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Abstract. We calculate the temperature-dependent r-mode spectrum of superfluid neutron
stars with npeµ (neutron, proton, electron, muon) core composition. This study is an extension
of the previous work by Kantor, Gusakov [MNRAS 469, 3928 (2017)], where such spectrum was
calculated under simplifying assumption of vanishing entrainment between superfluid neutrons
and superconducting protons. We show that accounting for the entrainment leads to non-
analytic behavior of the spectrum at small rotation rates. Namely, we find that in the leading
order in rotation accounting for any non-zero value of entrainment eliminates superfluid r-
modes. We show that next-to-leading order in rotation restores the superfluid r-modes in the
spectrum. We calculate this spectrum and show that for certain neutron star models normal
r-mode experiences stabilizing resonances with superfluid r-modes. This confirms the scenario
of Gusakov, Chugunov, and Kantor [PRL 112, 151101 (2014)] that explains neutron stars in
low-mass X-ray binaries.

1. Introduction

Theoretical models predict that warm and rapidly rotating neutron stars (NSs) should be
unstable with respect to excitation of r-mode and radiation of gravitational waves [1, 2].
Modeling shows that such NSs quickly lose their angular momentum and leave the ”instability
window” (i.e. the region of parameters, where the star is unstable) [3], which means that we
should not observe NSs in the instability window. However, there are a lot of NSs in low-mass
X-ray binaries (LMXBs) which fall well inside the classical instability window [4]. To reconcile
theory with observations, there was proposed a phenomenological model of r-mode stabilization
by resonance interaction with superfluid modes at certain temperatures [5]. To put this model on
more solid ground, one has to calculate temperature-dependent oscillation spectrum of rotating
superfluid NS. First such calculation [6] was done under simplifying assumption of vanishing
entrainment. Recently [7] entrainment was taken into account to calculate r-mode spectrum of
an NS composed of neutrons, protons and electrons. Here we extend the formalism developed in
[7] to account for muons in the NS core, and show that entrainment affects oscillation spectrum
qualitatively at slow rotation rate.

2. Oscillation equations

We consider non-dissipative oscillations of a slowly rotating (with the spin frequency Ω) NS,
adopting Cowling approximation and working in the Newtonian framework. We allow for muons
in the inner layers of NS (npeµ-composition) and take into account possible superfluidity of
baryons (neutrons and protons) in the core. Let all the quantities depend on time t as eıσt

in the coordinate frame rotating with the star. Then the linearized equations governing small
oscillations of superfluid (SFL) NSs in that frame are [6]:
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(i) Euler equation

−σ2ξξξb + 2ıσΩΩΩ × ξξξb =
δw

w2
0

∇∇∇P0 −
∇∇∇δP

w0

, (1)

where w = (P + ǫ)/c2, P is the pressure, ǫ is the energy density, c is the speed of light. Here
and hereafter, the subscript 0 denotes the equilibrium value of some thermodynamic parameter
(e.g., P0) and δ stands for its Euler perturbation (e.g., δP ). The Lagrangian displacement of
baryons in equation (1) is defined as ξξξb ≡ jjjb/(ıσnb), where nb ≡ nn+np and jjjb ≡ jjjn+jjjp are the
baryon number density and baryon current density, respectively. Here and hereafter, subscripts
n, p, e, µ, and l refer to neutrons, protons, electrons, muons, and leptons, respectively.

(ii) Continuity equations for baryons and leptons (electrons and muons)

δnb + div(nbξξξb) = 0, δnl + div(nlξξξ) = 0. (2)

Here ξξξ ≡ jjje/(ıσne) is the Lagrangian displacement of the normal liquid component. If neutrons
are non-superfluid, then ξξξ = ξξξb and hydrodynamic equations become essentially the same as
in the normal matter (even if protons are SFL, see e.g. [8]). Thus, for brevity we shall call
‘normal’ (or ‘non-superfluid’) the liquid with non-superfluid neutrons, irrespectively of the state
of protons.

