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We extend the study of quark spin–orbit correlations in the nucleon to the case of transverse polarization. 
At the leading-twist level, this completes the spin structure of the quark kinetic energy–momentum 
tensor. In particular, we revisit the transversity decomposition of angular momentum proposed a decade 
ago by Burkardt and introduce a new transverse correlation, namely between quark transversity and 
orbital angular momentum. We also provide for the first time the Wandzura–Wilczek expression for the 
second Mellin moment of twist-3 transversity generalized parton distributions, along with a new sum 
rule. Based on lattice calculation results, we conclude that the quark transverse spin–orbit correlation is 
negative for both up and down flavors, just like in the longitudinal case.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Understanding the nucleon spin structure is one of the key 
questions in hadronic physics. It opens a window on a wide range 
of non-perturbative effects in quantum chromodynamics (QCD) 
currently studied at many facilities such as Jefferson Lab, RHIC and 
COMPASS [1], and is a major pillar of the physics case of the future 
electron–ion collider (EIC) [2]. Although the proper decomposition 
of the nucleon spin into quark and gluon contributions constitutes 
one of the fundamental motivations in this field, see e.g. [3–5], the 
spin structure turns out to be much richer owing to spin–orbit cor-
relations [6–8].

In a former paper [7], the quark longitudinal spin–orbit corre-
lation was studied in detail by performing a (chiral-even) helicity 
decomposition of the quark energy–momentum tensor. It has, in 
particular, been shown that the quark longitudinal spin–orbit cor-
relation can quantitatively be expressed in terms of parton dis-
tributions. Both current phenomenological extractions based on 
experimental data and lattice calculations indicate that the quark 
spin is, in average, opposite to the quark kinetic orbital angular 
momentum (OAM).

In this Letter, we discuss the quark transverse spin–orbit cor-
relation by revisiting the (chiral-odd) transversity decomposition 
of the quark energy–momentum tensor considered a decade ago 
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by Burkardt [9,10]. Mimicking the approach used by Ji to relate 
angular momentum contributions to generalized parton distribu-
tions (GPDs) [11], Burkardt decomposed the symmetric energy–
momentum tensor and introduced accordingly the correlation be-
tween quark transversity and total angular momentum. Here we 
consider the more general asymmetric energy–momentum ten-
sor leading to another transverse correlation, now between quark 
transversity and OAM.

The Letter is organized as follows: In section 2, we define the 
quark transverse spin–orbit correlation operator and express the 
corresponding expectation value in terms of tensor generalized 
form factors. In section 3 we relate these generalized form fac-
tors to moments of measurable parton distributions and derive for 
the first time the Wandzura–Wilczek expression for the second 
Mellin moment of twist-3 transversity generalized parton distri-
butions, along with a new sum rule. In section 4, we compare the 
various contributions obtained on the lattice with relativistic quark 
model predictions, we provide an estimate of the quark transverse 
spin–orbit correlation, and we conclude the paper with section 5.

2. Quark spin–orbit correlations

2.1. Decomposition based on polarization

It is well known that the quark field operator can be decom-
posed into right- and left-handed contributions

ψ = ψR + ψL, ψR,L = 1 (1± γ5)ψ. (1)
2
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The quark number and helicity light-front operators can then re-
spectively be seen as the sum and difference∫

d3xψγ +ψ = N̂q
R + N̂q

L, (2)
∫

d3xψγ +γ5ψ = N̂q
R − N̂q

L (3)

of the right- and left-handed densities

N̂q
R,L =

∫
d3xψ R,Lγ

+ψR,L, (4)

where a± = 1√
2
(a0 ± a3) for a generic four-vector a, and d3x =

dx− d2x⊥ .
Alternatively, the quark field operator can be decomposed into 

up and down transverse polarizations [12]

ψ = ψ↑ + ψ↓, ψ↑,↓ = 1
2 (1± γ jγ5)ψ (5)

with j = 1 or 2. While the sum of up and down densities natu-
rally gives the quark number operator, their difference defines the 
so-called quark transversity∫

d3xψγ +ψ = N̂q
↑ + N̂q

↓, (6)
∫

d3xψ iσ j+γ5ψ = N̂q
↑ − N̂q

↓, (7)

where

N̂q
↑,↓ =

∫
d3xψ↑,↓γ +ψ↑,↓. (8)

