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ABSTRACT 

By the use of the Alvarez 72-inch hydrogen bubble chamber 
exposed to a 1.25-Bev/c π± beam designed by Professor Frank Craw
ford, a study of the processes π+ + p→p + π+ +π0 and π- +p→p + π- + π0  
has been carried out. All together, 1737 π+ and 466 π- events with low 
momentum transfer to the proton (less than 400 Mev/c) have been meas
ured. 

Evidence has been found for a T = J = 1 di-pion resonance of 
mass 730 Mev and full width at half maximum of 150 Mev (total di-pion 
energy squared = 29 neutral pion masses squared). 

The height of the cross section by extrapolation for both the 
π+ and π- data and in the physical region for the π+ is consistent with 
(2J + 1) 4πλ2 for a p-wave resonance. Angular distributions were 
determined in the physical region for the π+ data. These distributions 
are strongly dominated by a cos2θππ term (s-, d-, and f-wave reso-
nances can be ruled out by this experiment). 

The π- data do not show the dominance of the single-pion 
exchange process in the physical region. The cross section σπ - π0 as 
determined by the Chew-Low extrapolation method does show a reso
nant rise, thus indicating that the applicability of the Chew-Low method 
is not restricted to situations in which the physical region contains al
ready as much information as one hopes to learn by extrapolation. 
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I. DATA COLLECTION AND EVENT SELECTION 

This experiment, an investigation of the pion-pion interaction 
by means of the reaction π± + p→ π± + p + π0, has been carried out at the 
Lawrence Radiation Laboratory in the Alvarez 72 inch hydrogen bubble 
chamber with a beam designed by Professor Frank Crawford. The results 
of an earlier experiment 1,2,3 which led to the experimental verification 
of a pion-pion resonance indicated that the present beam momentum (1255 
Mev/c) would be ideal for studying the properties of this resonance. 

A. Data Collection, 
1. π- Film 

The scanners searched for non-strange-particle interactions 
resulting in two-prong events in which one of the tracks was a stopping 
proton. The only reactions that fulfill these criteria at 1282 Mev/c are 

π- + p → π- + p, (I-1) 
π- + p → π- +p + π0, (I-2) 
π- + P → π- + p + ≥2π0. (I-3) 
It is possible to reject most of the elastic events (Eq. 1) on the 

scanning table without detailed measurements. From Fig. 1 we see that 
if we restrict ourselves to recoil protons of momentum less than 400 
Mev/c, the scattered protons in Reaction (1) have space angles with re
spect to the beam direction that are greater than 70 deg. On the other 
hand, the additional neutral in Reaction (2) causes the proton to go forward 
of 73.5 deg. (lab). Our scanners were trained to make rough measurements 
(about ± 1% in momentum, ± 2 deg. in space angle) of the momentum and 
angle of the recoil proton. 

The beam enters the chamber as approximately 20 highly parallel 
tracks. Any beam particle that undergoes Reaction (2) loses at least 135 
Mev/c of momentum even if the proton carries off negligible momentum in 
the laboratory system. This 10% change in curvature relative to the rest 
of the tracks is readily observed by the scanner, allowing him frequently 
to detect the interaction point of "zero-length" protons. We have there-
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Fig. 1. Kinematics at 1255 Mev/c. Curve a shows the relation
ship between the lab space angle and the lab momentum of the 
proton in the elastic reaction π+p→π+p. Curve b shows the al
lowed region for the reaction π+p→p+π+π0. Curve c shows the 
relationship between Θp and Ρp for the reaction π+p→p+π*, where the mass of π* is 730 Mev. 
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fore assumed that the scanning efficiency does not depend upon the 
length of the proton track seen. We accept no protons of momentum 
less than 95 Mev/c (range 0.25 cm), in order to assure fulfillment of 
this important assumption. 
2. π+ Film 

The π+ beam contained a 20-foot electrostatic separator which 
removed most of the proton contamination. The residual proton con
tamination. The residual proton contamination was about 2%. (See Ap
pendix A for·a discussion of path lengths, scanning efficiencies, and 
beam contamination.) The possible non-strange-particle interactions 
with a stopping proton at 1255 Mev/c in the π+ film are 

π+ + p → π+ + p, (I-4) 
π+ + p → π+ + p + π0, (I-5) 
π+ + p → π+ + p + ≥2π0, (I-6) 
p + p → p + p, (I-7) 
p + p→p + p + π0, (I-8) 
P + P →P + n + π+. (I-9) 
Reactions (8) and (9) are negligible because of the low beam 

contamination and the small inelastic p-p cross sections at this energy. 
Reactions (7) and (5) are distinguished from (4) by the scanner in the 
same way as (2) is from (1). 

B. Event Selection 
In order to determine the total elastic pion-pion cross section, 

it suffices to measure the laboratory-system momentum and space angle 
of the scattered proton in Reactions (2) and (5). (See Chapter II, Section 
B, and Appendix B). Prior to this experiment, scanning-table meas
urements of these two quantities were carried out on 1700 events at 1.03 
Bev/c. Although the table method is not adaptable to the measurement 
of the differential pion-pion cross section (unless one were to measure 
the momentum of the secondary pion by using templates) and does not 
separate out the multiply inelastic events, it was selected initially be
cause it was a rapid way to process events and it was known that the 



-4-

multiple production of neutral pions is less than 10% at 1 Bev/c.4 
This method has now been superseded in this experiment by a Franckenstein-PANG-KICK-EXAMIN-HISTOGRAM system. Even so, we men
tion the former method briefly because it was the basis of several pub
lished reports and because our scanners continued to eliminate elastic-scattering events on the scanning table through the use of this measuring 
system. 

