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Recent studies of holographic properties of massless higher-order gravities, whose linear spectrum
contains only the (massless) graviton, yielded some universal relations in d ¼ 4 dimensions between the
holographic a and c charges and the overall coefficient factor CT of the energy-momentum tensor two-point
function, namely, c ¼ 1

d−1l
∂a
∂l ¼ CT , where l is the anti–de Sitter radius. The second equality was shown to

be valid in all dimensions. In this paper, we establish the first equality in d ¼ 6 by examining
these quantities from D ¼ 7 higher-order gravities. Consequently, the overall coefficient of the
two-point function of the energy-momentum tensor is proportional to this c charge, generalizing the
well-known d ¼ 4 result. We identify the relevant c charge as the coefficient of a specific combination
of the three type-B anomalies. Modulo total derivatives, this combination involves the Riemann tensor at
most linearly.

DOI: 10.1103/PhysRevD.99.126003

I. INTRODUCTION

Owing to the enlarged global symmetry, conformal field
theories (CFTs) are much simpler than the general quantum
field theories and many tantalizing features have attracted
considerable attention. The subject hasbeen further drivenby
the advancement of the powerful AdS/CFT correspondence,
whichmayprovide a newwindow for a deeper understanding
of both classical and quantum gravity. An important feature
of any CFT in even d ¼ 2n dimensions is that conformal
anomalies can arise at the quantum level when the theory is
put on a generic curved spacetime background [1–3]. There
are two types of conformal anomalies. Type A has the
structure of theEuler density and typeB is associatedwith the
Weyl invariants. In two dimensions, there exists only one
type and its constant coefficient is called the central charge or
the c charge. Ind ¼ 4 dimensions, there is one central charge
associated with either type, and they are called a and c
charges, respectively. In higher dimensions there is always
one a charge, but the situation for the type-B anomalies
becomes increasingly complicated.
The conformal symmetry has the power that many

universal properties can be uncovered without having to

know the details of a specific theory. The two-point function
of the energy-momentum tensor is completely determined
up to an overall coefficient CT [4–6]. Furthermore in d ¼ 4,
this coefficient can be established to be proportional to the c
charge [4,5]. This result was reproduced by the holographic
technique in Einstein [7] and Einstein-Gauss-Bonnet [8]
gravities and more [9]. The topic was revisited [10] in the
context of higher-order gravitieswhere Einstein gravitywith
a cosmological constant is extended with higher-order
curvature invariant polynomials. Choosing the parameters
appropriately, the theories become massless gravities in that
the linear spectrum of the anti–de Sitter (AdS) vacuum
contains only the usual (massless) graviton. Massless
gravities include Einstein, Einstein-Gauss-Bonnet, general
Lovelock gravities and more. For general curvature tensor
polynomials, there are two massive modes, one scalar and
one spin-2. The decoupling of these two modes provides
only two constraints on the coupling constants. Therefore
massless higher-order gravities are abundant. By studying
the holography in higher-order massless gravities, a univer-
sal relation between CT and the a charge was uncovered. In
terms of CT , which is CT but with some inessential pure
numeric numbers stripped off for a slimmer looking formula,
the relation can be stated as [10]

CT ¼ 1

d − 1
l
∂a
∂l ; ð1:1Þ

where l is the AdS radius. [The precise ratioCT=CT is given
in (3.12).] (This result was also derived in the general off
critical case in quasitopological gravity [11].) To clarify the
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equation further, we note that higher-order gravities involve
the bare cosmological constant Λ0 and αi’s that denote the
couplings of higher-order terms. The equation of motion for
an AdS metric of radius l implies that