The same decompositions can be performed with the quark 
light-front OAM operator

√
2ε

μ
+αβ

∫
d3xψγ +xα i

2

↔
Dβψ = L̂q,μ

R + L̂q,μ
L

= L̂q,μ
↑ + L̂q,μ

↓ ,

(9)

where

L̂q,μ
a = √

2ε
μ

+αβ

∫
d3xψaγ

+xα i
2

↔
Dβψa (10)

with the convention ε0123 = +1, a = R, L, ↑, ↓, and 
↔
Dβ = →

∂ β −
←
∂ β − 2ig Aβ the symmetric gauge covariant derivative. Considering 
instead the differences of densities leads us to longitudinal and 
transverse spin–orbit correlations (ε12

T = −ε21
T = +1 and a[μbν] =

aμbν − aνbμ)

Ĉq
z ≡ εlk

T

∫
d3xψγ +γ5 xl i

2

↔
Dkψ = L̂q,+

R − L̂q,+
L , (11)

Ĉq
j ≡ √

2ε
jl
T

∫
d3xψ iσ j+γ5 x[− i

2

↔
Dl]ψ = L̂q, j

↑ − L̂q, j
↓ (12)

without summation over j in (12). These are the diagonal compo-
nents of a 3 × 3 matrix whose entries are the directions of quark 
polarization and OAM.

The longitudinal spin–orbit correlation (11) has been studied 
in [7]. In this Letter, we focus on the transverse spin–orbit cor-
relation (12) which can conveniently be rewritten as (once again 
without summation over j)

Ĉq
j = √

2ε
jl
T

∫
d3x

[
x− T̂ j+l

q5 − xl T̂ j+−
q5

]
(13)

with T̂ λμν
q5 the quark energy–momentum tensor where γ μ has 

been replaced by iσλμγ5
T̂ λμν
q5 (x) = ψ(x)iσλμγ5

i
2

↔
Dνψ(x). (14)

We added the index 5 to indicate the presence of the matrix γ5

and to distinguish it from T̂ λμν
q = ψ iσλμ i

2

↔
Dνψ . These two opera-

tors are equivalent owing to the identity iσμνγ5 = 1
2 εμναβσαβ .

2.2. Parametrization

We find that the non-forward matrix elements of T̂ λμν
q5 can be 

parametrized in terms of seven generalized form factors (GFFs)

〈p′, s′|T̂ λμν
q5 (0)|p, s〉 = u(p′, s′)�λμν

q5 u(p, s) (15)

with

�
λμν
q5 = Pν P [λ�μ]γ5

2M2 Aq
T (t) + gν[λ�μ]γ5

2 Ãq
T (t)

+ Pν P [λγ μ]γ5
M Bq

T (t) + M gν[λγ μ]γ5 B̃q
T (t)

+ �ν�[λγ μ]γ5
4M Cq

T (t) + Pν iσλμγ5 Dq
T (t)

+ P [λ iσμν]γ5
2 D̃q

T (t), (16)

where s and s′ are the initial and final rest-frame polarization 
unit vectors, M is the nucleon mass, P = p′+p

2 is the average 
four-momentum, and t = �2 is the square of the four-momentum 
transfer � = p′ − p. Note that the last term is totally antisymmet-

ric over all three Lorentz indices, so that P [λ iσμν]γ5
2 = Pν iσλμγ5 +

P [λiσμ]νγ5. To recover the twist-2 parametrization of Hägler and 
Diehl [13,14], one has to symmetrize over the pair of indices {μν}, 
antisymmetrize over the pair of indices [λμ] and remove all the 
traces [15]. As a result, the tilde GFFs become redundant

3 Ãq
T (t)

tw−2= (τ − 1) Aq
T (t) + Cq

T (t) − Dq
T (t), (17)

