d ices  a  and ß r e fe r  to spin and ch arge.
The one essen tia l point to be em phasized about the distinction between 

three d im ensions and one d im ension  is  the question o f the dim ensionality 
o f the ch arge, i . e .  o f the coupling constant. The action operator

is  d im ension less in the system  o f units w here h = 1. Then the dim ension 
o f the Lagrangian

w here L  is  length and n the num ber o f spatial d im ensions. F rom  this, we 
obtain the d im ensionality o f e2:

and hence fo r  the particu lar ca se  n = 3, e is  d im ensionless, while fo r  n= 1,

*  = - ( l / 2 ) F ^ A w- ^ A ^  + (e2/4)F»«'F(1I,

+ (i/2 )S 'c/3M'J' + ( im o /2 W Y  + ( l /2 )A (JYa,JqY ( 2 . 1 )

O -1

[£ ]  = 1 /(L W1)

[e2] = 1 / (L3"n)

[e®] = 1 /L 2,

i . e .  the coupling constant itse lf c a r r ie s  a length, ca r r ie s  a m ass.
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W e shall now show that it is  possib le  to find an exact solution of the 
on e-d im ensional p rob lem  in the specia l case  in which the m ass constant 
associa ted  with the F e rm i fie ld  vanishes, m 0 = 0. In this one-dim ensional 
m odel there a re  only two a -m a tr ice s , cP = 1 and a 1 = a lt which can be r e ­
presented by 2 X 2 m a tr ices . The spatial m etric  adopted is  positive and 
the tim e m etric  negative.

3. EXACT SOLUTION OF THE ONE-DIMENSIONAL PROBLEM

What we want to do now is  to  solve-a  prelim inary p ro b le m : the p o la r i­
zation of the vacuum  o f a F erm i fie ld  Y by an externally im posed field  A^.
We must then introduce a certa in  requirem ent o f s e lf -co n s is te n cy : the charge 
brought in crea tes  a fie ld , this fie ld  p o la rizes  the vacuum which creates a 
charge that p o la r izes  the vacuum  and so on. The problem  can be solved 
exactly in our m odel, because of the assum ption o f one spatial dim ension 
and the z e ro  m ass of the ferm ion  fie ld . This is  fam iliar, fo r  exam ple, from  
the d iscu ssion s that have gone on about the T h irrin g  m odel which is  also 
a one-d im ensiona l m odel though not e lectrodynam ic.

Our prelim in ary  p rob lem  is  then a D irac fie ld  Y plus an external (e le c ­
trom agnetic) fie ld  A jj. In te rm s o f its solution we shall have the exact solu ­
tion  to our p rob lem . W e begin with a sim plified  Lagrange function

& = (i/2)?ttt‘ (a(1- i q A (1)Y. (3 -1)

W e want to find the current induced in the vacuum  by the external field  
A jj . Let th is be :

< j(J(x )>  = l/2 < '? (x )a q 'T (x ) >A. (3 .2 )

S ince jM(x) is  a b ilin ear com bination of fie ld s  taken at the sam e point x, we 
construct its expectation value by firs t  solving another prob lem , which is 
to find the expectation value o f a b ilinear com bination of fie lds  at arbitrary 
points o f space and tim e . T h is is , in other w ords, the construction  o f the 
G reen ’ s function associa ted  with the fie ld . We define this G reen ’ s function 
as

G (x ,x '; A) =<(i'(x)'J'(x'))+) e ( x -x ')  (3 .3 )

which is  the vacuum  expectation  value o f the tim e ordered  product of the 
f ie ld s . e(x-xO  is  a sign function. This is  the basic  physical quantity in term s 
o f which we extract p h ysica l inform ation about the states that are created 
in the vacuum  o f the fie ld  ¥, and in term s of which, by a lim iting p rocess  
with x ' “ » x, we shall construct the current op era tor .

T he G reen ’ s function obeys an inhom ogeneous differentiell equation which 
in corpora tes the fie ld  equations and the anti-com m utation relations

-iqA u (x))G (x , x') = 6 (x -x '). (3 .4 )

Under a gauge transform ation  Eq. (1) this G reen 's  function transform s 
accord in g  to
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G(x, x') = exp [iqA(x)]G(x, x 'jexp [ -iqX (xOJ. (3-5)

The current operation  j^ x ) is  given by :

j^ x ) = (l/2)'i(x)a ttq y (x ) .  (3 .6 )

This is  a singular exp ression  and th ere fore  it must be defined by a suitable 
lim iting p ro ce ss  as stated above. We must let x '->  x along a space-like  
d irection , sin ce  we do not want to bring  dynam ics into the definition o f an 
op era tor . We must ca rry  out this definition  in such a way that gauge in ­
variance is  guaranteed and then we must check  the covariance of the p ro ­
cedure.

W e now rew rite  the expectation value Eq. (3. 2) in term s of a G reen 's  
function. We g e t :

< j|J( x ) ) = - ( l /2 ) T r  a,, G (x, x) (3 .7 )

w here G (x, x) is  defined by :

G (x, x) = lim  G(x, x') e x p [ - iq  f d ? A M(£)], (3 .8 )
x /_ >x J,x '

the lim it being taken fro m  a spatial d irection  maintaining a ll sym m etries,
i . e .  taking an average o f the values of the lim its  attained from  the left and
fro m  the right. The exponential fa cto r  is  requ ired in ord er to maintain gauge 
invariance fo r  x  ^  x .

The solution  o f E q. (3 .3 ) can be w ritten as :

G(x, x )  = G°(x, x') exp iq[$(x) -$ (x ')] (3 .9 )

w here $ (x ) s a t is f ie s :

o ^ S K x )  = aM A ^ x ). (3 .10)

and G° is  the G reen ’ s function fo r  A^ = 0

G°(x, x )  = 6 (x -x '). (3 .11)

The solution  o f th is equation with the p rop er boundary conditions i s :
oo

G°(x, x') = (1/2 jr)J' dp ex p [ip  a^Xp-Xp) , x°> x 0'
0 p "

= - (1 /2  jt) / dp ex p [ip  aPix^-xfl , x°<  x 0'. (3 .12)
0

T o p er fo rm  the lim iting  p ro ce s s  (a long  a sp a ce -lik e  d irection ), let us con ­
s id er  the right hand side o f E q. (3. 8) fo r  x 0 = x 0' :

But, fo r  equal tim es

G(x, x') (exp iq [$  (x) -<J>(x ')]}^exp[-iq^  d C A j j .  .



G °=  ( l /2 ^ )[a 1/ ( x 1-x')] .

Expanding the exponentials in a T ay lor se r ie s  fo r  Xj-> x\, we g e t :

G 3= ( i /2  7r) [a j/(x j-x j') ]  [1 + iq (x 1-x i)(310 -A j). (3.13)

Taking now the sym m etrica l lim it as explained above, we obtain:

G(x, x) = • (1 /2  ttJoj q ^  ^(xJ-A ^x)] = (1 /2  n) q {d ^ (x )-A ^ (x )). (3 .14)

Inserting this into Eq. (3. 7), we obtain the covariant exp ress ion :

< j„ (x )> =  -d A ) [A (I(x ) -a (J( l /4 ) T r $ ( x ) ] .  (3-15)

W riting explicitly  Eq. (3 .10)

0 „  + »1 3i)<D(x) = A 0(x) +<*! A j(x) (3.16)

and m ultiplying it from  the left by (Oq- o1 ), we obtain the second order 
d ifferentia l equation :

- a 2$ (x )=  -a^AM(x) + a1[9oAi W - a 1A0(x )] . (3.17)

By taking the tra ce , this redu ces to

- a2(1 /4 ) T r f ( x )  = - a M A(*(x) (3 .18)

which we can so lve  fo r  T r $  by m eans fo r  the corresponding G reen ’ s func­
tion D(x, x ' ) :

(1 /4 ) T r  0 (x ) = - J(dx')D (x,x')dv A'’ (x') (3 .19)

o r , sym bolica lly  :

( l /4 ) T r $ ( x )  = -D a ^ jy fx ) . (3.20)

H ence, our final result in this notation is :

< y x ) > =  -(l/T T jtA ^ x j+ a^ D a^ A "]. ( 3 .2 1 )

This is  an obviously covariant expression , it is also conserved  and it is 
gauge invariant. To show that it is  conserved , let us take the divergence 
o f Eq. (3. 21). We g e t :

3̂  j(i = - (1/tf) [9" Ajj - a« A J  = 0.

Let us now indicate som e of its physical im plications by a sim ple but 
not w rong m ethod. We w ill then justify it. Let us think o f the idea of se lf- 
consistency  in the sim plest p oss ib le  way. A^ has been until now an external
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fie ld , but suppose this fie ld  som ehow is  brought into existence propagating 
in a ccordan ce  with M axw ell’ s equations. Then this fie ld  induces a current 
and th is current in turn rea cts  back to change the nature of the fie ld . What 
then is  the condition  o f se lf-con s is ten cy  ?

W e go back to M axw ell equations

•

3|1 Ajj -  e2 Fjjy ■

F rom  here, e2 j»1 = - 9 2Afi ±9^ A*-. Adopting now the Lorentz gauge A(* = 0.
and using Eq. (3 . 21), we get the propagation equation fo r  the vector  potential:

( -82  + m2)A(i(x) = 0 (3 .22)

w here

M2 = (e2/7T). (3.23)

This is  an equation d escrib in g  non-in teracting p articles  o f finite m ass 
p = r) and shows that gauge invariance of a ve cto r  fie ld  does not n eces ­
sarily  requ ire  z e r o -m a s s  p a rtic le s .

The exp ression  found fo r  the vacuum expectation value o f the current 
in the p resen ce  o f an external vector  potential A is

< ^ (x )> A = -(I/ttH A ^x) + f& D (x -x ')d 'v Av(x ’)}, (3.24)

w here j 1' is  the e le c tr ica l current ca rr ied  by the ferm ion  fie ld . This may be 
sym bolica lly  written

<j>A= - (1 /tt)(1 + 3D 3)A , (3.25)

where the p ro jection  operator (1 + 3d] 3 guarantees the conservation  of 
charge and gauge invariance. We a lso  found, by a sim ple se lf-con sisten cy  
argument, that the condition  fo r  the v ecto r  potential to maintain itse lf is 
that it satisfy  the fie ld  equation

[92 - (e2/jr)]A = 0. (3.26)

H ere e 2/ir = p2 p lays the part of the square o f a m ass; so  the result is  - at 
least in a sim p le-m in ded  way - that the propagation equation fo r  A is  the 
sam e as that fo r  a p a rtic le  o f m ass p . We shall g ive a p re c ise  derivation
o f this resu lt here and a lso  show how to calcu late elLI other p rop erties  of
the system .

But b e fo re  we begin  the p re c ise  derivation , let m e com e back to an­
other general qualitative rem ark  that I m ade. The equation V .E  = p im plies 
that at great d istances from  the sou rces  the e le c tr ic  fie ld  E satisfies E ~ Q
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in the on e-d im ensional case  and E ~ Q /4 7 rr2 in the three-d im ensional case, 
w here Q is  the total charge. It is  argued, quite co rre c t ly , that a long-range 
e le c tr ica l fie ld  can only be m aintained and propagated by z e ro -m a ss  parti­
c le s . H ow ever, the cou rse  o f the argument is  that the total charge should 
be d ifferent from  ze ro , and this is  not the case  under the conditions we are 
talking about becau se the vacuum  polarization  effect acts to annihilate any 
given charge.

Suppose that we in sert a static external charge density J° whith total 
charge Q0 into the vacuum . A charge density j°  w ill then be induced, whose 
expectation value, in the Lorentz gauge, is  given by our previous equation

<J°> = -(1  / tt) A0 . (3.27)

The potential A0 has its sou rce  in the total charge density J° +\j°)>*

-a2 A0 = e (J ° +<j°>). (3.28)

Substituting fo r  \j0X  and using the fact that the fie ld s  are tim e independent, 
we get

(d2/d x '2-M2 )A ° = - e 2J °. (3.29)

The solution o f this is :

A 0 = (e2/2ß ) J (dx '1) (exp  [ - M (x '- x '1)] }J °(x ') . (3.30)

The total charge induced in the vacuum  is  th ere fore

[ ( .  j° (x ')> d x '=  [ - e2/(2ju 7r)[ Adx'dx'1 ( exp [-  /n |x'- x '11 ]} J° (x;) = -Q 0
J (3.31)

which exactly  can ce ls  the inserted  charge Qq. Thus there is  no long-range 
fie ld  and no lon ger an argument fo r  a z e ro -m a s s  p article .

4. SOLUTIONS OF THE GENERAL EQUATIONS WITH EXTERNAL
SOURCES AND THE G R E E N 'S  FUNCTIONAL.

Now we m ust w rite down the general equations o f this rela tiv istic  field  
system  and so lve  them  exactly . The m ethod we shall use is  that o f external 
sou rces  and the G re e n 's  function. This is  the general technique fo r  dealing 
with any fie ld  p rob lem . It depends on the idea o f introducing sim ple e x c i­
tations into the system , in term s o f which all p oss ib le  states can be created. 

