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Abstract of the Dissertation

Applications of 2D CFT : Entanglement Negativity and Soft Theorem

by

Yihong Wang

Doctor of Philosophy

in

Physics and Astronomy

(String Theory)

Stony Brook University

2017

Conformal field theory (CFT), especially two dimensional conformal field
theory, has been an active and fruitful topic of theoretical physics for decades.
As a powerful tool and insightful approximation, it has been widely used in
di↵erent fields of physics such as string theory, statistical physics, and con-
densed matter physics. In this dissertation I shall discuss two di↵erent sub-
jects in which the results of 2D CFT can be applied: entanglement negativity
and the soft gluon/graviton theorem. 2D CFT is one of the most important
approaches in calculating entanglement of 1D free systems. By applying the
replica trick, the entanglement entropy can be expressed as the path integral
of the free field on a Riemann surface, or equivalently as correlation functions
of corresponding twist operators. The same approach applies to negativity, a
well defined measure of entanglement for mixed states. In this dissertation,
we discuss the negativity of free fermions, which is a hard problem because
individual terms in the sum over spin structures do not respect the replica
symmetry. I shall present in detail how some of the terms can be reduced
to rational functions by Thomae’s formula and how to use these terms to
construct upper and lower bounds on free fermion negativity. In the second
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part of the dissertation, I shall discuss the soft gluon/graviton theorem of
scattering amplitudes. The connection between 4D scattering amplitudes
and 2D CFT has been discussed at length in recent years. They share the
same SL(2,C) symmetry. By replacing the plane wave external legs with
an SL(2,C) wave packet, one can transform from scattering amplitudes to
Witten diagrams in AdS3, which then map to correlation functions on the
boundary. The soft gluon and graviton theorems can then be re-expressed
as Ward identities of the BMS symmetry. In this dissertation, I shall show
how these two soft theorems are related through KLT relations.
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Chapter 1

1 Introduction

As a well studied highly symmetric system and one of the few examples of ex-
actly solvable quantum field theories, two dimensional conformal field theory
is an essential tool in many areas of physics. For example, in condensed mat-
ter theory and statistical mechanics, it is the continuum limit of 2D lattice
models such as the critical Ising model. Lattice models are classified by their
critical behavior into universality classes which corresponds to di↵erent ADE
classes in 2D theory [3]. In string theory, 2D CFT is widely used as well:
from the world sheet point of view string theory is described by 2D CFT, and
the AdS3/CFT2 is one of the best known cases in studying the holographic
principle [4]. Meanwhile, the algebraic structure and the OPE expansion
approach led to the development of vertex algebra in mathematics [5]. Such
abundant applications have made 2D CFT a remarkably long-lasting focus of
research. Moreover, 2D CFT keeps finding its way in many newly developed
areas in physics such as quantum entanglement and scattering amplitudes
which I shall discuss in this dissertation.

1.1 Application of 2D CFT in Quantum Entanglement

Entanglement and Negativity

As a distinguished phenomenon that exists only in quantum systems, quan-
tum entanglement was proposed [6] and discussed in the very early years
of quantum mechanics (1935) by Einstein and Schrödinger. Afterwards, it
remained a crucial topic in studying quantum foundations and in pursuing
informational explanations for axioms of quantum mechanics. A more practi-
cal viewpoint of quantum entanglement leads to the development of quantum
information: entanglement pairs can be used to build quantum computers,
and quite a few algorithms that are unique to such systems have been devel-
oped since the 1990s. Some of them, such as Shor’s algorithm for factoring
large integers [9] and Grover’s algorithm for searching unordered lists [11],
are remarkably more e�cient than classical algorithms. Other promising
applications of quantum entanglement include quantum cryptography, quan-
tum error correction and quantum teleportation. In recent years, there is
an increasing number of gravity and string theorists joining in the study of
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quantum entanglement, especially after the ER=EPR conjecture by Malda-
cena and Susskind [7], which implies entanglement could be as fundamental
as spacetime in physics. Entanglement entropy was first studied for discrete
systems, and only later analyzed in continuous systems. One straightforward
application is the continuum limit of spin chains. A less obvious application
is an attempt to provide an entanglement interpretation for black hole en-
tropy [8].

To study quantum entanglement quantitatively, a number of entangle-
ment measures have been defined. A good measure of quantum entangle-
ment should be a quantity that does not increase under local operation and
classical communication. Among all such quantities, entanglement entropy
is the most well-known and well-studied one. It is defined as follows: a state
 in a bipartite system with Hilbert space H = H

A

⌦H
B

can be written as

 =
X

j

c
j

| 
j

i
A

⌦ | 
j

i
B

and its density matrix as
⇢ = | i ⌦ h | .

Then the entanglement entropy of subsystem A is defined as

S
A

= � tr ⇢
A

log ⇢
A

where ⇢
A

is the reduced density matrix: ⇢
A

= tr
B

⇢. One can check explicitly

S
A

= �
X

j

|c
j

|2 log |c
j

|2

so that we have S
A

= S
B

. Other important properties of entanglement
entropy include subadditivity, which says for subsystems A1 [ A2 = A

S
A1 + S

A2 � S
A

and strong subadditivity, for A
i

\ A
j

= ;, i 6= j 2 {1, 2, 3}

S
A1[A2[A3 + S

A2  S
A1[A2 + S

A2[A3 .

Since traces of reduced density matrices are path integrals, a large num-
ber of tools and ideas developed in calculating path integrals can be brought
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to bear. In calculating entanglement entropy of quantum field theories, en-
tanglement entropy is often considered as the n ! 1 limit of Rényi entropies

S(N)
A

=
1

1� n
tr ⇢n

A

. (1)

The trace tr ⇢n
A

has a direct field theory interpretation as the path integral
over n copies of the space-time glued cyclically over region A. The 2D case
was first studied in [13], in which Cardy and Calabrese worked out the en-
tanglement entropy for single interval systems, which is a good example of
how 2D CFT is used in calculating entanglement entropy. The derivation
is based on the replica trick: from the field theory point of view, since the
reduced density matrix ⇢

A

is a path integral traced over region B, the trace
tr ⇢n

A

is the path integral over n copies of spacetime glued cyclically along
region A, as illustrated in Figure 1.

Figure 1: An illustration of the world sheet for the 3rd Rényi entropy in 2D,
where the entangling region A consists of two disjoint intervals: each copy
of the space time is cut along the two intervals and the di↵erent sheets are
glued together along the cuts by matching the colors.

By applying the replica trick, a single field path integral over this n-
sheeted Riemann surface is reduced to the path integral of n di↵erent fields
identified cyclicly along the cuts over the complex plane. In CFT language,
it can be written as the correlation function of twist operators. For example
when A is the interval (u, v), we have tr (⇢

A

) =
⌦

T
n

(u, 0)T̄
n

(v, 0)
↵

. The
conformal weight of twist operators can be derived from the expectation
value of the stress tensor since we have

⌦

T (n) (w)
↵

R
n

,1
=

⌦

T
n

(u, 0)T̄
n

(v, 0)T (n) (w)
↵

L(n)
,C

⌦

T
n

(u, 0)T̄
n

(v, 0)
↵

L(n)
,C

(2)

3



in which the subscript R
n

, 1 labels quantities evaluated on the n-sheeted
Riemann surface, whereas L(n),C labels quantities evaluated on the complex
plane under the replicated Lagrangian. Since R

n

can be mapped to the

complex plane by the map z =
�

w�u

w�v

�1/n
, the left hand side of (2) follows

from the Schwarzian of this map. And the conformal weight of the twist
operators d

n

and d̄
n

, d
n

= d̄
n

= c

12

�

n� 1
n

�

, can be read from the Ward
identity

⌦

T
n

(u, 0)T̄
n

(v, 0)T (n) (w)
↵

L(n)
,C = (3)

✓

1

w � u

@

@u
+

d
n

(w � u)2
+

1

w � v

@

@v
+

d̄
n

(w � v)2

◆

⌦

T
n

(u, 0)T̄
n

(v, 0)
↵

L(n)
,C

With the knowledge of the conformal dimensions, one immediately has the

single interval Rényi entropies, tr ⇢n,1
A

= c
n

�

v�u

a

��c(n�1/n)/6
. For some simple

theories, the two disjoint interval Rényi entropy can be derived by applying
known results or tricks in CFT. For compactified free bosons, it is the boson
partition function on genus-n Riemann surfaces. And for free fermions it
can be calculated by bosonization [12]. Due to the Gaussian nature of the
reduced density matrix, entanglement entropy of these systems can be verified
numerically as well [14].

With the CFT interpretation of entanglement entropy, it is natural to
examine its gravity dual under AdS/CFT. It was conjectured in 2006 by Ryu
and Takayanagi that the entanglement entropy of a region on the boundary
corresponds to the minimal area of hypersurfaces in the bulk anchored on
the boundary of the entangling region [10]:

S
A

=
Area (�

A

)

4G(d+1)
N

which is an elegant and inspiring result since it not only confirms the area
law of entanglement entropy but also adds a new entry to the AdS/CFT
dictionary.

This progress in calculating and understanding entanglement entropy has
led to better understanding of information and spacetime and brought to-
gether many seemingly disconnected areas of physics such as quantum in-
formation, quantum field theory and gravity. However this is not yet the
whole picture since the entanglement entropy is not a good measure of en-
tanglement for mixed states, or tripartite systems. One obvious obstacle for
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entanglement entropy in measuring mixed states or tripartite systems is that
S
A

= S
B

no longer holds for mixed states in general. Therefore to discuss
entanglement of mixed states or tripartite systems, one needs a new mea-
sure. One such measure, the negativity, was proposed Vidal in 2001 [18],
which was later demonstrated to be a good entanglement measure [19]. The
negativity is an monotone under local operation classical communication for
these mixed states.

The negativity is defined as follows: For a state | i in a quantum system
with bipartite Hilbert space H = H

A

N

H
B

and density matrix ⇢ = | i h |,
the reduced density matrix is defined as ⇢

A

= tr
B

⇢ . If H
A

is factored
further into H

A

= H
A1

N

H
A2 , one can define the partial transpose of the

reduced density matrix ⇢T2
A

as the operator such that the following identity

holds for any e(1)
i

, e(1)
k

2 H
A1 and e(2)

j

, e(2)
l

2 H
A2 :

D

e(1)
i

e(2)
j

�

�⇢T2
A

�

� e(1)
k

e(2)
l

E

=
D

e(1)
i

e(2)
l

|⇢
A

| e(1)
k

e(2)
j

E

. Negativity is defined as the trace norm1 of ⇢T2
A

. Since

⇢T2
A

is Hermitian, its trace norm can be written as the following limit

E ⌘ |⇢T2
A

| = lim
N

e

!1
tr
�

⇢T2
A

�

N

e

(4)

where N
e

is an even integer. This analytic continuation suggests the utility
of also defining higher moments of the partial transpose:

E(N) ⌘ tr
⇥

(⇢T2
A

)N
⇤

. (5)

Like the entanglement entropy, the negativity in a quantum field theory can

be computed by employing the replica trick [20, 21]: like ⇢N
A

,
�

⇢T2
A

�

N

is the
partition function over n copies of spacetime glued along the region A but
where now for transposed intervals, the gluing order is anti-cyclic rather than
cyclic, as illustrated in Figure 2.

In practice, these partition functions can only be computed in special
cases [20,21]. For conformal field theories in 1+1 dimensions, the N -moment
negativity E(N) for a single interval (i.e. B is the empty set) can be mapped
to functions of Rényi entropies: the Nth Rényi entropy for odd N ; , the
square of the N

2 th Rényi entropy for even N . In more detail, we find

tr
�

⇢T2
A

�

N

e / l�
c

3(
N

e

2 � 2
N

e

), tr
�

⇢T2
A

�

N

o / l�
c

3(No

� 1
N

o

) (6)

1
The trace norm of a matrix M is defined as the sum of its singular values: |M | ⌘

tr

h

�

M

†
M

�1/2
i

. For Hermitian matrices, singular values are absolute values of the eigen-

values.
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Figure 2: An illustration of the world sheet for the 3rd moment of negativity
in 2D, where the entangling region A consists of two disjoint intervals and
the second interval is transposed: each copy of the space time is cut along
the two intervals, and intervals of the same color are identified

where N
e

stands for even N and N
o

stands for odd N . Another tractable
case is where A is a single interval broken in two pieces by A1 and A2.
The quantity E(N) reduces to a three point correlation function of two twist
operators and a double twist operator. The result is determined by conformal
symmetry:2

tr
�

⇢T2
A

�

Ne / (l1l2)
� c

6(
N

e

2 � 2
N

e

) (l1 + l2)
� c

6(
N

e

2 + 1
N

e

) , (7)

tr
�

⇢T2
A

�

N

o / (l1l2 (l1 + l2))
� c

12(No

� 1
N

o

) . (8)

For free bosons, moments of negativity for two disjoint intervals can also
be derived by mapping to Rényi entropy. And the numerical approach for
entanglement entropy can be applied to this case as well. However, it is
much more complicated for free fermions, and we shall elaborate in the next
chapter.