3B̃q
T (t)

tw−2= (τ − 1) Bq
T (t) − τCq

T (t) + Dq
T (t), (18)

3D̃q
T (t)

tw−2= −Dq
T (t), (19)

where τ = t
4M2 . This means that only four GFFs survive at leading 

twist in agreement with the results of [13,14]. More precisely, we 
find that the two parametrizations at leading twist are related as 
follows

Aq
T (t) + Bq

T (t) = BT 20(t), (20)

Bq
T (t) = 2 ÃT 20(t) + BT 20(t), (21)

Cq
T (t) = 2B̃ T 21(t), (22)

Dq
T (t) − Bq

T (t) = AT 20(t) − 2τ ÃT 20(t). (23)

We are ultimately interested in the matrix elements of Eq. (13)
which involves one explicit power of x. It is therefore sufficient to 
expand Eq. (15) up to linear order in � [3,16]. Using the light-front 
spinors (see e.g. Appendix A of [17]) with the same rest-frame po-
larization s′ = s = (s⊥, sz), we obtain

〈p′, s|T̂ λμν
q5 |p, s〉 =[

2Pν P [λ Sμ]
M + M Pν iε+λμ�

P+
] (

Bq
T − Dq

T

)

+
[

2M gν[λSμ] + M gν[λ iεμ]+P�

P+
]

B̃q
T

− Pν iελμP�

M Bq
T − M iελμν� D̃q

T +O(�2) (24)

with the covariant spin vector Sμ = [sz P+, −sz P− + P⊥
P+ · (Ms⊥ +

P ⊥sz), Ms⊥ + P⊥sz] satisfying P · S = 0 and S2 = −M2(1 − τ s2
z ). 
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For convenience, we removed the argument of the GFFs when eval-
uated at t = 0, e.g. Bq

T ≡ Bq
T (0), and we wrote four-vectors as in-

dices whenever they appear contracted, e.g. ελμP� ≡ ελμαβ Pα�β .
Substituting the expansion (24) into the matrix element of (13)

and working in the symmetric light-front frame, i.e. with P ⊥ = 0⊥ , 
we find

Cq
j ≡ 〈P ,s|Ĉq

j |P ,s〉
〈P ,s|P ,s〉 = − M

2
√

2P+ (Bq
T + 2B̃q

T + 4D̃q
T ). (25)

Like the longitudinal one [7], the transverse spin–orbit correlation 
does not depend on the nucleon polarization, as a consequence 
of parity conservation. However, unlike the longitudinal case, it 
depends on the light-front momentum P+ . This dependence can 
be understood as coming from the transverse component of the 
OAM operator, since the transversity operator is leading twist and 
hence P+ independent. Indeed, contrary to the longitudinal com-
ponent, the decomposition of the transverse component of total 
angular momentum into spin and OAM contributions is known to 
be in general frame dependent [3]. Note also that in the rest frame √

2P+ = M we recover the familiar 1
2 global factor [7,11].

3. Link with parton distributions

No fundamental probe coupling to T̂ λμν
q5 is known in particle 

physics. It is however possible to relate the corresponding GFFs 
to specific moments of measurable parton distributions. From the 
leading-twist component T̂ j++

q5 , we find in agreement with [13,14]∫
dx xHq

T (x, ξ, t) = −τ Aq
T (t) − Bq

T (t) + Dq
T (t)

= AT 20(t), (26)∫
dx xEq

T (x, ξ, t) = Aq
T (t) + Bq

T (t) = BT 20(t), (27)
∫

dx xH̃q
T (x, ξ, t) = − 1

2 Aq
T (t) = ÃT 20(t), (28)

∫
dx xẼq

T (x, ξ, t) = −ξCq
T (t) = −2ξ B̃ T 21(t), (29)

where the skewness variable is given by ξ = −�+/2P+ and the 
functions Hq

T (x, ξ, t), Eq
T (x, ξ, t), H̃q

T (x, ξ, t), and Ẽq
T (x, ξ, t) are the 

GPDs parametrizing the non-local twist-2 tensor light-front quark 
correlator [18–20]