(iii) The ‘superfluid’ equation in the weak-drag regime (a typical situation in NSs, see, e.g.,
[9, 10])

hσ2zzz − 2ıh1σΩΩΩ× zzz = c2ne∇∇∇∆µe + c2nµ∇∇∇∆µµ, (3)

where zzz ≡ ξξξb − ξξξ; ∆µl ≡ µn − µp − µl is the chemical potential imbalance (note that in
equilibrium ∆µl = 0 and thus δ∆µl = ∆µl), h = nbµny, h1 = µnnb [nb/(Ynnµn + Ynpµp)− 1],
y = nbYpp/[µn(YnnYpp − Y 2

np)] − 1. Yik is the relativistic entrainment matrix [8, 11, 12, 13],
which is the analogue of the superfluid mass-density matrix in the non-relativistic theory
[14]. The equations (i)-(iii) should be supplemented by the ‘equation of state’ (EOS), δni =
∂ni

∂P
δP + ∂ni

∂∆µe
∆µe +

∂ni

∂∆µµ
∆µµ.

In order to solve the oscillation equations, we express non-radial displacements as a sum of
toroidal (T , Tz) and poloidal (Q, Qz) components [15],

ξbθ =
∂

∂θ
Q(r, θ) +

ımT (r, θ)

sinθ
, ξbφ =

ımQ(r, θ)

sinθ
−

∂

∂θ
T (r, θ), (4)

zθ =
∂

∂θ
Qz(r, θ) +

ımTz(r, θ)

sinθ
, zφ =

ımQz(r, θ)

sinθ
−

∂

∂θ
Tz(r, θ), (5)

and expand all the unknown functions into Legendre polynomials with fixed m [16].
One can see that superfluid matter of npeµ NSs supports two velocity fields. As a result

in addition to usual normal modes oscillation spectrum acquires superfluid modes, which in
contrast to normal modes are driven by counter-motion of normal matter and paired neutrons.

We consider a slowly rotating NS, and expand all the quantities in a power series in small
parameter Ω (in what follows we denote by Ω the spin rate normalized to Kepler frequency).
We are interested in the oscillations, which have the eigenfrequencies σ vanishing at Ω → 0.
Thus, σ can be presented as (e.g., [15, 17, 16]) σ = σ0Ω+O(Ω2). In [6] we found that, for zero
entrainment and in the lowest order in rotation, the purely toroidal modes are possible only with
l = m. For a given m there exist one normal r-mode and an infinite set of superfluid r-modes,
all having the same frequency σ0 = 2/(m+ 1), see [18, 19, 20, 6].
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3. Superfluid r-mode in the limit of small entrainment

Assuming that the entrainment effect is small, we tried to develop a perturbation theory in
∆h ≡ h1/h− 1 in the leading order in rotation for npeµ NS. This method is analogous to that
of [7], where r-modes in npe matter were calculated analytically in the first order in ∆h. We
found that any non-zero entrainment eliminates all r-modes (i.e., purely toroidal oscillations
in zero order in ∆h) except for the normal one. This unphysical result takes place because
in stratified star [where d(ne/nµ)/dr 6= 0] the continuity equations for electrons and muons in
the leading order in rotation imply an additional condition ξbr = zr, which makes the system
overdetermined.

To avoid this restriction, in what follows we account for the next-to-the-leading-order
corrections in rotation and in entrainment simultaneously, and adopt the following expansions:

σ = (σ0 + σ1)Ω +O(∆h2,Ω4) =

(

2

m+ 1
+ σ1

)

Ω+O(∆h2,Ω4), (6)

d = d0 + d1 +O(∆h2,Ω3), δA = δA0 +O(∆h,Ω3), (7)

where A stands for a thermodynamic function and d for displacement. The leading order
quantities in both rotation and entrainment are labeled with the index 0, while the index 1
denotes next-to-the-leading-order corrections (both in entrainment and in rotation). Since in the
absence of entrainment the superfluid r-modes are purely toroidal in the leading order in rotation,
one has ξ0br = z0r = Q0 = Q0

z = 0. Substituting the above expansions into oscillation equations
1, and adopting appropriate boundary conditions, one can calculate the r-mode spectrum, and
we find that such expansions restore superfluid r-modes in the spectrum.

Let us analyze the solution at Ω → 0. In this limit we have a singularity in oscillation
equations, which, as we demonstrate below, leads to a finite value of σ1 and the following
ordering of the eigenfunctions: ξ1br ∼ z1r ∼ ΩT 0 ∼ ΩT 0

z . To demonstrate it we rewrite oscillation
equations, assuming the above ordering. Then excluding the small terms, and combining
equations, we arrive at

dT

dr
−

K

Ω2
ξ = 0,

dξ

dr
− T = 0, (8)

where we have defined ξ ≡ ξ1br − z1r , T ≡ σ1(1 + m)2(3 + 2m)/[(2 + 4m)r]T 0 − (1 + m)(3 +
2m)(σ1 +mσ1 − 2∆h)/[(2 + 4m)r]T 0

z , K ≡ σ1C1(r)− (σ1 +mσ1 − 2∆h)C2(r). Here C1(r) and
C2(r) are known functions of radius. Eqns. (8) can be rewritten in a form

d2ξ

dr2
−

K

Ω2
ξ = 0. (9)

