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Abstract

This thesis covers research into the holographic entropy bound, the D-brane descent

relations, and properties of AdS2 solutions in supersymmetric and nonsupersymmetric

string theories. The first chapter introduces these topics and the connections between

them.

In chapter two, the holographic Bousso bound is studied and its modification due

to quantum effects is presented. The Bousso bound requires that one quarter the area

of a closed codimension two spacelike surface exceeds the entropy flux across a certain

lightsheet terminating on the surface. The bound can be violated by quantum effects

such as Hawking radiation. It is proposed that, at the quantum level, the bound be

modified by adding to the area the quantum entanglement entropy across the surface.

The validity of this quantum Bousso bound is proven in a two-dimensional large-N

dilaton gravity theory.

On the topic of D-branes, chapter three introduces the descent relations among

branes of different dimensionality and stability. The descent relations require special

attention in the nonsupersymmetric type-0 theories which have twice as many stable

D-branes as the type-II theories. In light of this added complication, the descent

relations in the type 0A and 0B theories, as well as the D-branes’ couplings to NS-NS

fields, are worked out in detail in this chapter.

With an eye to AdS2/CFT1 holography, the first of two studies of AdS2 is begun

in chapter four. In the context of two-dimensional type-0A string theory, a family of

AdS solutions to the effective action are presented. This family of solutions may be

parameterized by two independent variables: the tachyon expectation value and the
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string coupling constant.

Chapter five turns attention to a possible supersymmetric arena for AdS2/CFT1

duality, namely AdS2 × S2 × CY3 flux compactifications of type IIA string theory.

The problem of finding supersymmetric brane configurations in the near-horizon at-

tractor geometry of a Calabi-Yau black hole with magnetic-electric charges (pI , qI)

is considered. Half-BPS configurations, which are static for some choice of global

AdS2 coordinate, are found for wrapped brane configurations with essentially any

four-dimensional charges (uI , vI). Half-BPS multibrane configurations can also be

found for any collection of wrapped branes provided they all have the same sign for

the symplectic inner product pIvI −uIqI of their charges with the black hole charges.

This contrasts with the Minkowski problem for which a mutually preserved super-

symmetry requires alignment of all the charge vectors. The radial position of the

branes in global AdS2 is determined by the phase of their central charge.
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Chapter 1

Introduction

Since the discovery of black hole thermodynamics [1–3], physicists have suspected that

gravitational theories obey what is known as the holographic principle [4,5]. Despite

the appellation of “principle,” holography is actually an unproven, yet well-motivated,

conjecture about the behavior of theories with gravity. The holographic principle

claims that theories of gravity can be described entirely by a non-gravitational theory

on a codimension-one boundary of spacetime. In particular, the three spatial dimen-

sions of our universe may be a holographic illusion generated by some as-yet-unknown

physics in 2+1 dimensions.

The first piece of evidence for holography came from studies of black holes,

when it was found that the entropy of a black hole scales as the area of the horizon,

Sbh = A/4. The creation of these black holes places a natural limit on the amount

of information that can be crammed into a volume V . Once an amount of matter is

confined to a region smaller than its Schwarzschild radius, gravity ensures that the

system becomes hidden behind a horizon. The original matter system can have no

more entropy than the resulting black hole, that is, no more entropy than one-quarter

its area. This contradicts conventional wisdom that the number of degrees of freedom

in a quantum field theory should scale as the volume, corresponding to the number
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of available Planck volumes. Instead, we learn that, like black holes, the maximum

entropy in any region of space must scale as the area. In this thesis, we report progress

in understanding this holographic principle and related topics in string theory. The

bulk of this thesis has been reported in references [6–9].

In the case of a black hole, the horizon provides a natural surface to associate

with the volume of the black hole. In more general spacetimes, or for arbitrary regions

of space, it is less obvious how to choose a bounding area. Bousso has proposed

a general prescription for associating areas with volumes [10]. This prescription,

known as the “Bousso bound,” has been proven in classical regimes under a variety

of assumptions [11,12], but, as shown in chapter 2, the bound can fail once quantum

effects are taken into account. We show that the area is corrected by the entanglement

entropy and that this “quantum Bousso bound” holds in a two-dimensional large-N

model, thus salvaging the holographic principle in the quantum regime [7].

The AdS/CFT correspondence is perhaps the best understood example of a

holographic system. The degrees of freedom for the gravity system (AdS) can be

projected onto the dual theory (CFT) living on the boundary of spacetime. This

duality was first discovered by studying the near-horizon geometry of coincident D3-

branes [13]. The gravitational physics in the vicinity of the D-branes is dual to the

non-gravitational physics on the D-branes. This correspondence motivates a closer

look at D-branes and, in particular, we can ask how the D-branes localize and how

D-branes of different dimensions are related to each other. Sen discovered an amazing

web of relationships among D-branes in the type-IIA and IIB theories which goes a

long way towards answering these questions [14]. In chapter 3, we investigate the

nature of these so-called “descent relations” in the type-0A and 0B theories [6].

Theories of gravity in two dimensions are generally simpler to study analytically

than theories of gravity in higher dimensions. For this reason, studies of AdS2/CFT1

hold great promise for furthering our understanding of holography. Towards this end,
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in chapter 4, we present a family of AdS solutions in two-dimensional type-0A string

theory [8]. In chapter 5, we study the supersymmetric configurations of D-branes in

AdS2 × S2 × CY3 flux compactifications of type-IIA string theory [9].

3



4



Chapter 2

A Quantum Bousso Bound

2.1 Introduction

The generalized second law of thermodynamics (GSL) [1–3] states that one quarter

the area of black hole horizons plus the entropy outside the horizons is nondecreasing.

This law was formulated in an attempt to repair inconsistencies in the ordinary second

law in the presence of black holes. There is no precise general statement, let alone

proof, of the GSL, but it has been demonstrated in a compelling variety of special

circumstances. It indicates a deep connection between geometry, thermodynamics and

quantum mechanics which we have yet to fathom. The holographic principle [4, 5],

which also has no precise general statement, endeavors to elevate and extend the GSL

to contexts not necessarily involving black holes. In [10], a mathematically precise

modification of the GSL/holographic principle was proposed that is applicable to null

surfaces which are not horizons [15]. This proposed “Bousso bound”, along with a

generalization stated therein, was proven, subject to certain conditions, in a classical

limit by Flanagan, Marolf, and Wald [11].

The Bousso bound, as stated, can be violated by quantum effects [16]. Math-

ematically, the proofs of the bound rely on the local positivity of the stress tensor
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which does not hold in the quantum world. Physically, the bound does not account

for entropy carried by Hawking radiation. In this chapter, we propose that, at a

semiclassical level, the bound can be restored by adding to one quarter the surface

area the entanglement entropy across the surface. We will make this statement fully

precise, and then prove it, in a two-dimensional model of large N dilaton gravity.

This chapter is organized as follows. We begin by reviewing Bousso’s covariant

entropy bound in section 2.2. We will review the lightsheet construction in general

D-dimensional spacetime, although our main interest in the remainder of the chapter

will be four and two dimensions. In section 2.3, we will discuss how Bousso’s bound

can be violated in the presence of semiclassical effects, like Hawking radiation. This

will motivate us to propose a “quantum Bousso bound” in section 2.4. By assuming

an adiabaticity condition on the entropy flux, we will show in section 2.5 that the

classical Bousso bound can be proven in four and two dimensions. In section 2.6, we

extend the analysis to the two-dimensional RST quantization [17, 18] of the CGHS

model [19] which includes semiclassical Hawking radiation and its backreaction. We

will show that the quantum Bousso bound holds in this gravitational theory.

2.2 Review of the classical Bousso bounds

The Bousso bound asserts that, subject to certain assumptions, the entropy of mat-

ter that passes through certain lightsheets associated with a given codimension-two

spatial surface in spacetime is bounded by the area of that surface [10].

This entropy bound provides a covariant recipe for associating a geometric en-

tropy with any spatial surface B that is codimension two in the spacetime. At each

point of B, there are four null directions orthogonal to B. These four null direc-

tions single out four unique null geodesics emanating from each point of B: two

future-directed and two past-directed. Without loss of generality, we choose an affine
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parameter λ on each of these curves such that λ equals zero on B and increases

positively as the geodesic is followed away from B.

Along each of the four geodesics, labelled by i, an expansion parameter θi(λ) =

∇a

(
d
dλ

)a
can be defined. If we note that each of the future-directed geodesics is

simply the extension of one of the past-directed geodesics, then the following relations

between the expansion parameters becomes clear: θ1(0) = −θ3(0), θ2(0) = −θ4(0).

Therefore, at least two of the four geodesics will begin with a nonpositive expansion.

A “lightsheet” is a codimension-one surface generated by following exactly one non-

expanding geodesic from each point of B. Each geodesic is followed until one of the

following occurs on it:

• The expansion parameter becomes positive, θ > 0,

• A spacetime singularity is reached.

Note that, in spacetime dimensions greater than two, there are an infinite number of

possible lightsheets to choose from since, for each point on B, there are at least two

contracting null geodesics from which to choose.

The original Bousso bound conjectures that Nature obeys the following inequal-

ity:

Entropy passing through any lightsheet of B ≤ 1

4
( Area of B) . (2.2.1)

In order to make this statement precise, we must clarify what we mean by the entropy

that passes through a lightsheet. In general, this is ambiguous because entropy is not

a local concept. However, there is a thermodynamic limit in which the entropy is

well-approximated by the flux of a four-vector sa. As discussed by Flanagan, Marolf,

and Wald (FMW) in [11], this thermodynamic limit is satisfied under the entropy

condition that we will use in sections 2.5 and 2.6. The Bousso bound as formulated

so far pertains mainly to this limit.
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To find the entropy flux that passes through the lightsheet, we must project

sa onto kb, the unique future-directed normal to the lightsheet. Up to a sign, k

is d/dλ since d/dλ is null and orthogonal to all other lightsheet tangent vectors

by construction. In order to keep ka future-directed, we choose ka =
(
d
dλ

)a
if the

lightsheet is future-directed, and ka = −
(
d
dλ

)a
if the lightsheet is past-directed. Since

we use the mostly-positive metric signature, the entropy flux through any point of

the lightsheet is

s ≡ −kasa . (2.2.2)

In the language of entropy flux, the entropy bound becomes

∫
L(B)

s ≤ 1

4
(Area of B) , (2.2.3)

where L(B) denotes the lightsheet of B. However, there is a generalized Bousso

bound [11] in which the lightsheet is prematurely terminated on a spatial surface B′.

It is clear that the integral of s over this terminated lightsheet equals the integral over

the full lightsheet of B minus the integral over the full lightsheet of B′. Assuming

that s is everywhere positive, Bousso’s original entropy bound tells us that

∫
L(B−B′)

s ≤
∫
L(B)

s ≤ 1

4
(Area of B) , (2.2.4)

where L(B−B′) denotes the lightsheet of B terminated on B′. In this chapter, we will

be interested in the generalized Bousso bound, first proposed by FMW [11], which

imposes the much stronger bound on the terminated lightsheet:

∫
L(B−B′)

s ≤ 1

4
(A(B)− A(B′)) . (2.2.5)

This has been proven under suitable assumptions by FMW [11]. Note that this

generalized entropy bound directly implies Bousso’s original entropy bound.
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2.3 Semiclassical violations

The entropy bounds so far pertain largely to the classical regime. When quantum ef-

fects are included, even at the semiclassical level, we expect that the bounds must be

somehow modified to account for the entropy carried by Hawking radiation. Math-

ematically, the proofs [11] are not applicable because quantum effects violate the

positive energy condition.

The classical proofs hinge on the focussing theorem of classical general relativity.

The focussing theorem, in turn, derives from the Raychaudhuri equation and the null

energy condition. The Raychaudhuri equation provides a differential equation for the

expansion parameter along a null geodesic [20]:

dθ

dλ
= − 1

D − 2
θ2 − σabσ

ab + ωabω
ab − 8πTabk

akb , (2.3.1)

where σab is the shear tensor and ωab is the twist tensor. For a family of null geodesics

that start off orthogonal to a spatial surface, such as the case for a lightsheet, the twist

tensor is zero. Finally, if we assume that the null energy condition holds, then the last

term is negative. The null energy condition postulates that Tabk
akb is nonnegative

for all null vectors ka. As a result, we find that the expansion parameter satisfies the

inequality

dθ

dλ
≤ − 1

D − 2
θ2 . (2.3.2)

This gives us the focussing theorem: If the expansion parameter takes the negative

value θ0 along a null geodesic of the lightsheet, then that geodesic will reach a caustic

(i.e., θ → −∞) within the finite affine time ∆λ ≤ D−2
|θ0| .

So long as energy is required to produce entropy, the focussing theorem ensures

that the presence of entropy will cause the lightsheet to reach a caustic and, there-

fore, terminate. The more entropy we try to pass through the lightsheet, the faster

the lightsheet terminates. This gives a compelling argument for why only a finite,
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bounded amount of entropy could be passed through the lightsheet. According to the

Bousso bound, this upper bound is precisely one quarter the area of the generating

surface.

In practice, the covariant entropy bound can be violated in the presence of

matter with negative energy. By mixing positive-energy matter and negative-energy

matter, a system with zero energy can be made to carry an arbitrary amount of

entropy. Again, the entropy passing through any given lightsheet could be increased

arbitrarily. At the classical level, we could simply demand that the energy-momentum

tensor obeys the null energy energy condition. This is the weakest of all the most

common energy conditions and, as can be seen from (2.3.1), is the one needed for the

focussing theorem, and thus to make the Bousso bound plausible.

However, the Bousso bound is in serious trouble once we include quantum ef-

fects. We know that none of the local energy conditions can hold even at first order

in ~. In particular, the phenomenon of Hawking radiation violates the null energy

condition near the horizon of black holes. This allows for violations of the focussing

theorem. This violation can be seen most clearly for future-directed, outgoing null

geodesics that hover for a while in between the event horizon and apparent horizon

of an evaporating black hole. The apparent horizon is the boundary of the region of

trapped surfaces, so the congruence of null geodesics are contracting inside the ap-

parent horizon. However, as the black hole evaporates, the apparent horizon follows

a timelike trajectory towards the event horizon. The null geodesic could then leave

the apparent horizon and begin expanding, in violation of the focussing theorem.

Furthermore, in [16], Lowe constructs a related counterexample to the covariant

entropy bound in the presence of a critically illuminated black hole. Critical illu-

mination is the process in which matter is thrown into a black hole at exactly the

same rate as energy is Hawking radiated away. In this scenario, the apparent horizon

follows a null trajectory. If we pick the apparent horizon to be the generating surface
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for a lightsheet, then the lightsheet will coincide with the apparent horizon as long

as we continue to critically illuminate the black hole. By critically illuminating the

black hole sufficiently long, we can pass an arbitrary amount of matter through the

lightsheet. In this way, the entropy of the matter passing through the lightsheet can

be made larger than the area of the apparent horizon, thus violating the entropy

bound.

Hence, the original Bousso bound only has a chance of holding in the classical

regime. Once we include one-loop quantum effects, such as Hawking radiation, the

bound fails. In the remaining sections of this chapter, we propose a modification of

the Bousso bound which may hold in the semiclassical regime.

2.4 A quantum Bousso bound

The generalized Bousso bound, when specialized to black hole horizons, is equivalent

to a classical limit of the generalized second law of thermodynamics (GSL). To see this,

note that the portion of the event horizon lying between any two times consitutes

a lightsheet. Since all matter falling into the black hole between those two times

must pass through this lightsheet, the generalized entropy bound gives us the same

information as the GSL. In particular, we learn that

1

4
∆AEH ≥ ∆Sm , (2.4.1)

where ∆AEH is the change in event horizon area, and ∆Sm is the entropy of the

matter that fell in.

When quantum effects are included, the form (2.4.1) of the generalized second

law is no longer valid. The quantum GSL states, roughly speaking, that the total

entropy outside the black hole plus one quarter the area of the horizon (either event

or apparent depending on the formulation) is non-decreasing. The entropy outside
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the black hole receives an important contribution from Hawking radiation. Therefore,

we must augment the left hand side by the entropy of the Hawking radiation:

1

4
∆AH + ∆Shr ≥ ∆Sm (2.4.2)

In general, we do not know how to formulate, let alone prove, an exact form of the

GSL in a full quantum theory of gravity. However, approximations to it have been

formulated and demonstrated in a wide variety of circumstances [21]. The ∆Shr term

is crucial in these demonstrations, without which counterexamples may be easily

found.

Since the GSL requires an additional term at the quantum level, and the GSL

is a special case of the generalized Buosso bound, we should certainly expect that

the Bousso bound will receive related quantum corrections. These corrections should

reduce to ∆Shr when the lightsheets are taken to be portions of event horizons. The

problem is to precisely formulate the nature of these corrections.