1

2

∫
dz−

2π
eixP+z−〈p′, s′|ψ(− z−

2 )iσ j+γ5Wψ( z−
2 )|p, s〉

= iε jl
T

2P+ u(p′, s′)�+l
qT u(p, s) (30)

with W = P exp[ig ∫ −z−/2
z−/2 dy− A+(y−)] a straight light-front Wil-

son line and

�+l
qT = iσ+l Hq

T (x, ξ, t) + γ +�l⊥−�+γ l⊥
2M Eq

T (x, ξ, t)

+ P+�l⊥
M2 H̃q

T (x, ξ, t) − P+γ l⊥
M Ẽq

T (x, ξ, t) (31)

written in the symmetric frame P ⊥ = 0⊥ .

3.1. Equations of motion

The relations for the tilde GFFs can be obtained using the fol-
lowing QCD identities

ψ iσλμγ5 i
↔
Dμψ = 2m ψγ λγ5ψ + i∂λ(ψγ5ψ), (32)

ψ iσ [λμγ5 i
↔
Dν]ψ = −2ελμνα∂α(ψψ), (33)
where m is the quark mass. Taking the corresponding matrix ele-
ments and using some Gordon and ε-identities, we find

(τ − 1) Aq
T (t) − 3 Ãq

T (t) + Cq
T (t) − Dq

T (t)

= m
M Gq

P (t) − �q(t), (34)

(τ − 1) Bq
T (t) − 3B̃q

T (t) − τCq
T (t) + Dq

T (t)

= m
M Gq

A(t), (35)

Dq
T (t) + 3D̃q

T (t) = �q(t), (36)

which generalize the leading-twist expressions (17)–(19). The FFs 
on the right-hand side parametrize the scalar, pseudoscalar and 
axial-vector local correlators as follows

〈p′, s′|ψψ |p, s〉 = u(p′, s′)�qS u(p, s), (37)

〈p′, s′|ψγ5ψ |p, s〉 = u(p′, s′)�qP u(p, s), (38)

〈p′, s′|ψγ μγ5ψ |p, s〉 = u(p′, s′)�μ
q Au(p, s) (39)

with

�qS = 1�q(t), (40)

�qP = γ5 �q(t), (41)

�
μ
q A = γ μγ5 Gq

A(t) + �μγ5
2M Gq

P (t). (42)

The quark transverse spin–orbit correlation is therefore given 
by the expression
√

2P+
M Cq

j = 1
3

∫
dx x[Hq

T (x,0,0) + 1
2 Ēq

T (x,0,0)]
− 2

3 [�q(0) − m
2M Gq

A(0)], (43)

where Ēq
T (x, ξ, t) ≡ 2H̃q

T (x, ξ, t) + Eq
T (x, ξ, t). Interestingly, it is very 

similar to the corresponding expression for the longitudinal spin–
orbit correlation [7]

Cq
z = 1

2

∫
dx xH̃q(x,0,0) − 1

2 [F q
1(0) − m

2M Hq
1(0)] (44)

and Ji’s relation [11] for the quark OAM

Lq
z = 1

2

∫
dx x[Hq(x,0,0) + Eq(x,0,0)] − 1

2 Gq
A(0). (45)

One might be surprised that Eq. (43) involves thirds instead of 
halves. They appear because of the factors 3 in Eqs. (34)–(36)
which trace back to the fact that Cq

j is defined from a rank-3 ten-

sor, while Lq
z and Cq

z are defined from rank-2 tensors.
Let us stress that the quark transverse spin–orbit correlation 

introduced in this Letter corresponds actually to the correlation 
between quark transversity and OAM 〈Lq

z T q
z 〉. The similarity of 

our result (43) with Eq. (45), which can be understood as the 
difference between total angular momentum and spin 〈Lq

z S N
z 〉 =

〈 J q
z S N

z 〉 − 〈Sq
z S N

z 〉 according to [7,11], hints towards the identi-
fications 〈 J q

x T q
x 〉 ∝ ∫

dx x[Hq
T (x, 0, 0) + 1

2 Ēq
T (x, 0, 0)] and 〈Sq

x T q
x 〉 ∝

�q(0) in the chiral limit m = 0. In particular, it suggests that the 
scalar charge can be interpreted as a measure of the correlation 
between quark transversity and spin. This interpretation is fur-
ther supported by the following simple reasoning in instant form. 
The difference between spin ψ†σ i jψ and transversity ψ†γ 0σ i jψ

is a factor γ 0, and hence is of relativistic nature [21]. The cor-
relation between spin and transversity then reads ψ†σ i jγ 0σ i jψ

