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I review the latest lattice determination of kaon weak matrix elements, I focus on K → ππ
decay amplitudes and neutral kaon mixing (within and beyond the standard model). These
matrix elements are needed for the theoretical computation of the CP violation parameters ε
and ε′ and for a quantitative understanding of the ΔI = 1/2 rule.

1 Introduction

Lattice QCD plays a central role in our understanding of particle physics, it allows for non-
perturbative and model independent determinations of hadronic quantities (masses, matrix el-
ements, form factor, etc.) in a regime where perturbation theory is non reliable. In this review,
I focus on the kaon sector (for more general recent reviews on lattice flavour physics, see 1,2).
Nowadays, lattice simulations are performed at the physical value of the quark masses with three
or four dynamical flavour in the sea. Recently it also became possible to compute hadronic de-
cay amplitudes, the first applications being K → ππ, allowing for a theoretical determination
of ε′/ε. This will be topic of the main topic of this paper (sections 2,3 and 4). In section 5,
I present some new results on the ΔI = 1/2 rule. Several collaborations are computing the
ΔS = 2 matrix elements which occur in neutral kaon mixing, within and beyond the Standard
Model. Combined with the experimental value of ε, these quantities can be used to provide im-
portant constraints on New Physics (NP) models and to estimate the scale of NP. I will present
the status in section 6 and 7.

2 K → ππ decays and Lattice QCD

Various nice reviews are available on the subject, see for example 3. I just recollect here some
basic facts about K → ππ phenomenology. Assuming isospin symmetry, the decays K → ππ
can be written in terms of the amplitudes

A [K → (ππ)I ] = AIe
iδI , (1)

where I denotes the isospin of the two-pion state, either 0 or 2, and δI is the corresponding
strong phase. The parameters of indirect (resp. direct) CP violation, ε (resp. ε′) are given by

ε =
A [KL → (ππ)0]

A [KS → (ππ)0]
, (2)

ε′

ε
=

1√
2

(
A [KL → (ππ)2]

A [KL → (ππ)0]
− A [KS → (ππ)2]

A [KS → (ππ)0]

)
. (3)
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The first measurement of ε is the well-known discovery of indirect CP violation due to Chris-
tenson, Cronin, Fitch and Turlay 4 in 1964, for which Cronin and Fitch were awarded a Nobel
prize. It took tremendous efforts to measure direct CP violation, The final measurements of ε′

are due to KTeV at Fermilab and NA48 at CERN 5,6, the averages read

|ε| = 2.228(11)× 10−3 , (4)

Re

(
ε′

ε

)
= 16.6(2.3)× 10−4 . (5)

Theoretically, the standard framework to study K → ππ decay is the ΔS = 1 effective
Hamiltonian obtained after integrating out the heavy degrees of freedom. In the three-flavour
theory, it reads (see for example 7,8)

HW =
GF√
2
V ∗usVud

10∑
i=1

[zi(μ) + τyi(μ)]Qi(μ) , (6)

where GF is the Fermi constant. The short-distance effects, which can be computed in pertur-
bation theory are factorised into the so-called Wilson coefficients, yi, zi whose expression can be
found in 7. Vij are CKM matrix elements, τ = V ∗tsVtd/V

∗
usVud and μ is an energy scale which can

be thought as a cut-off. Traditionally the four-quark operatorsQi are given by (see for example7):

Current-Current:

QCD Penguins:

EW Penguins:

Q1,2 = (s̄γμ(1− γ5)d)(ūγμ(1− γ5)u)unm,mix , (7)

Q3,4 = (s̄γμ(1− γ5)d)
∑

q=u,d,s

(q̄γμ(1− γ5)q)unm,mix , (8)

Q5,6 = (s̄γμ(1− γ5)d)
∑

q=u,d,s

(q̄γμ(1 + γ5)q)unm,mix , (9)

Q7,8 = (s̄γμ(1− γ5)d)
∑

q=u,d,s

eq(q̄γμ(1 + γ5)q)unm,mix , (10)