1.2 Application of 2D CFT in Scattering Ampliudes

Chapter3 of this dissertation is on the soft graviton/gluon theorem, which
improves Weinberg’s soft photon theorem [42,43]. The soft limit is an import
subject in scattering amplitudes because of its universality, the simplicity of
its form and the symmetries it reveals. The study of soft limits dates back
to the 1960s [42,43]. In 2013, a new soft theorem for gravity amplitudes was

2
See ref. [22] for an extension to the massive case.
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studied in [44–46]. Using Britto-Cachazo-Feng-Witten (BCFW) recursion
[47, 48], Cachazo and Strominger proved the sub- and subsubleading orders
in the soft expansion [49], i.e.,3

M
n+1({✏�s, e�s}, 1, ..., n) =

✓

1

✏3
S(0)
GR

+
1

✏2
S(1)
GR

+
1

✏
S(2)
GR

◆

M
n

(1, ..., n) +O(✏0). (9)

The leading, subleading and subsubleading orders of soft factors are given by

S(0)
GR

=
n

X

a=1

"s
µ⌫

pµ
a

p⌫
a

p
s

· p
a

, S(1)
GR

=
n

X

a=1

"s
µ⌫

pµ
a

(p
s,⇢

J⇢⌫

a

)

p
s

· p
a

, (10)

S(2)
GR

=
1

2

n

X

a=1

"s
µ⌫

(p
s,⇢

J⇢µ

a

)(p
s,�

J�⌫

a

)

p
s

· p
a

, (11)

where the "s
µ⌫

is the polarization of the soft graviton, p
i

are external momenta
and Jµ⌫ are angular momenta of external legs. Using the BCFW recursion
relation, the soft limit of color-ordered tree-level Yang-Mills amplitudes was
also studied in [52] and the result is given by

A
n+1({✏�s, e�s}, 1, ..., n) =

✓

1

✏2
S(0)
YM

+
1

✏
S(1)
YM

◆

A
n

(1, ..., n), (12)

where the leading and subleading soft factors are given by

S(0)
YM

=
X

a⇠s

"
s

· p
a

p
s

· p
a

, S(1)
YM

=
X

a⇠s

"
s⌫

p
sµ

Jµ⌫

a

p
s

· p
a

, (13)

with "
s⌫

denoting the polarization of the soft gluon and a ⇠ smeaning partial
a is next to soft particle s.

In recent years 2D CFT techniques has been introduced into the study
of topics in 3 + 1D scattering amplitudes. There have been straightforward
applications of CFT approaches in calculating scattering amplitudes in some
specific theories such as applying AdS/CFT duality in deriving S-matrix for
boundary CFTs [81–84], and using bootstrap to study 1 + 1 dimension S-
matrix [85]. In fact for 3+1 dimensional QFTs, the 2D CFT approaches have

3
That the leading soft factor S

(0)
GR

is not corrected to all loop orders is shown in [43,50]

while the general subleading behavior of soft gluons and gravitons has also been discussed

in [51].
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a broader application. It is shown in [78] that soft theorems can be written
as Ward identities for a conserved current in 2D CFT. The result motivates
a discussion of the relation between 2D CFT and 4D scattering amplitudes
in general. Strong evidence for the link between these two subjects is that
the Lorentz group in 4D SL(2,C) is the global conformal symmetry group
in 2D. To be specific, a normalized momentum p̂ in R1,3 can be expressed by
coordinates in AdS3:

p̂µ(y, z, z̄) =

✓

1 + y2 + |z|2
2y

,
Re(z)

y
,
Im(z)

y
,
1� y2 � |z|2

2y

◆

. (14)

In terms of y, z, z̄, the Lorentz transformation SL(2,C) reads

z ! z0 =
(az + b)(c̄z̄ + d̄) + ac̄y2

|cz + d|2 + |c|2y2 ,

z̄ ! z̄0 =
(āz̄ + b̄)(cz + d) + ācy2

|cz + d|2 + |c|2y2 ,

y ! y0 =
y

|cz + d|2 + |c|2y2 , (15)

which are isometries of AdS3 or conformal transformations of the boundary
CFT and preserve the on-shell condition

�(p̂0)2 + (p̂1)2 + (p̂2)2 + (p̂3)2 = �1 . (16)

For scattering amplitudes the only objects with nontrivial transformation
under Lorentz transformation are the external legs, which are plane waves.
After changing the external states into eigenstates of the Lorentz symmetry,
the scattering ampliltude turns into a Lorentz invariant object: the Witten
diagram in AdS3/CFT2 [79, 80]. For example, with the knowledge of the
scalar bulk to boundary propagator

G�(y, z, z̄;w, w̄) =

✓

y

y2 + |z � w|2
◆�

(17)

and the map (14), the conformal primary wave function reads

�±
�,m

(Xµ;w, w̄) =

ˆ 1

0

dy

y3

ˆ
dzdz̄ G�(y, z, z̄;w, w̄) exp

h

±im p̂µ(y, z, z̄)X
µ

i

(18)
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Therefore the n-point scattering amplitudes can be related to amplitudes in
CFT2 in the following way

Ã�1,··· ,�n

(w
i

, w̄
i

) ⌘
n

Y

i=1

ˆ 1

0

dy
i

y3
i

ˆ
dz

i

dz̄
i

G�
i

(y
i

, z
i

, z̄
i

;w
i

, w̄
i

)A(m
j

p̂µ
j

) . (19)

This relation is derived and verified for general n-point amplitudes for massive
scalars [80]. And there are on-going e↵orts to generalize it to higher spin
amplitudes. Connection between scattering amplitudes in momentum space
R1,3 and objects in CFT2 are most studied and well understood in the soft
limit.

And it is shown in [78] that by treating the soft particle as a conserved
current in the boundary CFT, the leading order soft theorem can be written
as the Ward identity of the current, for example. Following the map (14),
the soft gluon theorem reads

⌦

j(w)aOb1 (w1, w̄1) · · · Ob

n (w1, w̄1)
↵

=
n

X

i=1

fab

i

c

i

w � w
i

⌦

Ob1 (w1, w̄1) · · · Ob

n (w1, w̄1)
↵

(20)

which is exactly a 2D conformal Ward identity for a conserved current j(w),
and it was later shown in [87] that this conserved current corresponds to
a generalized BMS symmetry. Meanwhile many other related studies have
been achieved including the soft limits from Poincaré symmetry and gauge
invariance [53, 54], Feynman diagram approach [55], conformal symmetry
approach to the soft limits in Yang-Mills theory [56], the soft limit in arbitrary
dimension [57–60], loop correction of the soft limit [61–63, 65], string theory
approach to the soft limit [64, 65] and ambitwistor string approach [66, 67].
The relation between scattering amplitudes and 2D correlation functions is
yet to be found for most of the theories. And this is a hard problem in
general, as we mentioned earlier, such relation is first studied and best known
for amplitudes with soft particles. The study of soft theorem would help us
understand the whole story. On the other hand some identities between
scattering amplitudes, such as the Kawai-Lewellen-Tye (KLT) relations is
also helpful. Because it relates graviton ampliudes to gluon amplitudes,
which we know how to get from 2D correlation functions. In Chapter 3,
we shall show how the soft gravity theorem and the soft gluon theorem are
related by the KLT relations.
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Chapter 2

2 Estimation for Entanglement Negativity of
Free Fermions

2.1 Introduction

As we mentioned in the introduction, there are a few simple systems for which
we can calculate their negatitvity, besides these examples another special case
where the negativity can be determined, at least for N > 1, is a massless
free fermion field in 1+1 dimensions. In this case, the N -sheeted partition
functions are known in terms of Riemann-Siegel theta functions although it
is not known in general how to continue the result away from integer N > 1
and in particular to N = 1. Since the partial transposed reduced density
matrix is Gaussian, the negativity for a free scalar can be checked through a
lattice computation by using Wick’s Theorem [21,23].

The case of free fermions in 1+1 dimensions appears to be more di�cult
than the case of free scalars however. The partial transpose of the reduced
density matrix is no longer Gaussian but a sum of two, generically non-
commuting, Gaussian matrices [24]:

⇢T2 =
1p
2

�

ei⇡/4O+ + e�i⇡/4O�
�

. (21)

(We will define O± in section 2.2.) This fact brings additional complication
to both the lattice and field theoretical calculations. On the lattice side,
eigenvalues of (⇢T2)N cannot be simply derived from eigenvalues of a covari-
ance matrix as in the Gaussian case. In a field theory setting, one has to sum
over partition functions with di↵erent spin structure, corresponding to dif-
ferent terms in the expansion of (ei⇡/4O+ + e�i⇡/4O�)N . Various e↵orts have
been made to tame the di�culties in deriving the negativity of free fermions:
On the lattice side, algebraic simplification and numerical diagonalization of
products of these two Gaussian matrices yields the N > 1 moments of neg-
ativity for the two disjoint interval case [24, 25].4 (Monte-Carlo and tensor
network methods have also been used to calculate negativity for the Ising
model [26–28] which, although not identical to the Dirac fermion, is closely

4
See also ref. [31] for an extension to two spatial dimensions.
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related.) The analytical form of such moments are derived by evaluation of
the corresponding path integrals [29,30]. However in the existing results the
sheet number N does not appear as a continuous variable; it remains an open
problem how to take the N ! 1 limit to get the negativity.

In this letter we shall introduce a Z
N

-symmetric free fermion with spe-
cific choice of spin structure. This fermion has several nice features that we
believe will help us explore and understand the features of free fermion neg-
ativity. 1) The partition function explicitly reproduces the correct adjacent
interval limit. 2) The N ! 1 limit of the N sheeted path integral can be
easily derived. 3) There exists a natural generalization to multiple interval
cases, nonzero temperature, and nonzero chemical potential. 4) While such
a partition function is not an N th moment of ⇢T2 (except in the special case
N = 2), it appears to be a useful quantity for bounding these N th moments
including the negativity itself.

The rest of this letter is arranged as follows: In section 2.2 we review
previous results. Section 2.3 contains a derivation of the partition func-
tion for the Z

N

-symmetric free fermion system and in particular tr(ON

+ ) and
tr[(O+O�)N/2]. In section 2.4, we discuss bounds on the negativity and its
N th moments. We conclude in section 2.5 with remarks on possible gen-
eralizations of our results and future directions. An appendix contains a
discussion of a two-spin system.

2.2 Review of Previous Results

We first review the definition of the negativity. For a state | i in a quantum
system with bipartite Hilbert space H = H

A

N

H
B

and density matrix ⇢ =
| i h |, the reduced density matrix is defined as ⇢

A

= tr
B

⇢ . IfH
A

is factored
further into H

A

= H
A1

N

H
A2 , one can define the partial transpose of the

reduced density matrix ⇢T2
A

as the operator such that the following identity

holds for any e(1)
i

, e(1)
k

2 H
A1 and e(2)

j

, e(2)
l

2 H
A2 :

D

e(1)
i

e(2)
j

�

�⇢T2
A

�

� e(1)
k

e(2)
l

E

=
D

e(1)
i

e(2)
l

|⇢
A

| e(1)
k

e(2)
j

E

. Negativity is defined as the trace norm5 of ⇢T2
A

. Since

5
The trace norm of a matrix M is defined as the sum of its singular values: |M | ⌘

tr

h

�

M

†
M

�1/2
i

. For Hermitian matrices, singular values are absolute values of the eigen-

values.
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⇢T2
A

is Hermitian, its trace norm can be written as the following limit

E ⌘ |⇢T2
A

| = lim
N

e

!1
tr
�

⇢T2
A

�

N

e

(22)

where N
e

is an even integer. This analytic continuation suggests the utility
of also defining higher moments of the partial transpose:

E(N) ⌘ tr
⇥

(⇢T2
A

)N
⇤

. (23)

We are interested in systems in one time and one spatial dimension. We will
assume a factorization of the Hilbert space corresponding to a partition of
the real line with A1 and A2 each being the union of a collection of disjoint
intervals: A1 = [p

i=1 (si, ti) and A2 = [q

i=1 (ui

, v
i

).
In this paper, we are particularly interested in the case of free, massless

fermions in 1+1 dimension with the continuum Hamiltonian

H = ⌥i

ˆ
L

0

 †(t, x)@
x

 (t, x) @x (24)

where { †(t, x), (t, x0)} = �(x � x0). The sign determines whether the
fermions are left moving or right moving. We will take one copy of each to
reassemble a Dirac fermion. It will often be convenient to consider the lattice
version of this Hamiltonian as well

H = ⌥ i

2

X

j

⇣

 †
j

 
j+1 � †

j+1 j

⌘

, (25)

and anti-commutation relation { †
j

, 
k

} = �
jk

, which su↵ers the usual fermion
doubling problem. We choose as our vacuum the state annihilated by all of
the  

j

.
The authors of ref. [24] were able to give a relatively simple expression

for the negativity in the discrete case by working instead with Majorana
fermions a2j�1 = 1

2( 
†
j

+  
j

) and a2j = 1
2i( 

†
j

�  
j

). Re-indexing, we can
write the reduced density matrix as a sum over words made of the a

j

:

⇢
A

=
X

⌧

c
⌧

2n
Y

j=1

a
⌧

j

j

(26)

where ⌧
j

is either zero or one, depending on whether the word ⌧ contains the
Majorana fermion a

j

, and n is the length of region A. Consider now instead
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the matrices O± constructed from ⇢
A

by multiplying all the a
j

in region A2

by ±i:

O± =
X

⌧,�

c
⌧,�

 

2n1
Y

j=1

a
⌧

j

j

! 

2n1+2n2
Y

j=2n1+1

(±ia
j

)�j

!

. (27)

Here n
j

is the length of region A
j

, and we have broken the sum into words ⌧
involving region A1 and words � involving region A2. As we already described
in eq. (21), the central result of ref. [24] is that the partial transpose of the
reduced density matrix can be written in terms of O±.

While the spectrum of ⇢
A

is not simply related to the spectra of O±, it is
true that O+ and O� are not only Hermitian conjugates but are also related
by a similarity transformation and so have the same eigenvalue spectrum.
Consider a product of all of the Majorana fermions in A2,

S = in2

2(n1+n2)
Y

j=2n1+1

a
j

, (28)

which squares to one, S2 = 1. This operator provides the similarity transfor-
mation between O+ and O�, i.e. O+ = SO�S. This similarity transformation
means, along with cyclically of the trace, that if we have a trace over a word
constructed from a product of O+ and O�, the trace is invariant under the
swap O+ $ O�. Employing this similarity transformation, the negativity
for the first few even N can be written thus

tr[(⇢T2
A

)2] = tr(O+O�) , (29)

tr[(⇢T2
A

)4] = �1

2
tr(O4

+) + tr(O2
+O

2
�) +

1

2
tr[(O+O�)2] , (30)

tr[(⇢T2
A

)6] =

�3

2
tr(O+O

5
�) +

1

4
tr[(O+O�)3] +

3

4
tr(O3

+O
3
�) +

3

2
tr(O+O�O2

+O
2
�) .(31)

To obtain analytic expressions for tr[(⇢T2
A

)N ] from the decomposition (21)
of ⇢T2

A

, a key step [25] is the relation between matrix elements of ⇢
A

and
matrix elements of O+. Consider arbitrary coherent states h⇣(x)| and |⌘(x)i
that further break up into h⇣1(x1), ⇣2(x2)| and |⌘1(x1), ⌘2(x)i according to the
decomposition of A into A1 and A2. Then the matrix elements of ⇢

A

and O+

are related via

h⇣(x)|O+|⌘(x)i = h⇣1(x1), ⌘
⇤(x2)|U †

2⇢AU2|⌘1(x1),�⇣⇤2 (x2)i , (32)
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where U2 is a unitary operator (whose precise form [25] does not concern us)
that acts only on the part of the state in region A2.