(without summation over i, j), which simplifies to the scalar bilin-
ear ψ†γ 0ψ = ψψ .
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3.2. Twist-3 tensor GPDs

The tilde GFFs can alternatively be expressed in terms of 
twist-3 tensor GPDs. From the twist-3 components T̂ jl+

q5 and T̂ +−+
q5 , 

we obtain the following relations∫
dx xH ′ q

2 = −ξ
[
τCq

T (t) + Dq
T (t) + D̃q

T (t)
]
, (46)

∫
dx xE ′ q

2 = ξ
[

Cq
T (t) + Dq

T (t) + D̃q
T (t)

]
, (47)

∫
dx xH̃ ′ q

2 = − (1 − τ ) Bq
T (t) − B̃q

T (t) + Dq
T (t), (48)

∫
dx xẼ ′ q

2 = ξ
[
(1 − τ ) Aq

T (t) + Ãq
T (t) + Dq

T (t)
]
, (49)

where the functions H ′ q
2 (x, ξ, t), E ′ q

2 (x, ξ, t), H̃ ′ q
2 (x, ξ, t), and

Ẽ ′ q
2 (x, ξ, t) are the GPDs parametrizing the non-local twist-3 tensor 

light-front quark correlators [20]

1

2

∫
dz−

2π
eixP+z−〈p′, s′|ψ(− z−

2 )iσ jlγ5Wψ( z−
2 )|p, s〉

= M
2(P+)2 u(p′, s′)� jl

qT u(p, s), (50)

1

2

∫
dz−

2π
eixP+z−〈p′, s′|ψ(− z−

2 )iσ+−γ5Wψ( z−
2 )|p, s〉

= M
2(P+)2 u(p′, s′)�+−

qT u(p, s) (51)

with

�
jl
qT = −iε jl

T

[
γ +H ′ q

2 (x, ξ, t) + iσ+�

2M E ′ q
2 (x, ξ, t)

]
, (52)

�+−
qT = γ +γ5 H̃ ′ q

2 (x, ξ, t) + P+γ5
M Ẽ ′ q

2 (x, ξ, t). (53)

Since the eight (twist-2 and twist-3) tensor GPD moments are 
expressed in terms of seven GFFs, there exists a sum rule among 
them. Adding Eqs. (46) and (47) and using Eq. (29), we find
∫

dx x
[
(1 − τ )Ẽq

T + H ′ q
2 + E ′ q

2

]
= 0. (54)

Moreover, using the relations (34)–(36), we obtain

1
τ−1

1
ξ

∫
dx x

[
H ′ q

2 + τ E ′ q
2

]
= 1

3 �q

+ 2
3

∫
dx x

[
Hq

T − 2τ H̃q
T + Ēq

T

]
, (55)

∫
dx x H̃ ′ q

2 = m
3M Gq

A

+ 1
3

∫
dx x

[
2
(

Hq
T + τ Eq

T

) − τ
ξ

Ẽq
T

]
, (56)

1
ξ

∫
dx x Ẽ ′ q

2 = − m
3M Gq

P + 1
3 �q

+ 1
3

∫
dx x

[
2
(

Hq
T + Eq

T

) − 1
ξ

Ẽq
T

]
. (57)

In the massless quark limit, these expressions provide the Wan-
dzura–Wilczek approximation to the second Mellin moment of 
twist-3 tensor GPDs. Note that they are exact since no three-parton 
correlators were involved in the derivation, similar to what was 
observed in the chiral-even sector [22,23].