Q9,10 = (s̄γμ(1− γ5)d)
∑

q=u,d,s

eq(q̄γμ(1− γ5)q)unm,mix ; (11)

where the subscript ()unm,mix refers to the colour structure (unmixed or mixed). The matrix
elements of these four-quark operators capture the strong dynamics of the theory. We have
neglected the operators which emerge from the electric and magnetic dipole part of the elec-
tromagnetic and QCD penguins. (See the talk by V.Lubicz at Lattice’14 and 9 for a recent
lattice study by the ETM collaboration.) These 10 operators do not form a basis of the ΔS = 1
four-quark operators in four dimensions, as they are not linearly independent.

Obtaining a reliable evaluation of the matrix elements 〈ππ|Q′i|K〉 is the most difficult part
of the computation. Since one needs a non-perturbative framework, lattice QCD is a natural
candidate. In the last thirty years, many attempts have been made to evaluate these matrix
elements, using either effective theories or lattice simulations (or combinations of both), see for
example 11,12,13,14,15,16,17 and reference therein.

From the lattice point of view, the first difficulty is to simulate the kinematic situation, in
particular the final state made of two hadrons with non-vanishing momenta. This problem was
formalised in 1990 by Maiani and Testa who showed that the physical amplitudes could not be
extracted from “standard” euclidean lattice simulations 18. An alternative based on χPT was
proposed in 19: the matrix elements of interests can be obtained from those of K → π and K →
vacuum, which are numerically much simpler. This indirect approach was first used for while,
see for example 20,21,10. However the conclusion of the extensive quenched studies 21,10 is rather
negative: extracting the matrix elements with a fully controlled error turned out to be very
hard. One problem comes from the fact that SU(3) χPT converges poorly at the kaon scale
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(see also 22). What is now known as the Maiani-Testa no-go theorem was circumvented in a
very elegant way by Lellouch and Lüscher in 23. The crucial point is that in finite volume the
spectrum is discrete, and the size of the box can be fine-tuned such that the pions will take the
desired momentum.

3 The ΔI = 3/2 channel

We first consider the amplitude of K → (ππ)I=2 decays, there are several simplifications in this
channel, most notably:

1. there is no disconnected diagram (in which no quark line connects the initial kaon and the
final two-pion states; these diagrams are numerically hard to compute), and

2. only three operators contribute.

The first realistic computation (with dynamical quarks, physical kinematics and nearly-physical
pion mass) was performed by the RBC-UKQCD collaborations24,25 with Domain-Wall fermions,
a discretisation of the QCD Lagrangian which preserves chiral-flavour symmetry almost exactly.

Although the method used in 24,25 is based on the Lellouch-Lüscher approach, an important
ingredient is the Wigner-Eckart theorem, which tells us that the matrix elements of interest are
related to those of the unphysical process K+ → π+π+ (in the isospin limit). Using a peculiar
choice of boundary conditions, these matrix elements (with physical momenta) can be extracted
using standard lattice methods. The first simulation was done at a single value of the lattice
spacing (a−1 ∼ 1.375 GeV, ie a ∼ 0.1435 fm) on the so-called IDSDR lattice (ID) 26 with a
pion mass of 140 MeV. (Strictly speaking this “physical pion” is partially quenched, the unitary
pion mass was somewhat heavier: 170 MeV). In this work, the matrix elements are renormalised
non-perturbatively with the Rome-Southampton method 27, at low energy and run to 3 GeV
using the (universal) continuum scale-evolution matrix to 3 GeV 28.

More recently, the RBC-UKQCD collaborations have reported on 2+1 lattice QCD simula-
tions with physical pion masses 26, which have been possible thanks to a new formulation of the
Domain-Wall disctretisation 29. These lattices have been used to improve on the determination
of A2: the main source of error was the discretisation effects, the new computation 30 involves
two lattice spacings of a ∼ 0.011 and a ∼ 0.084 fm, reducing the systematic error by roughly a
factor 2 for the real part and a factor 1.5 for the imaginary part. Thanks to these new lattice
determinations, the current errors on the theoretical determination of A2 are of the order of
10%. The results are shown in figure 1.