In pursuit of an analytic expression, let us move now to a path integral
interpretation of tr[⇢N

A

] and tr[(⇢T2
A

)N ]. The trace over ⇢N
A

becomes a path
integral over an N sheeted cover of the plane, branched over A. Now consider
instead trON

+ given the relation (32). Performing a change of variables, we
can replace U2 acting on ⇣⇤2 and ⌘⇤2 with ⇣2 and ⌘2 inside the trace, and we
see that tr(⇢N

A

) is related to trON

+ by an orientation reversal of region A2. In
terms of the N sheets, fixing a direction, passing through an interval in A1,
we move up a sheet while passing through an interval in A2 we move down a
sheet. Indeed, the trace of any word constructed from the O+ and O� has a
similar path integral interpretation. Given the sign flip relation O� = SO+S
however, replacing some of the O+ by O� in the word will change the spin
structure of the N sheeted cover.

For simplicity, consider the case where A1 is a single interval bounded
by s < t and A2 a single interval bounded by u < v. The trace of a word
constructed from O±, up to an undetermined over-all normalization c

N

, can
be written in terms of a Riemann-Siegel theta function [25]

tr

"

N

Y

i=1

O
s

i

#

= c2
N

✓

1� x

(t� s)(v � u)

◆2�
N

�

�

�

�

⇥[e](⌧̃(x))

⇥(⌧̃(x))

�

�

�

�

2

, e =

✓

0
�

◆

, (33)

where 0 is a vector of N � 1 zeros and � is fixed by the word
Q

N

i=1 Os

i

. In
particular, if s

i

6= s
i+1, then �i = 1/2 and � = 0 otherwise. The exponent

�
N

=
c

12

✓

N � 1

N

◆

(34)

is the dimension of a twist operator field with c = 1 for a Dirac fermion. The
cross ratio is defined to be

x ⌘ (s� t)(u� v)

(s� u)(t� v)
2 (0, 1) . (35)

(The limit in which the intervals become adjacent corresponds to x ! 1.)
The Riemann-Siegel theta function is defined as

⇥[e](z|M) ⌘
X

m2ZN�1

ei⇡(m+✏)t·M ·(m+✏)+2⇡i(m+e)t·(z+�) , e ⌘
✓

✏
�

◆

, (36)
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and further ⇥(z|M) ⌘ ⇥[0](z|M). The (N � 1) ⇥ (N � 1) period matrix is
then [21, 32]

⌧
i,j

= i
2

N

N�1
X

k=1

sin(⇡k/n)2
F1(k/N, 1� k/N ; 1; 1� x)

2F1(k/N, 1� k/N ; 1; x)
cos[2⇡(k/N)(i� j)] ,(37)

and further ⌧̃(x) = ⌧(x/(x � 1)). There are Riemann-Siegel theta functions
that one can write down for multiple interval cases as well, but we shall not
need their explicit form.

Among the words that enter in the binomial expansion of tr[(⇢T2
A

)N ], the
traces tr(ON

+ ) = tr(ON

� ) and tr[(O+O�)N/2] are special. Even in the multiple
interval case, these two traces can be expressed as rational functions of the
endpoints of the intervals. Although we have no proof in general, observa-
tionally it seems to be true that among the words of a fixed length tr(ON

+ )
is the smallest in magnitude while tr[(O+O�)N/2] is the largest. These two
considerations suggest the utility of trying to bound the negativity using the
rational functions tr(O+)N and tr[(O+O�)N/2], as we pursue in section 2.4

In the two interval case, it follows from the result (33) that tr(ON

+ ) and
tr[(O+O�)N ] are rational functions. That tr(ON

+ ) reduces to a rational func-
tion is obvious since � = 0. That tr[(O+O�)N/2] reduces as well follows from
Thomae’s formula [33, 34] that when �

i

= 1/2 for all i,

�

�

�

�

⇥[e](⌧̃)

⇥(⌧̃)

�

�

�

�

2

= |1� x|�N/4 . (38)

To see more generally that these words are rational functions of the endpoints,
in the next section we employ bosonization.6

2.3 Bosonization and Rationality

Consider the normalized partition function of the free Dirac field on the
Z

N

-curve defined by the following set:

X
N

=

(

(z, y)

�

�

�

�

�

yN =
p

Y

i=1

z � s
i

z � t
i

q

Y

i=1

z � v
i

z � u
i

, (z, y) 2 C2

)

. (39)

6
For an application of Thomae’s formula to a multiple interval Rényi entropy compu-

tation, see ref. [35].
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One can see that X
N

, as the set of all points in C2 satisfying the equation in
the set, has N sheets corresponding to N di↵erent roots of a nonzero complex
number. These N copies of C are cut open along intervals in A on the real
axis. As we choose the ordering s

i

< t
i

and u
i

< v
i

, such open cuts are glued
cyclicly if in A1 and anti-cyclicly if in A2.

While the Riemann surface (39) has an explicit Z
N

symmetry, to spec-
ify a partition function, we also have to give the spin structure. The spin
structure can generically break this symmetry, i.e. we can associate relative
factors of minus one to cycles that would otherwise be related by the Z

N

shift symmetry. A generic word
Q

i

O
s

i

will generically have a spin struc-
ture that does not respect this symmetry. However, a few words do, namely
tr(ON

+ ) = tr(ON

� ) and tr[(O+O�)N/2]. The word tr(O+)N associates a +1
to all the fundamental cycles constructed from region A2, while the word
tr[(O+O�)N/2] associates a �1.

If we assume the Z
N

symmetry is preserved by the spin structure, then the
bosonization procedure is especially simple. Denote the partition function
on X

N

by Z[N ]. Rather than a path integral of a single Dirac field on
X

N

in (39), Z [N ] can be considered as a path integral of a vector valued
Dirac field ~ (z) on C:  (x) = ( 1 (z) , · · · , N

(z)).  
i

(x) is the value of
the original field  at coordinate (z, y

i

) on X
N

. When going anti-clockwise
around a branch point w by a small enough circle C

w

,  (x) gets multiplied
by a monodromy matrix T (w).

Define the matrix

T ⌘

0

B

B

B

B

@

0 !
!
. .

0 !
! 0

1

C

C

C

C

A

(40)

where ! = e2⇡i
N�1
N . This value of ! is chosen so that T satises the overall

boundary condition TN = (�1)N�1 id where id is the N ⇥N identity matrix.
The reason for the factor (�1)N�1 comes from considering a closed loop that
circles one of the branch pointsN times. Such a loop should be a trivial closed
loop in the y coordinate and come with an overall factor of �1, standard from
performing a 2⇡ rotation of a fermion.7

7
In order to preserve an explicit Z

N

symmetry, we have chosen a slightly di↵erent

matrix than in ref. [36].
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The matrix T is not the only Z
N

symmetric matrix satisfying TN =
(�1)N�1 id. A relative phase ei2⇡k/N , k = 1, 2, . . . , N�1, between monodromy
matrices at di↵erent branch points is also allowed. Choose the basis of  (x)
so that T (s1) = T and take into account the constraint that T (t

i

)T (s
i+1) =

id, T (v
i

)T (u
i+1) = id. Then, the monodromy matrices are fixed to be

T (s
i

) = T , T (t
i

) = T�1 , (41)

T (u
i

) = exp (2⇡i (N � k) /N)T�1 , T (v
i

) = exp (2⇡ik/N)T , (42)

If we insist on the usual spin structure for fermions, that they can only pick
up an overall factor of ±1 around any closed cycle, then two values of k are
singled out, k = 0 for all N and k = N/2 for even N . The choice k = 0 will
produce a partition function that computes tr(ON

+ ), while the choice k = N/2
will produce a partition function that computes tr[(O+O�)N/2]. As we will
discuss below, there are a pair of additional special choices, k = (N ± 1)/2
for odd N , which do not have an interpretation as a tr[

Q

i

O
s

i

], but which
nevertheless have some nice properties. For now, we will keep the dependence
on k arbitrary.

As introduced in refs. [21, 36–38], a twist operator �k

R

(w) is defined as
the field that simulates the following monodromy behavior: ~ (x) �k

R

(w) !
exp (2⇡k/N)TR~ (x) �k

R

(w) when x is rotated counter-clockwise around w.
Then Z [N ] can be expressed as a correlation function of twist operators on
a single copy of C rather than as a partition function on X

N

,

Z[N ] ⇠
* 

p

Y

i=1

�0
1 (si) �

0
�1 (ti)

q

Y

j=1

�k

�1 (uj

) �k

1 (vj)

!

AO

+

. (43)

The subscript AO means the operators are in ascending order of coordinates.
Such correlation functions can be calculated through bosonization (see e.g.
ref. [36]). Diagonalization of T leads to N decoupled fields, e 

l

. Each e 
l

is multivalued, picking up a phase e�i

l

N

2⇡, ei
l

N

2⇡, ei
l�k

N

2⇡or e�i

l�k

N

2⇡ when
rotated counter-clockwise around s

i

, t
i

, u
i

, or v
i

respectively. Then one can
factorize each multi-valued field e 

l

into a gauge factor that describes this

multi-valuedness and a single valued free Dirac field:  l = ei
´
x

x0
dx

0µ
A

l

µ

(x) l (x).
The gauge field dependent part of the partition function contains the branch
point dependence of Z[N ] and is moreover straightforward to evaluate. With
the notation [37],

q
l

(R, k) ⌘ 1�N

2N
+

⇢

lR + k + (N � 1) /2

N

�

, (44)
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where the curly braces denote the fractional part of a number and l 2 ` =
�

�N�1
2 ,�N�1

2 + 1, ..., N�1
2

 

, the gauge field Al

µ

(x) satisfies the contour inte-
grals˛

C

s

i

dxµAl

µ

(x) = �2⇡l

N
,

˛
C

s

i

dxµAl

µ

(x) =
2⇡l

N
, (45)

˛
C

u

i

dxµAl

µ

(x) = 2⇡q
l

(1, N � k) ,

˛
C

v

i

dxµAl

µ

(x) = 2⇡q
l

(�1, k) . (46)

The Lagrangian density8 in terms of  l (x) becomes L =
P

N

l=1  ̄
l

�µ
�

@
µ

+ iAl

µ

�

 l.
From eqs. (45) and (46) and Green’s theorem we have:

✏µ⌫@
⌫

Al

µ

(x) =

2⇡
P

p

i=1

P

q

j=1

⇥

l

N

(� (x� s
i

)� � (x� t
i

))� q
l

(1, N � k) (� (x� u
i

)� � (x� v
i

))
⇤

.

Since the  l’s are decoupled, the partition function becomes a product of
expectation values of operators that depend on the gauge field A

µ

:

T [N ] ⌘ Z [N ]

(Z [1])N
=
Y

l2`
hei
´
A

l

µ

j

µ

l

d

2
xi , (47)

where jµ
l

is the Dirac current  ̄l�µ l. After bosonization, it becomes jµ
l

=
1
2⇡ ✏

µ⌫@
⌫

�l. Then T [N ] can be written as a correlation function of free boson
vertex operators V

e

(w) = e�i

e

2�l

(w),
N�1

2
Y

l=�N�1
2

hei
´
A

l

µ

j

µ

l

d

2
xi =

*

p

Y

i=1

q

Y

j=1

V2l/N (s
i

)V�2l/N (t
i

)V2q
l

(�1,k) (uj

)V2q
l

(1,N�k) (vj)

+

.

(48)
To evaluate the correlation function of twist operators, we use

*

m

Y

l

i

=1

V
e

i

(w
i

)

+

=
Y

i 6=j

|w
i

� w
j

|�e

i

e

j ✏�m (49)

where ✏ is a UV cut-o↵ to take into account the e↵ect of coincident points in
the correlation function. We also need the sums

N�1
2
X

l=�N�1
2

l2

N2
=

N2 � 1

12N
, (50)

8
Our conventions for the Cli↵ord algebra are that {�µ

, �

⌫} = 2�

µ⌫

. For example, we

could choose �

x

= �

3
and �

t

= �

1
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N�1
2
X

l=�N�1
2

lq
l

(1, N � k)

N2
=

N2 � 1

12N
� (N � k) k

2N
. (51)

to get an explicit expression for T [N ].
To shorten the expressions, we adopt the following notation: {s

i

} =
S; {t

i

} = T ; {u
i

} = U ; {v
i

} = V along with

[Y, Z] =

�

�

�

�

�

Y

y2Y,z2Z
(y � z)

�

�

�

�

�

, [Y, Y ] =

�

�

�

�

�

Y

y1,y22Y,y1 6=y2

(y1 � y2)

�

�

�

�

�

. (52)

Then T [N ] can be written as:

T [N ] = L�N

2�1
6N X

N

2�1
6N � (N�k)k

N , (53)

where we have defined

L ⌘ [S, T ] [U, V ]

[S, S] [T, T ] [U,U ] [V, V ] ✏p+q

, X ⌘ [S, V ] [T, U ]

[S, U ] [T, V ]
. (54)

Fixing the appropriate spin structures, we claim then that

tr(ON

+ ) = tr(ON

� ) =

✓

L

X

◆�N

2�1
6N

, (55)

tr[(O+O�)N/2] =

✓

L

X

◆�N

2�1
6N

X�N/4 . (56)

Comparing with the two interval case (33), we can absorb c
N

into the ✏ de-
pendence of L. A nice feature of these expressions is that it is straightforward
to take the N ! 1 limit.