Thanks to these results, the quark transverse spin–orbit corre-
lation can now be written in terms of tensor GPDs only
√
2P+
M Cq

j =
∫

dx x[Hq
T (x,0,0) + 3

2 Ēq
T (x,0,0)]

+
∫

dx x[H̃ ′ q
2 (x,0,0) + 2H ′ q

2ξ (x,0,0)], (58)

where H ′ q
2ξ (x, 0, t) ≡ limξ→0

1
ξ

H ′ q
2 (x, ξ, t). It is the chiral-odd ana-

logue of the Penttinen–Polyakov–Shuvaev–Strikman relation for 
the Ji or kinetic OAM [22,24]

Lq
z = −

∫
dx xGq

2(x,0,0) (59)

and of the relation we found in [7] for the quark longitudinal spin–
orbit correlation

Cq
z = −

∫
dx x[G̃q

2(x,0,0) + 2G̃q
4(x,0,0)]. (60)

Note that this time both twist-2 and twist-3 GPDs are necessary 
to express the quark transverse spin–orbit correlation. This may be 
due to the fact that transversity does not coincide with transverse 
spin [12].

4. Discussion

4.1. Burkardt’s correlation

In the former sections, we worked with the asymmetric quark 
kinetic energy–momentum tensor and performed a decomposition 
in terms of quark transversity states. The quark transverse spin–
orbit correlation Cq

x = 〈Lq
x T q

x 〉 can therefore alternatively be seen as 
the transversity asymmetry of the quark OAM, i.e. 〈δx Lx

q〉 following 
Burkardt’s notation.

This has to be contrasted with the work of Burkardt in [9,
10] which is based on the Belinfante or symmetric quark kinetic 
energy–momentum tensor [25–27]. Since in this case the total 
angular momentum assumes a purely orbital form, Burkardt inter-
preted his correlation as the transversity asymmetry of the quark 
total angular momentum 〈δx J x

q〉. It may be tempting to identify it 
with the correlation between quark transversity and total angu-
lar momentum 〈 J q

x T q
x 〉, just like we identified the quark transverse 

spin–orbit correlation Cq
x = 〈Lq

x T q
x 〉 with the transversity asymme-

try of the quark OAM 〈δx Lx
q〉. This is, however, not consistent since 

〈T λ+ν
q5 〉 �= 〈 1

2 T λ{+ν}
q5 〉 as one can see from the QCD identity (33), 

whereas we have 〈T +ν
q 〉 = 〈 1

2 T {+ν}
q 〉 for the unpolarized quark 

energy–momentum tensor. In other words, symmetrization and 
transversity decomposition are not compatible, so that we expect 
in general 〈δx J x

q〉 �= 〈δx Lx
q〉 + 〈δx Sx

q〉.
In the light-front formalism, Burkardt’s quark operator is given 

by

Ĉ
q
x = √

2
∫

d3x
[

x− 1
2 T̂ 1{+2}

q5 − x2 1
2 T̂ 1{+−}

q5

]
(61)

which is like our operator Ĉq
x time-dependent.1 Symmetrizing the 

expansion (24) over the pair of indices {μν}, we find

〈δx J x
q〉 ≡ 〈P ,s|Ĉq

x |P ,s〉
〈P ,s|P ,s〉 = − M

2
√

2P+ (Bq
T + 2B̃q

T − 2Dq
T ). (62)

Note that the GFF D̃q
T naturally drops out of the final result since 

it is associated with a Lorentz structure antisymmetric in the pair 
of indices [μν].

1 We would like to correct a remark in [7]. The quark longitudinal spin–orbit op-

erator Ĉq
z is actually not time-independent since the operator T̂ {μν}

q5 is in general 
not conserved. This has however no practical consequences since we are only inter-
ested in matrix elements where the initial and final energies are the same.
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Table 1
Predictions for the scalar charges �q , tensor charges δq = ∫

dx Hq
T (x, 0, 0), anomalous tensor charges κ

q
T =∫

dx ̄Eq
T (x, 0, 0), and second Mellin moments of Hq

T (x, 0, 0) and Ēq
T (x, 0, 0) for q = u, d from the light-front 

constituent quark model (LFCQM) and the light-front chiral quark-soliton model (LFχQSM) at the scale μ2 ∼
0.26 GeV2, and from lattice calculations at the scale μ2 = 4 GeV2.