Our "by hand " measurements are based on the method of G. Lynch, 
which, using the three views of the 72-inch chamber, measures the pro
jected chord length, and the projected angle in the plane of the chamber, 
and the dip angle of the proton.5 The proton angle, Θp, and the proton 
momentum, Ρp, were tabulated for each event along with certain functions 
of these variables, p2(Ρp) and ω2(Ρp, Θp). 

In this experiment, however, the data processing was done in the 
following way. An IBM master card was made for each event found. The 
events were measured on the Franckenstein and processed through PANG6 

and KICK.7 A program, EXAM,8 was written to read KICK tape and 
place events in categories: failure, nonbeam events, elastic scatterings, 
inelastic single π0 production, multiproduction, and "pathological" events. 
For every valid inelastic single π0 production, the EXAMIN program 
program punched a data card which contained all the necessary data for 
the event (serial number, missing mass, X2 for single production, the 
ratio Xe2/Xi2.(where e and i refer to the hypotheses for elastic and inelastic reactions), henceforth called X2 ratio, and certain functions of 
the fitted angles and momenta). To be processed automatically as a valid 
inelastic event without an "off-line" physicist, an event has to satisfy the 
following criteria: 

a. The beam momentum is within 50 Mev/c of nominal. 
b. There is an uncertainty in the missing mass, ΔΜ, less than 

60 Mev. This value was chosen because it is about three times the error 
of a typical event and is less than one-half the mass of a pion. 

c. M - ΔΜ ≤ (3/2) mπ = 210 Mev, and Μ + ΔΜ >(1/2) mπ = 70 
Mev, where M is the missing mass and ΔΜ is the error in the missing 
mass (see Fig. 2 for a distribution of the missing mass of those events 
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Fig. 2. The missing-mass spectrum of those π+ events satisfying 
criteria a,b,c of Chapter I Section B. (The dark shaded events 
fit multiple π0 production). 
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having ΔΜ less than 60 Mev). 
d. The Xi2 of the "inelastic hypothesis" (one degree of freedom) is less than 20 and the χ2 ratio greater than 100 (see Fig. 3 for our inelastic event X2 distribution). 

The sample of events with Μ+ΔΜ < 70 Mev was found to be almost entirely elastic events. Any event that did not fit the "elastic hypothesis" with a very high probability (we demanded Xe2 less than 10, for four degree of freedom) was examined on the scanning table. A few elastic events had M+ΔΜ greater than 70 Mev. These were, however, automatically rejected from our sample of inelastic events by the X2 ratio test. 

About 10 to 15% of our inelastic events are really 2π0 events. 
We believe that the requirement M - ΔΜ ≤ 210 Mev for a single produc
tion allows us a relatively clean sample of single-production events, 
since the much less abundant multiple production begins with a threshold 
at 270 Mev. 

Events that did not satisfy all the criteria (such as ΔΜ < 60 Mev, 
etc.) were ear-marked "pathological" and were examined by a physicist. 
(More than 90% of the events went automatically through the system; that 
is, they fulfilled criteria a through d.) 

For all events that passed the EXAMIN criteria directly or were 
aided through by the physicist, the data card replaced the initial master 
card. For events which were fitted as elastic, non-beam, or multiproduction, 
a code was punched in the master card. The data cards formed 
the input for histogram-making programs. 

C. Geometrical Corrections 
In order to reduce the measuring by almost an order of magnitude 

we selected inelastic reactions only when the momentum of the proton was 
less than 400 Mev/c and the proton stopped in the chamber. We then assigned to each event, according to the space angle and momentum of the 
proton, a statistical weighting factor as computed by an IBM 704 program.9,10 
In order to be accepted each event had to have its interaction point within a 
fiducial volume and the proton had to stop within the chamber. The program 
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Fig. 3. The X2 distribution of all the events (π±) which satisfy 
criteria a through c of Chapter I Section Β (one degree of 
freedom). 
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computed, for an ensemble of points spaced evenly over the chamber 
(but given a weight determined by the experimental beam distribution), 
that fraction of interactions with a given secondary proton range (mo
mentum) and space angle which stay in the chamber. Table I shows the 
correction that must be applied to the experimental number of events 
in order to get the true number of events. 

Table I. Escape Correction Factors for the π+ film. 
p2 1 2 3 4 5 6 7 8 
ω2 7 1.003 1.018 1.043 1.127 1.361 ,- - -
11 1.001 1.013 1.040 1.109 1.430 - - -
15 1.000 1.011 1.038 1.114 1.311 1.616 - -
21 - 1.007 1.032 1.089 1.171 1.509 - -
25 - 1.004 1.003 1.069 1.138 1.284 1.781 -
29 - - 1.055 1.097 1.191 1.385 -
31 - - - 1.100 1.154 1.287 1.677 
35 - - - 1.150 1.232 1.343 

Where p2 and ω2 (in pion masses) are defined by Eq.II-6 and 
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II. THEORETICAL CONSIDERATIONS 

A. The Theoretical Prediction of a Pion-Pion Resonance 
One reason why it is important to know the pion-pion cross 

section is because one is able by using dispersion relations, to relate 
the electromagnetic structure of the nucleon to the pion-pion interaction. 
This interrelationship occurs because there exists in the dispersion 
theory for the isotopic vector form factor of the nucleon an integral in t, 
the square of the momentum transfer over the imaginary part of the 
form factor. Symbolically, 

<N | γ) α 
∞ 

(2mπ)2 
dt' Im <N|γ> (II-1) <N | γ) α 

∫ (2mπ)2 
dt' Im <N|γ> (II-1) <N | γ) α 

∫ (2mπ)2 
dt' Im (t' - t) ' (II-1) 

where the limits of integration run from a lower limit to infinity, and 
where the lower limit is determined by the lowest-mass system con
sisting of strongly interacting particles that has the same quantum 
numbers as a gamma ray--that is, zero baryon number, zero strange
ness, and angular momentum J = 1. The lowest-mass system ful
filling these criteria is two pions in a p state. 