To the Lagrangian w ritten down prev iou sly  we add the sou rce  term s

A»(x)Jß(x) - i^ (x )n (x ). (4 .1 )

The total Lagrangian m ust still be gauge invariant, which im p lies  that the
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external current «ly is  con served  (this external current can be considered 
sim ply as an idealization  o f other dynam ic system s which act upon our sy s ­
tem ). A s fo r  the F erm i sou rce  term  rj, it is  a fu lly  anticom m utative quantity 
(just as the boson  sou rce  is  fu lly  com m utative). The sou rce  rj(x) anti­
com m utes with rj(x') and <p(x ') f ° r  all x and x'. Such quantities can be perfectly  
w ell rea lized  in te rm s of fam ilia r  a lgebraic structures. The change in r?(x) 
under a gauge transform ation  m ust be just such as to com pensate the change 
in tp.

With the addition o f the sou rce  term s, the fie ld  equations becom e in ­
hom ogeneous. That fo r  the F e rm i-fie ld _  written fo r  the case  of ze ro -m a ss  
constant -  is

a ^ - i e  A^ip -  n, (4.2)

while that fo r  the electrom agn etic fie ld  ten sor is

= j m + jg . (4.3)

N otice that this is  j£, and not j T h e  quantity j(* = ^ipaVqip is  no longer con ­
served  in the p resen ce  of sou rces  and th ere fore  it would be inconsistant to 
w rite J*1 + j** as the right hand side of our previous equation. A proper ca l­
culation, which takes account o f the fact that there is  a transfer of charge 
from  outside the system  we are considering, shows that one must extract 
from  j1* its con served  part j*1.

The point o f introducing these external sou rce  term s is  that one can 
convert the H ilb ert-sp a ce  operator fie ld  equations by their aid into nume­
r ic a l functional d ifferen tia l operator equations. F or our problem  the latter 
equations turn out to be soluble. But how do we m ake the transition from  
one kind o f equation to the other? W ell, we con sid er  that the system  begins 
in the vacuum  state and the sou rces  are, so to speak, turned on. The sy s ­
tem  is  then d isturbed and by choosing the disturbance co rre c t ly  one may 
generate any state into which the vacuum  m ay be thrown by the action of 
the fie ld  op era tors . By watching how these states propagate in tim e we see 
their p rop ertie s . F inally, we sw itch o ff the sou rces  and return to the vacuum 
state. The m athem atical quantity which contains all the inform ation about 
this p ro ce s s  is  the transform ation  function which re la tes  the vacuum state 
10 . y  b e fo re  the d isturbance to the vacuum  state 10 +)> after it. I shall ca ll 

this transform ation  function the G reen 1 s functional: it is  the generating 
functional o f all the G reen 1 s functions, o r  propagation functions, which d e s ­
cr ib e  p r o c e s s e s  in our system . We w rite it:

G[rj J] = < 0 +|0l>,J . (4.4)

We m ust find how the G reen 1 s functional depends on the external sou rces 
r) and J. The idea is  to con sid er  its respon se  to in fin itesim al changes 

5 JJi. T hese produce a change in the Lagrangian:

6vjJ= 617,

and a change in the G reen 1 s functional

(4.5)
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ÖjjjG [n j] = 6tf<0+|0./ =i >0+\J(dx)A»6 |o_>. (4.6)

(The m atrix  elem ents are always taken between vacuum  states). If one im a­
gines a disturbance 6 Jj,, 6rj lo ca lized  around the point x and if  one som e­
how knows 6nJG[r) J], then im m ediately  one gets the m atrix  elem ents of the 
opera tors  Pt(x)  and ^ (x ). If this can be repeated at all points o f space-tim e, 
one gets a general correspon dance  between m atrix  elem ents o f the field  
opera tors  and functional derivatives o f G[r] J]. This g ives the general d if­
ferentia l op era tor representation  o f the fie ld  op era tors , very  much analo­
gous to the representation  o f p 1 s by d ifferentia l op era tors  with resp ect to 
q 's .

Now we com e to an im portant point. I have written down the variation 
6J*1. To find one d ifferentia l operator representation  we should like to make 
arb itrary  in fin itesim al variations of the J14. But this we cannot do: the 
are not independent. If we vary  the m independently we shall violate charge 
conservation  and th ere fore  gauge invariance. The way to overcom e this 
d ifficu lty  is  to w ork in a sp e c ific  gauge. By choosing a suitable gauge we 
shall be able to vary, our J*4 arb itrarily  while conserv ing  charge.

How is  th is to be accom plish ed? Take an arb itrary  vector  J and p ro ject 
it by- m eans o f a p ro ject ion  op era tor II into a v ecto r  Jc which is  conserved

Jc = 7T J . (4 .7 )

I want to make this p ro jection  so that it does not upset the tem poral de­
velopm ent o f the system , so we shall ch oose  a p ro jection  operator which 
is  lo ca l in tim e. Let us introduce, in addition to the usual space-tim e gra­
dient 9m, the purely  spatial gradient V^. The spatial com ponents, or com ­
ponent since what we say applies to both one and three d im ensions, of
are the sam e as those o f 9 ,̂ but the tim e com ponent is  zero . The projection  
equation w ill be taken to be

Jc = (l + vJ)ö)J, (4.8)

w h e r e ^ i s  the G reen ' s function associa ted  with the spatial gradient

y22)(x,x') = - 6(x-x'). (4.9)

The conservation  equation 9 J C = .0 fo llow s im m ediately .
The conservation  o f charge can now be ensured by rep lacing 6J by 6JC 

in the J term  of our variational in tegral

i J (d x )A (l  + v ß a ) 6 J .  (4 .1 0 )

We cam now certa in ly  p erfo rm  arb itrary  variations o f J, but at the cost of 
som e awkwardness. H ow ever, if  we now ch oose  the radiation gauge, in 
which V. A = 0, and p erfo rm  an integration by parts (this must be validated 
b v a p p rop ria te  re s tr ic tio n s , which we w ill not go into), then the extra term  
V^/0 sim ply d isappears. So we have exploited the gauge freedom  of the the­
ory  in such a way that we can rep la ce  the variation  o f the conserved  current
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by the variation  o f an arb itrary  v e cto r . This is  true only fo r  our specia l 
ch o ice  o f gauge. Other gauges are p oss ib le , but the p ro jection  operator 
w ill no longer be lo ca l in tim e. H ow ever, once we have presented the whole 
fo rm a lism  in term s o f functional d ifferen tia ls, we shall be quite free  to 
change the gauge as we whish. In fact, I shall im m ediately switch over from  
the radiation  gauge to the L orentz gauge, which is  m uch m ore  sym m etrical.

T reating J as arb itrary , which is  ju stified  with our particular choice  of 
gauge, we can w rite  down a corresp on d en ce  between the variational d e r i­
vative with resp ect to and the vecto r  potential AM

i
( l / i ) [ 6 / 6JJ1(x)] ^ A M(x). (4.11)

(The coe ffic ien t o f 6 JM in the variational in tegral is  just iAM). In the same 
way, con siderin g  the ip 6 rj term  in the variational integral, we find the c o r ­
respondence

- 6c / 6rj(x) i//(x). (4.12)

The i  su ffix ind icates that this is  a le ft derivative. In making the c o r r e s ­
pondence we m ust bring 6rj to the left o f ip, which accounts fo r  the minus 
sign {ip 6tj = -6r].<p).

These corresp on d en ces  suggest that one can convert the fie ld  equations 
fo r  \p and A*' into functional d ifferentia l equations fo r  Gin J] by sim ply substi­
tuting 6 /6  Jjj fo r  i A*1 and 6 / 6rj fo r  ip. F irst , from  the D irac equation we get:

- q } T f c )  + n(x)]Gl nJl = °- (4 -13)

Secondly, there is  the M axwell set and at this point we shall change over 
to the L orentz gauge. The radiation gauge was d escribed  firs t  because it 
is  m ost im m ediate, but now let us define the con served  current Jc by

Jc = (1 + 3D3) J, (4.14)

w here D is  the G re e n 's  function associa ted  with -  ä2. This equation fo r  Jc 
is  not lo ca l in tim e, but it does have the advantage o f being m anifestly r e ­
la t iv istica lly  invariant. I shall not go through the m echanics of the gauge 
transform ation , but the resu lt is « *

[94 g j - a?f ^ - e?(i + 3Da)(j+^ aq^ )1Gt,,JIr0- (415)

w here J is  the external current, ( i ) (6 / 6r])a q (6 / 6rj) corresp on d s to the physi­
ca l ferm ion  cu rrent \ipaqip and the p ro jection  operator (1 + 3D 3) ensures - 
charge con servation . We still have to w rite the transcription  fo r  the last 
equation, corresponding  to the ch o ice  o f gauge. The final gauge equation is

3 —  G b jjJ  = 0 . (4.16)

which says that the L orentz gauge is  the chosen  one.
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We must now so lve  the functional equations fo r  the G re e n 's  function.
Let us f ir s t  con sid er the D irac equation. The variational derivative 6 / 6J
can be treated  as c-n u m bers (and they behave like c-n u m bers in the sense
that they are  com m utative). F or  the mom ent we shall ca ll them iA^, i .e .

f a F - V  (4 ' 17)

The G reen 1 s function now obeys an equation in the p resen ce  o f an external 
fie ld  Ajj. T reating this fie ld  as a param eter we can convert the differential 
equation

G [17 J[ = - J d x ' G ( x , x ' , A ) n ( x ) G [ i l J ] ,  (4.18)

w here G(x, x'. A) i s  the G re e n 's  function fo r  the D irac equation in the p re ­
sence of an external potential A^.

The form a l solution of'the last equation can im m ediately be written 
down. It is , o f cou rse , an exponential

GfrjJ] = G [J ]e x p j^ - i  J d x d x 'G (x ,x ',  y  ̂ )r j (x ') j  (4.19)

where G[J[ is  a constant of integration. We can now transfer this partial 
solution to the M axwell equation in ord er to determ ine also the J dependence 
of G:

[aa-j--|r - d2-—  - e 2( l+  a D 3 ) (J - iT r a r q G (x ,x ,, ~ ) ] G [ J ]  = 0.
(4.20)

Taking this equation with the ch a ra cteristic  condition fo r  the Lorentz gauge

9 (6G /6J) = 0, (4.21)

we see  that the prev iou s equation is  equivalent to

G = 0 (4.22)(-9  + e 2/w ) ( l / i )6 / 6J - e 2 ( l  + 9D9)J

in which,upe has been m ade o f the known structure o f the current

( i ) T r  a q G (x ,x ';A )  = j (A) (4.23)

in the case  o f the external potential, fo r  which the current (in the Lorentz 
gauge) was proportion a l to A^. Again, the d ifferentia l equation can be r e ­
p laced  by an in tegral functional equation by using the G reen 1 s function for 
the problem :

(-a2 + e2/^) G(x, x') = 6(x, x'). (4.24)

The G reen 1 s functional G[J] is  th ere fore  given exactly  by

G[J] = exp J d x  dx' Jp(x) Gjjyfx, x') f  ( x ) (4.25)
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where

Gmw = (1  + 9 D a )(1„G . (4.26)

A ll the physica l ch a ra cte r is t ics  are contained in G. The p ro je cto r  (1+9D9) 
a ssu res the fu lfilm ent o f the Lorentz gauge condition.

The expansion of the exponential in the solution of the G re e n 's  functional 
p rodu ces, in a sense, all the p oss ib le  states of the system . The coefficien ts 
o f the expansion re fe r  to the physica l propagation o f the system  giving the 
m ultiple G re e n 's  functions fo r  them.

At this point it m ay be instructive to con sid er  one exam ple: This is 
the com parison  of:
(1) The quantum electrodynam ic ca se  with its gauge invariance; and
(2) The v ecto r  fie ld  case  with new zero  m ass and no gauge condition.

5. COMPARISON OF THE QUANTUM ELECTRODYNAMIC CASE AND THE 
VECTOR FIELD CASE

It has been shown that one m ay, under suitable physical conditions, have 
a gauge invariant theory , exact conservation  law s and yet no z e ro  m ass v e c ­
tor  p a rtic le .

In the two sim ple th eories  which have been con sidered  (pure e le c tro ­
dynam ics which is  gauge invariant sind a v ecto r  fie ld  which already has a 
m ass constant and th ere fore  is  not gauge invariant) a distinct d ifference 
in the nature o f the sp ectra  has been found. In the gauge invariant case  one 
has a p article  with a n on -zero  m ass, which depends on the coupling con ­
stant, w hereas in the non-gauge invariant ca se  one has both a vector  p a r­
t ic le  with n on -zero  m a ss  and a s ca la r  p a rtic le  with m ass z e ro .

