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We study the implications of the ’t Hooft anomaly (i.e., obstruction to gauging) on conformal field theory,
focusing on the case when the global symmetry is Z2. Using the modular bootstrap, universal bounds on
(1þ 1)-dimensional bosonic conformal field theories with an internal Z2 global symmetry are derived. The
bootstrap bounds depend dramatically on the ’t Hooft anomaly. In particular, there is a universal upper bound
on the lightest Z2 odd operator if the symmetry is anomalous, but there is no bound if the symmetry is
nonanomalous. In the nonanomalous case, we find that the lightest Z2 odd state and the defect ground state
cannot both be arbitrarily heavy. We also consider theories with aUð1Þ global symmetry, and comment that
there is no bound on the lightest Uð1Þ charged operator if the symmetry is nonanomalous.
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I. INTRODUCTION AND SUMMARY OF RESULTS

It is well known that ’t Hooft anomalies (i.e., obstruction
to gauging) of global symmetries have dramatic conse-
quences on the gapped phases of quantum systems.1 For
example, a nontrivial ’t Hooft anomaly implies that, in a
gapped phase, the symmetry must either be spontaneously
broken, or there is a topological quantum field theory
(TQFT) matching the anomaly. In this paper, we study the
constraints from ’t Hooft anomalies on the gapless phases
of quantum systems—described by conformal field theory
(CFT)—employing the techniques of the conformal boot-
strap (see [3–6] for reviews).
An intrinsic set of observables in a CFT are the local

operators and their correlation functions. Using the oper-
ator-state map, the local operators are in one-to-one
correspondence with the states in the Hilbert space H
quantized on the sphere. The scaling dimension Δ of the
local operator is mapped to the energy of the state on the

sphere, whose finite size renders the spectrum discrete.
Does the ’t Hooft anomaly constrain the spectrum of local
operators in any way? Specifically, given a global sym-
metry G with ’t Hooft anomaly α, we ask the following:
(1) Is there a universal upper bound on the scaling

dimension Δ of the lightest G-charged local
operator?

(2) How does the bound, if it exists, depend on the
’t Hooft anomaly α?

We approach these general questions from the simplest
possible setup. We consider a bosonic, unitary CFT in
(1þ 1) spacetime dimensions with an internal, unitary Z2

global symmetry, either with or without ’t Hooft anomaly.2

We find that the bound depends dramatically on the ’t Hooft
anomaly of the global symmetry. Our key finding is that

there is a universal upper bound on the scaling
dimension Δ of the lightest Z2 odd operator if the Z2

is anomalous, but not otherwise.

This result is another manifestation of the moral that an
anomalous global symmetry is harder to “hide” in the
infrared: it either implies the vacuum cannot be trivially
gapped in a gapped phase, or it constrains the light charged
operator spectrum in a gapless phase.3 This universal upper
bound for an anomalous Z2 is shown in Fig. 1.
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1Throughout this paper, the term “anomaly” will always refer
to the ’t Hooft anomaly of a global symmetry. We emphasize that
a symmetry with ’t Hooft anomaly is still a true global symmetry,
but there is an obstruction to gauging it. This is to be contrasted
with a different but related concept, the Adler-Bell-Jackiw
anomaly [1,2], where the axial “symmetry” is not a true global
symmetry because the associated current is not conserved. 2We use (1þ 1)d and 2d interchangeably.

3The scaling dimension of the lightest nonvacuum operator in a
given sector of the CFT is referred to as the “gap” in that sector.
Equivalently, this is the gap in the Hilbert space quantized on a
spatial circle, whose finite size renders the spectrum discrete. The
gapless phase of the system is described by the CFTon a real line
R, where the gap vanishes.
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We argue that the same relation between the existence of
a universal bound and the ’t Hooft anomaly also holds true
if the symmetry group is Uð1Þ. Indeed, previous universal
bounds for the lightest Uð1Þ charged operator in the
literature [7–9] are restricted to Uð1Þ global symmetries
generated by holomorphic currents, which are always
anomalous (i.e., cannot be gauged). However, there are
more general Uð1Þ global symmetries that are not gen-
erated by holomorphic currents (e.g., the momentum and
the winding symmetry in the free compact boson theory),
and they can be nonanomalous. For any such nonanom-
alous Uð1Þ, we point out that there is no bound on the
lightest Uð1Þ charged operator. We further discuss the
interpretation of our bounds from the weak gravity con-
jecture [10] in AdS3=CFT2.
Below, we provide an overview of our methods for

deriving the above universal bounds.

A. Topological defect lines and anomalies

An invariant way to characterize a global symmetry and
its ’t Hooft anomaly is by the associated (invertible)
topological defect lines L [11–23]. See [24,25] for modern
applications of topological defect lines to renormalization
group flows and gauging.4 These are extended objects in
quantum field theory whose contraction of a loop around a
local operator ϕðxÞ implements the symmetry transforma-
tion. In the case of a Uð1Þ continuous global symmetry that
is associated to a conserved Noether current JμðxÞ, the
contour integral of the latter along a curve L defines a

continuous family of topological defect lines eiθ
R
L
dsμJμ

labeled by an angle θ. The topological property of the line
follows from the conservation of the current Jμ.
The topological defect lines obey a fusion relation that is

simply the group multiplication law of the associated global
symmetry. Furthermore, the locality property of the topo-
logical defect lines implies that they obey crossing rela-
tions. The more general structure of the crossing relations is
described by the mathematics of fusion categories [26,27].
The ’t Hooft anomalies of the global symmetry are encoded
in and classified by the crossing relations.
In the presence of a global symmetry, a theory can be

quantized with twisted boundary conditions on a spatial
circle. The twisting can be understood as the insertion of a
topological defect line associated with the global sym-
metry. This defines a Hilbert space which will be called the
defect Hilbert space HL. The ’t Hooft anomaly constrains
the spin content of HL as follows:

s ∈

8<:
Z
2

ðnonanomalousZ2Þ;
1
4
þ Z

2
ðanomalousZ2Þ:

ð1:1Þ

Note that even though we start with a bosonic CFT, there
are anyonic or fermionic operators living at the end of the
Z2 line, depending on whether the Z2 is anomalous or not.
In the nonanomalous case, this is analogous to the emergent
fermionic excitations of lattice spin models [28], and we
will review a general CFT derivation in [25]. This spin
selection rule in turn constrains the light operator spectrum
in the Hilbert space of local operators H via modular
transformations, as we will discuss below.

B. Modular bootstrap

Our method for deriving universal bounds is by exploit-
ing the general consistency condition of 2d CFTs on a
torus. In particular, the invariance the torus partition
function Zðτ; τ̄Þ under modular transformations puts strong
constraints on the operator content of the theory. For
example, by considering a high/low temperature limit of
the partition function, Cardy famously derived a universal
formula for the asymptotic density of heavy local operators
[29]. Extending this success, the modern modular bootstrap
program has been developed to study, among others, a
medium temperature expansion of the torus partition
function and its consistency with modular invariance. It
generalizes the Cardy constraints on the heavy operators to,
in particular, the gap and degeneracies in the spectrum in
any 2d CFT [30–36]. It has been proven that the lightest
primary operator above the vacuum is universally bounded
from above by c

6
þ 0.474 for all c > 1 CFTs [30]. In the

large c limit, this bound has recently been improved to
c
9.1 þOð1Þ [36].

FIG. 1. Upper bound on the lightest Z2 odd operator in a 2d
CFTwith an anomalous Z2 symmetry, as a function of the central
charge c for c ≥ 1. The region below the curve is allowed. Thedsuð2Þ1 WZW model with Δ−

gap ¼ 1
2
saturates the bound at c ¼ 1.

4In this paper, we focus on invertible topological defect lines,
which are associated to global symmetries. There are also
noninvertible (“nonsymmetry”) topological defect lines that have
interesting consequences on the dynamics of quantum field
theory (QFT) under renormalization group (RG) flows [25].
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In the presence of a Z2 topological defect line L, we can
consider torus partition functions with L extending along
the time or spatial direction, which we denote as ZLðτ; τ̄Þ
and ZLðτ; τ̄Þ, respectively. They admit the following
interpretation as sums over different Hilbert spaces:

ZLðτ; τ̄Þ ¼ TrHL
½qL0−c=24q̄L̄0−c=24�;

ZLðτ; τ̄Þ ¼ TrH½L̂qL0−c=24q̄L̄0−c=24�; ð1:2Þ

where L̂ is the generator of the Z2. The modular crossing
equation we are to explore is

crossing∶ Zð−1=τ;−1=τ̄Þ ¼ Zðτ; τ̄Þ;
ZLð−1=τ;−1=τ̄Þ ¼ ZLðτ; τ̄Þ: ð1:3Þ

On the other hand, the positivity statement is that the
expansions of Z�ðτ; τ̄Þ and ZLðτ; τ̄Þ in Virasoro characters
χhðτÞχh̄ðτ̄Þ have non-negative coefficients:

Z�ðτ; τ̄Þ≡ 1

2
½Zðτ; τ̄Þ � ZLðτ; τ̄Þ� ¼

X
ðh;h̄Þ∈H

n�
h;h̄
χhðτÞχh̄ðτ̄Þ;

ZLðτ; τ̄Þ ¼
X

ðh;h̄Þ∈HL

ðnLÞh;h̄χhðτÞχh̄ðτ̄Þ;

positivity∶ n�
h;h̄
; ðnLÞh;h̄ ∈ Z≥0: ð1:4Þ

The information of the ’t Hooft anomaly enters through the
spin content of the defect Hilbert space HL. It follows that
the partition function ZL is invariant under the Γ0ð2Þ
congruence subgroup if the Z2 is non-anomalous, and
invariant under Γ0ð4Þ if anomalous. The relation between
the modular crossing equations and anomalies has been
discussed extensively in [37–41].

C. Summary of results

The conformal bootstrap program has produced drastic
improvements to computational techniques that make
possible the precision study of constraints from modular
invariance [42]. Employing these techniques, we find
precise bounds in various sectors of the Hilbert space as
functions of the central charge c. At small values of c, our
bounds are saturated by a number of theories, including
the free compact boson, the ðE7Þ1 WZW model, and
several B- and D-series WZW models. We highlight our
results below.

(i) For either the nonanomalous or anomalous case,
there is a bound on the lightest Z2 even primary. The
bounds for c < 25 are presented in Figs. 14 and 15.

(ii) When theZ2 is anomalous, we find an analytic bound
for the lightest Z2 odd operator for 1 < c < 3:

Δ−
gap ≤ ðŷþ 1Þ c

12
; ð1:5Þ

where ŷ is the largest root of a cubic polynomial
α½M−ðΔ; tÞ� (4.17), whose coefficients depend on c.
More refined numerical bounds that apply to a larger
range of values of c are presented in Fig. 15
(also Fig. 1).

(iii) When the Z2 is nonanomalous, we find that the
lightest Z2 odd state (“order”) and the defect Hilbert
space ground state (“disorder”) cannot both be
arbitrarily heavy relative to c.5 This “order-disorder”
bound is presented in Fig. 17.

(iv) RG flows preserving only a Z2 symmetry generi-
cally do not end at gapless fixed points with 1 <
c < 7 without fine-tuning. In other words, there is
no Z2-protected gapless phase for 1 < c < 7 with-
out fine-tuning. If the Z2 is nonanomalous, then the
range is further extended to 1 < c < 7.81.

This paper is organized as follows. In Sec. II, we
review the formulation of a Z2 symmetry and its ’t Hooft
anomaly using topological defect lines, and derive the
modular properties of the torus partition functions with defect
insertions. In Sec. III, we set up the modular bootstrap
equations, and introduce the linear functional method that
we use to derive bounds. In Sec. IV, we present an analytic
functional that implies a simple bound on the Z2-odd
operators in the presence of ’t Hooft anomaly, and argue
for the nonexistence of a bound when the Z2 is nonanom-
alous. SectionVpresents further refinedbounds and discusses
the physical implications. Finally, Sec. VI discusses how our
results for Z2 extend to theories with Uð1Þ symmetry. In the
Appendixes, we review a list of theories with Z2 symmetry,
determine the ’t Hooft anomalies, and compute the lightest
scaling dimension in each sector of each theory.

II. Z2 SYMMETRY AND ITS ANOMALY
IN TWO DIMENSIONS

We consider unitary, bosonic 2d conformal field theories
with an internal, unitary global symmetry group. We
assume that the symmetry is unbroken, and there is a
unique weight ðh ¼ 0; h̄ ¼ 0Þ operator, namely, the identity
operator. In 2d, the unitary operator implementing a global
symmetry transformation is a topological defect line. The
definition and general properties of these topological defect
lines and their ’t Hooft anomalies are discussed extensively
in [24,25] from a modern viewpoint. In this section, we
present a self-contained review of [25] specialized to the
case of Z2 symmetry.

A. Topological defect lines and the defect Hilbert space

For quantum field theory in any spacetime dimension, a
(0-form) global symmetry transformation is implemented

5In the anomalous case, the same statement is also true, but
follows trivially from the existence of an upper bound on the
lightest Z2 odd state alone.
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by a codimension-one topological defect [43,44]. Physical
observables, including correlation functions, can be dressed
with these topological defects. The basic property of
topological defects is that correlation functions are invari-
ant under any continuous deformation of the defects that
preserves their junctions. This implies that the stress tensor
commutes with the topological defect up to contact terms.
Throughout this paper, we assume that the conformal field
theory is on a 2d manifold with vanishing Ricci scalar.6

When the global symmetry transformation is Uð1Þ, the
defect associated to a rotation by angle θ is UθðΣÞ ¼
exp½iθ RΣ ⋆ J�, where JμðxÞ is the Noether current and Σ is
a codimension-one manifold (sometimes taken to be a
constant time slice). The topological property follows from
the conservation of the Noether current, d ⋆ J ¼ 0.
In 2d, such codimension-one topological defects are

lines. Consider the topological line L associated to an
internal unitary Z2 symmetry in a bosonic 2d CFT. The Z2

line implements a Z2 action on the Hilbert space H when
quantized on a circle S1. This action can be realized by
wrapping the Z2 line along the compact S1 direction at a
fixed time on the cylinder S1 ×R, acting on a state jϕi ∈ H
prepared at an earlier time (see Fig. 2). We will denote this
Z2 unitary operator as

L̂∶ H → H: ð2:1Þ
Via the operator-state correspondence, the topological line
also implements the Z2 action on local operators. As we
sweep the Z2 line past a Z2 even/odd local operator ϕðxÞ,
the correlation function changes by a � sign (see Fig. 4).
The fusion of topological lines obeys the group multi-

plication law. Namely, as we bring two parallel Z2 circles
together, they fuse to a trivial line (see Fig. 3). Thus
L̂2 ¼ þ1. Since the Z2 line is its own inverse, we do not
need an orientation for the line. We can decompose H into
the Z2 even and odd subsectors under L̂:

H ¼ Hþ ⊕ H−: ð2:2Þ

Consider placing the theory on a cylinder S1 ×R with L
running along the time R direction (see Fig. 5). The
topological line L intersects with the spatial S1, and
therefore modifies the quantization by a twisted periodic
boundary condition. This defines a defect Hilbert space
denoted by HL.

7 Via the operator-state correspondence, a

defect Hilbert space state jψi ∈ HL is mapped to an
operator living at the end of the Z2 line.8

Since the topological line commutes with the stress
tensor, the states in the defectHilbert spaceHL are organized
into representations of the left and rightVirasoro algebras. In
particular, the defectHilbert space states can be diagonalized
to have definite conformal weights ðh; h̄Þ.
We can generalize the above construction by inserting

multiple vertical topological lines along the time direction
on the cylinder. This defines a more general defect Hilbert
space HLL…L. In the case of Z2 lines, we can fuse these
vertical lines pairwise to the trivial line. This shows that the
defect Hilbert space of an even number of lines is
isomorphic to the Hilbert spaceH of local operators, while
that of an odd number of lines is isomorphic to the defect
Hilbert space HL. In particular, the defect Hilbert space
HLL, which via the operator-state correspondence are the
operators living on the line, is isomorphic to the Hilbert
space H of local operators.
Finally, we should require that the global symmetry acts

faithfully on local operators, i.e., the only topological
defect line that commutes with all local operators is the
trivial line. It follows that the defect Hilbert space HL
contains no weight-(0,0) state, otherwise the topological
line can be “opened up” to commute with all local
operators. See Sec. 2.2.5 of [25] for a detailed discussion.

FIG. 2. The black line depicts the topological defect line L for
the global symmetry Z2. The Z2 action on the Hilbert space can
be realized by wrapping the line around the compact circle on the
cylinder.

6On a curved manifold, there is an interesting orientation-
reversal anomaly for an anomalous Z2 line, coming from the
contact term between the stress tensor and the line. See Sec. 2.4 of
[25]. This results in a phase change aswe deform an anomalousZ2

line across a manifold with nonzero Ricci scalar curvature.
7When the Z2 is nonanomalous, the Z2 even sector Hþ

L of the
defect Hilbert space HL before gauging is the twisted sector of
the orbifold theory.

8It was shown in Sec. 2.2.4 of [25] that the defect Hilbert space
HL of a topological defect line L is never empty in a 2d unitary,
compact, bosonic CFT with a unique vacuum. By the operator-
state correspondence, it means that every topological defect
line must be able to end on some (nontopological) pointlike
operator(s), i.e., all lines are breakable.