In the dispersion formulation the form factor is most strongly 
affected by the behavior of the lowest-mass system. Frazer and Fulco 
showed that if one postulates a strong p-state di-pion resonance the 
experimentally found nucleon electromagnetic structure can be understood. 

This interrelationship can be qualitatively understood as follows: 
Expand the imaginary part of the nucleon form factor as a sum over 
intermediate states and keep only the lightest intermediate state, the 
two-pion state: 

Im(N|γ>= <N | ππ><ππ| γ> +... (II-2) 

Here <N | ππ> is related to the pion-nucleon scattering amplitude 
<πΝ|πΝ> through crossing symmetry; <ππ|γ> is the pion electromagnetic 
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form factor. Thus Eq. (1) relates the nucleon form factor to the pion-nucleon phase shifts and to the pion form factor. 
The pion form factor itself satisfies a dispersion relation, and, 

again expanding only to the lowest-mass system having the same quantum 
numbers as two pions in a p state (namely, two pions in a p state), one 
obtains an integral equation for the pion form factor involving <ππ|ππ> 
and <ππ|γ>. Specification of the pion-pion phase shifts, <ππ|ππ>, 
results in a valve for the nucleon form factor. Frazer and Fulco showed 
that the experimental nucleon form factor can be explained if they assume 
a di-pion resonance in the Τ = J = 1 state, and they give the following 
two-parameter formula for the phase shift δ11: 

| eiδ1 sin δ11|2 = 
( v+1 

) 

Γ2 (II-3) | eiδ1 sin δ11|2 = 
( v+1 

) 
(vr-v[1-Γa(v)])2+Γ2' 

(II-3) | eiδ1 sin δ11|2 = 
( V3 ) 

(vr-v[1-Γa(v)])2+Γ2' 
(II-3) 

where Γ and vr are parameters and where v = square of the momentum 
of each pion (in the di-pion rest system, in units h = c = mπ =1) and 

α(v) = (2/π)[v/(v+1)]1/2ln[v1/2 + (v+1)1/2]. 

The original prediction by Frazer and Fulco was that there should be a pion-pion Τ = J = 1 resonance at a di-pion total mass squared of about llm2(that is, vr =1.5, Γ =.4). 

Bowcock, Cottingham, and Lurie, using a subtracted dispersion relation for the nuclear form factor and more recent data on electron-nucleon scattering, predicted that the resonance should occur at total di-pion mass squared of 22.4 mπ2. 

Β. The Chew-Low Extrapolation Method 

The Chew-Low method13 is well suited to the study of the pion-pion interaction because it allows us to determine the cross section for 
the process 

π+ + π- → π+ + π0 (II-4) 
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from the study of the reaction 
π+ +p → p + π+ + π0 (II-5) 

In order to determine the pion-pion cross section from Reaction 
(5) it is necessary to study events in which spectator proton receives 
little momentum transfer in the pion-proton collision. The physical 
content in this requirement is that the small momentum transfer to the 
proton implies a large impact parameter, that is, the π+ has collided 
with a virtual neutral pion in the tail of the mesonic cloud which surrounds 
the proton. This type of peripheral collision is illustrated in Fig. 4(a). 

In order to measure the total elastic pion-pion cross section it 
suffices to determine two quantities for each event of Reaction (5). These 
two quantities are the invariant four-momentum transfer, p, of the spec
tator proton, and the invariant mass of the di-pion system, ω· These 
invariants are given in terms of laboratory-system quantities by 

p2 = (0-Pp)2 - (m -√m 2+P p
2) 2 (II-6) 

and 

√pin +mπ2 +M =√ pp2 + m2 +√(p-in -P-p)2 +ω2, 
where M = mass of the proton, mπ = mass of the pion Pin = momentum of the incident pion, and Ρp is the laboratory-system momentum of the proton. Defining cos Θ= , we see that we have 

p_in _p 

P2=P2(Pp), (II-8) 
and 

ω2 = ω2(Ρρ, Θp),. (II-9) 

If Fig. 4a were the only diagram for the process π+p→p+π+π0, 
then the amplitude for Eq.(4) and (5) would be related by 

|Aπp-pππ|2= 
|Γ π nA π π → π π | 2 α f2p2|Aππ|2 (II-10) |Aπp-pππ|2= p2 + mπ2 

α 
(p2 + mπ2)2 

(II-10) 
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Fig. 4. Here (a) is the single-pion production diagram which pro
duces a pole in the pion-nucleon scattering amplitude; (b) and (c) 
are examples of contributions to the branch cut; (c) is also an 
example of a final-state interaction; (d) represents the nearest 
singularity in the case of double π production. 
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where Γπn is the pion-nucleon vertex function, 1/(p2 + mπ
2) is the 

pion propagator, and the A's are the amplitudes of Reactions (4) and 
(5): Γπn2 = f2 p2 / m π

2, where f2 = .08. We adopt the units h = c = 1 
and the mass of the neutral pion = 1. 