The com plete  set o f G reen ’ s functions, which in princip le  contain the 
answ ers to a ll p oss ib le  ph ysica l questions, are  finite in the electrodynam ic 
ca se  and m eet a ll gen era l requ irem ents in a perfectly  reasonable way.W ith 
these G reen ’ s functions one can go on to d iscu ss  scattering and radiation 
prop erties  o f the F erm i p a rtic les  in interaction  with the B ose fie ld .

In the non-gauge invariant ca se  one m eets "d iv e rg e n ce s " , which does 
not mean that anything is  infinite, but rather that alm ost everything is  ze ro . 
The system  does not respond to F erm i excitations in a way that is  form ally  
ch aracterized  by the vanishing o f the F erm i fie ld  renorm alization  constant.

This does not m ean that we have just two different th eories . We have 
the ch o ice  between one fie ld  theory , w here everything is  finite and reason ­
able, and another fie ld  theory which is  unphysical, even though it is  " r e -  
n orm a liza b le ".

The m ere  poss ib ility  o f ren orm alizab ility  is  not sufficient fo r  physical 
acceptability  if the ren orm alization  constants are z e r o . Renorm alization 
is  part o f the p ro ce ss  o f physica l interpretation, not a m athem atical means 
o f suppressing d iv erg en cies .

The general technique in the investigation o f the sim le  m odel has been 
the use o f the G reen ’ s functional G[rj, J ] which is  the response of the s y s ­
tem  to elem entary d isturbances.

The dependence of the G reen ’ s functional on the F erm i sou rces is  given
by:
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G[r), J] = G [J) e x p - { j n ( x ) G( x ,  x,  ^  f j )  n ( X<)K

This form ula  is  com pletely  general. In the sim ple m odel G [J] is  given by:

G [J] = e x p j - Y /  JM (x) Gm1/ (x , x /) Jv (x')k (5.2)

It is  p oss ib le  to evaluate a ll the F erm i G reen ’ s functions. In the e le c tro ­
dynam ic ca se  they w ill be fin ite, w hereas in the non-gauge invariant case  
they a ll vanish.

The G reen ’ s function in the presen ce  of an external e lectro-m agn etic  
fie ld  A)j (x) is :

G ( x ,x ' ;A )  = G° (x, x') e x p jiq [ ($  (x) -<j> (x')]|i (5.3)

where

exp [ip< / (xM - Xp')] , fo r  x° > x'o

G °(x , x ' H  J°o (5-4)
-|E  exp [ ip a " (x M -x ; ) ]  , fo r  x° < x'„ •

is  the G reen ’ s function fo r  the non-in teracting ca se . This G reen ’ s function 
corresp on d s to a F erm i particle  with z e ro  m ass m oving in one dim ension. 
T here is  an invariant d istinction  between a p a rtic le  m oving to the right or 
to the left.'

The function <£ (x) sa tis fies  the differentia l equation

a 11 dp 0 (x) = o M A p (x) (5.5)

fro m  which we can construct 0 (x) as a lin ear functional of A M (x). M ulti­
plying Eq. (5. 5) from  the left with the op era tor ( do - a ^ i ) one obtains the 
second  o rd er  d ifferen tia l equation:

-d 2<l> = O o -a ^ iJ a t 'A ,, (5.6)

This equation has the solution:

® (x )=  j r ( d f ) D ( x - C ) ( J ö - a 1- | j ) ^ A M( i ) .  (5.7)

The exponential in Equ. (3. 3) may now be written:

exp iq [$ (x ) -<fi (x')] = exp i f( d f)A M (f)  JM (£ ; x, x ')  (5.8)
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w here x, x') is  a definite n um erica l function, which acts as a current 
in connection  with the v ecto r  fie ld . The fo llow ing explicit expression  fo r  
the current is  obtained from  E q s /5 . 7) and (5 .8 ):

The current is  seen  to have two sou rces  with opposite signs at x and x ' r e s ­
p ective ly , correspon d in g  to the effect o f the F erm i fie ld  at these points.

The different G reen ’ s functions may be constructed  by expanding the 
G reen ’ s functional G [n , J] in p ow ers  o f the sou rces  n and J. Expanding the 
G reen ’ s functional in pow ers of the F e rm i sou rces  17 one obtains:

The integrands contain, apart from  the F erm i sou rces , products of the 
G reen ’ s functions. The product in the third term , fo r  exam ple, may be w rit­
ten:

dependence on the external potential is  contained in the exponential, which 
is  o f the form

j ) [ D ( x - f ) - D ( x '- 5 ) ]  . (5.9)

The d ivergence of the current is :

f  ( i ;x ,  x ')  = q [6 (x -S ) - 6 (x ' - £)] . (5.10)

I' f

G (x j , Xj'JG (x2 , x 2')  = G °(x1, x / )  GD(x2, x 2 ')

• e x p l  J ( d  %)[}(% ; x l t x { ) + j ( f ; x 2 , x 2 )]{/< I (5.12)

w here G° (x 1 , x / )  and G° (x 2, x 2')  are the fr e e  fie ld  G reen ’ s functions. The

(5.13)

so that the exponentials act as sim ple displacem ent operators . 
The fir s t  purely ferm ion  G reen ’ s function is

G (x, x') = G°(x, x )
J J = 0

P erform in g  the variational differentiation, one obtains in the lim it 
J-» 0:
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This expression  is  still purely fo rm a l. The question o f existence depends 
on the sp ec ific  fo rm  of which has a ten sor structure and may thus be 
written:

= gM,G 1( f , r ) +  a p ^ G a ß .r ) (5.16)

w here gMy is  the m etric  ten sor and Gj and G2 are sca la r  functions. Sub­
stituting E q .(5 .1 6 ) in E q. (5.15) one obtains

G (x, x') = G°(x, x') exp -yHy jM (?,- x, x')a(Ja;G2(?, r )  n r ;  x, xo :5.16a)

w here use has been m ade of

f j p  = = 0

A fter perform in g  partia l integrations Eq. (5.16a) becom es

(5.17)

G (x, xO = G (x, x1) exp - y -  J x, x') G2fe, §0 du j ü(?; x, x') (5.17a)

w here the d ivergen ce  o f the current is  given by E q. (5.10). What is  really  
involved in the ca lcu lation  o f the G reen ’ s function G (x, x7) is  thus the stru c­
ture of the sca la r  function G2( f , f ' ) *

In the electrodynam ic ca se  the function G ^  in the Lorentz gauge is  
given by

GM„ = ( l  + a D a J ^ - G (5.18)

w here (1 + 3 0  3 )^  is  a p ro jection  op era tor and G is  a sca la r  function c o r r e ­
sponding to the m ass /u = e/JF . In the non-electrodyn am ic situation the 
function G^v is :

G jjj, = ( i  + aD a)uu - G - d / ^ j s ^ D>liV (5.19)

w here the sca la r  function G corresp on d s to the m ass s/p20+ (e2/jr) while the 
D function is  a ssocia ted  with m a ss  z e r o . In the e lectrom agnetic case  the 
exponential in E q. (5.15) may be written:

exp ^ - i e ^ J - ^ l - e x p  ip (x -x ') ]  (p2-i<0 (p2 + nJ- i o j \  (5. 20)

The in tegral in the exponent is  convergent, i . e. neither ultraviolet nor in fra ­
red  d ivergen ces o ccu r . The s im plest G reen ’ s function has now been con ­
structed . It is  entirely  fin ite and one would now ask fo r  its physical in ter­
pretation.
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The G reen ’ s function G° has a pole  at m ass z e r o . The exponential fa c ­
to r  changes th is pole  into a singular branch point. This corresp on d s to the 
fact that we are  dealing with p a rtic les  o f m ass z e r o . When the sou rce  o p e r ­
ates, it m ay produce one p a rtic le  with m ass ze ro , but in addition it may 
produce any num ber o f pa irs  o f p a rtic le s , i .e .t h e r e  is  a continuous sp ec­
trum .

The physica l p a rtic le  with m ass z e ro  can be identified only to the ex ­
tent that one can e ffective ly  iso la te  the in itial point from  the continuous spec 
trum . Thus, in ord inary  quantum electrodynam ics the e lectron  can, strictly  
speaking, not be uniquely identified . If a charge is  created , any number 
o f photons o f a rb itrary  sm all frequ en cies  may a lso  be created . The identi­
fica tion  of the e lectron  is  actually the identification  o f a lo ca lized  excita ­
tion  ca rry in g  a unit ch arge and with a certa in  lattitude in the m ass set by 
the experim ental c ircu m sta n ces .

In the on e-d im ensiona l situation there is  a z e r o -m a s s  particle  super­
im posed  on a continuous background of p a irs . T h is is  the approxim ate phy­
s ica l tran scrip tion  o f the structure o f the G reen ’ s function in which there 
appears, not a p ole  at z e r o  m ass, but a singular branch point. The physical 
interpretation  is  thus com plicated  by this quite irrelevant question, as far 
as the genera l p icture  is  con cern ed , o f the "in frared  p rob lem " which in ­
vo lves  the identification  o f z e r o -m a s s  p a rtic le  states, despite the fact that 
m a ss  z e r o  is  not separated by any fin ite gap from  the other m a sses .

One can now go on to com pute a ll the other G reen ’ s functions and to 
calcu late how p a rtic les  m oving along on a line interact with each other and 
with v ecto r  p a rtic le s  of m ass ß .

F o r  the n on -e lectrom agn etic  vecto r  fie ld , w here a "b a re "  m ass has 
been inserted , the exponential in Eq.(5.15)may be written:

exp-< -ie
l

-2r  dp
(2ir? 1 -exp  ^ip (x -x ') pZ" 1£ Mo (5.21)

T his integral is  convergent fo r  -p2-» 0, but logarithm ica lly  divergent for  
-p?->oo. F rom  E q.(515)it then fo llow s that the G reen ’ s function G (x ,x ') v a ­
n ish es. This is  a lso  true fo r  every  F erm i G reen ’ s function, i . e .  the s y s ­
tem  cannot be excited  as fa r  as F erm i resp on ses are concerned. This con ­
trad icts  the form a l p rop erties  o f the G reen ’ s functions as vacuum expec­
tation values of fie ld  products, so that th is theory must be re jected  d e s ­
pite the fact that the theory  would be con sid ered  renorm alizable .

A fter th is d iscu ssion  o f a sim ple m odel we shall turn to som e general 
con siderations o f which the m odel can be taken as an exam ple. The one­
dim ensional m odel is  o v e r -s im p lifie d  in one essentia l resp ect, since it con ­
tains no c r it ica l dependence on the coupling constant. We have two different 
situations. One is  e lectrodynam ic, i . e .  a vecto r  fie ld  coupled by a gauge 
invariant m echanism  to a ch arge . In this ca se  there is  a zero -m a ss  particle . 
The other is  a hypothetical v e c to r  fie ld  coupled to a nucleonic charge also 
by a gauge invariant m echan ism . In this ca se  there is  no z e ro -m a ss  particle  
In other w ords, there must be a c r it ica l coupling strength such that below 
this the z e r o -m a s s  p a rtic le  rem ains and above this the z e ro -m a s s  particle 
d isappears.
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Now I w ill g ive a genera l d iscu ssion  o f the sim plest G reen ’ s function, 
which gives an account of the v ecto r  particle  spectra . If one has a weak 
external current , the expectation value o f A*1 (x) m ay be written as

w here non-linear term s have been om itted since the external current is 
assum ed to be weak.

The G reen ’ s function G ^ fx -x ')  d e scr ib e s  fr e e  p a rtic le s . The F ourier 
tran form  o f C^v m ay be written:

w here (p) is  a p ro jection  operator, which is  determ ined by the choice 
of gauge. The sca la r  function G (p) contains the sp ec ific  propagation prop ­
e rties  of the system . We a re  studying h ere the response of the system  to 
excitation by an external cu rren t. The excitation  w ill in general produce 
a spectrum  o f p oss ib le  states. T his spectrum  w ill be represented by the 
spectra l structure of the G reen ’ s function. The sca la r  function in E q.(5 .23) 
may be represen ted  by

w here B (m2) dm2 is  the probability  that the excitation produces a transfer 
of energy and m om entum  which is  ch aracterized  by the m ass m . S inceB (m 2) 
is  a probability  density it must be non-negative

w here J is  the external current and j the other physica l cu rren ts . These 
currents would o f cou rse  in turn be determ ined by suitable fie ld s . I want 
to insist that the fundamental ve cto r  fie ld s  shall be observab le  fo r  very  
short tim es (or very  high freq u en cies). The tim e intervals must be so short, 
that the in teraction  e ffe cts  do not Jiave tim e to obscu r the underlying fie ld .