2.3.1 Adjacent Limits

Let us consider adjacent limits of the two-interval negativity. We call the
single-interval negativity the case when s = v and t = u, and there is only
one length scale, say l = t � s. We call the two-adjacent-interval negativity
the case where t = u and we have two length scales, l1 = t�s and l2 = v�u.
The single-interval and two-adjacent-interval negativities are given by a two

10



point function and a three point function of twist fields respectively. They
are therefore fully determined by conformal symmetry [20,21]:

E (N
o

) ⇠ l�
N

2
o

�1
6 , E (N

e

) ⇠ l�
N

2
e

�4
6 , (57)

E (N
o

) ⇠ (l1l2 (l1 + l2))
�N

2
o

�1
12 , E (N

e

) ⇠ (l1l2)
�N

2
e

�4
12 (l1 + l2)

�N

2
e

+2
12 .(58)

While tr(ON

+ ) simply vanishes in these coincident limits, we claim that tr[(O+O�)N/2]
reproduces E(N

e

) for even N , in both the single-interval and two-adjacent-
interval cases. This agreement provokes the question is there a choice of k for
odd N for which T [N ] has the correct adjacent interval limits? The answer
is yes. If we choose k = (N

o

± 1)/2, then

T [N
o

] = L�N

2
o

�1
6N

o X�N

2
o

�1
12N

o , (59)

and this expression reproduces E(N
o

) in the adjacent interval limits.
To see why the values k = N

e

/2 and k = (N
o

± 1)/2 are singled out,
we consider the merging of twist operators �k

1(wi

)�0
1(wi+1) ! �k

2(wi

). The
corresponding constraint on the correlation function is

lim
w

i+1!w

i

⌦

�k1
R1

(w1) · · · �k

1 (wi

) �0
1 (wi+1) · · ·

↵

|w
i

� w
i+1|��

i(i+1)

=
⌦

�k1
R1

(w1) · · · �k

2 (wi

) · · ·
↵

(60)

along with a corresponding constraint from considering �0
�1 (wi

) �k

�1 (wi+1).
We have defined

�
ij

⌘
X

l2`
q
l

(R
i

, k
i

) q
l

(R
j

, k
j

) . (61)

These constraints can only be satisfied if the following identities holds for all
l 2 `:

q
l

(�2, k) = q
l

(�1, 0) + q
l

(�1, k) , q
l

(2, k) = q
l

(1, 0) + q
l

(1, k) . (62)

The k values (N
o

� 1)/2, N
e

/2 and (N
o

+ 1)/2 are the only solutions.

2.4 Bounds on the Negativity

We discuss three types of bounds on E (N) in the following subsections. The
first, which follows from a triangle inequality on the Schatten p-norm, is an

11



upper bound on the moments of the partially transposed density matrix. The
second two are conjectural. We are able to demonstrate these conjectured
bounds only for small N > 1.

The Schatten p-norm, defined as

kMk
p

⌘
⇣

tr
⇣

�

M †M
�

p/2
⌘⌘1/p

, p 2 [1,1) , (63)

is a generalization of the trace norm. Indeed, the Schatten 1-norm is the
trace norm.

Because tr[(⇢T2
A

)N ]1/N is the Schatten N -norm of ⇢T2
A

, for all even N we
have by the triangle inequality that

tr[(⇢T/2
A

)N ] =
�

�

�⇢T2
A

�

�

N

�

N

 2�N/2
�

�

�ei⇡/4O+

�

�

N

+
�

�e�i⇡/4O�
�

�

N

�

N

= 2N/2 tr[(O+O�)N/2] . (64)

The N ! 1 limit of (64) leads to an upper bound on the negativity in terms
of tr[(O+O�)1/2]

E =
�

�⇢T2
A

�

�

T


�

�

�

�

1 + i

2
O+

�

�

�

�

T

+

�

�

�

�

1� i

2
O�

�

�

�

�

T

=
p
2 tr[(O+O�)1/2] =

p
2X�1/4 . (65)

We have thus established that tr[(O+O�)N/2] provides a rigorous upper bound
on the negativity and its Nth moments, for free fermions.

Conjecture 1: Bounds from Word Order

As we discussed briefly above, for words of a fixed, even length, we conjec-
ture that tr(ON

± ) is the smallest and tr[(O+O�)N/2] is the largest among the
traces. In the notation of the previous section, we expect that the trace of
an arbitrary word On1

+ On2� · · · of length N is bounded above and below by

tr(ON

+ ) = tr[(O+O�)N/2]XN/4  tr(On1
+ On2� · · · )  tr[(O+O�)N/2] . (66)

We can refine this conjecture on word order further. Define s = |n+�n�|
to be the di↵erence between the number of times n+ that O+ appears in a
word and the times n� that O� appears in a word. For two words W1 and

12



W2, we conjecture that if s(W1) > s(W2), then tr(W1) < tr(W2). Indeed,
we have checked this conjecture in the two interval case for small N , using
the explicit representation of these traces in terms of Riemann-Siegel theta
functions. See figure 3.

Given this refined conjecture on word order, we can obtain upper and
lower bounds on the negativity. For an upper bound, we first consider all the
terms in the binomial expansion of tr[(⇢T2

A

)N/2] that appear with a positive
sign such that s 6= 0. We replace every word with charge s with a word of
charge s� 4 and hence larger trace. (Note there will be no traces of words of
charge s � 2 with nonzero coe�cient.) Because the number of words grows
as the charge decreases, we will still have a net negative contribution from
words of charge s� 4. We then replace all the traces of words with negative
coe�cient by the yet smaller trace tr(O+)N . For the words of charge s = 0,
we simply replace all of them by the larger tr[(O+O�)N/2]. At the end of this
procedure, we find the following upper bound

tr[(⇢T2
A

)N/2] 


1� 1

2N/2

✓

N
N

2

◆�

tr(ON

+ ) +
1

2N/2

✓

N
N

2

◆

tr[(O+O�)N/2] . (67)

In the large N limit, the right hand side of this expression approaches
r

2N+1

⇡N

�

tr[(O+O�)N/2]� tr(ON

+ )
�

, (68)

which appears to be a somewhat more stringent condition than our rigorous
upper bound (64).

We can obtain a lower bound in a similar fashion, reversing the proce-
dure. We consider all the terms in the binomial expansion of tr[(⇢T2

A

)N/2] that
appear with negative coe�cient. We replace every word with charge s by a
word of charge s� 4. All the traces will then have positive coe�cient. Next,
except for tr[(O+O�)N/2] itself, we replace all the traces of words with the
smaller tr(O+)N . In this case, we find the lower bound

✓

1� 1

2N/2�1

◆

tr(ON

+ ) +
1

2N/2�1
tr[(O+O�)N/2]  tr[(⇢T2

A

)N/2] . (69)

In comparison with the conjecture we discuss next, this lower bound is not
particularly stringent in the large N limit.

We can establish these bounds rigorously only for small N . Note that for
N = 2, the upper and lower bound reduce to the known equality (29). For
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N = 4 and N = 6, we obtain the constraints

1

2
(1 +X) tr[(O+O�)2]  tr[(⇢T2

A

)4]  1

2
(3�X) tr[(O+O�)2] , (70)

1

4
(1 + 3X3/2) tr[(O+O�)3]  tr[(⇢T2

A

)6]  1

2
(5� 3X3/2) tr[(O+O�)3] . (71)

Indeed, in the two interval case, using the explicit representation of the neg-
ativity in terms of Riemann-Siegel theta functions, we can verify that these
bounds are indeed satisfied. See the insets in figure 4.

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

�- �

��(�)

���(�+�- )� �

(a) N = 4

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

�- �

��(�)

���(�+�- )� �

(b) N = 6

Figure 3: Plots of ratios of traces of words versus the four point ratio 1� x
for the two disjoint interval system. In the N = 4 case, we compare tr(O4

+)
and tr(O2

+O
2
�) to tr[(O+O�)2]. The lowest curve is the ratio of tr(O4

+) to
tr[(O+O�)2]. In the N = 6, we compare tr(O5

+O�), tr(O+O�O2
+O

2
�) and

tr(O3
+O

3
�) to tr[(O+O�)3]. The curve at the bottom corresponds to the ratio

of tr(O5
+O�) to tr[(O+O�)3] and establishes that tr(O5

+O�) is the smallest
among the words that appears in the negativity. The dashed line is included
as a guide to the eye.

For N = 4, we can do better and prove the inequalities in general.
That tr[|O2

+ � O2
�|2] � 0 implies that tr(O4

+)  tr(O2
+O

2
�). Similarly, that

tr[|O+O� � O�O+|2] � 0 implies that tr(O2
+O

2
�)  tr[(O+O�)2] and the de-

sired inequalities on tr[(⇢T2
A

)4] follows directly.9 It is tempting to apply these
inequalities to the case N = 1.

9
Alternately, one can employ von Neumann’s trace inequality.
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Conjecture 2: A Lower Bound from Extremization

The plot of the two disjoint interval system suggests another possible type
of lower bound on E (N). At least for N = 2, 4 and 6, and conjecturally for
all even N , we find that

tr[(O+O�)N/2]  E(N) = tr[(⇢T2
A

)N ] . (72)

Figure 4 is a comparison of the ratio tr[(⇢T2
A

)N ]/ tr[(O+O�)N/2] as a function
of the four point ratio x to the constant function one. We consider N = 4 and
N = 6 for the two interval case only. For N = 2, the inequality is saturated
given (29). Given the saturation, we further conjecture that the negativity
itself is bounded above,

E = |⇢T2
A

|  tr[(O+O�)1/2] , (73)

further tightening the triangle inequality (65). In the appendix, we compute
the Nth moments tr[(⇢T2)N ] and tr[(O+O�)N/2] explicitly for a two-spin sys-
tem in a Gaussian state. We are able to show that the bounds (72) and (73)
are satisfied in this simple case.

We can try to put more structure behind this conjecture. We begin by
introducing some notation. Recalling that O†

+ = O� and that O+ = SO�S,
we can assume without loss of generality the following block structure for
O±:

O± =

✓

A ±B
⌥B† C

◆

(74)

where A and C are Hermitian. It will be useful in what follows to consider

↵ ⌘
✓

A 0
0 C

◆

, � ⌘
✓

0 B
�B† 0

◆

, (75)

such that O± = ↵± � and, from (21), ⇢T2
A

= ↵ + i�. Finally, we introduce

� ⌘ S� =

✓

0 B
B† 0

◆

, ⌘± ⌘
✓

A ±B
±B† �C

◆

. (76)

Note that the ⌘± are Hermitian and that ⌘+ = SO+ = O�S while ⌘� =
O+S = SO�.

Define the function

f
N

(✓) ⌘ tr[((↵ + ei✓�)(↵� e�i✓�))N/2] . (77)
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From this definition, it follows that f
N

(⇡2 ) = tr[(⇢T2
A

)N ] and f
N

(0) = tr[(O+O�)N/2].
This function has a few other useful properties. It is periodic, with period
2⇡: f

N

(✓) = f
N

(✓ + 2⇡). It also has two reflection symmetries. The first,
f
N

(✓) = f
N

(⇡ � ✓), follows from cyclicity of the trace:

f(⇡ � ✓) = tr[((↵� e�i✓�)(↵ + ei✓�))N/2]

= tr[((↵ + ei✓�)(↵� e�i✓�))N/2]

= f(✓) .

The second, f
N

(✓) = f
N

(�✓), is more subtle. Consider expanding out the
product of matrices inside the trace. A generic term in the product will
involve n+ factors of ei✓� and n� factors �e�i✓�. If n+ = n�, then the ✓
dependence drops out, and such terms are irrelevant for the argument that
follows. Let us therefore assume n+ 6= n�. Because � is o↵ diagonal, any
term that contributes to the trace must have an even number of factors of �.
Thus either n+ and n� are both odd or both even. For every such term, there
will also be a term with n+ factors of �e�i✓� and n� factors of ei✓�. This
second term will always have the same sign and coe�cient as the first and the
same cyclic ordering of operators. Thus, we can re-express the ✓ dependence
of the combined terms as cos((n+ � n�)✓), which is an even function of ✓.

The two reflection symmetries, f(✓) = f(�✓) and f(✓) = f(⇡ � ✓) along
with periodicity imply that f(⇡/2) = f(3⇡/2) are extrema of f(✓) as are
f(0) = f(⇡). If we can show that these four extrema are the only extrema in
the domain 0  ✓ < 2⇡, and that f(⇡/2) is a local maximum (or alternatively
that f(0) is a local minimum), then our conjecture is proven since f(✓) is a
smooth bounded function on this domain.

For even N , the di↵erence between the first few E (N) and tr[(O+O�)N/2]
can be written in terms of ↵ and �:

E (2)� T [2] = 0 , (78)

E (4)� T [4] = 4 tr
�

(↵�)2
�

, (79)

E (6)� T [6] = 6 tr
��

↵2 + �2
� �

(↵�)2 + (�↵)2
��

. (80)

A su�cient condition for tr[(O+O�)N/2]  E (N) to hold for N = 4 and
N = 6 is that (↵�)2 + (�↵)2 be positive definite.
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(b) N = 6

Figure 4: Proposed bounds on the negativity. The solid blue line is
tr[(⇢T2

A

)N ]/ tr[(O+O�)N/2]. The dashed line is the constant function 1. In
the insets, the upper and lower bounds (70) and (71) are included. The
horizontal axis is the four point ratio 1� x.

2.5 Comments and Future Directions

While a determination of the negativity E for massless free fermions in 1+1
dimensions remains an open problem, we have argued in this paper that
tr[(O+O�)N/2] and tr(ON

+ ), which have simple closed form expressions for all
real N , can be used to bound E as well as higher moments of ⇢T2

A

. One of
our main results is that

E 
p
2 tr[(O+O�)1/2] , (81)

which follows from the triangle inequality. Part of our Conjecture 2 is that
the bound can be tightened by removing the

p
2. Also, in the appendix, we

demonstrated this tighter upper bound for a two-spin system in a Gaussian
state.