The amplitude Aπp considered as an analytic function of the 
square of the invariant four-momentum transfer, p2, has a pole at 
p2 = - 1 because of the process shown in Fig. 4(a). The analytic structure of A for fixed ω2 is given in Fig. 5(a). The branch cut running 
from P2 = - 9 to - ∞ comes about from all the other pion-exchange 
diagrams leading to the final state p + π + π0, for example, Fig. 4(b) and 
(c). 

Chew and Low13 give the following prescription for determing the 
pion-pion cross section, σππ (see appendix Β for a discussion of this formula) 

Determine the two-dimensional distribution d2σπp(p2, ω2)/dp2 dω2, 
where σπp is the cross section for the process π + p→ π + p + π0. The 
value of the function (p2 +1)2 d2 σ (ω2, p2)/ dp2 dω2 extrapolated to 
p2 = - 1 is proportional to σππ(ω2). The formula given by Chew and Low 
is 

where p2, ω2, and Pin (which is the lab momentum of the incident pion) 
are all expressed in units of the neutral pion mass. 

The function (p2 +1)2 d2 σπp /dp2 dω2 is analytic in the p2 complex 
plane in a circle of radius p2 =8 about the point p2 - 1. We therefore 
expand the function as follows: 

(p2+l)2d2σπp/dp2dω2= A0+A1(p2+1)+ A2(p2+1)2+ .... (II-12) 

We have used such an expansion in the physically accessible region 
p2 = pmin2to p2 = 7 (where pmin2 is determined by the incident beam 
momentum; see Fig. 6). Evaluation of the coefficient A0 gives us the 
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Fig. 5. Here (a) shows the conjectured analytic structure of the 
scattering amplitude Aπp→pππfor the extrapolation to the total 
pion-pion cross section; (b) shows the conjectured structure for 
extrapolation to the differential pion-pion cross section. 
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Fig. 6. The kinematically allowed region p2 vs ω2 for incident 
pion beam momenta of 1255 Mev/c and 1282 Mev/c. 
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pion-pion cross section: 

σππ (ω2) = - Α0(ω2)· 
2π Ρin2 ω([ω2/4]-1)1/2. (II-13) σππ (ω2) = - Α0(ω2)· f2 ω([ω2/4]-1)1/2. (II-13) 

Theory does not tell us at what order we should cut off Eq. (12). We have fitted polynomials in (p2 + 1) to the fourth order, and have chosen for each extrapolation (i.e., each band of constant ω2 the lowest-order fit that gave X2 /Μ (where M is the number of degrees of freedom) of the order of unity. The X2 probability of each of our fits is shown in Table II. Linear fits were satisfactory in this experiment for all ω2 bands. 

We wish to emphasize the following two points. Since the pion-proton cross section is positive definite, the extrapolation(curves as will be seen in Fig. 7) must remain positive for p2 greater than p2min. This criterion is automatically satisfied by all our fits, except ω2 = 6 to 10, which violates this constraint by a negligible amount. In previous work by J. A. Anderson, V. X. Bang, P. G. Burke, D. D. Carmony, and N. Schmitz, the linear fits for small ω2, which were rejected on the basis of X2 /Μ, went negative too soon and the quadratic fit for the smallest ω2 interval (5 to 8.2) violated this constraint by a very small amount. We did not have sufficient data to know whether this quadratic fit would have been replaced by a cubic satisfying this requirement.3 

Secondly, if the single-pion exchange mechanism were to dominate 
the reaction π + p + p + π + π0, extrapolation would not be necessary. 
Such a bold assumption can be tested experimentally. Assume the com
plete dominance of the diagram shown in Fig. 4a. Then Eq. (11) is exact 
without the limiting process; that is, 

(p2 +1) d2 σπp /dp2 dω2 = p
2f2ω([ω2/4]-1)1/2 σπ + π0 (ω2), (II-14) (p2 +1) d2 σπp /dp2 dω2 = 
2π Pin2 

σπ + π0 (ω2), (II-14) 

but equating coefficients of p2 with 
(p2+l)2 d2σπp/dp2dω2 = A0+A1(p2+1) A2(p2+1)2 +...(II-15) 
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Table II. Results of extrapolation 

∆ω2 Type of 
fit 

σ Δσ X2 Degrees 
of free
dom, 

X2 probability (%) (mπ20) 
Type of 
fit (mb) (mb) 

X2 Degrees 
of free
dom, 

X2 probability (%) 
M 

(π+ π0) 
6-10 lin. 43. 15. 5.2 5 42 

quad. 69. 46. 4.8 4 30 
10-14 lin. 53. 13. 7.0 5 22 

quad. 120. 44. 4.4 4 36 
14-18 lin. 62. 16. 3.6 5 60 

quad. 52. 49. 3.6 4 46 
18-22 lin. 80. 24. 12.7 8 13 quad. 224. 85. 9.6 7 21 
22-26 lin. 93. 62. 3.1 6 80 

quad. 609. 347. 0.8 5 97 26-30 lin. 260. 117. 3.3 6 77 quad. 1200. 650. 1.3 5 94 
(π- π0) 
6-18 lin. 17. 4. 3.2 5 67 

quad. 19. 12. 3.2 4 54 18-22 lin. 24. 12. 1.6 3 66 
quad. 82. 51. 0.2 2 90 

22-26 lin. 73. 30. 3.9 6 70 quad. 57. 170. 3.9 5 58 26-30 lin. 68. 55. 1.4 6 97 
quad. 105. 300. 1.4 5 93 