(5.22)

g v̂ (p) = (p) g  (p) (5.23)

(5.24)

(5.25)

The probability  density B (m 2) is  assum ed to satisfy the sum rule

(5.26)

T his assum ption may be justified  in the fo llow ing  way. 
In the L orentz gauge

(5.27)

and the propagation equation is

-a 2A = j + j (5.28)
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The respon se  of the system  to the current of the G reen ’ s function must then 
have the follow ing asym ptotic behaviour:

G ~ l / p 2(l + . . . )  fo r  -p2->oo (5.29)

w here the om itted te rm s vanish fo r  -p  -» oo. The rate at which these term s
vanish depends on the dynam ics o f the system  and cannot be asserted  in
advance. It now fo llow s from  Eq. (5.24) that th is asym ptotic behaviour is 
only p oss ib le  if Eq. (5.26) holds. No other sum rule can be stated in general, 
because that depends on an assum ption o f how the current behaves, i . e .  
o f the dynam ics.

It is  o f in terest to find a representation  o f G (p) which incorporates the 
requ ired  asym ptotic behaviour. Introducing the com plex  variable z , Eq.
(5.24) may be w ritten

G (z) = r B ^ 2 ).dlP-  . (5.30)

This function is  regu lar everyw here except on the positive rea l axis. The 
singu larities corresp on d  to the physica l values o f m . The boundary value 
o f the function G (z) is  G (p) fo r  z2-> -p 2+ ie . If z tends to infinity, except 
along the rea l ax is, one has:

G (z) ~  - l / z  . * (5.31)

F o r  the in verse  function we have:

G_1( z ) ~ - z .  (5.32)

Since G (z) has no com plex  z e r o s , G (z ) '1w ill have no com plex  poles o r  com ­
plex  s in gu larities . In addition

(1 /zH G '1 + z) -* 0 (5.33)

fo r  z tending to infinity.
The function ( l / z ) ( G '1+ z) has only singu larities along the positive real 

ax is, which includes a pole  at z = 0. Hence

( l / z ) ( G _1 + z ) = X2 / z  - J'drc?s(m f/(n?  -z ) ’ 1 (5.34)

from  which we obtain the fo llow ing  representation , on placing z =-p?+ ie;

G (p) p2 - ie + X2 + (p2 - i e )J -
2 , 2 vdm s(m  

p 2 + m2 - ie (5.35)

This representation  o f G (p) has the co r r e c t  asym ptotic behaviour. C om -
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paring Eq. (5.24) and Eq. (5.35) one sees that s(m 2) must be non-negative 
sin ce  B (m 2) is  non-negative:

(5.36)

F rom  Eq. (5.24) one obtains

G (0 ) =/
d ^ B (m lL >  Q

m  * (5.37)

w hereas fr o m  E q. (5.35) it foH ow s that

G(0) = 1 /X2 (5.38)

so that A.2 > 0. '
A s fa r  as the ph ysica l p rop erties  we have inserted  are concerned, any 

non-negative X2 and any non-negative s (m 2) fo r  which the integral in Eq^5.34) 
ex ists , w ill g ive  a p oss ib le  G reen ’ s function . If one req u ires  z e ro  m ass to 
be part o f the ph ysica l spectrum  the param eters X2 and s(m2 ) can no longer 
be chosen  a rb itra r ily . If z e r o  m ass is  in the spectrum  it fo llow s from  Eq.
(5.37) that G(0) is  infin ite. C om paring with Eq. (5.38) one then obtains A=0 
as a n ecessa ry  condition . F o r  X= 0 Eq. (5.35) m ay be written:

F o r  m ass z e ro  to be present in the physica l spectrum  as an isolated sin ­
gularity, the residue o f the pole in E q .(40 ) must not vanish, i . e .

I now want to exam ine what dynam ical changes are n ecessary  in ord er  to 
go from  a situation w here these conditions a re  satisfied  to a situation where 
they cea se  to be va lid . That would be the continuous change from  e le c tro ­
dynam ics w here there is  z e r o -m a s s  p a rtic le  to a theory where this particle  
ce a se s  to ex ist.

W e have found the fo rm  (see  5. 35):

(5.39)

F or  p 2 ~  0 th is equation leads to:

(5.40)

(5.41)

T o  x 2 , / 2 • » ['“ dm2 s(m 2 ) "I G(p) = 1 / p2- ie + X  + (p ? -ie )J o (5 .4 2 )
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fo r  the gauge independent part o f the "photon G reen ’s function", where A.2
and s(m 2 ) a re  non-negative quantities. The (-it ) r e fe rs  to the boundary con ­
dition of outgoing w aves in tim e. The sum rule /(“ dm2 B(m2 ) = 1 requ ires that 
/,*dm 2 s(m 2 )<  oo. If we put p2 = 0, we obtain 0 < l /X 2 = /,"[B (m 2 )/m 2 ] dm2 ,

sary conditions fo r  the existence of a physica l p article  with z e ro  m ass, so 
that we can  im agine conditions under which such a particle  would cease to 
ex ist. Then, we cou ld  suppose a continuous variation  as we go from  the 
electrom agn etic fie ld  with its physica l photon to  the hypothetic vector  fie ld  
associa ted  with nuclear charge which does not p o sse ss  a z e ro -m a ss  particle, 
and investigate how the photon ce a se s  to ex ist.

If we have a photon, then it is  n ecessa ry  that X2 = 0. The resultant G reen ’ s 
function is  then

is  the second  n ecessa ry  condition  fo r  a physica l particle  o f ze ro  m ass. The 
in tegral up to infinity certa in ly  ex ists , s in ce  the representation itse lf was

physica l situation to another is  the integration  down to z e r o . Then we must 
have

assum ing the ex istence  of / ”  [s (m 2 ) /m 2 ] dm2 . Now we want to find the n eces -

(5.43)

and, in the neighbourhood o f p2= 0 ,

(5 .44)

Then, the residu e of the pole , Bp, is

(5.45)

which must be g rea ter  than z e ro  fo r  the existence  of a pole, i. e.

based  on the existence  of the in tegral Jo”  dm2 s(m 2 ). What can vary from  one

(5.46)

The structure o f B(m2 ) when a photon exists is  

B(m2 ) = B0 6 (m2 ) + Bj (m2 ) 

w here (m2 ) is  continuous and

(5 .4 7 )
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1  = Bq +J dm2 Bj (m2 ). (5 .48)

The photon exists only if 0 < Bq . (In the usual language, Bo=z3). If we 
ca lcu late  the lon g -ran ge  C oulom b interaction , we find that the effective 
ch arge  is  given by

e2 = B 0 e02 (5 .49)

A z e ro  ren orm alization  constant is  not to be interpreted as a m athem atical 
p rob lem  but as a ph ysica l statement o f the absence of a p article .

The function B(m2 ) can be interpreted as the probability  that a source 
w ill produce excitations in the vacuum  of m ass m2 . Now, we want to find 
a physica l interpretation  fo r  s(m 2 ). s(m 2 ) is  the m easure o f excitations by 
an established fie ld . C onsider the vacuum state with an external current. 
Now, we ask fo r  the probability  that the vacuum  is maintained, then the 
relevant quantities

<|;> «  exp [ ( i / 2 ) J V

w here we have taken J to be w eak,ignoring m ore  com plicated  p ro ce sse s .
W e use the exponential to take into account the possib ility  that many weak 
p ro ce s s e s  are  occu rr in g  a ll o v e r  space . If we use a conserved  current, 
dß Jß = 0, then the 7ryU m ultiplying the sca lar  G reen ’ s function becom es 
e ffective ly  gllV and

< | ^ «  e x p [ ( l /2 )  J**1 (p) G (p) Ju (p )dp ]f (5.50)

w riting the in tegrals in m om entum  space . Now, we introduce the vector 
potential

A" (p) = G(p)J<' (p). '  (5 .51)

thus:

< | e x p [ ( l / 2 ) j A * * 1 (p )G '1*(p)Au (p) dp], (5 .52)

the probability  o f the vacuum ’ s rem aining unexcited is :

|<| >|2=; ex p l-J ^ d p lA " (p)|2 Im G*1 (p)], (5 .53)

Im G 'B (p) = - 7rp2 f  dm2 s(m 2 ) 6(m2 +p2 ). (5 .54)
Jo

We have tra n sferred  our attention from  the current, which may lie  fa r  out-
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side the reg iop  o f in terest to the fie ld  which lie s  in the region . In doing so, 
we find that the in verse  G reen ’ s function becom es the important quantity 
and s(m 2 ) m easu res the excitations o f the vacuum . The resultant expression  
is

l<| ]> l2^ exp [ - f f  J  dp dm2 6 (p? + m 2) s(m 2) ( - 1 / 2 )| F ^ p )  f ] . (5 .55)

t
The exp ress ion  in the exponential g ives a m easure of the probability o f e x c i­
tation o f m ass m by an external fie ld  F(il' .

The condition  s(0) = 0 is  ch a ra cteristic  o f a norm al threshold, i. e. (at 
the beginning o f the excitation  spectrum ) there is  a ze ro  probability o f ex c it­
ing the vacuum  by an external fie ld . T o put it another way, the condition 
fo r  the existence  o f a photon is  that nothing unusual happens at the z e r o -  
m ass threshold . On the otherhand, if the photon is  not to .ex ist, then som e­
thing must happen at z e ro  m ass.

If we have abnorm al behaviour, we have two p oss ib ilities :
( 1 ) s (0 ) is  fin ite o r  singular such that g /  dm2 s(m 2) / (m 2 -g)z~ff

Then, we have no pole  at p2 = 0, but m = 0 is  still in the spectrum , i .  e. we 
have a branch point at p2 = 0, no pole and B(0) has a non-vanishing weight. 
Then, there is  no recogn izab le  partic le  of m ass ze ro .

(2) The second  p ossib ility  is  that s(m 2) p o sse sse s  a delta function singu­
la rity  at m2 = 0 :

s(m 2 ) = X2 6 (m2 ) + Sx (m2). (5.56)

Then m2 = 0 is  not in the spectrum  at a ll. The in verse  G reen ’ s function is 
then

G’ ^ p ) = p2 - i e + X 2 + ( p ? - i € )£  p L J h A E p - , (5>57)

our orig ina l fo rm . Now, B(0) = 0.
T o see th is, we w rite:

B(m2 ) = ( l / f f )  Im G(p) = (1/tt) Im G1* (p)/  | G(p) |2

= m 2s i (m 2 ) /R (m 2) + [jrm 2si (m2) ] 2, (5. 58)

w here

then:

m2- A2 + m2 P  p dJ^  J L( f 2 ) ,R(m
J 2

B(0) = lim  m si (m )/X 4 = 0. 
m2->o

Now, con sid er  the ca se  w here st (m2 ) is  z e ro  fo r  m2< m j .  In the real 
w orld , we might expect that this is  never true, but it could  be true as an 
approxim ation fo r  strong in teractions. If R(m2 ) = 0, we w ill have a stable 
p a rtic le  fo r  m  < mo . At -oo, R(m2 ) = - a>. Then, if  R (m j))>0 , we have a
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stable p article , sin ce R must pass through z e r o . On the other hand, if 
R(m$) < 0, th ere  cannot be a stable p article , sin ce R is  a m onotonic function 
fo r  m < mo . If there is  no stable p article , there must be an unstable parti­
cle , s in ce  R must pass through z e ro  in the continuum. W e would only be 
able to recogn ize  it as such if  the width is  su fficiently sm all. The width is  
given by

7  = 7rmz Si (m2 ) /(d R /d m 2 ). (5 .60)

It is  p oss ib le  that R m ay c r o s s  through ze ro  sev era l tim es, giving m ore 
than one reson an ce . T hese would em erge from  the sam e G reen ’ s function, 
re flectin g  the long dynam ic chain from  the com plicated  spectrum  o f the ob ­
served  p a rtic le  to the s im p ler  underlying fie ld s .

In the on e-d im ensiona l m odel, we had s(m 2 ) = (e2/ 7r) 6 (m2 ). This re flects  
the poss ib ility  o f creating  p a irs  o f ferm ion s travelling  along a line. The 
function s(m 2 ) is  .an exam ple o f the second ca se , and we find a single stable 
p artic le  of m a ss  e2/ir. This s im plicity  depends on two things: the geom etry 
o f one dim ension and the fact that we only con sidered  z e ro -m a s s  ferm ion s. 
The dynam ics are not so sim ple, it is  m ere ly  the elem entary kinem atics 
which allow ed us to find solutions which fit the general dynam ic fram ew ork. 
The delta function o f s(m 2 ) at m2=0 is  so because a ferm ion  pair is. still 
a partic le  o f z e ro  m ass as opposed to the case  in three dim ensions, where 
the pa ir has a m ass spectrum . In three dim ensions, the probability o f a 
photon going into three photons goes as som ething like the eighth power o f . 
the available energy assuring us that s(0) = 0 We would expect the photon 
to disappear as the s (0 ) becom es an abnorm al threshold , i . e .  som e threshold 
m oves down to z e ro  m ass as the strength of the interaction builds up.