Λ0 ¼ Λ0ðl; αiÞ: ð1:2Þ

We can then express CT ¼ CTðl; αiÞ and a ¼ aðl; αiÞ. In
other words, the identity (1.1) is valid with the assumption
that ðl; αiÞ are independent variables and they are indeed.
Since the a charge is related to the universal part of the
entanglement entropy [12], the identity (1.1) in an alter-
native form was obtained in [13]. It should be pointed out
that the AdS radius l arising from higher-order massless
gravities is a bulk parameter and it does not have a well-
understood interpretation in the dual CFTs. It is thus of
interest to derive universal identities that relate the defining
parameters of a CFT.
In four dimensions, the identity (1.1) implies the relation

between a and c charges

c ¼ 1

3
l
∂a
∂l : ð1:3Þ

It should be emphasized that the above holographic relation
is the leading-order result of the “large N” expansion. In
superconformal field theories, a and c charges may differ
by the subleading correction. Here the origin of the
difference between the a and c charges is the higher-order
curvature terms in the bulk, and their CFT implications
remain to be investigated.
While the identity (1.1) can be established in general

dimensions, the generalization of (1.3) to higher dimen-
sions is much less straightforward. This is because there are
multiple possibilities of type-B anomalies, since the num-
ber of Weyl invariants increases profusely as the dimension
d ¼ 2n increases. There is only one in d ¼ 4, but there are
three in d ¼ 6. Two of them are simply the two Weyl cubic
terms that have simple higher-dimensional generalizations.
The construction of the third one is highly nontrivial and
intense research was involved to get it right [14–18].
The purpose of this paper is to employ higher-order

massless gravities in seven dimensions and to compute
their holographic a and three ci charges. We can then
identify the relevant c charge such that the three quantities
ðc; a; CTÞ can have universal relations as in the case of
d ¼ 4. The paper is organized as follows. In Sec. II, we
review the conformal anomalies in d ¼ 6 CFTs. We
recombine the standard ðI1; I2; I3Þ structures according
to the order of Riemann tensor polynomials and define
the corresponding ĉi charges. In Sec. III, we consider
Einstein gravity extended with higher-order derivative
terms, up to and including six derivatives. We derive the
massless conditions and obtain all the conformal anoma-
lous charges. We are able to identify the relevant c charge
and establish the universal relations. We also discuss

additional holographic constraints on the coupling con-
stants. We conclude the paper in Sec. IV.

II. CONFORMAL ANOMALIES IN d = 6

We begin with a review of the structure of conformal
anomalies in d ¼ 6. As was mentioned in the Introduction,
there are two types, A and B. Type A is associated with the
third-order Euler density E6, defined by

−E6 ¼
6!

23
δμ1…μ6
ν1…ν6R

ν1ν2
μ1μ2R

ν3ν4
μ3μ4R

ν5ν6
μ5μ6

¼ R3 − 12RRμνRμν þ 16Rμ
νRν

ρR
ρ
μ þ 24RμνRρσRμρνσ

þ 3RRμνρσRμνρσ − 24RμνRμαβγRν
αβγ

þ 4Rμν
ρσRρσ

αβRαβ
μν − 8Rμ

ν
α
βRν

ρ
β
γR

ρ
μ
γ
α: ð2:1Þ

Note that, in literature, the definition of E6 typically
involves an additional overall factor 8. We drop this factor
in this paper so that our central charge relations will not be
burdened with inessential numerical factors. Type-B
anomalies all vanish in the conformally flat backgrounds.
There exists three independent Weyl invariant densities,
namely [17,18],

I1 ¼ CμρσνCμαβνCα
ρσ

β;

I2 ¼ CμνρσCρσαβCαβ
μν;

I3 ¼ Cμρσλ

�
δμν□þ 4Rμ

ν −
6

5
Rδμν

�
Cνρσλ þ∇μJμ; ð2:2Þ

with Jμ ¼ 4Rμ
λρσ∇νRνλρσ þ 3Rνλρσ∇μRνλρσ − 5Rνλ∇μRνλ

þ 1

2
R∇μR − Rμ

ν∇νRþ 2Rνλ∇νRλμ: ð2:3Þ

It is of interest to note that one can construct a three-
parameter family of conformal gravity in six dimensions
[19–21] with the Lagrangian

ffiffiffiffiffiffi−gp ðβ1I1 þ β2I2 þ β3I3Þ.
For generic parameters βi, the theory does not admit the
Schwarzschild metric as a solution. However, there exists
one particular combination such that the Schwarzschild
metric is indeed a solution. The combination is

