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Motivated by sine-square deformation (SSD) for quantum critical systems in 1+1 dimensions,
we discuss a Möbius quantization approach to the 2D conformal field theory, which bridges the
conventional radial quantization and the dipolar quantization recently proposed by Ishibashi and
Tada [N. Ishibashi and T. Tada, J. Phys. A: Math. Theor. 48, 315402 (2015)], [N. Ishibashi and T.
Tada, arXiv:1602.01190 [hep-th] [Search INSPIRE]. We then find that the continuous Virasoro
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1. Introduction

Recently, intriguing properties of sine-square deformation (SSD) for 1+1-dimensional quantum
many-body systems have been revealed by a series of intensive theoretical research [1–13]. The
SSD was originally introduced as a spatial deformation of interaction couplings with the sine-square
function for 1+1D quantum lattice models [1–3]. Several numerical studies have clarified that critical
ground states of SSD systems with an open boundary are identical to those of uniform systems with a
periodic boundary within numerical accuracy. Later, this correspondence between the ground states
of the uniform and SSD systems was proved for some exactly solved models that can be reduced
to free fermionic models [4,5]. In Ref. [6], an interesting connection of the SSD to supersymmetric
quantum mechanics was pointed out for a nonrelativistic free fermion system in continuous space.
Moreover, the correspondence of the open and periodic boundary systems under the SSD has been
successfully applied to numerical estimation of bulk quantities via finite-size systems [7–9]. These
scalabilities of SSD research suggest that there exists rich physics behind the SSD.

The SSD of the 2D conformal field theory (CFT) [14] was first investigated by Katsura, where
the operator L0 − L1+L−1

2 + L̄0 − L̄1+L̄−1
2 is regarded as a Hamiltonian of the SSD system [10].

Here, Ln denotes the Virasoro generator of CFT. Then, an essential point is that the CFT vacuum is
annihilated by the deformation terms L1+L−1

2 and L̄1+L̄−1
2 , because of SL(2,R) invariance, implying

that the ground state of the SSD system is identical to that of the uniform system. Also, the relevance
of the SSD to string theory was discussed on the basis of the free boson in Ref. [11]. Very recently,
Ishibashi and Tada have proposed a more direct approach to the SSD of CFT, which is called “dipolar
quantization”; this novel quantization scheme, unlike conventional radial quantization, provides a
continuous Virasoro algebra for the SSD of CFT [12,13]. However, the connection between the
dipolar quantization and the radial quantization, or equivalently between the SSD system and the
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uniform system, is not yet clear at the present stage of research. How can we interpolate between
the dipolar quantization for the SSD system and the usual CFT based on the radial quantization?

In order to address the above problem, we introduce a parameterized Hamiltonian that bridges the
uniform system and the SSD system:1

H = L0 + L̄0 (1)

with

L0 ≡ cosh(2θ)L0 − sinh(2θ)
L1 + L−1

2
, (2)

where we can assume θ ≥ 0 without loss of generality.2 Note that θ = 0 corresponds to the
uniform system and θ → ∞ to the SSD system except for the overall normalization. An essential
observation of this Hamiltonian is that its ground state is always identical to that of the uniform
system of θ = 0, since Eq. (2) can be regarded as a “Lorentz transformation” reflecting the SL(2,R)
symmetry in CFT [11], and L1+L−1

2 annihilates the CFT vacuum. In this paper, we derive the classical
Virasoro (Witt) algebra based on the Hamiltonian (2), where the Möbius transformation coordinate
plays a crucial role. We then discuss quantization of the Virasoro algebra for (1), which we call
“Möbius quantization”, interpolating between the radial quantization and the dipolar quantization. In
particular, we find that the continuous Virasoro algebra of the dipolar quantization can be interpreted
as a continuum limit of theVirasoro algebra obtained in the SSD limit of the Möbius quantization. We
also mention that the Möbius quantization approach gives a consistent result with the Möbius-type
conformal mapping of CFT, except at the SSD point.