On the other hand, in a 2d theory with degenerate vacua, the
defect Hilbert space HL might be empty. For example, this is the
case in the Z2 gauge theory describing the spontaneously broken
phase. By the operator-state correspondence, such a line is not
breakable.
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B. ’t Hooft anomaly

In a bosonic 2d theory, the ’t Hooft anomaly of a unitary
Z2 symmetry is classified by the group cohomology
H3ðZ2; Uð1ÞÞ ¼ Z2, which manifests in the crossing rela-
tion of L. The 3d symmetry-protected topological phase is
exp½2πi

2

R
3d A ∪ A ∪ A� where A is the discrete background

one-form gauge field.
Consider a general correlation function of local operators

and topological lines. Let us focus on a local patch depicted
by the gray circle on the left in Fig. 6, where there are
two segments of Z2 lines. This defines a state of weight
ðh ¼ 0; h̄ ¼ 0Þ in the defect Hilbert space HLLLL on the
boundary of this patch. Since HLLLL ≃H by fusing the
four vertical Z2 lines, the subspace of such weight-(0,0)
states, denoted by VLLLL, is one-dimensional and gener-
ated by the identity operator.
Next, we perform a crossing in that local patch without

modifying the configuration outside the patch, so that we
end up with the configuration on the right in Fig. 6. How is
the new correlation function related to previous one? Since
VLLLL is one-dimensional, the state corresponding to the
right figure must be proportional to the state on the left. We
will denote this proportionality constant by α.
What is the constraint on α? By applying the crossing in

Fig. 6 twice, we return to the original configuration in the
local patch, multiplied by α2. Thus we conclude that
α2 ¼ 1. In more general terms, this consistency condition

is the cocycle condition of H3ðG;Uð1ÞÞ, which classifies
the bosonic anomaly of a global symmetry G [37,45,46], in
the case of G ¼ Z2.
As we will argue now, a nonanomalous Z2 line has

α ¼ þ1, while an anomalousZ2 line has α ¼ −1. Indeed, a
configuration ofZ2 lines can be thought of as a background
Z2 gauge field on the manifold. The crossing in Fig. 6 can
be achieved by performing a Z2 gauge transformation in
the area between the two lines. If the correlation function is
not invariant under the gauge transformation in the pres-
ence of background gauge fields (i.e., if α ¼ −1), then it is
by definition anomalous.
Another pragmatic way to detect the anomaly (α ¼ −1)

is by the ambiguity/inconsistency in constructing the torus
partition function of the Z2 orbifold theory.

9 Let us attempt
to compute the torus partition function of the would-be
orbifold theory, which can be written as a sum of four terms
(times a factor of 1

2
). The first two terms account for the

contributions from the Z2 even states in the H, while the
last two terms are from the Z2 even states in the defect
Hilbert space HL. A potential ambiguity arises for the last
term, which is shown in Fig. 7. When α ¼ þ1, there is no
ambiguity in resolving the cross “þ” of twoZ2 lines, hence
there is no ’t Hooft anomaly (i.e., no obstruction to
orbifolding). On the other hand, if α ¼ −1, then the cross
“þ” in Fig. 7 is ambiguous and depends on the choice of
resolution. In particular, the two resolutions in Fig. 8 differ
by a sign, and neither yields a modular invariant torus
partition function. Thus we cannot consistently compute
the torus partition function of the would-be orbifold theory
when α ¼ −1, which means that the Z2 is anomalous.

C. Spin selection rule

All local operators in a bosonic 2d CFT have integer
spins s≡ h − h̄, by the requirement of mutual locality.
However, an operator ψ living at the end of a topological

FIG. 3. The topological lines obey the group multiplication law
under fusion.

FIG. 4. As we sweep the Z2 line past a local operator ϕ, the
correlation function might change by a sign.

FIG. 5. The defect Hilbert spaceHL of a Z2 line quantized on a
circle S1. A state in the defect Hilbert space is mapped to an
operator living at the end of the Z2 line via the operator-state
correspondence.

9Since H2ðZ2; Uð1ÞÞ ¼ 1, we do not have to consider the
discrete torsion [47].
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defect line, which by the operator-state correspondence
maps to a state in the defect Hilbert space HL, need not
obey this rule. This is because as we circle a local operator
ϕ around ψ , the former will be acted on by the topological
defect line attached to ψ .
In this subsection, we derive the constraints on the spins

h − h̄ of states in the defect Hilbert space HL. Indeed, we
find that the states in the defect Hilbert spaceHL generally
do not have integer spins. Along the way, we also discuss
an interesting spin-charge relation for states in the defect
Hilbert space. The constraints on the spins for a Zn line can
be found in Sec. 4.4 of [25] (see also [48]).
Let us start by defining a Z2 action on the defect Hilbert

spaceHL, analogous to the L̂ action on the Hilbert spaceH
of local operators. The first attempt is to represent such an
action onHL as in Fig. 7. However, such a configuration is
potentially ambiguous because of the cross “þ” between
the two lines. To make sense of the cross, there are two
possible resolutions, as shown in Fig. 8, and each defines an
action on the defect Hilbert spaceHL. We denote these two
actions on HL by

L̂�∶ HL → HL: ð2:3Þ

The two actions are related by a crossing move (Fig. 6):

L̂þ ¼ αL̂−: ð2:4Þ

Thus, when the Z2 is nonanomalous (α ¼ þ1), the con-
figuration in Fig. 7 is unambiguous and can be interpreted
as either L̂þ or L̂−. However, when the Z2 is anomalous
(α ¼ −1), then the two resolutions differ by a sign, and the
configuration in Fig. 7 is ambiguous.
Let us discuss how L̂� acts on the a state with conformal

weight ðh; h̄Þ in the defect Hilbert spaceHL. First, applying
the crossing move to the left of Fig. 9 and then unwinding
the line, we have

ðL̂þÞ2 ¼ α; ðL̂−Þ2 ¼ α: ð2:5Þ

To determine L̂�jh; h̄i, we perform an operator-state map
from the cylinder to the plane. After this map, we see that
the action of L̂� corresponds to the unwinding of a Z2 line,
as depicted in Fig. 10, giving

L̂�jh; h̄i ¼ e�2πiðh−h̄Þjh; h̄i: ð2:6Þ

This phase in (2.6) is only consistent with (2.5) if the spin
s ¼ h − h̄ obeys

FIG. 6. The crossing relation of aZ2 line L (shown in black) on
a local patch of a 2-manifold. By applying this crossing relation
twice, we conclude that α has to be either þ1 or −1.

FIG. 7. A Z2 action can be defined unambiguously on the
defect Hilbert space HL when the bulk Z2 is nonanomalous.
Because α ¼ þ1 in Fig. 6, there is no ambiguity in resolving the
cross “þ” of the two lines.

FIG. 8. When the Z2 is anomalous (i.e., α ¼ −1), the two
resolutions L̂� of the cross “þ” lead to different actions on the
defect Hilbert space HL. From Fig. 6, we see that L̂þ ¼ αL̂−.

FIG. 9. The square of L̂þ can be computed using the crossing
relation in Fig. 6.
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s ∈

(
Z
2
; ðα ¼ þ1; nonanomalousZ2Þ;

1
4
þ Z

2
; ðα ¼ −1; anomalousZ2Þ;

ð2:7Þ

for any jh; h̄i ∈ HL.
Importantly, if the Z2 is anomalous, it follows that the

scaling dimensions Δ ¼ hþ h̄ of states in the defect
Hilbert space HL are bounded from below by 1

4
:

ðα ¼ −1Þ Δ ≥
1

4
; ∀ jh; h̄i ∈ HL: ð2:8Þ

This fact will be crucial when we argue for a universal
bound on operators in the Z2 odd sector, when the Z2 is
anomalous (see Sec. IV B). This lower bound on the defect
Hilbert space ground state implies that an anomalous Z2

line in a gapped phase—where all the operators in H and
HL have vanishing weight—is unbreakable (i.e., HL
is empty).
Finally, let us comment on an interesting spin-charge

relation in the defect Hilbert space HL. Since L̂þ differs
from L̂− only by an overall phase α, we focus on the former
from now on. From (2.6), we see that the eigenvalue of L̂þ

is determined by the spin s of the state in the defect Hilbert
space HL. The spin-charge relation on HL is then as
follows. When the Z2 is nonanomalous,

ðα ¼ þ1ÞL̂þ ¼
�þ1; if s ∈ Z;

−1; if s ∈ 1
2
þ Z:

ð2:9Þ

Note that even though the 2d CFT is bosonic, we encounter
half-integral spin operators living at the end of Z2 lines.
These states are Z2 odd, and are projected out if we were to
gauge the Z2 symmetry. These half-integral spin states are
the gapless version of the emerging fermionic excitations
from stringlike objects in the lattice spin models [28]. On
the other hand, when the Z2 is anomalous,

ðα ¼ −1ÞL̂þ ¼
�þi; if s ∈ 1

4
þ Z;

−i; if s ∈ − 1
4
þ Z:

ð2:10Þ

Hence there are anyonic excitations at the endpoints of
anomalous Z2 lines.

LetHþ
L denote the subsector ofHL which has L̂þ ¼ þ1

in the nonanomalous case, or that with L̂þ ¼ þi in the
anomalous case. Similarly, let H−

L denote the subsector of
HL in which all states have L̂þ ¼ −1 in the nonanomalous
case, or thatwith L̂þ ¼ −i in the anomalous case. The defect
Hilbert space Hilbert space HL can be decomposed as

HL ¼ Hþ
L ⊕ H−

L: ð2:11Þ

D. Relation to 3d TQFTs

If we couple a 2d CFTwithZ2 symmetry to a 3d SPTand
gauge the 2d-3d system, then the operators living at the end
of the originalZ2 line (which no longer exists in the gauged
theory) now become the endpoints of the anyons in the 3d
TQFT. Hence the spin selection rule (2.7) in HL is related
to the spins of the anyons in the 3d TQFT. We discuss this
relation in more detail below.10

1. The anomalous case

We start with a 2d bosonic CFT with an anomalous Z2

symmetry. The spin selection rule in HL is s ¼ h−
h̄ ∈ 1

4
þ Z

2
. We couple the 2d CFT to a the 3d SPT

2πi
2

R
3d A ∪ A ∪ A, where by anomaly inflow the Z2 sym-

metry of this 2d-3d system can now be gauged. In the 3d
bulk, we obtain the Dijkgraaf-Witten theory [49] associated
with the nontrivial element ofH3ðZ2; Uð1ÞÞ ¼ Z2. This 3d
bosonic TQFT admits a continuum description [43,50,51]

S ¼ 2i
2π

Z
3d
bdaþ 2i

4π

Z
3d
ada; ð2:12Þ

where a and b are (continuous) 1-form gauge fields. There
are four anyons: the trivial line 1, the electric line e, the
magnetic line m, and the dyonic line d. Their spins are
given by11

anyon 1 e¼ei
H
a m¼ei

H
b d¼ei

H
aþb

spin 0 0 −1
4

1
4

ð2:13Þ

In the gauged 2d-3d system, the Z2 even local operators of
the ungauged theory are local operators on the 2d boundary.
The Z2 odd local operators of the ungauged theory are
now the endpoints of the electric line e, whose spin is 0.
The operators with spin 1

4
þ Z in the defect Hilbert space

HL are the endpoints of the dyonic line d, which has spin 1
4
.

Finally, the rest of the operators with spin − 1
4
þ Z in HL

are the endpoints of the magnetic line m, which has spin
− 1

4
. We summarize the above relation as follows:

FIG. 10. Using the operator-state correspondence map from the
cylinder S1 × R to the plane R2, we can map the action of L̂þ on
a state jψi ∈ HL to a “lassoing” configuration on the plane (left).
The Z2 line can then be unwound to give the right figure, at a
price of a phase due to the fractional spin of the operator ψ living
at the end of the defect.

10We thank Zohar Komargodski and Pavel Putrov for dis-
cussions on this point.

11Recall that the spin of an anyon in 3d TQFT is defined
modulo integer, while the spin s ¼ h − h̄ of a 2d CFT operator is
a real number.
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ungauged 2dCFT Hþ∶s ∈ Z H−∶s ∈ Z Hþ
L∶s ∈

1
4
þ Z H−

L∶s ∈ − 1
4
þ Z

anyon 1 e d m

2. The nonanomalous case

The spin selection rule in HL for a nonanomalous Z2 is
s ¼ h − h̄ ∈ Z

2
. We start with a 2d CFT with a nonanom-

alous Z2 coupled to a trivial 3d Z2 SPT, and then make the
Z2 gauge field dynamical. In the bulk, we obtain the 3d Z2

gauge theory (without the Dijkgraaf-Witten twist):

S ¼ 2i
2π

Z
3d
bda; ð2:14Þ

where a and b are 1-form continuous gauge fields. The
anyons in this 3d TQFT are

anyon 1 e¼ei
H
a m¼ei

H
b d¼ei

H
aþb

spin 0 0 0 1
2

ð2:15Þ

In the gauged 2d-3d system, the 2d operators become the
endpoints of different anyons as follows:

ungauged 2dCFT Hþ∶s ∈ Z H−∶s ∈ Z Hþ
L∶s ∈ Z H−

L∶s ∈
1
2
þ Z

anyon 1 e m d

E. Computation of the anomaly

The above discussion shows that given a bosonic 2d CFT
with a Z2 symmetry, there is a simple algorithm to compute
its anomaly: one first puts the theory on a cylinder S1 × R
in the presence of a Z2 line along the time R direction,
which modifies the periodic boundary condition (as in
Fig. 5). Then, from the spins of the states in this Hilbert
space HL, we can determine the anomaly from the spin
selection rule (2.7).
The spectrum of the defect Hilbert space HL is deter-

mined by the Z2 action on H via a modular S trans-
formation. We first start with the torus partition function
with the Z2 line wrapped around the spatial S1 at a constant
time. This can be interpreted as a trace over H with a Z2

action inserted:

ZLðτ; τ̄Þ≡ TrH½L̂qL0−c=24q̄L̄0−c=24�; ð2:16Þ

where L̂∶H → H is theZ2 symmetry realized on theHilbert
space H. Here, q ¼ expð2πiτÞ and q̄ ¼ expð−2πiτ̄Þ. The
modular S∶τ → −1=τ transformation then gives us the
partition function over the defect Hilbert space HL:

S½ZL�ðτ; τ̄Þ ¼ ZLðτ; τ̄Þ≡ TrHL
½qL0−c=24q̄L̄0−c=24�;

where S½f�ðτ; τ̄Þ≡ fð−1=τ;−1=τ̄Þ. In this way, we obtain
the defect Hilbert space spectrum from the Z2 action on the
Hilbert space H of local operators. The spin content of
ZLðτ; τ̄Þ then reveals the anomaly of the Z2 symmetry.
We can further perform a modular T∶τ → τ þ 1 trans-

formation on ZLðτ; τ̄Þ to obtain the left figure of Fig. 8:

T½ZL�ðτ; τ̄Þ ¼ ZLþ
L ðτ; τ̄Þ≡ TrHL

½L̂þqL0−c=24q̄L̄0−c=24�;

where T½f�ðτ; τ̄Þ≡ fðτ þ 1; τ̄ þ 1Þ. The modular S trans-
formation of ZLþ

L then depends on the anomaly:

S½ZLþ
L �ðτ; τ̄Þ ¼ ZL−

L ðτ; τ̄Þ ¼ αZLþ
L ðτ; τ̄Þ; ð2:17Þ

where we have used L̂þ ¼ αL̂−. The computation of more
general discrete group anomalies from the torus partition
function is discussed in [37] (see also [38,40,41]).
These modular properties can be summarized as follows.

When the Z2 is nonanomalous, the partition function
ZLðτ; τ̄Þ is invariant under ST2S and T, which generate
the congruence subgroup Γ0ð2Þ. When the Z2 is anoma-
lous, the partition function ZLðτ; τ̄Þ is invariant under ST4S
and T, which generate the congruence subgroup Γ0ð4Þ.
We illustrate this computation in two examples, one with

a nonanomalousZ2, the c ¼ 1=2 Ising model, and the other
with an anomalous Z2, the c ¼ 1 self-dual free compact
boson.