In this context it is useful to think of the entropy in Hawking radiation as

entanglement entropy. Evolution of the quantum fields on a fixed black hole geometry

is a manifestly unitary process prior to singularity formation. Nevertheless entropy

is created outside the black hole because the outgoing Hawking quanta are correlated

with those that fall behind the horizon. When a region of space U is unobservable,

we should trace the quantum state ψ over the modes in the unobservable region to

obtain the observable density matrix ρ,

ρ = trU |ψ〉〈ψ| . (2.4.3)

Since the full state is in principle not available to the observer, there is a de facto loss
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of information that can be characterized by the entanglement entropy

Sent = −tr ρ log ρ . (2.4.4)

In general, this expression has divergences and requires further definition, which will

be given below for the case of two dimensions.1 Choosing U to be the region behind

the horizon, we can therefore formally identify

∆Shr = ∆Sent. (2.4.5)

This motivates a natural guess for quantum corrections to the Bousso bound when

the initial and final surfaces are closed. One should add to the area the entanglement

entropy across the surface. Applying this modification to the classical Bousso bound

(2.2.5) results in a quantum Bousso bound of the form:

∫
L(B−B′)

s ≤ 1

4
A(B) + Sent(B)− 1

4
A(B′)− Sent(B

′) . (2.4.6)

Since we can not presently hope to solve this problem or even define this quan-

tum bound in exact quantum gravity, in order to go further we need to identify a small

expansion parameter for approximating the exact theory. A useful parameter, which

systematically captures the quantum corrections of Hawking radiation, is provided

by 1
N

, where N is the number of matter fields and GNN is held fixed [19]. In [23]

it was shown in the two-dimensional RST model of black hole evaporation that the

(suitably defined) GSL, incorporating the Hawking radiation as in (2.4.2), is valid.

One might hope that a similar incorporation can save the Bousso bound.

In the process of the investigations in [23] it emerged that the sum A+ 4Sent ≡

Aqu arises naturally in the theory as a kind of quantum-corrected area. In this chapter,

1UV divergences in this expression are absorbed by the renormalization of Newton’s constant [22].
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we propose that the required leading 1
N

semiclassical correction to the generalized

Bousso bound simply involves the replacement of the classical area with this quantum

corrected area. A precise version of this statement will be formulated and proved in

the RST model in section 2.6.

2.5 Proving the classical Bousso bounds

In this section we reproduce proofs of classical Bousso bounds. We first give a proof

due to Bousso, Flanagan, and Marolf of the generalized Bousso bound in four di-

mensions [12].2 This simplified proof follows from conditions on the initial entropy

flux and an adiabaticity condition on the rate of change of the entropy flux which

differ somewhat from the conditions assumed in [11]. We then describe a two dimen-

sional version of the proof obtained by spherical reduction. A small modification of

this gives a proof of the generalized Bousso bound in the classical CGHS model [19],

which is then transcribed into Kruskal gauge for later convenience. The inclusion of

quantum effects in the latter will be the subject of the next section.

2.5.1 Simplified proof in four dimensions

Following [11], the integral of the entropy flux s over the lightsheet can be written as

∫
L(B−B′)

s =

∫
B

d2x
√
h(x)

∫ 1

0

dλ s(x, λ)A(x, λ) . (2.5.1)

In this expression, we have chosen a coordinate system (x1, x2) on the spatial surface

B, h(x) is the determinant of the induced metric on B, and the affine parameter on

each null geodesic of the lightsheet has been normalized so that λ = 1 is when the

geodesic reaches B′. The function A(x, λ) is the area decrease factor for the geodesic

2We thank Raphael Bousso and Eanna Flanagan for explaining this proof prior to publication.
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that begins at the point x on B. In terms of θ, it is given by

A ≡ exp

[∫ λ

0

dλ̃ θ(λ̃)

]
. (2.5.2)

The physical intuition for equation (2.5.1) is simple. As we parallel propagate a small

coordinate patch of area d2x
√
h(x) from the point (x, 0) on B to the point (x, λ) on

the lightsheet, the area contracts to d2x
√
h(x)A(x, λ). The proper three-dimensional

volume of an infinitesimal cube of the lightsheet is d2x dλ
√
h(x)A(x, λ), and this

volume times s(x, λ) gives the entropy flux passing through that cube. In order to

prove the generalized entropy bound, it is sufficient to prove that

∫ 1

0

dλ s(λ)A(λ) ≤ 1

4
(1−A(1)) (2.5.3)

for each of the geodesics that comprise the lightsheet.

Using a mostly positive metric signature, the assumed entropy conditions are

i. s′ ≤ 2π Tabk
akb

ii. s(0) ≤ −1
4
A′(0),

where we use the notation, both here and henceforth, that primes denote differentia-

tion with respect to the affine parameter λ. Condition i is very similar to one of the

conditions in [11]. It can be interpreted as the requirement that the rate of change

of the entropy flux is less than the energy flux, which is a necessary condition for the

thermodynamic approximation to hold. Condition ii requires only that the covariant

entropy bound is not violated infinitesimally at the beginning of the lightsheet. Since

the square root of A routinely appears in calculations, we borrow the notation of

FMW and define

G ≡
√
A . (2.5.4)
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From the Raychaudhuri equation, we have that

Tabk
akb = − 1

4π

G′′(λ)

G(λ)
− 1

8π
σabσ

ab ≤ − 1

4π

G′′(λ)

G(λ)
, (2.5.5)

where σab is the shear tensor, and the inequality follows from the fact that σabσ
ab ≥ 0

always. Now we see that

s(λ) =

∫ λ

0

dλ̃ s′(λ̃) + s(0)

(i) ≤ 2π

∫ λ

0

dλ̃Tabk
akb + s(0)

(eom) ≤ 2π

∫ λ

0

dλ̃

(
− 1

4π

G′′(λ̃)

G(λ̃)

)
+ s(0)

=
1

2

(
G′(0)

G(0)
− G′(λ)

G(λ)

)
− 1

2

∫ λ

0

dλ̃
G′(λ̃)2

G(λ̃)2
+ s(0)

(ii) ≤ −1

2

G′(λ)

G(λ)
− 1

2

∫ λ

0

dλ̃
G′(λ̃)2

G(λ̃)2

≤ −1

2

G′(λ)

G(λ)
.

Consequently,

∫ 1

0

dλ s(λ)G(λ)2 ≤ −1

2

∫ 1

0

dλG(λ)G′(λ) =
1

4
(A(0)−A(1)) . (2.5.6)

We have shown that, given our entropy conditions, the entropy passing through a

lightsheet is bounded by one quarter the difference in area of the two bounding spatial

surfaces. This is precisely the statement of the generalized Bousso bound.

It is interesting to note that nowhere in the proof did we need to use the con-

tracting lightsheet condition. The only indication that we should choose a contracting

lightsheet comes from the boundary condition ii. We see from condition ii that, in

order to allow a positive, future-directed entropy flux, the derivative of A must be

negative. If the lightsheet were expanding at λ = 0, then a timelike entropy flux
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would have to be past-directed at λ = 0.

Note also that Bousso’s entropy bound can be saturated only if G′ = 0 for all

λ. In light of the Raychaudhuri equation (2.5.5), we see that Tab and the shear σab

must be zero everywhere along the lightsheet in order for G′ to remain zero. The

bound can be saturated only in this most trivial scenario. This will not be the case

for other gravitational theories we will study, such as the CGHS dilaton model, where

saturation of the bound can occur in the presence of matter.

2.5.2 Spherical reduction

Our goal is to study the entropy bound in two dimensional models where our semi-

classical analysis will be greatly simplified. As a guide to what phenomenological

conditions we should be using in 2D models, we will first rederive the previous proof

for the purely spherical sector of 4D Einstein-Hilbert gravity.

We begin with the 4D Einstein-Hilbert action coupled to some matter La-

grangian density, Lm: ∫
d4x
√
−g(4)

(
R(4)

16π
+ L(4)

m

)
. (2.5.7)

Writing the four-dimensional metric as

(ds2)(4) = gµν(x)dx
µdxν + e−2φ(x)(dϑ2 + sin2 ϑ dϕ2) µ, ν ∈ {0, 1} , (2.5.8)

and integrating over the angular coordinates we find the action is reduced to

∫
d2x

√
−g
[
e−2φ

(
1

4
R +

1

2
gµν∂µφ∂νφ+

1

2
e2φ
)

+ Lm
]
. (2.5.9)

Here, the 2D matter Lagrangian density Lm is related to L(4)
m by

Lm = 4πe−2φL(4)
m . (2.5.10)

17



From the equations of motion, we conclude that

kakbTab = −e−φkakb∇a∇be
−φ , (2.5.11)

whenever k is a null vector. In this expression, T is the energy-momentum tensor for

Lm, not L(4)
m .

It is clear from the four-dimensional metric that the classical “area” of a point

in the 2D model is Acl = 4πe−2φ. However, had we only been given the action, we

could identify the “area” of a point as being proportional to the factor multiplying

the Ricci scalar in the Lagrange density. If that were not convincing enough, we could

study the thermodynamics of a black hole solution of the two-dimensional model. In

particular, we would first determine the mass of a stationary black hole solution and

then compute the temperature of the Hawking radiation on this geometry (neglecting

backreaction). Integrating the thermodynamic identity dS = dM/T and identifying

S as one-quarter the area of the event horizon, we arrive at an expression for the area

of the event horizon in terms of the local values of the various fields there. We then

designate this function of local fields as the expression that gives us the “area” of any

point in the two-dimensional space.

Deriving the two-dimensional entropy conditions is a simple matter of rewriting

the four-dimensional conditions in terms of two-dimensional tensors. For example,

we replace T
(4)
ab with 1

4π
e2φTab. We are also interested in the two-dimensional entropy

flux sa which is related to the four-dimensional entropy flux s
(4)
a by s

(4)
a = 1

4π
e2φsa.

This relation is a simple consequence of the fact that the 2D flux at a point equals

the 4D flux up to an overall factor of the area of the corresponding S2. Replacing 4D

tensors with 2D tensors, we arrive at the following entropy conditions:

i. e−2φ(s e2φ)′ ≤ 2πTab k
akb

ii. s(0) ≤ −1
4
A′

cl(0)
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Note that we continue to use s ≡ −kasa and primes denoting d/dλ. Putting it all

together, the derivation of the entropy bound goes through in the same way as it did

in the 4D case. In detail, we find

s(λ) = e−2φ(λ)

∫ λ

0

dλ̃
(
s(λ̃)e2φ(λ̃)

)′
+ e−2φ(λ)s(0)e2φ(0)

(i) ≤ e−2φ(λ)

∫ λ

0

dλ̃ 2π e2φ(λ̃)kakbTab(λ̃) + e−2φ(λ)s(0)e2φ(0)

(eom) = −2πe−2φ(λ)

∫ λ

0

dλ̃
(
e−φ(λ̃)

)′′
eφ(λ̃) + e−2φ(λ)s(0)e2φ(0)

= −2πe−2φ(λ) (−φ′(λ) + φ′(0))− 2πe−2φ(λ)

∫ λ

0

dλ̃
(
φ′(λ̃)

)2

+ e−2φ(λ)s(0)e2φ(0)

(ii) ≤ −π
(
e−2φ(λ)

)′ − 2πe−2φ(λ)

∫ λ

0

dλ̃
(
φ′(λ̃)

)2

≤ −π
(
e−2φ(λ)

)′
Therefore,

∫ 1

0

dλ s(λ) ≤ π
(
e−2φ(0) − e−2φ(1)

)
=

1

4
(Acl(0)− Acl(1)) , (2.5.12)

which is exactly the 4D entropy bound, only derived from the 2D perspective.

2.5.3 CGHS

Although we have derived an entropy bound in a 2D model using 2D entropy condi-

tions, we were guaranteed success since we had spherically reduced a successful 4D

proof. We now attempt to apply the same entropy conditions to another 2D dilaton

gravity model, namely the CGHS model [19]. The CGHS model can also be derived

as the spherical reduction of a 4D model, but with charges. In what follows, we will

work purely at the 2D level without any recourse to higher-dimensional physics. The
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CGHS action coupled to N conformal matter fields with Lagrangian density Lm is

∫
d2x

√
−g
[
e−2φ(R + 4(∇φ)2 + 4) + Lm

]
. (2.5.13)

For a null vector ka, the equations of motion give

kakbTab = −2e−φkakb∇a∇be
−φ + 2kakb∇ae

−φ∇be
−φ . (2.5.14)

To determine the classical “area” of a point, we look at the coefficient of the Ricci

scalar and learn that it is proportional to e−2φ. By studying black hole thermody-

namics, the constant of proportionality can be fixed as Acl = 8e−2φ.

To prove the entropy bound, we start with the following assumptions:

i. e−2φ(s e2φ)′ ≤ 2Tab k
akb

ii. s(0) ≤ −1
4
A′

cl(0)

We will continue to use s ≡ −kasa and primes denoting d/dλ. Putting it all together,

we find

s(λ) = e−2φ(λ)

∫ λ

0

dλ̃
(
s(λ̃) e2φ(λ̃)

)′
+ e−2φ(λ)s(0)e2φ(0)

(i) ≤ 2 e−2φ(λ)

∫ λ

0

dλ̃ e2φ(λ̃)kakbTab(λ̃) + e−2φ(λ)s(0)e2φ(0)

(eom) = −4 e−2φ(λ)

∫ λ

0

dλ̃
(
e−φ(λ̃)

)′′
eφ(λ̃) + 4 e−2φ(λ)

∫ λ

0

dλ̃
(
φ′(λ̃)

)2

+ e−2φ(λ)s(0)e2φ(0)

= −4 e−2φ(λ) (−φ′(λ) + φ′(0)) + e−2φ(λ)s(0)e2φ(0)

(ii) ≤ −2
(
e−2φ(λ)

)′
.

Therefore, we find the desired relation:

∫ 1

0

dλ s(λ) ≤ 2
(
e−2φ(0) − e−2φ(1)

)
=

1

4
(Acl(0)− Acl(1)) . (2.5.15)
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2.5.4 CGHS in Kruskal gauge

In the previous section, we derived the CGHS entropy bound with manifestly covari-

ant equations of motion and entropy conditions. However, once we add the one-loop

trace anomaly, we are only able to obtain local equations of motion in conformal

gauge. Furthermore, our calculations are greatly simplified in Kruskal gauge. There-

fore, it behooves us to rederive the CGHS result in Kruskal gauge.

We will assume that the lightsheet moves in the decreasing x+ direction. Our

results for this past-directed x+ lightsheet generalize simply to the other three possible

lightsheet directions. Working with the x+ lightsheet, we will be interested in the

following equation of motion:

T++ = −2e−φ∇+∇+e
−φ + 2∇+e

−φ∇+e
−φ . (2.5.16)

In conformal gauge, the RHS can be written as 2e−2φ (∂+∂+φ− 2∂+ρ∂+φ). In Kruskal

gauge, we set ρ = φ, so this becomes

T++ = −∂+∂+e
−2φ . (2.5.17)

Since k+ = −∂x+/∂λ = e−2φ in Kruskal gauge, our entropy conditions can be

rewritten in Kruskal gauge coordinates as

i. ∂+s+ ≤ 2T++

ii. −s+(x+
0 ) ≤ 1

4
∂+Acl(x

+
0 ).

Recall that s ≡ −k+s+, so −s+ is positive so long as the proper entropy flux s is

positive.
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Applying these conditions, we find

−s+(x+) =

∫ x+
0

x+

dx̃+∂+s+(x̃+)− s+(x+
0 )

(i) ≤ 2

∫ x+
0

x+

dx̃+T++(x̃+)− s+(x+
0 )

(eom) = 2 ∂+e
−2φ
]x+

x+
0
− s+(x+

0 )

(ii) ≤ 2 ∂+e
−2φ(x+) .

We find that

∫ 1

0

dλ s(λ) =

∫ x+
1

x+
0

dx̃+s+(x̃+) =

∫ x+
0

x+
1

dx̃+
(
−s+(x̃+)

)
≤ 1

4
(Acl(0)− Acl(1)) .

(2.5.18)

Had we chosen the future-directed x+ lightsheet, then we would have k+ =

∂x+/∂λ = e−2φ and our entropy conditions would have been ∂+ (−s+) ≤ 2T++ and

−s+(x+
0 ) ≤ −1

4
∂+Acl(x

+
0 ). The extension to x− lightsheets is trivial.