4 Including the ΔI = 1/2 channel

A complete determination of A [K → ππ]I=0 has been a long-standing challenge for the lattice
community. A first “pilot” computation with dynamical fermions was reported by RBC-UKQCD
in 2011 31. This computation was unphysical in the sense that the amplitudes were computed
at threshold and the quark masses were heavier than the physical ones, however all the required
diagrams were determined (including the disconnected ones) showing the numerical feasibility
of the approach. The main remaining difficulty was to implement the physical kinematics, ie the
ability to extract the matrix element of interests, with the pion states having the right momenta.
The Wigner-Eckart/boundary condition trick used in the Δ = 3/2 channel does not work for
the full computation, as it violates isospin 32. Instead, the RBC-UKQCD collaboration have
generated new ensembles with G− parity boundary conditions 33,34, as reported by Christopher
Kelly in a plenary session of Lattice 201535, see also the plenary review given by Andreas Jüttner
at the same conference 36. From a more technical point of view, this computation requires the
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Figure 1 – Real and Imaginary part of A2 = A [K → (ππ)]I=2. The triangle represents the 2012 computation
on the IDSDR and the blue points the 2014 determinations on the new ensembles (statistical error only), from
which a continuum limit is extracted and shown in magenta (statistical and systematic errors combined). For
the IDSDR points, we show both the statistical and the systematic error, largely dominated by the discretisation
artefacts.

evaluation of all-to-all propagators and noise reduction techniques. The results read

Re(A0) = 4.66(1.00)(1.21)× 10−7GeV (12)

Im(A0) = −1.90(1.23)(1.04)× 10−11GeV (13)

and the corresponding theoretical value for ε′/ε

Re(ε′/ε) = 1.38(5.15)(4.43)× 10−4 , (14)

which is an approximate agreement(∼ 2.1σ) with the experimental value 16.6(2.3)×10−4. Rather
than concluding that a significant deviation of the Standard Model prediction has been found,
we note that the error is much larger than the experimental one. From a phenomenological point
of view, at this level of precision, these results do not invalidate the Standard Model, neither
do they rule out the need for new-physics in K → ππ decays. The important point is that for
the first time ε′/ε has been computed with a full error budget, all the different contributions
of the seven linearly independent operators are computed with controlled errors and a precision
which can be systematically improved. Now that the technology has been developed, reaching
a precision of, say, 10% should be possible in the close future. In addition to reducing the
statistical error, the simulation can be done on finer lattices and extrapolated to the continuum
limit. Another systematic error is due to the truncation of the perturbation series (needed to
compute the Wilson coefficients). The renormalisation was performed at a scale of μ ∼ 1.5
GeV in order to keep the discretisation effects under control. Clearly this can be improved by
running non-perturbatively to a higher scale, as done for the ΔI = 3/2 channel. Reducing the
theoretical error on the matrix elements of Oi (and therefore on ε′/ε ) will provide a crucial
test of the Standard Model, indeed we might actually see signs of new physics. It is also worth
noting that another computation (done at threshold) has been done with Wilson fermions 37.

5 The ΔI = 1/2 rule

The “ΔI = 1/2 rule” refers to the fact that the I = 0 channel is favoured over the I = 2 channel
by the factor 1/ω defined by

ω =
A [KS → (ππ)2]

A [KS → (ππ)0]
. (15)

Experimentally this number is around ω ∼ 1/22 whereas one would naively expect 1/2 38,39.
The question whether or not the remaining factor of ∼ 10 can be explained entirely by some
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Figure 2 – The dominating contribution to the real part of the amplitude A2 of K → ππ is proportional to sum of
the two contractions 1© and 2©. The two contractions differ by their colour structure, as indicated by the colour
indices i and j. The label L stands for the left-handed structure γμ(1− γ5).

surprisingly large QCD effects has been a very-long standing puzzle. It also shows the need for
a better understanding of the non-perturbative regime. Several attempts to study the ΔI = 1/2
rule on the lattice have been made. For example, an ongoing project based on the role of the
charm quark has been developed in 40,41,42,43, see also 44.