Î1 ¼ I3 − 12I1 − 3I2

¼ −3RRμνRμν þ
9

25
R3 þ 6RμνRρσRμρνσ þ 3Rμν

□Rμν

−
9

10
R□Rþ 1ffiffiffiffiffiffi−gp × total derivatives: ð2:4Þ

In other words, modulo total derivative, this combination
contains the Riemann tensor at most linearly. Consequently,
all Einsteinmetrics, including the Schwarzschild or theKerr,
are solutions in conformal gravity

ffiffiffiffiffiffi−gp
Î1. The most general

spherically symmetric and static black holes in this theory
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were constructed in [21]. This combination is related to the
Q curvature, defined by (in our E6 convention)

6Q6 þ I3 − 3I2 − 12I1 ¼ E6: ð2:5Þ

TheQ curvature arises typically in supersymmetric CFTs in
d ¼ 6 [22], analogous to the simpler example of Q4 ¼
E4 − C2 that arises in supersymmetric CFTs in d ¼ 4.
The conformal anomalies in d ¼ 6 can now be

expressed as

ð2πÞ3hTμ
μi ¼ −aEþ c1I1 þ c2I2 þ c3I3; ð2:6Þ

where the constant coefficients ða; c1; c2; c3Þ are called the
central charges. The purpose of this paper is not simply to
evaluate these central charges using the holographic tech-
nique. We shall also use the data to determine whether there
is a universal relation between the a charge and a certain
combination of the c charges. We find that it is advanta-
geous to recombine the type-B anomalies, according to the
order of the Riemann tensor polynomials. To be specific,
we define

Î1 ¼ I3−12I1−3I2 Î2¼ I2þ2I1; Î3 ¼ I1: ð2:7Þ

Modulo total derivative terms (including E6), the new
hatted Îi’s involve Riemann polynomials of order i. (In
literature, combinations of Ii ’s based on supersymmetry
were discussed in [23–25].) In terms of these new combi-
nations, the conformal anomalies are

ð2πÞ3hTμ
μi ¼ −aEþ ĉ1Î1 þ ĉ2Î2 þ ĉ3Î3; ð2:8Þ

where the a charge remains the same, while the type-B
charges become

ĉ1¼ c3 ĉ2¼ c2þ3c3; ĉ3¼ c1−2c2þ6c3: ð2:9Þ

It can be seen that if the bulk gravity involves only Ricci
polynomials or Riemann tensor at most linearly, then we
must have a ¼ ĉ1 and ĉ2 ¼ 0 ¼ ĉ3. In [26], theQ curvature
was advocated to replace E6, which would shift the ci
charges by the a charge. Our proposal is quite different.

III. HOLOGRAPHIC CENTRAL CHARGES
FROM HIGHER-ORDER GRAVITIES

In this section, we consider Einstein gravity with a
negative cosmological constant, extended with higher-
order invariant polynomials of curvature tensor and their
covariant derivatives, up to and including six derivatives.
We then follow the standard technique to compute the
holographic anomalies and derive some universal relations.

A. Higher-order massless gravities

The Lagrangian of general higher-order gravities, up to
and including six derivatives, is

L ¼ ffiffiffiffiffiffi
−g

p ðL0 þ L1 þ L2 þ L3 þ L̃3Þ; ð3:1Þ

where

L0 ¼ −2Λ0; L1 ¼ R;

L2 ¼ α1R2 þ α2RμνRμν þ α3RμνρσRμνρσ;

L3 ¼ β1R3 þ β2RRμνRμν þ β3R
μ
νRν

ρR
ρ
μ þ β4RμνRρσRμρνσ

þ β5RRμνρσRμνρσ þ β6RμνRμαβγRν
αβγ

þ β7Rμν
ρσRρσ

αβRαβ
μν þ β8Rμ

ν
α
βRν

ρ
β
γR

ρ
μ
γ
α;