1. Nonanomalous example: Ising model

The 2d Ising model has three Virasoro primaries, the
vacuum 1 with h ¼ h̄ ¼ 0, the energy operator ϵ with
h ¼ h̄ ¼ 1

2
, and the spin field σ with h ¼ h̄ ¼ 1

16
. There is a

Z2 symmetry that flips the sign of the spin field

L̂∶ 1 → 1; ϵ → ϵ; σ → −σ: ð2:18Þ
The torus partition function of the Ising model can be

written as the sum of the contributions from the three
primaries (and their descendants):

YING-HSUAN LIN and SHU-HENG SHAO PHYS. REV. D 100, 025013 (2019)

025013-8



Zðτ; τ̄Þ ¼ jχ0ðτÞj2 þ jχ1
2
ðτÞj2 þ jχ 1

16
ðτÞj2: ð2:19Þ

Their characters are

χ0ðτÞ ¼
1

2

� ffiffiffiffiffiffiffiffiffiffiffi
θ3ðτÞ
ηðτÞ

s
þ

ffiffiffiffiffiffiffiffiffiffiffi
θ4ðτÞ
ηðτÞ

s �
;

χ1
2
ðτÞ ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffi
θ3ðτÞ
ηðτÞ

s
−

ffiffiffiffiffiffiffiffiffiffiffi
θ4ðτÞ
ηðτÞ

s �
; χ 1

16
ðτÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
θ2ðτÞ
2ηðτÞ

s
;

ð2:20Þ

where the θi are the Jacobi theta functions, defined as
corrected θ2ðτÞ ¼ 2q1=8

Q∞
i¼1ð1 − qiÞð1 þ qiÞ2, θ3ðτÞ¼Q∞

i¼1ð1−qiÞð1þqi−1=2Þ2, θ4ðτÞ¼
Q∞

i¼1ð1−qiÞð1−qi−1=2Þ2,
and η is the Dedekind eta function defined as ηðτÞ ¼
q1=24

Q∞
i¼1ð1 − qiÞ. The torus partition function with the

Z2 action (Z2 line inserted along the spatial direction) is

ZLðτ; τ̄Þ ¼ jχ0ðτÞj2 þ jχ1
2
ðτÞj2 − jχ 1

16
ðτÞj2: ð2:21Þ

To perform the modular S transformation of ZLðτ; τ̄Þ, we
note that the modular S matrix is

S ¼ 1

2

0BB@ 1 1
ffiffiffi
2

p

1 1 −
ffiffiffi
2

pffiffiffi
2

p
−

ffiffiffi
2

p
0

1CCA: ð2:22Þ

It follows that the defect Hilbert space partition function is

ZLðτ; τ̄Þ ¼ S½ZL�ðτ; τ̄Þ
¼ χ0ðτÞχ1

2
ðτ̄Þ þ χ1

2
ðτÞχ0ðτ̄Þ þ χ 1

16
ðτÞχ 1

16
ðτ̄Þ: ð2:23Þ

Hence, we see that there are three primaries in the defect
Hilbert space HL, with weights

ðh; h̄Þ ¼
�
0;
1

2

�
;

�
1

2
; 0

�
;

�
1

16
;
1

16

�
: ð2:24Þ

Via the operator-state correspondence, they are mapped to
operators living at the end of the Z2 line. The ð0; 1

2
Þ and

ð1
2
; 0Þ states are the free Majorana fermions with half

integral spins. The scalar ð 1
16
; 1
16
Þ state in the defect

Hilbert space is the disorder operator μðxÞ, which is not
mutually local with the spin field σðxÞ because the latter is
Z2 odd.
The spin spectrum in HL corresponds to the nonanom-

alous (α ¼ þ1) spin selection rule in (2.7). We therefore
conclude that the Z2 symmetry in the Ising model is
nonanomalous. Indeed, it is well known that the Ising CFT
is self-dual under the Z2 gauging.

We can further do a modular T transformation on ZL to
obtain ZLþ

L :

ZLþ
L ðτ; τ̄Þ ¼ −χ0ðτÞχ1

2
ðτ̄Þ − χ1

2
ðτÞχ0ðτ̄Þ þ χ 1

16
ðτÞχ 1

16
ðτ̄Þ:

ð2:25Þ

One can easily check that ZLþ
L is invariant under S, hence

ZLþ
L ðτ; τ̄Þ ¼ ZL−

L ðτ; τ̄Þ, consistent with α ¼ þ1. From ZLþ
L ,

we see that the two free fermions are Z2 odd and the
disorder operator μðxÞ is Z2 even. If we perform the Z2

orbifold, then the two free fermions are projected out, while
the disorder operator survives in the orbifold theory. On the
other hand, the original spin field σ is projected out because
it is Z2 odd. Therefore, under Z2 orbifolding, the order σ
and disorder μ operators are exchanged, implementing the
Kramers-Wannier duality [52].

2. Anomalous example: dsuð2Þ1 WZW model

The c ¼ 1 dsuð2Þ1 WZW model can be equivalently
described by the self-dual free compact boson. It has two
current algebra primaries, the vacuum j0; 0i and the spin- 1

2

primary (see Appendix A for our convention)����h¼1

4
; h̄¼1

4

�
�;�

¼ exp½�iXLð0Þ� iXRð0Þ�j0;0i: ð2:26Þ

This theory has an anomalous Z2 global symmetry which

commutes with the dsuð2Þ × dsuð2Þ current algebra, and acts
on the primaries by

L̂∶ j0;0i↦ j0;0i;
����14;14

�
�;�

↦−
����14 ;14

�
�;�

: ð2:27Þ

It is well known that the 2d CP1 model at θ ¼ π flows to

the dsuð2Þ1 WZW model in the IR. This Z2 anomaly has
been analyzed in the UV CP1 sigma model in [53,54].
The torus partition function without any line is

Zðτ; τ̄Þ ¼ jχ0ðτÞj2 þ jχ1
4
ðτÞj2; ð2:28Þ

where

χ0ðτÞ ¼
θ3ð2τÞ
ηðτÞ ; χ1

4
ðτÞ ¼ θ2ð2τÞ

ηðτÞ ; ð2:29Þ

are the dsuð2Þ current algebra characters.12 The modular S
matrix is

12As a slight abuse of notation, in this section, χhðτÞ denotes
the current algebra character of a primary with weight h, not the
Virasoro character (3.1).
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S ¼ 1ffiffiffi
2

p
�
1 1

1 −1

�
: ð2:30Þ

The torus partition function with the Z2 line inserted
along the spatial direction is

ZLðτ; τ̄Þ ¼ jχ0ðτÞj2 − jχ1
4
ðτÞj2: ð2:31Þ

The partition function over the defect Hilbert space is the
modular S transformation:

ZLðτ; τ̄Þ ¼ S½ZL�ðτ; τ̄Þ ¼ χ0ðτÞχ1
4
ðτ̄Þ þ χ1

4
ðτÞχ0ðτ̄Þ: ð2:32Þ

Hence we learn that the defect Hilbert space HL has the
following two current algebra primaries:���� 14 ; 0

�
�
↔ e�iXLð0Þ;

����0; 14
�

�
↔ e�iXRð0Þ: ð2:33Þ

Note in particular that they have spins� 1
4
. The correspond-

ing operators e�iXL;Rð0Þ are not local and are attached to the
end of the Z2 line. From the spin selection rule (2.7), we
conclude that this Z2 in the self-dual free compact boson
theory is anomalous.
Next, we can perform a modular T transformation on

ZLðτ; τ̄Þ to obtain the left figure of Fig. 8:

ZLþ
L ðτ; τ̄Þ ¼ TrHL

½L̂þqL0−1=24q̄L̄0−1=24�
¼ T½ZL�ðτ; τ̄Þ ¼ iχ0ðτÞχ1

4
ðτ̄Þ − iχ1

4
ðτÞχ0ðτ̄Þ:

ð2:34Þ

It follows that the spin- 1
4
states have L̂þ-charge þi, while

the spin-ð− 1
4
Þ states have L̂þ-charge −i. On the other hand,

the right figure of Fig. 8 can be obtained by acting T−1 on
ZLðτ; τ̄Þ:

ZL−
L ðτ; τ̄Þ ¼ TrHL

½L̂−qL0−1=24q̄L̄0−1=24�
¼ T−1½ZL�ðτ; τ̄Þ ¼ −iχ0ðτÞχ1

4
ðτ̄Þ þ iχ1

4
ðτÞχ0ðτ̄Þ:

ð2:35Þ

Since ZLþ
L ðτ; τ̄Þ ¼ −ZL−

L ðτ; τ̄Þ, we have confirmed the
α ¼ −1 sign in Fig. 6.

III. MODULAR BOOTSTRAP

We now discuss how the torus partition functions with
different configurations of topological defect lines are
related under modular S transforms, and how these rela-
tions together with the Hilbert space definition of these
partition functions allow a systematic study of universal
constraints. The 2d CFT will be assumed to be compact,
unitary, bosonic, and with c ¼ cL ¼ cR > 1.

With the exception of Sec. IV, we will define the gap in a
sector of the spectrum as the scaling dimension of the
lightest nondegenerate Virasoro primary. We will be
mainly interested in deriving an upper bound (which
depends on the central charge) on the gap in each sector
of the spectrum, and stressing the role of the ’t Hooft
anomaly.13

A. Partition functions and characters

We consider the following four torus partition functions
dressed with topological defect lines: no line Zðτ; τ̄Þ, a
single line along the spatial direction ZLðτ; τ̄Þ, a single line
along the time direction ZLðτ; τ̄Þ, and ZLþ

L ðτ; τ̄Þ as defined
in Sec. II E. We remind the readers of their definitions in
terms of traces over the Hilbert space H and the defect
Hilbert space HL:

where L̂∶H → H is the Z2 symmetry action on H while
L̂þ is an action defined on the defect Hilbert spaceHL (see
Fig. 8). The consistency of the partition functions under the
modular T transform is guaranteed by the spin selection
rule derived in Sec. II C. In the remainder, we will study the
nontrivial constraints imposed by the modular S transform
on the partition functions.
The assumption of c > 1 (together with the unitarity

bound h; h̄ > 0) simplifies the possible modules of the
Virasoro algebra. There is one degenerate module, i.e., the
vacuum module h ¼ 0, and a continuous family of non-
degenerate modules labeled by a positive conformal weight
h > 0. The Virasoro characters are given by

13There is no universal lower bound in each sector stronger
than the unitarity bound, which is 1

4
in HL for an anomalous Z2,

and 0 in every other case. For example, in the Hilbert space H of
local operators, one can achieve an arbitrarily small gap by
considering a sigma model CFTwith a large target space. For the
defect Hilbert space of an anomalous Z2, there is a universal
lower bound 1

4
on the ground state, but it is saturated by the self-

dual boson. Thus the nontrivial question is whether there is an
upper bound on the gap in each sector.
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χ0ðτÞ ¼ ð1 − qÞ q
−c−1

24

ηðτÞ ; χh>0ðτÞ ¼
qh−

c−1
24

ηðτÞ : ð3:1Þ

Combining the left with the right, there are three kinds of
Virasoro primaries:

ðvacuumÞ χ0ðτÞχ0ðτ̄Þ;
ðconserved currentÞ χ0ðτÞχh̄>0ðτ̄Þ; χh>0ðτÞχ0ðτ̄Þ;
ðnondegenerateÞ χh>0ðτÞχh̄>0ðτ̄Þ: ð3:2Þ

Since the Z2 line commutes with the stress tensor up to
contact terms, the defect Hilbert space states fall into
representations of the Virasoro algebras. It follows that
the torus partition function Zðτ; τ̄Þ and ZLðτ; τ̄Þ are both
given by a non-negative sum over Virasoro characters,

Zðτ; τ̄Þ ¼
X

ðh;h̄Þ∈H
nh;h̄χhðτÞχhðτ̄Þ; ð3:3Þ

ZLðτ; τ̄Þ ¼
X

ðh;h̄Þ∈HL

ðnLÞh;h̄χhðτÞχhðτ̄Þ; ð3:4Þ

where nh;h̄ ∈ Z≥0 and ðnLÞh;h̄ ∈ Z≥0 are the degeneracies
of Virasoro primaries of weight ðh; h̄Þ in H and in the
defect Hilbert space HL, respectively. In H, states have
non-negative conformal weights h, h̄ and integer spins:

ðh; h̄Þ ∈ H∶ h; h̄ ≥ 0; h − h̄ ∈ Z: ð3:5Þ
On the other hand, the defect Hilbert space states obey a
novel spin selection rule (2.7) that depends on the anomaly:

ðh; h̄Þ ∈ HL∶ h; h̄ ≥ 0; h − h̄ ∈
1 − α

8
þ Z

2
; ð3:6Þ

where a nonanomalousZ2 has α ¼ þ1while an anomalous
Z2 has α ¼ −1.
Recall that H can be decomposed into the Z2 even and

odd subsectors H ¼ Hþ ⊕ H−. Let the degeneracies of
primaries with weight ðh; h̄Þ in H� be n�

h;h̄
∈ Z≥0, respec-

tively. By definition, nh;h̄ ¼ nþ
h;h̄

þ n−
h;h̄
, and they are

related to Zðτ; τ̄Þ and ZLðτ; τ̄Þ by

Zþðτ; τ̄Þ≡ 1

2
½Zðτ; τ̄Þ þ ZLðτ; τ̄Þ� ¼

X
ðh;h̄Þ∈Hþ

nþ
h;h̄
χhðτÞχh̄ðτ̄Þ;

ð3:7Þ

Z−ðτ; τ̄Þ≡ 1

2
½Zðτ; τ̄Þ − ZLðτ; τ̄Þ� ¼

X
ðh;h̄Þ∈H−

n−
h;h̄
χhðτÞχh̄ðτ̄Þ:

ð3:8Þ
For the defect Hilbert space, recall that Hþ

L is the
subsector which has L̂þ ¼ ffiffiffi

α
p

, and H−
L is the subsector

which has L̂þ ¼ −
ffiffiffi
α

p
. Here

ffiffiffiffiffiffi
−1

p
is taken to be þi. Let

ðn�LÞh;h̄ ∈ Z≥0 be the degeneracies of Virasoro primaries
with weight ðh; h̄Þ in H�

L , respectively. By definition,
ðnLÞh;h̄ ¼ ðnþLÞh;h̄ þ ðn−LÞh;h̄, and they are related to
ZLðτ; τ̄Þ and ZLþ

L ðτ; τ̄Þ by

1

2

�
ZLðτ; τ̄Þ þ

1ffiffiffi
α

p ZLþ
L ðτ; τ̄Þ

	
¼

X
ðh;h̄Þ∈Hþ

L

ðnþLÞh;h̄χhðτÞχh̄ðτ̄Þ;

ð3:9Þ

1

2

�
ZLðτ; τ̄Þ −

1ffiffiffi
α

p ZLþ
L ðτ; τ̄Þ

	
¼

X
ðh;h̄Þ∈H−

L

ðn−LÞh;h̄χhðτÞχh̄ðτ̄Þ:

ð3:10Þ

B. Modular crossing equation

From Sec. II E, the crossing equations for the torus
partition functions Zðτ; τ̄Þ, ZLðτ; τ̄Þ, ZLðτ; τ̄Þ, ZLþ

L ðτ; τ̄Þ
under the modular S transform are0BBBBB@

Zðτ; τ̄Þ
ZLðτ; τ̄Þ
ZLðτ; τ̄Þ
ZLþ
L ðτ; τ̄Þ

1CCCCCA→
S

0BBBBB@
Zð−1=τ;−1=τ̄Þ
ZLð−1=τ;−1=τ̄Þ
ZLð−1=τ;−1=τ̄Þ
ZLþ
L ð−1=τ;−1=τ̄Þ

1CCCCCA

¼

0BBB@
1

1

1

α

1CCCA
0BBB@

Zðτ; τ̄Þ
ZLðτ; τ̄Þ
ZLðτ; τ̄Þ
ZLþ
L ðτ; τ̄Þ

1CCCA ð3:11Þ

Note that the anomaly α ¼ �1 explicitly enters into the
crossing equation.
The dependence on the anomaly in themodular transform

of ZLþ
L ðτ; τ̄Þ can be equivalently implemented via the spin

selection rule (2.7). Once the spin is specified, the action ofT
on a state is determined. In this way, we only have to
consider the three partition functions, Zðτ; τ̄Þ, ZLðτ; τ̄Þ,
ZLðτ; τ̄Þ, while the fourth one ZLþ

L ðτ; τ̄Þ can be obtained
by applying T on ZLðτ; τ̄Þ, i.e., ZLþ

L ðτ; τ̄Þ ¼ T½ZL�ðτ; τ̄Þ.
Define

Zðτ; τ̄Þ≡
0B@Zþðτ; τ̄Þ

Z−ðτ; τ̄Þ
ZLðτ; τ̄Þ

1CA: ð3:12Þ

Every component of the vector Z has a non-negative
expansion on the Virasoro characters [see (3.4), (3.7),
and (3.8)]. Then the crossing equation (3.11) under S
reduces to
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Zð−1=τ;−1=τ̄Þ ¼ FZðτ; τ̄Þ; ð3:13Þ

where the crossing matrix is

F≡
0B@

1
2

1
2

1
2

1
2

1
2

− 1
2

1 −1 0

1CA: ð3:14Þ

In this new way of writing the crossing equation, while the
anomaly α does not explicitly enter into the equation, the
allowed spins in the defect Hilbert space HL are con-
strained by the anomaly via (2.7).
We claim that for the purpose of constraining the gaps or

scalar gaps in the various sectors, we can assume without
loss of generality that in all sectors,

Zðτ; τ̄Þ ¼ Zðτ̄; τÞ; ð3:15Þ

which is equivalent to

n�
h;h̄

¼ n�̄
h;h
; ðn�LÞh;h̄ ¼ ðn�LÞh̄;h: ð3:16Þ

The resulting bounds apply to all partition functions, even
the ones that do not satisfy (3.15). In particular, they apply
to CFTs with cL ¼ cR but no time-reversal symmetry. The
reason is as follows. First, imposing this extra constraint
clearly makes the bounds stronger or remain the same.
Conversely, for any modular covariant Zðτ; τ̄Þ that does not
necessarily satisfy (3.15), its gap and scalar gap are the
same as those of Z0ðτ; τ̄Þ≡ 1

2
ðZðτ; τ̄Þ þ Zðτ̄; τÞÞ, which

does satisfy (3.15).14 Therefore, imposing (3.16) cannot
make the bounds stronger. Hence the claim. By assuming
(3.16), the partition function in every sector takes the form

Zðτ; τ̄Þ ¼
X
h

nh;hχhðτÞχhðτ̄Þ

þ
X
h>h̄

nh;h̄½χhðτÞχh̄ðτ̄Þ þ χh̄ðτÞχhðτ̄Þ�: ð3:17Þ

C. The linear functional method

The most general putative spectrum S ¼ fHþ;H−;HLg
we will consider contains the following:
(1) Vacuum (h ¼ h̄ ¼ 0) only in the untwisted Z2 even

sector Hþ.
(2) Conserved currents (h ¼ 0 or h̄ ¼ 0, but not both) in

all sectors, including twisted.
(3) Nondegenerate primaries (h; h̄ > 0) in all sectors.