2.6 Stating and proving a quantum Bousso bound

The classical CGHS action is

SCGHS =

∫
d2x

√
−g
[
e−2φ(R + 4(∇φ)2 + 4) + Lm

]
. (2.6.1)

For N conformal matter fields, Hawking radiation and its backreaction on the

geometry can be accounted for by adding to the classical CGHS action the nonlocal

term

SPL = −N
48

∫
d2x
√
−g(x)

∫
d2x′

√
−g(x′)R(x)G(x, x′)R(x′) , (2.6.2)

where G(x, x′) is the Green’s function for ∇2. This is a one loop quantum correction
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but it nevertheless contributes at leading order in a 1
N

expansion. At the one loop

level, there is the freedom of also adding a local counterterm to the action. The large

N theory becomes analytically soluble if we add the following judiciously chosen local

counterterm to the action [17,18]:

Sct = −N
24

∫
d2x

√
−gφR . (2.6.3)

The full action for the RST model is then

SRST = SCGHS + SPL + Sct . (2.6.4)

We can once again choose Kruskal gauge, but this time ρ = φ+ 1
2
log(N/12). In

conformal and Kruskal gauges, the equations of motion become

∂+∂−Ω = −1 , (2.6.5)

and

∂2
±Ω = −12

N
T±± − t± , (2.6.6)

where

Ω =
12

N
e−2φ +

φ

2
+

1

4
log

N

48
. (2.6.7)

The t± term in (2.6.6) accounts for the normal-ordering ambiguity. We wish to

consider semiclassical excitations built on the vacuum state which has no positive fre-

quency excitations according to inertial observers on I−. These inertial coordinates,

σ±, are related to the Kruskal coordinates by

x+ = eσ
+

, x− = −e−σ− . (2.6.8)

For coherent states built on this σ vacuum, t± = 0 in σ coordinates. Its value in
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Kruskal coordinates is given by the Schwarzian transformation law as

t± = − 1

4(x±)2
. (2.6.9)

As worked out in [23], the classical “area” of a point in the RST model is

Acl = 8e−2φ − N

3
φ− N

6
− N

6
log

N

48
. (2.6.10)

For coherent states built on the σ vacuum, the renormalized entanglement entropy

across a point has a local contribution

Sent =
N

6

(
φ+

1

2
log

N

12
+

1

2
log
(
−x+x−

))
. (2.6.11)

The full entanglement entropy also has an infrared term which is not locally associated

to the horizon and so is not included here. See [23] for a detailed derivation and

discussion of these points.

Now, Ω can be written as

Ω =
3

2N
(Acl + 4Sent)−

1

2
log(−x+x−)− log 2 +

1

4
. (2.6.12)

Differentiating, we obtain

∂+Ω +
1

2x+
=

3

2N
∂+Aqu , (2.6.13)

where Aqu = Acl + 4Sent.

When analyzing the RST model, we will leave entropy condition i unchanged.

In the formulation of ii, we will replace Acl with Aqu ≡ Acl + 4Sent. In Kruskal

coordinates, these become

i. ∂+s+ ≤ 2T++
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ii. −s+(x+
0 ) ≤ 1

4
∂+Aqu(x

+
0 )

Application of these conditions results in

−s+(x+) =

∫ x+
0

x+

dx̃+∂+s+(x̃+)− s+(x+
0 )

(i) ≤ 2

∫ x+
0

x+

dx̃+T++(x̃+)− s+(x+
0 )

(eom) =
N

6

(
∂+Ω +

1

4x+

)]x+

x+
0

− s+(x+
0 )

=

(
1

4
∂+Aqu −

N

24x+

)]x+

x+
0

− s+(x+
0 )

(ii) ≤ 1

4
∂+Aqu(x

+)− N

24

1

x+
+
N

24

1

x+
0

≤ 1

4
∂+Aqu(x

+) .

We find

∫ 1

0

dλ s(λ) =

∫ x+
1

x+
0

dx̃+s+(x̃+) =

∫ x+
0

x+
1

dx̃+
(
−s+(x̃+)

)
≤ 1

4
(Aqu(0)− Aqu(1)) .

(2.6.14)

With our entropy conditions, we see that the covariant entropy bound is satisfied

once we replace Acl with Aqu.

It is interesting to note that the quantum Bousso bound can not be saturated

for coherent states built on the σ vacuum. The obstruction to saturation is the term

N
24

(
1
x+
0

− 1
x+

)
that shows up in the calculation of −s+(x+). However, had we built

our state on top of the Kruskal vacuum (i.e., the Hartle-Hawking state), we would

have t+ = 0 and Sent = N
6
(φ + 1

2
log N

12
). As a result, both our equations of motion

and our definition of Aqu would change in a way that eliminates the N
24

(
1
x+
0

− 1
x+

)
term from the calculations. The quantum Bousso bound will then be saturated any

time the two entropy conditions are saturated.
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Chapter 3

Descent Relations in Type 0A/0B

3.1 Introduction

In this chapter, we gain further insight into type 0 D-branes by working out the

descent relations for type 0 theories. Sen’s descent relations in the type II theories re-

late different D-branes through operations of orbifolding and tachyon kinking. These

relations form an interlocking chain of relationships between the different types of

D-branes. Although the type 0 theories are in many ways similar to the type II the-

ories, it is not immediately clear how one should draw the descent relation diagram

since type 0 theories have twice the number of D-branes. This problem is addressed

in sections 3.4 through 3.6.

Sections 3.2 and 3.3 serve as very brief introductions to the type 0 theories

and their D-brane content. In section 3.4, we review the descent relations in type

II theories and we manage to rule out certain combinations of type 0 D-branes from

having any starring role in the type 0 descent relations. In sections 3.5 and 3.6, we

uncover how the type 0 D-branes are related via orbifolds and kinks, respectively. By

the end of section 3.6, we have pieced together the type 0 descent relations.

Section 3.7 demonstrates the fundamental distinction between the two types
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of D-branes in type 0 theories. We show in this last section that the two types

of D-branes, D+ branes and D− branes, have opposite charges with respect to all

(NS−,NS−) fields. We will also show how a general disk amplitude with a D+ relates

to the same amplitude with a D−.

3.2 Perturbative Spectrum

Type II superstring theories are composed of left and right moving pieces which

reside in one of four sectors, NS± and R±. The + and − here denote the value of

the worldsheet fermion number operator, (−1)F , not to be confused with the (−1)F
s
L

operator to be introduced later. At first blush, it appears as though there are on

the order of 216 possible string theories, each factor of 2 coming from whether or

not a given theory contains a particular combination of sectors. Several consistency

conditions pare this enormous number of possibilities to only four. Two of these are

the type IIA and IIB theories. The other two are the less familiar type 0A and 0B

theories.

The consistency conditions are as follows (for a review, see [24]):

Level matching: The first condition we use to rule out some theories is the level

matching condition L0 = L̃0. The NS− sector has half-integer levels while the

NS+, R+, and R− have integer levels. Therefore, NS− can not be paired with

any of the other three sectors.

Mutual locality: All pairs of vertex operators must be mutually local. That is,

the phase obtained by taking one vertex operator in a circle around the other

must be unity or else there is phase ambiguity in the amplitude.

Closed OPE: The OPE of the vertex operators in the theory must be in terms of

vertex operators that are also present in the theory.
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Modular invariance: Modular invariance requires that there be at least one left

moving R sector and at least one right moving R sector.

The only four theories that satisfy these simple consistency requirements are the type

IIA and IIB theories,

IIA: (NS+,NS+) (R+,R−) (NS+,R−) (R+,NS+)

IIB: (NS+,NS+) (R+,R+) (NS+,R+) (R+,NS+)
(3.2.1)

and the type 0A and 0B theories,

0A: (NS+,NS+) (NS−,NS−) (R+,R−) (R−,R+)

0B: (NS+,NS+) (NS−,NS−) (R+,R+) (R−,R−) .
(3.2.2)

The perturbative spectra of the type 0 theories contain no spacetime fermions. In

the NS-NS sectors, the low-lying states are the tachyon from (NS−,NS−) and the

graviton, antisymmetric tensor, and dilaton from (NS+,NS+). The type 0 theories

have twice as many massless R-R states as the type II theories. In particular, type

0A has two R-R 1-forms and two R-R 3-forms; type 0B has two R-R scalars, two R-R

2-forms, and one R-R 4-form with an unconstrained 5-form field strength.

3.3 D-branes

The fact that the type 0 theories have twice as many R-R fields as the type II theories

is an indication that there may be twice as many stable D-branes in type 0 as com-

pared to type II. This turns out to be correct and can be understood quite directly

by examining D-branes in the boundary state formalism (for a review, see [25]). In

this formalism, D-branes are represented by boundary states for the physical closed

strings. These boundary states are themselves coherent closed string states.

In both the type II and type 0 theories, there are four types of boundary states
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for each p,

|Bp,+〉NS-NS , |Bp,−〉NS-NS , |Bp,+〉R-R , |Bp,−〉R-R . (3.3.1)

The + and − denote the boundary conditions on the worldsheet fermions and su-

perghosts as in equations (3.6.9). Linear combinations of these states must be taken

to form D-brane boundary states which, in turn, must be GSO-invariant and must

satisfy certain consistency conditions [25].

The D-brane boundary states in the type 0 theories are as follows:

|Dp,+〉 = |Bp,+〉NS-NS + |Bp,+〉R-R

|Dp,−〉 = |Bp,−〉NS-NS + |Bp,−〉R-R

|Dp,+〉 = |Bp,+〉NS-NS − |Bp,+〉R-R

|Dp,−〉 = |Bp,−〉NS-NS − |Bp,−〉R-R


for p even (odd) in 0A (0B) (3.3.2)

|D̂p,+〉 = |Bp,+〉NS-NS

|D̂p,−〉 = |Bp,−〉NS-NS

 for p odd (even) in 0A (0B). (3.3.3)

Using η to denote ±1, the |Dp, η〉 states correspond to stable D-branes. We see from

the minus sign in front of the R-R boundary states that the |Dp, η〉 states correspond

to stable anti-D-branes. The |D̂p, η〉 states correspond to unstable D-branes.

Let us pause for a second to make a remark on D-brane stability. The condition

for stability is that the spectrum of open strings on the D-brane does not contain a

tachyon. It is important not to confuse this condition with being BPS. Of course, none

of the D-branes can be BPS in the type 0 theories since there is no supersymmetry to

begin with; there are no fermions in the absence of D-branes. It just so happened for

D-branes in the type II theories that the conditions of stability and BPS coincided.

It will be important for our purposes to find the spectra of open strings living on

or between D-branes. The details can be found in Appendix A and the results for type
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0 D-branes are given in tables 1 and 2. The spectra in table 1 can be extrapolated to

all possibilities by noting that a given spectrum is invariant under the replacements D

↔ D and/or + ↔ −. For example, from the first line of table 1, we see that the open

strings beginning on a Dp+ and ending on a Dp+ are NS+. Therefore, the strings

beginning on a Dp+ and ending on a Dp+ are NS+. Similarly, strings beginning on

a Dp− and ending on a Dp− (or beginning on a Dp− and ending on a Dp−) are also

NS+.

Open Spectrum on Stable D-branes

(p odd in 0B, p even in 0A)

σ = 0 σ = π Spectrum

Dp+ Dp+ NS+

Dp+ Dp+ NS−

Dp+ Dp− R+

Dp+ Dp− R−

Table 1: All other cases obtained by one or both of the following

operations under which the spectrum is invariant: + ↔ −, D ↔ D.

We see that there are two tachyons among the open strings stretched between a

|Dp, η〉 and a |Dp, η〉. One tachyon starts (at σ = 0) on the |Dp, η〉 and ends (at

σ = π) on the |Dp, η〉, and the other tachyon starts on the |Dp, η〉 and ends on the

|Dp, η〉. This indicates an instability in the DD pair.

Open Spectrum on Unstable D-branes

(all p in 0A and 0B)

σ = 0 σ = π Spectrum

D̂p+ D̂p+ NS+, NS−

D̂p+ D̂p− R+, R−

Table 2: All other cases obtained by + ↔ −

under which the spectrum is invariant.
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We see in table 2, as expected, that there is a tachyon living on the unstable |D̂p, η〉

D-branes.

3.4 Descent Relations

Sen’s descent relations give relations between different D-brane configurations in the

type II theories (for a review, see [14]). The two important operations are orbifolding

by (−1)F
s
L , where F s

L is the spacetime fermion number of the left-movers, and kinking

the tachyon field that lives on unstable configurations of D-branes. Starting with

a coincident D(2p)D(2p) pair in type IIA, orbifolding by (−1)F
s
L yields an unstable

D̂(2p) in type IIB. Orbifolding one more time leaves us with a stable D(2p) in the

type IIA theory. Starting again with the D(2p)D(2p) pair in type IIA, but this time

kinking the tachyon field that lives on the D-branes, we are left with an unstable

̂D(2p−1) in type IIA. Kinking the remaining tachyon field gives us a stable D(2p−2)

in type IIA. The results are similar if we start with a D(2p+1)D(2p+1) pair in type

IIB. In fact, the descent relations form an interlocking chain as shown in figure 1.

↓ ↓

IIB D(2p+1)D(2p+1) → IIA ̂D(2p+1) → IIB D(2p+1)

↓ ↓

IIA D(2p)D(2p) → IIB D̂(2p) → IIA D(2p)

↓ ↓

→ IIA ̂D(2p−1) → IIB D(2p−1)

↓

→ IIA D(2p−2)

Figure 1: Descent relations for the type II theories. Horizontal arrows

denote modding by (−1)F
s
L . Vertical arrows denote the tachyonic kink.
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The natural question at this point is what the analogue of the descent relations

is for the type 0 theories. Starting with a D(2p)D(2p) in type 0A, we have four

possibilities to consider: a choice of + or − for each of the two branes. Then, once we

orbifold (kink), we must figure out whether we get D̂(2p)+ or D̂(2p)− ( ̂D(2p−1)+

or ̂D(2p−1)−). For a discussion of the differences between D+ and D− branes, see

section 3.7.

In the type II descent relations, every time we orbifold or kink we effectively

remove one of the tachyonic degrees of freedom. A complex tachyon lives on the

DD pair; orbifolding or kinking once gives an unstable D-brane with a real tachyon;

orbifolding or kinking one more time gives a stable D-brane with no tachyon field.

With this observation, we can quickly rule out two of the choices for the DD pair in

the type 0 case. Since the open string tachyon arises from the NS− sector, we see

from table 1 that only the Dp+Dp+ and Dp−Dp− pairs for p odd in 0B (even in

0A) have tachyon fields living on them.

Holding out some hope for the Dp+Dp− pair, let us see if there is any room in

the type 0 descent relations for this object. Clearly, we can not consider a tachyon kink

since there is no tachyonic kink on this pair of D-branes: from table 1, we see that there

are NS+ strings living on each of the D-branes and R− strings stretched between the

two. Perhaps we can orbifold this pair of D-branes by (−1)F
s
L . However, one can take

the (−1)F
s
L orbifold in the presence of D-branes only if that configuration of D-branes

is invariant under (−1)F
s
L . For example, in the type II theories, (−1)F

s
L |D(2p)〉 =

|D(2p)〉 and (−1)F
s
L |D(2p)〉 = |D(2p)〉, so we were able to orbifold the DD pairs.

Since

(−1)F
s
L |Bp,±〉NS-NS = |Bp,±〉NS-NS ,

(−1)F
s
L |Bp,±〉R-R = −|Bp,±〉R-R , (3.4.1)
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we see from (3.3.2) that in the type 0 theories

(−1)F
s
L |Dp+〉 = |Dp+〉 ,

(−1)F
s
L |Dp−〉 = |Dp−〉 , (3.4.2)

and

(−1)F
s
L |Dp+〉 = |Dp+〉 ,

(−1)F
s
L |Dp−〉 = |Dp−〉 . (3.4.3)

This means that the coincident Dp+Dp− pair is not invariant under (−1)F
s
L and

we no longer consider it as a potential participant in the type 0 descent relations.

Fortunately, the Dp+Dp+ and Dp−Dp− pairs are invariant under (−1)F
s
L , so we will

be able to interpret the orbifold as a projection of the open string states.

3.5 (−1)F
s
L Orbifold

Here we will consider what happens to the coincident D(2p)+D(2p)+ pair in type

0A under the (−1)F
s
L orbifold. First, let us look at the spacetime bulk far from the

D-branes. Locally, this is just type 0A without any open strings. Taking the orbifold

of type 0A by (−1)F
s
L gives the type 0B theory, and vice versa (see Appendix B for

details).

As we have already noted in equations (3.4.2) and (3.4.3) , (−1)F
s
L switches the

D(2p)+ and D(2p)+, so its action on the Chan-Paton factors is

Λ → σ1Λσ
−1
1 . (3.5.1)

Of the four Chan-Paton factors, I, σ1, σ2, and σ3, only I and σ1 are invariant under
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this operation. Therefore, the open strings with CP factors I and σ1 are kept and

those with CP factors σ2 and σ3 are thrown out.

