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Abstract

Various methods have been discussed to find the terms of tree level
low energy abelian open superstring effective action with derivative
corrections. In this thesis, we will focus on the open superstring tree
level sacttering amplitude calculation one. We would try to under-
stand this method up to the six-point function in the hope of reaching
a crucial machinery which could help to evaluate the scattering ampli-
tude for any value of N . The main aim of this thesis is to maximize the
usefulness of this method to construct generally the nonabelian gen-
eralization of this action and particularly the nonabelian Born-Infeld
theory up to possible order in field strength Fµν .
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Chapter 1

Introduction

In the 30’s, M.Born and L.Infeld tried to formulate a new model for
nonlinear electrodynamics. By and by, this model is named by Born-
Infeld theory. Born and Infeld in their famous artilce [1], discussed
some arguments about the necessity for nonlinear generalization of
electrodynamics and the possibilities of relating the such theory to
the quantum mechanics. furthermore, the nonlinearity existing in this
theory creates a very large number of interactions of various type be-
tween particles when we use the perturbation approach. It turns out
that such nonlinear models gives rise to a crucial description of real
interactions.
The Born-Infeld theory has some nice properties, in particular, the
nonlinear model put an upper limit on the electromagnetic field strength
and offers to the electron a finite energy, in contrast to the case of usual
electrodynamics. In spite of the fascination of the Born-Infeld theory,
this theory was put on the shelf for a long time, and the breakthrough
of the renormalisation in QCD take care of some of these problems
such as a regular electric field at radius zero, and the finite total en-
ergy of electron. However, recently there has been renewed interest in
this theory in connection with moderns theory of strings and p-branes.
It turns out that determinantal structures very much like the Born-
Infeld Lagrangian frequently appear in this theories. So maybe, the
last word about the Born-Infeld theroy has not yet been said. so ,we
hope that this thesis will be a useful step on the way of solving this
problem.

After almost falling into oblivion for a long time, the Born-Infeld
action re-enters into completely different field of physics .It appears in
string theory as an exact tree-level effective action of an abelian vec-
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tor field in the particular case when the field strength is constant and
small [1].Now the derivative-independent part of the action involves
a determinant

√
det (δµν + 2πα′Fµν) and is defined in 26 space-time

dimensions (in the bosonic string theory). It is only recently,with
the discovery of Dirichlet-branes,that the complete significance of the
Born-Infeld action has been fully appreciated.It is an essential part of
the low energy effective action of a non-perturbative extended object:a
Dirichlet-brane,D-brane for short.In the discussion below ,we focus on
the massless fields of the theory. the following (p + 1)-dimensional
world-volume integral,the Dirac-Born-Infeld action, summarizes the
low energy dynamics of a single Dp-brane embedded in a space-time
with tn metric Gµν :

Sp = −Tp

∫
dp+1x exp (−φ)

√
det (Gmn + Bmn + 2πα′Fµν) (1.1)

where Tp is the tension of the Dp-brane -the mass per unit volume. φ,
Gmn and Bmn, m = 0, . . . , p are the pullbacks of the dilaton, metric
and the antisymmetric tensor, respectively, to the D-brane world vol-
ume. Neglecting all derivatives acting on the field strengths, this low
energy effective is a good approximation when the fields are varying
slowly. when Bmn = 0, the action is of quadratic order in the field
strengths equivalent to the U(1) Maxwell action reduced to (p + 1)
dimensions .Obviously, when Bmn = Fmn = 0, this action is nothing
but a generalized version of the Nambu-Goto action for higher dimen-
sional objects.

Eq. (1.1), describing a single Dp-brane, is an Abelian action, i.e.
all fields commute. When instead considering multiple D-branes, mat-
ters become more complicated .For instance, the world volume fields
become non-Abelian and take their values in the Lie algebra U(N), if
the open strings stretching between the branes are oriented. Several
attempts to generalize the Born-Infeld action describing on D-brane to
non-Abelian action describing a stack of them have been made. The
proper (perhaps closed) form of it is however not known up to date.

In addition the massless Am, m = 0, . . . , p living on the Dp-brane,
(25 − p) transverse scalars Xs, s = (p + 1), . . . , 25, also appear. The
D25-brane anywhere in space, D25-brans are equivalent to free strings
moving in 26-dimensional space-time. One D25-brane with fileds de-
scribed by the gauge group U(N). Then there is an equivalent de-
scription in terms of open strings with Chan-Paton factors -extra non-
dynamical degrees of freedom living at the ends of the strings.
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The correspondence between bsonic D25-branes and open bosonic
strings with ”charges” attached to the endpoints suggests a pertur-
bative course of action to obtain the non-Abelian effective action of
the coincident D25-branes due to the implied equivalence between the
S-matrices. One simply obtains the effective action describing both of
these systems from calculating the open string scattering amplitudes
of non-Abelian massless gauge fields up to give order. The effective ac-
tion describes a point field theory which contains the stringy behavior
up to the order under consideration. This approach will pursued in this
thesis. Things become rather messy when going to high order in the
field strength, so simplification of this complicated calculation is one
of the our aims in this thesis. apparently not only the effective actions
of the D25-branes are of interest; there also exist lower-dimensional
Dp-branes in the theory with p < 25. The effective actions of these
lower-dimensional Dp-branes are obtained by dimentional reduction
from D25-brane by standard procedure.
(I WILL PUT HERE A BRIEF SUMMARY OF THE CHAPTERS
OF THE THESIS )



Chapter 2

Superstring Theory

2.1 Free Bosonic String

In this chapter, we will try small description of string theory, starting
with the free theory, till reaching the interacted string theory which
will be represented by the sacttering amplitude. we will start this
chapter making a brief classical analogy between the free string the-
ory and the free particle one. In the course of discussion, we will try to
deal with this theory at quantum level, and try to quantize the string,
using different old and new approaches which each of them push the
understanding of string theory upwards. To achieve our goal from this
chapter which is the calculation of the scattering amplitude in the con-
text of superstring theory, so , we should go further in our discussion
and look for the supersymmetric version of this string theory.

2.1.1 The Free Praticle Action

We will get a comprehensive understanding, if we will begin with a
point particles discussion. Thus, let’s take a point particle with mass
m moving freely in a target space described by its metric gµν . The
metric tensor in this case has to be the Minkowski metric which has
one negative component and D − 1 positive components, with D the
dimension of the target space. The action which describes this mas-
sive free particle can be written under the form

S = −m

∫
ds. (2.1)
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The line element is given by ,

ds2 = −gµν(x)dxµdxν (2.2)

with xµ is the scalar field which describes the trajectory of the particle
on the target space. Then (2.1) could be written in the form

S = −m

∫
dτ
√
−ẋ2 (2.3)

where τ is the coordinate which describes the particle on the worldline
and

ẋ2 ≡ gµν(x)
dxµ

dτ

dxν

dτ
(2.4)

Unfortunately, this form of the action(2.3) has many disadvantages,
one of them the presence of the square root in the action which is not
helpful for any advanced discussion, and this action could be extended
to describe the massless particle. So that, by using the invariant of
this action under the reparametrization transformation

τ → τ̃ ,

we can put this action under more elegant form using the backgroud
field e(τ)

S =
1

2

∫ (
e−1ẋ2 − em2

)
dτ. (2.5)

So, the e equation of motion is

ẋ2 + e2m2 = 0. (2.6)

It is not that difficult to go from (2.5) to the form(2.3).

Let’s take the infinitesimal transformation of the reparameterization
symmetry mentioned above

δx = ξẋ (2.7)
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δe =
d

dτ
(ξe) , (2.8)

where ξ(τ) is the parameter of the symmetry.

We can see the influence of the auxiliary field e(τ) on the Xµ by
fixing the gauge of the reparametrization invariance. It turns out that
eq.(2.6) can be considered as a constraint on the motion namely the
mass shell-condition. We think that this will be suffice to prepare the
ground for a study of strings.

2.1.2 String Action and Equations of Motion

Now we are ready to start discussing one of the generalization of the
point particle which is the string . Dealing with the string case is
not so far from the particle one. Our interest in this thesis is really
in strings and especially in open strings (closed string have similar
interpretation,throughout our discussion we will avoid to talk about
the closed string,to reach our purpose pretty soon). In flat Minkowski
space the string theory generalization of the action (2.5) is

S = −T

2

∫

M

d2σ
√

hhαβ (σ) ∂αXµ∂βXµ, (2.9)

where σ0 = τ and the special coordinates σ1 = σ that can be chosen
to be 0 ≤ σ ≤ π, Xµ in this action is a massless scalar field in a target
space with D-dimensinal, and hαβ is a backgroud field which describes
the worldsheet .

Let us turn now to the symmetries of (2.9). These are the world-
sheet reparametrization invariances

δXµ = ξα∂αXµ (2.10)

δhαβ = ξγ∂γh
αβ − ∂γξ

αhγβ − ∂γξ
βhαγ (2.11)

δ(
√

h) = ∂α(ξα
√

h) (2.12)

and the Weyl scaling



10

δhαβ = Λhαβ (2.13)

In addition there are space-time global symmetries. For flat Minkowski
space this is just Poincaré invariance, described by

δXµ = aµ
νX

ν + bµ (2.14)

and

δhαβ = 0, (2.15)

where aµν = ηµνa
ρ
ν is antisymmetric tensor. (ηµν is the Minkowski

metric.)

To get similar mass-shell condition to what we got in the case of
particle theory, we prefer to start the discussion with defining the
two-dimensional energy momentum-tensor

Tαβ = − 2

T

1√
h

δS

δhαβ
. (2.16)

it is easy to get

Tαβ = ∂αXµ∂βXµ − 1

2
hαβhα′β′∂α′X

µ∂β′Xµ. (2.17)

Using the Weyl symmetry, we conclude

hαβTαβ = 0,

deriving the hαβ field equation gives

δS

δhαβ
= 0

as a consequences we reach the constraints which govern the motion
of string

Tαβ = 0.
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In fact, as we mention in particle theory case ,that hαβ is not a dynam-
ical variable, is kind of auxiliary field, and since we have three pareme-
ters of three local symmetries for two tranformations,two are coming
from reparemetrazition invariance and one is coming from Weyl invari-
ance, and since also the metric has three independent components, so
we could gauge the hαβ metric away by this gauge choice

hαβ = ηαβ =

( −1 0
0 1

)
,

the two-dimensional Minkowski metric.

under this choice, the action is

S = −T

2

∫
d2σηαβ∂αX.∂βX. (2.18)

Varying with respect to Xµ ,We then get the following equations of
motion

(∂2τ − ∂2σ) = 0. (2.19)

with
X ′(σ + 2π) = Xµ(σ)

which verifies the boundary condition in the case of open strings. It is
necessary but not sufficient to ensure t that (2.18) is invariant under
general variation

Xµ → Xµ + δXµ

.

The general solution to the massless wave equation can be writ-
ten as a sum of two arbitrary functions

Xµ(σ) = Xµ
R(σ−) + Xµ

L(σ+), (2.20)

where

σ− = τ − σ (2.21)

σ+ = τ + σ. (2.22)
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Xµ
R,L are arbitrary functions, subject only to boundary conditions.

They describe the ”right”-and ”left”-moving modes of the string re-
spectively.

We still have to impose on the solutions of the equations of motion
the constraints resulting from the gauge fixed equations of motion for
the metric, we have to require that

T10 = T01 = Ẋ.X ′ = 0 (2.23)

T00 = T11 =
1

2
(Ẋ2 + X ′2) = 0. (2.24)

which can alternatively expressed as

1

2
(Ẋ ±X ′)2 = 0

In the light cone coordinate system, the constraints become

T++ =
1

2
(T00 + T01) = ∂+X.∂+X, (2.25)

T−− =
1

2
(T00 − T01) = ∂−X.∂−X (2.26)

T+− = T−+ = 0 (2.27)

where T++ = 1
2
(T00 + T01), T−− = 1

2
(T00 − T01). The last equations

express the tracelessness of the energy-momentum tensor, it turns out
that

Ẋ2
R = Ẋ2

L = 0. (2.28)

As mentioned, the analysis of open-string is what we are interested
in.

The general solution of the wave equation with these boundary con-
ditions is given by

Xµ(σ, τ) = x µ + l2p µτ + il
∑

n6=0

1

n
α µ

ne−inτ cos nσ (2.29)
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where
l =

√
2α′ = 1/

√
πT

The open-string boundary conditions cause the left-and right-moving
components to combine into standing waves. In particular,

2∂±Xµ = Ẋµ ±X ′µ = l

+∞∑
−∞

αµ
ne−in(τ±σ)

where we have set α0
µ = lp µ.

Let us consider now the mode expansions of the constraints Tαβ.
In the case of open string, the constraint equations amount to the
vanishing of T++ for −π ≤ σ ≤ π,or equivalently to the vanishing of
its Fourier components

Lm = T

π∫

0

(eimσT++ + e−imσT−−)dσ

=
T

4

π∫

−π

eimσ(Ẋ + X ′)2dσ

=
1

2

+∞∑
−∞

αm−n.αn. (2.30)

A string in a given state of oscillation has a mass squared M2 =
−pµp

µ.The constraint equation L0 translates into a very important
equation that determines M2 in terms of the internal modes of oscil-
lation of the string. This is

M2 =
1

α

∞∑
n=1

(α−n.αn) (2.31)

for open strings. Equation (2.31) is known as the mass-shell condition
for open string.

2.1.3 String Quantization

In fact, we have many ways to quantize the bosonic string. Since
quantization itself is not our target, and since all the approaches will
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offer the same result, we are trying here to follow the old covariant
approach on which we will be able to rely and quantize also the su-
persymmetric string. .
In this approach the Xµ has not been anymore classical field we will
deal with it as quantum operator with momentum conjugate

P µ
τ = TẊµ,

the canonical commutation relations at equal τ .

[P µ
τ (σ, τ), Xν(σ′, τ)] = −iδ(σ − σ′)ηµν (2.32)

[Xµ(σ, τ), Xν(σ′, τ)] = [P µ
τ (σ, τ), P µ

τ (σ′, τ)] = 0. (2.33)

Besides,

[xµ, p ν ] = iηµν (2.34)

and the αµ
m have commutation relations

[αµ
m, αν

n] = mδm+nηµν . (2.35)

The αm are therefore naturally interpreted as harmonic oscillator rais-
ing and lowering operators for negative or positive m, respectively.