Furthermore, the spins in H are integers while those in the
defect Hilbert space HL obey the spin selection rule (2.7).
The first assumption requires some explanations. Since

we assume that there is a unique vacuum in H that is

invariant under the global symmetry, there is no weight-
(0,0) operator in the Z2 odd sectorH−. In the defect Hilbert
spaceHL, on the other hand, the existence of a weight-(0,0)
state would have implied that the Z2 symmetry commutes
with all local operators (see Sec. 2.2.5 of [25]), thus
violating the assumption that global symmetry acts faith-
fully on local operators.
Let us write the modular crossing equation (3.13) in

component form as15

Zið−1=τ;−1=τ̄Þ −
X
j¼�;L

Fj
iZjðτ; τ̄Þ ¼ 0; ð3:18Þ

where the index i, j runs overþ;−;L, corresponding to the
untwisted Z2 even, untwisted Z2 odd, and the defect
Hilbert spaces, respectively. Next, we define Z̃iðτ; τ̄Þ≡
Zið−1=τ;−1=τ̄Þ, and introduce the following shorthand for
characters:

χh;h̄ðτ; τ̄Þ≡ χhðτÞχh̄ðτ̄Þ; χ̃h;h̄ðτ; τ̄Þ≡ χhð−1=τÞχh̄ð−1=τ̄Þ:
ð3:19Þ

The linear functional method is implemented as follows.
Suppose α is a linear functional acting on functions of τ, τ̄,
then

0 ¼
X
j

ðδjiα½Z̃j�− Fj
iα½Zj�Þ

¼
X
j;h;h̄

ðnjÞh;h̄ðδjiα½χ̃h;h̄�− Fj
iα½χh;h̄�Þ; ð3:20Þ

where ðniÞh;h̄’s are all non-negative integers. A putative
spectrum S ¼ fHþ;H−;HLg is ruled out if there exists a
functional such that for each j ¼ þ;−;L,X
i¼�;L

ðδjiα½χ̃h;h̄� − Fj
iα½χh;h̄�Þ ≥ 0; ∀ ðh; h̄Þ ∈ Hj: ð3:21Þ

In practice, the functional α will be taken to be linear
combinations of derivatives ∂m

τ ∂m̄
τ̄ evaluated at τ ¼ −τ̄ ¼ i.

To give an upper bound on the gap in a particular sector
labeled by j ¼ �;L, we assume that the nondegenerate
primaries inHj all have scaling dimensions above a certain

value Δj
gap, and ask if a functional α exists that satisfies the

non-negativity conditions. If it exists, then the assumption
is ruled out, so we lower Δj

gap and try again; if no such
functional α exists, then we raise Δj

gap and try again. This

14In this work, we do not use the fact that the degeneracies are
integers, so we are allowed to divide by 2.

15For notational convenience, we will allow ourselves
to freely raise and lower the � index, and identify Z� ¼ Z�,
ðn�Þh;h̄ ¼ ðn�Þh;h̄, etc. However, the ZL is completely different
from ZL; the former is the defect Hilbert space partition function,
while the latter is the partition function of H weighted by the Z2

action L̂.
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process is repeated until we find the smallestΔj
gap (to within

the targeted precision) for which such α exists. This
smallest Δj

gap is then the best bound on the gap in the j
sector. Note that we can subject S to other assumptions, say
the gaps in the other sectors, or the existence or nonexist-
ence of certain conserved currents, to get varying bounds
on the gap.
The gaps in the subsectors H�

L of HL can be distin-
guished from the spin-charge relations (2.9) and (2.10). For
the defect Hilbert space, however, we will only study the
overall gap in HL but not in the individual subsectors in
this paper.
We end this section with a technical comment. In

practice, it is easier to work with the reduced partition
function Ẑðτ; τ̄Þ, defined as

Ẑðτ; τ̄Þ≡ jτj12jηðτÞj2Zðτ; τ̄Þ: ð3:22Þ

The reduced partition functions Ẑ�ðτ; τ̄Þ; ẐLðτ; τ̄Þ satisfy
the same crossing equation (3.13) as before, i.e.,
Ẑð−1=τ;−1=τ̄Þ ¼ FẐðτ; τ̄Þ. The advantage of working
with the reduced partition functions is that they can be
expanded on the reduced Virasoro characters

χ̂h;h̄ðτ; τ̄Þ≡ jτj12jq−c−1
24 ð1− qÞj2; χ̂h;h̄ðτ; τ̄Þ≡ qh−

c−1
24 q̄h̄−

c−1
24 ;

ð3:23Þ

which are simpler functions than the Virasoro characters.

IV. ANALYTIC BOUND ON THE Z2 ODD
OPERATORS

We begin with an analytic study of the crossing equation,
to serve as a conceptual guideline and a warmup for the
systematic study of the modular bootstrap in Sec. V. We
focus on the upper bound on the lightest primary in each
sector and how it depends on the ’t Hooft anomaly. In this
section, we define the gap in each sector to be the lightest
(nontrivial) primary, which can either be a conserved
current or a nondegenerate primary. In Sec. V, the gap
will be defined as the lightest nondegenerate Virasoro
primary in the sector of interest.
We pay special attention to the bound on the lightest Z2

odd primary in H−, denoted by Δ−
gap. In particular, we will

find that

there is a universal upper bound on the lightest Z2 odd
primary if the Z2 is anomalous, but not otherwise.

In Sec. IV C, we derive such a bound for an anomalous
Z2 for 0 ≤ c ≤ 3, while a stronger numerical bound for
larger values of c will be presented in later sections.

A. Free compact boson example

Let us consider the lightestZ2 odd operator in the Hilbert
space H of local operators. Since the Z2 is a global
symmetry, this operator must necessarily be a Virasoro
primary. When do we expect there to be an upper bound on
the scaling dimension for this operator?
A motivating example is the c ¼ 1 free compact boson

theory with radius R, i.e., Xðz; z̄Þ ∼ Xðz; z̄Þ þ 2πR. We
review the theory and analyze its Z2 symmetries and
anomalies in Appendix A. At every radius R, there are
two nonanomalousUð1Þ global symmetries, themomentum
Uð1Þn and the winding Uð1Þw. We consider the Z2 sub-

groups of theseUð1Þn andUð1Þw, and denote them byZð1;0Þ
2

and Zð0;1Þ
2 , respectively. While the Zð1;0Þ

2 and Zð0;1Þ
2 are

separately nonanomalous, there is amixed anomaly between

the two. Consequently, the diagonal Zð1;1Þ
2 subgroup is

anomalous. The anomalies can be computed, for example,
by comparing the spin content in the defect Hilbert space
(A9) to the spin selection rule (2.7). Each current algebra
primary On;wðz;z̄Þ¼exp½iðnRþwRÞXLðzÞþiðnR−wRÞXRðz̄Þ�
has the following Z2 charges:

Zð1;0Þ
2 Zð0;1Þ

2 Zð1;1Þ
2

On;wðz; z̄Þ eiπn eiπw eiπðnþwÞ ð4:1Þ

Let us examine the lightest Z2 odd primary in the c ¼ 1
free compact boson theory for each of the above Z2

symmetries. The lightest (nonanomalous) Zð0;1Þ
2 odd pri-

mary is the minimal winding exponential operator O0;1,
which has scaling dimension R2

2
[see (A3)]. This minimal

winding state becomes arbitrarily heavy as we take the
radius R to be large. Hence, for c ¼ 1, there is no upper

bound on the lightest Zð0;1Þ
2 odd primary. Similarly, the

lightest (nonanomalous) Zð1;0Þ
2 odd primary is the minimal

momentum operator O1;0, whose scaling dimension is 1
2R2,

so there is no bound either.
The above c ¼ 1 example can be extended to larger

values of c by considering the tensor product with any other
CFT to produce a theory with Z2 symmetry whose lightest
odd primary is not bounded from above. Indeed, in Sec. V
C, the numerical bootstrap finds no bound for 1 ≤ c ≤ 25.
It is therefore reasonable to expect that for all c ≥ 1 CFTs,
there is no upper bound for the lightest Z2 odd primary if
the Z2 is nonanomalous, α ¼ þ1.

By contrast, the lightest (anomalous) Zð1;1Þ
2 odd primary

is either the minimal momentum operator O1;0 or the
minimal winding operator O0;1. It is impossible to make
both of them heavy as we vary R, so we do have an upper

bound: the lightest Zð1;1Þ
2 odd primary is bounded from

above by 1
2
on the moduli space of the free compact boson.

In Sec. IV C (and more generally in Sec. V C), we will
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show that for general c ≥ 1, there is a bound on the lightest
Z2 odd primary if the symmetry is anomalous α ¼ −1.
We summarize the above discussions in the following

table:

Zð1;0Þ
2 Zð0;1Þ

2 Zð1;1Þ
2

anomalyα þ1 þ1 −1
lightest odd op: O1;0 O0;1 O1;0 or O0;1

Δ−
gap

1
2R2

R2

2
Minð 1

2R2 ; R
2

2
Þ
ð4:2Þ

B. The Cardy limit

In the free compact boson example, we saw that there is a
bound in H− if the Z2 is anomalous. In this subsection, we
argue that this is true more generally by taking the high/low
temperature (Cardy) limit of the modular S transformation
of the torus partition function. The lower bound (2.8) on the
scaling dimension in the defect Hilbert space will turn out
to be the key.
Let us review the standard Cardy argument for a modular

invariant partition function Zðτ; τ̄Þ. For simplicity, we set
τ ¼ −τ̄ ¼ it, with t > 0. We have,

ZðtÞ ¼ Zð1=tÞ: ð4:3Þ

Now we take t → 0, so that the right-hand side is
dominated by the vacuum. The equation becomesZ

dΔρðΔÞe−2πtðΔ− c
12
Þ ∼ e

π
6tc; ð4:4Þ

where ρðΔÞ is the density of states with respect to the
scaling dimension Δ. The Casimir energy c

12
results in a

divergence as we take t → 0, which must be reproduced on
the left-hand side by the exponential growth of the high
energy states:

log ρðΔÞ ∼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
6

�
Δ −

c
12

�s
: ð4:5Þ

With the Z2, we consider the t → 0 limit of

ZLðtÞ ¼ ZLð1=tÞ: ð4:6Þ

The right-hand side is dominated by the defect Hilbert
space ground state with scaling dimension ΔL:Z

dΔ½ρþðΔÞ − ρ−ðΔÞ�e−2πtðΔ− c
12
Þ ∼ e

π
6tðc−12ΔLÞ; ð4:7Þ

where ρ�ðΔÞ are the densities of Z2 even/odd states of
scaling dimension Δ, respectively.

In the anomalous case (2.8), ΔL of the defect Hilbert
space ground state is bounded from below by 1

4
, so the

divergence on the right-hand side of (4.7) is smaller than
that of (4.4) as t → 0. This means that the weighted density
of states ρþðΔÞ − ρ−ðΔÞ has, if any, a slower exponential

growth exp

�
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c−12ΔL

6
ðΔ − c

12
Þ

q 	
than that of the total

density of states ρðΔÞ ¼ ρþðΔÞ þ ρ−ðΔÞ in (4.5). This
means that there must be huge cancellations between theZ2

even and odd heavy states when the Z2 is anomalous.
Hence, the Z2 odd states cannot be pushed to be arbitrarily
heavy for an anomalous Z2.
By contrast,ΔL for a nonanomalousZ2 can be arbitrarily

close to 0, so the Z2 odd states can be arbitrarily heavy,
consistent with the analysis in Sec. IVA.
The common weakness in the above arguments is that by

taking the Cardy limit alone, we only arrive at asymptotic
formulas for the relation between the defect Hilbert space
ground state and the heavy Z2 odd states, but we do not
have quantitative control over the regime of validity of
the formulas. The quantitative bound will be derived in
Sec. IV C (and more generally in Sec. V C), by considering
the medium temperature expansion of the modular crossing
equation.

C. Analytic bound on the Z2 odd operators

In this subsection, we derive an analytic bound for the
lightest Z2 odd primary under an anomalous Z2, for
0 ≤ c ≤ 3. For simplicity, we only use the dilitation
symmetry, instead of the full Virasoro symmetry. We also
ignore the dependence on the spin h − h̄, and only keep
track of the scaling dimension Δ ¼ hþ h̄ of the operators.
We set τ ¼ −τ̄ ¼ it, and expand the torus partition function
in each sector as

Z�ðtÞ≡ 1

2
½ZðtÞ � ZLðtÞ� ¼

X
Δ∈H�

ðN�ÞΔgΔðtÞ;

ZLðtÞ ¼
X
Δ∈HL

ðNLÞΔgΔðtÞ; ð4:8Þ

where ðN�ÞΔ ∈ Z≥0 and ðNLÞΔ ∈ Z≥0 are the degener-
acies of all states (not necessarily primaries) with scaling
dimension Δ, inH� and inHL, respectively. Here, gΔðtÞ is
the scaling character that counts the contribution from a
single operator of dimension Δ:

gΔðtÞ ¼ e−2πtðΔ− c
12
Þ: ð4:9Þ

The only dependence on the anomaly α is that the scaling
dimensions in the defect Hilbert spaceHL is bounded from
below by [see (2.8)]:

Δ ≥
1 − α

8
; ∀ Δ ∈ HL: ð4:10Þ
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This difference turns out to be crucial for the existence of a
bound in H− in the anomalous case.
Let us write the modular crossing equation Zð1=tÞ −

FZðtÞ ¼ 0 (3.13) as a vector equation with contributions
from the three sectors H� and HL:X

Δ∈Hþ
ðNþÞΔMþ

i ðtÞ þ
X
Δ∈H−

ðN−ÞΔM−
i ðtÞ

þ
X
Δ∈HL

ðNLÞΔML
i ðtÞ ¼ 0; i ¼ �;L ð4:11Þ

where the matrix Mj
iðΔ; tÞ is defined as

Mj
iðΔ; tÞ≡ δji gΔð1=tÞ − Fj

igΔðtÞ: ð4:12Þ

For a fixed j, we write MjðΔ; tÞ to denote a vector-valued
function of Δ and t with components Mj

iðΔ; tÞ.
To bound the lightest Z2 odd primary, we look for a real

linear functional α that acts on vector-valued functions of t
(with 3 components). If for some Δ−

gap > 0, we can find a
functional α such that

α½MþðΔ; tÞ� ≥ 0; ∀ Δ ≥ 0;

α½M−ðΔ; tÞ� ≥ 0; ∀ Δ ≥ Δ−
gap;

α½MLðΔ; tÞ� ≥ 0; ∀ Δ ≥
1 − α

8
; ð4:13Þ

then by applying α on (4.11), we reach a contradiction
unless there is a Z2 odd operator in H below Δ−

gap. In this
way, we obtain an upper bound Δ−

gap on the lightest Z2 odd
primary.
Consider a derivative basis for linear functionals16 acting

on vector-valued functions V of t:

αn;i½VðtÞ�≡ e2πðΔ− c
12
Þ
�
6t
πc

d
dt

�
n
ViðtÞjt¼1: ð4:14Þ

We will expand our functional on this basis. When acting
linear functionals on M, there are linear relations among
αn;i, and the number of independent functionals is deter-
mined by the matrix rank of I − ð−ÞnF. For the F
considered here (3.14), there is one independent functional
at each even derivative order, and two at each odd order.
Thus the most general cubic linear functional takes the
form

α ¼
X
n even

γn;1αn;1 þ
X
n odd

X2
i¼1

γn;iαn;i: ð4:15Þ

As a proof of principle, we restrict our functionals to
derivative order 3, i.e., 0 ≤ n ≤ 3. Stronger numerical
bounds using more general functionals will be presented
in Sec. V C.
In Secs. IVA and IV B, we argued that a universal bound

on the lightestZ2 odd primary should only exist if there is ’t
Hooft anomaly. We find that, indeed, there is no cubic
linear functional satisfying (4.13) if the Z2 is nonanoma-
lous (α ¼ þ1). However, if we only need to maintain
positivity for Δ ≥ 1

4
in the defect Hilbert space, such as in

the anomalous case, then we are able to construct linear
functionals for c sufficiently small. In particular, the
following choice of linear functional satisfies (4.13) for17

0 < c < 3:

γ0;1 ¼ ðπcþ 18Þ2
π2c2

;

γ1;1 ¼ 4π2c3 − 9ðπ − 8Þπc2 − 36ð3π − 4Þcþ 540

4π2ðc − 3Þc2 ;

γ1;2 ¼ −
9ðπð8þ πÞc2 þ 4ð32þ 3πÞc − 60Þ

4π2ðc − 3Þc2 ;

γ2;1 ¼ 0; γ3;1 ¼ γ3;2 ¼ −1: ð4:16Þ

Its actions on MjðΔ; tÞ give (see Fig. 11)

α½MþðΔ; tÞ� ¼ 1

2c2π2
ðyþ 1Þð2πcy − cπ − 18Þ2;

α½M−ðΔ; tÞ� ¼ 4π2c2y3 − 72πcy2 − ðπcþ 18Þ2
2c2π2

−
ðπcþ 18Þðπc2 − 9ð6þ πÞcþ 54Þy

2c2π2ðc − 3Þ ;

α½MLðΔ; tÞ� ¼ −
ðπcþ 18Þ2ðcyþ c − 3Þ

2c2π2ðc − 3Þ ; ð4:17Þ

where y≡ 12Δ
c − 1. The resulting upper bound on the

lightest Z2 odd primary in the anomalous case is given by

Δ−
gap ≤ ðŷþ 1Þ c

12
; ð4:18Þ

where ŷ is the largest root of α½M−ðΔ; tÞ� (See Fig. 12).