We can see that this new object, the result of orbifolding D(2p)+D(2p)+, is a

single brane since the degrees of freedom corresponding to the relative positions of the

original D-branes have been projected out. The position coordinates corresponding

to their respective CP factors are as given below.

���

���

���

���

x0 y0

1 2 1− 1 : X = x0 + . . .

2− 2 : X = y0 + . . .

1− 2 : X = x0 +
σ

π
(y0 − x0) + . . .

2− 1 : X = y0 +
σ

π
(x0 − y0) + . . .

Writing out the lowest order degrees of freedom in terms of Chan-Paton factors, we

find that we can regroup them as

x0

1 0

0 0

+ y0

0 0

0 1

+ [x0 +
σ

π
(y0 − x0)]

0 1

0 0

+ [y0 +
σ

π
(x0 − y0)]

0 0

1 0


=

1

2
(x0 + y0)I +

1

2
(x0 − y0)σ3 +

1

2
(x0 + y0)σ1 +

1

2
[−i(x0 − y0) +

2iσ

π
(x0 − y0)]σ2 .

(3.5.2)

The (x0 − y0) degree of freedom multiplies only σ2 and σ3, which are projected out.

After orbifolding, we are left with a (2p)-brane in the type 0B theory with NS+

strings (corresponding to I) and NS− strings (corresponding to σ1) living on it. This

identifies the object as either D̂(2p)+ or D̂(2p)−. In order to distinguish between

these two options, we look at the coupling of this (2p)-brane to the (NS−,NS−)

tachyon and compare it to the coupling of the D̂(2p)+ and D̂(2p)− to the (NS−,NS−)

tachyon. But first we must determine what these couplings are.
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We know from [26] that stable D-branes in the type 0 theories have the term

−Tpqq
4

∫
dp+1σ T (X) (3.5.3)

in their low energy effective action, where T is the closed string tachyon, and q and q

are the D-brane’s charges under the massless R-R fields C and C. The R-R charges

of stable D-branes in the type 0 theories are given in table 3. Notice that qq = η.

Stable Dp R-R Charges

(p odd in 0B, p even in 0A)

q q

Dp+ 1 1

Dp+ −1 −1

Dp− 1 −1

Dp− −1 1

Table 3

We know from cylinder diagrams between D-branes that the unstable D̂+ and D̂−

have opposite tachyon charge [27], but this can not tell us how to assign the charges

to the two types of D-branes. The solution to this can be found by comparing tachyon

tadpole calculations for the stable and unstable D-branes.

The amplitude [28,29] for a stable Dp+ to emit a tachyon is

〈T, k|Dp,+〉 = 〈T, k|(|Bp,+〉NS-NS + |Bp,+〉R-R)

= 〈T, k|Bp,+〉NS-NS

= 〈e−Φ−Φ̃e−ik·X |Bp,+〉NS-NS

=
Tp
2
〈e−Φ−Φ̃e−ik·X |BX〉|Bgh〉|Bψ, η〉NS-NS|Bsgh, η〉NS-NS , (3.5.4)

36



where k is perpendicular to the D-brane. Now consider an unstable D̂(p−1)+ that is

extended in p−1 of the same directions as the Dp+. The amplitude for an unstable

D̂(p−1)+ to emit a tachyon in the same direction is

〈T, k| ̂D(p− 1),+〉 = 〈T, k|B(p− 1),+〉NS-NS

=
Tp−1

2
〈e−Φ−Φ̃e−ik·X |BX〉′|Bgh〉|Bψ, η〉′NS-NS|Bsgh, η〉NS-NS .(3.5.5)

The only difference between (3.5.4) and (3.5.5) is the normalization and the matter

part of the boundary state. Both Tp and Tp−1 are positive constants. The difference

between |BX〉′ and |BX〉 is a minus sign on one of the X fields which does not get

contracted with the eik·X of the tachyon since k is perpendicular to the Dp+. The

difference between |Bψ〉′ and |Bψ〉 is a minus sign on one of the ψ fields, but none of

the ψ fields in the boundary state get contracted with anything in the tachyon vertex

operator. Therefore, the tachyon charge of the unstable D̂(p−1)+ is related to the

charge of the stable Dp+ by a factor of Tp−1/Tp, so the tachyon tadpole term in an

unstable | ̂D(p− 1), η〉 brane’s low energy effective action is

−Tp−1η

4

∫
dp+1σ T (X) . (3.5.6)

Note, by comparing (3.5.3) and (3.5.6), that the Dp+ and the D̂(p−1)+ couple with

the same sign to the closed string tachyon.

Since both the closed string tachyon and the NS-NS boundary state part of

the D-branes both reside in the (NS,NS) sector which is unaffected by the orbifold,

the coupling of the brane to the tachyon should be unchanged. This means that the

D(2p)+D(2p)+ in type 0A gets orbifolded to the D̂(2p)+ of the type 0B.

We can understand the orbifold at the level of boundary states by considering the

emission and reabsorption of closed strings by the D(2p)+D(2p)+ pair. To simplify
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our equations, we introduce the shorthand notation

〈〈Λ〉〉 ≡
∫
dl

|D(2p)+〉

|D(2p)+〉


†

e−lHcΛ

|D(2p)+〉

|D(2p)+〉

 . (3.5.7)

In this formalism, the calculation of the cylinder diagram for an open string with

CP factor Λ can be rewritten as the closed string exchange amplitude 〈〈Λ〉〉. The

amplitude for a closed string to be emitted and reabsorbed by the D(2p)+D(2p)+

pair is equal to 〈〈1 1

1 1

〉〉 = 〈〈I + σ1〉〉 . (3.5.8)

When we orbifold by projecting out σ2 and σ3, we see that this amplitude is un-

changed. However, we know from our earlier discussion that the resulting object is a

single D-brane. Therefore, we should be able to rewrite (3.5.8) as the emission and

absorption of a closed string by a single D̂(2p). Attempting this, we find

〈〈I + σ1〉〉 =


4
∫
dl 〈D̂(2p) + |e−lHc |D̂(2p)+〉

4
∫
dl 〈D̂(2p)− |e−lHc |D̂(2p)−〉 .

(3.5.9)

This amplitude can be written in terms of either a D̂(2p)+ or a D̂(2p)−, but our

previous tachyon charge argument singles out the D̂(2p)+.

If we orbifold one more time by (−1)F
s
L , the bulk transforms back to type 0A.

The action of the orbifold on the D-brane’s open string modes can be determined by

examining the two-point functions of the theory. The existence of nonzero two-point

functions between open strings on the D-brane and closed strings in the bulk allows

us to determine the action of (−1)F
s
L on the open strings by requiring the correlation

functions to be invariant. As in the type II case [14], the orbifold’s effect on the

D̂(2p)+ is to project out the open strings with CP factor σ1. Removing the σ1 from
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(3.5.8) leaves the following amplitude for closed string emission and absorption:

〈〈I〉〉 =



2
∫
dl 〈D(2p) + |e−lHc |D(2p)+〉

2
∫
dl 〈D(2p) + |e−lHc |D(2p)+〉

2
∫
dl 〈D(2p)− |e−lHc |D(2p)−〉

2
∫
dl 〈D(2p)− |e−lHc |D(2p)−〉 .

This time, the amplitude can be written in four ways, in terms of a D(2p)+, D(2p)+,

D(2p)−, or D(2p)−. Based on the previous tachyon charge argument, we can rule out

the last two possibilities, so we know the resulting object is either a stable D(2p)+ or

a stable D(2p)+ in type 0A. This agrees with Sen’s observation in [14] that there is

an inherent ambiguity as to whether the resulting object is a brane or an anti-brane.

3.6 Tachyonic Kink

The other component to the descent relations is the tachyonic kink. As shown in

figure 1, kinking one of the two tachyons on a DpDp in a type II theory yields a

D̂(p−1) in the same theory and kinking the remaining tachyon results in a D(p−2).

This part of the descent relations is shown by taking a series of marginal deformations

that connect the DpDp to the tachyonic kink and following what happens to the CFT

under these deformations.

To outline the series of marginal deformations, we will use the D1D1 pair in 0B

for simplicity. The details of this analysis can be found in [14,30]. We begin with the

D1D1 pair wrapped on a circle of radius R and make the following deformations:

1. We increase the gauge field on the D1 so that the open strings with CP factors

σ1 and σ2 are antiperiodic around the compactification circle. In particular, the
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tachyon field with CP factor σ1 is moded by half-integers as

T (x, t) =
∑
n∈Z

Tn+ 1
2
(t)ei(n+ 1

2
) x

R . (3.6.1)

2. The radius of the circle is taken down to R = 1/
√

2. At this value, the T± 1
2

modes are massless and, therefore, correspond to marginal deformations.

3. A vev of −i is given to (T 1
2
− T− 1

2
) which corresponds to

T (x) = sin
x

2R
. (3.6.2)

This is the tachyonic kink.

4. The radius, R, is taken back to infinity.

Step number three will be our main focus. In order to understand the effect

of this step, we first bosonize the worldsheet spinors ψL and ψR (often denoted as ψ

and ψ̃) whose spacetime indices correspond to the compactified direction. In addition

to ψL, ψR, and the corresponding X (= XL + XR), we introduce four new spinors

ξL, ξR, ηL, and ηR, and two new bosons, φ (= φL + φR) and φ′ (= φ′L + φ′R). The

bosonization equations relating them are

e±i
√

2XL ∼ (ξL ± iηL) , (3.6.3)

e±i
√

2φL ∼ (ξL ± iψL) , (3.6.4)

e±i
√

2φ′L ∼ (ηL ± iψL) , (3.6.5)

and similarly for the right-moving fields. We also have the relations

ξLηL ∼ ∂XL , ξLψL ∼ ∂φL , ηLψL ∼ ∂φ′L , (3.6.6)
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as well as the corresponding right-moving relations. Remember, these fields are specif-

ically those fields whose spacetime indices correspond to the compactified direction.

Written in terms of the new bosonic field, the tachyonic kink is made by inserting

exp

(
i
σ1

2
√

2

∮
∂φ

)
(3.6.7)

at the boundary of the disk. In step four, the radius is taken back to infinity by

inserting vertex operators of the form ∂X∂X. When the contour integral of ∂φ is

contracted around each of these operators, they are converted into −∂φ′∂φ′. This

corresponds to decreasing the φ′ radius, so we must introduce a T-dual variable, φ′′

related to the φ′ as

φ′′L = φ′L , φ′′R = −φ′R , Rφ′′ = 1/Rφ′ . (3.6.8)

This converts the Neumann boundary condition on φ′ to a Dirichlet boundary condi-

tion on φ′′ and we are left with a D0-brane where φ′′ is the new spacetime coordinate

in place of X.

This process is easily extended to DpDp pairs for p other than 1 since the

other worldsheet fields are left unchanged. This is, in fact, the key to understanding

whether a Dp+Dp+ gets kinked to a D̂(p−1)+ or a D̂(p−1)−. Let us take a look

now at what the + and − correspond to in terms of worldsheet fields. The boundary

41



state |Dp, η〉 satisfies the following equations:

∂nX
µ|Dp, η〉 = 0 , µ = 0, . . . , p

(X i − yi)|Dp, η〉 = 0 , i = p+ 1, . . . , 9

(ψµ − ηψ̃µ)|Dp, η〉 = 0 , µ = 0, . . . , p

(ψi + ηψ̃i)|Dp, η〉 = 0 , i = p+ 1, . . . , 9

(b− b̃)|Dp, η〉 = 0 ,

(c− c̃)|Dp, η〉 = 0 ,

(γ − ηγ̃)|Dp, η〉 = 0 ,

(β − ηβ̃)|Dp, η〉 = 0 . (3.6.9)

The first four of these equations are the familiar boundary conditions on the matter

fields. The last four can be obtained by demanding BRST invariance of the boundary

state [29].

The only worldsheet fields that are affected by the kink are those whose space-

time index is the same as the compactified direction. For example, no matter what

tachyonic kinking procedure we can imagine, ψ0 will certainly be unaffected. Since

the η value of the |Dp, η〉 D-brane can be read off from the boundary condition on

ψ0, η is invariant under all marginal deformations corresponding to tachyonic kinks.

This means that a Dp+Dp+ gets kinked to a D̂(p−1)+.

Now we claim that the rest of the kink analysis goes through the same as it did

in the case of the type II theories. How can we be so sure of this? The type 0 and

type II theories differ in their perturbative closed string spectra, but the marginal

deformations needed to bring about a tachyonic kink uses only those parts of the

closed string spectra that type 0 and type II have in common. In particular, the only

closed string vev that is deformed is that of the graviton which can be found in the

(NS+,NS+) sector of all type 0 and type II theories. All other deformations have to
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do with open strings, and the bosonic open string spectra on D-branes in type 0 and

type II theories are identical. This can be seen by comparing tables 1 and 2 with

tables 4 and 5 in Appendix A.

Let us check that the Dp+Dp+ gets kinked to the D̂(p−1)+ by considering the

amplitude for the emission of a closed string tachyon. From table 3 and equation

(3.5.3), we see that the combined D1+D1+ pair in type 0B has a nonzero tachyon

charge (Recall that η = qq). The amplitude under consideration is the closed tachyon

tadpole amplitude: a disk with the tachyon vertex operator inserted in the bulk.

Again, kinematics force the momentum of the emitted tachyon to be perpendicular

to the D1+D1+ pair. Therefore, there are no potential contractions between the

tachyon vertex operator, e−Φ−Φ̃e−ik·X , and the tachyonic kink operator in (3.6.7).

The sign of the amplitude is not changed by the marginal deformations, so the result

is a D̂0 brane that couples to the closed tachyon with the same sign as the D1+D1+,

namely a D̂0+.

The result we have established here for the D1+D1+ pair in type 0B can easily

be extended to all Dp+Dp+ pairs and Dp−Dp− pairs for p even in 0A and p odd

in 0B. The tachyonic kink on an unstable D̂p+ or D̂p−, for p > 0, can be analyzed

by the following procedure [14]. Take the unstable D̂1+ in 0A as an example. If

we T-dualize the D1+D1+ pair in type 0B, we find that the D0+D0+ pair in 0A

is connected by marginal deformations to the D̂1+ in 0A. By running the marginal

deformations backwards, we see that the D0+D0+ corresponds to a kink-antikink

pair on the D̂1+. This allows us to identify the tachyonic kink on the D̂1+ as a

stable D0+ in type 0A. The flowchart of descent relations in the type 0 theories is

given in figure 2.
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↓ ↓

0B D(2p+1)+D(2p+1)+ → 0A ̂D(2p+1)+ → 0B D(2p+1)+

↓ ↓

0A D(2p)+D(2p)+ → 0B D̂(2p)+ → 0A D(2p)+

↓ ↓

→ 0A ̂D(2p−1)+ → 0B D(2p−1)+

↓

→ 0A D(2p−2)+

Figure 2: Descent relations for the type 0 theories. Horizontal arrows

denote modding by (−1)F
s
L . Vertical arrows denote the tachyonic kink.

A similar diagram exists with + → −.

3.7 |Dp, η〉: η = +1 vs. η = −1

It is important to stress that the value of η in |Dp, η〉 does not just affect the R-R

charges of the D-brane. It has an important effect on many string amplitudes. In

fact, we will be able to show below that Dp+ and Dp− branes have the same tadpole

couplings to all (NS+,NS+) fields and opposite tadpole couplings to all (NS−,NS−)

fields.

Let us first try to see the opposite tachyon charges of the Dp+ and Dp− at

the level of a string calculation. Emission of a tachyon from a D-brane in a type 0

theory is given by a disk amplitude with the tachyon vertex operator in the bulk and

appropriate boundary conditions on the edge. Note from (3.6.9) that these boundary

conditions depend on η. Equations (3.6.9) are in terms of the fields defined on the

upper half plane, so once we map our tachyon amplitude to the upper half plane, the
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following η-dependent equations must hold on the real axis:

ψ̃µ = ηψµ , ψ̃i = −ηψi , (3.7.1)

γ̃ = ηγ , β̃ = ηβ . (3.7.2)

The doubling trick [31] extends the string calculation to the entire complex plane by

defining

ψ̃µ(z) = ηψµ(z) , ψ̃i(z) = −ηψi(z) , (3.7.3)

γ̃(z) = ηγ(z) , β̃(z) = ηβ(z) (3.7.4)

on the lower half plane. In actual calculations, β and γ are rebosonized in terms of

the free bosons Φ and χ as

β ∼= e−Φ+χ∂χ , γ ∼= eΦ−χ . (3.7.5)

The doubling trick identifications on γ and β can be rewritten as

Φ̃(z) = Φ(z) +
iπ

2
(1− η) ,

χ̃(z) = χ(z) . (3.7.6)

After mapping to the upper half plane and then using the doubling trick, the ampli-

tude has become

〈e−Φ(z)−Φ(z)−iπ(1−η)/2e−ik·X〉 = (−1)(1−η)/2〈e−Φ(z)−Φ(z)e−ik·X〉 . (3.7.7)

Here we see the explicit dependence on η of the D-brane’s tachyon charge.