We saw that the constraints conditions correspond to the vanishing
of T++ and T−−, whose fourier modes give the Virasoro generators

Lm =
1

2

∞∑
−∞

αm−n.αn,

In quantum field theory discussion the situation is rather different and
we have to take care of ordering ambiguities and αm has to be quan-
tum operators. In fact this problem is restricted to arise only in L0.
So the normal ordering form of L0 is

L0 =
1

2
α2

0 +
∞∑

n=1

α−n.αn. (2.36)
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To solve this problem, people postulated to introduce a constant a.
Somehow, the state to be physical has to obey first, the following con-
dition

(L0 − a) | φ〉 = 0, (2.37)

in the case of open string,

M2 = −2a + 2
∞∑

n=1

α−n.αn. (2.38)

The other condition which the state has to obey to be physical is

Lm | φ〉 = 0 m = 1, 2, . . . (2.39)

and the Lm generators are related by the Virasoro algbra commuta-
tion relation

[Lm, Ln] = (m− n)Lm+n +
1

12
D(m3 −m). (2.40)

Let us turn now to interpret the bosonic open string spectrum.
First we denote the ground state of momentum kµ as | 0; k〉. And
later we impose the mass-shell condition L0 = a on the mentioned
state. As an example we take the first excited state. We denote this
state by

| 1; k〉 = ζ · α−1 | 0; k〉
with ζµ is the D-dimentional polarization vector before using any
gauge constraint. Imposing the mass-shell condition we get

k2 = 2(a− 1)

.
We still have one more condition which we can impose on the first
excited state which is

L1 = 0,
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it implies that

ζ · k = 0.

The D number of degrees of freedom beaks down to D − 1 polariza-
tions under these conditions. The norm of these states is found to be

〈1; k | 1; k〉 = ζ2.

We have the choice to interpret the case in any lorentz frame. For
instance , if we choose the vector k to lie in (0, 1),it turns out that the
D − 2 states with spacelike polarization normal to that plane has the
positive norm.
At some stage , we take a such that:

• The first excited state is tachyon, k2 > 0 ,this implies that k0 = 0
then we get

ζ2 < 0.

• The second case is k2 < 0, so, in this case it is clear that k have only
time component, this implies

ζ2 > 0.

• Finally, if k2 = 0 the polarization vector is proportional to k

ζ2 = 0.

Then we can conclude from this interpretation that this spectrum to
be ghost-free has to set

a ≤ 1.

And in the case of a = 1 the vector particle is massless and the ground
state is a tachyon. And the L1 condition leaves D − 2 positive-norm
states with transverse polarization, and one longitudinal state ζµ = kµ

of zero norm.

The general claim which we would like to emphasize in the end of
this section, is that the spectrum is ghost-free provided that a = 1
and D = 26
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2.2 Supersymmetry in String Theory

With bosonic open string, we have not yet reach the ideal picture, and
that is because of many reasons, one of this reason is that we still deal
with the bosonic string, and we still need to interpret the problem in
the presence of fermion. besides, the the appearance of tachyon in the
spectrum of bosonic string is not desirable. Solving these problems
push people to think of extra symmetry, we could introduce it in the
form of the bosonic string action in the hope of getting the supersym-
metring string theory. This symmetry is the supersymmetry.

The particular string theory described in this section is based on
the introduction of a world-sheet supersymmetry that relates the space
time Xµ(σ, τ) to the fermionic partners ψµ(σ, τ). The latter are two-
component world-sheet spinors.

To generalize the free bosonic string theory to supersymmetric ver-
sion, it is better to start the discussion by rewrite the bosonic string
action,

S = − 1

2π

∫
d2σ∂αXµ∂

αXµ.

In fact, we have few possibility to pick up a relevant spinor which
leads to interesting theory. Introducing D−plet of Majorana fermions
ψµ

A(σ, τ) was the most appreciated way. Let’s not here that this spinor
is transforming in the vector representation of the lorentz group(with
A denote world-sheet spinor indices) SO(D−1, 1). So, the generalized
langrangian is

S = − 1

2π

∫
d2{∂αXµ∂αXµ − iψ̄µρα∂αψµ}. (2.41)

Here the symbol ρα represents two-dimensional Dirac matrices. A con-
venient basis is

ρ0 =

(
0 −i
i 0

)
, ρ1 =

(
0 i
i 0

)
. (2.42)

These matrices satisfy

{ρ α, ρ β} = −2ηαβ. (2.43)
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In this basis the spinor ψ can be written as ψ±:

ψ =

(
ψ−
ψ+

)
. (2.44)

We have chosen the ρα to be purely imaginary, so the Dirac operator
i%α∂α is real. such a two-components real spinor is known as Majorana
spinor. The symbol ψ̄ indicates ψ†ρ0 as usual. One of the important
properties of these Majorana spinors is, if for example, χ and ψ are
anticommuting variables, so in this case

χ̄ψ = ψ̄χ.

To make sense of (2.41) we have to face precisely analogous question
for the fermions such as in the bosons (in D=26, we have free-ghost)
for (2.41) we can deduce the equal τ commutation relations of the
fermions,

{ψµ
A(σ), ψν

B(σ′)} = πηµνδABδ(σ − σ′). (2.45)

The Virasoro conditions are enough to eliminate the wrong metric
modes created by X0(σ) in the purely bosonic model, but to solve the
analogous problem for ψ0

A(σ) we have to find a new symmetry and
new constraints. This new symmetry is supersymmetry.

2.2.1 World-Sheet Supersymmetry

All what we need from this analysis is to reach the RNS formulation,
In our opinion , studying supersymmetry on the world sheet is the
short way to get it. Without going to proof, we can say that the ac-
tion (2.41) is invariant under the infinitesimal transformations

δXµ = ε̄ψµ

δψµ = −iρα∂αXµε, (2.46)

with ε is a constant anticommuting spinor.

It seems pretty clear from these formulas that this supersymme-
try transforms fermion to boson and vice versa. From the supersym-
metric invariance of the action , and by using the Noether theorom,
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we can get not only the usual energy-momentum tensor including the
fermionic degrees of freedom, but in addition, we get an extra current
called supercurrent.

Using (2.41) and the subsequent formula (2.46) for the supersymmetry
transformation law, one can derive that, if ε is a constant, it leaves
the action S invariant. If ε is not constant, the (2.46) does not leave
the action invariant, but its variation is of the general form

δS =
2

π

∫
d2σ(∂αε̄)Jα

Jα is then conserved Noether current. applying Noether theorem for
supersymmety symmetry (2.46), gives the formula for the supercurrent

Jα =
1

2
ρβραψµ∂βXµ. (2.47)

Applying the same theorem to the translation δσα = constant, gives
the formula for the energy-momentum tensor:

Tαβ = ∂αXµ∂βXµ +
i

4
ψ̄µρα∂βψµ +

i

4
ψ̄µρβ∂αψµ − (trace). (2.48)

In spite of introducing the fermionic field the energy-momentum tensor
still have the same properties acquired in the bosonic case. but what
it is new here is the analogous restriction imposing on the supercurrent

ραJα = 0, (2.49)

and it is easy to obtain as a consequence ραρβρα = 0.

The fermion equation of motion derived (2.41)is simply the two-
dimensional Dirac equation ρα∂αψ = 0. In the basis for ρα given in
(2.42) this decoupled equations for the upper and lower components
of ψµ

(
∂

∂σ
+

∂

∂τ

)
ψµ
− = 0

(2.50)(
∂

∂σ
− ∂

∂τ

)
ψµ

+ = 0.
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Thus ψ− and ψ+describe right-and left-moving modes, respectively.
By introducing light-cone coordinates on the world sheet σ± = τ ± σ
and ∂± = 1

2
(∂τ ± ∂σ). We are able to write the fermionic part of the

action (2.41)

SF =
1

π

∫
d2σ(ψ−∂+ψ− + ψ+∂−ψ+) (2.51)

we actually have a two dimensional chirality operator

ρ̄ = ρ0ρ1

actually has ψ± for its eigenstates (to be precise, ρ̄ψ± = ∓ψ±.)

In terms of light-cone components we write

J+ = ψµ
+∂+Xµ

(2.52)

J− = ψµ
−∂−Xµ.

They are obviously conserved

∂+J+ = ∂−J+ = 0,

Using the equal τ (anti)commutators

{ψµ
+(σ), ψν

+(σ′)} = {ψµ
−(σ), ψν

−(σ′)} = πηµνδ(σ − σ′)

[∂±Xµ(σ), ∂±Xν(σ′)] = ±i
π

2
ηµνδ′(σ − σ′) (2.53)

{ψµ
+, ψν

−} = [∂+Xµ, ∂−Xν ] = 0,

one can readily calculate the algebra

{J+(σ), J+(σ′)} = πδ(σ − σ′)T++(σ)

{J−(σ), J−(σ′)} = πδ(σ − σ′)T−−(σ) (2.54)

{J+(σ), J(σ
′)} = 0.

Here T++ and T−− are the light-cone components of the energy-momentum
tensor

T++ = ∂+Xµ∂+Xµ +
i

2
ψµ

+∂+ψ+µ
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T−− = ∂−Xµ∂−Xµ +
i

2
ψµ
−∂−ψ−µ. (2.55)

The constraint equations which can eliminate the timelike components
of ψ+ and Xµ alike are the super-Virasoro constraints,

T−− = T++ = J− = J+ = 0. (2.56)

The boundary conditions derived in the case of open bosonic string
will not be modified here for the Xµ, but we still have to look for
boundary condition for the fermionic coordinates , so we follow the
same procedure of purely bosonic-string ,it comes out that the surface
term which has to be vanished at each end of open string is

ψ+δψ+ − ψ−δψ−.

So we set
ψµ

+(0, τ) = ψµ
−(0, τ). (2.57)

In fact, the discussion here come in two cases .

• Ramond(R) boundary conditions)

ψµ
+(π, τ) = ψµ

−(π, τ), (2.58)

and the mode expansion of the Dirac equation becomes

ψµ
−(σ, τ) =

1√
2

∑
n∈Z

dµ
ne−in(τ−σ) (2.59)

ψµ
+(σ, τ) =

1√
2

∑
n∈Z

dµ
ne−in(τ+σ) (2.60)

Where are run over all integers n.

• Neuveu-schwarz(NS) boundary conditions, one chooses

ψµ
+(π, τ) = −ψµ

−(π, τ) (2.61)

so that the mode expansions become

ψµ
−(σ, τ) =

1√
2

∑

r∈Z+1/2

bµ
r e
−ir(τ−σ) (2.62)



22

ψµ
+(σ, τ) =

1√
2

∑

r∈Z+1/2

bµ
r e
−ir(τ+σ) (2.63)

where now the sums run over half-integer modes r.

The super-Virasoro operators are given by the modes of Tαβ and
Jα. For open strings, there is one independent set of Lm’s defined,just
as in the previous chapter, by linear combination,

Lm =
1

π

π∫

0

dσ{eimσT++ + e−imσT−−} =
1

π

π∫

−π

dσeimσT++. (2.64)

For the fermionic generators of the algebra we define

Fm =

√
2

π

π∫

0

dσ{eimσJ+ + e−imσJ−} =

√
2

π

π∫

−π

dσeimσJ+ (2.65)

in the case of R boundary conditions or

Gr =

√
2

π

π∫

0

dσ{eirσJ+ + e−irσJ−} =

√
2

π

π∫

−π

eirσJ+ (2.66)

in the case of NS boundary conditions.

2.2.2 Quantization and RNS Formulation

So far, our familiar interpretation has been already finished, we be-
come so close to establish the RNS formulation, to reach this point
we start our discussion with describing the quantization of the super-
string using the techniques described for the bosonic string. As we
have seen above we have two kinds of boundary conditions related to
two sectors (fermionic and bosonic), and for simplification we prefer
to study them seprately.

The dynamics of the coordinates Xµ(σ, τ) and ψµ(σ, τ) are given
by two-dimensional Klein-Gordon and a free Dirac equation supple-
mented by certain constraints. In addition to the commutators re-
sulted by the quantization of the Xµ coordinates which we saw in the
purely bosonic case, we have the quantization of the fermionic coor-
dinates. The canonical anticommutation relations for the coordinates
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ψµ
A(σ, τ) are

{ψµ
A(σ, τ), ψµ

B(σ′, τ)} = πδ(σ − σ′)δAB. (2.67)

This implies that the modes bµ
r or dν

n introduced before satisfy

{bµ
r , b

ν
s} = ηµνδr+s (2.68)

{dµ
m, dν

n} = ηµνδm+n. (2.69)

The zero-frequency part of the Virasoro constraint gives the mass-
shell condition

α′M2 = N + a.

And

N = Nα + Nd (2.70)

or
N = Nα + N b (2.71)

where

Nα =
∞∑

m=1

α−m.αm (2.72)

Nd =
∞∑

m=1

md−m.dm (2.73)

N b =
∞∑

r=1/2

rb−r.br. (2.74)

Let’s now examine the states of the theory. In doing so we distinguish
between two sectors, The R and the NS sectors corresponding to the
boundary conditions discussed above. the oscillator groud state in
both sectors is defined by

αµ
m | 0〉 = dµ

m | 0〉 = 0 m > 0 (2.75)

or
αµ

m | 0〉 = bµ
r | 0〉 = 0 m, r > 0 (2.76)

An excitation by a raising operator αµ
−m or dµ

−m increases the eigen-
values of α′M2 by m units. Similarly, bµ

−r increases α′M2 r units.
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In the R sector we will have the dµ
0 zero modes. They do not

change of a given state, in particular the ground state. It is easy to
check that

[dµ
0 ,M

2] = 0

which means the states | 0〉 and dµ
0 degenerate in mass.

It turns out here that in the NS sector there is a unique ground state
which must therefore be spin zero (tachyon) . In the R sector the
ground state degenerate .
Suprisingly, since the dµ

0 are generators of a clifford algebra

{dµ
0 , d

ν
0} = ηµν

we conclude that the R ground state is a spinor of SO(D − 1, 1).
This algebra is just the Dirac algebra, so up to normalization the zero
modes dµ

0 are Dirac matrices.