For N > 2, we have both upper and lower bounds on the moments of ⇢T2
A

.
In their strongest form, our conjectures state that

tr[(O+O�)N/2]  tr[(⇢T2
A

)N ]




1� 1

2N/2

✓

N
N

2

◆�

tr(O+)
N +

1

2N/2

✓

N
N

2

◆

tr[(O+O�)N/2] .(82)

Using the triangle inequality, we were also able to argue rigorously for a
somewhat weaker upper bound (64).

An advantage of working with tr[(O+O�)N/2] and tr(ON

+ ) instead of with
tr[(⇢T2

A

)N ] is that they are much simpler quantities. In the paper, we discussed
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how to compute the multiple interval case on the plane. It is straightforward
to consider the torus instead, i.e. finite volume and nonzero temperature.10

One can even introduce a chemical potential. These generalizations require
the use of the appropriate torus correlation function in place of eq. (49). See
for example refs. [40, 41].

There are many interesting questions that could be asked regarding tr[(O+O�)N/2].
What can we deduce about the eigenvalues of (O+O�)

1/2 from the relation

tr[(O+O�)N/2] = L�N

2�1
6N X�N

2+2
12 ? Can we prove the two conjectures involv-

ing tr[(O+O�)N/2] discussed in the text? Among all such open questions,
the most important and intriguing one is whether we can construct both an
upper bound and lower bound for E (N) using tr[(O+O�)N/2] that have the
same N ! 1 limit. If so, then we can extract the value of the negativity E
from these bounds.

10
See ref. [39] for a discussion of subtleties associated with thermal e↵ects on negativity.
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Chapter 3

3 Graviton theorem by KLT relation

3.1 Introduction

In physics, it is very fruitful to study same thing from various angles because
it will deepen our understanding and reveal many hidden relations. Now on-
shell graviton scattering amplitudes can be calculated using many di↵erent
ways, such as BCFW recursion relation, the double-copy formula [68], CHY
formula [69, 70] and KLT formula [71] (and many more). Since the BCFW
recursion relation and CHY formula have been successfully used in the study,
in this note we will try to use the KLT formula to investigate the new soft
graviton theorem.

Gravity amplitudes at tree level satisfy the famous Kawai-Lewellen-Tye
(KLT) relation [71], with which, one can express the stripped tree-level
gravity amplitudes M

n

(i.e., the momentum conservation �4(
P

p
i

) has been
moved away) in terms of products of tree-level color-ordered stripped Yang-
Mills amplitudes A

n

and eA
n

M
n

(1, 2, . . . , n) =
X

�,⇢

A
n

(�)S[�|⇢] eA
n

(⇢), (83)

where S[�|⇢] is called momentum kernel, which is a function of kinematic
factors s

ij

= 2p
i

· p
j

and depends on the permutations � and ⇢11. KLT
relation was firstly proposed in string theory [71] and then was proved in
field theory [72, 73] using BCFW recursion. One important feature should
be emphasized is that KLT is relation between stripped amplitudes without
imposing momentum conservation delta function.

Since KLT relation (83) connects gravity amplitudes to Yang-Mills am-
plitudes, it is natural to expect that the soft limit of gravity amplitudes
can be derived from that of Yang-Mills amplitudes via KLT relation. In
this work, we investigate this connection and its consequences. Although
the KLT relation holds to general dimension, for simplicity we will focus on
the pure 4D. We will show how the leading and sub-leading soft factors of
gravity amplitudes can be reproduced by the leading and sub-leading soft

11
In fact, the momentum kernel can be treated as the metric on the space of (n � 3)!

BCJ basis.
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factors of Yang-Mills amplitudes as it should be. However, to reach such
now well established fact, some nontrivial relations among changing matrix
of (n � 3)! BCJ-basis and momentum kernel S[⇢|�] must be true. These
nontrivial hidden identities are one of our main results.

The structure of this chapter is following. In section 3.2, we provide
a brief review of KLT relation. In section 3.3, we recall the soft limit for
stripped amplitudes of gravity and Yang-Mills theory. In section 3.4, using
results in section 3.3, we present the frame of the proof of the soft graviton
soft theorem via KLT relation. In section 3.5, two examples have been given
to demonstrate the frame in section 3.4. In section 3.6, we summarize our
work with some future directions. In appendix A, we present another more
complicated example.

3.2 A review of KLT relation

In this section, we provide a brief review of various formulations of KLT
relation for gravity amplitudes (for more details, please refer [72, 73]). The
most general formula [50] is given as

M
n

(1, 2, . . . , n) = (�1)n+1
X

�2S
n�3

X

↵2S
j�1

X

�2S
n�2�j

A
n

(1, �2,j, �j+1,n�2, n� 1, n)

⇥ S[↵
�(2),�(j)|�2,j]p1S[�j+1,n�2|��(j+1),�(n�2)]p

n�1

⇥ eA
n

(↵
�(2),�(j), 1, n� 1, �

�(j+1),�(n�2), n) , (84)

where A and eA are two copies of color-ordered Yang-Mills amplitudes and
the momentum kernel [72–74] is defined as

S[i1, i2, ..., ik|j1, j2, ..., jk]p1 =
k

Y

t=1

(s
i

t

1 +
k

X

q>t

✓(i
t

, i
q

)s
i

t

i

q

) (85)

where p1 is the pivot and ✓(it, iq) is zero when pair (i
t

, i
q

) has same ordering
at both set I = {i1, i2, ..., ik},J = {j1, j2, ..., jk}, otherwise it is one12. In
this definition, the set J = {j1, j2, ..., jk} is the reference ordering set, i.e.,
this set provides the standard ordering. The set I = {i1, i2, ..., ik} is the

12
The function S is nothing, but the f -function defined in [50] with more symmetric

and improved expression
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dynamical set which determines the dynamical factor by comparing with set
J . A few examples are the following:

S[2, 3, 4|2, 4, 3]
p1 = s21(s31 + s34)s41,

S[2, 3, 4|4, 3, 2]
p1 = (s21 + s23 + s24)(s31 + s34)s41.

Although it is not so obvious, the momentum kernel, in fact, contains all
BCJ-relations by following identities

0 =
X

↵2S
n�2

S[↵(i2, ..., in�1)|j2, j3, ..., jn�2]An

(n,↵(i2, ..., in�1), 1) ,

8j 2 S
n�2 (86)

Using (86) we can derive following relation

X

↵,�

S[↵
i2,i

j

|i2, . . . , ij]p1S[ij+1, . . . , in�2|�i
j+1,in�2 ]pn�1

eA
n

(↵
i2,i

j

, 1, n� 1, �
i

j+1,in�2 , n)

=
X

↵

0
,�

0

S[↵0
i2,i

j�1
|i2, . . . , ij�1]p1S[ij, ij+1, . . . , in�2|�0

i

j

,i

n�2
]

eA
n

(↵0
i2,i

j�1
, 1, n� 1, �0

i

j

,i

n�2
, n) , (87)

Thus we can shift j in (84) all the way to make the left- or right-hand part
empty, i.e. we can choose j = 1 or j = n�2. These special cases corresponds
to the manifest S

n�3-symmetric form (88) and its dual form (89), which are
given by

M
n

(1, ..., n) = (�)n+1
X

�,e�2S
n�3

A
n

(1, �2,n�2, n� 1, n)S[e�2,n�2|�2,n�2]p1

eA
n

(n� 1, n, e�2,n�2, 1). (88)

and

M
n

(1, . . . , n) = (�1)n+1
X

�,e�2S
n�3

A
n

(1, �2,n�2, n� 1, n)S[�2,n�2|e�2,n�2]p
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eA
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(1, n� 1, e�2,n�2, n). (89)
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3.3 Review of soft limits of gravity and Yang-Mills the-
ory

In this section, we review the soft behavior of gravity and Yang-Mills theory
given in [49,52]. Since in KLT formula, amplitudes used are these stripped
amplitudes, thus we will focus on the soft behaviors of these amplitudes.

We focus on the four dimensional case, thus we can use spinor variables.
Under these variables, soft factors in (11) and (13) are given by [49] for
gravity theory13

S(0)
GR

= �
n

X

i=1

[s|i] hx|ii hy|ii
hs|ii hx|si hy|si ,

S(1)
GR

= �1

2

n

X

i=1

[s|i]
hs|ii

✓

hx|ii
hx|si +

hy|ii
hy|si

◆

e�↵̇
s

@

@e�↵̇
i

S(2)
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= �1

2

n

X

i=1

[s|i]
hs|ii

e�↵̇
s

e��̇
s

@2

@e�↵̇
i

e��̇
i

, (90)

where x, y are two auxiliary spinors used to define the helicity of soft graviton

✏+2 =

 

�
x

e�
k

hx|ki

! 

�
y

e�
k

hy|ki

!

+ {x $ y} , (91)

and by [52] for Yang-Mills theory14

S(0)
YM

(n, s, 1, ...) =
hn|1i

hn|si hs|1i ,

S(1)
YM

(n, s, 1, ...) =
1

hs|1i
e�
s

@

@e�1
+

1

hn|si
e�
s

@

@e�
n

. (92)

To reach these expressions, we have used the fact that in 4D, angular mo-
mentum can be written as spinor form

J
µ⌫

! J
↵�

✏
↵̇�̇

+ eJ
↵̇�̇

✏
↵�

, J
↵�

= �
↵

@

@��
+ �

�

@

@�↵
,

13
It is worth to emphasize that here we have used the QCD convention, i.e., 2p · q =

hp|qi [q|p].
14
We have assumed the color ordering is (1, ..., n, s).
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eJ
↵̇�̇

= e�
↵̇

@

@e��̇
+ e�

�̇

@

@e�↵̇
. (93)

We will explain the meaning of di↵erential operators for stripped amplitudes
shortly.

For stripped amplitudes, we must impose momentum conservation from
beginning. This can be done as given in [49]. Under the holomorphic soft
limit which is defined as

�
s

! ✏�
s

, e�
s

! e�
s

(94)

momentum conservation
P

n

i=1 ki+✏ks = 0 can be used to solve two arbitrarily

chosen anti-spinors e�
i

, e�
j

as

e�
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= �
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hi|si
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s

(95)

In other words, for stripped amplitudes, now the independent variables are
�
i

( i = 1, ..., n), �
s

, e�
s

and e�
k

(k = 1, ..., n and k 6= i, j). With the fixed choice
of pair (i, j), when we use the BCFW recursion relation to discuss the soft
behavior as was done in [62], for example, for an (n+ 1)-point color-ordered
Yang-Mills amplitude A({✏�

s

, e�
s

}, {�1, e�1}, ..., {�n, e�n}) with h
s

= +1, we
will receive contributions to the singular part from the two-particle channel

A
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|
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⇣
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1s

⌘ 1

P 2
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⌘
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(96)

under the (s, n)-shift

✏�
s

(z) = ✏�
s

+ z�
n

, e�
n

(z) = e�
n

� ze�
s

. (97)

It is easy to calculate the divergent part and we find

�hn|1i
✏2 hn|si hs|1iAn

✓

{�1, e�1 + ✏
hn|si
hn|1i

e�
s

}h1 , ..., {�
i
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i

(✏)}, ... (98)

{�
j

, e�
j

(✏)}, ..., {�
n

, e�
n

+ ✏
h1|si
h1|ni

e�
s

}
◆

(99)

where (95) must be used. A compact way to rewrite above expression is to
assume e�

i

, e�
j

to be independent first, so we have
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(100)

Only after the action of @

@

e
�

i

and @

@

e
�

j

, we can replace e�
i

, e�
j

by (95) with ✏ = 0.

However, if we insist to use (95) from beginning, e�
i

, e�
j

will depend on e�1, e�n
thus the total derivative of d
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e
�1

and d
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e
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Using above formula, it is easy to check that
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,

thus (100) becomes
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e
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e
�1

+ h1|si
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e
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d

d

e
�

nA
n

⇣

{�1, e�1}, . . . , {�j, e�j}, . . . , {�n, e�n}
⌘

�

(102)

Having this new understanding, the meaning of soft factors in (90) and (92)
becomes clear: while there are no variables

e�
i

, e�
j

anymore in stripped ampli-

tudes, all partial derivatives should be considered as a kind of ”total deriva-

tive” in the sense of (101).

3.4 KLT relation approach to the soft behavior of
gravity amplitude

Having above preparations, now we study the soft behavior of stripped grav-
ity amplitudes using the soft behavior of stripped Yang-Mills amplitudes as
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input through KLT relation. The total symmetry among the n-particles of
gravity amplitudes allows us to choose any leg to be soft leg. We take p1 to
be soft and solve n� 1, n as

e�
n�1 = �

n�2
X

k=2

hn|ki
hn|n� 1i

e�
k

� ✏
hn|1i

hn|n� 1i
e�1,
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= �
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X

k=2

hn� 1|ki
hn� 1|ni

e�
k

� ✏
hn� 1|1i
hn� 1|ni

e�1. (103)

The choice of KLT formula: In section 3.3, we have reviewed various
formulations of KLT relation. To make the discussion simpler, we should
start with proper choice of KLT formula. Since the leading contribution
from two gluon amplitudes is the order 1

✏

2 ⇥ 1
✏

2 while the leading contribution
of graviton amplitude is 1

✏

3 , we are better to have manifest ✏-factor from

kernel part. Furthermore, since we have solved e�
n�1, e�n in (103), it is more

convenient to have formula as less related to p
n�1, pn as possible. Taking

these things into consideration, we use the general formula given by (84)
with j = 2

M
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A
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(1, t, �, n� 1, n)S[t|t]
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(t, 1, n� 1, �, n) (104)

In this form, S[t|t]
p1 ! ✏s1t, while the expansion of the other kernel S[�|�]

p

n�1

can be written as15

e
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From the definition of kernel, the ✏-expansion should be given by
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where we have used the fact that
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obtain (105).
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For convenience, we use (92) to write down the singular soft limit of two
stripped amplitudes in (104) as

A(n�1,n)
n

(1, t, �, n� 1, n) ! 1
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eA(n�1,n)
n

(t, 1, n� 1, �, n) ! 1

✏2
ht|n� 1i

ht|1i h1|n� 1i
eA
n

(t, n� 1, �, n)

+
1

✏

ht|n� 1i
ht|1i h1|n� 1i

 

ht|1i
ht|n� 1i

e�1
d

de�
n�1

+
hn� 1|1i
hn� 1|ti

e�1
d

de�
t

!

eA
n

(t, n� 1, �, n). (107)

In the remainder of this section, we discuss the soft behavior of gravity
amplitudes by KLT relations order by order.