A somewhat complicated, but instructive, example is to look at C goes to C

scattering as depicted in figure 3, where C and C are massless bosons from the two
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Figure 3

different R-R sectors.

The D-brane in type 0 theories couples to (NS−,NS−) closed strings and there

are vertices in the low energy spacetime action that connect (NS−,NS−) strings to

a C and a C [26]. The string diagram that contributes to this process is a disk with

VC and VC operators. These massless R-R vertex operators are given by

V
Cm−1

i (zi, zi) = (P−Γi(m))
AB : V−1/2A(pi, zi) : : Ṽ−1/2B(pi, z̃i) : , (3.7.8)

V
Cm−1

i (zi, zi) = (P+Γi(m))
AB : V−1/2A(pi, zi) : : Ṽ−1/2B(pi, z̃i) : , (3.7.9)

where we are using the notation of [32]. The objects in these vertex operators are

defined as

V−1/2A(pi, zi) = e−Φ(zi)/2SA(zi)e
ipi·XL(zi) , (3.7.10)

P± = (1± γ11)/2 , (3.7.11)

Γ(n) =
an
n!
Fµ1...µnγ

µ1 . . . γµn , (3.7.12)

where SA is the spin field, γ11 = γ0 . . . γ9, and Fn = dCn−1.

Under the doubling trick, the spin field S̃A will be identified as

S̃A(z) = MA
BSB(z) , (3.7.13)
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for some matrix M . This matrix can be specified [32] by considering the following

OPE’s.

ψµ(z)SA(w) ∼ (z − w)−1/2 1√
2
(γµ)A

BSB(w) + . . . (3.7.14)

ψ̃µ(z)S̃A(w) ∼ (z − w)−1/2 1√
2
(γµ)A

BS̃B(w) + . . . (3.7.15)

The doubling trick identification for ψ̃µ is ψ̃µ(z) = ηDµ
νψ

ν(z), whereDµ
ν = (δαβ,−δij).

In order for (3.7.15) to be consistent with (3.7.14), M must satisfy

(γµ)A
B = Dµ

ν(M
−1γνM)A

B
. (3.7.16)

This can be rewritten as (Mγµ) = Dµ
ν(γ

νM) which implies that M is of the form

M =



aγ0 . . . γp for p+1 odd, η = 1

bγ0 . . . γpγ11 for p+1 even, η = 1

cγ0 . . . γpγ11 for p+1 odd, η = −1

dγ0 . . . γp for p+1 even, η = −1 .

(3.7.17)

To fix the phases, the OPE’s

SA(z)SB(w) ∼ (z − w)−5/4C−1
AB + . . . (3.7.18)

S̃A(z)S̃B(w) ∼ (z − w)−5/4C−1
AB + . . . (3.7.19)

are used to find that M−1 = C−1MTC. Since all the γµ and γ11 anticommute with
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C, we find the phases up to an overall sign:

M =



±iγ0 . . . γp for p+1 odd, η = 1

±γ0 . . . γpγ11 for p+1 even, η = 1

±γ0 . . . γpγ11 for p+1 odd, η = −1

±iγ0 . . . γp for p+1 even, η = −1 .

(3.7.20)

From now on, we will write M as Mη to distinguish between the two forms it takes

for fixed p. Equation (3.7.20) gives the relationships between M+ and M− as

M− = ±iM+γ11 . (3.7.21)

The amplitude for C → C scattering off a Dp+ is [33]

A(C,C)+ =− iκ2Tp
2

[
1

2
Tr(P−Γ1(m)M+γ

µ)Tr(P+Γ2(n)M+γµ)B(−t/2 + 1/2,−2s)

− Tr(P−Γ1(m)C
−1ΓT2(n)C)B(−t/2− 1/2,−2s+ 1)

− Tr(P−Γ1(m)M+Γ2(n)M+)B(−t/2 + 1/2,−2s+ 1)] . (3.7.22)

Since the Euler beta function is defined as

B(a, b) =

∫ 1

0

dy ya−1(1− y)b−1 , (3.7.23)

we see that the poles in the t channel are m2 = (4n − 2)/α′ for n = 0, 1, . . .. These

poles correspond to the masses of the closed strings in the (NS−,NS−) sector.

To obtain A(C,C)−, the amplitude for C → C scattering off a Dp−, from

A(C,C)+, we must replace M+ with M− and e−Φ(z)/2 with e−Φ(z)/2−iπ/2. It is simple to

check that the amplitude is invariant under replacing M+ with M−. In the correlation

function, there are two factors of e−Φ(z)/2 coming from the two R-R vertex operators.
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After replacing them with e−Φ(z)/2−iπ/2, each one contributes a factor of i for a total

phase of −1. In summary, we find that

A(C,C)+ = −A(C,C)− . (3.7.24)

This shows that the Dp+ and Dp− couple with opposite signs to all (NS−,NS−)

fields.

How can this phenomenon be understood in a more direct manner? Consider the

tadpole amplitude for emission of a closed string from a D-brane. If the closed string

is in one of the NS-NS sectors, the amplitude is a disk with the closed string vertex

operator in the (−1,−1) picture. For a NS-NS string, the amplitude for emission from

a Dp+ can be converted into an amplitude for emission from a Dp− by multiplying

by −1 for each factor of e−Φ̃ and ψ̃µ. In the (−1,−1) picture, the NS-NS vertex

operator has as many ψ̃’s as does the corresponding Fock state. Therefore, the Dp−

amplitude differs from the Dp+ amplitude by a factor of (−1)F̃ , where F̃ is the right-

moving worldsheet fermion number of the NS-NS closed string state. In other words,

Dp+ and Dp− have the same tadpole couplings to all (NS+,NS+) fields and opposite

tadpole couplings to all (NS−,NS−) fields.

It is clear how to generalize this to a general disk amplitude on a D-brane. To

convert a general disk amplitude for a D+ into the same amplitude with a D−, we

multiply by −1 for each e−Φ̃ and ψ̃µ, and we replace M+ with ±iM+γ11 for each spin

field. Since a fermionic state can not transform into a bosonic one, the number of

Mη’s will be even in any nonzero amplitude, so the sign ambiguity in that replacement

is insignificant.
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3.8 Summary

We set out to find the descent relations for the type 0 theories. We found that we

must start with either a D+D+ pair or a D−D− pair and that the + and − are

invariant under the orbifold and kink operations. This means we have two copies of

the usual descent relation chain for the type 0 theories: one for D+ branes and one

for D− branes. We then asked why we should care about the distinction between a

D+ brane and a D− brane. While it is fairly well known that the stable D+ and

D− have the same coupling to half of the massless R-R fields and equal and opposite

couplings to the other half, we have shown that the D+ and D− have the same tadpole

couplings to half of the NS-NS fields and equal and opposite tadpole couplings to the

other half.
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3.9 Appendix A. Open String Spectrum

In this appendix, we will find the open string spectrum on type II and type 0 D-branes.

We begin by considering the closed string exchange amplitudes between boundary

states, which are given in [34]. Motivated by the usual worldsheet duality of the

cylinder diagram, this result can be converted into an open string loop amplitude.
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The results are as follows:

∫
dl NS-NS〈Bp, η|e−lHclosed|Bp, η〉NS-NS =

∫
dt
2t

TrNS[e
−tHopen ]∫

dl NS-NS〈Bp, η|e−lHclosed|Bp,−η〉NS-NS = −
∫

dt
2t

TrR[e−tHopen ]∫
dl R-R〈Bp, η|e−lHclosed |Bp, η〉R-R =

∫
dt
2t

TrNS[(−1)F e−tHopen ]∫
dl R-R〈Bp, η|e−lHclosed |Bp,−η〉R-R = −

∫
dt
2t

TrR[(−1)F e−tHopen ]

(3.9.1)

We will combine equations (3.9.1) with the expressions [25] for the type II D-

branes in terms of boundary states,

|Dp〉 = (|Bp,+〉NS-NS − |Bp,−〉NS-NS)

+(|Bp,+〉R-R + |Bp,−〉R-R)

|Dp〉 = (|Bp,+〉NS-NS − |Bp,−〉NS-NS)

−(|Bp,+〉R-R + |Bp,−〉R-R)


for p even (odd) in IIA (IIB)

(3.9.2)

|D̂p〉 = |Bp,+〉NS-NS − |Bp,−〉NS-NS

}
for all p in IIA and IIB (3.9.3)

and the expressions for the type 0 D-branes in terms of boundary states,

|Dp,+〉 = |Bp,+〉NS-NS + |Bp,+〉R-R

|Dp,−〉 = |Bp,−〉NS-NS + |Bp,−〉R-R

|Dp,+〉 = |Bp,+〉NS-NS − |Bp,+〉R-R

|Dp,−〉 = |Bp,−〉NS-NS − |Bp,−〉R-R


for p even (odd) in 0A (0B) (3.9.4)

|D̂p,+〉 = |Bp,+〉NS-NS

|D̂p,−〉 = |Bp,−〉NS-NS

 for all p in 0A and 0B . (3.9.5)

It is impossible for a R-R string to spontaneously convert into a NS-NS string, or vice

versa, so we know that

NS-NS〈Bp, η′|e−lHclosed |Bp, η〉R-R = 0 . (3.9.6)
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Now, to find the spectrum on open strings beginning and ending on a stable Dp+

in the type 0 theories, we will rewrite the closed string exchange diagram as a trace

over open string states. We have everything we need to perform this calculation;

combining equations (3.9.1) and (3.9.4), we find

∫
dl 〈Dp,+|e−lHclosed |Dp,+〉

=

∫
dl NS-NS〈Bp,+|e−lHclosed |Bp,+〉NS-NS +

∫
dl R-R〈Bp,+|e−lHclosed |Bp,+〉R-R

=

∫
dt

2t
TrNS[e

−tHopen ] +

∫
dt

2t
TrNS[(−1)F e−tHopen ]

=

∫
dt

2t
TrNS[(1 + (−1)F )e−tHopen ]

=

∫
dt

t
TrNS+[e−tHopen ] . (3.9.7)

So we see that the open strings beginning and ending on a stable Dp+ in the type

0 theories are NS+. Proceeding in this manner, we can find the spectrum of open

strings on all possible combinations of D-branes in the type 0 and type II theories.

The full results for the type 0 theories are given in tables 1 and 2 in section 3.3. The

results for the type II theories are given in tables 4 and 5 below.

Open Spectrum on Stable D-branes

(p odd in IIB, p even in IIA)

σ = 0 σ = π Spectrum

Dp Dp NS+, R−

Dp Dp NS−, R+

Table 4: The other two cases obtained by the following

operation under which the spectrum is invariant: D ↔ D.
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Open Spectrum on Unstable D-branes

(all p in IIA and IIB)

σ = 0 σ = π Spectrum

D̂p D̂p NS+, NS−, R+, R−

Table 5

3.10 Appendix B. Orbifold of 0A/0B

The action of (−1)F
s
L can be represented as a 2π spacetime rotation on the left-

movers. Under this rotation, the left-sector bosons (NS) are invariant and the left-

sector fermions (R) pick up a minus sign. We can pick any spatial plane for this

rotation and for our purposes here we select the 8-9 plane.

The situation is greatly simplified if we use complexified coordinates [24] for

those left-moving fields whose indices are in the 8-9 plane,

Ψ4 =
1√
2
(ψ8 + iψ9) ,

Ψ4 =
1√
2
(ψ8 − iψ9) , (3.10.1)

∂Z4 =
1√
2
(∂X8 + i∂X9) ,

∂Z4 =
1√
2
(∂X8 − i∂X9) . (3.10.2)

With this notation, a rotation on the left-movers by angle θ in the 8-9 plane has the
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following action on the fields:

Ψ4 → eiθΨ4 ,

Ψ4 → e−iθΨ4 , (3.10.3)

∂Z4 → eiθ∂Z4 ,

∂Z4 → e−iθ∂Z4 . (3.10.4)

We wish to find the orbifold of type 0A by (−1)F
s
L . This is an asymmetric,

abelian orbifold with group elements {1, (−1)F
s
L}. The untwisted sector, correspond-

ing to the identity element, is simply the projection of 0A on states invariant under

(−1)F
s
L . It is clear that the invariant states are those in the sectors (NS+,NS+) and

(NS−,NS−). Let us check that we get the same result by representing (−1)F
s
L as a

rotation by 2π on the left-movers. On the NS sector ground state vertex operator,

1 → 1; the NS sector is invariant. To consider the action on the R sector ground

state vertex operator, we must bosonize the complexified fermions as

Ψ4 = eiH
4

,

Ψ4 = e−iH
4

, (3.10.5)

and likewise for the other fermions. In terms of these bosonic H fields, the spin

operator takes the form

Θs = e
i

4P

a=1
saHa

, (3.10.6)

where the sa = ±1/2. Since Ψ4 transforms under the θ = 2π rotation as (3.10.3),

exp(1
2
iH4) transforms as

e
1
2
iH4 → eiπe

1
2
iH4

= −e
1
2
iH4

. (3.10.7)
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Therefore, the spin field, and subsequently the left-moving R sector vertex operator,

picks up a minus sign from the 2π rotation; the (R+,R−) and (R−,R+) sectors are

projected out.

In the twisted sector, the boundary conditions on the ∂Z4 and Ψ4 fields are as

follows:

∂Z4(σ + 2π) = e2πi∂Z4(σ) ,

∂Z4(σ + 2π) = e−2πi∂Z4(σ) , (3.10.8)

Ψ4(σ + 2π) = e2πi(β+ν)Ψ4(σ) ,

Ψ4(σ + 2π) = e−2πi(β+ν)Ψ4(σ) , (3.10.9)

where ν = 0 for R, ν = 1/2 for NS, and β = 1. At first glance, it appears as though

the boundary conditions are unchanged. However, if we continuously change the

boundary condition factor exp(2πiβ) from β = 0 to β = 1, we see that the moding of

the Fourier coefficients has changed from n for both ∂Z4 and ∂Z4 and n+ ν for both

Ψ4 and Ψ4 to

α4 : n+ 1 ,

α4 : n− 1 ,

Ψ4 : n+ 1 + ν , (3.10.10)

Ψ4 : n− 1− ν .

This phenomenon, known as spectral flow, has an important consequence for the

ground state of the theory. When we began with β = 0, the ground state was defined

as

Ψ4
n+ν |0〉 = Ψ4

n+1−ν |0〉 = 0 for n = 0, 1, . . . , (3.10.11)

with similar equations for the other Ψ. The effect of continuously changing β from 0
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to 1 is that we replace ν with ν+1 in these equations. The ground state now satisfies

the conditions

Ψ4
n+ν+1|0〉 = Ψ4

n−ν |0〉 = 0 for n = 0, 1, . . . . (3.10.12)

The |0〉 state is no longer the ground state because Ψ4
ν |0〉 6= 0 and Ψ4

−ν |0〉 = 0. The

true ground state is

|0〉′ = Ψ4
ν |0〉 (3.10.13)

since

Ψ4
ν |0〉′ = Ψ4

νΨ
4
ν |0〉 = 0 (3.10.14)

and

Ψ4
−ν |0〉′ = Ψ4

−νΨ
4
ν |0〉 = {Ψ4

−ν ,Ψ
4
ν}|0〉 = |0〉 6= 0 . (3.10.15)

However, now the GSO condition on the left-movers,

(−1)F |0〉 = ±|0〉 (3.10.16)

has become

(−1)F |0〉′ = −Ψ4
ν(−1)F |0〉 = ∓|0〉′ . (3.10.17)

We see that the GSO conditions on the left-movers has been reversed.

This leaves us with the following twisted sector:

(NS−,NS+) (NS+,NS−) (R−,R−) (R+,R+) . (3.10.18)

Of these four groups of states, we keep only those that will combine with the untwisted

sector to give us a modular invariant theory. For abelian orbifolds, the correct cri-

teria for the twisted states to ensure modular invariance is level matching. In the

(NS−,NS+) and (NS+,NS−) sectors, there is no way to obtain L0 = L̃0, so we drop

these states.
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In the end, we are left with the (NS+,NS+) and (NS−,NS−) states from the

untwisted sector and the (R−,R−) and (R+,R+) states from the twisted sector.