This paper is organized as follows. In the next section, we briefly explain the classical Virasoro
algebra and the role of the Möbius coordinate. In Sect. 3, we explain the Möbius quantization
approach to the central extension of the classical Virasoro algebra. In particular, we derive the
Virasoro algebra for Eq. (1) and discuss its continuum limit corresponding to the SSD point. We
also describe the vacuum state and the primary field in the Möbius quantization. In Sect. 4, we
comment on the conformal mapping associated with the Möbius quantization. In Sect. 5, we discuss
the dipolar/SSD limit of the Möbius quantization in detail. In Appendix A, the relation between the
Virasoro generators of the Möbius quantization and the radial quantization is provided as a series
expansion form, where expansion coefficients are exactly represented by Gauss’s hypergeometric
function.

2. Classical Virasoro algebra

In this section, let us discuss the classical Virasoro (Witt) algebra for Eq. (2). For the usual classical
Virasoro algebra, the generator is defined as

ln = −z−n+1 ∂

∂z
, (3)

which satisfies the commutation relation

[ln, ln′ ] = (n − n′)ln+n′ . (4)

1 A parameterized Hamiltonian for the SSD was proposed for the free fermion chain in Ref. [5].
2 Hereafter, the antiholomorphic part of generators will not be shown explicitly, except for some special

cases. However, we should always suppose the antiholomorphic part to be parallel to the holomorphic part.
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By analogy with Refs. [12,13], we define a new differential operator for Eq. (2) as

l0 ≡ cosh(2θ)l0 − sinh(2θ)
l−1 + l1

2
= −g(z)

∂

∂z
, (5)

where

g(z) ≡ −1

2

[
sinh(2θ)(z2 + 1) − 2 cosh(2θ)z

]
. (6)

Note that θ = 0 describes the uniform system and θ → ∞ corresponds to the SSD point. This
definition of l0 contains a divergent factor if θ → ∞. Thus, we also define a scaled generator

l̃0 ≡ l0

Nθ

, (7)

where Nθ is the normalization factor,

Nθ ≡ cosh(2θ). (8)

It should be noted that the scaled generator l̃0 was dealt with in the previous papers [12,13], where
the dipolar quantization at the SSD point (θ → ∞) was directly discussed.

According to Refs. [12,13], we consider the eigenfunction of l0,

l0fκ(z) = −κNθ fκ(z), (9)

where we have factorized out the normalization factor Nθ for later convenience. Assuming that this
eigenfunction is single-valued on the complex plane, we have a discrete eigenvalue

κNθ = n (10)

with an integer index n, and the corresponding eigenfunction

fn(z) = An

(
1 − cosh(2θ) + sinh(2θ)z

1 + cosh(2θ) − sinh(2θ)z

)n

= An(− tanh(θ))n
(

sinh(θ) − cosh(θ)z

cosh(θ) − sinh(θ)z

)n

, (11)

where An is a normalization constant.
On the basis of fn(z), we next define the differential operator with an index n:

ln = −g(z)fn(z)
∂

∂z
. (12)

Then, a straightforward calculation yields

[ln, ln′ ] = (n′ − n)g(z)fn(z)fn′(z)
∂

∂z
. (13)

If An = (tanh(θ))−n is adopted, AnAn′ = An+n′ is satisfied. We can then verify fn(z)fn′(z) = fn+n′(z)
with

fn(z) = (−)n
(

sinh(θ) − cosh(θ)z

cosh(θ) − sinh(θ)z

)n

, (14)

and Eq. (13) becomes

[ln, ln′ ] = (n − n′)ln+n′ , (15)

which is nothing but the classical Virasoro algebra as well.
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An interesting point on the eigenfunction fn(z) is that it contains an identical form to the Möbius
transformation of SL(2,R) for the complex variable z. If θ = 0, fn(z) = −zn, which reproduces
the conventional classical Virasoro algebra of the radial quantization approach. In the SSD limit
(θ → ∞), on the other hand, κ = n/Nθ becomes continuous, and

fκ(z) =
(

1 − cosh(2θ) + sinh(2θ)z

1 + cosh(2θ) − sinh(2θ)z

)κNθ

�
(

1 − 1
1−z

1
Nθ

1 + 1
1−z

1
Nθ

)κNθ

Nθ→∞−−−−→ exp
(

2κ

z − 1

)
, (16)

which is the same as the kernel function obtained by Ishibashi and Tada [12,13]. Then, a scaled
differential operator l̃κ ≡ ln/Nθ becomes a generator of the classical Virasoro algebra with the
continuous index κ .