(π± π0) 
6-10 lin. 27. 8. 4.6 4 34 

quad. 19. 28. 4.5 3 21 10-14 lin. 38. 7. 6.2 5 29 
quad. 58. 23. 5.3 4 26 

14-18 lin. 39. 8. 3.2 5 67 quad. 42. 26. 3.2 4 52 
18-22 lin. 51. 13. 13.9 9 13 

quad. 129. 46. 10.8 8 22 
22-26 lin. 92. 33. 2.6 6 86 

quad. 313. 188. 1.2 5 95 
26-30 lin. 161. 57. 3.0 6 80 quad. 616. 336. 1.3 5 93 
30-34 lin. -153. 181. 0.9 4 92 

quad. -2000. 2000. 1.0 3 80 
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we see that then A0=-A1and A2... =0. That is, the fit is linear in (p2 +1) and the extrapolation curve passes through the point p2 =0. Although Anderson, Burke, Carmony, and Schmitz needed only linear fits in the resonant region, their extrapolation did not go through the origin and the single-pion exchange mechanism did not dominate their physical-region plots.3 

In this experiment the π+ data fulfilled the requirements of 
linear fits and the extrapolation curves pass very nearly through the 
point p2 =0. We therefore expect tô be able to study the pion-pion 
interaction without extrapolation in the 1255-Mev/c π+ film. 

C. The Pion-Pion Cross Section in the Physical Region 
Under the assumption of the dominance of the single-pion ex

change diagram, we have, from Eq. (14), 

σππ = 
2π Ρin2 (P2 + 1)2 dπp2σ (II-16) σππ = 

f2 ω([ω2/4]-1)1/2 Ρ2 dp2 dω2 
(II-16) 

Dividing our data into a two-dimensional histogram in p2 and ω2, we 
have for constant p2, pi2 and constant ω2, ωi2 the following relationship 
between cross section (in millibarns) and the experimental number of 
counts Nij1 (pi2, ωj2), in that histogram interval (where the prime indicates that the experimental number of events has been corrected for the 
finite size of the bubble chamber): 

σπpij = 
Ν'ij (pi2, ωj2) Χ 1Ο-27, (ΙΙ-17) σπpij = L p A δp2 δω2 

Χ 1Ο-27, (ΙΙ-17) 

where L = path length scanned (cm), p = density of liquid hydrogen, 
ρ = .0586 g /cm3 and A = Avodagro's number. 
Therefore we have 

σ##i (ωj2) = 
2π 10-27Ρin2 1 (Pi2+1)2 N'ij(pi2,ωj2), 

(II-18) 

σ##i (ωj2) = f2 Lp Αδp2 δω2 [ωj2[ωj2/4]-1)]1/2 Pi2 
N'ij(pi2,ωj2), 

(II-18) 
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or, averaging over a series of p2 bands (all of width δ p2), we find an 
expression for the di-pion cross section in the physical region, σππP : 

σππP (ωj2) = 2π10-27pin2 1 
n 
Σ 
i = 1 

(pi2 + 1)2 Ν'ij 

(II-19) 

σππP (ωj2) = f2LpAδp2δω2ωj(ωj2/4-1)1/2 n 
n 
Σ 
i = 1 Pi

2 
Ν'ij 

(II-19) 

D. The Differential Pion-Pion Cross Section 
In order to determine the differential pion-pion cross section, 

dσππ/d cos θππ Where θππ is the scattering angle of the charged pion 
in the c.m. of the reaction π+ + π0 → π+ +π0, we introduce the following 
notation. Let qπ be the four-momentum of the charged pion before the 
collision and q be the four-momentum after the collision. Then we 
can evaluate the scalar quantity qπ q'π in the di-pion c.m. and in the 
laboratory frame of reference: 

qπ q'π = pπp'π cos θππ - ε'πε'π = PinΡ'πcosΘππ- Επ Ε'π (ΙΙ-20) 
qπq'π=pπp'πcos θππ- ε'πε'π = PinΡ'πcosΘππ- Επ Ε'π 

where 
ε'π =ω/2, p'π = (ε'π2 - 1) 1/2, (II-21) 

and 

επ = ω
2 + p2 +1 pπ = (επ2 - 1) 1 / 2. (II-22) επ = 2ω pπ = (επ2 - 1) 1 / 2. (II-22) 

Thus θππ is given in terms of p2, ω2 (which are functions of the lab 
momentum and angle of the proton) and laboratory-system quantities 
associated with the charged pion. 

As was pointed out by Nauenberg, there is an additional branch cut introduced into the scattering amplitude of the process π+p→p+π+π0 (see Appendix C).14 
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III. EXPERIMENTAL RESULTS 

We have found evidence for the existence of a π-π resonance of 
di-pion mass square equal to 29 mπ2 0 (27 mπ2 + or a mass of 730 Mev), 
and have determined differential cross sections that are strongly indicative of the quantum numbers Τ = J = 1.15 Thus the isotopic vector 
form factor of the nucleon can no longer be considered anomalous. 