Combined, these give the spectrum of the type 0B theory as given in (3.2.2). The

argument works in the same way to get type 0A from 0B.
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Chapter 4

AdS Solutions of 2D Type 0A

4.1 Introduction

AdS backgrounds of string theory are often fruitful arenas for studying holographic

dualities and for constructing sigma models with R-R fluxes, among other things. AdS

backgrounds of type 0A string theory should be no exception. In particular, the recent

discovery of a matrix quantum mechanics dual to two-dimensional type 0A string

theory [35, 36] suggests a promising direction for understanding AdS2/CFT1 [13].

Also, two-dimensional AdS presents one of the simplest backgrounds in which to

study sigma models in R-R flux.

As a first step in these pursuits, we present here a two-parameter family of AdS2

solutions to the two-dimensional type 0A effective action. One of the parameters is

the tachyon field T (equivalently, the ratio of dualized R-R field strengths, q2
+/q

2
−).

The other parameter is the string coupling e2Φ (equivalently, the magnitude of the

field strength q2). In these solutions, string loops can be suppressed by reducing the

string coupling, but the high curvature of the spaces makes higher order α′ corrections

important.

In section 4.2, we briefly review the 2D 0A string theory. In section 4.3, we
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present our family of AdS2 solutions. In section 4.4, we discuss possible corrections

to our solutions from higher order terms in the effective action.

4.2 Two-Dimensional Type 0A

The ten-dimensional type 0A string theory is given by the same worldsheet action as

the type IIA string, but with a GSO projection onto the closed string sectors

(NS+,NS+) (NS−,NS−) (R+,R−) (R−,R+) (4.2.1)

where + and − denote the eigenvalue of the worldsheet fermion number operator

(−1)F . In ten dimensions, each of these sectors contains a tower of states correspond-

ing to the possible transverse oscillations. In two dimensions, however, there is no

room for transverse oscillations, so the situation is much simpler. We have the gravi-

ton gµν and dilaton Φ in the (NS+,NS+) sector, the tachyon T in the (NS−,NS−)

sector, and two gauge fields C
(±)
µ from the R-R sectors that give rise to two field

strengths, F
(±)
µν . An allowed background for this theory is the two-dimensional lin-

ear dilaton vacuum (gµν = ηµν and Φ =
√

2
α′
φ) with an exponential tachyon wall

(T = µe
√

2
α′ φ) and zero field strengths (F

(±)
µν = 0). The worldsheet action for this

string theory is the action of N = 1 super Liouville theory plus the action for a free

scalar superfield.

The action for N = 1 super Liouville theory can be written in superfield for-

malism1 as

SSLT =
1

4π

∫
d2zd2θ

(
DΦDΦ + 2iµebΦ

)
, (4.2.2)

1Unfortunately, it is standard in the literature to use Φ for both the Liouville superfield and the
background dilaton.
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where Φ is the scalar superfield

Φ =

√
2

α′
φ+ iθψ + iθψ + iθθF , (4.2.3)

and the covariant derivatives are given by

D = ∂θ + θ∂z , D = ∂θ + θ∂z . (4.2.4)

In the case b = 1, this yields a theory with central charge ĉ = 9. When combined

with the ĉ = 1 theory of a free scalar superfield X with action

SX =
1

4π

∫
d2zd2θ

(
DXDX

)
, (4.2.5)

we get a critical SCFT with central charge ĉ = 10. This is the worldsheet action for

two-dimensional type 0A in the linear dilaton vacuum.

The effective spacetime action was calculated in [26] and was found to be

∫
d2x

√
−g
[
e−2Φ

2κ2

(
8

α′
+R + 4(∇Φ)2 − f1(T )(∇T )2 + f2(T ) + . . .

)
−πα

′

2
f3(T )

(
F (+)

)2 − πα′

2
f3(−T )

(
F (−)

)2
+ . . .

]
. (4.2.6)

The first few terms in a Taylor expansion of the fi functions are

f1(T ) =
1

2
+ . . . , f2(T ) =

1

α′
T 2 + . . . , f3(T ) = 1− 2T + 2T 2 + . . . . (4.2.7)

There is evidence that the exact expression for f3(T ) is e−2T [37,38], and we will use

this form for f3 in our calculations.
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4.3 AdS2 Solutions

4.3.1 Equations of Motion

To simplify the action (4.2.6), we will dualize the R-R field strengths:

−2πα′

4
f3(±T )

(
F (±)

)2 ∗ 1 = −πα′f3(±T )F (±) ∧ ∗F (±)

−→ − 1

4πα′
f3(∓T )q2

± ∗ 1 + q±F
(±)

−→ − 1

4πα′
q2
±f3(∓T ) ∗ 1 .

In the second line, we have introduced an auxiliary field q±. The equation of motion

for q± is

q± = −2πα′f3(±T ) ∗ F (±) , (4.3.1)

which, when substituted in, gives the original action. In the third line, we have

integrated out A(±) which constrains q± to be a constant. Therefore, in the third line,

the fields A(±) and q± are no longer functionally integrated. The full action can now

be written as

S =

∫
dxdt

√
−g

[
e−2Φ

2κ2

(
8

α′
+R + 4(∇Φ)2 − f1(T )(∇T )2 + f2(T ) + . . .

)

− 1

4πα′
f3(−T )q2

+ −
1

4πα′
f3(T )q2

− + . . .

]
. (4.3.2)

Varying with respect to the metric gµν , dilaton Φ, and tachyon T gives the
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equations of motion

(δg)
1

2
gµν

[
e−2Φ

2κ2

(
8

α′
+ 4∇2Φ− 4(∇Φ)2 − f1(T )(∇T )2 + f2(T )

)

− 1

4πα′
f3(−T )q2

+ −
1

4πα′
f3(T )q2

−

]

+
e−2Φ

2κ2
(−2∇µ∇νΦ + f1(T )∇µT∇νT ) = 0 , (4.3.3)

(δΦ)
8

α′
+R + 4∇2Φ− 4(∇Φ)2 − f1(T )(∇T )2 + f2(T ) = 0 , (4.3.4)

and

(δT)
e−2Φ

2κ2

[
2f1(T )∇2T + f ′1(T )(∇T )2 − 4f1(T )(∇µΦ)(∇µT ) + f ′2(T )

]
− 1

4πα′
f ′3(−T )q2

+ −
1

4πα′
f ′3(T )q2

− = 0 , (4.3.5)

where primes denote differentiation with respect to T . Setting Φ and T constant, we

find

(δg)
e−2Φ

2κ2

(
8

α′
+ f2(T )

)
− 1

4πα′
q2
+f3(−T )− 1

4πα′
q2
−f3(T ) = 0 , (4.3.6)

(δΦ)
8

α′
+R + f2(T ) = 0 , (4.3.7)

and

(δT)
e−2Φ

2κ2
f ′2(T )− 1

4πα′
q2
+f

′
3(−T )− 1

4πα′
q2
−f

′
3(T ) = 0 . (4.3.8)

With the AdS2 metric

ds2 =
−4l2

sin2(u+ − u−)
du+du− , (4.3.9)

the Ricci scalar is

R = −2/l2 . (4.3.10)
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4.3.2 Solutions T = 0

The solution with q− = q+ ≡ q and T = 0 satisfies the equations of motion with AdS

radius given by

l2 = α′/4 (4.3.11)

and dilaton given by

e−2Φ =
κ2

8π
q2 . (4.3.12)

A notable feature of this solution is that the curvature radius is fixed at a value of

order the string length. This implies that higher order α′ terms in the effective action

will be important. This will be addressed in section 4.4. Also, note that we are free

to tune the string coupling to zero by ramping up the strength of the R-R flux.

In this case, the “tachyon” is massive for all values of q. This can be seen as

follows. The δT equation of motion, to first order in T , gives us

{
∇2 +∇2Φ− (∇Φ)2 +

2

α′
− 4κ2

πα′
e2Φq2

}(
e−ΦT

)
= 0 . (4.3.13)

The δΦ equation of motion, to zero order in T , tells us that

∇2Φ− (∇Φ)2 +
2

α′
= −R

4
, (4.3.14)

and, when substituted into the linearized δT equation, gives us

{
∇2 − R

4
− 4κ2

πα′
e2Φq2

}(
e−ΦT

)
= 0 . (4.3.15)

Finally, substituting our background expressions for Φ and R, we get

(
∇2 − 30

α′

)(
e−ΦT

)
= 0 , (4.3.16)
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so that the tachyon mass is m2
T = 30

α′
= 15

2l2
. The authors of [26] noted that, in ten

dimensions, R-R flux could stabilize the tachyon potential. In our two-dimensional

case, we see that the R-R flux makes the otherwise-massless tachyon massive.

Solutions to the wave equation in AdS2 are most readily attained in Poincare

coordinates, in which

ds2 = l2
−dt2 + dy2

y2
. (4.3.17)

In these coordinates, the wave equation takes the form

(
∂2

∂y2
− ∂2

∂t2
− l2m2

T

y2

)
T (t, y) = 0 . (4.3.18)

Using separation of variables, we can write the general time-dependent, positive-

frequency solution as e−iωtχ(y). The normalizable solution is readily obtained in

terms of a Bessel function as

Tw(t, y) = e−iωt
√
y

2
Jh±−1/2(ωy) , (4.3.19)

where h± = 1
2
± 1

2

√
1 + 4l2m2

T . The static solutions are obtained by noting that the

wave equation

y2 ∂
2

∂y2
T = l2m2

TT (4.3.20)

implies that T ∼ yn where n(n− 1) = l2m2
T . Therefore, the general static solution is

T = ayh+ + byh− . (4.3.21)

Note that, although these static solutions are non-normalizable, they may make an

appearance as approximate solutions in regions of spacetime that are AdS-like.

Solutions to the wave equation in global coordinates are a little more difficult
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to come by, but they have been worked out in [39]. In the global coordinates

ds2 = l2
−dτ 2 + dσ2

cos2σ
, (4.3.22)

the normalized positive-frequency solutions are

Tn(τ, σ) = Γ(h)2h−1

√
n!

πΓ(n+ 2h)
e−i(n+h)τ (cosσ)hCh

n(sinσ) , (4.3.23)

where n = 0, 1, 2, . . ., Ch
n is the Gegenbauer polynomial, and h is once again related

to m2
T by h(h− 1) = l2m2

T . Note that, unlike in Poincare coordinates, the spectrum

in global coordinates is discrete.

4.3.3 Solutions with T 6= 0

The solution given in the previous section can be deformed by moving the constant

value of T away from zero. The solution is given by

l2 =
α′/4

1 + α′

8
f2(T )

, (4.3.24)

e−2Φ =
κ2

16π

(
q2
+f3(−T ) + q2

−f3(T )
)

1 + α′

8
f2(T )

, (4.3.25)

and

q2
−

q2
+

=
f3(−T )

f3(T )

8/α′ + f2(T )− f ′2(T )/2

8/α′ + f2(T ) + f ′2(T )/2
. (4.3.26)

Again, it is clear that, for all solutions in this family, we can send the string coupling

to zero while holding fixed both the tachyon vev T and the AdS radius l. This is

accomplished by sending q2
− and q2

+ to infinity while holding the ratio q2
−/q

2
+ fixed.

It is not evident from these equations whether or not there exists an AdS2

solution with one of the q’s, say q−, set to zero. Setting q− = 0 would require a T

of order 1, but to understand such large values of T would require a more complete
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knowledge of f2. Specifically, q− = 0 would require that

8

α′
+ f2(T )− 1

2
f ′2(T ) = 0 , (4.3.27)

and it is not known whether this equation has solutions.

4.4 Discussion

It should be noted that the AdS spaces presented here are solutions to the first few

terms in the effective action. Since the AdS radius is of order the string length, we

expect higher order terms in α′ to change some of the quantitative features of the

solutions, such as the exact value of the AdS radius or the true mass of the tachyon.

However, as we shall discuss here, the qualitative features of the AdS solutions are

rather generic and are not expected to be changed by the higher order α′ terms.

We can ask what other terms might make contributions to the equations of

motion, and, therefore, might change features of the AdS solution. For simplicity,

let us concentrate on the T = 0 solution found in section 4.3.2. Since we seek an

AdS solution in which R, T and Φ are constant and F± is nondynamical, the most

general term of interest in the dualized action is α′n−1e(2m−2)ΦT pRnq2m
± . The dilaton

dependence is fixed by the number of R-R field strengths in the monomial [40, 41].

Since we are considering the T = 0 solutions in this discussion, terms with p > 1 will

not contribute to any of the field equations. The p = 1 terms will contribute to the δT

variation, but the proposed symmetry [35] of the theory under T → −T and q+ ↔ q−

guarantees that the contribution to the equation of motion will be proportional to

(q2m
+ − q2m

− ). Setting q2
+ = q2

− ≡ q2 as before, this term disappears from the field

equations.

Having dispensed with terms involving T , we are left to focus on terms of the

form α′n−1e(2m−2)ΦRnq2m. Under variation of the metric, the higher-order terms in
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the action ∑
n,m

cn,m

∫ √
−ge(2m−2)Φα′

n−1
Rnq2m

modify the δg field equation to

e−2Φ

2κ2

8

α′
− q2

2πα′
+
∑
n,m

cn,m(1− n)e(2m−2)Φα′
n−1

Rnq2m = 0 .

We still seek a one-parameter family of solutions (with T = 0) in which q2 is propor-

tional to e−2Φ, and we will denote the constant of proportionality as B:

q2 = Be−2Φ .

The δg EOM may now be written as

8− κ2

π
B − 2κ2

∑
cn,m(n− 1)(α′R)nBm = 0 .

Similarly, the δΦ EOM becomes

8 + α′R− 2κ2
∑

cn,m(m− 1)(α′R)nBm = 0 .

So long as there are simultaneous solutions to these two equations for some negative

R and positive B, a one-parameter family of AdS solutions exists in which the string

coupling may be tuned towards zero. This one-parameter family of AdS solutions,

with Ricci scalar R, would be parametrized by q2 with e2Φ = B/q2.

The evidence gathered here suggests that the qualitative structure of the AdS

solutions is rather generic and is likely to be unaffected by terms higher order in α′.

This fact motivates a search for the corresponding worldsheet sigma model describing

type 0A strings propagating in these AdS2 spaces. Because of the existence of nonzero

R-R fluxes, the correct sigma model will most likely not be found using the NSR
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formalism. Fortunately, several other worldsheet formalisms have been developed

that have allowed for quantization of the string in R-R backgrounds. For example,

the hybrid formalism has been used to study superstring quantization in AdS3 ×

S3 [42], AdS2 × S2 backgrounds [43], and curved 2D backgrounds [44].
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Chapter 5

Supersymmetric Branes in

AdS2 × S2 × CY3

5.1 Introduction

AdS2 × S2 × CY3 flux compactifications of string theory arise as the near-horizon

geometries of type IIA black holes. The fluxes are determined from the black hole

charges. The vector moduli of the Calabi-Yau threefold and the radius of the AdS2×

S2 are also determined in terms of these charges via the attractor equations [45,

46]. These compactifications are interesting for several reasons. A central unsolved

problem in string theory is to find - assuming it exists - a holographically dual CFT1

for these compactifications.1 Moreover recently a simple and unexpected connection

was found between the partition function of the black hole and the topological string

on the corresponding attractor Calabi-Yau [48]. In this chapter we will further our

understanding of these compactifications by analyzing the problem of supersymmetric

brane configurations.

Following some review in section 5.2, in section 5.3 the problem of supersym-

metric branes is analyzed from the viewpoint of the four dimensional effective N = 2

1For some cases a dual CFT2 is known [47].
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theory on AdS2 × S2. This analysis is facilitated by the recent construction [49] of

the κ-symmetric superparticle action carrying general electric and magnetic charges

(uI , vI) in such theories. It is found that there is always a supersymmetric trajectory

whose position is determined by the phase of the central charge Z(uI , vI). In global

AdS2 coordinates

ds2 = R2(− cosh2 χdτ 2 + dχ2 + dθ2 + sin2 θdφ2) (5.1.1)

the supersymmetric trajectory is at

tanhχ =
ReZ

|Z|
. (5.1.2)

For the general case χ 6= 0 this trajectory is accelerated by the electromagnetic forces.

We further consider n-particle configurations with differing charges and differing cen-

tral charges Zi, i = 1, ..n, constrained only by the condition that they all have

the same sign for ReZi. Surprisingly if the positions of the charges are each deter-

mined by 5.1.2, a common supersymmetry is preserved for the entire multiparticle

configuration. This is quite different than the case of fluxless Calabi-Yau-Minkowski

compactifications, where there is a common supersymmetry only if the charges are

aligned. Supersymmetry preservation is possible only because of the enhanced near-

horizon superconformal group. This phenomena should have a counterpart in higher

AdS spaces and may be of interest for braneworld scenarios.