In 2013, the RBC-UKQCD collaborations reported on a study of the origin of this enhance-
ment 45. The amplitude A2 was computed with physical kinematics whereas A0 was computed
at threshold. The real part of A2 is largely dominated by a single four-quark operator (the
contributions of the electroweak penguins are negligible with respect to the tree-level diagram).
This operator has a (V − A) × (V − A) Dirac structure and transforms as a (27, 1). Two con-
tractions 1© and 2© contribute, they differ by their colour structure, as shown in figure 2. The
conventions are such that ω = Re(A2)/Re(A0) ∼ ( 1©+ 2©)/(2 1©− 2©), where 1© and 2© are the
contractions shown in figure 2. The naive expectation is that 2© ∼ 1

3
1©. However the observation

made in 45 is that 2© ∼ −0.7 1©. Therefore, there is an important cancellation in the numerator
of ω which is completely unexpected from the naive factorisation framework. Similarly the main
contribution to Re(A0) is proportional to 2 1© − 2©. Hence, the aforementioned relative sign
between 1© and 2© also contributes to enhancement in the denominator of ω (compared to the
naive expectation).

The two recent lattice computations, the threshold one 37 and the one with physical kine-
matics 46 also observe this sign difference, which seems to be at the origin of the ΔI = 1/2 rule.
In table 1, we collect the lattice results obtained by RBC-UKQCD. The first two values of ReA0

were obtained with unphysical kinematics and unphysical values of the quark masses. For the
last lattice value, both ReA2 and ReA0 were obtained at physical values of the quark masses
and with physical kinematics. We combine the continuum value of ReA2 with the new value of
ReA0 (obtained at a single value of the lattice spacing), we find

ω−1 =
ReA0

ReA2
=

1.66(0.96)(0.27)× 10−7

0.150(4)(14)× 10−7
∼ 31.1(6.5) . (16)

Clearly we observe and importance enhancement, which seems to be very sensitive to the quark
mass. However, in order to confirm that the ΔI = 1/2 effect is a pure non-perturbative QCD
effect, a little bit of patience is required as the precision on A0 has to be improved. The
theoretical error affecting the amplitudes is expected to decrease by a factor of two in the next
couple of years, it is very likely that we will then have the answer to this question. Note that
this sign also discussed in 3,47, see also 16,7,8.

6 Neutral kaon mixing and indirect CP violation in the Standard Model

In the Standard Model picture, neutral kaon mixing is dominated by W -exchange box diagrams.
By performing an operator product expansion, one can factorise the long-distance effects into
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Table 1: ΔI = 1/2 Rule: comparison of the lattice results with the experimental value. See text for details.

ω−1 = ReA0/ReA2 mK (MeV) mπ (MeV) Kinematics

9.1 (2.1) 878 422 Threshold
12.0 (1.7) 662 329 Threshold
31.1(6.5) 491(2) 143(2) Physical

Experimental 22.5 494-493 135-140

the matrix element of a four quark operator OΔS=2
1 :

〈K̄0|OΔS=2
1 |K0〉 = 〈K̄0|(siγμ(1− γ5)di) (sjγμ(1− γ5)dj) |K0〉 . (17)

Clearly, because of the W-exchange, the Dirac structure is (Vector-Axial) × (Vector-Axial).
Only one four-quark operator contributes: the operator given in eq. 17 is invariant under Fierz
re-arrangement and in a (continuum) massless renormalisation scheme, it does not mix with
other four-quark operators, nor with lower dimensional operators. It is also the case on the
lattice if chiral symmetry is preserved. Once the considered matrix element has been computed
non-perturbatively using lattice techniques, its result is combined with the value of the Wilson
coefficient C(μ) of continuum perturbation theory and experimental observables, such as the
mass difference ΔMK

= mKL
− mKS

and εK to obtain important constraints on the CKM
matrix elements. Schematically, one obtains