Quark model Lattice

LFCQM 
[6,34,35]

LFχQSM 
[6,35,36]

QCDSF/UKQCD Coll. 
[31,32]

Abdel-Rehim et al. 
[33]

δu 1.165 1.241 0.857(13) 0.791(53)

δd −0.291 −0.310 −0.212(5) −0.236(33)

κu
T 3.98 3.83 2.93(13) –

κd
T 2.60 2.58 1.90(9) –

∫
dx xHu

T 0.395 0.418 0.268(6) 0.264(25)∫
dx xHd

T −0.099 −0.105 −0.052(2) −0.045(21)∫
dx xĒu

T 1.080 1.072 0.420(31) –∫
dx xĒd

T 0.737 0.748 0.260(23) –

�u+d – – – 8.93(86)

�u−d – – – 2.20(54)
Actually, Burkardt used the instant-form (IF) formalism, where 
the quark operator is defined as

Ĉ
q
x,I F =

∫
d3x (x2 1

2 T̂ 1{03}
q5 − x3 1

2 T̂ 1{02}
q5 ). (63)

We obtain in this case (once again with P ⊥ = 0⊥)

〈δx J x
q〉I F = 1

2

( E−M
M Bq

T + Dq
T

)
(64)

which is reminiscent of Leader’s result for the transverse Belinfante 
angular momentum [3,28]

〈 J x
q〉I F = 1

2

[ E−M
M Bq + (Aq + Bq)

]
. (65)

In the rest frame, we recover Burkardt’s result

〈δx J x
q〉I F ,rest = 1

2 Dq
T = 1

2 (AT 20 + 2 ÃT 20 + BT 20), (66)

where we have used Eqs. (21) and (23).
At first sight, it may seem odd that the light-front and instant-

form results (62) and (64) have different high-energy limits. This 
is because the transverse OAM light-front operator involves the 
a− component, whereas the instant-form operator involves a3 =

1√
2
(a+ −a−). Therefore, in the high-energy limit E � M , the light-

front result behaves as O(E−1) whereas the instant-form result 
behaves as O (E). In other words, the instant-form operator con-
tains contributions which are of lower-twist compared to the cor-
responding light-front operator.

Beside the instant-form approach, Burkardt proposed in [9] a 
heuristic derivation of Eq. (66) based on the light-front operator 
T̂ j++

q5 , allowing for an intuitive partonic interpretation in impact-
parameter space. Considering the matrix element of the opera-
tor 

√
2
∫

d3x x2 T̂ 1++
q5 , one obtains P+√

2M
Bq

T which coincides, as ex-

pected, with the instant form result (64) in the infinite-momentum 
frame. Working in the rest frame to invoke rotational symmetry, 
Burkardt added an extra term 1

2

∫
dx xHq

T (x, 0, 0) = 1
2 (Dq

T − Bq
T )

to account for an overall transverse displacement of the center 
of light-front momentum with respect to the origin, a relativis-
tic effect associated with rotating bodies. Although quite appeal-
ing, this interpretation is a bit puzzling since, as stressed in [5,
29,30], the term 

∫
d3x x j T̂ ++

q is part of the transverse light-front 
boost operator and not the transverse light-front rotation oper-
ator that one would naively use for transverse angular momen-
tum.
4.2. Estimates from lattice calculations

In order to determine the quark transverse spin–orbit cor-
relation Cq

x we can in principle use any one of the expres-
sions (25), (43) and (58). In the following, we will make use of 
Eq. (43) as it is the only one where all the contributions are avail-
able up to now. Indeed, to the best of our knowledge lattice QCD 
has so far considered only the symmetric traceless operators and 
hence estimated the leading-twist contributions. It would be very 
interesting to consider also the higher-twist contributions appear-
ing in (25) and (58) from the trace and non-symmetric parts, pro-
viding an independent check of Cq

j . A similar remark concerning 
the OAM has been made in Ref. [5].