3.4.1 The leading order part

Substituting the leading part of color-ordered Yang-Mills amplitudes A, eA
(given by 1

✏

2 terms of (106), (107)) as well as the leading part of momentum
kernel S (given by the ✏ term of S[t|t]

p1S[�|�]pn�1) into the KLT expression
(104), we get the leading part of gravity amplitude under soft limit
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=
1

✏3
S(0)
GR

M
n�1(2, ..., n) (108)

where, on the third line, we have used the S
n�3-symmetric KLT relation (89)

for (n � 1)-point amplitudes. The soft factor of gravity is nothing but the

S(0)
GR

defined in (90) with x = n and y = n� 1.

3.4.2 The subleading order part

Now let us study the subleading order of stripped gravity amplitudes un-
der the soft limit. We will do it in three steps. In the first step, we act
the S(1)

GR

defined in (90) on the KLT expressions (89) of (n � 1)-point grav-
ity amplitudes directly. In the second step, we collect contributions of the
subleading part from color ordered Yang-Mills amplitudes and momentum
kernel in (104). Finally, we compare the two expressions from first two steps

to prove (check) the subleading order soft factor S(1)
GR

of gravity amplitude.

The sub-leading part from direct acting of S(1)
GR

We use the subleading soft factor given by (90)
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where we have taken the gauge choice x = y = n� 1, thus d

d

e
�

n�1
= d

d

e
�

n

= 0.

When acting it with the form (109) on M
n�1, for each i, we take di↵erent

representation of M
n�1

16, i.e.,

16
It is worth to notice that although as a whole, we have the freedom to chose x, y for

S

(1)
GR,(n�1)n, when we act it for di↵erent i and di↵erent part A,

e

A in (110), we need to stick

to a particular gauge choice.
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The sub-leading order part from KLT relation

Now we collect the contributions of the subleading part from the KLT relation
(104). There are three contributions at this order. The first term is to take
kernel to second order of ✏, while A, eA are the first order (see (106) and
(107)). This part is given by
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For the second term, we keep the leading order of kernel and eA while
taking the subleading order of A, thus we have
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where we have used the fact that d

d

e
�

n

A
n�1(t, �, n� 1, n) = 0

For the third term, we keep the leading order of kernel and A while take
the subleading order of eA, thus we have
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where again we have used the fact e�1
d
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(t, n� 1, �, n) = 0.
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Comparing sub-leading parts

Now we compare (110) with T1, T2, T3. It is easy to see when we identify
i = t, we have
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It is obviously that to prove (or check) the subleading soft factor S(1)
GR,(n�1)n,

we need to prove (or check) � = 0. Before going to the detail, let us notice
that in (114) only the anti-spinor part of angular momentum J

t,↵̇�̇

appears.
Now we present the idea of proof. In (114), for each t, we have used

di↵erent BCJ-basis for color ordered partial amplitudes. Thus the first step
is to translate various basis into a standard basis. In other words, we should
do following transformation

A
n�1(t, �t, n� 1, n) =

X

�e
t

2S
n�4

A
n�1(et, �e

t

, n� 1, n)D[et, �e
t

, n� 1, n|t, �
t

, n� 1, n]
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eA
n�1(t, n� 1, �

t

, n) =
X

�e
t

2S
n�4

C[t, n� 1, �
t

, n|et, n� 1, �e
t

, n] eA
n�1(et, n� 1, �e

t

, n).(115)

where we have used the �
t

to denote the permutations of n�4-elements after
deleting particles 1, n, n� 1, t. Inserting above transformation into the extra
term (114), when we choose e.g., et = 2 in above equations, we obtain

(�1)n+1�

=
X

�2,�22Sn�4

e�↵̇1e�
�̇

1 hn|n� 1i
hn� 1|1i hn|1iAn�1(2, �2, n� 1, n)

n�2
X

e
t=2

X

�e
t

,�e
t

2S
n�4

D[2, �2, n� 1, n|et, �e
t

, n� 1, n]S[�e
t

|�e
t

]
p

n�1

Je
t,↵̇�̇

n

C[et, n� 1, �e
t

, n|2, n� 1, �2, n] eAn�1(2, n� 1, �2, n)
o

=
X

�2,�22Sn�4

e�↵̇1e�
�̇

1 hn|n� 1i
hn� 1|1i hn|1iAn�1(2, �2, n� 1, n)

n�2
X

e
t=2

X

�e
t

,�e
t

2S
n�4

D[2, �2, n� 1, n|et, �e
t

, n� 1, n]S[�e
t

|�e
t

]
p

n�1

C[et, n� 1, �e
t

, n|2, n� 1, �2, n]
n

eJe
t,↵̇�̇

A
n�1(2, n� 1, �2, n)

o

+
X

�2,�22Sn�4

e�↵̇1e�
�̇

1 hn|n� 1i
hn� 1|1i hn|1iAn�1(2, �2, n� 1, n)

n�2
X

e
t=2

X

�e
t

,�e
t

2S
n�4

D[2, �2, n� 1, n|et, �e
t

, n� 1, n]S[�e
t

|�e
t

]
p

n�1

�

Je
t,↵̇�̇

C[et, n� 1, �e
t

, n|2, n� 1, �2, n]
 

eA
n�1(2, n� 1, �2, n).(116)

For the first term in (116), if we have the following identity
X

�e
t

,�e
t

2S
n�4

D[t, �
t

, n� 1, n|et, �e
t

, n� 1, n]S[�e
t

|�e
t

]
p

n�1C[et, n� 1, �e
t

, n|t, n� 1, �
t

, n] = S[�
t

|�
t

]
p

n�1 ,(117)

the first term can be simplified as

X

�2,�22Sn�4

e�↵̇1e�
�̇

1 hn|n� 1i
hn� 1|1i hn|1iAn�1(2, �2, n� 1, n)

n�2
X

e
t=2

S[�2|�2]p
n�1

n

Je
t,↵̇�̇

eA
n�1(2, n� 1, �2, n)

o
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=
X

�2,�22Sn�4

e�↵̇1e�
�̇

1 hn|n� 1i
hn� 1|1i hn|1iAn�1(2, �2, n� 1, n)S[�2|�2]p

n�1

⇥

8

<

:

2

4

n�2
X

e
t=2

Je
t,↵̇�̇

3

5

eA
n�1(2, n� 1, �2, n)

9

=

;

= 0,

where we have used angular momentum conservation

e�↵̇1e�
�̇

1

8

<

:

n�2
X

e
t=2

Je
t,↵̇�̇

9

=

;

n

eA
n�1(2, n� 1, �2, n)

o

= e�↵̇1e�
�̇

1

8

<

:

n

X

e
t=2

Je
t,↵̇�̇

9

=

;

n

eA
n�1(2, n� 1, �2, n)

o

= (�e�↵̇1e��̇1Je
t=1,↵̇�̇)

n

eA
n�1(2, n� 1, �2, n)

o

= 0 . (118)

For the second term in (116), if we have the following identity

0 =
n�2
X

e
t=2

X

�e
t

,�e
t

2S
n�4

D[t, �
t

, n� 1, n|et, �e
t

, n� 1, n]S[�e
t

|�e
t

]
p

n�1Je
t,↵̇�̇

�

C[et, n� 1, �e
t

, n|t, n� 1, �
t

, n]
 

, (119)

for arbitrary t 2 {2, 3, ..., n�2} and related {�
t

, �
t

}, the contribution vanishes
also.

Identities (117) and (119) are the consistency requirement of the new soft
graviton theorem and the old KLT formula. While the first identity can be
understood from the changing of the basis (we will discuss it shortly), the
second identity is very nontrivial. Currently, we do not have an analytic proof
for them although in our few examples, we have checked them explicitly. We
believe the knowledge of these two identities will tell us some important
aspects of momentum kernel S[↵|�].

Now we present the physical understanding of the first identity (117).
Noticing that we have many (n� 3)! symmetry KLT forms. They are equiv-
alent to each other, but it is hard to see that from the angle of BCJ relation
for color-ordered Yang-Mills theory. In other words, we have
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M
n�1 =

X

�

t

,�

t

2S
n�4

A
n�1(t, �t, n� 1, n)S[�

t

|�
t

]
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n�1
eA
n�1(t, n� 1, �
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=
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t

2S
n�4

A
n�1(et, �e
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, n� 1, n)S[�e
t

|�e
t

]
p

n�1
eA
n�1(et, n� 1, �e

t

, n) (120)

where �
t

, �
t

is the set of removing element t from {2, 3, ..., n� 2}. Plugging
the transformation of basis (115) back, we have

X

�e
t

,�e
t

2S
n�4

A
n�1(et, �e

t

, n� 1, n)S[�e
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t

, n� 1, n]
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=
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]
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t
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t
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=
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t
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t

, n� 1, n]S[�e
t
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]
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n�1C[et, n� 1, �e
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, n]
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=

;

eA
n�1(t, n� 1, �

t

, n) (121)

Because the independence of the BCJ basis, we should obtain the identity
(117).

3.4.3 The sub-sub-leading part from KLT relation

Now we consider the sub-sub-leading order. From the KLT formula, we have

(✏�2A
L,0 + ✏�1A

L,1 + ✏0A
L,2 + ..)(✏S0 + ✏2S1 + ✏3S2 + ...)

(✏�2A
R,0 + ✏�1A

R,1 + ✏0A
R,2 + ..)

= ✏�3A
L,0S0AR,0 + ✏�2(A

L,1S0AR,0 + A
L,0S1AR,0 + A

L,0S0AR,1)

+ ✏�1(A
L,2S0AR,0 + A

L,0S2AR,0 + A
L,0S0AR,2 + A

L,1S1AR,0 + A
L,0S1AR,1 + A

L,1S0AR,1) + ...(122)
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Thus we see that to use this formula to study the sub-sub-leading singularity,
we need to get the information of ✏0A

L,2, which does not have the universal
structure and has not been fully discussed.

3.5 Examples

Having the general frame in previous section, we will present a few examples
to demonstrate our ideas. In this section, we will give examples of n = 5, 6
while the more complicated example of n = 7 will be given in the Appendix.

3.5.1 The case n = 5

Following our convention, in the stripped amplitude, �̃4 and �̃5 should be
replaced by

�̃4 = �
X

k=2,3

h5|ki
h5|4i �̃k � ✏

h5|1i
h5|4i �̃1, �̃5 = �

X

k=2,3

h4|ki
h4|5i �̃k � ✏

h4|1i
h4|5i �̃1. (123)

In particular that d

d�̃

�̇

4

Ã = d

d�̃

�̇

5

Ã = 0, and therefore J4↵̇�̇Ã = J5↵̇�̇Ã = 0. At

5-points it is relatively straightforward to write down all of the terms in �
as

�
n=5 =

e�↵̇1e�
�̇

1 h5|4i
h4|1i h5|1i

n

A4(2, 3, 4, 5)S[3|3]p4
⇣

J2,↵̇�̇
eA4(2, 4, 3, 5)

⌘

+A4(3, 2, 4, 5)S[2|2]p4
⇣

J3,↵̇�̇
eA4(3, 4, 2, 5)

⌘o

=
e�↵̇1e�

�̇

1 h5|4i
h4|1i h5|1i

n

A4(2, 3, 4, 5)s34
⇣

J2,↵̇�̇
eA4(2, 4, 3, 5)

⌘

A4(3, 2, 4, 5)s24
⇣

J3,↵̇�̇
eA4(3, 4, 2, 5)

⌘o

(124)

Now we do the changing of basis, i.e., using the BCJ relation to write

A4(3, 2, 4, 5) =
s34
s24

A4(2, 3, 4, 5)

Ã4(3, 4, 2, 5) = (�)4Ã4(5, 2, 4, 3) = Ã4(2, 4, 3, 5) (125)

Plugging them back we get

�
n=5 =

e�↵̇1e�
�̇

1 h5|4i
h4|1i h5|1iA4(3, 2, 4, 5)s2b4

n

�

J3,↵̇�̇ + J2,↵̇�̇
�

eA4(3, 4, 2, 5)
o

= 0 (126)
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by angular momentum conservation
P5

i=2 Ji
eA = 0 (where J4 eA = J5 eA = 0

has been used). For this case, two identities (117) and (119) are trivial to
check.