A crude m athem atical m od el might be given by a ch a ra cteristic  resonance 
function

s0 (m2 ) = (X2 / 7t2 ) m r /[ (m 2 -mjj K )2 + m2 T 2 ] (5 .61)

w here
mo= 2me ,K =  1 -a 2 /2, T ~  a 5 . (5 .62)

In e lectrodynam ics , So certa in ly  con sists  o f such contributions. This could 
be the positronium  contribution, which fo r  m2 < m<j K, would be the three 
photon contribution (or v irtual positronium ). As the coupling in crea ses , K 
must d ecrea se  since the binding energy o f positronium  in crea ses . At som e 
c r it ic a l strength, K would becom e zero and p would a lso  be zero since there 
is  nothing into which the positronium  can decay. By then the language is  
appropriate, sin ce  the m ultiple photon contribution would not be distinguish­
able from  the "positronium "', but we shall continue our term inology ana­
ly tica lly .

Since the binding en erg ies  are so large, we would a lso  expect to find 
other bound states correspon d in g  to pa rtic les  o r  resonances. Such particles 
as the sp in -ze ro  m esons would then appear as a result of the com plete 
strongly  in teracting  set o f fie ld s  and there would be no need fo r  a separate 
fie ld .
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We have not d iscu ssed  the com plete  set o f p articles  - there is  m ore 
than one type o f baryon and the list o f conservation  laws includes such quanti­
ties  as isotop ic  spin. This is  not an absolute conservation  law, however, 
so we would not in sist strongly on a dynamic explanation. But we can ask 
if  a theory  with a non-A belian  invariance group can be given a dynamic expla. 
nation in term s o f what we might ca ll a non-A belian  gauge fie ld . In ord er 
to investigate such a theory, we m ust investigate the m athem atical-physical 
prob lem  o f the form ulation  and quantization o f such a theory.

In the case  o f e lectrod yn am ics the fie ld  is  the dynamic means o f m ani­
festing  an e le c t r ica l charge. But the c .m .  fie ld  itse lf does not ca rry  a charge. 
On the other hand, the gravitational fie ld  in teracts with a ll energy and m o­
mentum, including that which it c a r r ie s  itse lf. The non-A belian  gauge fields 
are interm ediate in that they ca r ry  the quantity o f which they are the dynamic 
m anifestations, but this quantity is  not a sp a ce -tim e  property . B efore we 
can ask ph ysica l questions about the theory, we must v er ify  that it fits within 
the fram ew ork  o f p oss ib le  quantum m echanical fie lds . In a theory in which 
the question o f com m utation  rela tion s is  not faced, there is  no difficulty in 
writing down a theory . S im ilarly, there is  no d ifficu lty  in assuring appropri­
ate three d im ensional invariance p rop erties . The difficu lty a r ises  in assuring 
the con sistency  o f the com m ptation relations and the Lorentz invariance of 
the theory. T here is  a cr ite r ion  which states in one line a sufficient and, fo r  
a certa in  c la ss  of th eories , n ecessa ry  condition  fo r  re la tiv istic  invariance.

The statement o f  re la tiv istic  invariance m eans that there exist operators, 
constructed  from  the fundamental variab les  o f the theory, whose com m utators 
obey  the structure relations in the inhom ogeneous Lorentz grou p s. The entire 
structure o f the theory  w ill then rem ain invariant under the unitary trans­
form ations generated by the op era tors . What is  specia l about field  theories 
is  that these gen erators  are constructed  additively from  contributions by 
sm all reg ions o f space. That is :

P M = J d 3x T ^  (x), (5.63)

JMV = J d 3x { ^  T 0" - x v T 0IJ ). ' (5.64)

The requ irem ent that P *1 and Jt“J obey the structure relations o f the 
L oren tz-grou p  im p oses  re s tr ic tion s  on the com m utation relations o f the 
den sities . Since the th ree -d im en sion a l ca se  presents no problem s, we a s ­
sume that we know T ok and that it  g ives Jw and P k which generate the in ­
hom ogeneous rotation  group in the c o r r e c t  way.

[Pk, pi] = o, (5.65)

fP k j° i]= iP 06M (5.66)

a re  a ssu red  by the th ree -d im en sion a l invariance. In ord er to assure such 
rela tion s a s .

[P°, J ok] = iP “, (5.67)
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[Jok, J0{] = i j k {, (5 .68 )

the equal-tim e energy density  com m utator m ust have the follow ing form  fo r  
0_ ' 0 .

( - i l t T ^ lx J jT 00^ ' ) ]  = (T °k(x) + T ok(x ')3 k6 (x -x ') + ̂ (x ,x ')  (5.69)

w here
^(x, x ') = - 0 (x,' X .)

J ' d3 x i//(x, x  ) = 0 .= J ' d3 x x k 0 (x, x7) . (5.70)

T here i s  a c la ss  o f th eories  fo r  which t  vanishes identically, which 
includes spin 1 /2  and spin 1 fie ld s . Within this c la ss  then, the relation

is  a n e ce ssa ry  and su fficient condition  fo r  Lorentz invariance.

6 . FUNDAMENTAL COMMUTATION RELATIONS

W e are now going to give a general derivation  o f the fundamental com ­
mutation re la tion  which re la tes  the energy densities o f a re la tiv istic  field 
theory  at variou s points o f space  and the sam e tim e. We want to see in a 
general way that there ex ists  a c la ss  o f ph ysica l system s, for which a sim ple 
com m utation relation  relating  the energy and mom entum densities o f a physi­
ca l system  is both n ecessa ry  and sufficient fo r  re la tiv istic  invariance. Much 
o f what we shall be doing w ill be entirely  by analogy to and in para llel with 
s im ila r  con siderations re fe rr in g  to the e le c tr ic  current vector .

Let us start with som e rem arks on the analogy between the e lectr ic  
current vecto r  on the one hand and the ten sor o f energy and momentum on 
the other, with regard  to the question o f equal-tim e com m utation relations. 
Com m utation relations are , o f  cou rse , interpreted in quantum m echanics 
as statem ents o f m easurability . M easurability is  fundamentally a dynamical 
p ro ce ss  and th ere fore  the underlying general dynam ic properties that charac­
te r ize  these two sets o f op era tors  should be pointed out. We are not talking 
about any vecto r  o r  any sym m etrica l ten sor, but about these very  special 
quantities with their dynam ical s ign ifican ce . F irs t o f all, the vector  and 
the sym m etrica l ten sor Tf1" are lo ca lly  con served  quantities:

Secondly, these v ecto rs  are not just m athem atically conserved  quantities, 
but they are a lso  o f im m ediate physica l s ign ifican ce , because we understand 
the e le c tr ic  current v e cto r , fo r  exam ple, to have a dynam ical meaning as 
the sou rce  o f  the e lectrom agn etic  fie ld . The Operators j  ̂ and T M" have thus 
in com m on the fact that they are the sou rces  o f im portant fie lds; ĵ  is the 
sou rce  o f the electrom agn etic fie ld  and T*“ * the sou rce  o f the gravitational

x°= x /0 ( . i ) [ T 00(x ) ,T 00(x^] = - (T oh(x')) 9k fi(x -x ')

(0 . 1)
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fie ld . That is  their essentia l unique dynam ical sign ificance and it is  upon these 
facts that we want to base the theory  o f their com m utation relations. We 
shall understand what can be ca lled  the kinem atics o f specia l relativity  -  
the equal-tim e com m utation relations - in term s o f the dynam ics o f som e­
what m ore  general system s.

Now, the fact that these physica l op era tors  (or sets o f operators) are 
re sp ective ly  sou rces  o f the two fie lds  ,x e lectrom agnetic and gravitational 
a lso  g ives us the general basis for understanding why they satisfy  conserva­
tion law s. T hese are not arb itrary  re s tr ic t io n s , they flow  from  the structure 
o f the fie ld  equations, from  the requirem ent o f what we shall ca ll generally 
"gauge" invariance, although this w ill o f cou rse  take different fo rm s. It 
is  ch a ra cteristic  o f both o f these fie lds that they make use o f m ore field  
com ponents than are n ecessa ry  to d escr ib e  the physical inform ation and 
there are correspon d in g  freedom s o f "gauge" transform ations. This c o r r e ­
sponds in the electrom agn etic ca se  to the usual gauge invariance, while 
for the gravitational ca se  it is sp ec ifica lly  the freedom  o f coordinate trans­
form ations. Under these general "gauge" transform ations it follow s that 
the operators which are the sou rces  o f the fie ld s  must obey certain  identities; 
these are the law s o f conservation  o f e le c tr ica l charge and energy-m om entum  
in ord inary flat space , resp ectiv e ly . We now want to exploit, not just the 
fact that these op era tors  are the sou rces  o f the fie lds , but the re c ip roca l 
aspect, that these op era tors  are a lso  m easures o f the response o f a given 
p hysica l system  to external fie lds .

Imagine a given physica l system  in an external e lectrom agnetic field 
or an external gravitational fie ld . How do these two basic properties  enter? 
T o  answer this question, one m ay think o f the action operator *

Let the external v ecto r  potential be A j  and G(ji/ be the external gravitational 
potential. Infinitesim al variations o f these external potentials produce c o r ­
responding variations in the action operator

w here, as usual, g = det gMU . This is  a way o f defining the operators j  ̂ and 
TßV . H ere we are studying the resp on ses o f the system  to external potentials, 
which must o f cou rse  be such that they are consistent with the requirem ent 
o f general gauge invariance. A gauge transform ation  is not a physical trans­
form ation; i f  the change o f a ve cto r  potential is

(6 .2 )

(6.3)

(6.4)

*  All these ideas, of couise, are characteristic of the local theory of fields.
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öAp = dß ö X

then the action  in tegra l w ill not change, with appropriate boundary con ­
ditions, which im p lies  the con servation  law

8 j"  = 0 . (6.5)

S im ilarly , an in fin itesim al co -ord in a te  transform ation

t  = x M - (6 .6)

induces an in fin itesim al change in the sym m etrica l tensor gliV:

6gßv = 6 5 \ g , , „  + 9 M6CXgM!/ + B v6SKgv„ .  (6.7)

and the action  integral is  invariant under this transform ation . Then, upon
inserting E q. (6.7) into E q. (6.4) and integrating by parts with appropriate
boundary conditions, we get:

W R g t o l 1" ' )  = d / 2 ) 9 x g (J„ T MW. (6 .8)

If we now sp ec ia lize  to the ord inary  space tim e, the left-hand side vanishes 
and we com e back to the conservation  law:

a (1T '“ ',=  0 . (6.9)

This ex p resses  the fact that in an external e lectrom agnetic field , charge 
conservation  still has its usual form , w hereas Eq. (6.9) takes a slightly 
different form  given by Eq. (6 .8 ) owing to the fact that the gravitational field 
itse lf  ca r r ie s  energy and mom entum . H ere we see how the response o f the 
system  to an external fie ld  is  the orig in  o f these conservation  laws.

Now we com e back to the connection  with com m utation relations; we 
want to base the theory o f com m utation relations for equal tim e on these 
conservation  law s (E qs. (6.5) and (6 .8 )). Both o f them are equations of m o­
tion o f the form

30 A(x) = B (x ) (6.10)

which maintains its structure independently o f the values o f the external 
param eters (external potentials). The meaning o f A and B will, o f course, 
change.

I want to  show now that when we have such a situation, it im m ediately 
im plies an equ al-tim e com m utation re lation . This is  the connection be­
tween the dynam ics im plied  in the con servation  law s and the com m u­
tation rela tion s . T o  do this we shall firs t  o f aH use the action princip le
in the follow ing way. C onsider the exp ression

90< t 1 |A(x)|t2 > = < t 1 |B(x)|t2 > (6 .11)
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where t i > t  > t 2 the m atrix  elem ent of Eq. (6.10) between the states at tim es
1 1 and 12. Let us now p er fo rm  an in fin itesim al param eter variation. The 
m atrix  elem ents would change for  two rea son s . F irst, A (x )  and B(x) may 
be explicit functions o f the param eters; we shall denote by 6 'A (x ), say, the 
corresponding  variation . Then, there would be a change associated  with 
the change in dynam ics o f the system  as a resu lt o f  this param eter varia ­
tion. The change in the transform ation  function w ill be given by

6< t i| t 2 >= i<  t j  | J  (dx)6 '£ | t 2 > . (6 . 1 2 )

T h ere fore  E q. (6.11) would change into:

30< t 1 |6,A (x )+  i J W )  (A (x)6t ( x ' ) )  + |t2 >

= < t 1 |6 'B (x ) + i J ( d x ' ) ( B (x)6£ ( x ' ) ) + |t2 > (6.13)

where we have dropped the "dash " on 6 because this is  the only change 
in the Lagrangian we con sid er . Now, from  E q. (6.10) and the definition of 
tim e ord ered  products we have

30 (A (x)6X(x>))+ = (B (x )6 1 (x '))+

+ 6 (x° - x0' ) [A (x), 6 £ (x ')]

and this gives us the equal-tim e com m utation relation , written in operator 
form  as

d3x ') [A (x ) , 6 ^ (x ' ) ] x0 = x0. = 30 6 *A -  6 ’ B. (6.14)

Here we have an instrum ent, whenever we have an equation o f motion 
involving som e param eters , to  find a com m utation relation  at equal time 
between the ob ject that obeys the equation o f m otion and the m easure of 
the resp on se  o f the system  to the variation  o f param eters.