εK = C(μ)× 〈K̄0|OΔS=2
1 |K0〉(μ)×F(V CKM

ij ,mK , fK ,ΔMK , . . .) , (18)

where F is a known function of the CKM factors and of well-measured quantities.
A convenient parametrisation of this operator is the well-known bag parameter BK ,

BK(μ) ≡ 〈K̄
0|OΔS=2

1 |K0〉(μ)
8
3f

2
Km2

K

. (19)

where fK− = 156.1 MeV and μ is a renormalisation scale, usually 2 or 3 GeV.
BK is a standard lattice quantity, nowadays it is computed with an accuracy of a few

percents 48,49,50. The FLAG 2013 average for Nf = 2 + 1 is

B̂K = 0.7661(99) , Nf = 2 + 1 , (20)

it is largely dominated by the BMWc result B̂K = 0.773(8)stat(3)syst(8)PT . The other references
are 51,52,53,54,49,55,56,57,58.

Let us consider the dominant sources of error: FLAG 2013 explains that the total error of
1.3% can be roughly seen as the combination of 0.4% statistical and 1.2% systematic, mainly
due to perturbation theory: (33)stat + (93)syst. Although BK is extracted and (in most cases)
renormalised non-perturbatively on the lattice, perturbation theory is used to convert the result
to the renormalisation-group-invariant (RGI) quantity B̂K , or alternatively to MS. Naturally,
different collaborations estimate the perturbative error in different ways, and this estimation is
of course affected by some subjective judgement. Indeed this error changes by a factor two or
three depending on the estimation. In its 2013 review, it seems that FLAG chose an uncertainty
very close to the one quoted by BMW (1%), whereas RBC-UKQCD quoted an error of ∼ 2%,
based on a multiple-scheme evaluation. Actually by changing the intermediate schemes, RBC-
UKQCD find that the results change by 8% if the matching is done at μ = 3GeV and by 12%
if μ = 2GeV. The current situation is illustrated in table 2, where we show the the most recent
determinations of BK . The importance of this perturbative error can be made clear by looking
at, for example, the result obtained by RBC-UKQCD 26

B̂K = 0.7499(24)stat(150)PT , (21)

B
(/q ,/q )
K (3GeV) = 0.5341(18)stat , (22)
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Table 2: Collection of recent results for BMS
K (3GeV).

Collaboration Nf Discretisation Result
RBC-UKQCD 26 2 + 1 Domain-Wall 0.5293(17)stat(106)PT

SWME 61 2 + 1 Staggered 0.518(3)stat(26)syst
ETM 62 2 + 1 + 1 Twisted Mass 0.506(17)stat+syst(3)PT

where the first error is statistical (however it is much larger than the other errors on Bbare
K ) and

the second error is the systematic error on the renormalisation, largely dominated by the pertur-

bative matching. This contrasts with B
(/q ,/q )
K which is fully non perturbative, renormalised in the

SMOM (/q , /q )-scheme at the scale μ = 3 GeV. Without this perturbative error, the error would
be of around 0.3%. In the future, the lattice community will probably have to find an agreement
on how to estimate this uncertainty as it is the dominant one. Obviously, one could reduce this
perturbative error, by computing explicitly the next order in perturbation theory. The matching
coefficient is currently known at next-to-leading order. Going further requires to determine the
matching coefficient at the two-loop level (three-loop anomalous dimension). Alternatively, on
could perform the matching at a higher scale; this could be achieved by computing the running
non-perturbatively, for example using the Schrödinger functional 59 or a (S)MOM-scheme 60.