D. Tensor product with TQFTs

In any spacetime dimension d, given a bosonic anomaly
α for a discrete, internal, global symmetry G, it was shown
that there exists a d-dimensional TQFT with symmetry G
and anomaly α [55,56]. Therefore, for any bosonic QFT

16This is a linear functional in the sense that it acts on functions
of t over the field of functions of Δ. The normalization and
exponential factor are chosen for later convenience.

17At c ¼ 3, we can alternatively choose the following linear
functional γ1;1¼− 9

16
− 32

π2
− 9

π ;γ
1;2¼ 27

16
þ 72

π2
þ 21

π ;γ
2;1¼ 3ð6þπÞ

π ;γ0;1¼
γ3;2¼0;γ3;1¼−1. This gives Δ−

gap ¼ 24þ5πþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð384þ112πþ9π2Þ

p
8π ≈

3.559.
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with the symmetry G and anomaly α0, we can take the
tensor product theory QFT ⊗ TQFT, and consider the
diagonal symmetry G, to realize the anomaly αα0.
In 2d, such a TQFTwith a nontrivial anomaly always has

a degenerate vacua, i.e., it describes the spontaneously
broken phase. For example, the TQFT with an anomalous
Z2 has two degenerate vacua, one Z2 even and the other Z2

odd. Now, if we take the tensor product of a CFT with a
nonanomalous Z2 symmetry, together with this anomalous
Z2 TQFT, then the tensor product theory has a diagonal
anomalous Z2 symmetry whose lightest odd operator is the
weight-(0,0) vacuum that trivially satisfies our bound
derived in Sec. IV C.
However, in higher than two spacetime dimensions, the

TQFT mentioned above always has a unique vacuum. By
taking the tensor product, it follows that we can modify the
anomaly of a discrete, internal, global symmetry G of a
bosonic QFTwithout changing the local operator spectrum.
Hence, there can never be a bound on the scaling
dimensions and degeneracies of G-charged local operators
that depends on such anomaly.18

V. GENERAL BOOTSTRAP BOUNDS

In this section, we perform a numerical study to obtain
bounds that harness the full power of Virasoro symmetry
and the modular covariance of partition functions, for small
to moderate values of the central charge c. Allowing τ to
take general values in the upper half plane also lets us
distinguish spin, and in particular makes possible the
derivation of bounds on the scalar gap.
In Sec. VA, we discuss the general expectations for

whether particular bounds should exist. Section V B is a
precision test at c ¼ 1, where we find our bounds to be
saturated by the free compact boson. In Sec. V C, we study
the bounds on the lightest even/odd operators for c ≥ 1, and
by saturation by a number of WZW models. In Sec. V D,
we present a “order-disorder” bound for a nonanomalous
Z2. In Sec. V E, we derive bounds on the scalar primaries,
and discusses their implications on renormalization group
flows. In Sec. V F, we present an analytic derivation of the
large c asymptotics of certain bounds.

A. When is there a bound?

We will be interested in the upper bound on the lightest
nondegenerate primary in each sector.19 We start with the
following question: In which sector do we expect a bound,
and how does it depend on the anomaly?
As we have already seen in Sec. IVA, the c ¼ 1 free

compact boson theory is an illuminating example. By
examining the different sectors in the free compact boson
theory, and exploring its conformal moduli space, we find
that (✓ means there is a bound, while ✗ means there is no
bound):

Hþ H− HL H− ⊕ HL

nonanomalous ✓ ✗ ✗ ✓

anomalous ✓ ✓ ✗ ✓

ð5:1Þ

If there is no bound in eitherH− orHL of the free compact
boson theory, then by considering the tensor product theory
with any other CFT, we can produce examples of c > 1
CFT whose gap can be arbitrarily large in that sector. By
contrast, if there is a bound in a given sector of the c ¼ 1
free compact boson theory, then it does not immediately
follow that such a bound persists to higher c.
We will show that the same conclusion (5.1) is true for

CFTs with larger values of the central charge. We show
explicitly by analytic and numerical bootstrap that there are
universal bounds in Hþ andH− ⊕ HL for all c > 1 CFTs,
to arbitrary large c, in both the nonanomalous and the
anomalous cases (see Sec. V F). For the bound inH− in the
anomalous case, we cannot find an analytic bound that is
valid to arbitrarily large c. Nevertheless, we find numerical
bounds at least up to c ≤ 25, and expect the bounds to
continue to exist for c > 25. We will denote the bound in
H� as Δ�

gap, and in H− ⊕ HL as Δord=dis
gap . The meaning of

the superscript ord/dis will be explained in Sec. V D.

FIG. 11. Linear functional (4.16) acted on MjðΔ; tÞ for c ¼ 2.

18We thank David Simmons-Duffin for pointing out this
argument to us.

19Note that the notion of the gap in Sec. IV C is different from
here. In Sec. IV C, the gap Δ−

gap is defined as the lightest Z2 odd
primary in H, which can either be a conserved current or a
nondegenerate primary. By contrast, in this section, Δj

gap are
defined as the lightest nondegenerate Virasoro primary in each
sector.
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B. Bootstrap bounds for c= 1

We begin with a precision study of the bounds for c ¼ 1,
and match with the free compact boson. This analysis
serves as a consistency check for our numerical method.
Even though there are additional degenerate Virasoro
modules at c ¼ 1, the free compact boson partition function
for any R can always be expanded on the vacuum
and nondegenerate characters (3.1) with non-negative
coefficients.
The spectra, symmetries, and anomalies in the free

compact boson are discussed in Sec. IVA and in
Appendix A. We recall that at generic radii, the Z2

symmetries include a nonanomalous momentum Zð1;0Þ
2 , a

nonanomalous winding Zð0;1Þ
2 , and their diagonal subgroup

Zð1;1Þ
2 which is anomalous.
Let us study the bounds on the lightest Z2 even and odd

nondegenerate primaries, as functions of the scaling
dimension of the lightest primary in the defect Hilbert
space HL, denoted by ðΔgapÞL, is varied. See Fig. 13. The
bounds are saturated by the free compact boson in
continuous ranges of the radii R.20 See Appendix A for
the gaps in the c ¼ 1 free compact boson theory with
respect to various Z2 symmetries as functions of the
radius R.

Some comments on the numerical bounds shown in
Fig. 13 are in order:

(i) The absolute upper bound on the scaling dimension
for the nondegenerate Virasoro primary is the
maximal value of the plot as we vary ðΔgapÞL. Note
that there is no bound on the lightest Z2 odd primary
in the nonanomalous case, which is consistent with
our analysis in Secs. IVA and IV B.

(ii) In the nonanomalous case, the gap ðΔgapÞL ¼ 1
8
in

the defect Hilbert space is realized at R ¼ 1 simul-

taneously by the momentum Zð1;0Þ
2 and winding

Zð0;1Þ
2 . To the right, ðΔgapÞL > 1

8
, the shown gaps

(solid lines) correspond to the momentum Zð1;0Þ
2 ; to

the left, ðΔgapÞL < 1
8
, they correspond to the winding

Zð0;1Þ
2 .

(iii) In both the nonanomalous and anomalous cases, the
bootstrap bounds on the lightest Z2 odd nondegen-
erate primaries are saturated by the entire moduli
space of the free compact boson, from R ¼ 1 to
R ¼ ∞.

(iv) In the nonanomalous case, the bootstrap bounds on
the lightest Z2 even nondegenerate primary are
saturated by the free compact boson with radii
between R ¼ ffiffiffi

2
p

and R ¼ 2. To the left of
R ¼ ffiffiffi

2
p

, the bounds become flat, because a gap
of ðΔgapÞL ¼ 1

4
can also be interpreted as a gap of

any smaller value.21 To the right of R ¼ 2, the
bounds become flat and unsaturated.

(v) In the anomalous case, the situation for the bounds
on the lightest Z2 even nondegenerate primary is
similar to that described in the previous point. The
jump in the bound at R ¼ 1 is because the lightest
Z2 even primary becomes a spin-one conserved
current, and is thus excluded from our definition of
the gap in Sec. VA. See Appendix A for more
details.

C. Bootstrap bounds on the Z2 even/odd operators

Next we extend the bootstrap analysis to c ≥ 1. The
upper bounds on the lightest Z2 even/odd nondegenerate
primaries are shown in Figs. 14 and 15. The green-to-red
curves are the bounds at increasing derivative orders, from
3 to 19. To stress the importance of the ’t Hooft anomaly,
Fig. 16 juxtaposes the bounds with and without it.
The convergence of the bounds with increasing deriva-

tive order becomes slower at larger values of the central
charge. In particular, at a fixed derivative order d, the bound
on Δ−

gap in the presence of ’t Hooft anomaly only exists up
to a finite value of the central charge cmaxðdÞ, which
increases with d.

FIG. 12. Upper bound on the lightest Z2 odd primary in H as a
function of the central charge c. The region below the curve is
allowed. A stronger bound is presented in the right figure of
Fig. 15.

20In the anomalous case, we do not assume the existence of a
spin- 1

4
conserved current in the defect Hilbert space (but we do

allow the existence of all other conserved currents). Otherwise,
the bounds away from ðΔgapÞL ¼ 1

4
are weaker and are not

saturated by the free compact boson. However, though we do
not assume the existence of a spin- 1

4
conserved current, this does

not rule out the free compact boson at self-dual radius R ¼ 1,
because the weight-ð1

4
; 0Þ conserved current module and one of

the weight-ð1
4
; 1Þ nondegenerate modules combine via the re-

combination rule to mimic a weight-ð1
4
; 0Þ nondegenerate mod-

ule, which is allowed when the gap in the defect Hilbert space is 1
4
.

21In other words, the bootstrap bounds on Δj
gap must be

monotonically decreasing with increasing ðΔgapÞL.
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Our bounds are saturated or almost saturated by various
WZW models at level 1.22 We list these cases in
Appendix B 7. When the Z2 is nonanomalous, we find
that the bound on Δþ

gap is a plateau at Δþ
gap ¼ 1 between

1 ≤ c ≤ 5
2
. At integral and half integral values of c on this

plateau, the bound is saturated by the dsoð2cÞ1 WZW
model, which can be described as the theory of n free
Majorana fermions summed over the spin structures.23 The
Z2 symmetry is a center symmetry that commutes with the
current algebra.

When the Z2 is anomalous, we find two theories
saturating our bounds. At c ¼ 1, the bounds Δþ

gap ≤ 2

and Δ−
gap ≤ 0.5 are saturated by the self-dual boson dis-

cussed in Sec. II E 2. At c ¼ 7, the bound Δþ
gap ≤ 2 is

saturated by the ðE7Þ1 WZW model.24

We summarize our findings below:
(i) There is a universal bound on the lightest Z2 odd

nondegenerate primary if the Z2 is anomalous, but
not otherwise.

(ii) There is a universal bound on the the lightest
Z2 even nondegenerate primary, with or without ’t
Hooft anomaly. They are compared in Fig. 16.

(iii) Suppose we have a CFT whose lightest Z2

even nondegenerate primary is larger than Δþ
gap

for α ¼ þ1 but smaller than Δþ
gap for α ¼ −1,

such as in the blue region in Fig. 16, then we can
conclude that the Z2 symmetry must be anoma-
lous, and vice versa if the primary is in the yellow
region.

D. Order versus disorder

In the nonanomalous case, there is no bound in either
the odd sector H− or the defect Hilbert space HL. Howe-
ver, as we will see, there is a bound on the lightest
nondegenerate primary in the union of H− ⊕ HL. In
other words, the lightest Z2 odd primary and the defect
Hilbert space ground state cannot both be too heavy
relative to c. We denote the scaling dimension of this
lightest operator by Δord=dis

gap , for reasons we explain below.
Note that in the anomalous case, since there is already a
bound in H− alone, we are guaranteed to have a bound
in H− ⊕ HL.

FIG. 13. Dots: upper bounds on the lightest Z2 even and odd nondegenerate primaries, varied over the scaling dimension of the
lightest primary in the defect Hilbert spaceHL, for c ¼ 1, at derivative order 19. In the anomalous case, we do not assume the existence
of a conserved current with spin � 1

4
in the defect Hilbert space. Solid lines: free compact boson.

FIG. 14. Nonanomalous Z2: upper bound on the lightest Z2

odd nondegenerate primary. The green-to-red curves are the
bounds at increasing derivative orders, from 3 to 19. The black
dots mark the WZW models that (almost) saturate the bound.

22Recall that dsoð2Þ1 ¼ duð1Þ2 is the tensor product of two Ising
CFTs, and dsoð3Þ1 ¼ dsuð2Þ2.

23At c ¼ 5
2
, the dsoð5Þ1 WZW model with Δþ

gap ¼ 1 almost
saturates the numerical bound, which is Δþ

gap ≃ 1.0057 at deriva-
tive order 19. To know whether or not this is an example of
saturation requires numerical data at higher derivative orders.

24We also find a kink near c ¼ 1.30 and Δþ
gap ¼ 1, but the

extremal functional method reads off degeneracies that are not
integer valued. Hence, we do not expect it to be saturated by a
physical theory.
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Consider two phases separated by a second order phase
transition, where on one side the symmetry is spontane-
ously broken and the other side unbroken. The two phases
can be obtained by perturbing the CFT at the critical point
with a relevant operator, whose sign determines which
phase we reach after the flow. Whereas the symmetry-
breaking phase can be probed by the non-vanishing two-
point function of an order operator at asymptotically large
separation, the symmetry-preserving phase can be probed
by that of a non-local disorder operator. We expect the order
and disorder operators to be light operators in H− and HL,
respectively, at the critical CFT point. For example, in the
critical Ising CFT, the lightest Z2 odd primary is the spin
field σðxÞ, which is the order operator for Z2. The defect
Hilbert space ground state, on the other hand, is the
disorder operator μðxÞ.
In the gapped phase, it has recently been shown in [57]

that in an Ising symmetric spin chain, the order and disorder

parameters cannot both be nonzero.25 In the gapless phase,
an analogous statement may be that the order and the
disorder operators of a CFTwith Z2 symmetry cannot both
be too heavy. Although generally the order and disorder
operators in a CFT may not be the lightest operator in their

respective spectra, our bound onΔord=dis
gap has a similar flavor

as the one proven in [57] for spin chains in the gapped
phase. Motivated by this analogy, we will denote the gap in

H− ⊕ HL as Δorder=dis
gap .

The bootstrap bound on Δord=dis
gap is presented in Fig. 17.

We find that the bounds between c ¼ 1 and c ¼ 6 form a

straight line given by Δord=dis
gap ≤ c

4
, where at integral and

half-integral values of c, the bound is saturated by thedsoð2cÞ1 WZW model.

E. Scalar bounds and renormalization group flows

Another quantity of physical interest is the bound on
the Z2 even/odd scalar primaries in a CFT, which are
related to relevant deformations if Δ < 2. Consider an
RG flow preserving a Z2 symmetry in the UV. As the
flow approaches a candidate IR fixed point, if there is a
symmetry-preserving relevant operator at a fixed point,
then a generic flow would be driven away. This implies
that without fine-tuning, the flow would miss the fixed
point. See, e.g., [58–60] for applications of this idea. A
bound on relevant deformations that preserve various
global symmetries would provide strong constraints on
RG flows.
Using the modular bootstrap techniques, we obtain

bounds on the lightest Z2 even nondegenerate scalar
primaries in both the anomalous and nonanomalous cases.

FIG. 15. Anomalous Z2: upper bounds on the lightest Z2 even and odd nondegenerate primaries. The green-to-red curves are the
bounds at increasing derivative orders, from 3 to 19. The black dots mark the WZW models that (almost) saturate the bound.

FIG. 16. Juxtaposition of nonanomalous and anomalous
bounds on the lightest Z2 even nondegenerate primary at
derivative order 19. We do not display the comparison for the
bounds on the lightest Z2 odd primary, because there is no bound
when the Z2 is nonanomalous.

25We thank Michael Levin for a discussion on this point and
sharing a draft on related questions.
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We also present a bound on theZ2 odd scalar primary in the
anomalous case. See Figs. 18 and 19.26

We summarize our findings below:
(i) In the absence of ’t Hooft anomaly, a Z2-preserving

relevant deformation always exists for 1 < c < 7.81.
(ii) In the presence of ’t Hooft anomaly, a Z2-preserving

relevant deformation always exists for 1 < c < 7,
and a Z2-breaking relevant deformation always
exists for 1 < c < 6.59. At c ¼ 7, the ðE7Þ1
WZW model has a Z2-preserving marginal operator
which is a current bilinear JaðzÞJ̄bðz̄Þ.