In section 5.4 we consider the problem from the ten-dimensional perspective.

For simplicity we consider only the AdS2×S2×CY3 geometries arising from D0−D4

Calabi-Yau black holes. Adapting the analysis of [50] to this context, we allow

the wrapped branes to induce lower brane charges by turning on worldvolume field

strengths. We will find that there are no static, supersymmetric D0-branes in global

coordinates because they want to accelerate off to the boundary of AdS2 (there
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are static BPS configurations in Poincaré coordinates). For a D2-brane embedded

holomorphically in the Calabi-Yau, we will find that it is half BPS and sits at

χ = tanh−1(sin βCY ). Here, βCY is related to the amount of magnetic flux on the

worldvolume. All D2-brane that are static with respect to a common global time in

AdS2 preserve the same set of half of the supersymmetries regardless of βCY . Similar

conclusions hold for D4, D6-branes wrapped on the Calabi-Yau. We also consider a

D2-brane wrapped on the S2 of the AdS2× S2 product and find that it is once again

half BPS and sits at χ = tanh−1(sin βS2).

5.2 Preliminaries

In this section we briefly review some material which will be needed for our analysis.

We are interested in type IIA string theory compactified on a Calabi-Yau 3-fold M ,

with 2-cycles labeled by αA, where A = 1, 2, · · · , n ≡ h11. The low energy effective

theory is N = 2 supergravity coupled to n vector multiplets (and also h21 + 1 hyper-

multiplets which are not relevant in our discussion). This theory can be described

using special geometry [51–55] and here we will follow the notation of [51]. The scalar

components of the vector multiplets are described in terms of projective coordinates

XI , I = 0, 1, · · · , n. The prepotential F (XI) is holomorphic and homogeneous of

degree 2 in the XI ’s. In the large volume limit F is of the form

F = DABC
XAXBXC

X0
+ · · · (5.2.1)

where DABC = −1
6
CABC , CABC being the triple intersection number of the 4-cycles

dual to αA, which we denote by ΣA.

Extremal black holes of magnetic and electric charge (p0 = 0, pA, q0, qA) are

realized as a D4-brane wrapped on 4-cycle P =
∑
pAΣA bound with q0 D0-branes,

together with qA gauge field fluxes through the 2-cycles αA. The asymptotic values
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of the moduli fields XI , FI ≡ ∂IF at infinity can be arbitrary. However at the black

hole horizon they approach the fixed point values determined from the “attractor

equations” [45,46]

pI = ReCXI , qI = ReCFI . (5.2.2)

Using the tree level prepotential 5.2.1, the fixed points of the moduli are [56,57]

CX0 = i

√
D

q̂0
, CXA = pA +

i

6

√
D

q̂0
DABqB (5.2.3)

where

D ≡ DABCp
ApBpC , (5.2.4)

q̂0 ≡ q0 +
1

12
DABqAqB , (5.2.5)

DAB ≡ DABCp
C , (5.2.6)

DABDBC = δAC . (5.2.7)

The near horizon geometry of the 4D extremal black hole is AdS2 × S2 with

the moduli at their attractor values. We are interested in string theory on the global

AdS2 × S2 ×M geometry. The radius R of AdS2 and S2, which is the same as the

radius of the extremal black hole, is determined in terms of the charges (pI , qI) via

R =
√

2 (Dq̂0)
1
4 (5.2.8)

where hereafter we work mainly in four-dimensional Planck units.

The metric on the Poincaré patch of AdS2 × S2 is

ds2 = R2(
−dt2 + dσ2

σ2
+ dθ2 + sin2 θdφ2) (5.2.9)
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while the metric is

ds2 = R2(− cosh2 χdτ 2 + dχ2 + dθ2 + sin2 θdφ2) (5.2.10)

in global coordinates. In much of this chapter we deal with the case qA = 0, and here

the RR field strengths are

F(2) =
1

R
ωAdS2 , F(4) =

1

R
ωS2 ∧ J , (5.2.11)

where ωAdS2 = R2 coshχdτ ∧dχ is the volume form on AdS2, ωS2 = R2 sin θdθ∧ dφ is

the volume form on the S2, and J is the Kähler form on the Calabi-Yau. In particular,

the Kähler volume of the 2-cycles αA are determined by the charges as

1

2πα′

∫
αA

J = 2πpA
√
q0
D
. (5.2.12)

5.3 Four-dimensional analysis

Flux compactifications on a Calabi-Yau threefold are described by an effective d = 4,

N = 2 supergravity with an AdS2 × S2 vacuum solution whose moduli are at the

attractor point with charges (pI , qI). This theory contains zerobranes2 with essentially

arbitrary charges (uI , vI) arising from various wrapped brane configurations. The

κ-symmetric worldline action of these zerobranes was determined in [49]. In this

section we use the results of [49] to determine the possible supersymmetric worldline

trajectories.

The Killing spinor equation is

∇µεA −
i

2
εABT

−
µνγ

νεB = 0 , (5.3.1)

2We use the term zerobrane in a general sense and do not specifically refer here to a ten-
dimensional D0-brane.
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where εA, εA = (εA)∗ (A = 1, 2) are chiral and anti-chiral R-symmetry doublets of

spinors. T− is the anti-self-dual part of the graviphoton field strength, satisfying

ZBH =
1

4π

∫
S2

T− = e−K/2
(
FIp

I −XIqI
)
, (5.3.2)

where K = − ln i(X
I
FI − XIF I) is the Kähler potential. Define the phase of the

central charge eiα = ZBH/|ZBH |. Then we can write T− = −ieiα(1 + i∗)F , where

F = 1
R
ωAdS. In terms of the doublet of spinors (ε1, ε

2) and (ε1, ε2), the Killing spinor

equation can be written as

∇µε+
i

2
e−iαγ5 6Fγµσ2ε = 0 . (5.3.3)

Note that there is an ambiguity in choosing the overall phase of the moduli fields and

the central charge,

XI → eiθXI , FI → eiθFI , ε→ e
i
2
θγ5ε , (5.3.4)

so we are free to set α = 0.

The solutions to the Killing spinor equation in global AdS2 × S2 coordinates

5.2.10 are [58]

ε = exp

(
− i

2
χγ0σ2

)
exp

(
i

2
τγ1σ2

)
R(θ, φ)ε0 (5.3.5)

R(θ, φ) ≡ exp

(
− i

2
(θ − π/2)γ012σ2

)
exp

(
− i

2
φγ013σ2

)
(5.3.6)

where ε0 is a doublet of arbitrary constant spinors. Alternatively, in the Poincare

metric 5.2.9, the Killing spinors are [59]

ε = σ−1/2R(θ, φ)ε+0 and ε = (σ1/2 + iσ−1/2tγ1σ2)R(θ, φ)ε−0 , (5.3.7)
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where ε±0 are constant spinors satisfying −iγ0σ2ε±0 = ±ε±0 , and R(θ, φ) denotes the

rotation on the S2 as in 5.3.5. Note that γµ are the normalized gamma matrices in

the corresponding frame.

The zerobrane action constructed in [49] has a local κ-symmetry parameterized

by a four-dimensional spinor doublet κA on the worldline. In addition the spacetime

supersymmetries εA act non-linearly in Goldstone mode on the worldline fermions. In

general [60], a brane configuration trajectory will preserve a spacetime supersymmetry

generated by ε if the action on the worldvolume fermions can be compensated for by

a κ transformation. This condition can typically be written

(1− Γ)ε = 0 (5.3.8)

where Γ is a matrix appearing in the κ-transformations. For the case at hand it

follows from the results of [49] that the condition is

εA + eiϕΓ(0)εABε
B = 0 (5.3.9)

εA + e−iϕΓ(0)ε
ABεB = 0 (5.3.10)

where Γ(0) is the gamma matrix projected to the zerobrane worldline, and eiϕ is the

phase of the central charge Z of the zerobrane,

Z = e−K/2
(
uIFI − vIX

I
)

= eiϕ|Z| , (5.3.11)

where (uI , vI) are its magnetic and electric charges. In terms of the spinor doublet,

one can write 5.3.9 as

−ie−iϕγ5Γ(0)σ
2ε = ε . (5.3.12)

Let us solve the condition for 5.3.12 to hold along the world line of a zerobrane sitting
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at constant (χ, θ, φ). Writing the Killing spinor as

ε = exp

(
− i

2
χγ0σ2

)
exp

(
i

2
τγ1σ2

)
ε′0 (5.3.13)

where ε′0 = R(θ, φ)ε0, it suffices to solve

− ie−iϕγ5γ0σ2 exp

(
− i

2
χγ0σ2

)
ε′0 = exp

(
− i

2
χγ0σ2

)
ε′0 (5.3.14)

− ie−iϕγ5γ0σ2 exp

(
− i

2
χγ0σ2

)
γ1σ2ε′0 = exp

(
− i

2
χγ0σ2

)
γ1σ2ε′0 . (5.3.15)

Some straightforward algebra simplifies the above equations to

− iγ0σ2
(
cosϕ+ i coshχ sinϕγ5 + sinhχ sinϕγ5γ

0σ2
)
ε′0 = ε′0 (5.3.16)

iγ0σ2
(
cosϕ− i coshχ sinϕγ5 + sinhχ sinϕγ5γ

0σ2
)
ε′0 = ε′0 . (5.3.17)

A solution exists only when

tanhχ = cosϕ , (5.3.18)

and therefore coshχ sinϕ = ±1. Correspondingly, the constraints on ε′0 become

γ5γ
0σ2ε′0 = ∓ε′0 , (5.3.19)

where the sign on the RHS depends on the sign of sinϕ. This may be written as a

condition on ε0,

(
1± e

i
2
φγ013σ2

ei(θ−π/2)γ
012σ2

e
i
2
φγ013σ2

γ5γ
0σ2
)
ε0 = 0 , (5.3.20)

which makes it clear that zerobranes sitting at antipodal points on the S2 will preserve

opposite halves of the spacetime supersymmetries.

We conclude that a zerobrane following its charged geodesic in AdS2×S2 is half
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BPS. The “extremal” case ϕ = 0 and π corresponds to the probe zerobrane with its

charge aligned or anti-aligned with the charge of the original black hole. They cannot

be stationary with respect to global time in the AdS2. Using the Killing spinors on

the Poincaré patch 5.3.7, it is clear that the “extremal” zerobranes following their

charged geodesics (static on the Poincaré patch) are also half BPS. In the special case

ϕ = π/2 in 5.3.18 the zerobrane moves along an uncharged geodesic and experiences

no electromagnetic forces . This corresponds to the case when the zerobrane charge

is orthogonal to all the black hole charges.

A somewhat surprising feature is that there are supersymmetric multiparticle

configurations of zerobranes with unaligned charges. All “positively-charged” zero-

branes with 0 < ϕ < π preserve the same set of half of the supersymmetries, and

all “negatively-charged” zerobranes with −π < ϕ < 0 preserve the other set. Using

the attractor equations the positive charge condition can be written in terms of the

symplectic product of the black hole and zerobrane charges as

uIqI − pIvI > 0 . (5.3.21)

Given an arbitrary collection of zerobranes obeying 5.3.21 there is a half BPS con-

figuration with the position of each trajectory determined in terms of the charges of

the zerobrane by 5.3.18. Of course, such a supersymmetric configuration of particles

with unaligned charges is not possible in the full black hole geometry prior to tak-

ing the near horizon limit. The preserved supersymmetry is part of the enhanced

near-horizon supergroup.

This result is consistent with the expectation from the BPS bound. The energy

of a charged zerobrane sitting at position χ the AdS2 is given by

H = |Z| coshχ− Re(ZZ̄BH)

|ZBH |
sinhχ = |Z| (coshχ− cosϕ sinhχ) . (5.3.22)
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where the first term comes from the gravitational warping, and the second term comes

from the coupling to the gauge field potential. At the stationary point tanhχ = cosϕ,

the energy of the zerobrane is

|Z sinϕ| = |ImZZ̄BH |
|ZBH |

. (5.3.23)

Therefore, as long as Im(ZZ̄BH) is always positive (or negative), the BPS energy for

multiple zerobranes is additive, in agreement with the supersymmetry analysis above.

5.4 Ten-dimensional analysis

In this section we analyze supersymmetric brane configurations from the point of view

of the ten-dimensional IIA theory on AdS2 × S2 × CY3. For simplicity we will focus

on specific examples rather than the most general solution.

The extremal black hole in type IIA string theory compactified on a Calabi-

Yau manifold M preserves four supersymmetries. After we take the near horizon

limit, the number of preserved supersymmetries doubles to eight. We consider a

background with only D0 and D4-brane charges, i.e. qA = p0 = 0, so that according

to the attractor equations there is no B-field. The RR field strengths in the resulting

AdS2×S2×M6 are given as in 5.2.11. As shown in Appendix A, the ten-dimensional

Killing spinor doublet is of the form

ε1 = ε1 ⊗ η+ + ε1 ⊗ η− , (5.4.1)

ε2 = ε2 ⊗ η+ + ε2 ⊗ η− , (5.4.2)

where η+, η− = η∗+ are the chiral and anti-chiral covariantly constant spinors on M ;

εA = (εA)∗, ε1,2 are four-dimensional chiral spinors satisfying the four-dimensional
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Killing spinor equation

∇µεA +
i

2
6F (2)γµ(σ

2)ABε
B = 0 . (5.4.3)

This is the same equation as 5.3.3 with α = 0, and the solutions are given by 5.3.5,

5.3.7.

We want to find all the BPS configurations of D-branes that are wrapped on

compact portions of our background, and are pointlike in the AdS2. In order for the

D-brane to be supersymmetric, we only need to check that the κ-symmetry constraint

Γε = ε (5.4.4)

is satisfied, where ε is the Killing spinor corresponding to the unbroken supersym-

metry (more precisely, the pullback onto the brane world volume). The κ projection

matrix is given by [61–64]

Γ =

√
detG√

det(G+ F)

∑
n

1

2nn!
Γµ̂1ν̂1···µ̂nν̂nFµ̂1ν̂1 · · · Fµ̂nν̂nΓ

n+ p−2
2

(10) Γ(0)σ
1 , (5.4.5)

Γ(0) =
1

(p+ 1)!
√

detG
εµ̂0···µ̂pΓµ̂0···µ̂p , (5.4.6)

where the hatted indices label coordinates on the brane world-volume, G is the pull-

back of the spacetime metric, and F = F+f ∗(B) (theB-field is zero in our discussion).

See Appendix A for conventions on 10D gamma matrices. Unless otherwise noted we

will work in global coordinates 5.2.10.

5.4.1 D0-brane

For a static D0-brane in global coordinates, we have Γ(0) = γ0. The κ-symmetry

matrix is

Γ = Γ(10)γ
0σ1 (5.4.7)
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Writing the doublet ε in terms of the 4-dimensional spinor doublet ε

ε = ε⊗ η+ + ε∗ ⊗ η− , (5.4.8)

The matrix Γ acts on ε as γ0σ1σ3 = −iγ0σ2. The κ-symmetry constraint 5.4.4

becomes

(1 + iγ0σ2)ε = 0 . (5.4.9)

Using the explicit solutions of the Killing spinors in global AdS 5.3.5, we see that

5.4.9 cannot be satisfied at all τ , so a D0-brane static in global AdS can never be

BPS. This is of course expected since the charged geodesic cannot be static in global

coordinates. On the other hand, using 5.3.7 we see that a D0-brane static with respect

to the Poincaré time is always half BPS, as expected.

5.4.2 D2 wrapped on Calabi-Yau, F = 0

Now let us consider a D2-brane wrapped on M and static in global AdS2×S2, without

any world-volume gauge fields turned on. The κ-symmetry matrix is

Γ =
1

2
√

det′G
γ0εâb̂Γâb̂σ

1 (5.4.10)

where det′ takes the determinant of the spatial components of the world volume

metric. Acting on ε, we have

Γâb̂ε = ∂âX
I∂b̂X

JγIJε (5.4.11)

= 2∂âX
i∂b̂X

j̄γij̄ε+ ∂âX
i∂b̂X

jγijε+ ∂âX
ī∂b̂X

j̄γīj̄ε (5.4.12)

= 2∂âX
i∂b̂X

j̄
(
−gij̄γ(6)

)
ε+

(
1

2
∂âX

i∂b̂X
jΩijkε⊗ γkη− + c.c.