2.1. Möbius coordinate

We briefly analyze the relation of l0 with the Mönius coordinate, which plays an essential role in
quantizing ln. As in the usual CFT, we may regard the time development operator and the spatial
translation operator as l0 + l̄0 and l0 − l̄0, respectively. On this basis, we can specify the complex
coordinate ζ = τ + is with

− ∂

∂τ
= l0 + l̄0, (17)

− ∂

∂s
= i(l0 − l̄0), (18)

which leads us to

ζ = τ + is = ln
(

− tanh(θ)
sinh(θ) − cosh(θ)z

cosh(θ) − sinh(θ)z

)
. (19)

Then, the real part of this equation is reduced to

coth(θ)eτ =
∣∣∣∣sinh(θ) − cosh(θ)z

cosh(θ) − sinh(θ)z

∣∣∣∣ , (20)

where we have assumed θ ≥ 0 without loss of generality. Writing z = x+ iy, we can draw constant-τ
contours in the z plane. For τ 	= 0, we have a circle of the radius R and the center (X , 0):

(x − X )2 + y2 = R2, (21)

where

X = 1

e2τ − 1

1

sinh(θ) cosh(θ)
+ 1

tanh(θ)
, (22)

and

R = eτ

|e2τ − 1|
1

sinh(θ) cosh(θ)
. (23)
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Fig. 1. The time flow in the Möbius coordinate and constant-τ contours for θ = 1.

In Fig. 1, we show a typical time-flow diagram with constant-τ contours for θ = 1. At τ = −∞, an
infinitely small circle is located at X = tanh(θ), indicating the source of the time flow. As τ increases
to 0, the center position moves toward X = −∞; at the same time, the radius R also becomes larger.
At τ = 0, the contour (20) reduces to the vertical line of

x = 1/ tanh(2θ), (24)

with

s = 2 arctan(sinh(2θ)y), (25)

which runs over [−π , π ]. As τ develops beyond τ = 0, X moves from X = ∞ to 1/ tanh(θ), with
the radius R shrinking. Thus, the time flow is described by the gradient flow against the constant-τ
circles, departing from the source of (tanh(θ), 0) at τ = −∞ and arriving at the sink of (tanh(θ), 0)

at τ = ∞.
We next consider the spatial range of s for a fixed τ . Taking the imaginary part of Eq. (19), we

obtain

s = arctan
(

(e2τ − 1) sin φ

(e2τ + 1) cos φ + 2eτ

)
, (26)

where we have introduced the parameterization

x = X + R cos φ, y = R sin φ (27)
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for a constant-τ circle. An important point is that, if φ runs over [−π , π ], s also runs over [−π , π ],
independent of τ and θ .3 Together with (25) for the τ = 0 case, we conclude that the spatial coordinate
s always moves in

−π ≤ s ≤ π , (28)

which is a finite strip of the width 2π independent of τ and θ .

3. Möbius quantization

In the usual CFT, the stress tensor T (z) (and T̄ (z̄)) is formally expanded by the Laurent series around
z = 0 as

T (z) =
∑

n

z−n−2Ln, (29)

which defines the conventional generator of the Virasoro algebra. In this section, we directly discuss
the central extension of the Virasoro algebra on the Möbius coordinate and its relation to Ln.