(iii) The statements above imply that RG flows preserv-
ing only a Z2 symmetry generically do not end at
fixed points with 1 < c < 7 without fine-tuning. Put
differently, in this range of the central charge, a
gapless phase that is only protected by Z2 symmetry
is not stable under perturbations. If the Z2 is non-
anomalous, then the range is further extended
to 1 < c < 7.81.27

F. Large c

In this subsection, we analytically derive bounds that are
valid to arbitrary large c on the lightest primaries inHþ and
in H− ⊕ HL. We only use functionals up to 3 derivative
order with τ ¼ −τ̄ ¼ it, so the bounds are far from the

strongest possible. With finite derivative order, we cannot
find a functional that gives a bound in H− for arbitrarily
large c (see Sec. V C). The large c bounds in Hþ and in
H− ⊕ HL we obtain in this subsection apply to both the
anomalous and nonanomalous cases.
We follow the strategy in Sec. IV C but now utilizing the

full Virasoro symmetry. Specifically, we use the reduced
Virasoro characters (4.9) in place of the scaling character
gΔðtÞ:

χ̂0ðtÞ ¼ t
1
2e2π

c−1
12
tð1 − e−2πtÞ2; χ̂Δ>0ðtÞ ¼ t

1
2e−2πðΔ−c−1

12
Þt:

ð5:2Þ

Here we make an additional assumption to simplify the
analysis. We assume that the partition functions can be
expanded in the vacuum and nondegenerate characters
alone, without the need for conserved currents. In other
words, our bounds in this subsection apply to CFTs without
conserved currents.28

We now define the matrix (4.12) in terms of the reduced
Virasoro characters,

Mj
iðΔ; tÞ≡δji χ̂Δð1=tÞ−Fj

i χ̂ΔðtÞ; y¼ 12Δ
c

−1: ð5:3Þ

As in Sec. IV C, we will expand our functional in the
derivative basis as [cf. (4.14) and (4.15)]

FIG. 17. Nonanomalous Z2: upper bound on Δord=dis
gap in

H− ⊕ HL. The green-to-red curves are the bounds at increasing

derivative orders, from 3 to 19. The black dots mark the dsoð2cÞ1
WZW models that saturate the bound at c ∈ Z

2
for 1 ≤ c ≤ 6.

FIG. 18. Nonanomalous Z2: upper bounds on the lightest Z2

even scalar primary. The green-to-red curves are the bounds at
increasing derivative orders, from 3 to 19. The red curve crosses
Δþ

gap ¼ 2 at c ≈ 7.81.

26In the ordinary modular bootstrap, it was observed that no
bound on the lightest scalar primary exists for c ≥ 25 [33]. The
explanation there is the existence of a modular invariant partition
function with continuous spectrum, no vacuum, and only non-
scalar primaries at c ¼ 25. The same partition function can also
be applied to solve the modular bootstrap equation with a Z2

symmetry, and hence we do not have a bound when c > 25.
27This statement is true even if the Z2 acts trivially in the IR. In

that case there is no symmetry forbidding the relevant operators
near the IR fixed point. By the result of [33], there is always a
relevant operator if 1 < c < 8, hence the flow will generically
miss such a fixed point without fine-tuning.

28More generally, the bounds in this subsection apply to what
are called generic-type CFTs in [33]. In generic-type CFTs, each
holomorphic conserved current of spin s ≥ 1 is accompanied by a
primary of weight ðs; 1Þ, and similarly for the antiholomorphic

currents, so that the recombination rule χhðτÞ !h→0
χ0ðτÞ þ χ1ðτÞ

disguises the combination of modules as a nondegenerate module
at the unitarity bound. This way, the partition function admits an
expansion in the vacuum and nondegenerate characters alone.
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α ¼
X
neven

γn;1αn;1 þ
X
nodd

X2
i¼1

γn;iαn;i;

αn;i½VðtÞ�≡ e2πðΔ−c−1
12
Þ
�
6t
πc

d
dt

�
n
ViðtÞjt¼1: ð5:4Þ

While we manage to find analytic functionals to put
bounds on the lightest primaries, the exact expressions are
not illuminating to present. Therefore, we will present them
in 1=c expansions.

1. Z2 even sector H+

We consider the ansatz

γ1;2 ¼ γ3;2 ¼ 0; ð5:5Þ

such that the action of α is identical in H− and HL, and
demand that the corresponding α½MjðΔ; tÞ� has a double

zero at y ¼ 1 for j ¼ −;L. Together with the requirement
that α annihilates the vacuum, the linear functional is
completely fixed (up to overall rescaling). The resulting
linear functional satisfies the positivity conditions [analo-
gous to (4.13)] for c > 2. To first order in 1=c, the
expansion coefficients of the functional α are given by

γ0;1 ¼ −1þ 1

c

�
12 −

12

π
− 12 cothðπÞ

�
þOðc−2Þ;

γ1;1 ¼ 1þ 6

c

�
−4þ 5

π
þ 4 cothðπÞ

�
þOðc−2Þ;

γ2;1 ¼ 1þ 6

c

�
2 −

5

π
− 2 cothðπÞ

�
þOðc−2Þ;

γ3;1 ¼ −1: ð5:6Þ

Its action on MjðΔ; tÞ gives

α½MjðΔ; tÞ� ¼ 1

2

0B@ ð−1þ yÞð1þ yÞð1þ 3yÞ
ð−1þ yÞ2ð1þ yÞ
ð−1þ yÞ2ð1þ yÞ

1CAþ 6

πc

0B@−ðyþ 1Þð7yþ 1Þ − πðyðyþ 6Þ þ 1ÞðcothðπÞ − 1Þ
ðy − 1Þ2ð1þ πðcothðπÞ − 1ÞÞ
ðy − 1Þ2ð1þ πðcothðπÞ − 1ÞÞ

1CAþOðc−2Þ:

ð5:7Þ

The resulting bound on the lightest Z2 even primary is

Δþ
gap ≤

c
6
− 1þ 2

π
þ cothðπÞ þOðc−1Þ

≈
c
6
þ 0.6404þOðc−1Þ; ð5:8Þ

which applies to both the anomalous and the nonanomalous
cases.

2. Order-disorder H− ⊕ HL

We consider the ansatz

γ0;1 ¼ γ1;2 ¼ 0; ð5:9Þ
such that the action of α is identical in H− and HL, and
demand that α½MjðΔ; tÞ� has a double zero at y ¼ 1 for
j ¼ −;L. Together with the requirement that α annihilates
the vacuum, the linear functional is completely fixed (up to
overall rescaling). The resulting linear functional satisfies
the positivity conditions [analogous to (4.13)] for all c > 1.
To first order in 1=c, the expansion coefficients are given by

FIG. 19. Anomalous Z2: upper bounds on the lightest Z2 even and odd scalar primaries. The green-to-red curves are the bounds at
increasing derivative orders, from 3 to 19. The red curves crosse Δ�

gap ¼ 2 at c ¼ 7 and c ≈ 6.59, respectively.
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γ0;1 ¼ 3þ 36

c
ðcothðπÞ − 1Þ þOðc−2Þ;

γ1;1 ¼ 1þ 6

c

�
−4þ 1

π
þ 4 cothðπÞ

�
;

γ2;1 ¼ −3þ 1

c

�
54

π
þ 36ðcothðπÞ − 1Þ

�
þOðc−2Þ;

γ3;1 ¼ −1: ð5:10Þ

Its action on MjðΔ; tÞ gives

α½MjðΔ; tÞ� ¼ 1

2

0B@ 3ðy − 1Þ2ðyþ 1Þ
ðy − 1Þðyþ 1Þðyþ 3Þ
ðy − 1Þðyþ 1Þðyþ 3Þ

1CA
þ 6

πc

0B@ 3πðy − 1Þ2ðcothðπÞ − 1Þ
−2yð3yþ 1Þ − πðyð3yþ 2Þ þ 3ÞðcothðπÞ − 1Þ
−2yð3yþ 1Þ − πðyð3yþ 2Þ þ 3ÞðcothðπÞ − 1Þ

1CAþOðc−2Þ: ð5:11Þ

The resulting upper bound on the lightest primary in
H− ⊕ HL is

Δord=dis
gap ≤

c
6
− 1þ 1

π
þ cothðπÞ þOðc−1Þ

≈
c
6
þ 0.3221þOðc−1Þ; ð5:12Þ

which applies to both the anomalous and the nonanomalous
cases.

VI. Uð1Þ SYMMETRY AND THE WEAK
GRAVITY CONJECTURE

In this section, we consider bosonic 2d CFTs with Uð1Þ
global symmetry.29 We will see that the existence of a
universal upper bound on the lightest Uð1Þ charged
operator again depends on the ’t Hooft anomaly.

A. Uð1Þ symmetry and its anomaly

Consider the global symmetry generated by a conserved
spin-one current, Jμðz; z̄Þ (with ∂μJμ ¼ 0), in a bosonic 2d
CFT. We require that

(i) the symmetry is globally Uð1Þ, not R,
(ii) theUð1Þ global symmetry acts faithfully on the local

operators.
Let J ≡ Jz and J̄ ≡ Jz̄. In any compact unitary 2d CFT,

unitarity implies ∂J̄ ¼ 0 and ∂̄J ¼ 0, so each of them is
separately a uð1Þ Lie algebra generator. Globally, however,

the holomorphic current JðzÞ may not generate a Uð1Þ
group, but rather an R. The same is true for the anti-
holomorphic current J̄. We denote their zero modes by
J0 ≡ H

dz
2πi JðzÞ and J̄0 ≡ −

H
dz̄
2πi J̄ðz̄Þ.

The topological line implementing a Uð1Þ rotation
by η is

Uη ¼ exp

�
2πiη

�I
L
dzJðzÞ −

I
L
dz̄ J̄ðz̄Þ

�	
: ð6:1Þ

The assumption that the symmetry is Uð1Þ instead of R
implies that η is circle valued, i.e., Uη ¼ Uηþ1, so we may
take η ∈ ½0; 1Þ. The faithfulness assumption requires that
Uη is not an identity operator unless η is an integer.
Furthermore, the Uð1Þ charge of a local operator in the
Hilbert space H is always an integer,

Q ¼ J0 þ J̄0 ∈ Z: ð6:2Þ

The OPEs of J and J̄ are

JðzÞJð0Þ ∼ k
z2
; J̄ðz̄ÞJ̄ð0Þ ∼ k̄

z̄2
: ð6:3Þ

Note that the levels k and k̄ are physically meaningful and
cannot be scaled away if we assume that our symmetry is
globally a Uð1Þ acting faithfully on all local operators.30

29We thank Nathan Benjamin for discussions.

30For example, had we rescaled both J → 2J and J̄ → 2J̄, the
new topological line operatorUη with η ¼ 1

2
would act trivially on

the Hilbert space, violating the faithfulness condition.
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When k̄ ¼ 0 (k ¼ 0), this Uð1Þ global symmetry is
generated by a holomorphic (antiholomorphic) current.
But more generally, the current associated to a Uð1Þ global
symmetry can be neither purely holomorphic nor antiho-
lomorphic, even though its holomorphic and antiholomor-
phic component each separately generates a different R or
Uð1Þ global symmetry.
Using the topological line Uη of a Uð1Þ global sym-

metry, we can similarly consider the defect Hilbert space
defined in Fig. 5. The defect Hilbert space Hη of the
topological lineUη is related to the bulk Hilbert spaceH by
a simultaneous spectral flow [61] on both the left and the
right of opposite amounts (see, e.g., [62]):

hη ¼ h − ηJ0 þ
kη2

2
; Jη0 ¼ J0 − ηk;

h̄η ¼ h̄þ ηJ̄0 þ
k̄η2

2
; J̄η0 ¼ J̄0 þ ηk̄: ð6:4Þ

For noninteger η, these are the quantum numbers of a
nonlocal operator living at the end of the topological line
Uη. However, for η ∈ Z, the topological line Uη is trivial,
and (6.4) are the quantum numbers of local operators. In
other words, starting with an operator inH, theUð1Þ global
symmetry (instead of R) implies the existence of infinitely
many spectral partners by applying (6.4) with η ∈ Z.
In particular, integer quantization of the spin hη¼1 − h̄η¼1

demands that

k − k̄
2

∈ Z; ð6:5Þ

where we have used the fact that the Uð1Þ charges Q ¼
J0 þ J̄0 are integers. The integer k−k̄

2
is the ’t Hooft anomaly

of a Uð1Þ global symmetry in a bosonic 2d quantum field
theory. Indeed, if k−k̄

2
≠ 0, the states in the defectHilbert space

Hη have Uð1Þ charges Qη ¼ Jη0 þ J̄η0 ¼ Q − ηðk − k̄Þ,
which are not integers for generic η. This implies that the
theory is not invariant under the Uð1Þ transformation in
the presence of theUð1Þ topological line defect, which is the
hallmark of ’t Hooft anomaly.31

Some comments are in order:
(1) The Z2 subgroup of a Uð1Þ is anomalous if k−k̄

2
is

odd, and nonanomalous if k−k̄
2

is even.
(2) A holomorphic Uð1Þ has k ≠ 0 and k̄ ¼ 0 (so J̄ is

a trivial operator), which is always anomalous.
Similarly, an antiholomorphic Uð1Þ is also always
anomalous.

(3) The integral spectral flow (6.4) of the identity
operator is given by

h ¼ kη2

2
; h̄ ¼ k̄η2

2
;

Q ¼ −ηðk − k̄Þ; η ∈ Z: ð6:6Þ
In particular, when theUð1Þ is anomalous, i.e., when
k ≠ k̄, there are always spectral flow partners of the
identity that are charged (see, e.g., [8,62]). Hence an
anomalous Uð1Þ global symmetry guarantees the
existence of charged operators via spectral flow,
while this is not true for an R global symmetry.
However, when the Uð1Þ is nonanomalous, i.e.,
k ¼ k̄, the spectral flows of the identity are all
charge neutral.

1. Free compact boson example

Let us illustrate the above discussion with the c ¼ 1 free
compact boson. We normalize the OPE to be

Xðz; z̄ÞXð0; 0Þ ∼ −
1

2
log jzj2: ð6:7Þ

Hence ∂XðzÞ∂Xð0Þ ∼ − 1
2z2 and ∂̄Xðz̄Þ∂̄Xð0Þ ∼ − 1

2z̄2. The
current algebra primaries are the exponential operators
On;wðz; z̄Þ ¼ exp ½iðnR þ wRÞXLðzÞ þ iðnR − wRÞXRðz̄Þ�
labeled by the momentum n ∈ Z and the winding number
w ∈ Z. We have the OPE

i∂XðzÞOn;wð0Þ ∼
ðnR þ wRÞ

2z
On;wð0Þ;

i∂̄Xðz̄ÞOn;wð0Þ ∼
ðnR − wRÞ

2z̄
On;wð0Þ: ð6:8Þ

For generic R, the charges of i∂XðzÞ and i∂̄Xðz̄Þ are
irrational. Hence, the holomorphic current i∂X and the
antiholomorphic current i∂̄X generate two R symmetries,
not Uð1Þ.
On the other hand, there are two Uð1Þ global sym-

metries, the momentum Uð1Þn and the winding Uð1Þw for
all radii, under which On;w has charges n and w, respec-
tively. The currents of the momentum and winding Uð1Þ’s
are combinations of ∂XðzÞ and ∂̄Xðz̄Þ:

Uð1Þn∶ JðzÞ ¼ iR∂XðzÞ; J̄ðz̄Þ ¼ iR∂̄Xðz̄Þ; ð6:9Þ

Uð1Þw∶ JðzÞ ¼ i
R
∂XðzÞ; J̄ðz̄Þ ¼ −

i
R
∂̄Xðz̄Þ; ð6:10Þ

under whichOn;w has integer charges n and w, respectively.
We find that

Uð1Þn∶ k ¼ k̄ ¼ R2

2
; ð6:11Þ

Uð1Þw∶ k ¼ k̄ ¼ 1

2R2
: ð6:12Þ

31This is similar to the Z2 case, where the Z2 eigenvalues
(2.10) are �i in the defect Hilbert space HL when the Z2 is
anomalous.
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In particular, they both obey k ¼ k̄, which means that they
are nonanomalous. Note that while k and k̄ are not
separately quantized in general, k−k̄

2
is always an integer.

Any combination of the momentum Uð1Þn and winding
Uð1Þw with an integer coefficient is also a Uð1Þ symmetry.
When R2 is rational, there exists aUð1Þ that is generated by
a holomorphic current, and another Uð1Þ generated by an
antiholomorphic current. The chiral algebra is hence
enhanced at rational R2.
The spectral flow (6.4) forUð1Þn by one unit η ¼ 1 takes

the exponential operator On;w to On;w−1, and similarly for
the spectral flow of Uð1Þw.

B. Bounds on the Uð1Þ charged operator

We start with a simple statement for all c ≥ 1 bosonic
2d CFTs:

There is no universal upper bound on the lightest Uð1Þ
charged operator if the Uð1Þ is nonanomalous (i.e.,
k ¼ k̄).

Indeed, in the c ¼ 1 free compact boson theory, the
lightest charged operator under the nonanomalous winding
Uð1Þw is the minimal winding operator O0;1, which has
scaling dimension R2

2
. By taking the radius to be arbitrarily

large, the minimal winding operator is arbitrarily heavy,
and hence there is no upper bound on the lightest charged
operator for this nonanomalous Uð1Þw. To arrive at the
same conclusion for larger values of c, we tensor product
the free compact boson theory with any other CFT, and
consider the Uð1Þw of the former. Again, the lightest
charged operator of this c > 1 CFT can be made arbitrarily
heavy by taking the radius of the boson to be large. While
this tensor product construction does not rigorously cover
the entire range of c ≥ 1, we expect the statement to be true
for all c ≥ 1.
In [7–9], a bound on the lightest charged operator is

derived for a holomorphic Uð1Þ, which always has an
’t Hooft anomaly. Hence, it is consistent with the above
statement. More generally, we argue that, just as in the Z2

case, the existence of a bound on the lightest charged
operator is not directly related to holomorphicity, but to the
’t Hooft anomaly.32

Indeed, consider an anomalous Uð1Þ global symmetry
with

k − k̄
2

∈ 2Zþ 1: ð6:13Þ

The Z2 subgroup of this Uð1Þ is anomalous, α ¼ −1. From
Sec. IV C and Sec. V C, we know that there is a bound on
the lightest Z2 odd operator, which is also a bound on the
lightest Uð1Þ charged operator when (6.13) is true. In
particular, both k and k̄ can be nonzero, and theUð1Þ can be
neither holomorphic nor antiholomorphic.
This leads us to argue that there is a bound on the lightest

Uð1Þ charged operator if the symmetry is anomalous, but
not otherwise. We will leave the study for bounds on the
lightest charged operator for a general Uð1Þ global sym-
metry for the future.
Let us finally comment on the interpretation of our

bounds from the weak gravity conjecture in AdS3=CFT2

[8].33 The ’t Hooft anomaly of a Uð1Þ current in an even-
dimensional holographic CFT is captured by the level of the
Chern-Simons term for the dual gauge field aμ in AdS [63]
(see also [64] for the specific context of AdS3=CFT2). In
the presence of a 3d Chern-Simons term, the gauge field
acquires a mass, and there is no electric charge confine-
ment. In this case, there are finite-energy charged particles
in the bulk, and the weak gravity conjecture applies.
Indeed, we expect there to be a bound on the lightest
charged operator in the CFT when the Uð1Þ is anomalous.
The importance of the Chern-Simons term was already
emphasized by [8] in the formulation of the weak gravity
conjecture in AdS3=CFT2.
In the absence of the Chern-Simons term, on the other

hand, charged particles are confined. Consequently, the
argument for the weak gravity conjecture does not apply to
such a Uð1Þ. This is perhaps consistent with our observa-
tion in the boundary CFT that there is no bound on the
lightest charged Uð1Þ operator if the Uð1Þ is nonanoma-
lous. However, this argument is not complete because there
could be mixed Chern-Simons terms with other gauge
fields in the bulk, rendering the photon massive.34 We leave
a more complete treatment for the future.