The oscillator expressions of the super-Virasoro generators are again
undefined without giving an operator ordering prescription ,as in the
purely bosonic case we define them by their normal ordered expres-
sions,

Lm = L(α)
m + L(b)

m (NS) (2.77)

Lm = L(α)
m + L(d)

m , (R) (2.78)

where

L(α)
m = 1

2

∞∑
n=−∞

: α−n.αm+n : (2.79)

as before, and

L(b)
m = 1

2

∞∑
n=−∞

(r + 1
2
m) : b−r.bm+r : (2.80)

L(d)
m = 1

2

∞∑
r=−∞

(n + 1
2
m) : d−n.dm+n : . (2.81)
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in each case the normal ordering is only required for m = 0. For the
fermionic generators one finds

Gr =
∞∑

n=−∞
αn.br+n (NS) (2.82)

Fm =
∞∑

n=−∞
α−n.dm+n (R) (2.83)

The super-Virasoro algebra in the bosonic (or NS) sector is

[Lm, Ln] = (m− n)Lm+n + A(m)δm+n

[Lm, Gr] = (1
2
m− r)Gm+r (2.84)

{Gr, Gs} = Lr+s + B(r)δr+s.

Here A(m) and B(r) are c-number anomaly terms, analogous to those
that arise in the bosonic theory with values

A(m) = 1
8
D(m3 −m)

B(r) = 1
2
D(r2 − 1

4
)

The anomaly A(m) receives two-thirds of its contribution from the α
oscillators and on-third from b oscillators. The fermionic (R) sector
has a very similar algebra

[Lm, Ln] = (m− n)Lm+n + A(m)δm+n

[Lm, Fn] = (1
2
m− n)Fm+n (2.85)

{Fm, Fn} = 2Lm+n + B(m)δm+n,

where now the anomalies are

A(m) = 1
8
Dm3

B(m) = 1
2
Dm2

In the old covariant approach the constraint equations are incor-
porated into the quantum theory by requiring that their positive-
frequency components annihilate physical states. thus, proceeding in
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analogy to pure bosonic case, we require that a physical bosonic state
| φ〉 satisfy

Gr | φ〉 = 0 r > 0 (2.86)

Ln | φ〉 = 0 n > 0 (2.87)

(L0 − a) | φ〉 = 0, (2.88)

where a a is a constant to be determined. The infinite number of con-
ditions in that formulas all follow from the particular two G1/2 | φ〉 =
G3/2 | φ〉 = 0 as a consequence of the algebra (2.84).

Now we would like to determine the critical values of a and D in
the theory. Finding extra zero-norm states that occur for special val-
ues of a and D can help us sketch out the ghost-free region.

After small calculation , we find a = 1/2 for NS-sector and a = 0
for R-sector are the preferred value of a, analogous to a = 1 in the
bosonic string.

Let us turn our attention now to the fermionic sector. Once again
a physical state | ψ〉 is required to be annihilated by the positive-
frequency components of the constraint conditions

Fn | ψ〉 = Ln | ψ〉 = 0, n > 0. (2.89)

In addition, the zero-mode condition gives a wave equation

F0 | ψ〉 = 0. (2.90)

Since F 2
0 = L0, (2.90) implies that

L0 | ψ〉 = 0. (2.91)

In both sectors, and after a few algebra and using the constraints
conditions, we will find out that the critical D is equal 10 .



Chapter 3

Tree Amplitudes

So, we are almost so close to the Master formula which we are looking
for, and on which we will rely to start discussing the possibility of
constructing the low energy effective action of the open string. Af-
ter discussing the RNS supersymmetric formulation, we still should
extend this formulation to scattering amplitude terminology. In fact,
taking tree amplitude as a leading contribution to evaluate the scat-
tering amplitude, and basing on the perturbation structure of the field
theory, we can say that the correlation function which describes the
scattering of M- external open strings can be taken as a feasible start
to get a simplified a computation of the scattering amplitude. Before
going further, let us define what the tree amplitude is, we prefer here
to talk about the tree amplitude from point of view of the purpose of
using this tree approximation in this thesis

At quantum level, the tree-level M-point function derived from the
quantum effective theory is equal to one particle irreducible M-point
function in the original quantum field theory, which means that the
classical field theory of the quantum effective theory is equivalent to
the original quantum field theory, in a sense that the tree approxi-
mation of the correlation functions for the new action gives the exact
quantum correlation functions of the original theory. To clarify the
exact role of the scattering amplitude in describing the interacting
strings, let’s start our studying in this section with focusing on the
scattering amplitude structure and the effective ingredients to sim-
plify it.

27
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3.1 Tree Amplitudes structure in Open

Strings

Thinking about scattering amplitude in the context of string theory is
not so far from that in the quantum field theory. We would rather to
illustrate some differences between the two cases which will be useful
in our effective action construction and gets the picture a tiny bit
clear for the reader. There are different field theories describing the
point-particle behavior, in contrast to the string which has one theory
governs its structure;string theory. It comes out that we still have far
fewer string diagrams than Feynman diagrams, precisely, the reason
is that the string theory with few diagrams, at low energy, reproduces
a field theory with many Feynman diagrams. On the other hand, the
derivation itself of string scattering amplitude is more complicated
and not easy reachable as in the case of field theory. Nevertheless, the
complete understanding of the perturbation structure of field theory
based on the point-particle correlation function and using the vertex
operator method helps to deduce the general form of theoretic string
amplitude of M external open strings

AM = gM−2〈φ1 | V2(k2)∆V3(k3 · · ·∆VM−1(KM−1) | φM〉 (3.1)

The vertex operator for this formula represents the vertex interaction,
it is the absorption and emission of an external line by an internal line.
The vertex operator for a state Λ with momentum kµ can be given by

VΛ(k, τ) = eiτL0VΛ(k, 0)e−iτL0 (3.2)

We know from field theory that the inverse of the operator existing
in the field equation is the propagator of the field, so the propagator
in (3.1) is coming from the the mass-shell condition (L0 − 1) | φ〉 = 0
which represents a similar structure to the Klein Gordon equation
(2 + m2) | φ〉 = 0, we conclude that the theoretic string propagator is

∆ = (L0 − 1)−1 =

∫ 1

0

zL0−2dz (3.3)

It is convenient to define z = eiτ . The vertex operator of (3.2) is
required to have conformal dimension J = 1, in a sense that

[Lm, VΛ(k, z)] =

(
zm+1 d

dz
+ mzm

)
VΛ(k, z). (3.4)
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Vertex operator are constructed from normal-ordered expression based

Xµ = xµ − ipµ ln z + i
∑

n 6=

1

n
αµ

nz−n (3.5)

and its derivatives (we prefer here to set the open string Regge slope
α′ = 1

2
in this studying and we will pop it up in the final result). For

example, the vertex operator for a massless vector particle of momen-
tum kµ and polarization ζµ is given by

V (ζ, k, z) = ζ · Ẋ(z)eik·X(z). (3.6)

In this case we must set k2 = k · ζ = 0. Before moving to next
subsec- tion, mention that any physical state can | Λ; k〉 be obtained by
inserting in the far past a suitable operator-namely its vertex operator
VΛ(k). Thus,

| Λ; k〉 = lim
τ→i∞

e−iτVΛ(k, τ) | 0; 0〉.
Likewise, we have a formula analogous to that one for final states

〈Λ; k |= lim
τ→−i∞

eiτ)〈0; 0 | VM(k, τ).

These formulas will be useful for the upcoming calculation.

3.2 Symmetries and Tree Unitarity

All our forthcoming discussions will take the duality and the symme-
tries of the scattering amplitude as tools to understand the whole ex-
pression of the (3.1). Because of lack of information coming from the
world-sheet open strings, people tried to make a subsequent conformal
mappings for the world-sheet, to get in the end the SL(2, c) symmetry
helps to show up the external strings as vertex operator on a plane or
on a boundary of disk, which make the expression of AM symmetric
under the cyclic permutation of external particles. Proving this cyclic
symmetry is not our purpose in this thesis [3]. After getting the prop-
erty of duality we can talk about the tree level unitarity requirements.
The main obstacle which prevents us proceeding rapidly in our eval-
uation of this AM is the presence of the poles which come from two
different sources. The first source is derived explicitly from the prop-
agator existing in (3.1). On the other hand, because of the duality
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property there are extra poles in channels which are easy seen from
the cyclic transformation of the M -external particles. These poles
arise as singularities in the infinite sum that are implicit in the op-
erator multiplication (further discussion concerning this point will be
illustrated in some examples in the end of this chapter). Unitarity
property can be applied to the correspondence between string theory
and particle theory at low energy and show up the poles in different
crossed channels. Besides, one of the interesting properties of unitar-
ity is that the residue of a pole in any subprocess should factorize as
the product of tree amplitude of different subprocesses [3]. The last
property of duality is the requirement of making the (3.1) free-ghost.
It means that Vi in AM are all required to satisfy the mass shell condi-
tion and the Virasoro conditions, furthermore, the propagators which
appear as poles have to follow the same property which is imposed by
unitarity.

We actually believe in symmetry as a very powerful tool to make
generally physics understandable, and to put particularly a large re-
striction on our scattering amplitude calculation which seems to be
complicated and messy with higher order of M . Going on under-
standing the structure of (3.1) we remark that is invariant under the
following gauge tranformation AM

ζµ → ζµ + εkµ. (3.7)

We can see from the the quantization of bosonic string that a large
number of zero-norm state and its decoupling corresponds to a large
number of gauge symmetries [3]]. So, by giving different values to
M we will show in our examples for massless states, in the end of
this chapter that one small part of AM should be calculated and the
remainder could be deduced by gauge invariance. Understanding the
whole usefulness of these symmetries and unitarity is still not feasible,
and in our thesis, we will try to shed the light on this problem and put
some comments we hope that they will be useful for the forthcoming
researches.
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3.3 Tree Amplitude in the RNS Formu-

lation

As we defined before, the physical vertex operators, are operators
which describes physical state operators of a spectrum generating by
mass- shell condition and Virasoro algebra. Nevertheless, mapping
physical states to physical states in superstring RNS context requires
two conditions, for example, in the case of boson emission from a
bosonic state:

• Conformal dimension of vertex operator V has to be one(J = 1).

• Vertex operator V must commute with Gr (NS Virasoro generators).

Given in (NS) sector, an operator W which gives a vertex operator
V (0) independent of r such that for every r ∈ Z + 1

2

V (0) = [Gr,W (0)].

We have

G2
r = L2r,

it gives that
G(r), V (0) = [L2r,W (0)].

Back to

[Lm, V (τ)] = eimτ (−i
d

dτ
+ mJ)V (τ),

we can conclude that V has J = 1 if W has comformal dimension
J = 1/2.
To employ this discussion in its suitable place, we prefer before giving
any examples to discuss the GSO projection generally and apply it
particularly on our vertex operator method to get the boson emission
vertex operator which are looking for. Let us remind the reader that
all what we have studied so far, is the world-sheet supersymmetry.
Therefore we need the GSO projection to:

1- Have a space-time supersymmetric spectrum.
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2- Get rid of the state describing tachyon.

To understand the GSO projection, we discuss it briefly, and sepa-
rately in bosonic (NS) and fermionic (R) sector.

In bosonic (NS) string

Let us define a quantum number G which is the eigenvalue of the
operator

G = (−1)N

where N is the world-sheet fermion number operator. Take | 0; k〉 as
a NS vacuum, acting G on it yields

(−1)N | 0; k〉 = − | 0; k〉 i.e. G = −1

In NS sector, we have

N =
∑

r=1/2

b−r · br − 1.

A general state in the NS-sector,

αi1
−n1

· · ·αiN−nN
bj1
−r1

· · · b−rM | 0; k〉

has
G = (−1)M

and all states with M even are projected out.

In fermionic (R) string

In the R-sector the equivalent of G is a generalized chirality opera-
tor

Γ = (−1)N = d1
0 · · · d8

0(−1)

∞∑
n=1

d−n·dn

where d1
0 · · · d8

0 is the chirality operator in the 8 transverse dimensions

and
∞∑

n=1

d−n · bn the world-sheet fermion number operator.
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Then a general state in the R-sector

αi1
−n1

· · ·αin
−nN

bj1
−m1 · · · bjM

−mM
| ψ0〉

has

Γ = (−1)M(−1)

∑
i

δi,0

and

αi1
−n1

· · ·αin
−nN

bj1
−m1 · · · bjM

−mM
| ψ̄0〉

has

Γ = −(−1)M(−1)

∑
i

δi,0

GSO projection demands that all state have either Γ = 1 or Γ = −1.

In fact, we can deduce two types of states and vertices (bosonic
(NS) string) according whether M is odd or even,

• If W is bosonic operator (M even)⇒ V is a fermionic vertex opera-
tor as in the case of tachyons. The string states emitted or absorbed
by V are called states of odd G-parity.

• If W is fermionic operator (M is odd)⇒ V is bosonic vertex op-
erator as in the case of massless vector bosons. The string states
emitted or absorbed by V are called states of even G-parity.

Using the GSO conditions in the NS-sector case, the odd G-parity
states do lead to inconsistensies, and we are forced to truncate the
spectrum to the even G-parity.

Example: The first excited state (massless vector of polarization ζµ

and momentum kµ ), we have

W (0) = ζ · ψ(0)eik·X(0).
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For k2 = 0 and constraint condition ζ · k = 0, the physical boson
emission vertex operator

V = {Gr,W} = (ζ · Ẋ(0)− ζ · ψ(0)k · ψ(0))eik·X(0).

Discussing Bosonic emission from fermionic (R) string is not much
different than what we did for (NS) string, we just have to replace
the operators Gr by ones Fm for the fermionic sector. So now we are
stuffed with the appropriate ingredients to analyze the tree level am-
plitudes in the RNS formulation.