L̃3 ¼ γ1R□Rþ γ2Rμν
□Rμν þ γ3Rμνρσ

□Rμνρσ: ð3:2Þ

The theory, or part of it, has been studied for a variety of
purposes (see, e.g., [27–39]). (See in particular a recent
comprehensive summary of its applications in holography
[39] and also [33] for many useful formulas.) It is worth
pointing out that there are a total of 17 six-derivative terms
[17] and six of them are total derivatives. We use three αi’s
and eight βi’s to denote the coupling constants of the
quadratic and cubic polynomials and use three γi’s to
denote the couplings of those involving explicit derivatives.
For our purpose, we focus on D ¼ 7 dimensions. The
theory admits an AdS vacuum of radius l, satisfying the
on-shell equation

15

l2
0

¼ 15

l2
−
18

l4
ð21α1 þ 3α2 þ α3Þ

þ 3

l6
ð1764β1 þ 252β2 þ 36β3 þ 36β4 þ 84β5

þ 12β6 þ 4β7 þ 5β8Þ; ð3:3Þ

where we expressed the bare cosmological constant as
Λ0 ≡ 15=l2

0. Note that γi’s are absent from the equation.
In literature, it is common to introduce dimensionless

couplings α̃i ¼ αi=l2
0, β̃i ¼ βi=l4

0 and γ̃i ¼ γi=l4
0. The

equation of motion can then be expressed in terms of
dimensionless quantities as

15 ¼ 15f∞ − 18f2∞ð21α̃1 þ 3α̃2 þ α̃3Þ
þ 3f3∞ð1764β̃1 þ 252β̃2 þ 36β̃3 þ 36β̃4 þ 84β̃5

þ 12β̃6 þ 4β̃7 þ 5β̃8Þ; ð3:4Þ

where f∞ ≡ l2
0=l

2. However, the on-shell condition
expressed as our (3.3) has the advantage that all the
higher-order coupling constants αi, βi and the AdS radius
l can be viewed as independent variables, with the bare
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cosmological constant solved as a function of these
variables, namely,

Λ0 ≡ 15

l2
0

¼ Λ0ðl; αi; βiÞ: ð3:5Þ

Consequently, all the other holographic quantities such as
the conformal charges or the coefficient of two-point
functions are also functions of these independent variables
ðl; αi; βiÞ. As was discussed in the Introduction, this is
important for our universal relations since they involve the
differential operator l∂=∂l. This property is lost in the
dimensionless constraint (3.4) since ðf∞; α̃i; β̃iÞ cannot be
all independent.
We now consider the linear perturbation on the AdS

background. Owing to the higher-order derivative terms, the
linear spectrum contains two massive scalars and two
massive spin-2 modes, in addition to the usual (massless)
graviton mode. We are interested in massless gravity where
all these massive modes decouple from the spectrum. This
requires a set of linear constraints on the coupling constants.
In particular, the decoupling of the massive scalar modes
requires

24γ1 þ 7γ2 þ 4γ3 ¼ 0;

ð24α1 þ 7α2 þ 4α3Þl2 þ 10ð12γ1 þ γ2Þ
− 3024β1 − 582β2 − 126β3 − 101β4 − 264β5

− 52β6 − 24β7 − 15β8 ¼ 0; ð3:6Þ
and the decoupling of the massive spin-2 modes requires

γ2þ4γ3¼ 0;

ðα2þ4α3Þl2þ1056γ1þ659γ2þ1564γ3

−42β2−18β3−11β4−168β5−28β6−24β7þ3β8¼ 0:

ð3:7Þ
Note that one set of massive scalar and spin-2 modes are
generated by the γ-terms entirely. For a later purpose, we
would like to require that these coupling constants are all
independent of l, which implies that the constraints on αi
should be solved independently from the other constraints.
Thus we have

fα1;α2;α3g¼ αf1;−4;1g; fγ1;γ2;γ3g¼ γf1;−4;1g;