An alternative derivation  (without using the action princip le) can also 
be given. We have:

a 0A = B

= ( l / i ) [ A ,  P°] + O 0A ) exp (6.15)

where the last term  re fe r s  to any exp licit tim e dependence.
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(6.16) 

(6.17)

and th ere fore : ,

j  [ A , ß < ? x ' ) ö X ( x ') ] x, = x0, = 3 06 ’ A - 6 «B,

as established above. As an illustration , let us con sider the electrom agnetic 
fie ld . We have

90 j°  = - 3 kj k , (6.18)

i . e .  A (x) = j° (x )  and B(x) = -3k j k (x). The external param eters are the con ­
tinuous set o f values o f the com ponents of the external v ector  potential.
T h ere fore , E q. (6.14) gives the equal-tim e com m utation relation

\ J { d x ') [ j ° ( x ) ,  jM (x ')äA  ( x ' ) ]

= 90 6 ' j ° ( x ) +  ^ 6 *jk (x ) . (6.19)

B efore  evaluating the right-hand side we use firs t  E qs. (6.12) and (6.3) to 
obtain

6 A < tl l t 2 > =  i < t .1l v/ i d * ) i (|«A '1 |t2 > .  (6.20)

A  second  variation  g ives:

6A < t i l t 2 > = - < t 1\ffttx)Wx')6A>i(x)6Av{x')

• (j|i(x)ji;(x'))+ - J|t2 >. (6.21)

Now, the in tegral on the right-hand side is  a quadratic form , sym m etric 
in x, ß  and x ',  v .  The fir s t  term  can also be taken as such. We thus obtain 
the r e c ip ro c ity  relation :

A change in the param eters w ill induce the change:

6 'B  = ( l / - i ) [ 6»A, P°] + (1 /i ) [A , 6 'P ° ] + 6 ’ (30 A )exp

but

6 ’ P ° = - /d 3x &t(x)

[ö'j^ (x)] / [6 A w(x')] = [6 (x1)] /[6 Au ( x )] (6.22)
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We shall con sid er  a sp ecia l c la ss  o f  physica l system s in which jM (x) is loca l 
in tim e in its exp licit dependence on the extrem e potential, i. e. in which 
the current does not depend exp licitly  upon the tim e derivative o f the ex­
ternal potential, d oA v (x). Under this assum ption it follow s from  Eq. (6.19) 
that the charge density j0 (x) does not depend exp licitly  on the potentials at 
all.

[S 'j0( x ) ] / [ 6A "(x ') ]  = 0 

and th ere fore , the re c ip ro c ity  relation  g ives:

[6 ’ j k (x1)] / [ 6A° (x)] = 0, (6.23)

i. e. the spatial current density is  not an exp licit function o f the sca lar po­
tential, A 0 . In what fo llow s we shall show that the spatial current must 
depend exp licitly  on the spatial part o f the v ector  potential. T herefore  6*jk(x) 
m ay be written as

5 'jk (x) = /(d 3 x ' ) [ 6 ' j k ( x ) ] / [ 63 A c (x')] 6Af (x ') (6.24)

where the sub-index 3 indicates a th ree-d im en sion a l variational derivative. 
Inserting this into Eq. (6.19), we find the equal-tim e com m utation relation

[ j° (x ) , j ° ( x ') ]  = 0 (6.25)

and

(«• * »

where the right-hand side has been rew ritten  using the re c ip roc ity  relation.
The com m utator o f E q. (6.26) cannot vanish, because i f  it w ere zero , 

it would v iolate  the ph ysica l requ irem ent that there should be a vacuum state. 
In ord er to p rove  th is, we take the three-d im en sion a l d ivergence o f Eq.
(6.26) and use Eq. (6.18) to  obtain:

[j° (x), - ia o j° (x ') ]  = ( x ' ) ] / [ 63 A 1 (x)] . (6.27)

Now, the com m utator o f an operator and its derivative is  in trinsica lly  p os i­
tive , as can be seen  in the follow ing way. If A (x °) is  a herm itian lo ca l opera­
to r , a spatial average o f j° (x) over an a rb itrary  test function, then

[i30 A , A] = [ [ A ,  P ° ] ,  A ].

Taking the vacuum  expectation  value o f this expression  and using the property 
o f the vacuum  state o f having zero  energy, we get.
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< [ i9 0 A , A ] >= 2 < A P °A >

and,as the operation  o f A on the vacuum produ ces higher excited states, the 
right-hand side is  in trin sica lly  p ositive . T h ere fo re , the com m utator of Eq.
(6.27) cannot vanish identica lly  and this im p lies  (Eg. (6.26))that the vector 
current is  an exp licit function o f the external potentials.

This resu lt apparently con trad icts what one knows about the D irac field , 
w here a v ecto r  current is  given by

j = ( 1 / 2 ) ipa qp = ^  7  <P
M M M

and does not depend exp licitly  on the external fie ld s . What in fact happens 
is  that this product is  not re a lly  defined, and can be given a meaning only 
by separating the points spatia lly  and defining a suitable lim iting procedure 
which m ust maintain gauge invariance as in paragraph 1. In this lim it the 
dependence on the external potentials w ill appear.

Let us now give a s im ila r  d iscu ssion  fo r  the case  o f an external gravita­
tional fie ld . The situation here is  som ewhat m ore  com plicated  because the 
correspon din g  con servation  law  (eq. (6 .8 )) contains exp licitly  the external 
potential.

Eq. (6 .8 ) can be rew ritten  as:

\ l e x y v ) = { i / 2 ) T J i V (h  g M„ - g x „ g a V « ß > -  ( 6 - 2 8 )

We now sp ecia lize  to a p articu lar gravitational fie ld  where

and g00 is  an arb itrary  function o f x . Eq. (6.28) then red u ces , fo r  X = 0, to

9 ( ( - g nn)T°° ) = -9 ( ( -g  )T ok ) + ( l / 2 )T ok 8 g (6.29)
00 k 00 k 00

w hile, fo r  X = k, Eq. (6 . 8 ) g ives

V " / r g ^ T°k ) = d / 2 )  ^ 7 T 00 9k g00 . (6.30)

We shall use these relations to derive  the com m utation relation . As 
in the electrom agn etic ca se  we shall con sid er a specia l c la ss : T15* may (in 
fact, it m ust ) be an explicit function o f goo at the sam e tim e, but it does 
not depend on goo at d ifferent tim es, i . e .  it does not depend explicitly  on 
the tim e derivatives (tim e loca lity ). F rom  this assum ption it follow s (Eqs. 
(6.29) and (6.30)) that the com binations (gQo ) T 00 and ■J-goo T ok are not ex­
p lic it  functions o f goo at all. P erform in g  the corresponding variation and 
using Eq. (6.14), we obtain, after setting g0Q = -1 :

( l / i ) [T ° °  (x ),T °° (x')] = - 9 k 63 ( x - x ' ) ( T ok (x ) + T ok(x '))-  (6.31)

This is the fundamental com m utation relation  which the energy density must 
obey fo r  the assum ed c la ss  o f physica l system s . It is a lso  a n ecessary  and
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sufficient condition  to guarantee the re la tiv istic  invariance for these system s. 
Upon integration, we obtain from  it the com m utation relation  fo r  the genera­
to rs  o f the L orentz group.

7. CONSTRUCTION OF A RELATIV ISTICA LLY INVARIANT, CONSISTENT 
THEORY OF NON-ABELIAN GAUGE FIELDS

We should m ention here a few  things about gauge invariance, because 
this w ill again be the m otivating consideration  in the construction  o f such 
a m ore  general th eory . F or  e lectrom agnetic gauge invariance, we have

A „(x ) -» A m(x ) + 0M X ( x ) ,

Fm (x) -> F v (x), (7.1)

^  X (x ) -> e iqX(x) X (x)

where X (x) is the fie ld  carry in g  an e le c tr ica l charge. This transform ation 
form s an Abelian group.

Let us im agine a situation in which we have severa l ch arge-lik e  p rop er­
tie s , fo r  instance the various com ponents o f isotop ic  spin, which are carried  
by som e fie ld  but which are also ca rr ie d  by the gauge fie ld  itse lf. Let Ta , 
a = 1 , .  . . .  ,n , be the charge like m atrices  associa ted  with the fie ld  Xand t 
the m atrices  associa ted  with the gauge field  and G ^ .  C onsider the 
the c la ss  o f in fin itesim al gauge transform ations

X -> [1  + i E T a6Xa(x )]X , (7.2)
a=l

GmV -» [1  + i j M . f i X . W ]  G m„ ,  (7.3)

$  -» [1  + iE  t a x  (x )]$  + a  6X (x). (7.4)
M a=l a a M M

Note that the fie ld  Gm„ tran sform s now accord in g  to Eq. (7.3), while in the 
electrom agn etic ca se  the correspon d in g  fie ld  strength F ^  rem ains un­
changed because it does not ca r ry  an e le c tr ica l charge. A lso , the tran sfor­
m ation o f (Eq. (7 .4)) ex p resses  the fact that it ca rr ie s  a charge and is 
a gauge fie ld . T hese  transform ations must fo rm  a group (which we assume 
to be com pact). This requ irem ent im plies com m utation relations for Ta and
t : 
a

[ T . . T 1  = E T  t . , (7.5)L b * c  1 a-  a abc '

and

t v y  ^ V a b c  (7-6>
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where the t^ ,. are the stru ctu re constants o f the groups. A lso , for the in- 
hom ogenous transform ation  (Eq. (7.4)) to  belong to this group, we must have

( V a c ^ a b c -  (7-7)

In ord er  to keep the fie ld s  G jlv herm itian, the finite herm itian m atrices 
t m ust be im aginary and th ere fore  antisym m etrica l. F rom  this last p rop er­
ty fo llow s the antisym m etry o f the structure constants in the indices a and 
c . F urtherm ore , the com m utation relations im ply their antisym m etry in 
the indices b and c . T h ere fo re  the structure constants are antisym m etrical 
in a ll in d ices . F rom  here fo llow s the im portant rem ark  that for  a group 
to be n on -abelian  (tabc *  0), it must at least be a three-param eter group.
In the th ree-d im en sion a l ca se  t abc = i^abc > e abc being the totally antisym­
m etric  unit ten sor, and the com m utation relations becom e the fam iliar angu­
lar mom entum  com m utation relations fo r  isotop ic  spin.

The in fin itesim al gauge transform ations which ch aracterize  a non- 
abellian gauge fie ld  are  :

X -* ( l + i T 6X)x,

G ĵT* (1 + it6X)G(jV, (7 .8 )

-» (1 + it6X)$(J+ 9)j6X.

X is  a F e rm i fie ld . The T ’ s are m atrices,and  in T 6 X we understand that there 
is  sum m ation ov er  the n gauge functions :

T 6 X = E ^5X a (7 .9)

(som etim es, to  avoid am biguity, we shall use the bracket notation T 6X = 
’ T 6X'). In the electrom agn etic  ca se  the fie ld  G is  gauge invariant, but here 
it a lso  undergoes gauge transform ation  with the ch aracteristic  n dim en­
sional m a trices  t . Thus GM„ i s  a vecto r  with the n com ponents (GMl)a. The 
com ponents o f the m a tr ices  t a re  given by the set o f structure constants 
t abcthat are ch a ra cte r is t ic  o f the group :

( U c  = w  ( 7 - 1 0 )

The v e c to r  fie ld  $ is  on the one hand a gauge fie ld  - to  th is property c o r ­
responds the term  dß 6X in the gauge transform ation  - and on the other hand 
ca r r ie s  the internal p rop erties  and so responds linearly  to gauge tra n sfor ­
m ations in the term  (1 +itöX)$M.

8 . NOTATIONAL DEVELOPMENTS

Suppose that in an n dim ensional space we have v ectors  A, C and m atri­
ces  tb and we fo rm  the sca la r  product A t C . This has com ponents c o r r e s -  
sponding to the n m a t r ic e s ^  and we may fo rm  its sca la r  product with a third 
vecto r  B :
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(A tC )B  = £ cA atabcC cB b. (8 -D

täte is  totally  antisym m etric in the indices a, b, c so £ tabc A aB bC c is  a t o ­
tally antisym m etric function of the three v e c to rs . The product (A tC )B  is 
unchanged by c y c lic  perm utation of its fa c t o r s :

(A tC )B  = (B tA )C  e t c . ,  (8 .2 )

and is changed in sign by a n ticyclic  perm utations of its fa c t o r s :

(A tC )B  = -(B t C )A e t c . ,  (8 .3 )

If we rem ove one o f the v e c to rs  fro m  these tr ip le  sca la r  products, say we 
rem ove A from  (A tC )B  = - (A tB )C , we get a v ecto r  equation which can be 
expressed  in our prev iou s notation as :

' t C 'B  = - ' t  B 'C .