In fact, we don’t have many differences between interpreting tree scat-
tering amplitude in the purely bosonic state and its interperetation in
(NS) bosonic sector context. Therefore, it turns out that we can define
superstring tree amplitude as

AM = gM−2〈φ1 | V (2)∆V (3) · · ·∆V (M − 1) | φM〉. (3.8)

Nevertheless, in the NS-sector, the tree unitarity and cyclic symmetry
require two extra conditions:

• The physical state vertex operator V must be bosonic with J = 1.

• The intermediate-state poles ∆ has to satisfy the super-conformal
conditions Gr as well as those associated by the Ln Virasoro genera-
tors.

To reach a simplified formula for AM , leading to the master for-
mula describing the amplitude of M -massless external open strings,
we rely on the ”pictures” approach mentioned in [3] which gives rise
to the conformal invariant formula

AM = gM−2

∫
dµM(y)(

∏
yi)

−1〈0; 0 | V (k1, y1) · · ·V (kM , yM) | 0; 0〉.
(3.9)

Let’s now construct the scattering amplitude of M-massless external
open superstring using all the ingredients we have dicussed up to now.
we basically define the physical boson emission vertex operator as

V (ζ, k) = (ζ · Ẋ − ζ · ψk · ψ)eik·X (3.10)
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where k2 = ζ.k = 0. It is convenient to write this formula in the
following form

1

y
V (ζ, k, y) =

∫
dφdθ exp(ik ·X +

θφζ · Ẋ
y

+
θk · ψ√

y
− φζ · ψ√

y
) (3.11)

where θ and φ are two Grassmann variables. Let me enumerate now
some identities which will be useful in the evaluation of the amplitude

〈0 | Xµ(yi)Ẋ(yi)/yi | 0〉 =
i

yi − yj

ηµν (3.12)

〈0 | Ẋµ(yi)

yi

Ẋν(yj)

yj

| 0〉 =
1

(yi − yj)2
ηµν . (3.13)

Besides we have

〈0 | ψµ(yi)√
yi

ψν(yj)√
yj

| 0〉 =
1

yi − yj

ηµν (3.14)

〈0 | Xµ(yi)X
ν(yj) | 0〉 = −ηµν ln(yi − yj)λ. (3.15)

Here λ is an infrarred cutoff that cancels out of all really well defined
formulas. (detailed derivations of these relations are available [3]).

Evaluating of (3.9) leads to

〈0 | V (ζ1, k1, y1)

y1

· · · V (ζM , kM , yM)

yM

| 0〉

=

∫
(
∏

dθi)
∏
i<j

(yi − yj − θiθj)
ki·kjFM(ζ, k, y, θ), (3.16)

where

FM =

∫
(
∏

dθi)
∏
i<j

exp[
(θi − θj)(φiζi · kj + φjζj · ki)

yi − yj

− φiφjζi · ζj

yi − yj

− θiθjφiφjζi · ζj

(yi − yj)2
].

So we are ready now to evaluate this formula for different values of
M . In the course of our discussion, we will study the impasse that
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we have met with choosing higher values of M . Before leaving to
give some examples concerning this formula let me denote that the
non abelian symmetries can be introduced by attaching charges at the
ends of open-string states.

Attaching charges to open strings is of course only relevant in string
theories that do have such open strings. A technique for introducing
U(n) gauge symmetry Appendix B.3 in the open string sector of the
bosonic string theory was proposed by Chan and Paton.

3.4 Applications

Here, in this part, we prefer to write the obtained formula in more con-
venient way [4] which makes it easy evaluated and the dealing with it
more flexible. Basing on the dimensional analysis in Appendix A.1,
the tree level scattering amplitude of M massless vector bosons calcu-
lated in Open Superstring theory takes;

¦ In abelian open superstring theory (without Chan-Paton factors)

the form

A (M)
abl. = (2π)10(δ)10(k1 + k2 + · · ·+ kM)×

×
∑

non−cyclic

A(1, 2, · · · ,M), (3.17)

and the sum is over all the non cyclic permutations of the sets

{ζ1, k1}, {ζ2, k2} · · · , {ζM , kM}.

And

¦ In nonabelian open superstring theory(with Chan-Paton factos)

the following form

A (M)
nonabel. = i(2π)10(δ)10(k1 + k2 + · · ·+ kM)×

×
∑

non−cyclic

tr(λa1λa2 · · ·λan)A(1, 2, · · · ,M), (3.18)

where λan are the U(n) generators satisfying the relations in Appendix



37

B.1 , and the sum is over all the non cyclic permutations of the sets

{ζ1, k1, a2}, {ζ2, k2, a2} · · · , {ζM , kM , aM}.

and in both cases

A(1, 2 · · · , M) is a factor corresponds to M-particle scattering am-
plitude in open superstring theory which do not carry color indices,

A(1, 2, · · · ,M) = 2
gM−2

(2α′)7M/4+2
(xM−1 − x1)(xM − x1)×

×
∫

dx2 · · · dxM−2

∫
dθ1 · · · dθM−2 ×

×
M∏
i>j

|xi − xj − θiθj|2α′ki·kj ×

×
∫

dφ1 · · · dφMefM (ζ,k,θ,φ), (3.19)

where

fM(ζ, k, θ, φ) =
M∑

i6=j

(θi − θj)φi(ζi · kj)(2α
′)11/4 − 1/2φiφj(ζi · ζj)(2α

′)9/2

xi − xj − θiθj

(3.20)
the powers of (2α′) that appear in (3.19) is due to dimensional anal-
ysis Appendix A.1 and any α′ expansion of (3.19) contains only in-
teger powers of it. Furthermore, as we mentioned, the amplitude
A(1, 2, · · ·M) is invariant under SL(2, C) local transformations of all
the xi and θi. By choosing a convenient gauge choice, the variables
x1, xM−1, xM , θM−1 and θM , all can be considered as free parameters
and the final answer has to be independent of them. From the Proof
of cyclic symmetry of this formula the the superstrings have to obey
x1 < x2 < x3 · · · < xM . The complete evaluation of (3.19) is achieved
up to M = 5.

• Three point amplitude

We start first with evaluating the three tree amplitude of open
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superstrings [3];

A(1, 2, 3) = 2
g

(2α′)29/4
(x2 − x1)(x3 − x1 ×

×
∫

dθ1|x2 − x1 − θ2θ1|2α′k2·k1|x3 − x1 − θ3θ1|2α′k3·k1 ×

× |x3 − x2 − θ3θ2|2α′k3·k2

∫
dφ1dφ2dφ3e

f3(ζ,k,θ,φ), (3.21)

Remarks about A(1, 2, 3)

-There is no x integration.

-The ordering of superstrings is x1 < x2 < x3 and the we have
θ2 = θ3 = 0.

-The conservation of momenta

k1 + k2 + k3 = 0 ⇒ k2 · k1 = k3 · k1 = k3 · k2 = 0

-The expression of A(1, 2, 3) is

A(1, 2, 3) = g[(ζ3 · k1)(ζ1 · ζ2)− (ζ2 · k1)(ζ1 · ζ3)] +

(cyclic perm). (3.22)

To evaluate the whole expression of the open superstring tree ampli-
tude, we should also distinguish two cases;

¦ Abelian case

The complete amplitude can be expressed as

A (3)
abel. = i(2π)10δ10(k1 + k2 + k3)

∑

non−cyclic

A(1, 2, 3) (3.23)

it comes out that A (3)
abel. = 0. We actually have another way to check

that A (3)
abel. vanishes. We know that the open superstring scattering

amplitude is gauge invariant, so making use the gauge freedom

ζµm
m → ζµm

m + εmkµm
m (m = 1, 2, 3)

the gauge choice

ζ0
m = 0
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implies that
~ζm ⊥ ~km.

On the other hand, the physical conditions lead to

~k1 ‖~k2 and ~k1 ‖~k3

Thus, the three polarizations vectors of the external lines are perpen-
dicular to k1, k2, and k3, and eventually, we come up with A (3)

abel. equals
zero. Because of the gauge invariance, it is always zero.

¦ Nonabelian case

The tree amplitude expression in this case becomes

A (3)
nonabel. = 2ig(2π)δ10(k1 + k2 + k3)×

A(1, 2, 3)tr(λa1 [λa2 , λa3 ]). (3.24)

A 3
nonabel. is independent of α′, so, it is exactly the cubic interaction of

the Yang-Mills theory which in a such way doesn’t have any super-
string corrections.

• Four point amplitude

The four point function was already evaluated a long time ago [3],
the A(1, 2, 3, 4) factor in this case is

A(1, 2, 3, 4) = 2
g2

(2α′)9
(x3 − x1)(x4 − x1)×

×
∫ x3

x1

dx2

∫
dθ1dθ2|x2 − x1 − θ2θ1|2α′k2·k1 ×

× |x3 − x1 − θ3θ1|2α′k3·k1|x4 − x1 − θ4θ1|2α′k4·k1 ×
× |x3 − x2 − θ3θ2|2α′k3·k2|x4 − x2 − θ4θ2|2α′k4·k2 ×
× |x4 − x3 − θ4θ3|2α′k4·k3

∫
dφ1dφ2dφ3dφ4e

f4(ζ,k,θ,φ).

(3.25)

The cyclic ordering of open superstrings , and the gauge choice of
SL(2, C), imply that the following variables could be chosen as

x1 = 0, x3 = 1, x4 → +∞, and θ3 = θ4 = 0.
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Here two cases should also be taken into consideration;

¦The abelian case

The whole expression of the four point tree amplitude in the abelian
open superstring bahaves

A (4)
abel. = 8ig2(α′)2(2π)10δ10(k1 + k2 + k3 + k4)×

×
{Γ(−α′s)Γ(−α′t)

Γ(1− α′s− α′t)
+

Γ(−α′t)Γ(−α′u)

Γ(1− α′t− α′u)
+

+
Γ(−α′u)Γ(−α′s)
Γ(1− α′u− α′s)

}
K(ζ1, k1; ζ2, k2; ζ3, k3; ζ4, k4)

(3.26)

where (K) is kinematic factor given by

K =
−1

4
[st(ζ1 · ζ3)(ζ2 · ζ4) + us(ζ2 · ζ3)(ζ1 · ζ4) + ut(ζ1 · ζ2)(ζ3 · ζ4)] +

+
1

2
s[(ζ1 · k4)(ζ3 · k2)(ζ2 · ζ4) + (ζ2 · k3)(ζ4 · k1)(ζ1 · ζ3) +

+ (ζ1 · k3)(ζ4 · k2)(ζ2 · ζ3) + (ζ2 · k4)(ζ3 · k1)(ζ1 · ζ4)] +

+
1

2
t[(ζ2 · k1)(ζ4 · k3)(ζ3 · ζ1) + (ζ3 · k4)(ζ1 · k2)(ζ2 · ζ4) +

+ (ζ2 · k4)(ζ1 · k3)(ζ3 · ζ4) + (ζ3 · k1)(ζ4 · k2)(ζ2 · ζ1)] +

+
1

2
u[(ζ1 · k2)(ζ4 · k3)(ζ3 · ζ2) + (ζ3 · k4)(ζ2 · k1)(ζ1 · ζ4) +

+ (ζ1 · k4)(ζ2 · k3)(ζ3 · ζ4) + (ζ3 · k2)(ζ4 · k1)(ζ1 · ζ2)] (3.27)

K can be written in a more convenient way which will be useful for
the forthcoming discussions, as

K(1, 2, 3, 4) = tijklmnpqk1
i ζ

1
j k

2
kζ

2
l k3

mζ3
nk4

pζ
4
q ,

when t8 is an eight rank tensor defined in Appendix A.2.1.

We actually have two crucial properties of (K):

i) It has itself, total symmetry in the four external particles (so K

may be written as a common factor in A (4)
abel. expression).

ii) It vanishes whenever any ζi is substituded by the corresponding
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ki, after using the physicsl conditions, so K itself, on shell gauge-
invariant.

And s, t and u are the Mandelstam variables,

s = −2k1 · k2, t = −2k1 · k4, u = −2k1 · k3,

satisfying the following relation

s + t + u = 0 (3.28)

Let’s denote in general that A (4)
abel. contains an infinite number of higher

order in α′. The higher order corrections of four point amplitude are
due to the α′ expansion of

Γ(−α′s)Γ(−α′t)
Γ(1− α′s− α′t)

=
1

α′2st
− π2

6
− ζ(3)(s + t)α′ +O(

α′2
)
.

The coefficient of this α′ expansion can all be determined in terms of
the Riemann Zeta functions, evaluated in integer values.

Substituting all the terms involving Gamma functions and using (3.26)
lead to

Γ(−α′s)Γ(−α′t)
Γ(1− α′s− α′t)

+
Γ(−α′t)Γ(−α′u)

Γ(1− α′t− α′u)
+

Γ(−α′u)Γ(−α′s)
Γ(1− α′u− α′s)

=

(
1

st
+

1

tu
+

1

us
)

︸ ︷︷ ︸
0

1

α′2
− π2

2
− 2ζ(3) (s + t + u)︸ ︷︷ ︸

0

α′

+O(
α′2

)
. (3.29)

It turns out that the leading term of A (4) in abelian open superstrings
theory is

A (4)

abel.α′2 = 8ig2(α′)2(2π)10δ10(k1 + k2 + k3 + k4)(−π2

2
)×

×K(ζ1, k1; ζ2, k2; ζ3, k3; ζ4, k4) (3.30)

¦ Nonabelian case

In this case, the color indices must be involved in the expression of
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the tree amplitude

A (4)
nonabel. = 8ig2(α′)2(2π)10δ10(k1 + k2 + k3 + k4)

×
{Γ(−α′s)Γ(−α′t)

Γ(1− α′s− α′t)
[tr(λa1λa2λa3λa4) + tr(λa1λa4λa3λa2)]

+
Γ(−α′t)Γ(−α′u)

Γ(1− α′t− α′u)
[tr(λa1λa4λa2λa3) + tr(λa1λa3λa2λa4)]

+
Γ(−α′u)Γ(−α′s)
Γ(1− α′u− α′s)

[tr(λa1λa3λa4λa2) + tr(λa1λa2λa4λk)a3)]
}

×K(ζ1, k1; ζ2, k2; ζ3, k3; ζ4, k4) (3.31)

where (K) is the same kinematic factor mentioned in the abelian case.
After performing the α′ expansion of all the terms involving Gamma
functions, we conclude that

i) The leading term of A (4)
nonabel. is of order zero in α′, and is noth-

ing else than the Yang-mills four-gluon tree amplitude.

ii) The first superstring corrections to the Yang-Mills 4-gluon tree
amplitude, is of order two in α′.