3.1. Conserved charge and generator

On the basis of the space-time structure of ζ in the previous section, we consider a conserved charge
of the stress tensor for the constant-τ contour:

Ln =
∮

τ

dz

2π i
g(z)fn(z)T (z)

= −(−)n sinh(2θ)

2 tanhn(θ)

∮
τ

dz

2π i

(z − tanh(θ))n+1

(z − 1/ tanh(θ))n−1 T (z), (30)

where the suffix τ of the integral indicates that the contour integral is performed along the circle of
τ = const surrounding the time source of z = 1/ tanh(θ).

The integrand of Eq. (30) has no singularity for n = 0, ±1, reflecting the global conformal
symmetry of SL(2,R). Then, setting up the contour surrounding z = 0 and 1/ tanh(θ), we have

L0 = cosh(2θ)L0 − sinh(2θ)
L1 + L−1

2
, (31)

which reproduces the Lorentz transformation of Eq. (2). We can also obtain the closed form of L for
n = ±1:

L1 = sinh(2θ)

2

(
1

tanh(θ)
L1 − 2L0 + tanh(θ)L−1

)
, (32)

L−1 = sinh(2θ)

2

(
tanh(θ)L1 − 2L0 + 1

tanh(θ)
L−1

)
. (33)

Moreover, these operators satisfy the sl(2) subalgebra:

[L1, L−1] = 2L0, [L0, L±1] = ∓L±1. (34)

3 Thus, s is not the principal value of arctan.
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For calculation of n > 1, the algebraic series expansion with respect to z tanh(θ) gives

Ln = −(−)n sinh(2θ)

2(tanh(θ))−n

∮
dz

2π i
(1 − z/ tanh(θ))n+1(

∞∑
m=0

(z tanh(θ))m)n−1
∑

l

z−l−2Ll . (35)

For n = 2, for instance, we explicitly have

L2 = −sinh(2θ)

2

[
t2L−1 + (

t3 − 3 t
)

L0 + (
t4 − 3t2 + 3

)
L1 +

(
t5 − 3t3 + 3t − 1

t

)
L2

+ (t6 − 3t4 + 3t2 − 1
)

L3 · · · ] (36)

where t ≡ tanh(θ). In general, expansion coefficients in front of Ll can be described by a polynomial
with respect to tanh(θ), the details of which are presented in Appendix A.

For the analytic continuation of n ≤ −2, we expand the integrand of (30) around z = ∞, because
z/ tanh(θ) is beyond the convergence radius of the algebraic series. Using w = 1/z, we have

Ln = −(−)n sinh(2θ)

2 tanhn(θ)

∮
dw

2π i
(1 − w/ tanh(θ))−n+1(

∞∑
m=0

(w tanh(θ))m)−n−1
∑

l

wl−2Ll . (37)

For n = 2, we have

L−2 = −sinh(2θ)

2

[
t2L1 + (

t3 − 3t
)

L0 + (
t4 − 3 t2 + 3

)
L−1 +

(
t5 − 3 t3 + 3 t − 1

t

)
L−2

+ (
t6 − 3 t4 + 3 t2 − 1

)
L−3 + · · · ]. (38)

Here, we make some comments on the above results. First, we can easily see that L±2 → L±2

in the θ → 0 limit, implying that Ln recovers the conventional Virasoro generator of the radial
quantization. In the SSD limit (θ → ∞), on the other hand, we can see that all of L±1 and L±2

reduce to const×L0. This suggests that Ln of a finite n collapses to L0 in the θ → ∞ limit, reflecting
κ = n/Nθ → 0. In other words, a continuous spectrum may be well defined for n, Nθ → ∞ with
fixing n/Nθ = κ , as will be seen in the next subsection.

Next, we discuss the Hermitian conjugate of the generator Ln. We can see that Eqs. (35) and (37)
have a symmetric form with respect to exchanging n ↔ −n. If Ln is equipped with the standard
Hermitian conjugate of L−n = L†

n, this symmetric relation of (35) and (37) ensures the Hermiticity
of the generator,

L−n = L†
n, (39)

as long as the series is convergent. Comparing (36) and (38), indeed, we can easily verify that
L−2 = L†

2 for n = 2. However, it should be remarked that the convergence radii of the geometric
series used in Eqs. (35) and (37) require | tanh(θ)| < 1. Thus, the conventional Hermitian conjugate
of Eq. (39) may not be the case just at the SSD point where tanh(θ) = 1. As was pointed out in Ref.
[13], another definition of the Hermitian conjugate may be needed at the SSD point.