β7¼−21β1−
11

2
β2−

3

2
β3−

13

12
β4−

23

3
β5−

4

3
β6;

β8¼−168β1−30β2−6β3−5β4−
16

3
β5

−
4

3
β6þ

16

3
γ: ð3:8Þ

The α-terms become the Gauss-Bonnet combination and the
γ-terms become the Gauss-Bonnet inserted with a Laplacian

operator. After decoupling all the massive modes, the linear
equation involves only the (transverse and traceless) grav-
iton hμν, satisfying

κeff
16π

�
□̄þ 2

l2

�
hμν ¼ 0; ð3:9Þ

where

κeff ¼ 1−24αl−2þ4ð126β1þ12β2þβ4þ4β5þ4γÞl−4:

ð3:10Þ

Note that we have normalized our convention such that
κeff ¼ 1 for Einstein gravity. Ifwe turn off all the quadratic or
higher-order Riemann polynomials, the massless gravity
becomes that of a Ricci-polynomial quasitopological with
κeff ¼ 1 [35]. It is of interest to note that

κeff ¼
l3

30

∂Λ0

∂l : ð3:11Þ

The equivalent form of this identity, with the differentiation
done by f∞, was observed and proven in [13].
According to the AdS/CFT dictionary, the massless

graviton is associated with the boundary stress tensor.
Following the standard procedure, one can obtain its two-
point function. The overall coefficient is then clearly
proportional to κeff , since this is the only parameter left
in the linearized equation. It turns out one has for general d
dimensions [10]

CT¼
Γðdþ2Þ

8ð−1Þd2ðπÞd2þ1ðd−1ÞΓðd
2
ÞCT; CT¼κeffld−1: ð3:12Þ

B. Holographic anomalous charges

For given gravity with an AdS vacuum in odd D ¼
dþ 1 dimensions, there is a standard method to compute
the holographic anomaly [40,41], using the Fefferman-
Graham (FG) expansion around the AdS boundary.
Substituting the FG Ansatz into the Lagrangian, one finds
that there exists a divergent term that cannot be canceled
by the boundary terms such as the Gibbons-Hawking
surface term and/or the holographic counterterms.
Requiring that the Ansatz satisfies the equations of motion,
one can then equate the anomalous term to (2.6) [or
equivalently (2.8)] and read off the coefficients a and
ci. For a generic boundary metric, this procedure can be
very involved for higher-order gravities. However, if one is
simply to read off the central charges, one can choose
some specific boundary Ansätze with isometries such as
S6, S4 × S2, S2 × S2 × S2, etc. The central charges were
computed in [26]. In our convention, we find
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a ¼ l5 − 4ð21α1 þ 3α2 þ α3Þl3

þ 3ð1764β1 þ 252β2 þ 36β3 þ 36β4 þ 84β5

þ 12β6 þ 4β7 þ 5β8Þl;
c1 ¼ −12l5 þ 16ð63α1 þ 9α2 − α3Þl3

þ 12ð128γ3 − 5292β1 − 756β2 − 108β3 − 108β4

− 28β5 − 4β6 þ 20β7 − 39β8Þl;
c2 ¼ −3l5 þ 4ð63α1 þ 9α2 þ 7α3Þl3

− 3ð128γ3 þ 5292β1 þ 756β2 þ 108β3 þ 108β4

þ 476β5 þ 68β6 − 20β7 þ 7β8Þl;
c3 ¼ l5 − 12ð7α1 þ α2 − α3Þl3

− 3ð64γ3 − 1764β1 − 252β2 − 36β3 − 36β4

þ 140β5 þ 20β6 þ 28β7 − 13β8Þl: ð3:13Þ

The result for Einstein gravity was first obtained in [40].
Note that we followed the normalization convention of
[10] such that for Einstein gravity the relevant quantities
are given by

aEin ¼ ld−1; κEineff ¼ 1; CEinT ¼ ld−1: ð3:14Þ

It should be emphasized that holographic charges (3.13)
are obtained from the on-shell action, and therefore the
equation of motion (3.3) is imposed. The hatted type-B
charges defined by (2.9) are given by