7 Neutral kaon mixing Beyond the Standard Model

Beyond the Standard Model, we have to include new Dirac-colour structures, as for example
both left-handed and right-handed currents can contribute to K0-K̄0 mixing (and therefore to
εK). Hence, in addition to O1 introduced in eq.17, one introduces new ΔS = 2 four-quark
operators. A possibility (the so-called SUSY-basis) is 63,64 a

OΔS=2
2 = (si(1− γ5)di) (sj(1− γ5)dj), (23)

OΔS=2
3 = (si(1− γ5)dj) (sj(1− γ5)di), (24)

OΔS=2
4 = (si(1− γ5)di) (sj(1 + γ5)dj), (25)

OΔS=2
5 = (si(1− γ5)dj) (sj(1 + γ5)di). (26)

These four-quark operators appear in the generic effective ΔS = 2 Hamiltonian

HΔS=2 =
5∑

i=1

Ci(μ)O
ΔS=2
i (μ) +

3∑
i=1

C̃i(μ) , (27)

where the Wilson coefficient Ci(μ), C̃i(μ) depend on the details of the new-physics model under
consideration but the matrix elements 〈K̄0|OΔS=2

i |K0〉 are model independent. The operators
Õ1,2,3 are obtained from O1,2,3 by replacing (1− γ5) by (1+ γ5). In QCD with parity conserved,
these operators are redundant and therefore discarded in the following.

A priori, one would expect that the relevant matrix elements 〈K̄0|OΔS=2
1 |K0〉 can be ob-

tained with an accuracy comparable to the one of the Standard Model one. However only few
studies of the full set of BSM operators have been published and the history is quite interesting.
First of all, in the quenched approximation, the results from 66 obtained with Ginsparg-Wilson
fermions (which exhibit an exact chiral-flavour symmetry) and non-perturbative renormalisa-
tion were very different from the previous study, done with tree-level O(a)-improved Wilson
fermions 67. The difference was attributed to the renormalisation.

The first computation performed with dynamical fermions was reported by RBC-UKQCD 68

in 2012 and was done with Nf = 2 + 1 Domain-Wall fermions. It was followed shortly by a

a An alternative basis is given in 65 .
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Table 3: Comparison of the BSM bag parameters Bi at 3GeV in the SUSY basis in MS

ETM15 RBC−UKQCD12 SWME15 RBC−UKQCD15(prelim.)
interm.
scheme RI −MOM RI −MOM 1− loop RI − SMOM RI −MOM

B2 0.46(3) 0.43(5) 0.525(1)(23) 0.488(7)(17)(2) 0.417(6)(2)(2)
B3 0.79(5) 0.75(9) 0.772(5)(35) 0.743(14)(64)(3) 0.655(12)(44)(2)
B4 0.78(5) 0.69(7) 0.981(3)(61) 0.920(12)(12)(4) 0.745(9)(28)(3)
B5 0.49(4) 0.47(6) 0.751(8)(68) 0.707(8)(34)(3) 0.555(6)(53)(2)

Nf = 2 twisted-mass computation of the ETM collaboration, done with several lattice spacings69

and these two first computations are in reasonable agreement (slightly more than2% in the
worse case) In 2013, the SWME collaboration reported their results, obtained with Nf = 2 + 1
flavours of improved staggered fermions 70. A noticeable disagreement with the previous studies
was found for two of the matrix elements (O4 and O5 of the SUSY basis). Very recently, the
ETM collaboration have repeated their computation with Nf = 2 + 1 + 1 flavours (using again
twisted mass QCD), and essentially confirmed their Nf = 2 results 62 (although for B5 the
agreement is only within ∼ 3σ). Even more recently, SWME have extended their study by
adding more ensembles, improving the extrapolation to the physical point, and they confirmed
the disagreement with the other collaboration 61. Since the results have been extrapolated to
the continuum limit, one does not expect the discretisation used (Domain-Wall, Twisted-Mass,
or Staggered) to be responsible of the discrepancy.

The matrix elements of these four-quark operators are usually given in terms of the so-called
Bag-parameters Bi(μ) = 〈K̄0|Oi(μ)|K0〉/〈K̄0|Oi(μ)|K0〉V S where V S is the vacuum-saturation
approximation. In the case of the Standard Model operator, the denominator is known in terms
of physical quantities fK and mK , as shown in eq. (19). This normalisation is convenient because
the bag parameters are dimensionless, the numerator and the denominator are very similar,
therefore systematic errors are likely to cancel out in the ratio, and because the denominator
is known in terms of physical quantities. However for the BSM operators, the corresponding
vacuum saturation approximations involve matrix elements of the pseudo-scalar density. In
particular, the renormalisation of the matrix elements in a RI-MOM scheme 27 requires a pole
subtraction which could potentially be problematic.