Furthermore, we have evidence for this resonance not only by 
extrapolation but also by using physical-region plots (essentially Q-value plots). This work is therefore an experimental verification of 
the importance of the single-pion exchange mechanism, and serves as 
a further verification of the Chew-Low Method.16 This work and the 
work of Anderson, Burke, Bang, Carmony, and Schmitz3 shows that 
the usefulness of the Chew-Low extrapolation method is not restricted 
to situations in which the physical region contains already as much in
formation as one hopes to learn by extrapolation. 

A. Results of Extrapolation 
The results of the extrapolation are given in Figs. 7,8, and 9, 

and in Table II. We see that the π-π cross section, which is very 
small at low energies,17 rises to about 12π (indicative of a p-wave 
resonance) in the region ω2= 26 to 30. The results of the π+ extra
polation are very consistent with those found in the π+ physical region 
plot (Fig. 10). The π- physical region plot (Fig. 11) is extremely dis
torted and washed out. Nevertheless, in the region of the resonance, 
the π- extrapolation gave results in agreement with the π+ physical 
region and thus π+ extrapolation (see Fig. 8 and Table II). 

B. Results in the Physical Region 
Since the π+ extrapolation curves are linear and pass very nearly through p2 =0, we are allowed to assume that π+ physical-region plots are reasonable approximations to the true pion-pion cross section. The it physical region peaks at ω2 = 29 mπ2 0 (with 70% of 12 π ) , and the 
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Fig. 7. Extrapolation curves for the combined data,π+ +p→p+π+ +π0  
and π-+p→p+π-+π0. Here F(p2) is normalized to σππ at p2=-l. 
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Fig. 8. A comparison of the π+ and π- extrapolation curves. 
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Fig. 9. The total elastic pion-pion cross section (50% I = 1 and 
50% I = 2) as a function of the di-pion total energy squared 
(also as a function of the total mass, in Mev) 
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Fig. 10. The total pion-pion cross section as a function of the 
di -pion total energy squared (in m2 π0) as determined in the 
physical region from the reaction π+++p→p+π++π0 (also as a 
function of the total mass in Mev.) 



-25-

Fig. 11. The total pion-pion cross section as a function of the 
di-pion total energy squared, as determined in the physical 
region from the reaction π- +p→p+ π+ +π0. 
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resonance has a half width at half maximum of 7 mπ20 on the low-energy side and 5 mπ2 0 on the high side. (The low side especially may 
be somewhat narrower if a nonresonant background is subtracted.) 
This corresponds to a resonance at 730 Mev with a full width at half 
maximum of 155 Mev. It must be remembered that a width so deter
mined is only an approximation. The position and width are in complete 
agreement with the extrapolation and with the results of other workers.18 

The results of the differential cross section in the physical region 
are presented in Figs 12 and 13. Comparison of the experimental data 
in Fig. 13 with the theoretical predictions for an s-, p-, or d-wave 
resonance clearly rules out s or d waves. The height of the cross 
section by extrapolation rules out higher-order waves. Thus the res
onance has the quantum numbers Τ = J = 1. A least-squares fit in 
ascending orders of cosθππ was carried out on the data of Fig. 13. The 
first fit to give a X2 probability of 1% or greater was 

dσππ /dcosθππ = (6.9±0.7) - (1.0± 1.4) cos θππ + (26.4± 2.4) cos2θππ, 
(III-1) 

which clearly indicates the dominance of the cos2 θππ term (the angular 
distribution for pion-pion scattering in a p state is cos2, not 3 cos2 -1, 
as in the case of pion-nucleon scattering; see Appendix D). 

Furthermore, if the nonresonant part of the cross section can be 
described as s-wave scattering, then Fig. 12 indicates that the sign of 
δ11 and δ02 is the same (see also Eq. AIV-7) 

C. Unresolved Experimental Results 
The distortion of the physical-region plot in the π- data is not 

understood. It is known that Walker et al see about 75% of 12π at 
1.9 Bev/c, using the π- reaction. It has been pointed out by Professor 
Frank Crawford that the reaction π-+p→ p + π- + π0 can also go through 
the intermediate channel π-π+n. The reaction π+ +p→p + π+ +π0 can not 
go through any intermediate channel consisting of a nucleon and two pions 
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Fig. 12. The differential pion-pion cross section as a function of the di-pion total energy squared, as determined in the physical region. 
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Fig. 13. Here (a) the differential pion-pion cross section as a function of the di-pion total energy squared as determined in the physical region. (b) Theoretical curves for s,p, and d waves. 
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in a p state. Thus the very dominance of the combination of two pions 
in a p state could be responsible for the distortion of the physical region 
observed in this experiment and by Anderson, Burke, Bang, Carmony, 
and Schmitz at 1030 Mev/c.3 
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APPENDICES 

A. Beam Momentum, Path Length, Scanning Efficiency, and Beam Contamination 

1. Beam Momentum 
The large size of the 72-inch chamber was efficiently used by 

Professor Frank Crawford to provide an over-all calibration of the 
film taken during the run for the associated-production study. The 
threshold of the reaction 

π- + p → Σ- + k+ (A-l) 

was placed in the chamber and (s-wave) threshold rise as a function of 
position in the chamber was observed.19 It was then possible to unfold 
the position of threshold in the chamber. By use of PANG, the momen
tum was measured for a number of beam tracks and the momentum from 
curvature as compared to the momentum at threshold was calculated 
from the known masses. It was thus found that our PANG needed to be 
corrected by 1.0065± .005. In order to calibrate the portion of the 
film used in this experiment, PANG was used to measure curvature and 
this correction was applied. Subsequent measurements of the magnetic 
field of the 72-inch bubble chamber have indicated that it did indeed need 
to be modified by about 0.5% in the direction indicated by our calibration. 