• Five point amplitude

In fact, the evaluation of five point function is rather messy and
lengthy but it is doable [4].

Remarks about the five point amplitude

- The free parameters has to be fixed

x1 = 0, x4 = 1, x5 →∞ and θ4 = θ5 = 0.

- The final result of the Lorentz factor A(1, 2, 3, 4, 5) up to order three
in α′ terms has the following form

A(1, 2, 3, 4, 5) = A(0)(1, 2, 3, 4, 5) + A(2)(1, 2, 3, 4, 5) · α′2 +

+ A(3)(1, 2, 3, 4, 5) · α′3 +O(
α′4

)
(3.32)

- After φ-integration and θ-integration, we conclude that A(1, 2, 3, 4, 5)
consists of two types of terms
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¦ Terms of the type

(ζa · ζb)(ζc · ζd)(ζe · kf )× {kinematic factor}.

¦ Terms of the type

(ζa · ζb)(ζc · kd)(ζe · kf )(ζg · kh)× {kinematic factor}.

These kinematic factors are double integrals depending on α′ and the
momenta ki. And as we mentioned in §3.2, the final answer of these
double integrals have poles which can be hidden in a multiplication
of two Beta functions Appendix B.1. Moreover, there are relations
among these kinematic factors, which could make their evaluation
easy to achieve.1.

• Toward six point amplitude

Going up with the values of M makes the computation of the su-
perstring amplitude more complicated and lengthy. The evaluation of
the six point superstring scattering amplitude is still under investiga-
tion, and in our opinion, to generally simplify the (3.18) , we still have
at leat to understand how this six point amplitude works out.

Remarks on the six point amplitude We have not had the full an-
swer yet of the six point function, nevertheless, in the course of our
interpretation of the six point amplitude we could say

- The fixed free parameters are

x1 = 0, x5 = 1, x6 →∞ and θ5 = θ6 = 0.

- We have mentioned at the very beginning of this chapter that, at low
energy, the superstring diagram can be equivalent to many field the-
ory diagrams corresponding to poles in different subchannels. Hence,
constructing the possible six point Feynman diagrams Appendix A.3
leads to

i) The final answer of A(1, 2, 3, 4, 5, 6) of open superstrings with Chan

1The detailed evaluation of five point amplitude is in [4]
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Paton factors, (color indices), has to be written as

A(1, 2, 3, 4, 5, 6) = A(0)(1, 2, 3, 4, 5, 6) + A(2)(1, 2, 3, 4, 5, 6) · α′2 +

+ A(3)(1, 2, 3, 4, 5, 6) · α′3 + A(4)(1, 2, 3, 4, 5, 6) · α′4 +

+O(
α′5

)
. (3.33)

It comes out that, in this case, the leading term is of order zero in α′.

ii) The final answer of A(1, 2, 3, 4, 5, 6) of open superstrings (without
non-abelian symmetry) takes the following form

A(1, 2, 3, 4, 5, 6) = +A(4)(1, 2, 3, 4, 5, 6) · α′4 +O(
α′5

)
.

And this is due to the vanishing of cubic vertex and the five point
vertex in the abelian case (no color indices). As a consequence, the
leading term in the abelian case is of order fourth in α′.

- After φ-integration and θ-integration, we conclude that A(1, 2, 3, 4, 5)
consists of four types of terms

¦ terms of the type

(ζa · ζb)(ζc · ζd)(ζe · ζf )× {kinematic factor}.
¦ And we have Terms of the type

(ζa · ζb)(ζc · ζd)(ζe · kf )(ζg · kh)× {kinematic factor}.
¦ The third type is

(ζa · ζb)(ζc · kd)(ζe · kf )(ζg · kh)(ζk · kl)× {kinematic factor}.
¦ The last one

(ζa · kb)(ζc · kd)(ζe · kf )(ζg · kh)(ζk · kl)(ζm · kn)× {kinematic factor}.
and this term, due the interchange under the external lines gives zero.

Remarks on these terms

i) In the six point amplitude, The kinematic factors are triple x-
integration which depend on α′ and the momenta ki, and contain all
the six point amplitude pole2.

2These integrals are still under evaluation.
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ii) Since the superstring tree amplitudes are on-shell gauge invariants,
there is possibility to relate the four types of terms to each other,
thereafter, we still need to evaluate one of them and the remainder
will be calculated by gauge invariance3.

- In the abelian case of the six point amplitude, in contrast to the
four point one, we still have poles in the amplitude Appendix A.3.

So, we can now move to the next step, which is how to employ
these superstring scattering amplitude to construct generally the low
energy tree level open superstring effective action and particularly the
ten-dimensional Born Infeld action (abelian and non abelian) which is
the leading action of the former.

3Generalization of this approach has been part of our research . In this thesis
we have some steps toward this aim A.3.



Chapter 4

The Effective Action in
Open Superstring Theory

In this chapter, we will try to employ the open superstring scattering
tree amplitude formalism in the constructing of tree level open su-
perstring effective action. In fact, there are plenty of methods which
discuss this problem for a long time ago. But, in our opinion, the
scattering tree amplitude calculation one, regardless of the hardship
and the toil that we have met in going to the higher values of M , we
still have the belief in getting something from it. We actually have two
versions of the open superstring effective action which is due to the
presence and the absence of the Chan-Paton factors at the free ends
of open superstring. And we would prefer to interpret separately the
two cases corresponding to the two versions of open supersting tree
amplitude.

4.1 Abelian tree level open superstring

effective action

Unfortunately, few sectors of this action are known so far, and these
sectors has been reached from several sources following different meth-
ods. To make clear difference between what is known and what is
unknown, first, it is desirable for the higher order sectors to follow the
notation already existing in [6]. Such Terms can be written as

L(m,n) = α′m
(
∂nF p + ∂n+1F p−2χ̄γχ

)
. (4.1)

the dimensional analysis of this relation leads to

2p− 2m + n− 4 = 0.

46
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Figure 4.1: Here we represent the sectors on this figure as follow. Black
dots indicate the occupied sectors which are explicitly known bosonic and
fermionic partner . Empty white dots represent the sectors which are empty
up to field redefinitions. The red dots correspond to the sectors which has
the bosonic terms known and the the fermionic partner under construction.
Finally the yellow dots stand for the sectors which must be empty but they
have not been constructed yet.

Second, it is plausible to represent these terms using fig.(4.1)

¦ More informations about fig.(4.1)

- In [7] it was shown that there are no correction quadratic in deriva-
tives to all orders in α′.
- The four derivative bosonic terms were derived in [5].
- Due to the vanishing of the abelian open superstring theory scatter-
ing tree amplitude, there are no corrections with an odd number of
fields strength.
- All bosonic terms of the form ∂4F 2r(r is an integer) were evaluated
in [8].

In this thesis, we are interested in the construction of the 4-point
open superstring effective action from the 4-point photons1 scattering
amplitude. And any advance in the evaluation of superstring scatter-
ing tree amplitude for any value of M , we would be able similarly
to the 4-point effective action, construct the corresponding effective

1throughout this chapter, the photon stands for the abelian massless bosonic
field and gluon for non abelian one.
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action.

4.1.1 Abelian open string 4-point effective action

Let’s start first with the 4-point tree level open string effective action,
this sector of the whole action takes the following form

Sabel
(2,0) =

1

8
(2πgα′)2

∫
d10x

(
trF 4 − 1

4
(trF 2)2

)
(4.2)

where the strength in the abelian string is Fij = ∂iAj − ∂jAi.

The open string 4-photon tree amplitude §3.4 factorizes in product
of two terms

A (4) = −16ig2α′2δ10(k1 + k2 + k3 + k4)×
× g(k1, k2, k3, k4)K(1, 2, 3, 4) (4.3)

¦ The first term (K), which depends on the polarization vector of the
external 4-bosons and their wave functions, predicts the form which
the fields should take in the effective action, and has the following
significant form

K(1, 2, 3, 4) = tijklmnpqk1
i ζ

1
j k

2
kζ

2
l k3

mζ3
nk4

pζ
4
q .

¦ The second term (g), which is proportional to Veneziano amplitude.
This term has some interesting properties:

- (g) depends on the monenta and contains the α′ dependence.

- It replaces in A (4) the following expression

g(k1, k2, k3, k4) = h(s, t) + h(t, u) + h(u, s)

=
Γ(−α′s)Γ(−α′t)
Γ(1− α′s− α′t)

+
Γ(−α′t)Γ(−α′u)

Γ(1− α′t− α′u)
+

+
Γ(−α′u)Γ(−α′s)
Γ(1− α′u− α′s)

. (4.4)
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- Up to momentum conservation and mass shell condition discussed
previously, we prefer to write the mandelstam variables in such a way

s = −k1 · k2 − k3 · k4

t = −k1 · k3 − k2 · k4

s = −k1 · k4 − k2 · k3 (4.5)

that g obviously symmetric in ka.

- In the precedent chapter, we mentioned that in the abelian case
we don’t have any pole in the α′ expanded expression of A (4), and, in
the context of g, this is can be shown by the expanding in α′. It turns
out that g is regular when ka goes to zero. And the leading order
contribution for A (4) is due to

g(k1, k2, k3, k4) = −π2

2
+O(

α′2
)

(4.6)

We conclude that the leading term of A (4) is

A (4)

α′2 = 8iπ2g2α′2K(1, 2, 3, 4) (4.7)

which can be easily reproduced by S(2,0).

Let’s now revive the t8 tensor in the expression of (4.2), which can
be rewritten as

Sabel
(0,2) =

1

8
(2πgα′)2

∫
d10x

1

24
tijklmnpqF

ijF klFmnF pq. (4.8)

We can observe so far the following:

a- The only difference between A (4) and A (4)

α2 is the extra momen-
tum factors which are due to the existence of (g) in the former.

b- Every momentum factor ka in (K) is reproduced by acting of deriva-
tive operator on the appropriate field in (4.8). We come up with re-
producing of (g).

c- (g) expands into an infinite series in α′, and determines how the
derivatives should act on the fields.

• How can we construct the complete 4-point effective action?
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To implement this purpose we will should follow some steps:

1- Define the four fields at different spacetime positions,

Ai(xa) where a = 1, · · · , 4

in such a way we come up with non-local action.

2- Replace the momenta ka in the amplitude by differentiation with
respect to the appropriate coordinate in the effective action

kj
a −→ −i

∂

∂xa
j

(a = 1, 2, 3, 4).

3- Later on, multiply the resulting expression by delta functions and
integrate over the xa to come up with local action.4- Take the sym-
metric derivative operator

g(∂1 · ∂2 + ∂3 · ∂4 , ∂1 · ∂4 + ∂2 · ∂3 , ∂1 · ∂3 + ∂2 · ∂4)

and introduce it into the whole expression of the complete action

Sabel
eff [Aj] = − 1

24

∫
d10x

{ 4∏
a=1

d10xaδ
10(x− xa)

}
×

× g(∂1 · ∂2 + ∂3 · ∂4 , ∂1 · ∂4 + ∂2 · ∂3 , ∂1 · ∂3 + ∂2 · ∂4)×
× tijklmnpqF

ij(x1)F
kl(x2)F

mn(x3)F
pq(x4). (4.9)

where the integrals over xi are independent of each other to make the
action well defined.
This is the action which reproduces the complete four massless string
modes amplitude. And due to the absence of the cubic vertex in-
teraction, this action only gives the one particle irreducible diagram
Appendix A.2.2.

• How can one reproduce A (4) from Sabel
eff [Aj]

Basing on the definition of Appendix A.2.2, we can calculate firstly
the 4-point vertex in the spacetime position space
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V
(4)
ijkl(x1, x2, x3, x4) =

δ4Sabel
eff [Aj]

δAi(x1)Aj(x2)Ak(x3)Al(x4)


Aj=0

= −4!24 1

24
(gα′)2

∫
d10y

{ 4∏
a=1

d10yaδ(y − ya)
}
×

× g(∂1, ∂2, ∂3, ∂4) tminjkplq ∂m
1 δ(y1 − x1)×

× ∂n
2 δ(y2 − x2)∂

p
3 δ(y3 − x3)∂

q
4 δ(y4 − x4).

To get this result, one should rename the dummy indices, and use in
parallel the symmetry property of g. The factor of 24 is due to the
substitution of Fij, and the factor 4! arises from the distributive prop-
erty of the functional derivative.

In going to momentum space we get

− 1

16(gα′)2
(2π)10δ10(k1 + k2 + k3 + k4)V

(4)
ijkl(k1, k2, k3, k4) =

= tminjkplq

∫
d10y

{ ∏
a

d10yad
10xaδ(ya − y)eika · ya

}
×

× g(∂1, ∂2, ∂3, ∂4)∂
m
1 δ(y2 − x1)∂

n
2 δ(y2 − x2)×

× ∂p
3 δ(y3 − x3)∂

q
4 δ(y4 − x4)

= tminjkplq

∫
d10y

{ ∏
a

d10yaδ(ya − y)
}
×

× g(∂1, ∂2, ∂3, ∂4)∂
m
1 ∂n

2 ∂p
3∂

q
4

{ ∏

b

∫
d10xbe

ikb·xbδ(yb − xb)
}

= tminjkplq

∫
d10y

{ ∏
a

d10yaδ(ya − y)
}
×

× g(−i∂1,−i∂2,−i∂3,−i∂4)∂
m
1 ∂n

2 ∂p
3∂

q
4

{ ∏
a

eika·ya

}

= tminjkplq

∫
d10y

{ ∏
a

d10yaδ(ya − y)eika · ya

}
g(k1, k2, k3, k4)k

m
1 kn

2 kp
3k

q
4
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= tminjkplqg(k1, k2, k3, k4)k
m
1 kn

2 kp
3k

q
4(2π)10δ10(k1 + k2 + k3 + k4)

(4.10)

That is it.