VII. OUTLOOK

Continuous global symmetries are typically associated
with conserved currents, and some of their ’t Hooft

32Incidentally, the authors of [8] considered the ZN subgroup
of a holomorphic Uð1Þ with k ¼ 2N and k̄ ¼ 0. This ZN is a
nonanomalous subgroup of an anomalous Uð1Þ. Indeed, while
they obtained a universal bound on charged operators for the
anomalous Uð1Þ, they did not find a bound for the nonanomalous
ZN subgroup. This is consistent with our general observation that
there is a bound only when the symmetry is anomalous.

33We thank Clay Cordova and Kantaro Ohmori for discussions
on this point.

34In AdS3=CFT2, the most natural boundary condition for a
Chern-Simons gauge theory is to hold az fixed if the level is
positive, and az̄ fixed if the level is negative [64], giving rise to
holomorphic and antiholomorphic currents on the boundary,
respectively. To couple to a nonholomorphic Uð1Þ symmetry,
we can, for example, start with two Uð1Þ gauge fields in AdS3
with a mixed Chern-Simons term iN

4π

R
AdS3

ðadbþ bdaÞ, and
choose to hold both az þ γbz and az̄ − γbz̄ fixed on the boundary,
with γ any real number. For a generic irrational γ, the boundary
Uð1Þ symmetry is neither holomorphic nor antiholomorphic.
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anomalies enter into the current correlation functions, and
constrain the local operator data. Rather surprisingly, our
investigation shows even discrete ’t Hooft anomalies place
strong constraints on the light charged operator spectrum in
2d CFTs. There are several interesting open avenues for
future study:

(i) Extend the analysis to general discrete and continu-
ous internal global symmetries in two dimensions.

(ii) Even more generally, one can incorporate the non-
invertible (“nonsymmetry”) topological defect lines
[14,19,25] into the modular crossing equation, and
study how the bounds on local operators depend on
the associated fusion category.

(iii) Generalize to spacetime symmetries such as the
time-reversal symmetry.

(iv) Extend to fermionic theories which depend on the
choice of the spin structure. For example, the ’t
Hooft anomaly for an internal Z2 symmetry in a 2d
fermionic CFT is classified by Z8.

(v) Higher dimensional generalizations.
Let us ask whether our story generalizes to spacetime

dimensions greater than 2. The answer is negative for a
discrete, internal, global symmetry G in a bosonic QFT. As
discussed in Sec. IV D, given such a G and its anomaly
α in d > 2 spacetime dimensions, there is always a d-
dimensional TQFT with a unique vacuum that carries this
symmetry and anomaly [55,56]. Therefore, we can modify
the anomaly of a d-dimensional QFT by taking its tensor
product with the above TQFT, without changing the local
operator data. Hence, in d > 2, there cannot possibly be an
anomaly-dependent bound on the local operator spectrum
for discrete, internal, bosonic symmetries.
On the other hand, there are symmetries and anomalies

that cannot be carried by TQFTs. For example, every
continuous global symmetry is associated to a conserved
current, which cannot exist in a TQFT. It is therefore
interesting to ask whether such an anomaly has nontrivial
implications on the charged local operator spectrum.
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APPENDIX A: c= 1 FREE COMPACT BOSON

The moduli space of c ¼ 1 CFTs consists of two
branches, the S1 branch and the S1=Z2 branch, together

with three isolated theories. This Appendix reviews the S1

branch, which has the description of the free compact
boson Xðz; z̄Þ ¼ XLðzÞ þ XRðz̄Þ at radii R ∈ R>0 (with R
and 1

R identified via T-duality). The free boson field is
normalized such that Xðz; z̄ÞXð0; 0Þ ∼ − 1

2
log jzj2. InH, the

exponential operators are

On;wðz; z̄Þ ¼ eipLXLðzÞþipRXRðz̄Þ; ðA1Þ

which are labeled by two integers, the momentum number
n and the winding number w:

pL ¼ n
R
þ wR; pR ¼ n

R
− wR; n; w ∈ Z: ðA2Þ

The conformal weights of On;w are

ðh; h̄Þ ¼
�
p2
L

4
;
p2
R

4

�
: ðA3Þ

The global symmetry at a generic radius contains
ðUð1Þn × Uð1ÞwÞ⋊Z2, where the last Z2 acts as
X → −X. The Uð1Þn and Uð1Þw correspond to momentum
and winding, which act by phases einθ and eiwθ on the
exponential operator (A1), respectively. We will focus on

the ðZð1;0Þ
2 × Zð0;1Þ

2 Þ × Z2 subgroup. More explicitly, the
two Z2 symmetries that are subgroups of the Uð1Þ’s are
simultaneous shifts in XL and XR such that the exponential
operators have signs eiπn and eiπw, respectively. If we
parametrize such a shift by

ðXL; XRÞ → ðXL; XRÞ þ ðlL;lRÞ; ðA4Þ

then the condition for every exponential operator to have
charge �1 under this shift is lLþlR

R ; ðlL − lRÞR ∈ πZ. For
generic R, this condition can be achieved if ðlL;lRÞ
belongs to the lattice spanned by

v1 ¼
π

2
ðR;RÞ; v2 ¼

π

2

�
1

R
;−

1

R

�
: ðA5Þ

Let us denote the Z2 generated by m1v1 þm2v2 as

Zðm1;m2Þ
2 , with mi ¼ 0, 1. In particular, Zð1;0Þ

2 and Zð0;1Þ
2

are the momentum and winding Z2, respectively. The

topological line for Zðm1;m2Þ
2 is35

35The extra sign in front of ∂̄XR comes fromH
dsμjμ ¼

H
dzjz −

H
dz̄j̄z̄.
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exp

�
i
π
ðm1v1 þm2v2Þ ·

�I
dz∂XL;−

I
dz̄ ∂̄ XR

�	
:

ðA6Þ

There is no ’t Hooft anomaly for the momentum Zð1;0Þ
2 ,

nor for the winding Zð0;1Þ
2 alone, but there is a mixed

anomaly between the momentum Zð1;0Þ
2 and the winding

Zð0;1Þ
2 . This means that the defect Hilbert spaces of Zð1;0Þ

2

have �1 charges under Zð1;0Þ
2 , but �i charges under Zð0;1Þ

2 ,
and vice versa.

1. Defect Hilbert space HL

The defect Hilbert space states of Zðm1;m2Þ
2 ðmi ¼ 0; 1Þ

are given by

exp

�
i
π
ðs1v1 þ s2v2Þ · ðXL;−XRÞ

	
¼ exp

�
i
2

��
s1Rþ s2

R

�
XL −

�
s1R −

s2
R

�
XR

�	
; ðA7Þ

with s1 ¼ m1 mod 2 and s2 ¼ m2 mod 2. In particular, the
defect Hilbert space ground states correspond to s1 ¼ m1

and s2 ¼ m2. The conformal weights of (A7) are

h ¼ 1

16

�
s1Rþ s2

R

�
2

; h̄ ¼ 1

16

�
s1R −

s2
R

�
2

: ðA8Þ

Note that the spin is

h − h̄ ¼ s1s2
4

: ðA9Þ

This is consistent with the spin selection rule and the mixed

anomaly between Zð1;0Þ
2 and Zð0;1Þ

2 . The momentum Zð1;0Þ
2

and winding Zð0;1Þ
2 charges of the operator (A7) are

Zð1;0Þ
2 ∶ e�

iπs2
2 ; Zð0;1Þ

2 ∶ e�
iπs1
2 : ðA10Þ

To be completely explicit:

(i) The Zð1;0Þ
2 defect Hilbert space ground states are

exp

�
� iR

2
ðXL − XRÞ

	
; ðh; h̄Þ ¼

�
R2

16
;
R2

16

�
ðA11Þ

whose spin corroborates with the absence of an
anomaly. Note that this defect Hilbert space ground

state has þ1 charge under Zð1;0Þ
2 , but �i charges

under Zð0;1Þ, implying the mixed anomaly between
the two Z2 symmetries.

(ii) Similarly, the Zð0;1Þ
2 defect Hilbert space ground

states are

exp

�
� i
2R

ðXL þXRÞ
	
; ðh; h̄Þ ¼

�
1

16R2
;

1

16R2

�
:

ðA12Þ

Note that this defect Hilbert space ground state has

þ1 charge under Zð0;1Þ
2 , but �i charges under Zð1;0Þ,

implying the mixed anomaly between the two Z2

symmetries.
(iii) The Zð1;1Þ

2 defect Hilbert space ground states are

exp

�
�
�
i
2

�
Rþ 1

R

�
XL −

i
2

�
R −

1

R

�
XR

�	
;

ðh; h̄Þ ¼
�ðRþ 1=RÞ2

16
;
ðR − 1=RÞ2

16

�
;

exp

�
�
�
i
2

�
R −

1

R

�
XL −

i
2

�
Rþ 1

R

�
XR

�	
;

ðh; h̄Þ ¼
�ðR − 1=RÞ2

16
;
ðRþ 1=RÞ2

16

�
; ðA13Þ

satisfying the anomalous spin selection rule
s ∈ Z

2
þ 1

4
.

(iv) When R2 ∈ N, there exist holomorphic currents in
one of the four Hilbert spaces H;Hð1;0Þ;Hð0;1Þ;
Hð1;1Þ. For example, there are currents with
ðs1; s2Þ ¼ �ð1; R2Þ, giving rise to a pair of defect
Hilbert space states with weight ðR2

4
; 0Þ. These states

are in Hð1;0Þ if R2 is even, and in Hð1;1Þ if R2 is odd.
The above can be generalized to when R2 is rational.

(v) Finally, for the Z2 that acts as X → −X, the defect
Hilbert space ground states are two-fold degenerate,
corresponding to the two fixed points, and have
conformal weights ð 1

16
; 1
16
Þ.

2. Hilbert space of local operators H

We list the lightest Z2 even/odd states in H with respect
to various Z2 symmetries below, to compare with the
bootstrap bounds in Sec. V B. Without loss of generality,
we assume R ≥ 1.

(i) With respect to the nonanomalous momentumZð1;0Þ
2 ,

the ðn; wÞ ¼ ð�2; 0Þ; ð0;�1Þ states are even, while
the ðn; wÞ ¼ ð�1; 0Þ; ð�1;�1Þ states are odd. The
maximal gap in the even sector is 1, realized
at R ¼ ffiffiffi

2
p

.
(ii) With respect to the nonanomalous winding Zð0;1Þ

2 ,
the ðn; wÞ ¼ ð�2; 0Þ; ð�1; 0Þ states are even, while
the ðn; wÞ ¼ ð0;�1Þ; ð�1;�1Þ states are odd. The
maximal gap in the even sector is 1

2
, realized

at R ¼ 1.
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(iii) With respect to the anomalous Zð1;1Þ
2 , the ðn; wÞ ¼

ð�2; 0Þ; ð�1;�1Þ states are even, while the
ðn; wÞ ¼ ð�1; 0Þ; ð0;�1Þ states are odd. The maxi-
mal gap in the even sector is 2, realized at R ¼ 1,
where the ðn; wÞ ¼ ð�1;�1Þ states become con-
served currents and are thus excluded from the
definition of the gap. For 1 < R < 3

1
4, the states

with the lowest scaling dimensions are the ðn; wÞ ¼
ð�1;�1Þ operators with scaling dimension R2þ1=R2

2
,

while for R > 3
1
4, they are the ð�2; 0Þ scalars with

scaling dimension 2
R2.

APPENDIX B: WZW MODELS

Let us consider the center symmetries in WZW models
for simple Lie groups. Their anomalies have been com-
puted in [41,65]. We will consider the WZWmodels whose
center contains a Z2 subgroup.
Let us start with some basics of the WZW models. We

follow the conventions in [66]. Let g be a simple Lie
algebra and r ¼ rankðgÞ. The central charge of the gWZW
model at level k is

c ¼ k dim g
kþ h∨ ; ðB1Þ

where h∨ is the dual Coxeter number. Given a positive
integer level k, the current algebra module is labeled by a
weight λ satisfying

0 ≤
Xr
i¼1

a∨i λi ≤ k; ðB2Þ

where a∨i are the comarks. Here λi ∈ Z≥0 are the Dynkin
labels of λ, and we write λ ¼ ðλ1; λ2;…; λrÞ. The conformal
weight of a current algebra primary of weight λ is

hλ ¼
ðλ; λþ 2ρÞ
2ðkþ h∨Þ ; ðB3Þ

where ρ ¼ ð1; 1;…; 1Þ is the Weyl vector. We will only
consider diagonal WZWmodels where the left and the right
modules are identical for every primary. The current
algebra primary will be denoted by jhλ;hλi.
We write the Dnkin labels of an affine weight λ̂ as λ̂ ¼

½λ0; λ1;…; λr�. The affine fundamental weights are denoted
by ω̂0¼½1;0;…;0�;ω̂1¼½0;1;…;0�;…;ω̂r¼½0;0;…;1�.

1. Z2 center symmetry and its anomaly

We focus on the Z2 center symmetry (if exists) of the
diagonal WZW model for a simple Lie algebra g. The
advantage of considering the Z2 center symmetry is that
it commutes with the left and the right current algebras,
so many calculations can be done with the help of the
current algebra ĝ. The nontrivial centers of simple Lie
algebras are

g Ar Br Cr D2n D2nþ1 E6 E7

center Zrþ1 Z2 Z2 Z2 × Z2 Z4 Z3 Z2

ðB4Þ

while G2, F4, E8 have no center. Among the above, the
centers of A2n−1; Br; Cr; Dr; E7 have Z2 subgroups.
Each element of the center group is associated with an

outer automorphism of the affine Lie algebra ĝ. We list the
outer automorphism A associated to the generator of each

Z2 center subgroup in Table I. The Z2 acts on the current
algebra primary jhλ; hλi as

Z2∶ jhλ; hλi → e2πiðAω̂0;λÞjhλ; hλi: ðB5Þ

TABLE I. The outer automorphisms associated to the Z2 centers in simple affine Lie algebras. Note that the center Z2 × Z2 of D2nþ2

has three Z2 subgroups, whose generators are A; Ã; AÃ. We also list the ’t Hooft anomaly for each Z2 in the level k WZW model.

g Action of the Z2 outer automorphism Aω̂0 α

A2n−1 A½λ0; λ1;…; λ2n−1� ¼ ½λn; λnþ1;…; λ2n−1; λ0; λ1;…; λn−1� ω̂n eiπkn

Br A½λ0; λ1;…; λr� ¼ ½λ1; λ0;…; λr−1; λr� ω̂1 1
Cr A½λ0; λ1;…; λr� ¼ ½λr; λr−1;…; λ1; λ0� ω̂r eiπkr

Dr¼2n≥4 A½λ0; λ1;…; λr� ¼ ½λ1; λ0; λ2;…; λr; λr−1� ω̂1 1
Ã½λ0; λ1;…; λr� ¼ ½λr; λr−1; λr−2;…; λ1; λ0� ω̂r eiπkn

AÃ½λ0; λ1;…; λr� ¼ ½λ2n−1; λ2n; λ2n−2;…; λ2; λ0; λ1� ω̂r−1 eiπkn

Dr¼2nþ1 A½λ0; λ1;…; λr� ¼ ½λ1; λ0; λ2;…; λr−2; λr; λr−1� ω̂1 1
E7 A½λ0; λ1;…; λ7� ¼ ½λ6; λ5; λ4; λ3; λ2; λ1; λ0; λ7� ω̂6 eiπk
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The ’t Hooft anomaly α of the Z2 center subgroup in the
level k WZW model is computed in [41] as

α ¼ e2πikjAω̂0j2 ; ðB6Þ

where ω̂0 ¼ ½1; 0;…; 0� is the 0th affine fundamental
weight. We list the anomaly for each Z2 in the rightmost
column in Table I.