3.2. Virasoro algebra

We next construct the commutator for the generator Ln. The operator product expansion (OPE) of
the stress tensor is given by

T (z)T (w) ∼ c/2

(z − w)4 + 2T (w)

(z − w)2 + ∂wT (w)

(z − w)
· · · , (40)
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Fig. 2. The contours in the left panel can be deformed to those in the right panel.

where c is the central charge. Then, we can directly calculate the commutator with the contour
integrals following the time ordering in the Möbius quantization:

[Lm, Ln]
=
∮

C>

dz

2π i
g(z)fm(z)

∮
C

dw

2π i
g(w)fn(w)T (z)T (w) −

∮
C

dw

2π i
g(w)fm(w)

∮
C<

dz

2π i
g(z)fn(z)T (w)T (z)

=
∮

C

dw

2π i
g(w)fm(w)

∮
Cw

dz

2π i
g(z)fn(z)

[
c/2

(z − w)4 + 2T (w)

(z − w)2 + ∂wT (w)

(z − w)
· · ·
]

,

where the integration contours are depicted in Fig. 2. Substituting g(z) and fn(z) in the above
expression and performing the contour integral of z, we obtain

[Lm, Ln]

= (−)n+m sinh2(2θ)

4 tanhm+n(θ)

∫
C

dw

2π i

{
cn(n − 1)(n + 1)

12(sinh(θ) cosh(θ))3

(w − tanh(θ))n+m−1

(w − 1
tanh(θ)

)n+m+1

+
[

2

(
(w − tanh(θ))m+1

(w − 1
tanh(θ)

)m−1

)(
(w − tanh(θ))n+1

(w − 1
tanh(θ)

)n−1

)′

−
(

(w − tanh(θ))m+1

(w − 1
tanh(θ)

)m−1

(w − tanh(θ))n+1

(w − 1
tanh(θ)

)n−1

)′]
T (w)

}
,

where we have used integration by parts for the last term in the square brackets. Then, a straight-
forward calculation of the w integral yields the Virasoro algebra of the generator L of the Möbius
quantization:

[Lm, Ln] = (m − n)Lm+n + c

12
m(m − 1)(m + 1)δn+m,0 . (41)

Thus, the Lorentz transformation (2) basically provides the same physics as CFT based on the radial
quantization. Moreover, this fact indicates that the Möbius quantization can be obtained through the
conformal map of the Möbius transformation. We will comment on this point in the next section.
Nevertheless, we would like to emphasize that the Möbius quantization clarifies an origin of the
continuous Virasoro algebra obtained by the dipolar quantization, as follows.
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An important viewpoint of Eq. (41) is that the SSD limit, i.e., Nθ (= cosh(2θ)) → ∞, should
correspond to the dipolar quantization by Ishibashi and Tada. Recalling Eqs. (7) and (10), we define
the scaled spectrum and generator as

n/Nθ → κ , Ln/Nθ → L̃κ , Nθ δn,0 → δ(κ). (42)

In the Nθ → ∞ limit, then, κ becomes the continuous index and Eq. (41) is reduced to

[L̃κ , L̃κ ′ ] = (κ − κ ′)L̃κ+κ ′ + c

12
κ3δ(κ + κ ′), (43)

which is the so-called continuous Virasoro algebra. In this sense, the continuous Virasoro algebra
of the dipolar quantization can be interpreted as a continuum limit of the Virasoro algebra for the
scaled generator.