3.5.2 The case n = 6

For n = 6 the di↵erence term �
n=6 splits into three parts: t = 2, 3 and 4,

�
n=6 = �t=2

n=6 +�
t=3
n=6 +�

t=4
n=6 (127)

where we have solved

�̃5 = �
X

k=2,3,4

h6|ki
h6|5i �̃k � ✏

h6|1i
h6|5i �̃1,

�̃6 = �
X

k=2,3,4

h5|ki
h5|6i �̃k � ✏

h5|1i
h5|6i �̃1. (128)

For simplicity in the following discussion we suppress a common factor

(�)n+1 hn|n�1i
hn�1|1ihn|1i �̃

↵̇

1 �̃
�̇

1 from the di↵erence terms, thus we can write

�t=2
n=6 = A5(2, 3, 4, 5, 6)S[3, 4|3, 4]p5(J2 eA5(2, 5, 3, 4, 6))

+ A5(2, 3, 4, 5, 6)S[3, 4|4, 3]p5(J2 eA5(2, 5, 4, 3, 6))

+ A5(2, 4, 3, 5, 6)S[4, 3|3, 4]p5(J2 eA5(2, 5, 3, 4, 6))

+ A5(2, 4, 3, 5, 6)S[4, 3|4, 3]p5(J2 eA5(2, 5, 4, 3, 6))

�t=3
n=6 = A5(3, 2, 4, 5, 6)S[2, 4|2, 4]p5(J3 eA5(3, 5, 2, 4, 6))

+ A5(3, 2, 4, 5, 6)S[2, 4|4, 2]p5(J3 eA5(3, 5, 4, 2, 6))

+ A5(3, 4, 2, 5, 6)S[4, 2|2, 4]p5(J3 eA5(3, 5, 2, 4, 6))

+ A5(3, 4, 2, 5, 6)S[4, 2|4, 2]p5(J3 eA5(3, 5, 4, 2, 6))

�t=4
n=6 = A5(4, 2, 3, 5, 6)S[2, 3|2, 3]p5(J4 eA5(4, 5, 2, 3, 6))

+ A5(4, 2, 3, 5, 6)S[2, 3|3, 2]p5(J4 eA5(4, 5, 3, 2, 6))

+ A5(4, 3, 2, 5, 6)S[3, 2|2, 3]p5(J4 eA5(4, 5, 2, 3, 6))

+ A5(4, 3, 2, 5, 6)S[3, 2|3, 2]p5(J4 eA5(4, 5, 3, 2, 6)) (129)

Now we translate all amplitudesA into the basis {A(6, 2, 4, 3, 5), A(6, 2, 3, 4, 5)}

A5(6, 4, 2, 3, 5) =
(s43 + s45)A5(6, 2, 4, 3, 5) + s45A5(6, 2, 3, 4, 5)

s46
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A5(6, 3, 2, 4, 5) =
(s34 + s35)A5(6, 2, 3, 4, 5) + s35A5(6, 2, 4, 3, 5)

s36

A5(6, 4, 3, 2, 5) =
�s24s35A5(6, 2, 4, 3, 5)� s45(s25 + s23)A5(6, 2, 3, 4, 5)

s46s25

A5(6, 3, 4, 2, 5) =
�s23s45A5(6, 2, 3, 4, 5)� s35(s25 + s24)A5(6, 2, 4, 3, 5)

s36s25
(130)

and all amplitudes eA5 into the basis { eA5(2, 5, 3, 4, 6), eA5(2, 5, 4, 3, 6)}

eA5(3, 5, 2, 4, 6) =
� eA5(2, 5, 3, 4, 6)(s45 + s43)� eA5(2, 5, 4, 3, 6)s45

s24

eA5(4, 5, 2, 3, 6) =
� eA5(2, 5, 4, 3, 6)(s35 + s43)� eA5(2, 5, 3, 4, 6)s35

s23

eA5(3, 5, 4, 2, 6)) =
�(s43 + s46) eA5(2, 5, 4, 3, 6)� s46 eA5(2, 5, 3, 4, 6)

s24

eA5(4, 5, 3, 2, 6)) =
�(s43 + s36) eA5(2, 5, 3, 4, 6)� s36 eA5(2, 5, 4, 3, 6)

s23
(131)

Putting it back with some calculation we have

�t=3
n=6 = A5(2, 3, 4, 5, 6)

(

�s45(s23 + s25)(J3,↵̇�̇
� eA5(2, 5, 3, 4, 6)(s45 + s43)� eA5(2, 5, 4, 3, 6)s45

s24
)

+s45s26(J3,↵̇�̇
�(s43 + s46) eA5(2, 5, 4, 3, 6)� s46 eA5(2, 5, 3, 4, 6)

s24
)

)

+ A5(2, 4, 3, 5, 6)
(

�s35s24(J3,↵̇�̇
� eA5(2, 5, 3, 4, 6)(s45 + s43)� eA5(2, 5, 4, 3, 6)s45

s24
)

)

(132)

Further simplification by using ( notice that J3,↵̇�̇s24 = 0)

(s23 + s25)(J3,↵̇�̇(s45 + s43))� s26(J3,↵̇�̇s46) = s24(J3,↵̇�̇s46)

(s23 + s25)(J3,↵̇�̇s45)� s26(J3,↵̇�̇(s43 + s46)) = �s24(J3,↵̇�̇s45) (133)

leads

�t=3
n=6 = A5(2, 3, 4, 5, 6)
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n

S[3, 4|3, 4]
p5(J3,↵̇�̇ eA5(2, 5, 3, 4, 6)) + S[3, 4|4, 3]

p5(J3,↵̇�̇ eA5(2, 5, 4, 3, 6))

+s45(J3,↵̇�̇s46) eA5(2, 5, 3, 4, 6)� s45 eA5(2, 5, 4, 3, 6)(J3,↵̇�̇s45)
o

+ A5(2, 4, 3, 5, 6)
n

S[4, 3|3, 4]
p5(J3,↵̇�̇ eA5(2, 5, 3, 4, 6)) + S[4, 3|4, 3]

p5(J3,↵̇�̇ eA5(2, 5, 4, 3, 6))

�s35 eA5(2, 5, 3, 4, 6)(J3,↵̇�̇s46) + s35 eA5(2, 5, 4, 3, 6)(J3,↵̇�̇s45)
o

(134)

Notice that part of them (i.e., the part with J acting only on eA) is exactly
the same as �t=2

n=6 except the J2,↵̇�̇ is replaced by J3,↵̇�̇. It is nothing, but the

explicit checking the identity (117) with t = 2,et = 3.
Doing similar calculation we found

�t=4
n=6 = A5(2, 3, 4, 5, 6)

n

S[3, 4|3, 4]
p5(J4,↵̇�̇ eA5(2, 5, 3, 4, 6))

+S[3, 4|4, 3]
p5(J4,↵̇�̇ eA5(2, 5, 4, 3, 6))

+s45(J4,↵̇�̇s35) eA5(2, 5, 3, 4, 6)

+s45 eA5(2, 5, 4, 3, 6)(J4,↵̇�̇(s34 + s35))
o

+ A5(2, 4, 3, 5, 6)
n

S[4, 3|3, 4]
p5(J4,↵̇�̇ eA5(2, 5, 3, 4, 6))

+S[4, 3|4, 3]
p5(J4,↵̇�̇ eA5(2, 5, 4, 3, 6))

�s35 eA5(2, 5, 3, 4, 6)(J4,↵̇�̇s35)

+s35 eA5(2, 5, 4, 3, 6)(J4,↵̇�̇s36)
o

(135)

where again the identity (117) with t = 2,et = 4 has been checked. Thus when
we sum up three terms �t=2

n=6,�
t=3
n=6,�

t=4
n=6, the part with J acting directly on

eA vanishes by angular momentum conservation and we are left with

R = A5(2, 3, 4, 5, 6)
n

+s45(J3,↵̇�̇s46) eA5(2, 5, 3, 4, 6)� s45 eA5(2, 5, 4, 3, 6)(J3,↵̇�̇s45)

+s45(J4,↵̇�̇s35) eA5(2, 5, 3, 4, 6)� s45 eA5(2, 5, 4, 3, 6)(J4,↵̇�̇s36)
o

+ A5(2, 4, 3, 5, 6)
n

�s35 eA5(2, 5, 3, 4, 6)(J3,↵̇�̇s46) + s35 eA5(2, 5, 4, 3, 6)(J3,↵̇�̇s45)

�s35 eA5(2, 5, 3, 4, 6)(J4,↵̇�̇s35) + s35 eA5(2, 5, 4, 3, 6)(J4,↵̇�̇s36)
o

(136)
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where J acts only on s
ij

. Using

J3,↵̇�̇si5 = �h5|ii h6|3ih6|5i
e�3,↵̇e�

i,�̇

,

J3,↵̇�̇si6 = �h6|ii h5|3ih5|6i
e�3,↵̇e�

i,�̇

,

J3,↵̇�̇si3 = + h3|ii e�3,↵̇e�
i,�̇

, i = 2, 4

J4,↵̇�̇si5 = �h5|ii h6|4ih6|5i
e�4,↵̇e�

i,�̇

,

J4,↵̇�̇si6 = �h6|ii h5|4ih5|6i
e�4,↵̇e�

i,�̇

,

J4,↵̇�̇si4 = + h4|ii e�4,↵̇e�
i,�̇

, i = 2, 3

we see immediately that R = 0. In other words, we have explicitly checked
the second identity (119) for the special case.

3.6 Conclusion

In this paper, we studied the new soft graviton theorem from the angle of
KLT relation. We have demonstrated that how the new soft gluon theorem
are glued together by KLT formula to produce the corresponding soft theorem
for gravity. In the process, two important identities (117) and (119) has been
observed.

There are a lot of open questions deserve to be investigated. First, the two
identities need an analytic proof. Secondly, the sub-sub-leading soft factor
in KLT relation should be understood. Although at this order, contributions
from non-universal soft part of color ordered Yang-Mills amplitudes appear,
we guess that their e↵ects will be canceled out by nice property of momentum
kernel S. It will be fascinating to see how it happens. Thirdly, in this paper,
we have focused on the 4D, it will be interesting to discuss it in general
dimension since KLT formula holds in general dimension. Finally, there
are also other general formulas for gravity amplitudes (such as these given
in [75–77] ) and it will be nice to see how the new soft graviton theorem
makes its appearance.
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A Example with n = 7

In this appendix we verify that identities (117) and (119) are holding at
n = 7. Our strategy used in previous examples applies to 7-points, although
the complexity involved increases considerably. As in the previous examples,
we choose to work in a convenient minimum basis Ã(2, 6, �2, 7), A(2, �2, 6, 7)
(Here we use A instead of A6 for short), i.e., do the following transformation
with t = 3, 4, 5:

Ã(t, 6, �
t

, 7) =
X

�

t

2S3

C [t, 6, �
t

, 7|2, 6, �2, 7] Ã(2, 6, �2, 7), (137)

A(t, �
t

, 6, 7) =
X

�

t

2S3

A(2, �2, 6, 7)D [2, �2, 6, 7|t, �, 6, 7] .

Our task then amounts to showing that, for both identities, terms associated
with each independent product of basis amplitudes AÃ match accordingly for
both sides of the equations (117) and (119). In the discussion below we focus
on terms containing Ã(2, 6, 3, 4, 5, 7), namely when �2 = {3, 4, 5}. The rest
of the coe�cients follow similar argument up to permutations of {3, 4, 5}. In
principle it is straightforward to work out all translation coe�cients C, D and
check if the identities are holding. However we can perform the calculation
in a slightly more organized manner. In particular note that common factors
are quite often shared between di↵erent translation coe�cients.

For the purpose of demonstration let us consider translating a specific
amplitude Ã(3, 6, 2, 4, 5, 7) into minimum basis. This can be done by first
expressing the amplitude in the Ã(2, . . . , 7) Kleiss-Klein (KK) basis that
fixes legs 2 and 7 at both ends, and then subsequently translating to the
Ã(2, 6, . . . , 7) minimum basis of interest where legs 6 and 2 are adjacent:

Ã(3, 6, 2, 4, 5, 7) = Ã(2, 4, 5, 6, 3, 7) + Ã(2, 4, 6, 5, 3, 7) + Ã(2, 4, 6, 3, 5, 7) (138)

+Ã(2, 6, 4, 5, 3, 7) + Ã(2, 6, 4, 3, 5, 7) + Ã(2, 6, 3, 4, 5, 7)

=

✓

1� (s42 + s46 + s43)

s42
+ E [45, 3|345]

◆

Ã(2, 6, 3, 4, 5, 7)

+ . . .
⇣

terms not contributing to Ã(2, 6, 3, 4, 5, 7)
⌘

,

where in the third line we used BCJ relation to remove the ill-favored leg 4
between 2 and 6 in the next to adjacent amplitude Ã(2, 4, 6, 5, 3, 7), and we
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introduced the shorthand notation E [45, 3|345] to denote the next-to-next-to
adjacent expansion coe�cient,

Ã(2, {4, 5}, 6, {3}, 7) =
X

�

E [45, 3|�] Ã(2, 6, �, 7). (139)

The coe�cient E [45, 3|345] can be determined from simultaneous equations
consisting of BCJ relations, yielding

E [45, 3|345] =
(�1)

s42s52 � (s42 + s45)(s52 + s54)
(140)

[�(s42 + s45 + s46 + s43)(s52 + s56 + s53 + s54)

+
(s42 + s45)(s52 + s54 + s56 + s53)(s42 + s46 + s43)

s42

�

.

All translation coe�cients can be determined via similar procedures. Explic-
itly we have, for the t = 3 sector,

C [3, 6, 2, 4, 5, 7|2, 6, 3, 4, 5, 7] = 1� (s42 + s46 + s43)

s42
+ E [45, 3] (141)

C [3, 6, 2, 5, 4, 7|2, 6, 3, 4, 5, 7] = � (s52 + s56 + s53 + s54)

s52
+ E [54, 3]

C [3, 6, 4, 2, 5, 7|2, 6, 3, 4, 5, 7] =
(s42 + s46 + s43)

s42
� E [45, 3]� E [54, 3]

C [3, 6, 4, 5, 2, 7|2, 6, 3, 4, 5, 7] = E [54, 3]

C [3, 6, 5, 2, 4, 7|2, 6, 3, 4, 5, 7] =
(s52 + s56 + s53 + s54)

s52
� E [45, 3]� E [54, 3]

C [3, 6, 5, 4, 2, 7|2, 6, 3, 4, 5, 7] = E [45, 3] . (142)

For t = 4 we have

C [4, 6, 2, 3, 5, 7|2, 6, 3, 4, 5, 7] = 1� (s32 + s36)

s32
+ E [35, 4] (143)

C [4, 6, 2, 5, 3, 7|2, 6, 3, 4, 5, 7] = � (s52 + s56 + s53 + s54)

s52
+ E [53, 4]

C [4, 6, 3, 2, 5, 7|2, 6, 3, 4, 5, 7] =
(s32 + s36)

s32
� E [35, 4]� E [53, 4]

C [4, 6, 3, 5, 2, 7|2, 6, 3, 4, 5, 7] = E [53, 4]
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C [4, 6, 5, 2, 3, 7|2, 6, 3, 4, 5, 7] =
(s52 + s56 + s53 + s54)

s52
� E [35, 4]� E [53, 4]

C [4, 6, 5, 3, 2, 7|2, 6, 3, 4, 5, 7] = E [35, 4] ,

and similarly for t = 5,

C [5, 6, 2, 3, 4, 7|2, 6, 3, 4, 5, 7] = 1� (s32 + s36)

s32
+ E [34, 5] (144)

C [5, 6, 2, 4, 3, 7|2, 6, 3, 4, 5, 7] = � (s42 + s46 + s43)

s42
+ E [43, 5]