The momentum of the π+ beam was found to be 1255±6 Mev/c. 
The π- beam included two momenta, 1252±6 Mev/c and 1282±6 Mev/c. 

The errors above are statistical. The actual width of the beam 
used is ±16 Mev/c, where the width comes mostly from the thickness 
of the chamber (the length of the fiducial volume is 60 inches), 
2. Path Length and Scanning Efficiency 

In order to establish the path length scanned, the scanners 
counted beam tracks on every twentieth frame simultaneous with and 
using the same criteria as used in the scan. The π- film was scanned 
once (except for 10% of it, which was scanned twice). The π+ film was 
double-scanned. The scanning efficiency of each scanner was determined 
and the over-all π- and π+ scanning efficiencies were found by averaging 
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each scanner's efficiency weighted by the amount of film he scanned. 
The π- efficiency was 83%. The π+ first-scan efficiency was 87%, 
the second 85%, leading to a combined efficiency of 98% (under the 
assumption of no correlation between scans: e12 = e1 + e2 - e1 e2). 
The path length was corrected for unmeasurable events, and, since 
the track counting was done with the same criteria as the scanning, the 
path length was corrected by the small fraction of events that did not 
have the beam momentum within 50 Mev/c of nominal. The corrected 
path lengths are L = 4.73 X 107 cm and L+ = 4.17 X 107 cm. 

3. Beam Contamination 
The above path lengths have also been corrected for the beam 

contamination. The π- beam was corrected for a 3% contamination by 
leptons and the π+ beam was corrected for a 3% contamination by leptons 
and a 2% contamination by protons. The leptonic contamination was found 
by Leroy Price and Jerry Meissner (Lawrence Radiation Laboratory) by 
counting large delta rays. (For details of the determination of the proton 
contamination see Ref. 20.). It was found that when the film was scanned 
at grazing incidence, the less "gappy" protons appear to be solid tracks, 
whereas the pions remain "gappy. " Furthermore, a typical proton has 
20-minute delta rays per chamber length and a pion has 12. Neither of 
these methods is easily applied to a contamination as low as 2%because 
there is some variation in ionization from frame to frame. This diffi
culty was overcome by determining the fraction of protons in the chamber 
as a function of the height of the beam profile (the pion and proton image 
was separated by an electrostatic separator and the height of the image 
was then controlled by variation of a crossed magnetic field). We could 
then extrapolate to the actual operating condition. 

B. Chew-Low Method 
In order to derive the expression given here as Eq. (II-11), Chew and Low have made the following three conjectures.13 

1. Consider the process π + p→p + π + π0 (see Fig. 4a). Because 
there exists a single-particle state (π0) which can connect the left- and right-
hand sides of Fig. 4a, it is conjectured that the scattering amplitude 
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expressed as a function of the four-momentum of either the left- or 
right-hand side of Fig. 4a has a pole at the mass of the intermediate 
particle. 

2. It is conjectured that the scattering amplitude for the process 
π + p → p + π + π0 becomes equal to the p → p + π0 vertex function times 
the vertex function times the π0 propagator when the π0 is on its mass 
shell. 

3. It is further conjectured that the scattering amplitude of the 
right-hand side of Fig. 4a evaluated with the intermediate π0 on its 
mass shell is the physical matrix element for the real process 
π + π0 → π + π0. 

The cross section for the process π + π0 → π + π0 can be 
written 

σππ (ω2) = 2π |<ω2|j|pin>|2, (B-1) σππ (ω2) = Ρ'in |<ω
2|j|pin>|2, (B-1) 

where P'in. is the flux factor in the system where the π0 is at rest. 
P'in can be expressed in terms of the total di-pion mass, ω2, by 

(√p'in2 + 1 + 1) - p'in2 = ω2 - 02, (B-2) 

P'in = √ ω2([ω2/4]-1) (B-3) 

(see Equations II-6 through II-10 for definition). 
The matrix element for the process p → p + π is 4π f2 p2, where f 
is the renormalized pion-nucleon coupling constant. 
Thus the cross section for the process π + p → p + π + π0 at p2 =-1 
is, by our conjectures, 

Δσπp 
= 
2π 

∫T 
4πf2p2 |(ω2|j|Pin>|2 4Mδ(Q'2+M2) 

d4Q'2 

Δπ 

= 

Pin ∫T (P2+1)2 
|(ω2|j|Pin>|2 4Mδ(Q'2+M2) 

(2π)3 

(B-4) 
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where Q' is the four-momentum of the recoil proton, that is 
p2 = (Q-Q')2, where Q is the four-momentum of the incident proton. 
But we have 

∫ d4 Q' δ(Q'2 + M2) = 
Ρp 2π d(cosΘp) dEp (Β-5) ∫ d4 Q' δ(Q'2 + M2) = 2 (Β-5) 

and making a transformation of variables by using Eq. (II-6) and 
(II-7), we obtain 

d4 Q' δ (Q'2 + M2) = π dp2 dω2 (B-6) d4 Q' δ (Q'2 + M2) = 4MPin dp
2 dω2 (B-6) 

Thus 

which is Eq. (II-11). 