Coming back to Eq. (43), we need to know four quantities. In 
practice, we can neglect the contribution of the axial FF since it 
appears multiplied by the mass ratio m/3M ≈ 10−3 for u and d
quarks. So far, the second Mellin moment of quark transversity 
GPDs have not yet been extracted from experimental data. We will 
therefore rely on lattice QCD calculations. In Table 1 we summarize 
the results obtained by the QCDSF/UKQCD Collaboration [31,32] for 
the lowest two Mellin moments of the tensor GPDs Hq

T and Ēq
T . 

They are in very good agreement with a more recent calculation 
by Abdel-Rehim et al. [33] which also provides us with an esti-
mate of the quark scalar charges. These values are compared with 
the predictions of two relativistic quark models, namely the light-
front constituent quark model (LFCQM) and the light-front chiral 
quark-soliton model (LFχQSM) [6,34–36]. Note that the second 
Mellin moments are new results we obtained within these mod-
els. Even though the lattice and quark model results correspond to 
two different scales, namely μ2 = 4 GeV2 and μ2 ∼ 0.26 GeV2, we 
observe that they are in qualitative agreement.

Using the lattice results from Table 1 in Eq. (43), we get

C u
x ≈ −3.6, Cd

x ≈ −2.2. (67)

These numbers can be compared with the values for the longitudi-
nal spin–orbit correlation C u

z ≈ −0.9 and Cd
z ≈ −0.53 we obtained 

in [7]. In both cases we found negative spin–orbit correlations, 
meaning that the quark polarization and kinetic OAM are, in aver-
age, anti-correlated. In the rest frame, one can expect from spher-
ical symmetry that longitudinal and transverse spin–orbit correla-
tions should be equal. This does not contradict our results because 
we considered the correlation of quark OAM with transversity and 
not with transverse spin. Note that the large numbers we obtained 
for the transverse spin–orbit correlation are mainly driven by the 
scalar charges, just like the longitudinal spin–orbit correlation is 
mainly driven by the vector charges.
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The numbers in Table 1 can also be used to estimate Burkardt’s 
correlation. In this case, we obtain from Eq. (66)

〈δx J x
u〉latt. = 0.344, 〈δx J x

d〉latt. = 0.104, (68)

〈δx J x
u〉LFCQM = 0.737, 〈δx J x

d〉LFCQM = 0.319, (69)

〈δx J x
u〉LFχQSM = 0.745, 〈δx J x

d〉LFχQSM = 0.321, (70)

which can be compared to the values obtained in [37]

〈δx J x
u〉HYP = 0.39, 〈δx J x

d〉HYP = 0.10, (71)

〈δx J x
u〉HO = 0.68, 〈δx J x

d〉HO = 0.28, (72)

for the hypercentral (HYP) and harmonic oscillator (HO) models.

5. Conclusions

We introduced and discussed the quark transverse spin–orbit
correlation, which is a new piece of information characterizing the 
nucleon spin structure. We showed that this correlation can be ex-
pressed in terms of tensor generalized parton distributions, scalar 
charges and axial-vector charges. Using results from lattice QCD 
calculations, we concluded that the quark transverse spin–orbit 
correlation is very likely negative, just like its longitudinal coun-
terpart. In other words, it is expected that the quark kinetic orbital 
angular momentum is in average opposite to the quark spin.

In the process, we compared our quark transverse spin–orbit
correlation with Burkardt’s transverse correlation, and obtained 
several other interesting results. We derived a new sum rule re-
lating twist-2 and twist-3 transversity generalized parton distribu-
tions, and also obtained the Wandzura–Wilczek expression for the 
second Mellin moment of twist-3 transversity generalized parton 
distributions, which is exact in the chiral limit like in the chiral-
even sector. Finally, comparing Ji’s expression for quark kinetic 
orbital angular momentum to our expression for the quark trans-
verse spin–orbit correlation, we suggested that the scalar charge 
could be interpreted as a measure of the correlation between quark 
transversity and transverse spin.
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