4.1.2 Abelian open superstring 4-point effective
action

In a similar way, we can construct the complete tree level 4-point open
superstring effective action. Basing on [9, 10], we can write the leading
sector of this action as

Sabel
(2,0) =

1

8
(2πα′)2

∫
d10x

(
trF 4 − 1

4
(trF 2)2 + 2iFijFikχ̄γj∂kχ−

− iFijFklχ̄γijk∂kχ− 1

3
χ̄γi∂jχχ̄γi∂jχ

)
. (4.11)

This sector of the 4-point effective action is responsible for reproducing
the leading order contribution A (4)

α′2 to A (4) with different forms of
(K), corresponding respectively to 4 boson, (2 fermions and 2 bosons)
and 4 fermions see Appendix A.2.3. Due to the factorization of the
string theory tree amplitude, supersymmetry of the full effective action
can be easily established. Let’s first guess the form of the full effective
action which means that the effective action contains higher derivative
corrections as well as fermionic terms are included,

Sabel
eff [Aj, χ] = −g2α′2

∫ { 4∏
a=1

d10xaδ
(10)(x− xa)

}
×

g(∂1 · ∂2 + ∂3 · ∂4, ∂1 · ∂4 + ∂2 · ∂3, ∂1 · ∂3 + ∂2 · ∂4 ×
× [Fij(x1)F

jk(x2)Fkl(x3)F
li(x4)−

1

4
Fij(x1)F

ij(x2)Fkl(x3)F
kl(x4) +

2iχ̄(x1)γ
j∂kχ(x2)Fji(x3)F

ik(x4)−
iχ̄(x1)γ

ijk∂lχ(x2)Fij(x3)Fkl(x4)−
1

3
χ̄(x1)γi∂jχ(x2)χ̄(x3)γ

i∂jχ(x4)]. (4.12)

Similarly to string theory case, It is easy here to see that (4.12) can
reproduce the complete open superstring tree amplitude A (4) with the
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three different types of (K) Appendix A.2.3.

In order to prove that (4.12) is supersymmetry, we base on the fact
that The (g), i.e. the momenta factors, is converted to symmetric dif-
ferential operator acts on (K), we can denote that one can follow the
same Noether2 procedures as the ones necessary to prove that (4.11)
is supersymmetric. To see the real difference between the supersym-
metry of local action and one of the non-local action, we consider as
an example the supersymmetric transformation of the first term in
(4.11). We have

δ(trF 4) = δFijF
jkFklF

li + FijδF
jkFklF

li +

+ FijF
jkδFklF

li + FijF
jkFklδF

li (4.13)

because of the fact of locality, this variation becomes

δ(trF 4) = 4FijF
jkFklδF

li (4.14)

which is considered as a required step for proving the supersymmetry.
By contrast, Due to the non-locality of (4.12), (4.16) is not directly
manifest, and it is feasible using the symmetry property of g. In
addition to what we did in the local case, we just have to perform
a partial integrations to demonstrate the supersymmetry of the non-
local action. for instance, in the course of our calculation in the local
case, we met the following total derivative term

∂i(F
ijtrF 2ε̄γjχ).

This term in the non-local case arises as

( ∂

∂xi
1

+
∂

∂xi
2

+
∂

∂xi
3

+
∂

∂xi
4

)
Fij(x1)F

kl(x2)Fkl(x3)ε̄γjχ(x4).

2For more details concerning the Noether method, [6, 12] could be useful.
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The
∑

a ∂/∂xi
a term could be taken out of the xa integration as a total

derivative
∫

d10x
{ ∏

a

d10xaδ
10(x− xa)

}

× g(∂1 · ∂2 + ∂3 · ∂4, ∂1 · ∂4 + ∂2 · ∂3, ∂1 · ∂3 + ∂2 · ∂4)×
×

( ∑

b

∂

∂xi
b

)
Fij(x1)F

kl(x2)Fkl(x3)ε̄γjχ(x4) =

=

∫
d10x

∂

∂x

{ ∏
a

d10xaδ
10(x− xa)

}

× g(∂1 · ∂2 + ∂3 · ∂4, ∂1 · ∂4 + ∂2 · ∂3, ∂1 · ∂3 + ∂2 · ∂4)×
× Fij(x1)F

kl(x2)Fkl(x3)ε̄γjχ(x4). (4.15)

We end up with the fact that the supersymmetry of the non-local
action is a direct consequence of the supersymmetry of the local one.

4.1.3 Derivative expansion of 4-point effective ac-
tion

We have seen above that the properties of (g) play in general the essen-
tial role to prove that the 4-point effective action is supersymmetric.
And it is noticeable that (g) could be any symmetric differential op-
erator Λ(∂1, ∂2, ∂3, ∂4). Our purpose first is to build the most general
Lorentz invariant expression of Λ(∂1, ∂2, ∂3, ∂4), which satisfies the fol-
lowing properties

a- This expression has to be symmetric in ka.

b- It must be regular as ka goes to zero.

c- This expression should have only ka · kb combinations and may
have their products.

d- Using the conservation law of momenta and the on-shell condition,
the final expression of Λ(∂1, ∂2, ∂3, ∂4) can be written polynomially as
combinations of s, t, and u.

In the first stage, let’s study the derivative expansion of the tree level
open string effective action (4.9). Any polynomial expression has the
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properties mentioned above takes the following form

∑
p≤q≤r

α′p+q+rcp,q,rO(p, q, r), (4.16)

with cp,q,r are constants and

O(p, q, r) = sptqur + sptruq + srtpuq + srtqup + sqtrup + sqtpur (4.17)

Choose
M(n) = sn + tn + un and N = stu.

The Substitution of M(n) and N in O(p, q, r) leads to

O(p, q, r) = Np(M(q − p)M(r − p)−M(q + r − 2p)). (4.18)

we get from
M(1)M(n− 1) = 0

that

M(n) =
1

2
M(2)M(n− 2) + NM(n− 3).

As a conclusion, (4.16) can be expressed in powers of M = M(2) and
N , ∑

k,l

α′2k+2lfk,lM
kN l, (4.19)

where fk,l are constants. The possible independent combinations num-
ber LM,N(r) of M and Q, at order α′r in the relation above

LM,N(r) =





[r

6

]
+ 1, if r 6= 6×

[r

6

]
+ 1

[r

6

]
, if r = 6×

[r

6

]
+ 1,

where [x] means the large integer smaller than x.

In the second stage, for any given order r in α′, we realized that
the number of independent supersymmetric contributions to the 4-
point tree level open string is equal to LM,N(r). the construction
of the contributions to the tree level open superstring 4-point action
(4.12) at any desired order in α′, follows from the α′ expansion of
g(∂1 · ∂2 + ∂3 · ∂4, ∂1 · ∂4 + ∂2 · ∂3, ∂1 · ∂3 + ∂2 · ∂4) Appendix A.2.4.
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In the end of this section, we can say that the string theory scat-
tering amplitude approach seems to be a promising method to derive
the string α′ infinite series corrections to the Maxwell theory in its
bosonic as well as in its supersymmetry generalization. In this thesis,
we have only discussed the 4-point sector of the complete effective ac-
tion, since the general wisdom of the complete scattering amplitudes in
open superstring theory has maximally gone up to 5-point superstring
amplitude [4] which vanishes in the abelian case (without Chan-Paton
factors).

4.2 Nonabelian tree level open superstring

effective action

In fact, several successful methods have attempted to derive the α′

infinite series contribution to the Super Yang-Mills (SY M) action.
Nevertheless, these approaches were used up to α′4 order [13, 14], and
one of the shortcomings of these methods is, all of them required in
some moment some support form the open superstring tree amplitudes
to fix some undetermined coefficients. In the previous work we derived
the terms of the abelian effective action which are only quartic in the
fields. In this section we generalize this previous result to nonabelian
case.

4.2.1 Nonabelian open superstring 4-point effec-
tive action

The ten-dimensional complete tree level 4-point effective action of non-
abelian open superstring theory can be written in term of two sectors

S
(4)nonabel.
eff [Aj, χα] = SSY M + S

(4)nonabel.
α′corr. . (4.20)

The first sector is the ten-dimensional the super Yang-Mills theory, it
can be written as

SSY M =

∫
d10xtr

[
− 1

4
FijF

ij +
i

2
χ̄γiDjχ

]
, (4.21)

SSY M reproduces the on shell tree 4-point amplitudes A (4)nonabel.

α′0 in
Super Yang-Mills theory which can be directly obtained from the zero
order in α′ of the complete 4-point scattering tree amplitudes of non
abelian open superstring A (4)nonabel..
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The second sector represents the action which contains the infinite
α′ superstring contributions to the Super Yang-Mills action. Such
sector in non-local context, takes the following form

S
(4)nonabel.
α′corr. = −1

2
g2α′2

∫
d10

{ 4∏

b=1

d10xbδ
10(x− xb)

}
×

× ga1a2a3a4(D1 ·D2 + D3 ·D4 , D1 ·D4 +

+ D2 ·D3 , D1 ·D3 + D2 ·D4)×
×

[
Fa1ij(x1)F

jk
a2

(x2)Fa3kl(x3)F
li
a4

(x4)−
1

4
Fa1ij(x1)F

ij
a2

(x2)Fa3kl(x3)F
kl
a4

(x4) +

2iχ̄a1(x1)γ
jDkχa2(x2)Fa3ji(x3)F

ik
a4

(x4)−
iχ̄a1(x1)γ

ijkDlχa2(x2)Fa3ij(x3)Fa4kl(x4)−
1

3
χ̄a1(x1)γiDjχa2(x2)χ̄a3(x3)γ

iDjχa4(x4)
]
, (4.22)

where the covariant derivative and non abelian field strength are de-
fined in Appendix B.1.1.

S
(4)nonabel.
α′corr. reproduces indeed the A (4)nonabel.

α′corr. of the complete A (4)nonabl..

• Remarks on ga1a2a3a4 .

a- In contrast to abelian case, (g) carries color indices which are due
to the Chan-Paton factors at the free ends of the interacting open
superstrings.

b- ga1a2a3a4(s, t, u) is manifestly symmetric in the pairs (km, am).

c- (ga1a2a3a4), as an extra momentum factors in the open superstring
four point amplitudes, is qualified to be converted into appropriate
covariant differential operator

ga1a2a3a4(D1 ·D2 + D3 ·D4 , D1 ·D4 + D2 ·D3 , D1 ·D3 + D2 ·D4)

which could act on the fields in S
(4)nonabel.
α′corr. .

d- In non abelian open superstring amplitudes A (4)nonabel.
α′corr. , (ga1a2a3a4)
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behaves as

ga1a2a3a4(s, t, u) =
{

[tr(λa1λa2λa3λa4) + tr(λa1λa4λa3λa2)]ω(s, t)

+ [tr(λa1λa3λa2λa4) + tr(λa4λa2λa3λa1)]ω(t, u)

+ [tr(λa1λa2λa4λa3) + tr(λa3λa4λa2λa1)]ω(u, s)]
}

(4.23)

where

ω(s, t) =
Γ(−α′s)Γ(−α′t)
Γ(1− α′s− α′t)

− 1

α′2st

here we have subtracted the poles because we already considered it in
the expression of A

(4)nonabel.

α′0 . It turns out that ga1a2a3a4 is regular as kb

goes to zero.

e- The α′ expansion of ga1a2a3a4 (see Appendix A.2.4) in (4.22) leads to
the infinite α′ series superstring corrections to the Super Yang-Mills
action.

• How to reproduce A(4)nonabel. from S
(4)nonabel.
eff ?

In fact, the complete 4-point tree amplitudes in nonabelian open su-
perstring string theory can be expressed as sum of two contributions
reproduced respectively by SSY M and S

(4)nonabel.
α′corr.

A (4)nonabel. = A (4)nonabel.

α′0 + A (4)nonabel.
α′corr. (4.24)

The zero order in α′ 4-point amplitudes contribution behaves as

A (4)nonabel.

α′0 = 8ig2(2π)10δ10(k1 + k2 + k3 + k4)ω
a1a2a3a4

α0 (k1, k2, k3, k4)K
(4.25)

with

ωa1a2a3a4

α0 (k1, k2, k3, k4) = [tr(λa1λa2λa3λa4) + tr(λa1λa4λa3λa2)]
1

st

+ [tr(λa1λa3λa2λa4) + tr(λa4λa2λa3λa1)]
1

ut

+ [tr(λa1λa2λa4λa3) + tr(λa3λa4λa2λa1)]
1

us
,

and where (K) is one of the kinematic factors of Appendix A.2.3 as-
sociated to the corresponding scattering process. And all kinds of
these amplitudes can easily derived from SSY M . The SSY M gives rise
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to one-particle irreducible diagrams and one-particle reducible ones
which arise only in this zero order α′ contribution of the whole effec-
tive action. And the derivation of the 4-gluons amplitudes of these
diagrams are based in the field theory calculation already done in Ap-
pendix B.1. Afterwards, a very short algebraic manipulation leads to
the A (4)nonabel.

α′0 .

Let’s move now to the α′ contribution of the Open superstring
amplitude A (4)nonabel.

α′corr. . This contribution can be expressed as

A (4)nonabel.
α′corr. = 8i(gα′)2(2π)2δ10(k1+k2+k3+k4)g

a1a2a3a4(k1, k2, k3, k4)K
(4.26)

where (K) exactly the same kinematic factors given in Appendix A.2.3.

Since the poles are isolated to be in the zero order α′ contribution
(SSY M) of the whole effective action, we can follow closely the steps
done for reproducing the 4-point amplitude from the abelian effective
to derive A (4)nonabel.

α′corr. from S
(4)nonabel.
α′corr. which also is the generator of

1-particle irreducible diagrams.

Therefore, to reproduce A (4)nonabel.
α′corr. , one needs firstly to substitute

(4.22) in (A.15), afterwards, derives similarly to the abelian case all
the 4-particle vertices3 defined in Appendix A.2.2., and sticks them in
(A.17).