3.3. Vacuum

In the usual CFT based on radial quantization, the vacuum is defined as

|0〉 = I (z = 0)|0〉 and Ln|0〉 = 0, for n ≥ −1, (44)

where I (z) is the identity operator. Then, the Hermiticity L†
n = L−n ensures

〈0|Ln = 0, for n ≤ 1. (45)

For the case of Möbius quantization, we may define the vacuum as

|0〉θ = I (z = tanh(θ))|0〉θ and Ln|0〉θ = 0, for n ≥ −1, (46)

where |0〉θ denotes the vacuum for the Möbius quantization. The Hermiticity of Eq. (39) gives

θ 〈0|Ln = 0, for n ≤ 1. (47)

Here, we should recall that Eqs. (31), (32), (33), and (35) imply that Ln for n ≥ −1 can only be
expanded by Ln with n ≥ −1. Thus, we trivially have

|0〉θ = |0〉, (48)

which is also a consequence of the SL(2,R) invariance of the SSD Hamiltonian.

3.4. Primary field

We next discuss the primary field. In general, for a conformal transformation z → w(z), a primary
field of a scaling dimension h is defined by

φ′(w) =
(

dz

dw

)h

φ(z), (49)

which leads us to the commutator

[Ln, φh(z)] = zn+1∂zφh(z) + (n + 1)hznφh(z), (50)

or, equivalently, the OPE

T (z)φh(w) = hφh(w)

(z − w)2 − ∂wφh(w)

z − w
· · · . (51)
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In particular, the primary field specifies the highest weight state as

L0φh(x) = hφh(x) or L0|h〉 = h|h〉, (52)

where |h〉 ≡ φh(0)|0〉.
For the Möbius quantization, we have the commutator

[Ln, φh(z)] =
∮

z

dw

2π i
g(w)fn(w)T (w)φh(z)

= −(−)n sinh(2θ)

2(tanh(θ))n

[
h

(
(z − tanh(θ))n+1

(z − 1
tanh(θ)

)n−1

)′
φh(z) −

(
(z − tanh(θ))n+1

(z − 1
tanh(θ)

)n−1

)
∂zφh(z)

]
,

(53)

where we have used the OPE (51). In particular, for n = 0, we explicitly have

[L0, φh(z)] = −sinh(2θ)

2

[
h

(
(z − tanh(θ)) + (z − 1

tanh(θ)
)

)
φh(z)

− (z − tanh(θ))(z − 1

tanh(θ)
)∂zφh(z)

]
. (54)

If we define the primary state for the Möbius quantization as

|h〉θ = φh(z = tanh(θ))|0〉, (55)

we can easily see that

L0|h〉θ = h|h〉θ . (56)

From Eq. (53), moreover, we straightforwardly read

Ln|h〉θ = 0, for n ≥ 1. (57)

For n ≤ −1, on the other hand, Ln generates a new state Ln|h〉θ , as in the usual CFT. Using the
commutator (41) for Ln, we can thus construct the representation of the Virasoro algebra for the
primary state (55).

The relation between |h〉θ and |h〉 can be directly seen through the conventional Virasoro generator
by the radial quantization; since L−1 is the translation operator in the z plane, we have

φh(α) = eαL−1φh(0)e−αL−1 . (58)

Then, Eq. (55) is rewritten as

|h〉θ = eαL−1φh(0)e−αL−1 |0〉 = eαL−1φh(0)|0〉 = eαL−1 |h〉 (59)

with α = tanh(θ). Using the commutators in Appendix B, we can calculate(
cosh(2θ)L0 − sinh(2θ)

2
(L−1 + L1)

)
eαL−1 |h〉

=
[

h (cosh(2θ) − α sinh(2θ)) +
(

α cosh(2θ) − sinh(2θ)

2
(α2 + 1)

)
L−1

]
eαL−1 |h〉, (60)
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which enables us to directly verify that

L0etanh(θ)L−1 |h〉 = hetanh(θ)L−1 |h〉. (61)

This result is of course consistent with Eq. (56). Moreover, the norm of |h〉θ can be evaluated as

θ 〈h|h〉θ = 〈h|eαL1eαL−1 |h〉 = 1 +
∞∑

n=1

Bn, (62)

with

Bn = α2n

n! (n − 1 + 2h)(n − 2 + 2h) · · · (1 + 2h)(2h). (63)