C [5, 6, 3, 2, 4, 7|2, 6, 3, 4, 5, 7] =
(s32 + s36)

s32
� E [34, 5]� E [43, 5] (145)

C [5, 6, 3, 4, 2, 7|2, 6, 3, 4, 5, 7] = E [43, 5] (146)

C [5, 6, 4, 2, 3, 7|2, 6, 3, 4, 5, 7] =
(s42 + s46 + s43)

s42
� E [34, 5]� E [43, 5](147)

C [5, 6, 4, 3, 2, 7|2, 6, 3, 4, 5, 7] = E [34, 5] , (148)

whereas the next-to-next-to adjacent expansion coe�cients are given by

E [54, 3] =
(�1)

s52s42 � (s52 + s54)(s42 + s45)
(149)

[�(s52 + s54 + s56 + s53)(s42 + s46 + s43)

+
(s52 + s54)(s42 + s45 + s46 + s43)(s52 + s56 + s53 + s54)

s52

�

E [35, 4] =
(�1)

s32s52 � (s32 + s35)(s52 + s53)
(150)

[�(s32 + s35 + s36)(s52 + s56 + s53 + s54)

+
(s32 + s35)(s52 + s53 + s56 + s54)(s32 + s36)

s32

�

E [53, 4] =
(�1)

s52s32 � (s52 + s53)(s32 + s35)
(151)

[�(s52 + s53 + s56 + s54)(s32 + s36) (152)

+
(s52 + s53)(s32 + s35 + s36)(s52 + s56 + s53 + s54)

s52

�

E [34, 5] =
(�1)

s32s42 � (s32 + s34)(s42 + s43)
(153)

[�(s32 + s34 + s36)(s42 + s46 + s43)
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+
(s32 + s34)(s42 + s43 + s46)(s32 + s36)

s32

�

E [43, 5] =
(�1)

s42s32 � (s42 + s43)(s32 + s34)
(154)

[�(s42 + s43 + s46)(s32 + s36)

+
(s42 + s43)(s32 + s34 + s36)(s42 + s46 + s43)

s42

�

Identity (117)

Let us first verify identity (117) for the case when �2 = {345}, or equivalently
that
X

�

t̃

,�

t̃

A(t̃, �
t̃

, 67)S [�
t̃

|�
t̃

] C
⇥

t̃, 6, �
t̃

, 7
⇤

=
X

�22perm{345}
A(2, �2, 67)S [�2|345]6

(155)
for each t̃. To keep the derivation simple we introduce the following shorthand
notation for repeatedly occurring factors

T
t̃

(�
t̃

) =
X

�

t̃

A(t̃, �
t̃

, 67)S [�
t̃

|�
t̃

] . (156)

so that for example when t̃ = 5, equation (155) reads
X

�52perm{234}
T5(�5)C [5, 6, �5, 7] = T2(345). (157)

Substituting the explicit expressions for translation coe�cients Cs, the left
hand side of the above equation becomes

T5(234) + (�T5(234) + T5(324))
s32 + s36

s32
(158)

+ (�T5(243) + T5(423))
s42 + S46 + s43

s42
+(T5(234)� T5(324)� T5(423) + T5(432))E[34, 5]

+ (T5(243)� T5(324) + T5(342)� T5(423))E[43, 5].

With a little bit more e↵ort, we find that the left hand side of (157) boils
down to the following linear combination of amplitudes.

�s36s46(s56 + s54 + s53 + s52)A(523467) (159)
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�s36(s34 + s46)(s56 + s54 + s53 + s52)A(524367).

On the other hand the right hand side of (157) reads

T2(345) = s36s46s56A(234567) + s36s46(s46 + s56)A(235467)

+s36s46(s53 + s54 + s56)A(253467) + s36(s43 + s46)s56A(243567)

+s36(s43 + s46)(s56 + s53)A(245367)

+s36(s43 + s46)(s53 + s54 + s56)A(254367), (160)

We see that the first line of (159) matches the sum of the first three terms
of equation (160), and similarly the second line of (159) matches the sum of
the last three terms of (160) because of BCJ relation, thereby proving the
identity (157). The situations when t̃ = 3 and 4 can be proved in a likewise
manner.

Identity (119)

At 7-points the di↵erence term �
n=7 splits into four parts, �

n=7 =
P

t=2,3,4,5 �
t

n=7, where

�t

n=7 =
X

�,�2S3

A(t, �, 6, 7)S[�|�]6JtÃ(t, 6, �, 7) (161)

Substituting the above expressions into equation (161) and collecting terms,
we find as in the previous examples that terms where angular momentum
operate on basis amplitudes Ã add up to zero because of angular momentum
conservation

P

t

J
t

Ã(2, 6, 3, 4, 5, 7) = 0, leaving us with the collection of
terms that J

t

operate on expansion coe�cients C, which are functions of
kinematic variables. Contributions from the three respective sectors are given
by
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�
t=3 = (�T3(245) + T3(425)) J3

✓

s42 + s46 + s43
s42

◆

+(�T3(254) + T3(524)) J3

✓

s52 + s56 + s53 + s54
s52

◆

+(T3(245)� T3(425)� T3(524) + T3(542)) J3 (E [45, 3])

+ (T3(254)� T3(425) + T3(452)� T3(524)) J3 (E [54, 3]) ,(162)

�
t=4 = (�T3(235) + T3(325)) J3

✓

s32 + s36
s32

◆

+(�T3(253) + T3(523)) J3

✓

s52 + s56 + s53 + s54
s52

◆

+(T3(235)� T3(325)� T3(523) + T3(532)) J3 (E [35, 4])

+ (T3(253)� T3(325) + T3(4352)� T3(523)) J3 (E [53, 4]) ,(163)

�
t=5 = (�T3(234) + T3(324)) J3

✓

s32 + s36
s32

◆

+(�T3(243) + T3(423)) J3

✓

s42 + s46 + s43
s42

◆

+(T3(234)� T3(324)� T3(423) + T3(432)) J3 (E [34, 5])

+ (T3(243)� T3(324) + T3(342)� T3(423)) J3 (E [43, 5]) ,(164)

Generically the operation of J
t

on kinematic variables must fall into one
of the following categories:

• t = 3,

J3 ↵̇�̇si6 = �̃3 (↵̇�̃
i �̇)(�)

hi6i h73i
h76i , i = 2, 4, 5 (165)

J3 ↵̇�̇si7 = �̃3 (↵̇�̃
i �̇)(�)

hi7i h63i
h67i

J3 ↵̇�̇si3 = �̃3 (↵̇�̃
i �̇) hi3i (166)

J3 ↵̇�̇si i0 = 0, i, i
0
= 2, 4, 5
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• t = 4,

J4 ↵̇�̇si6 = �̃4 (↵̇�̃
i �̇)(�)

hi6i h74i
h76i , i = 3, 4, 5 (167)

J4 ↵̇�̇si7 = �̃4 (↵̇�̃
i �̇)(�)

hi7i h64i
h67i

J4 ↵̇�̇si4 = �̃4 (↵̇�̃
i �̇) hi4i

J4 ↵̇�̇si i0 = 0, i, i
0
= 3, 4, 5

• t = 5,

J5 ↵̇�̇si6 = �̃5 (↵̇�̃
i �̇)(�)

hi6i h75i
h76i , i = 2, 4, 5 (168)

J5 ↵̇�̇si7 = �̃5 (↵̇�̃
i �̇)(�)

hi7i h65i
h67i

J5 ↵̇�̇si3 = �̃5 (↵̇�̃
i �̇) hi5i

J5 ↵̇�̇si i0 = 0, i, i
0
= 2, 4, 5

Suppose if we are interested in checking terms carrying �̃3 (↵̇�̃4 �̇). Before
we commence an explicit calculation, note that because all of the Cs do not
depend explicitly on leg 7, from the list above such a term can only be
produced through J3(s46), J3(s43), J4(s36), J4(s34), which allows us to ignore
the t = 5 sector entirely. Additionally since s34 happen to be absent from
the t = 4 translation coe�cient Cs, this leaves only J3(s46), J3(s43), J4(s36).
Considering the explicit forms given by equations (165), (166) and (167) we
further note that (again) because of the absence of the leg 7 dependence in all
Cs, the contributions from J3(s46), J3(s43), J4(s36) together can only cancel
through Jacobi identity h43i+ h73ih64i

h76i + h74ih36i
h76i = 0. For that to happen, the

contribution associated with J3(s46), J3(s43), J4(s36) must be exactly in the
ratio 1 : 1 : �1, in other words they must add up to

J3(s46)X + J3(s43)X + J4(s36)(�X) = 0 (169)

for some factor X. In the following discussion we shall see that indeed this
is the case.

First we note that it is relatively easy to confirm that the ratio between
the contributions from J3(s46) and J3(s43) is1 : 1. This can be seen by
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observing that the kinematic factors s46 and s43 always show up together
through the combination s46 + s43 in all of the translation coe�cients C in
the t = 3 sector (see equations from (141) to (142) as well as (162)). The only
part of the argument that requires explicit calculation is the ratio between
J3(s46) and J4(s36). For the purpose of discussion let us tentatively call them
respectively as X and Y . From equation (162) and the definition of E [45, 3]
and E [54, 3], the contribution associated with J3(s46) reads

X =
1

s42s52(s45 + s42 + s52)
[s52(s45 + s42 + s52) (�T3(245) + T3(425))

+s52(s52 + s56 + s53 + s54) (T3(245)� T3(425)� T3(524) + T3(542))

+s42(s52 + s56 + s53 + s54) (T3(254)� T3(425) + T3(452)� T3(524))]

= [s36s56A (4, 2, 3, 5, 6, 7) + s36 (s35 + s56)A (4, 2, 5, 3, 6, 7)

�s56 (s25 + s26 + s56 + s35 + s45)A (4, 3, 2, 5, 6, 7)

+s26 (s35 + s45)A (4, 3, 5, 2, 6, 7)

�s36s45A (4, 5, 2, 3, 6, 7) +s26s45A (4, 5, 3, 2, 6, 7)] (170)

and similarly,

Y =
1

s32s52(s52 + s32 + s35)
[s52(s52 + s32 + s35) (�T4(235) + T4(325))

+s32(s52 + s53 + s54 + s56) (T4(253)� T4(325) + T4(352)� T4(523))

+s52(s52 + s53 + s54 + s56) (T4(235)� T4(325)� T4(523) + T4(532))]

= [s36s56A (4, 2, 3, 5, 6, 7) + s36 (s35 + s56)A (4, 2, 5, 3, 6, 7)

�s56 (s25 + s26 + s56 + s35 + s45)A (4, 3, 2, 5, 6, 7)

+s26 (s35 + s45)A (4, 3, 5, 2, 6, 7)

�s36s45A (4, 5, 2, 3, 6, 7) +s26s45A (4, 5, 3, 2, 6, 7)] (171)

Now that we have the explicit formulas of the J3(s46) and J4(s36) term
contributions, it is evident from (170) and (171) that they are related by
an exchange of legs 3 and 4, Y = X|3$4. Therefore to prove X = �Y
it su�ces to show that Y is antisymmetric with respect to indices 3 and
4. This antisymmetric structure will become manifest after some nontrivial
manipulations, which we perform in the following.

First of all note that BCJ relation allows us to write
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s36s56A (4, 2, 3, 5, 6, 7) + s36 (s35 + s56)A (4, 2, 5, 3, 6, 7)

= �s36 (s52 + s53 + s56)A (4, 5, 2, 3, 6, 7)

�s36 (s52 + s53 + s56 + s54)A (4, 2, 3, 6, 7, 5) (172)

and

s26 (s35 + s45)A (4, 3, 5, 2, 6, 7) + s26s45A (4, 5, 3, 2, 6, 7)

= �s26 (s35 + s45 + s25)A (4, 3, 2, 5, 6, 7)

�s26 (s35 + s45 + s25 + s65)A (4, 3, 2, 6, 5, 7) . (173)

Plugging the above two identities into the expression for Y , we have

Y = �s36 (s52 + s53 + s56 + s54) [A (4, 5, 2, 3, 6, 7) + A (4, 2, 3, 6, 7, 5)]

� [s26 (s35 + s45 + s25) + s56 (s25 + s26 + s56 + s35 + s45)]A (4, 3, 2, 5, 6, 7)

�s26 (s35 + s45 + s25 + s65)A (4, 3, 2, 6, 5, 7)

= � (s52 + s53 + s56 + s54)

⇥ [s36A (4, 5, 2, 3, 6, 7) + s36A (4, 2, 3, 6, 7, 5) + (s26 + s56)A (4, 3, 2, 5, 6, 7)

+s26A (4, 3, 2, 6, 5, 7)]

= s57 [s36A (4, 5, 2, 3, 6, 7) + s36A (4, 2, 3, 6, 7, 5) + (s26 + s56)A (4, 3, 2, 5, 6, 7)

+s26A (4, 3, 2, 6, 5, 7)]

(174)

Further using BCJ relation identifies the sum of last two terms above with

(s26 + s56)A (4, 3, 2, 5, 6, 7) + s26A (4, 3, 2, 6, 5, 7)

= � (s26 + s56 + s76)A (4, 3, 2, 5, 7, 6)� (s26 + s56 + s76 + s46)A (4, 6, 3, 2, 5, 7)

= (s36 + s46)A (4, 3, 2, 5, 7, 6) + s36A (4, 6, 3, 2, 5, 7) (175)

Therefore Y simplifies as

Y = s57s36 [A (4, 5, 2, 3, 6, 7) + A (4, 2, 3, 6, 7, 5) + A (4, 3, 2, 5, 7, 6) + A (4, 6, 3, 2, 5, 7)]

+s57s46A (4, 3, 2, 5, 7, 6)

= s57 [s46A (4, 3, 2, 5, 7, 6)� s36A (3, 4, 2, 5, 7, 6)] (176)

where we used U(1) decoupling identity to substitute the summation in the
first line with a single amplitude. The final simplified formula of Y is mani-
festly antisymmetric under the exchange of indices 3 and 4, and we conclude
that X + Y = 0 as claimed.
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