We eventually come up with the complete on shell tree level 4-point
amplitude of non abelian open superstring theory

A (4)nonabel. = 8ig2(α′)2(2π)10δ10(k1 + k2 + k3 + k4)

×
{Γ(−α′s)Γ(−α′t)

Γ(1− α′s− α′t)
[tr(λa1λa2λa3λa4) + tr(λa1λa4λa3λa2)]

+
Γ(−α′t)Γ(−α′u)

Γ(1− α′t− α′u)
[tr(λa1λa4λa2λa3) + tr(λa1λa3λa2λa4)]

+
Γ(−α′u)Γ(−α′s)
Γ(1− α′u− α′s)

[tr(λa1λa3λa4λa2) + tr(λa1λa2λa4λk)a3)]
}

×K (4.27)

where (K) is the same kinematic factor mentioned above.

3A detailed derivation of theses vertices is available in [15, 16].
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As an application of 4-point abelian effective action and its nonabelian
generalization, we refer the reader to [15, 16] where one can find con-
struction of some higher order terms in the 4-point effective actions.



Chapter 5

conclusion

5.1 Born-Infeld theory

61



Appendix A

Dimensional Analysis and
Definitions

A.1 Dimensions

We prefer here to make our analysis in arbitrary dimension d. As is
customary in high energy physics, natural units are used, i.e.

c = ~ = 1

and all dimensions are given in terms of mass (inverse length dimen-
sion). Our metric convention is

ηµν = diag(−, +, +, · · · , +.) (A.1)

The Regge slope α′ has in this system

[α′] = (mass)−2.

and The string tension is

T =
1

2πα′
.

To facilitate dimensional analysis, it is preferable to collect the dimen-
sions of all frequently used fields and constants of this thesis in the
following table

62
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Fields and Constants Dimensions
Fµν(x) d/2
Aµ(x) d/2− 1

kµ 1
ζµ (d− 1)/2

V M
k M(1− d/2) + d
g −1/2(d− 4)

δd(k) −d
δd(x) d

A (M) M/2

where V M
k is a M-massless bosons vertex interaction discussed in

the next section.

We denote here that the dimension of A (M) is related to that of the
polarization vector ζµ of external state.

Proof

We start our proof with evaluating the dimension of V (M).

In space-time.

The (A.11) of the next section leads to

dimV
(M)
x = −dM + M

(d

2
− 1

)
= 0 ⇒

dimV (M)
x = M

(d

2
+ 1

)
. (A.2)

Example:

The 4-point correlation function in d = 4 has

dim[〈0 | T (A(x1)A(x2)A(x3)A(x4)) | 0〉] = 4.

This correlation function can also be expressed as

T (A(x1)A(x2)A(x3)A(x4)) | 0〉 = 4× 1/k2 × V (4)
x

where ∆ ' 1/k2 ’s are the external propagators of the 4-point vertex.
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It comes out that dimV
(4)
x = 12 which can be directly calculted from

(A.2).

In momentum space

The expression (A.12) of next section, and after the substitution of

V
(M)
x gives

V
(M)
k = d

(
1− M

2

)
+ M. (A.3)

Let’s study now the dimensions of A (M) for two different dimensions
of ζ.

¦ dimζ = d/2− 1:

The general structure of M -boson interaction (A.13) has the following
dimension

dimA (M) = −d + Mdimζ + dimV
(M)
k

= −d + M
(d

2
− 1

)
+ d

(
1− M

2

)
+ M = 0. (A.4)

The 4-point amplitude A (4) suggests that the general structure of
A (M) behaves as

A (M) = δ(d)(k1 · · · kM)(gα′)M−2ζMkMf(α′1/2 k) (A.5)

where f(α′1/2 k) is dimensionless factor which in general, its α′ expan-
sion is responsible for derivative corrections of the effective action.

Therefore,

dimA (M) = −d− d

2
(M − 2) + M

(d

2
− 1

)
+ M = 0.

Eventually, for this given dimension of ζ the amplitude has to be di-
mensionless.

In fact, we can rewrite A (M) as power of α′ which will be useful in eval-
uating amplitudes of higher value in M , and this might be achieved
by making in the amplitude two dimensional combinations

α′1/2(d/2−1) and α′1/2 k.
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Hence,

A (M) = δ(d)(k1 · · · kM)gM−2α′r
(
α′

1
2
( d
2
−1)

)M

(α′
1
2
k)M , (A.6)

and r to be determined.

We have A (M) is dimensionless, so the relation

0 = −d− 1

2
(M − 2)(d− 4)− 2r

leads to
r =

n

4
(4− d)− 2. (A.7)

¦ dimζ = (d− 1)/2:

By Following the same calculations as in the first case , one should
find that

dimA (M) =
M

2
, (A.8)

which is consistent with the dimension which could be evaluated eval-
uated from (3.18) for d=10.

Finally, it turns out that the dimension of the amplitude in open
superstring depends only on the dimension of the polarization vector
ζ of external string state.

A.2 Definitions

A.2.1 t8 tensor

The miraculous t8 tensor1, characteristic of the 4 massless vector boson
scattering amplitude, is antisymmetric in the pairs (ij), (kl), · · · , and
is symmetric under such of pairs, these properties of t8 lead to the
following equivalent relations

g(1, 2, 3, 4)tijklmnpqS
ij
1 Skl

2 Smn
3 Spq

4 = g(1, 2, 3, 4)(S1abS
bc
2 S3cdS

da
4 −

− 1

4
S1abS

ab
2 S3cdS

cd
4 ) (A.9)

1An explicit expression for it may be found in [5]
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where g(1, 2, 3, 4) is any symmetric operator in (1,2,3,4) which act on
index I of an antisymmetric tensor Sab

I for I = 1, 2, 3, 4.

Similarly we have

tijklmnpqS
ij
1 Skl

2 Smn
3 Spq

4 = −2(trS1S2trS3S4 + trS1S3trS2S4 +

+ trS1S4trS2S3) + 8(trS1S2S3S4 +

+ trS1S3S2S4 + trS1S3S4S2). (A.10)

A.2.2 Effective action

One of the nice features of the tree level low energy effective theory,
that the action of this theory is the generator of one particle irre-
ducible diagrams, in a sense, in ten dimensional space-time we have

• Abelian string effective action

Sabel
eff [Aj] =

∑
M

1

M !

∫
d10x1 · · · d10xMV

(M)
j1···jM

(x1, · · · , xM)×

× Aj1(x1) · · ·AjM (xM), (A.11)

thus, it comes out that the M-point vertex in the target space, is

V
(M)
j1···jM

(x1, · · · , xM) =
δMSabel

eff [Aj]

δAj1(x1) · · ·AjM (xM)


Aj=0

.

And in the momentum space it can be written as

(2π)2δ10(k1 + · · · kM)V
(M)
j1···jM

(k1, · · · , kM) =

∫ M∏
i=1

d10xie
iki·xi ×

× V
(M)
j1···jM

(x1 · · · xM).

(A.12)

The V
(M)
k vertex interaction (M-point function) gives to the the S-

matrix the following contribution

A (M) = i(2π)δ10(k1 + · · ·+ kM)ζj1
1 · · · ζjM

M V
(M)
j1···jM

(k1 · · · kM). (A.13)

• Nonabelian superstring effective action
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In this case, since we have discussed in this thesis only the super-
string effective action involving up to quadratic fermionic field terms,
we restrict our definition of the nonabelian superstring effective action
to the 4-point effective action one, in a sense we take

Snonabel.
α′corr. [Aj, χα] = S

(4)
α′corr.[Aj, χα] + S

(M>4)
α′corr. [Aj, χα].

where S
(4)
α′corr.[Aj, χα], is the nonabelan 4-point open superstring effec-

tive action. Hence we have

S
(4)
α′corr.[Aj, χα] =

∫ 4∏
i=1

[
{ 1

4!
V

(4)a1a2a3a4

j1j2j3j4
(x1, x2, x3, x4)×

× Aj1
a1

(x1)A
j2
a2

(x2)A
j3
a3

(x3)A
j4
a4

(x4)}+

+ { 1

2!2!
V

(4)a1a2a3a4

j1j2α3α4
(x1, x2, x3, x4)×

× Aj1
a1

(x1)A
j2
a2

(x2)χ
α3
a3

(x3)χ
α4
a4

(x4)}+

+ { 1

4!
V (4)a1a2a3a4

α1α2α3α4
(x1, x2, x3, x4)×

× χα1
a1

(x1)χ
α2
a2

(x2)χ
α3
a3

(x3)χ
α4
a4

(x4)}
]

(A.14)

Where

V
(4)a1a2a3a4

j1j2j3j4
(x1, x2, x3, x4) =

δ4Snonabel.
α′corr. [Aj, χα]

δAj1
a1(x1)δA

j2
a2(x2)δA

j3
a3(x3)δA

j4
a4(x4)


Aj

a,χα
a =0

V
(4)a1a2a3a4

j1j2α3α4
(x1, x2, x3, x4) =

δ4Snonabel.
α′corr. [Aj, χα]

δAj1
a1(x1)δA

j2
a2(x2)δχ

α3
a3 (x3)δχ

α4
a4 (x4)


Aj

a,χα
a =0

V (4)a1a2a3a4
α1α2α3α4

(x1, x2, x3, x4) =
δ4Snonabel.

α′corr. [Aj, χα]

δχα1
a1 (x1)δχ

α2
a2 (x2)δχ

α3
a3 (x3)δχ

α4
a4 (x4)


Aj

a,χα
a =0

. (A.15)

These 4-point functions can be written in the momentum space as

(2π)10δ(10)(k1 + k2 + k3 + k4)V
(4)a1a2a3a4
s1s2s3s4

(k1, k2, k3, k4) =
∫ 4∏

i=1

d10xie
iki·xiV (4)a1a2a3a4

s1s2s3s4
(x1, x2, x3, x4). (A.16)
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Our convention here of si
2 means the i-th vector index or the i-th

spinor index.

Finally, the scattering amplitude corresponding of these 4-point func-
tions are

A (4)nonabel.
α′corr. = −i(2π)10(k1 + k2 + k3 + k4)Λ

s1
1 Λs2

2 Λs3
3 Λs4

4 ×
× V (4)a1a2a3a4

s1s2s3s4
(k1, k2, k3, k4), (A.17)

with Λsi
i is the i-th massless boson polarization vector or i-th fermion

wave function.

A.2.3 4-particle kinematic factor (K)

Here, in this part, we write down the the kinematic terms (K) of A (4)

for

I four bosons

K(4 bosons) = tijklmnpqζ1
i k1

j ζ
2
kk

2
l ζ

3
mk3

nζ4
pk

4
q . (A.18)

It is obvious that K(4bosons)is symmetric under the interchange of the
external particles.

I 2 bosons and 2 fermions

Due to the momentum conservation and the mass-shell condition, and,
basing on [5, 11], the kinematic term of this case takes the following
form

K(2 bosons, 2 fermions) = −s

8

[
v̄2/ζ3(/k4 + /k1) /ζ4v1

]
− t

8

[
2(v̄2/ζ3v1)(k3 · ζ4)+

+ 2(v̄2/k4v1)(ζ3 · ζ4)2(v̄2/ζ4v1)(k4 · ζ3)
]
. (A.19)

this factor is antisymmetric under interchange of the two fermions and
is symmetric under interchage of the the bosons.

I 4 bosons

2throughout the thesis, we use for spinor components the indices −→ α, β, γ · · · ,
and for vector components −→ i, j, k, l, µ, ν, ρ · · · .
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Under the same circumstances of the previous case, this kinematic
term comes out to be

K(4 fermions) = −s

8
v̄1γµv4v̄2γ

µv3 +
t

8
v̄1γµv2v̄4γ

µv3. (A.20)

We observe in this case that K(4 fermions) is completly antisymmetric
under any fermionic particle interchange.

A.2.4 α′ expansion

I g(k1, k2, k3, k4) α′ expansion

To establish the g(k1, k2, k3, k4) α′ expansion, we use the Taylor ex-
pansion of ln Γ(1 + z)3

ln Γ(1 + z) = −γz +
∞∑

r=2

(−1)rζr
zr

r
, with − 1 ≤ z ≤ 1 (A.21)

In (A.21), γ is the Euler-Mascheroni constant and ζ(r) is the Ziemann
zeta function. This leads to

α′2h(s, t) =
1

st
exp

{ ∞∑
r=2

α′r
ζ(r)

r
(sr + tr − (s + t)r)

}
. (A.22)

We take here the first terms of (A.22), expressed in M and N

g(k1, k2, k3, k4) = −1

2
π2 − 1

48
α′2π4M − 1

2
α′3ζ(3)N − 1

960
α′4π6M2 −

− 1

48
α′5π2 × (π2ζ(3) + 12ζ(5))MN −

− 1

967680
α′6(51π8M3 + 8π2(31π6 + 30240ζ(3)2)N2) +

· · · (A.23)

I ga1a2a3a4(k1, k2, k3, k4) α′ expansion

3More about this function may be found in G.Arfken book: Mathematical meth-
ods for physics .



Appendix B

Useful Calculations

In this appendix, we first evaluate the double x integration up to a
certain order in α′ and put some comments on the evaluation of the
triple one, later on, we discuss our attempt toward the simplification of
A(1, · · · ,M) (3.19), at last, we derive the possible Feynman diagrams
of the six point function.

B.1 x integration

B.1.1 The double integral

As we mentioned, the 5-point function open superstring amplitude
involves kinematic factors (α′ and ki dependence) which are double
integrals over x2 and x3. These kinematic factors are related to each
other in such a away that evaluating one of them makes the others
feasible to be computed.

Therefore, let us take for instance,

L =

∫ 1

0

dx3 x2α′α13−1
3 (1− x3)

2α′α34

×
∫ x3

0

dx2 x2α′α12−1
2 (1− x2)

2α′α24−1(x3 − x2)
2α′α23 . (B.1)

where
αij = ki · kj for i, j = 1, 2, 3, 4.

We perform the change x2 = u · x3 of variables when x3 acts as a

70
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constant in the inner integral, thus,

L =

∫ 1

0

dx3 x2α′r−1
3 (1− x3)

2α′α34

∫ 1

0

du u2α′α12−1(1− u)2α′α23(1− ux3)
2α′α24−1, (B.2)

with
r = α12 + α13 + α23.