C. Extension of the Chew-Low Method 
to Measurement of the Differential Pion-Pion Interaction 
In order to carry out an extrapolation to the differential pion-pion 

cross section, one must know the analytic structure of the amplitude 
Απp(p2, ω2, qπq'π) as a function of p2 for fixed ω2 and fixed qπq'π.14  
Recall (see Chapter II, Section D) 

qπq'π = pπp'πcos θππ - επ ε'π, (C-l) 

where 
επ = iîL+JLiL ' = ω/,2, (C-2) 

and 
επ = 

ω2+ p2 + 1 
επ = 2ω ε'π = ω/2, (C-2) 

Ρπ = √ (ω
2+p2+1)2 -1 1 √[p2+(ω+1)2][p2+(ω-.1)2], (C-3) Ρπ = √ (2ω)2 

-1 2ω √[p
2+(ω+1)2][p2+(ω-.1)2], (C-3) 

P'π = √[ω2/4] -1 
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Thus 

qπq'π = 
ω2+p2+1 - √(ω2/4)-1 √[ρ2+(ω+1)2][p2+)ω-1)2]· (C-4) qπq'π = 4 - 2ω √[ρ2+(ω+1)2][p2+)ω-1)2]· (C-4) 

We see that the invariant qπq'π has branch points at p2 = - (ω+l)2 and 
p2 =- (ω-1)2 · The analytic structure of Aπp is therefore as given in 
Fig. 5b. We note that for ω2 = 16, the additional branch cut runs from 
-9 to -25, that is, it lies on the already existing branch cut. We have 
therefore assumed that for ω2 > 16 we can use the fitting procedure of 
Eq. (II-11) to evaluate the differential pion-pion cross section. That 
'is, 

(p2+l)2 d3σ/dp2dω2d cosθππ = A'0 + A'1(P2+1) + A'2(p2+1)2 +..., (C-5) 

and therefore 

dσππ(ω2)/d cos θππ = - Α'(ω2) 2π pin2 ω([ω2/4]-1)1/2 dσππ(ω2)/d cos θππ = - Α'(ω2) f2 pin2 ω([ω2/4]-1)1/2 

D. Isotopic Spin and the Role it Plays 
in the Angular Momentum Decomposition 

The differential cross section for the process π+ +π0 → π+ + π0  
can be written 

dσππ/d cosθππ =2π |Αππ0 ππ0(ω2,cosθππ)|2, (D-1) 

where 
A(ω2,cosθππ) = Σl (2l + 1) Αl (ω2) Plcos θππ) (D-2) 

and 
Αl(ω2) = eiδl sinδl (D-3) 

The amplitude Aππ → ππ can be expanded in terms of isotopic spin and 
amplitudes: 

Aπ+π0 → π+π0 = 1/2 A1 + 1/2 A2. (D-4) 
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The generalized Pauli Principle in the case of spinless bosons requires 
that the T-spin function and the space wave function be even. The T = 2 
T-spin states are even (and the T = 2 T-spin states are odd) under 
interchange of the two pions. The Legendre polynomials have the 
parity (-1)l. 
Thus 

We shall therefore denote the phase shifts, δl1, of the reaction 
π+ + π0 → π+ + π0 as δ02, δ'1,δ22, and δ'3... 
Two remarks about the phase shifts should be made concerning a 
resonance at ω2 = 29. 1. The phase shifts need not be real. 2. The 
c. m. wave number of the pions is 2.5 pion Compton wave lengths. 
Thus d or f waves may be present. 
Under the assumption of (real) s and p waves only, however, Eqs. 
(AIV-1), (AIV-2),and (AIV-3) yield 

dσπ+ π0/d cos θππ (D-7) 

= 2πλ2 [sin2δ0 +6sinδ1sinδ0cos(δ1-δ0)cosθππ+9sin2δ1cos2θππ], 

and under the assumption of a pure p state, 

dσπ+π0/dcosθππ = 18π sin2δ1 cos2θππ, (D-8) 

thus the total cross section for a p-state resonance is 

σπ + π0 = 12π = 12π/ω2/4-1). (D-9) 
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E. Combining Unlike Data before Extrapolation 
Case 1. Same beam momenta but unlike charge states 

Consider the reactions π- +p → p + π- + π0 and. π+ +p → p + π+ +π0  
at the same beam momentum. By charge independence, we know that 
the extrapolation of either reaction leads to the same pion-pion cross 
section (same residue of the pole in the scattering amplitude). Because 
of the difference of charge combinations in the final-state interactions 
between the proton and one of the pions (see Fig. 4c), we do not expect 
equal contributions to the branch cut in both reactions. 

Nevertheless, we can combine the two reaction before extra
polation. Let Ν+(p2) be the number of events found in the π+ film in a 
path length L+. Let Ν_(p2) be the number of events found in the π-
film in a path length L_. Let Ν(p2) = Ν+(p2) + Ν_(p2). Then, by Eqs. 
(II-11) and (II-17) we have 

but, by hypothesis, σπ + π0 = σπ + π0. Define an effective path length for 
the combined experiment, L. Then 

That is, Ν = Ν+ + Ν_ and L+ L-. 

Case 2. Different beam momenta 
As discussed in Appendix A, the π- film was found to consist 

of two beam momenta, namely 1255 Mev/c and 1282 Mev/c. These two 
momenta were combined before extrapolation according to the following 
considerations (see Eq. II-11): 
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Thus the effect of the slight variation of Pin can be compensated for by modifying the path length of one of the momenta by the square of the ratio of the momenta and by correcting each momentum according to its own phase space ∆p2 ∆ω2)see Fig. 6). 
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