ĉ1 ¼ c3;

ĉ2 ¼ 64α3l3 − 96ð10γ3 þ 28β5 þ 4β6 þ 2β7 − β8Þl;
ĉ3 ¼ 192ð6γ3 − 2β7 − β8Þl: ð3:15Þ

We see a hierarchical structure of the hatted charges
depending on the order of the Riemann polynomials in
the bulk Lagrangian. In particular, in Einstein or Ricci-
polynomial gravities, both ĉ2 and ĉ3 vanish, with only ĉ1
nonvanishing and it equals a. This property was com-
mented on under (2.9).
The higher-order gravities become all massless once we

impose the conditions (3.8), in which case, we find

ĉ1 ¼ c3 ¼l5−24αl3þ4ð126β1þ12β2þβ4þ4β5þ4γÞl;
a¼l5−40αl3þ20ð126β1þ12β2þβ4þ4β5þ4γÞl:

ð3:16Þ

Thus it is natural to single out ĉ1 and give a new name
c ¼ ĉ1. We find the universal relation

c ¼ 1

5
l
∂a
∂l : ð3:17Þ

This generalizes the four-dimensional result (1.3). It
follows from (3.10) and (3.12) that

CT ¼ c: ð3:18Þ

In literature, the holographic charges are typically
expressed in terms of dimensionless parameters. For
simplicity, we consider the Einstein-Gauss-Bonnet theory
as an example. The holographic quantities are

CT ∼c∼l5
0f

−5
2

∞ ð1−24α̃f∞Þ; a∼l5
0f

−5
2

∞ ð1−40α̃f∞Þ:
ð3:19Þ

Thus one can propose a universal identity [13]

CT ∼ f∞
∂a
∂f∞ : ð3:20Þ

To be precise, a was the free energy of the squashed sphere
in [13]. This equality is true only if one treats α̃ as being
independent of f∞ and it hence requires one to ignore the
on-shell condition 12α̃f2∞ − f∞ þ 1 ¼ 0. In our paramet-
rization, we choose to solve for the bare cosmological
constant Λ0 ¼ Λ0ðl; αÞ, such that ðl; αÞ are indeed inde-
pendent variables.
Since the differential relation (3.17) requires that all the

higher-order coupling constants be independent of the AdS
radius l, we can solve the massless conditions (3.6) and
(3.7) as in (3.8). The relation (3.18), however, is algebraic.
We can instead solve (3.6) and (3.7) directly by taking
ðγ1; γ2; γ3Þ ¼ γð1;−4; 1Þ and expressing ðβ7; β8Þ in terms
of the rest of the coupling constants, without imposing
further conditions on ðα1; α2; α3Þ. We find now that

a ¼ l5 − 2ð31α1 þ 3α2 þ α3Þl3

þ 20ð126β1 þ 12β2 þ β4 þ 4β5 þ 4γÞl;
CT ¼ c ¼ l5 − 2ð23α1 þ 3α2 þ α3Þl3

þ 4ð126β1 þ 12β2 þ β4 þ 4β5 þ 4γÞl: ð3:21Þ

As expected, we see that the differential relation (3.17)
no longer holds; however, the relation (3.18) remains valid.
In other words, the validity of (3.18) requires only the
massless conditions (3.6) and (3.7).