This equation has an oscillating solution for the case K < 0, while for K > 0 it describes
exponential growth at Ω → 0. To illustrate the behavior of the solution at Ω → 0 we shall
consider a two-layer star composed of superfluid npeµ core and the normal crust. Let us integrate
Eq. (9) from the center to the core-crust interface, assuming such value for σ1 that K > 0 in
the internal layers. Then the solution exponentially grows from the center, but, at some radius
K changes sign and eigenfunctions start to oscillate with vanishing (at Ω → 0) wavelength. At
this moment we can easily match eigenfunctions in the crust and in the core. Thus at Ω → 0 σ1
can be found from the condition K(Rcc) = 0, where Rcc is the radius of the core-crust interface.
Moreover, all overtones of superfluid r-modes have the same σ1 (since vanishing variation of σ1
allows us to increase number of nodes at the infinitely small region with K < 0).

1 Since we adopt the expantion upto the next-to-leading order in rotation we account for the oblateness of the
star due to rotation in oscillation equations.
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Figure 1. Left panel: σ1 versus ν at T = 107K, M = 1.4M⊙. See the text for details. Right panel:
Instability window for l = m = 2 normal r-mode. Region filled gray is classical stable region defined
by the shear viscosity only. Points with error bars correspond to available observational data on NSs
in LMXBs [21]. Solid lines show values of temperatures and rotation rates at which normal r-mode
experiences resonance with (top-down) main harmonic, first overtone, and second overtone of superfluid
r-modes for M = 1.4M⊙ NS.

On the other hand, writing down the ratio of Eqns. (8), TdT = K/Ω2 ξdξ, we find that
ξ ∼ ΩT , or ξ1br ∼ z1r ∼ ΩT 0 ∼ ΩT 0

z . This ordering differs from the standard one, which takes
place at zero entrainment, when we account for rotational corrections only. In this case ∆h = 0,
σ1 ∝ Ω2 and ξ1br ∼ z1r ∼ Ω2T 0 ∼ Ω2T 0

z .

4. Results

In our numerical calculations we adopt essentially the same physics input as in [6]. All results
obtained below are for l = m = 2 r-modes. Left panel of Fig. 1 shows how σ1 depends on
rotation frequency ν ≡ Ω/2π 2 for NS with M = 1.4M⊙, T = 107 K, and realistic critical
temperature profiles from [6]. Solid lines correspond to four different r-modes experiencing
avoided-crossings with each other, dots indicate the normal r-mode. The normal r-mode is not
affected by entrainment while superfluid modes deviate strongly from their ”zero-entrainment”
behavior (shown by dashes), especially at slow rotation frequencies. Diamond at ν = 0 shows
theoretically predicted limit [defined by K(Rµ) = 0] for σ1 at ν → 0 for superfluid modes. One
can see that calculated curves tend to approach this limit. In the limit of rapid rotation σ1 ∝ Ω2,
as expected.

Right panel of Fig. 1 illustrates how the values of spin frequencies, corresponding to avoided-
crossings of r-modes, depend on the stellar temperature 3 (solid lines). In the vicinity of these
curves normal r-mode experiences stabilizing resonance interaction with superfluid r-modes

2 Although rotation rates higher than ν ∼ 1000Hz are not relevant for neutron stars, and low-frequency
approximation is invalid at such high rotation rates, we plot the spectrum upto ν = 4000Hz for the sake of
completeness.
3 Notice, that while EOS of NS matter is practically temperature independent, oscillation spectrum of superfluid
NS depends on temperature. This happens because the fraction of paired neutrons strongly depends on
temperature at temperatures relevant for NSs in LMXBs.
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[5, 21]. This means that ’stability peaks’ appear in the ’rotation frequency-stellar temperature’
plane. Note that our results imply that stability peaks are not vertical, as simple model of [5, 21]
suggested. Nevertheless, the star in the course of its evolution in LMXB will spend most of its
life climbing up the left edge of the ’peak’. This confirms the scenario of [5, 21], and, moreover,
allows to explain the existing observations within the simple model proposed here.
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