)
.(5.4.13)

82



The κ-symmetry constraint Γε = ε implies εâb̂∂âX
i∂b̂X

jΩijk = 0, which means that

the D2-brane must wrap a holomorphic 2-cycle. It then follows that Γ acts on ε as

Γε = iγ0γ(6)σ
1ε = γ(4)γ

0σ2ε. Therefore 5.4.4 becomes

(1− γ(4)γ
0σ2)ε = 0 . (5.4.14)

It is clear that the wrapped D2-brane sitting at χ = 0 in AdS2 is half BPS. Note

that the D2-brane without gauge field flux doesn’t feel any force due to the RR fluxes

(qA = 0), so its stationary position is at the center of AdS2.

5.4.3 D2 wrapped on Calabi-Yau, F 6= 0

With general worldvolume gauge field strength F turned on, the matrix Γ is

Γ =
1√

det′(G+ F )

(
1 +

1

2
Γâb̂Fâb̂Γ(10)

)
γ0

(
1

2
εĉd̂Γĉd̂

)
σ1 (5.4.15)

An argument nearly identical to the one given in [50] shows that the supersymmetric

D2-brane must wrap a holomorphic 2-cycle, and the gauge flux F satisfies

√
detG√

det(G+ F )
(f ∗J + iF ) = eiβvol2 (5.4.16)

where vol2 is the volume form on the D2-brane (which is just f ∗J for a holomorphically

wrapped brane), and β is a constant phase determined in terms of the D0-brane charge

2πn = 1
2πα′

∫
F via

tan β

2πα′

∫
J = 2πn . (5.4.17)

If the probe D2-brane is wrapped on the 2-cycle [Σ2] = nAα
A, then using 5.2.12 we

have

tan β =
n

nApA

√
D

q0
(5.4.18)
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Note that from 5.4.16 we have cos β > 0, since J is positive when restricted to

holomorphic cycles. The κ-symmetry condition then becomes

(1− e−iβγ(4)γ(4)γ
0σ2)ε = 0 (5.4.19)

These is identical to 5.3.12 if we set ϕ = β − π/2. We can immediately read off the

conditions for the static D2-brane to preserve supersymmetry when it sits at θ = π/2,

φ = 0 in the S2:

sin β = tanhχ , cos β = sechχ , (1− γ(4)γ
0σ2)ε0 = 0 . (5.4.20)

We see that for general −π/2 < β < π/2, the D2-brane sits at χ = tanh−1(sin β) and

is half BPS. In fact they all preserve the same half supersymmetries, as discuss in

section 5.3. Anti-D2-branes with gauge field fluxes wrapped on holomorphic 2-cycles

will preserve the other half supersymmetries.

5.4.4 Higher dimensional D-branes wrapped on the Calabi-

Yau

Let us consider D4, D6-branes that are wrapped on the Calabi-Yau and sit at constant

position in global AdS2 × S2. We shall use a trick [64] to write the matrix Γ as

Γ = e−A/2Γ
p−2
2

(10)Γ(0)e
A/2σ1 (5.4.21)

where

A = −1

2
Yâb̂Γ

âb̂Γ(10) (5.4.22)
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and Yâb̂ is an anti-symmetric matrix (analogous to the phase β in the previous sub-

section), related to the gauge field strength matrix Fâb̂ by

F = tanhY (5.4.23)

By the same arguments as before, one can show that the BPS D-branes must wrap

holomorphic cycles. Note thatA acts on the Killing spinor ε asAε = −iYâb̂(f ∗J)âb̂γ(4)ε,

and Γ(0) acts as γ0(iγ(6))
p/2 (see Appendix). Let us define β = −Yâb̂(f ∗J)âb̂. The κ-

symmetry constraint can be written as

Γε = e−iβγ(4)/2Γ
p−2
2

(10)γ
0(iγ(6))

p/2eiβγ(4)/2σ1ε = ε . (5.4.24)

We can simplify this to

−ie−i(β−pπ/4)γ(4)γ0σ2ε = ε . (5.4.25)

This equation indeed agrees with 5.4.9, 5.4.19 in the cases p = 0, 2. It is also identical

to 5.3.12 provided we set ϕ = β − pπ/4. So we conclude that a general Dp-brane (p

even) wrapped on a holomorphic cycle in the Calabi-Yau, possibly with world-volume

gauge fields turned on, static in the S2 and following its charged geodesic in the AdS2

is half BPS. As in [50] there is a deformation of the supersymmetry condition on the

worldvolume gauge field F . In particular, the D-brane sits at tanhχ = cos(β−pπ/4).

5.4.5 D2 wrapped on S2, F = 0

Now let us turn to D2-branes wrapped on the S2 appearing in the the AdS2×S2×M

product. The κ-symmetry matrix is Γ = Γ(0)σ
1 = γ023σ1. 5.4.4 can be written as

(1− γ023σ1)ε = 0 . (5.4.26)

85



Defining R(θ, φ) to be the S2-dependent factors in 5.3.5, this condition becomes

(1− γ023σ1) exp

(
− i

2
χγ0σ2

)
R(θ, φ)ε0 = 0 , (5.4.27)

(1− γ023σ1) exp

(
− i

2
χγ0σ2

)
γ1σ2R(θ, φ)ε0 = 0 . (5.4.28)

A little algebra reduces these to

cosh
χ

2
(1− γ023σ1)R(θ, φ)ε0 = sinh

χ

2
(1 + γ023σ1)R(θ, φ)ε0 = 0 . (5.4.29)

The only way to satisfy both equations is to set χ = 0. Since γ023σ1 commutes with

R(θ, φ), we end up with the condition

(1− γ023σ1)ε0 = 0 . (5.4.30)

We conclude that the D2-brane sitting at the center of AdS and wrapped on the S2

is half BPS.

5.4.6 D2 wrapped on S2, F 6= 0

With gauge field strength F = fωS2 turned on, the κ-symmetry matrix acts on ε as

Γε =

√
detG√

det(G+ F )

(
1 +

1

2
Γâb̂Fâb̂Γ(10)

)
Γ(0)σ

1ε (5.4.31)

=
1√

1 + f 2

(
1 + γ23fΓ(10)

)
γ023σ1ε (5.4.32)

= exp
(
βγ23Γ(10)

)
γ023σ1ε = γ023σ1 exp

(
βγ23σ3

)
ε , (5.4.33)
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where f ≡ tan β (cos β > 0). The condition 5.4.4 then becomes

(1− cos βγ023σ1 − i sin βγ0σ2) exp

(
− i

2
χγ0σ2

)
R(θ, φ)ε0 = 0 , (5.4.34)

(1− cos βγ023σ1 + i sin βγ0σ2) exp

(
i

2
χγ0σ2

)
R(θ, φ)ε0 = 0 , (5.4.35)

A little algebra yields

(1 + sin β cothχ) ε0 = 0 , (5.4.36)(
1 + γ023σ1 cot β sinhχ

)
ε0 = 0 . (5.4.37)

This means that sin β = − tanhχ. In particular β, hence f , is constant on the

world-volume. The condition on ε0 becomes

(1− γ023σ1)ε0 = 0 . (5.4.38)

These D-brane configurations are again half BPS.

5.4.7 D-branes wrapped on S2 and the Calabi-Yau

In general for a Dp-branes wrapped on S2 times some (p−2)-cycle in the Calabi-Yau,

and static in global AdS2, the matrix Γ is essentially the product of the piece on S2

and the piece on Calabi-Yau,

Γε = exp
(
−βS2γ23σ3

)
exp

(
−iβCY γ(4)

)
(iγ(4))

p−2
2 γ023σ1ε (5.4.39)

where βCY and βS2 are the phases related to the world-volume gauge flux along the

Calabi-Yau and S2 directions as before. Define ϕCY = βCY − (p − 2)π/4, ϕS2 =
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βS2 + π/2. The κ-symmetry constraint can be written as

−i exp
(
−ϕS2γ23σ3 − iϕCY γ(4)

)
γ0σ2ε = ε (5.4.40)

This is equivalent to

[
1 + i exp

(
−ϕS2γ23σ3 − iϕCY γ(4)

)
γ0σ2

]
exp

(
− i

2
χγ0σ2

)
R(θ, φ)ε0 = 0, (5.4.41)

[
1− i exp

(
ϕS2γ23σ3 + iϕCY γ(4)

)
γ0σ2

]
exp

(
i

2
χγ0σ2

)
R(θ, φ)ε0 = 0. (5.4.42)

A little algebra yields

[
sinhχ− coshχ cos(ϕS2 − iγ(4)γ

23σ3ϕCY )
]
R(θ, φ)ε0 = 0 , (5.4.43)[

coshχ− sinhχ cos(ϕS2 − iγ(4)γ
23σ3ϕCY ) (5.4.44)

−γ023σ1 sin(ϕS2 − iγ(4)γ
23σ3ϕCY )

]
R(θ, φ)ε0 = 0 , (5.4.45)

If ϕCY and ϕS2 are both nonzero, the first equation can be satisfied only if

iγ(4)γ
23σ3R(θ, φ)ε0 = mR(θ, φ)ε0 , m = ±1 . (5.4.46)

However, since γ(4)γ
23σ3 does not commute with R(θ, φ) at generic points on the S2,

5.4.46 can never be satisfied. Therefore such wrapped D-branes cannot be BPS.

If ϕS2 = 0, ϕCY 6= 0, we have

tanhχ = cosϕCY (5.4.47)

and

(1− γ(4)γ
0σ2)R(θ, φ)ε0 = 0 . (5.4.48)

However, in this case again γ(4)γ
0σ2 does not commute with R(θ, φ) for generic (θ, φ),
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and hence 5.4.48 has no solution.

If ϕS2 6= 0, ϕCY = 0, we find

tanhχ = cosϕS2 (5.4.49)

and the second equation in 5.4.43 becomes

(1− γ023σ1)ε0 = 0 (5.4.50)

We see that such D-branes are half BPS.

So far we have neglected an important subtlety. For D4 or D6-branes wrapped

on S2 times some cycle in the Calabi-Yau, the RR flux F(4) induces couplings of gauge

fields on the brane world-volume

∫
D4

A ∧ F(4) , (5.4.51)∫
D6

A ∧ F ∧ F(4) , (5.4.52)

Since F(4) = 1
R
ωS2∧J , we see that for the D4-brane wrapped on S2×Σ2 ([Σ2] = nAα

A),

the RR flux induces an electric charge density on the brane world-volume, of total

charge

Q =
1

2πgs

∫
S2×Σ2

F(4) =
∑

nAp
A (5.4.53)

Since the world-volume is compact, the Gauss law constraint requires the total charge

to vanish. So we cannot wrap only a single D4-brane on S2×Σ. One must introduce

fundamental strings ending on the brane to cancel the electric charges. We then have∑
nAp

A fundamental strings ending on the D4-brane, and runoff to the boundary of

AdS. This is interpreted as a classical “baryon” in the dual CFT.

Similarly for the D6-brane wrapped on S2 × Σ4, one would have nonzero total
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electric charge on the world-volume if
∫

Σ4
F ∧ J 6= 0. This again corresponds to

certain “baryons” in the dual CFT.

Finally, a D6-brane wrapped on S2 ×Σ4 with general gauge field flux in the S2

is half BPS, as shown in 5.4.49, 5.4.50.
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5.5 Appendix. The 10-dimensional Killing spinors

In order to write a ten-dimensional spinor as the tensor product of four-dimensional

and internal (Calabi-Yau) spinors, it is necessary to work with a tensor product of

Clifford algebras. Let ΓM denote the ten-dimensional Clifford algebra matrices, with

M = 0, . . . , 10, µ = 0, . . . , 3, and m = 4, . . . , 9. We can decompose the ΓM into a

tensor product of four and six-dimensional Clifford matrices, denoted by γµ and γm,

as

Γµ = γµ ⊗ 1, (5.5.1)

Γm = γ(4) ⊗ γm . (5.5.2)

Using a mostly-positive metric signature, the following matrices have the desired

properties that they anticommute with the appropriate gamma matrices and square
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to one:

Γ(10) = −Γ0123456789, (5.5.3)

γ(4) = iγ0123, (5.5.4)

γ(6) = iγ456789 . (5.5.5)

With these sign conventions, Γ(10) decomposes in the desired way as Γ(10) = γ(4)⊗γ(6).

As an ansatz for the Killing spinors, we assume they take the form

ε1 = ε1 ⊗ η+ + ε1 ⊗ η− , ε2 = ε2 ⊗ η+ + ε2 ⊗ η− , (5.5.6)

where the ε’s are 10D Majorana-Weyl spinors, the η’s are 6D covariantly-constant

Weyl spinors on the Calabi-Yau, and the ε’s are 4D Majorana spinors. We use chiral

notation in which the chirality of the spinor is denoted by the position of the R-

symmetry index. In particular, ε(A) = εA+εA where γ(4)ε
A = εA and γ(4)εA = −εA. Of

course, there are no Majorana-Weyl spinors in 3+1 dimensions; the four-dimensional

chiral projections are related by εA = εA
∗
. For the six-dimensional Weyl spinors, we

use the standard notation where γ(6)η± = ±η±. Since we will work with type IIA,

the tensor products have been chosen such that the ten-dimensional spinors are of

opposite chirality. In doublet notation,

ε =

ε1

ε2

 (5.5.7)

Γ(10)ε can be written as −σ3ε. In addition, the following identities for the spinors η±
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will be useful:

γīη+ = 0 , γijkη+ = Ωijkη− , γijη+ =
1

2
Ωijkγ

kη− , γīj̄klη+ =
(
gkj̄gl̄i − gkīglj̄

)
η+ ,

(5.5.8)

γiη− = 0 , γīj̄k̄η− = Ωīj̄k̄η+ , γīj̄η− =
1

2
Ωīj̄k̄γ

k̄η+ , γijk̄l̄η− =
(
gk̄jgl̄i − gk̄igl̄j

)
η− .

(5.5.9)

Given these ansätze, we want to check that the supersymmetry variations of the

background vanish modulo conditions on the four-dimensional Majorana components

of the Killing spinors. Since we work only with bosonic backgrounds, we need only

check the variations of dilatino and gravitino.

The supersymmetry variation of the dilatino is [65]

δλ =
1

2

(
36F (2)iσ

2 + 6F (4)σ
1
)
ε , (5.5.10)

where F(2) = 1
R
ωAdS2 and F(4) = 1

R
ωS2 ∧ J . Taking note of the fact that gījγījη± =

3γ(6)η± and 6ωS2 = −i 6ωAdS2
γ(4), we find that

6F (4)ε = −3i 6ωAdS2
γ(4)γ(6)ε = −36F (2)σ

3ε . (5.5.11)

As a result, the dilatino variation vanishes automatically.

The gravitino variation is

δψM = ∇Mε+
1

8

(
6F (2)ΓM iσ

2 + 6F (4)ΓMσ
1
)
ε = 0 . (5.5.12)

When the free index is holomorphic in the Calabi-Yau, this reduces to the following

condition: (
6F (2)γmiσ

2 + 6F (4)γmσ
1
)
ε = 0 . (5.5.13)
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Using the fact that gij̄γij̄γmη± = γmγ(6)η± , we find that 6F (4)γmε = −6F (2)γmσ
3ε . This

works similarly for an antiholomorphic index, so the gravitino variation is identically

zero when the free index is in the Calabi-Yau.

When the gravitino equation has its free index in the AdS2 × S2 space, the

variation becomes

δψµ =

[
∇µ ±

1

8
γµ
(
6F (2)iσ

2 − σ1 6F (4)

)]
ε = 0 , (5.5.14)

where the ± is + if µ is in the S2 and − if µ is in the AdS2. Using the same identity

used for the dilatino equation, we get

δψµ =

[
∇µ ±

i

2
γµ 6F(2)σ

2

]
ε =

[
∇µ +

i

2
6F(2)γµσ

2

]
ε . (5.5.15)

Demanding that the terms linear in η+ and linear in η− must vanish separately, we

get the 4D equations [
∇µ +

i

2
6F (2)γµσ

2

]
ε = 0 , (5.5.16)

where ε =

ε1
ε2

.

It is useful to derive the action of Γ(0) = 1
(p+1)!

√
detG

εµ̂0···µ̂pΓµ̂0···µ̂p on the η±

which live on the world-volume of holomorphically wrapped D-branes (see 5.4.5). For

D0-branes we have simply Γ(0) = γ0. For D2-branes, we have

Γ(0)η± = γ0εij̄γij̄η± = iγ0γ(6)η± (5.5.17)

For D4-branes, we have

Γ(0)η± = γ0 1

4
εij̄kl̄γij̄kl̄η± = −γ0η± (5.5.18)
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where we used the last column of 5.5.8. Finally for D6-branes, we have Γ(0) = −iγ0γ(6)

using 5.5.3. These formulae can be summarized as Γ(0)ε = γ0(iγ(6))
p/2ε.
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