A preliminary study of RBC-UKQCD indicates that the source of the disagreement comes
from the renormalisation 73,74. A comparison of the results for the bag parameters can be found
in Table 3. Although our error budget is not complete yet, we find that if we use the standard
RI-MOM scheme proposed in 27 and match to the MS scheme defined in 65, our results are in a
decent agreement with ETMc. Surprisingly enough, if we use a SMOM scheme (in the spirit of
the schemes introduced in 75), our results are much closer to the results quoted by SWME, for
which the renormalisation is performed perturbatively. The SMOM schemes are known to be
superior to standard RI-MOM schemes: they behave better non-perturbatively in the infrared
(the pion pole contamination is suppressed because of the absence of exceptional channel) and
perturbatively 75,48,76,77. We suspect that the procedure employed to remove the pion pole con-
tamination (needed in the RI-MOM case but absent for the SMOM schemes) could also affect
the ultraviolet behaviour, see for example 77. The systematic errors associated with this proce-
dure are very hard to estimate and could have been underestimated.

Several alternatives normalisation were proposed in the literature, see for example 67. In 66,
some ratios Ri have been introduced, they are designed to be equal to the ratio of a BSM con-
tribution to the SM one at the physical point Ri(μ) = 〈K̄0|Oi(μ)|K0〉/〈K̄0|O1(μ)|K0〉. Another
possibility, is to define products and ratios of bag parameters (called G) such that the leading
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chiral logarithms cancel out71,72,70. The problem of the normalisation ambiguity is absent for the
ratios, but still there for the products. However the advantage is that the chiral extrapolations
are hugely simplified.

8 Conclusions and outlook

This is an exciting time for Kaon physics, to a great extent this is due to the impressive progress
achieved recently by the lattice community. The computation of K → (ππ)I=2 is reaching a
mature stage and a first computation K → (ππ)I=0 with physical kinematic and complete error
budget has recently been reported by the RBC-UKQCD collaboration. The results of these
computations have a important role to play in particle physics phenomenology . The ΔI = 1/2
puzzle seems to be explained by the non-perturbative effects45. Regarding indirect CP violation,
BK is now known with an impressive precision. The various investigations of the ΔS = 2 BSM
operators are converging, the discrepancies observed by several collaborations are likely to be
due to systematic errors affecting the non-perturbative renormalisation procedure in RI-MOM
schemes. Although a careful study is required, the solution could be provided by the SMOM
schemes, which have a much better behaviour. Future improvements will also require to match
the lattice computation to phenomenology at a much higher scale in order to decrease the error
due to perturbation theory. There are other new interesting developments that I have not men-
tioned here, such as rare kaon decays and the KL −Ks mass difference (see 79 and 80 ).
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Algorithm. 2012.

30. T. Blum et al. K → ππ ΔI = 3/2 decay amplitude in the continuum limit. Phys. Rev.,
D91(7):074502, 2015.

31. T. Blum, P.A. Boyle, N.H. Christ, N. Garron, E. Goode, et al. K to ππ Decay amplitudes
from Lattice QCD. 2011.

32. Changhoan Kim and Norman H. Christ. G parity boundary conditions and Delta I = 1/2,
K → ππ decays. PoS, LAT2009:255, 2009.

33. Chang-hoan Kim and Norman H. Christ. K → ππ decay amplitudes from the lattice.
Nucl. Phys. Proc. Suppl., 119:365–367, 2003. [,365(2002)].

98



34. U. J. Wiese. C periodic and G periodic QCD at finite temperature. Nucl. Phys.,
B375:45–66, 1992.

35. Christopher Kelly. LATTICE2015, 2015.
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