Now we return to  the gauge transform ation  fo r  $ :

= 4>fj + O ij -  i 't  4v')6A.. ( 8 .4 )

We have used the last resu lt to w r it e 'töX1̂  = -'tO^ 6X. The gauge tra n sfor ­
m ation th ere fo re  in volves, not just a sim ple gradient, but a sort o f ex ­
tended gradient in which a term  involv ing«^  has to be added (c f .e le c t r o ­
m agnetism , w hence one in troduces the electrom agn etic interactions by re>- 
p lacing 3jj by 9M - e A^). W e m ay ca ll  9M - 'i  t the "gauge covariant deriva ­
t iv e " .

C onsider now som e p rop erties  o f the gauge covariant derivative. The 
gauge tran sform ation  can be introduced in  the fo llow ing algebraic way. Let 
us take 9 - i 't  (suppressing  a ll ind ices) and apply to it an orthogonal tran s­
form ation  in n d im ensional space :

( l - i t 6 X ') (9 - it< f ) ( l+ it6 \ )  = 9 - i t ($ - (9  - i 't O ') ^ ) .  (8 .5 )

We shall ca ll th is an orthogonal transform ation  because the m atrices  t are 
antisym m etric and im aginary . (The 6X are a set of n arbitrary functions). 
In the derivation  o f th is equation we have used the com m utation relation

[>t 4>7t«V] = -t(d> t 6X ). (8 . 6)

W e see  that the effect o f the orthogonal transform ation  on 9 - i t $  is  to m ain­
tain its  stru ctu re but to rep la ce  $ by the gauge-transform ed  operator c o r ­
responding to the gauge functions -<5A. The invariance of 9 - i t  0 w ill thus 
be m aintained under the orthogonal transform ation  provided that we sim ul­
taneously subject $ to  a gauge transform ation  correspond ing to the gauge 
function + 6A..

A nother im portant exp ress ion  involving these gradients is :

[9p - i ’ tfcj', 9„ - i 't  ${,] = - i ' t f 2G'My (definition of ^ G ^ ) , (8 . 7)
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from  which em erges

PGpv  = + i ( ^ t $ „ ) .  (8 . 8)

Note that th is com m utation relation  re fe r s  only to the n -d im ensional m atri­
ce s . The com m utation rela tion s o f the <5 's  con sidered  as operators w ill 
be treated  la te r .

Let us con s id er  the effect of an orthogonal transform ation  on G^p.Multi­
plying [fy -  i 't  du - i 't  fro m  the left by l - i t 6A and from  the right by 
1 +itSA is  equivalent to tran sform in g  the $ ’ s by the gauge transform ation 
- 6A . What w e find is

(1 - i 't 6A')t G (l-H .t'6A/) = t(l-i'tSA ')G , (8 .9 )

and the gauge transform ation  of G under the gauge transform ation  - 6A is

G -*  ( l - i 't ö V )G . (8 .10)

Replacing - 6A by 6A, we see that the transform ation  law o f the G introduced 
there is  the sam e as that w ritten down at the beginning o f this part. Later 
we shall com e  to identify ou r present G with the previous o n e ; but fo r  the 
m om ent the result is  just that when $ undergoes an inhom ogeneous gauge 
transform ation , the structure G undergoes an hom ogeneous one.

Now we turn fro m  the defining o f ob jects  with sim ple transform ation 
prop erties  and go to  dynam ics. The dynam ics, o f co u rse , consist of our 
F e rm i fie ld s  which ca rry  a property  we m ay as w ell ca ll isotop ic spin, in ter­
acting with the v ecto r  fie ld s . F irst  we con sid er the F erm i fie ld  by itself, 
treating e ffective ly  as an extended fie ld . O f cou rse , $ jj is  not really  an 
extended fie ld , but we tem pora rily  treat it as such. The Lagrange function 
is

■£ = (i/2)Va',(dll - i 'T  $M')* +  (i/m )® ß* (8.11)

w hichcontains the gauge covariant derivative 9̂  - i ’ T This Lagrange func­
tion  is  invariant under the in fin itesim al gauge tra n sform a tion :

*  -» (1+i’ T ÖA')*,
(8. 12)

-* + (ajj - i ’ t$,5)6A.

Note the two kinds o f m a tr ices  : T fo r  the sp inor fie ld  and t fo r  the vector  
fie ld . H ow ever, the ch arges induced involve the com m utators o f the m atrices 
and the com m utators o f the T are  given in term s o f the t, so that the charge 
produced by the variation  o f >£ can, and does, can ce l that produced by the 
variation  o f $ . ,

Let us con sid er  the charge in the Lagrange function induced by an in ­
fin itesim al ch arge  in the v ecto r  $ .  W e can w rite  it

6$ JC = 'S  kM' (8 .1 3 )
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w here each is  a v e c to r  with n com ponents k  ̂ and

k£= ( l / 2 ) * ^ T a* . (8.14)

The k{J fo rm  a set o f cu rren ts , s in ce  cu rren ts  a re  always identified through 
the effect of a change of potential. It is  a great advantage o f our way of w rit­
ing cu rren ts  that w e c le a r ly  separate the kinem atic vecto r  which is  a sso ­
ciated with flow  fro m  the ob ject that flow s. This is  usually observed  when 
talking only about an e le c tr ica l charge because it can be d iagonalized ; but 
when there a re  n non-com m uting ob jects  they cannot all be diagoftalized.

' We next ask what restr iction s  a re  im posed on these currents kM by the 
requirem ent o f gauge in variance. The action operator of the system  is

and the in fin itesim al in the action operator associa ted  with an infinitesim al 
charge 6 in the external fie ld  is  :

If the variation  6 is  chosen  to be that tr iv ia l charge which is  associated  
with a gauge transform ation

with appropriate boundary conditions at infinity, ,then the variation  of the 
action  must vanish loca lly  and we find

which is  a kind of gen era lized  conservation  equation. Thus the current kP 
is , s tr ictly  speaking, not c o n s e r v e d : there is  an analogy here with the stress  
ten sor T*1", which is  not con served  in an external gravitational fie ld  because 
the gravitational fie ld  tran sports energy and m om entum . So here the cu r ­
rents k  ̂o f  the F e rm i fie ld  a re  not con served  because, if you like, they tran s­
fe r  isotop ic  spin to the B ose  fie ld .

Our gen era lized  con servation  equation im m ediately im plies com m uta­
tion rela tion s fo r  the W*. W e em ploy the sam e d ev ice  as used in the previous 
section s to derive  the com m utation relations fo r  the e le ctr ica l charge den­
sity and fo r  the energy density . W e regard  th e $ M as an external property 
which is  entirely  consistent fo r  the derivation  o f  the com m utation relations 
fo r  the F e rm i fie ld s  a lone. P roceed in g  as b e fore , we w rite down the equa­
tion o f m otion fo r  k ° :

(8.15)

(8.16)

0 u - i ' t ^ ) 6 X (8.17)

On - i ’t ®;)kf* = 0 (8.18)

do k° = i 't  $o k° - O t - i t  <Sf )k f. (8.19)

Now we m ake use of two things : a param eter $ 0 appears in this equation 
o f m otion, and the e ffect upon the equations o f m otion of a variation  o f $o, 
which is  coupled to  k° in  the Lagrange function, te lls  one the com m utators
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at the sam e tim e betw een the ob ject, k°, which obeys the equation of m o­
tion , and the generator of those in fin itesim al transform ations. The com ­
mutation relations can be read o ff from

L f(dx 'H l/i)[k°a(x), kg(x'J]6 $ ob(x') = - i  E tabc6 $ab(x)k°(x)
b J  uu b,c

which im p lies , sin ce  the 6®*s are  arb itrary , that at equal tim es

[kO(x),k^(x')] = 6 (x -x )E  t abckO(x). (8 . 20 )

Thus the k° at different points com m ute and at the sam e point they obey som e­
thing like the group com m utation re la tion s. If we define quantities Ka by in ­
tegrating k§ ov er  a ll space :

K a = J (d 3  x)kO(x) (8 . 2 1 )

then the satisfy

[K a, K b] = E  t ab c K c = £  K c tcab ( 8 .2 2 )
c c

which a re  just the group com m utation re la tion s. O r in other w ords, the Ka 
furnish a representation  of the group. But it is  im portant to recogn ize  that 
the K a a re  not constants of the m otion K a f  0. This is  because the k° do not 
obey conservation  equations o r , in other w ords, K a is  only a part of the 
total iso top ic  spin (the v ecto r  fie ld  ca r r ie s  the rest).

9. DYNAMICS OF THE FU LL SYSTEM

Now we turn to the dynam ics of the fu ll system . We use the notion of 
-gauge invariance as a guide in w riting down a tentative Lagrange function 
fo r  the w hole system . Then we attempt to find the com m utation relations 
o f the fundamental op era tors . F inally, we must ask whether our tentative 
Lagrange function is  rea lly  com pletely  sa tisfa ctory ,in  the sense that it p r o ­
duces a Lorentz invariant theory . We w ill find that the orig inal Lagrange 
function was am biguous within a certa in  c la ss  of Lagrange functions and 
a particu lar one must be se lected  if we are to m eet the requirem ent of r e ­
la tiv istic  in variance. T here  is  no guidance here to be gained from  the c o r ­
respondence p r in c ip le : the am biguous term s are of the ord er  of Planck’ s 
constant squared and are  sim ply not determ ined by any requirem ent other 
than that of re la tiv istic  in variance. We shall have to apply the test we de­
veloped in te rm s of the com m utator of the energy density.

The tentative Lagrange function is  constructed  so as to give first order 
fie ld  equations; It must th ere fore  contain firs t  derivatives

JC = - ( l / 2 ) G ^ ( 3 M$ „ - a u ^  + i ( % t  % ) )

+(f2/4 )G (i'/G(J„ + (i/2)%Er 0̂ (9̂  - i 'T  ^ ')¥  + (i/2)*|3*m 0. (9.1)

f  is  a ch a ra cter is t ic  coupling constant (d im ension less in the three-d im en -
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sional ca se ). The question of the ord er of m ultiplication  of operators is  of 
cou rse  ba sic , but we cannot yet usefully d iscu ss  it.

Let us now take the Lagrangian function and w rite down the equations 
of m otion. If we vary  G ^ w e  obtain :

f 2GMI,=  (9.2)

It must be said at this point that we are  using the variational principle 
in a fo rm a l way. The purpose is  to  com e back la ter to th is point and c r it i ­
c iz e  and rectify  what we are doing. At the mom ent we are applying a c la s ­
s ica l action p rin cip le  without im posing any particu lar ord er  upon the products 
o f op era tors .

If we vary we get :

-(3„ - i 't  = kM.

This com pletes the fu ll-set of the vecto r  fie ld  equations. We also have the 
D irac equation obtained by variations of \t:

(a*' a(J- i 'T $ (J' + ß m )* =  0 ,

com pleting the p relim inary  set of fie ld  equations.
W e have always said that the structure of the M axwell fie ld  equations 

must guarantee as an identity the conservation  o f charge. The sam e condi­
tion  must be im posed h ere . The structure of the non-abelian vector gauge 
fie ld  m ust guarantee as an identity the extended conservation  equations of 
the v e c to r  cu rren t. O b serve  that if  we take the gauge covariant d ivergence 
o f k*1 we w ill have :

(df, -  i 't  äpW1 = (9m - i ' t $ ; ) 0 I/- i 't $ ') G 11'

= ( l / 2 p M - i 't  $ ') ,  (3,, - i ’ t $£)]G,i1'

= ( l /2 ) ( i 'tG M/I,)G,i'/= ( i /2 )0 a'tG M1>=0. (9.3)

In the e lectrom agn etic  ca se  the t e r m 't$ 'is  absent and the result is  e v i­
dent. H ere it fo llow s fro m  the antisym m etry o f Gt“ ' and the fact that t is  to ­
tally  an tisym m etrica l. The resu lt obtained is  so fa r  form al, because it is  
n ecessa ry  to take into account the p ossib ility  that the different com ponents 
o f 4 may not com m ute. In other w ords, the question o f operator m ultip li­
cation  o b scu res  the sim p licity  o f the derivation  and the sim ple result no 
lon ger obviously  fo llow s  within the fram ew ork  o f operator equations, although 
it is  true in the c la s s ic a l derivation . A ll this is  prelim inary to an actual 
derivation  o f the identification  o f the fundamental variab les  and their basic 
com m utation re la tion s .