C. Further constraints from the holographic a theorem

For a well-defined CFT, one may expect that there exists
an a theorem. It states that the a charge, which measures the
massless degrees of freedom, increases monotonically
as a function of some RG scale μ. While the theorem
was well established in d ¼ 2 [42], its higher-dimensional
generalizations are less concrete [43–48]. Holographic a
theorems on the other hand are much easier to establish
since they are simply related to the null-energy condition of
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minimally coupled matter in the AdS domain wall metric
[12,49–52]. An a theorem in Einstein-Horndeski gravity
with nonminimally coupled matter was also established at
the critical point [53]. Technically, one is expected to derive
the full equations of motion Tmat

μν ¼ Eμν ≡ ∂L=∂gμν even
though the null-energy condition only requires one to know
ðEt

t; Er
rÞ in the domain wall metric such that −Et

t þ Er
r ≥ 0.

Obtaining Eμν can be involved when the theory becomes
complicated. In [36,53], this step was circumvented by
introducing a free massless scalar. This method was also
adopted in [54] to establish the c theorem in Born-Infeld
gravity theories.
We follow the technique of [36,53] and find, as in [36],

the existence of an a theorem requires the decoupling of the
scalar modes, but does not discriminate the ghost modes. In
other words, we find that the coupling constants should
satisfy (3.6). In addition, two more constraints should be
further imposed, namely,

24α1þ7α2þ4α3 ¼ 0;

288β1þ84β2þ37β3þ12β4þ48β5þ14β6þ8β7

¼ 40ð9γ1þ2γ2þ γ3Þ: ð3:22Þ

Together with the ghost free condition (3.7), we have

β6 ¼ 24γ1 − 36β1 − 12β2 −
15

2
β3 − β4 þ 4β5: ð3:23Þ

The resulting theory includes Einstein-Gauss-Bonnet,
Einstein-Lovelock, quasitopological [27,28] and quasito-
pological Ricci [35,36] gravities.

IV. CONCLUSIONS

Massless gravities are those whose linearized spectrum
in a maximally symmetric background consists only of the
graviton. Massless higher-order gravities provide a class of
bulk theories for studying the holographic properties,
where conformal anomalies, two-point functions and a
theorems can be all straightforwardly computed. They are
abundant and thus very useful to uncover some universal
properties of CFTs. One such example is the differential
identity (1.1). In d ¼ 4, the differential relation (1.3) was
also shown, and it is consistent with CT ¼ c that was
established in CFTs. In this paper, by computing the
holographic conformal anomalies in D ¼ 7 massless
higher-order gravities, we found that the relations

CT ¼ c ¼ 1

5
l
∂a
∂l ð4:1Þ

held in d ¼ 6. Note that our simple forms of the relations
are based on the convention (3.14). The algebraic relation
above requires only the massless condition, while the
differential relation requires further that all higher-order
coupling constants be independent of l.
The result (4.1) is much more nontrivial than the one in

d ¼ 4 since there are three ci charges in six dimensions,
associated with the three Weyl invariants. We identified that
the relevant c charge was associated with theWeyl invariant
combination that has at most the linear Riemann tensor,
modulo some total derivatives (including the Euler density.)
Although in d ¼ 6, the relevant c is simply the c3, we
believe there is an advantage to organize the Weyl invar-
iants according to the order of Riemann tensor polyno-
mials. This organizing principle can be generalized to all
dimensions and the relevant c charge is the coefficient of
the Weyl invariants with the least Riemann tensor, modulo
total derivatives. Alternatively, since c ¼ c3, a more
straightforward organization is that the relevant conformal
combination takes the form C□d−4Cþ � � �, in other words,
it involves the most explicit covariant derivatives. We
expect that the two descriptions of the relevant conformal
invariants are equivalent and there should exist only one
such c and that CT ¼ c continues to hold in higher
dimensions.
The holographic approach using massless higher-order

gravities provides enormous insights to the properties of
CFTs. It is of great interest to investigate whether these
universal relations can be established by CFTs themselves.
The differential relations, however, present an immediate
challenge since they involve l, whose CFT correspondence
is not generally clear. On the other hand, the relation
CT ¼ c involves only theCFTquantities and it was proven in
d ¼ 4. Our holographic conclusion encourages the possibil-
ity that this may be proven in six-dimensional CFTs.
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