To evaluate this integral up to certain order in α′ we consider

(1− ux3)
α′α24−1 =

∞∑
n=0

(−2α′α24 − 1)n

n!
xnyn (B.3)

where we define the Poch-Hammer symbol (a)n by;

(a)n = a(a + 1)(a + 2) · · · (a + n− 1) =
Γ(a + n)

Γ(a)
. (B.4)

Inserting (B.3) in (B.2) leads to

L =
∞∑

n=0

(−2α′α24 − 1)n

n!

∫ 1

0

dx3 x2α′r+n−1
3

× (1− x3)
2α′α34

∫ 1

0

du u2α′α12+n−1(1− u)2α′α23 . (B.5)

Using the definition of the Euler Beta function;

B(p, q) =

∫ 1

0

xp−1(1− x)q−1dx,

we rewrite (B.5) as

L =
∞∑

n=0

(−2α′α24 − 1)n

n!

×B(2α′r + n, 2α′α34 + 1) ·B(2α′α12 + n, 2α′α23 + 1).(B.6)

Let’s now expand (B.6) up to O(α′) ,

¦ For n=0
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The α′ expansion for this value of n is

L(n=0) =
1

4α′r · α12

− π2

6

(α23

r
+

α34

α12

)

+
(
2
α23 · α12

r
+ 2

α2
23

r
+

r · α34

α12

+
α2

34

α12

)
ζ(3)α′ +O(

α′2
)

(B.7)

¦ For n=1

L behaves as,

L(n=1) = −1 + 2(r + α12 + α23 − α24 + α34)α
′ +O(

α′2
)

(B.8)

¦ For n > 1

We obtain

L(n>1) =
1

3
α24(18− π2 − 6ζ(3))α′ +O(

α′2
)
. (B.9)

We finally have that

L =
1

(2α′)2

[ 1

r · α12

]
−

[
1 +

π2

6

(α34

α12

+
α23

r

)]

+
[
α24

(
4− π2

3

)
+ 2(r + α12 + α23 + α34) +

(
− 2α24 + 2

α12 · α23

r
+

r · α34

α12

+ 2
α2

23

r
+

α2
34

α12

)
ζ(3)

]
α′ +O(

α′2
)
.

(B.10)

When looking for expansion of the higher orders1 in α′ of the kinematic
factors, some care must be taken with some of the double integrals,
because they need to be regularized. A matter of quite interest is to
have an α′ series for all kinematic factors, since this allows to have the
superstring corrections to the Yang-Mills five tree amplitude A (5).

B.1.2 Toward the eveluation of the triple integral

For the six point function, as we mentioned, we have different types of
terms multiplied by several kinematic factors which are triple integrals

1We already checked it for the second order in α′.
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over x2, x3 and x4 following the order

0 < x2 < x3 < x4 < 1.

These triple integrals are slightly different to each other in such a way
that, similarly to the double integrals, we evaluate one of these inte-
grals and the others could be calculated by following the same steps,
and by using the possible relations which could link these terms one
to another.

Let’s consider as an example, the triple integral of the first combi-
nation of the first type of terms

(ζ1 · ζ2)(ζ3 · ζ4)(ζ5 · ζ6)(k3 · k2)(k1 · k4)× {Triple integral L},
where L behaves as

L =

∫
dx2dx3dx4(1− x4)

2α′k5·k4(1− x3)
2α′k5·k3 ×

(1− x2)
2α′k5·k2(x4 − x3)

2α′k4·k3−1(x4 − x2)
2α′k4·k2(x4)

2α′k4·k1−1

× (x3 − x2)
2α′k3·k2−1(x3)

2α′k3·k2−1(x3)
2α′k3·k1(x2)

2α′k2·k1−1.

(B.11)

Now, we perform the following change of variables

x2 = u · x3, x3 = u · x4 (B.12)

where x3 and x4 act as constants in the inner integrals.

then, (B.11) can be written as

L =

∫ 1

0

du (u)2α′r−1(1− u)2α′α43−1

∫ 1

0

dv (v)2α′α21−1(1− v)2α′α32−1

∫ 1

0

dx4 x2α′s−2
(4) (1− x4)

2α′α54(1− uv)2α′α42(1− ux4)
2α′α53 ×

(1− uvx4)
2α′α52 , (B.13)

where
ki · kj = αij, for i, j = 1, 2, 3, 4, 5.

And

r = a32 + a31 + a12

s = a32 + a31 + a21 + a41 + a42 + a43. (B.14)
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We have,

(1− uvx4)
2α′α52 =

∞∑
n=0

(−2α′α52)n

n!
unvnxn

4

(1− uv)2α′a42 =
∞∑

p=0

(−2α′α42)p

p!
upvp

(1− ux4)
2α′α53 =

∞∑
q=0

(−2α′α53)q

q!
uqxq

4 (B.15)

where (a)n is the Poch-Hammer symbol defined before. We obtain,

L =
∞∑

n=0

∞∑
p=1

∞∑
p=0

∞∑
q=0

(−2α′α52)n

n!

(−2α′α42)p

p!

(−2α′α53)q

q!
×

∫ 1

0

du (u)2α′r+n+p+q−1(1− u)2α′α43−1

∫ 1

0

dv (v)2α′α21+n+p−1 ×

(1− v)2α′α32−1

∫ 1

0

dx4 (x4)
2α′s+n+q−2(1− x4)

2α′α54 (B.16)

Using the definition of the Euler Beta function leads to

L =
∞∑

n=0

∞∑
p=1

∞∑
p=0

∞∑
q=0

(−2α′α52)n

n!

(−2α′α42)p

p!

(−2α′α53)q

q!
×

B(2α′r + n + p + q, 2α′α43)B(2α′α21 + n + p, 2α′α32)×
B(2α′s + n + q − 1, 2α′α54 + 1). (B.17)

In fact, the evaluation of the triple integral is intricate because it
seems complicated to determine the source of singularities . Nevethe-
less, after the α′ expansion up to O(α′) term, we can observe from
the possible Feynman digrams which could be derived from the non
abelian effective action that

1) The answer of the simple integral in the four point tree amplitude
expression (in non abelian open superstring theory) involves Gamma
functions which could be proportional to one Euler Beta fuction, the
leading term of this Beta function is α′−1 contribution associated to
the one propagator in diagram (a) figure B.1 in the end of this Ap-
pendix.
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2) The complete calculation of the five point tree amplitude in non-
abelian Open superstring theory leads to double integral evaluated as
a multiplication of two Beta functions, the leading term of this double
integral is the α′−2 contribution associated with the two propagators
of diagram (c) figure B.1.

3) In our opinion, the triple integral in the nonabelian open super-
string six point tree amplitude can be calculated as a multiplication
of three Beta functions, and the leading term in this case is α′−3 con-
tribution associated with the three propagators of diagrams (f) and
(k) figure B.1.

B.2 Toward the simplification of A(1, · · · ,M)

we basically consider,

fM(ζ, k, θ, φ) =
M∑

i6=j

(θi − θj)φi(ζi · kj)(2α
′)11/4 − 1/2φiφj(ζi · ζj)(2α

′)9/2

xi − xj − θiθj

.

(B.18)
This function can be reexpressed as

fM(ζ, k, θ, φ) =
M∑
i=1

φiai +
M∑

i6=j

φiφjbij. (B.19)

with

ai =
M∑
j

(θi − θj)(2α
′)11/4

xi − xj − θiθj

, and bij =
−1/2φiφj(ζiζj)(2α

′)9/2

xi − xj − θiθj

.

(B.20)
Then, the exponential of FM leads to

exp [fM(ζ, k, θ, φ)] =
M∏
i=1

exp (φiai)×
M∏

i6=j

exp (φiφjbij) (B.21)

Writing out (B.21) gives

exp [fM(ζ, k, θ, φ)] = (1 + φ1a1) · · · (1 + φMaM)(1 + φ1φ2b12) · · ·
× (1 + φM−1φMbM−1 M). (B.22)
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Now, this expression of (3.19) looks ready to be integrated over φi, so,
∫

dφ1 · · · dφM = a1 · · · aM + permutations +

a1 · · · aM−2bM−1 M + permutations +
...

b12 · · · bM−1 M + permutations. (B.23)

At this stage, we recall the gauge invariance, and impose it on (3.19)
by making the polarization vector of one of the external string states
replaces the momentum which corresponds to the same state,

ζi → ki for one i = 1, · · ·M.

We eventually come up with several relations among the terms existing
in (B.23) in such a way that one term could be evaluated, and the
remainder could be calculated by using these relations.

B.3 Feynman diagrams

In order to find the leading term of the α′ infinite series of the 6-point
tree amplitude in open syperstring theory, we try to compute all the
possible Feynman diagrams (fig.B.1,D3) which could be derived from
6-point tree level open superstring effective action that we have not
obtained yet. Here, we must distinguish two cases;

B.3.1 Abelian case

Since the cubic interaction and the five point vertex vanish in the
abelian case, we have only two different diagrams;

1) The 1-particle reducible diagram (g) of figure B.1 which is respon-

sible for the singularity of the A (6)
abel. because of the intermediate state.

This diagram is a combination of two quartic 1PI vertices. So, up to
O(α′4) term it can be expressed in on-shell and physical conditions as

Vj1···j6(1, · · · , 6)qq =

=
V

(2)m
j1j2j3

(k1, k2, k3, k4 + k5 + k6)V
(2)
mj4j5j6

(−k4 − k5 − k6, k4, k5, k6)

2(k4 · k5 + k4 · k6 + k5 · k6)
+

O(
α′5

)
(B.24)
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where ”qq” stands for quartic interaction and V (i) represents the α′i

contribution to the vertex.

2) The on- shell 1-particle irreducible (l) diagram which is generated
by the abelian 6-point effective action, it should behave up to the same
order in α′ as

Vj1···j6(1, · · · , 6) = V
(4)
j1···j6(k1, · · · , k6) +O(

α′5
)
. (B.25)

We conclude that A(1, · · · , 6) of A (6)
abel. up to O(α′5) has the form

A(1, · · · , 6) = ζj1
1 · · · ζj6

6

[ ∑
perm.

Vj1···j6(1, · · · , 6)qq + Vj1···j6(1, · · · , 6)
]

+O(
α′5

)

(B.26)

where the
∑

perm. is an algebraic sum over all the possible permutations
of the sets

{ζ1, k1} · · · {ζ6, k6}.
We eventually denote that the leading term of the tree amplitude in
abelian open superstring is of the fourth order in α′.

B.3.2 Nonabelian case

In this case, in addition to (g) and (l) Feynman diagrams we have
the diagrams (f),(h), (m) and (k) in figure B.1. Moreover, as for the
permutations of the external lines, in addition to the lorentz indices,
we have to take the color indices into account. The Feynman rules of
(f) and (k) can take respectively the following form

Vj1···j6(1, · · · , 6)cccc =
V m

j1j2
VmnlV

l
j3j4

V n
j5j6

prop.× prop.× prop.
(B.27)

and

Vj1···j6(1, · · · , 6)cccc =
V m

j1j2
Vmj6nV n

j5lV
l
j3j4

prop.× prop.× prop.
(B.28)

where (cccc) symbol stands for the four cubic vertices. These diagrams
do not have any α′ correction because the cubic interaction basically
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doesn’t depend on α′.

Now, The diagram (g) with color indices up to O(α′3) term leads
to

Vj1···j6(1, · · · , 6)qq =

=
[V

(0)m
j1j2j3

(k1, k2, k3, k4 + k5 + k6)V
(0)
mj4j5j6

(−k4 − k5 − k6, k4, k5, k6)

(k4 + k5 + k6)2

]

+
[V

(2)m
j1j2j3

(k1, k2, k3, k4 + k5 + k6)V
(0)
mj4j5j6

(−k4 − k5 − k6, k4, k5, k6)

(k4 + k5 + k6)2

]

+
[V

(0)m
j1j2j3

(k1, k2, k3, k4 + k5 + k6)V
(2)
mj4j5j6

(−k4 − k5 − k6, k4, k5, k6)

(k4 + k5 + k6)2

]

...

+O(
α′4

)
. (B.29)

The diagram (h) can be expressed in the physical conditions as
a combination of one five point vertex and one cubic vertex. Up to
O(α′3) term we have

Vj1···j6(1, ·, 6)fc =

=
V

(2)m
j1···j4(k1, k2, k3, k4, k5 + k6)Vmj5j6(−k5 − k6, k5, k6)

2k5 · k6

+
V

(3)m
j1···j4(k1, k2, k3, k4, k5 + k6)Vmj5j6(−k5 − k6, k5, k6)

2k5 · k6

+O(
α′4

)
(B.30)

where ”f” represents the five point vertex. Afterwards, we have next
the one particle irreducible one (l) which in the non abelian case can
be written up to O(α′3) as

Vj1·j6(1, · · · , 6) = V
(2)
j1···j6(k1, · · · k6) + V

(2)
j1···j6(k1, · · · k6) +O(

α′4
)

. (B.31)

At last, the diagram (m) is considered as a combination of one quartic
and two cubic interactions, up to O(α′3), this Feynman diagram has
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Vj1···j6(1, · · · , 6)qcc =
[V

(0)m
j1j2j3

Vmj6nV
n
j4j5

prop.× prop.

]
+

[V
(2)m
j1j2j3

Vmj6nV
n
j4j5

prop.× prop.

]

+
[V

(3)m
j1j2j3

Vmj6nV n
j4j5

prop.× prop.

]
+O(

α′4
)
. (B.32)

It turns out that A(1, · · · , 6) of A (6)
nonabel. up to the third order in α′

has the following form

A(1, · · · , 6) = ζj1 · · · ζj6
{ ∑

perm.

[
Vj1···j6(1, · · · , 6)cccc + Vj1···j6(1, · · · , 6)qq

+ Vj1···j6(1, · · · , 6)fc + Vj1···j6(1, · · · , 6)qcc

]

+ Vj1···j6(1, · · · , 6)
}

+O(
α′4

)

(B.33)

where
∑

perm. is the sum over all possible permutations of the sets

{ζ1, k1, a1} · · · {ζ6, k6, a6}.

we conclude that the leading term of the six point tree amplitude in
the non abelian open superstring theory is of order zero in α′.
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Figure B.1: Feynman diagrams
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