W e w ill now introduce sou rce  te rm s in the Lagrangian, to make use 
o f  a uniform  technique and exploit the d ev ice  we have been using so fa r , in 
which, from  equations of m otion in the p resen ce  o f a suitably disturbed 
system , we in fer com m utation rela tion s in such a way that we can identify
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the fundam ental v a r ia b les . W e go back to the Lagrangian and introduce there 
the s im ple lin ear sou rce  term s

w here M ^ is  the external sou rce  fo r  the fie ld  intensities G ĵ, and-Sjj is  the 
external current fo r  the potential 4*1. H ow ever, the addition of these term s 
must not v io la te  the gen era l gauge invariance o f the Lagrangian. This means 
that and 3  ̂must respond to the gauge transform ations of the vector  field  
and fo r  that reason  the sou rces  a re  functions of ®*. Note a lso  that here the 
situation is  m o re  com plica ted  than in the electrodynam ic ca se  because $ 
undergoes an hom ogeneous as w ell as an inhom ogeneous gauge tran sform a­
tion. But the rela tion  betw een the sou rces  and the v ecto r  fie ld  must be sim ple 
in o rd er  not to destroy  the utility o f th is technique. W e have to exhibit, fo r  
exam ple, M($) in such a way that it responds p roperly  to a gauge tra n sfor ­
m ation but a lso  in such a fo rm  that, at least fo r  particu lar calcu lations, 
the $  dependence d isappears. That m eans that in a particu lar gauge the 
sou rces  are independent of $. In other w ords, we shall not insist upon full 
gauge invariance fo r  M, but only explicit invariance in the neighbourhood 
o f the sp ec ific  chosen  gauge. We a lso  want the connection  betweenthe sou rces 
and the fie ld  quantities to be instantaneous, i .  e . we must im pose tim e lo ca ­
lity . A ll the relations betw een sou rces  and the v ecto r  fie ld  must then be 
lo ca l in tim e.

Let us again w rite  the in fin itesim al gauge transform ation  properties
of

+ (â i - i ' t $ ; ) 6X. (9 .4 )

We see  that the tim e com ponent changes by the tim e derivative, so that if 
we want tim e loca lity , we must use only the space part and not the tim e 
com ponent which c a r r ie s  the tim e  d erivative . The spatial part is :

$ ->$ + (V-i't$')6A. (9.5)

W e are in terested  in exhibiting a function o f the v ecto r  $ which finally 
w ill depend only on Isolating this dependence to counter the gauge tran s­
form ation  o f $, the gauge variation  o f the v ecto r  i> contains the gradient 
o f 6A, but we want to construct a sca la r  equation and, naturally, we take 
the d ivergen ce  of

V . *  - » V . ?+ V .(V -i't$ ')(5 - (9 .6 )

Having once done that, the natural gauge about which we have to perform  
the in fin itesim al variation  o f gauge appears to be the one in which V . $ = 0, 
i . e .  the radiation gauge. In an in fin itesim al neighbourhood of this gauge 
we h a v e :

V .$  = V . (V - i 't $ ')6A. (9 .7 )

The ch a ra cte r is t ic  G reen 's  function fo r  this d ifferentia l equation s a t is f ie s :
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-V .(V - i 't  $')£>(x, x ’) = 63 (x -x ') ( 9 .8)

where £) is  rea l and sym m etric

0 ab(x ,x9  = £>ba(x', x) (9 .10)

and rep la ces  the Coulom b-gauge function fo r  the electrom agnetic case . The 
solution fo r  6X is

6X = - ®. f9 - 11)

T his solution  g ives  the gauge variation  6X fo r  an in fin itesim al neigh­
bourhood o f the radiation  gauge V . $ = 0.

W e can now w rite  down exp licitly  what M ^^ijm ust be , not fo r  any gauge 
but sp ec ifica lly  fo r  the con sideration  o f in fin itesim al variations about the 
radiation  gauge. It m ust be such a function o f $ that it responds by the coun­
te r  transform ation

M ^ ® )=  ( l - i t 0 * V .  * )M „ „  (9 .12)

w here the M^v a re  just sim ple num bers. This fo rm  fo r  the sou rce  satisfies 
a ll our th ree  requ irem en ts. F irs t  o f a ll, th ese gauge variant sou rces are 
related  to arb itrary  n um erica l quantities only at the sam e tim e. Secondly, 
in the radiation gauge that dependence d isappears and the sou rces  are a rb i­
tra ry  num bers. T h ird ly , fo r  in fin itesim al variations about the radiation 
gauge, they vary by the fa cto r  (1 +itöX) which just com pensates the gauge 
variation  o f G tiW. W e have ach ieved gauge invariance in an e ffective com pu­
tational fo rm  fo r  in fin itesim al variations about the radiation gauge. And 
when we actually w ork  in the radiation gauge the $ dependence disappears.

Let us now con stru ct 3(i($) by the sam e p ro ce d u re :

3 m($) = (1 - it  * )3 m. (9.13)

is  independent o f $ but, sin ce there are two parts to the gauge variation 
o f 4, one is  inhom ogeneous and fo r  the gauge invariance o f this part it must 
be dp 3 11 = 0. Thus we have invariance under in fin itesim al gauge tran sfor­
m ation about the radiation gauge.

Returning now to the equations of m otion and adding the extracontribu­
tions from  the external sou rces , we can read a ll the equal tim e commutation 
relations by m ere ly  inspecting the structure of the fie ld  equations.

The new equations are , f ir s t  fo r  $ :

9(i ^ u-  dv i  ̂ t  -  f  ̂ Ĝ i/ Mpy. (9.14)

The Mjjy are  here num bers independent o f ® because we are now working 
in the radiation  gauge. Secondly, the equation fo r  G^:

(9„ - i  t % )G »V = k»  +3M + VH S# [ (1 / 2)GXvi t MXi + i t (9.15)
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w here is  the fou r com ponent v ecto r  of which the tim e component is  zero . 
Let us now take the two term s involving 3^:

J+V i>  ( - i t * ) 3 =  [ l+ v £ > 0 - i 't $ ') ]  3 . (9.16)

the derivative 31 has been added to obtain the "covariant gradient" 9 - i t $ .
Its contribution is  z e ro  because 3  is  con served . This last equation interests 
us because the op era tor that acts upon 3 is  a p ro je cto r  operator that picks 
up exactly  the right p rop erties  o f the v ecto r  3v, in the follow ing s e n s e : we 
ob serve  that the right side, as a current, should be con served  in the e x ­
tended sens that, applying the gauge covariant d ivergence, one must obtain 
z e ro  and th is is  in fact the ca se  :

( 9 - i t * ) - [ l + V Ä ( 9 - i t $ ) ]  = (3 - i t ® ) - (9 - i t $ )  = 0, (9. 17)

because

(9 - i t # ). V = V .(V - i t $ )+ i t V .  ®. (9.18)

The f ir s t  te rm  on the right-hand side is  the d ifferentia l operator defining 
i^and in the radiation gauge V . $ = 0. This is  the im portance of the p rojec - 
tion op era tor  that guarantees charge conservation  in the extended sense.
The derivative 9  ̂ acting upon 3^ may be said to be optional, but if we use 
the p ro je c to r  in the fo rm  we w rote it, then fo r  a ll variations of 3m the con ­
straint equation dß =0 needs no longer be con sid ered . Obviously, since 
the d ivergen ce  of 3^ is  equal to z e ro , not a ll variations of 3>* can be inde­
pendent. In p a r t icu la r :

90 6 J° = -V . 6 J (9. 19)

and the variation  o f the longitudinal part V . 3 is  com pletely  determ ined by 
the constra in t. But now, the s tru c tu re :

[1+ V Ä  (9 - it® ) ]3  (9.20)

does not depend at a ll upon the longitudinal part of 3.

[ l+ V Ä (9 - i t$ ) ] .  v  = V -V  = 0 (9 .21)

(an integration  by parts is  involved in the p roo f of this equality). So it is  
not n ecessa ry  to m ake use o f the constraint equation and we can vary 3 ** 
fre e ly .

W e Will now exam ine the fie ld  equations to see which o f them are equa­
tions o f  m otion  and which of them  are  only equations o f constraint. Let us 
firs t  w rite  down the fie ld  equations which are  equations o f m otion, i .  e. equa­
tions having tim e d eriva tives in it. They a r e : -  \

d0\ =  (E k -i t® k)$0 +f2G 0k + M 0k,
(9 .2 2 )
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O 0 - i t * 0)Gk0= - O - i t « ) G <k+ k * + [ l+ V .0 O - it ® ) ]3 + a f ( l /2 )G X!'i t M Xj/.

On the other hand, the constraint equations a r e :

f 2Gkc + M k«= 3k® f* 9f $k+ ($ki t ®{) 2 3 )

Ok - i t 3 k)G0k = k °+ 3 0 .

They te ll us o f co u rse  that neither the d ivergen ce  of the "e le c tr ic  fie ld " Gok 
nor the com ponents o f the "m agnetic fie ld "  Gk{ can be treated as independent 
v a r ia b les .

W e w ill now look  at the equations o f m otion and vary the param eters.
W e then autom atically get a com m utation  relation  with the operators a sso ­
ciated  with the p aram eters  in the Lagrange function . And since we have 
equations o f m otion  fo r  the fie ld s  %  and Gok, we w ill get com m utation r e ­
lations betw een th ese op era tors  and the op era tors  that appear in the action 
in tegral.

It should be m entioned that the fir s t  equation o f m otion contains a hidden 
constraint, becau se in the radiation gauge V . $ = 0 and so , taking the d i­
v ergen ce  o f that equation, the tim e derivative d isappears and we are left 
with

- V . ( V - i t •)•„*» ak(f2G0k + M 0k) (9.24)

which elim inates $ 0 as an independent variab le . T h is is  an indication that 
only the tra n sv erse  part o f 4  and the tra n sv erse  part o fG 0kcan be considered 
to be the fundamental v a ria b les , and a ll th is o ccu rs  exactly as in the e le c tro ­
m agnetic ca se .

W e w ill now look  at the structure o f the equations o f m otion and sim ply 
read  o ff the com m utation re la tion s . Let us vary  the chosen  set of para­
m eters  starting with 3 k. Looking at the equation o f m otion fo r  $k we see 
that 3 k does not appear nor is  it even hidden in the dependent variable so 
that the coe ffic ien t o f the variation  o f 3 k is  z e ro  :

öO o'fc) = (°>6 Jk <9*25)

and fro m  th is fo llow s  the equalH im es com m utation relation

[• i ix ) , » ,W ]  = 0. (9 .26)

Next, look ing at the equation o f m otion fo r  Gok and con siderin g  the effect 
o f the variation  o f 3 f, which only appears explicitly  and m ultiplied by a p ro ­
je ction  op era tor , we see  that

6 do G 0k = -  6 (P ro jector).?  (9 .27)

fro m  which we can read o ff the com m utation relation

i[G ok(x), $ { (x )] = k( l + (9 - i t  $'))( (x, x 1), (9 .28)
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or, showing exp licitly  the d ifferent com ponents o f G ok and

ifG ^ x ) ,  ®{b(x0] = 6f 6ab 6 (x -x ') + ak[J04(x, x ')(-a 't - i 't  ®'f(x')]ab. (9 .30)

Last o f all, w e should find the com m utation relations betw een the Gok them ­
se lv e s . Once we know th ese , the other com m utation relations can be co m ­
puted, knowing the way in which the other fie ld s  depend upon the fundamen­
tal on es . The last com m utation rela tion s can be obtained considering the 
variations o f M ok. The f ir s t  equation o f m otion does not give anything new, 
it m ere ly  repeats the com m utation relation  just found (showing, o f cou rse , 
that the p roced u re  is  con sisten t). The other equation o f m otion gives the 
in form ation  we req u ire . It contains M ok exp licitly  in the last term  and also 
im p licitly  in the dependent variab le  $0. Taking into account both dependences 
we a rr iv e  a t :

i [G ok(x), G m(x')] = 3kS (x, x ')it  G°*(x') + it  Gok(x )# (x , x ')3 f'. (9.31)

T hese com m utation re la tion s seem  to be com plicated  but it must be realized  
that w e have derived  them  fo r  the fu ll op era tor G0k which con sists  of a de­
pendent longitudinal part and the independent tra n sverse  part GokT which is 
the fundam ental v a r ia b le . It is  p oss ib le  to extract the com m utation relation 
fo r  G okTonly. We can see  that the right-hand side o f the com m utation r e ­
lation  does not contain any purely tra n sv erse  part and th ere fore

[GokT(x), G0{(x )T] = 0 (9 .32)

w hich,together with

[« l /x ), 4{ (x'j] = 0 (9 .33)

and

i [ G 0kT(x), ®f (x')] = 6k[6 (x -x ')]T, (9.34)

fo rm  the canonica l com m utation relations between the fundamental fie ld  
quantities. By com p arison  with the electrom agn etic ca se , we see that it 
still contains the essen tia l sim p licity  which con sists  o f the fact that the 
fundamental variab les  a re  exactly  the sam e tra n sverse  parts of the potential 
and the e le c tr ic  f ie ld . The com m utation relations have the sam e appearance 
except o f cou rse  fo r  the fact that in the e lectrom agnetic fie ld  we have only 
one such equation and h ere  we have n X n such equations. In other w ords, 
the equations just found are  rea lly  m atrix  equations in the "internal" vector 
space .