2. A series

a. dsuð2Þk
As a warmup, let us start with the diagonal dsuð2Þk WZW

model of central charge c ¼ 3k
kþ2

. The current algebra

primary jj; ji is labeled by the spin j ¼ λ1
2
∈ Z

2
, with

0 ≤ j ≤ k
2
. The scaling dimension of jj; ji is

Δj ¼
2jðjþ 1Þ
kþ 2

: ðB7Þ

The center Z2 charge of jj; ji acts as
Z2∶ jj; ji → ð−1Þ2jjj; ji: ðB8Þ

The center Z2 is anomalous if k ∈ 2N − 1, and non-
anomalous otherwise.
We summarize the lightest Z2 even/odd nondegenerate

Virasoro primaries in each dsuð2Þk WZW model.
Degenerate primaries such as Ja−1j0; 0i are excluded in
accordance with our definition of the gap in Sec. V.

(i) dsuð2Þk¼1ðα ¼ −1Þ
Z2 even∶ Ja−1J̄

b
−1j0; 0i; Δþ

gap ¼ 2;

Z2 odd∶
����j ¼ 1

2
; j ¼ 1

2

�
; Δ−

gap ¼
1

2
: ðB9Þ

This is the self-dual free compact boson discussed in
Sec. II E 2.

(ii) dsuð2Þk>1ðα ¼ eiπkÞ

Z2 even∶ jj ¼ 1; j ¼ 1i; Δþ
gap ¼

4

kþ 2
;

Z2 odd∶
����j ¼ 1

2
; j ¼ 1

2

�
; Δ−

gap ¼
3

2ðkþ 2Þ :

ðB10Þ
b. dsuð2nÞk

Let us move on to the dsuð2nÞk WZW models with

n > 1. The central charge is c ¼ ð4n2−1Þk
kþ2n . The center of

SUð2nÞ is Z2n. The generator of Z2n acts on the current
algebra primary jhλ; hλi by the phase exp½2πi

2n

P
2n−1
j¼1 jλj�. It

follows that the Z2 subgroup acts by a phase

Z2∶ jhλ; hλi → eiπ
P

2n−1
j¼1

jλj jhλ; hλi: ðB11Þ

From Table I, the Z2 is anomalous if and only if both k and
n are odd. For any k, the lightest Z2 even and odd current
algebra primaries are, respectively,

ðα ¼ eiπknÞ
Z2 even∶ λ ¼ ð0; 1; 0;…; 0Þ ¼ Λ2

□;

Δþ
gap ¼

2ðn − 1Þð2nþ 1Þ
nðkþ 2nÞ ;

Z2 odd∶ λ ¼ ð1; 0; 0;…; 0Þ ¼ □;

Δ−
gap ¼

4n2 − 1

2nðkþ 2nÞ : ðB12Þ

Note that the scaling dimension Δ of the current algebra
primary Λ2□ is always lighter than 2 (of Ja−1J̄

b
−1j0; 0i), so it

is also the lightest Z2 even Virasoro primary. Also, the
lightest Z2 odd current algebra primary is trivially the
lightest odd Virasoro primary, because the generators of
the current algebra are Z2 even. The same applies to all the
other WZW models in the later subsections.

3. B series

The Br ¼ dsoð2rþ 1Þ WZW model at level k has central

charge c ¼ kð2r2þrÞ
kþ2r−1 . TheZ2 center is always nonanomalous.

The lightest even/odd current algebra primaries are

ðα¼þ1Þ Z2even∶ λ¼ð1;0;…;0Þ; Δþ
gap¼

2r
kþ2r−1

;

Z2odd∶ λ¼ð0;…;0;1Þ; Δ−
gap¼

2r2þr
4ðkþ2r−1Þ:

ðB13Þ

a. The free fermions

The dsoð2rþ 1ÞWZWmodel at level 1 with c ¼ 2rþ1
2

can
be described as 2rþ 1 free Majorana fermions summed
over spin structures, so that we end up with a bosonic
theory. There are three current algebra primaries labeled by
the affine weights ω̂0, ω̂1, and ω̂r. Their conformal weights
are hω̂0

¼ 0; hω̂1
¼ 1

2
; hω̂r

¼ 2rþ1
16

. Their characters are

χω̂0
¼ 1

2

�
θrþ1=2
3 þ θrþ1=2

4

ηrþ1=2

�
;

χω̂1
¼ 1

2

�
θrþ1=2
3 − θrþ1=2

4

ηrþ1=2

�
;

χω̂r
¼ 1ffiffiffi

2
p θrþ1=2

2

ηrþ1=2 ; ðB14Þ

where θi ¼ θið0jτÞ. When r ¼ 0, we recover the Ising

characters (2.20). The r ¼ 1 theory is the dsuð2Þ2 WZW
model. Under the modular S transformation, θ3=η → θ3=η,
θ2=η ↔ θ4=η.
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θ3ðτÞ
ηðτÞ →

θ3ðτÞ
ηðτÞ ;

θ2ðτÞ
ηðτÞ ↔

θ4ðτÞ
ηðτÞ : ðB15Þ

The even and odd current algebra primaries under the
center Z2 are

Hþ∶ j0; 0i;
���� 12 ; 12

�
; H−∶

���� 2rþ 1

16
;
2rþ 1

16

�
:

ðB16Þ

The torus partition function with the insertion of a spatial
Z2 line is

ZLðτ; τ̄Þ ¼ jχω̂0
ðτÞj2 þ jχω̂1

ðτÞj2 − jχω̂r
ðτÞj2: ðB17Þ

Applying S, we derive the defect Hilbert space partition
function

ZLðτ; τ̄Þ ¼ χω̂0
ðτÞχω̂1

ðτ̄Þ þ χω̂1
ðτÞχω̂0

ðτ̄Þ þ jχω̂r
ðτÞj2:

ðB18Þ

Hence, the current algebra primaries in the defect Hilbert
space are

HL∶
����0; 12

�
;

���� 12 ; 0
�
;

���� 2rþ 1

16
;
2rþ 1

16

�
: ðB19Þ

In the Ising model (r ¼ 1), these are the free chiral fermions
and the disorder operator μðxÞ (see Sec. II E 1). The lightest
nondegenerate Virasoro primary in the defect Hilbert space
is the disorder operator with Δ ¼ 2rþ1

8
, if r ≤ 5, or the

current algebra descendant Ja−1j0; 12i with Δ ¼ 3
2
if r ≥ 6.

Considered together with the Z2 odd sector H−, we
conclude that

ðα ¼ þ1ÞΔord=dis
gap ¼

(
2rþ1
8

; if 1 ≤ r ≤ 5;
3
2
; if r ≥ 6:

ðB20Þ

On the other hand, Δþ
gap ¼ 1.

4. C series

The Cr ¼ dspð2rÞ WZW model at level k has central

charge c ¼ kð2r2þrÞ
kþrþ1

. The Z2 center is anomalous if and only
if both k and r are odd. The lightest even/odd current
algebra primaries are

ðα ¼ eiπkrÞ

Z2 even∶ λ ¼ ð0; 1; 0;…; 0Þ; Δþ
gap ¼

2r
kþ rþ 1

;

Z2 odd∶ λ ¼ ð1; 0;…; 0; 0Þ; Δ−
gap ¼

2rþ 1

2ðkþ rþ 1Þ :

ðB21Þ

5. D series

For the D2n WZW models, there are three Z2 subgroups
of the center. We focus on the first one, denoted by A in
Table I. This Z2, which is always nonanomalous α ¼ þ1,
can be uniformly discussed in both the D2nþ1 and the D2n
cases. We will return to the other two Z2 subgroups in the
D2n WZW models in the special case of k ¼ 1.

The Dr ¼ dsoð2rÞ WZW model at level k has central

charge c ¼ kð2r2−rÞ
kþ2r−2 . The lightest even/odd current algebra

primaries under the Z2 specified above are

ðα ¼ þ1Þ

Z2 even∶ λ ¼ ð1; 0;…; 0Þ; Δþ
gap ¼

2r − 1

kþ 2r − 2
;

Z2 odd∶ λ ¼ ð0;…; 0; 0; 1Þ; ð0;…; 0; 1; 0Þ;

Δ−
gap ¼

rð2r − 1Þ
4ðkþ 2r − 2Þ : ðB22Þ

a. The free fermions

The ðDrÞ1 ¼ dsoð2rÞ1 WZW model with c ¼ r can be
described as 2r free Majorana fermions summed over spin
structures. There are four modules in the WZW model,
corresponding to the affine weights ω̂0, ω̂1, ω̂r−1, and ω̂r.
Their conformal weights h are hω̂0

¼ 0; hω̂1
¼ 1

2
; hω̂r−1

¼
hω̂r

¼ r
8
. Their characters are

χω̂0
¼ 1

2

�
θr3 þ θr4

ηr

�
; χω̂1

¼ 1

2

�
θr3 − θr4

ηr

�
;

χ ≡ χω̂r−1
¼ χω̂r

¼ 1

2

θr2
ηr

: ðB23Þ

There is a Z2 symmetry that commutes with the current
algebra which is always nonanomalous. The modules ω̂0

and ω̂1 are even under this Z2, while the modules ω̂r−1 and
ω̂r are odd. That is

Hþ∶ j0; 0i;
���� 12 ; 12

�
; H−∶ 2

���� r8 ; r8
�
: ðB24Þ

The torus partition function ZL is

ZLðτÞ ¼ jχω̂0
ðτÞj2 þ jχω̂1

ðτÞj2 − 2jχðτÞj2: ðB25Þ
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Under S, we obtain the defect Hilbert space partition
function

ZLðτ; τ̄Þ ¼ χω̂0
ðτÞχω̂1

ðτ̄Þ þ χω̂1
ðτÞχω̂0

ðτ̄Þ þ 2jχðτÞj2: ðB26Þ
The defect Hilbert space spectrum is

HL∶
����0; 12

�
;

���� 12 ; 0
�
; 2

���� r8 ; r8
�
: ðB27Þ

The lightest nondegenerate Virasoro primary in the
defect Hilbert space HL is either the current algebra
descendant Ja−1j0; 12i, or the current algebra primary
j r
8
; r
8
i, i.e., ðΔgapÞL ¼ r

4
if r ≤ 6 and ðΔgapÞL ¼ 3

2
if r ≥ 6.

The gap in the odd sector H−, on the other hand, is always
r
4
. Hence the gap for this nonanomalous Z2 int he c ¼ rdsoð2rÞ1 WZW model is

ðα ¼ þ1ÞΔord=dis
gap ¼

(
r
4
; if 1 ≤ r ≤ 6;

3
2
; if 6 ≤ r;

ðB28Þ

and Δþ
gap ¼ 1. This explains the kink in Fig. 14.

For dsoð2rÞk with r ¼ 2n, there are two other Z2

subgroups denoted by Ã and AÃ in Table I. Let us discuss
the second one Ã. The anomalies and gaps are the same for
the third one AÃ. We will denote the Z2 associated to Ã by
Z̃2, which is anomalous if and only if both k and n are odd,
i.e., α ¼ eiπkn.

In dsoð4nÞ1, the Z̃2 acts on the current algebra primaries
as

Z̃2∶
���� 12 ; 12

�
→ −

���� 12 ; 12
�
;

jhω̂2n−1
; hω̂2n−1

i → ð−1Þn−1jhω̂2n−1
; hω̂2n−1

i;
jhω̂2n

; hω̂2n
i → ð−1Þnjhω̂2n

; hω̂2n
i: ðB29Þ

The torus partition function with a spatial Z̃2 line inserted is
ZL̃ ¼ jχω̂0

j2 − jχω̂1
j2. The defect Hilbert space partition

function is

ZL̃ðτ; τ̄Þ ¼ χω̂0
ðτÞχðτ̄Þ þ χðτÞχω̂0

ðτ̄Þ þ χω̂1
ðτÞχðτ̄Þ

þ χðτÞχω̂1
ðτ̄Þ: ðB30Þ

Hence, the defect Hilbert space spectrum is

HL̃∶
����0; n4

�
;

���� n4 ; 0
�
;

���� 12 ; n4
�
;

���� n4 ; 12
�
:

ðB31Þ
According to the spin selection rule (2.7), Z̃2 is anomalous
if n is odd (here k ¼ 1).
The various gaps for nondegenerate Virasoro primaries

of the c ¼ 2n dsoð4nÞ1 WZW model for Z̃2 are

ðα ¼ eiπnÞΔ̃þ
gap ¼ Min

�
2;
n
2

�
;

Δ̃−
gap ¼ Min

�
1;
n
2

�
;

Δ̃ord=dis
gap ¼ Min

�
1;
nþ 2

4
;
n
2

�
: ðB32Þ

6. E7

Finally, the be7 WZW model at level k has c ¼ 133k
kþ18

. The
centerZ2 is anomalous if and only if k is odd, i.e., α ¼ eiπk.
At level 1, there are two current algebra modules, the

vacuum j0; 0i and j 3
4
; 3
4
iwith weight λ ¼ ð0; 0; 0; 0; 0; 1; 0Þ.

The latter is odd under the anomalous center Z2. By the
spin selection rule (2.7), there cannot be any spin 0 operator
in HL, hence the only states in the defect Hilbert space are
j0; 3

4
i and j 3

4
; 0i, which are degenerate. The gaps for

nondegenerate Virasoro primaries are

ðα ¼ −1Þ k ¼ 1∶ Δþ
gap ¼ 2; Δ−

gap ¼
3

2
; Δord=dis

gap ¼ 3

2
;

ðB33Þ

where the operator corresponding to Δþ
gap ¼ 2

is Ja−1J̄
b
−1j0; 0i.

At higher level k > 2, the lightest even and odd current
algebra primaries are

ðα¼ eiπkÞ Z2 even∶ λ¼ ð1000000Þ; Δþ
gap ¼

36

kþ 18
;

Z2 odd∶ λ¼ ð0000010Þ; Δ−
gap ¼

57

2ðkþ 18Þ :

ðB34Þ

7. (Almost) saturating examples

There are many WZW models that saturate or almost
saturate the numerical bootstrap bounds we present
in Sec. V.

a. Nonanomalous Δ +
gap

(i) c ¼ 1: Ising2, Δþ
gap ¼ 1.

(ii) c ¼ 3
2
: dsoð3Þ1 ¼ dsuð2Þ2, Δþ

gap ¼ 1.

(iii) c ¼ 2: dsoð4Þ1, Δþ
gap ¼ 1.

(iv) c ¼ 5
2
: dsoð5Þ1 ¼ ðB2Þ1, Δþ

gap ¼ 1.

(v) c ¼ 8: dsoð16Þ1 ¼ ðD8Þ1, Δ̃þ
gap ¼ 2.36

36The tilde sign over Δ means that it is the gap with respect to
the Z̃2 symmetry in the D8 WZW model.

YING-HSUAN LIN and SHU-HENG SHAO PHYS. REV. D 100, 025013 (2019)

025013-30



b. Nonanomalous Δord=dis
gap

(i) c ¼ n
2
; n ∈ N; 1 ≤ n ≤ 12: dsoðnÞ1, Δord=dis

gap ¼ n
8
.

c. Anomalous Δ+
gap

(i) c ¼ 1: dsuð2Þ1, Δþ
gap ¼ 2.

(ii) c ¼ 21
5
: dspð6Þ1 ¼ ðC3Þ1, Δþ

gap ¼ 6
5
.

(iii) c ¼ 5: dsuð6Þ1 ¼ ðA5Þ1, Δþ
gap ¼ 4

3
.

(iv) c ¼ 7: ðE7Þ1, Δþ
gap ¼ 2.

d. Anomalous Δ−
gap

(i) c ¼ 1: dsuð2Þ1, Δ−
gap ¼ 1

2
.

APPENDIX C: MORE EXAMPLES OF c > 1 CFTs
WITH Z2 SYMMETRY

1. Monster CFT

The (holomorphic) cL ¼ 24 and cR ¼ 0 Monster CFT
has two nonanomalous Z2 symmetries, usually denoted by
Z2A and Z2B. Their ZL are

Z2AðqÞ ¼ ηðτÞ24
ηð2τÞ24 þ 212

ηð2τÞ24
ηðτÞ24 þ 24 ¼ 1

q
þ 4372q

þ 96256q2 þ 1240002q3 þOðq4Þ;

Z2BðqÞ ¼ ηðτÞ24
ηð2τÞ24 þ 24 ¼ 1

q
þ 276q − 2048q2

þ 11202q3 þOðq4Þ: ðC1Þ

InH, theZ2 even and odd gaps are both h�gap ¼ 2, for either
Z2A or Z2B.

The modular S transforms of (C1) are the defect Hilbert
space partition functions ZL:

Z2AðqÞ¼212
ηðτÞ24

ηðτ=2Þ24þ
ηðτ=2Þ24
ηðτÞ24 þ24

¼ 1

q1=2
þ4372q1=2þ96256qþ1240002q3=2þOðq2Þ;

Z2BðqÞ¼212
ηðτÞ24

ηðτ=2Þ24þ24

¼24þ4096q1=2þ98304qþ1228800q3=2

þ10747904q2þOðq5=2Þ: ðC2Þ

The gaps in the defect Hilbert space are ðhgapÞL ¼ 1
2
for

Z2A, and ðhgapÞL ¼ 1 for Z2B.
We can take the tensor product of a holomorphic and an

antiholomorphic monster CFT, and compare its gaps with
our bootstrap bounds. We find that they are well within our
numerical bounds in Sec. V.

2. Tensor product theories

Consider the tensor product of two copies of the
same CFT. There is a nonanomalous Z2 exchange sym-
metry. The defect Hilbert space ground state has weight
ðh; h̄Þ ¼ ð c

32
; c
32
Þ, where c is the central charge of the

product theory. Hence the universal bound on Δord=dis
gap

for a nonanomalous Z2 cannot be stronger than c
16
. This

is indeed consistent with Fig. 14.
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