If α = tanh(θ) < 1, ∣∣∣∣Bn+1

Bn

∣∣∣∣ = α2(1 + 2h − 1

n + 1
) < 1 for n > ∃nc . (64)

Thus, the series of Eq. (62) is convergent for tanh(θ) < 1, implying that |h〉θ is normalizable. In the
SSD limit, however, the series is divergent [11]. This suggests that it may be difficult to construct
the primary field just at the SSD point within the present approach where the series of (35) and (37)
is also divergent. In this sense, the primary field for the dipolar quantization is a nontrivial problem.

4. The conformal mapping approach

In the previous section, we have quantized CFT on the Möbius coordinate, which yields a Virasoro
algebra of the same form as that of the radial quantization. Of course, this is a natural consequence of
the SL(2,R) symmetry in CFT, which suggests a more direct approach to obtain the Virasoro algebra
of L. Let us consider the Möbius-type conformal map of SL(2,R):

w = −sinh(θ) − cosh(θ)z

cosh(θ) − sinh(θ)z
. (65)

We then define the Virasoro generator in the mapped coordinate (w plane) as

Ln ≡
∫

dw

2π i
wn+1T (w). (66)

Now, we rewrite Ln in terms of the z plane. Recall that, for the conformal map (65), the stress tensor
transforms as

T (w) =
(

dz

dw

)2

T (z) = (cosh(θ) − sinh(θ)z)4 T (z). (67)

Thus, we have

Ln =
∫

dz

2π i

dw

dz
wn+1

(
dz

dw

)2

T (z) = −(−)n sinh(2θ)

2(tanh(θ))n

∫
dz

2π i

(z − tanh(θ))n+1

(z − 1/ tanh(θ))n−1 T (z), (68)

which is consistent with Eq. (30). We can therefore obtain the results of the Möbius quantization,
without passing through a complicated analysis of the Möbius coordinate. However, the Möbius
quantization approach interpolating between the radial and dipolar quantizations was essential to
reveal the continuum limit of the Virasoro algebra.
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5. Discussion

We have discussed the 2D CFT in terms of the Möbius quantization, which bridges the radial
quantization and the dipolar quantization. An essential feature of the Möbius coordinate is that the
source and sink of the time flow are, respectively, located at z = tanh(θ) and 1/ tanh(θ), and they
move toward z = 1 as the deformation parameter θ increases. As long as θ is finite, then, we have
constructed the Virasoro algebra for the generator Ln defined by Eq. (30), consistent with the result
of the conformal mapping of SL(2,R). In the SSD (θ → ∞) limit, the locations of the source and sink
finally fuse together at z = 1, which corresponds to the dipolar quantization, where the continuous
Virasoro algebra emerges for the scaled generator L̃n defined by Eq. (42).

An important implication of the Möbius quantization approach is that the continuous Virasoro
algebra for θ → ∞ can be viewed as a continuum limit of the conventional Virasoro algebra. As

in the previous works, it is natural to deal with the scaled Hamiltonian H̃ = L̃0 + ¯̃L0 at the SSD

point, so that l0 and l̄0 in Eqs. (17) and (18) should be replaced by l̃0 and ¯̃
l0. Then, the ζ̃ coordinate

involves the scale factor Nθ :

ζ̃ = τ̃ + is̃ = Nθ ln
(

− tanh(θ)
sinh(θ) − cosh(θ)z

cosh(θ) − sinh(θ)z

)
, (69)

which implies that the scale of the spatial coordinate is also modified by Nθ , and the range of s̃
becomes

−πNθ ≤ s̃ ≤ πNθ , (70)

in contrast to (28). Thus, the scaled Virasoro generator L̃n has a θ -dependent circumference, 2πNθ ,
which diverges as θ → ∞. This is the infinite circumference limit of the dipolar quantization in
Refs. [12,13].

We can also discuss the role of the scale factor Nθ by analogy with the finite-size scaling of CFT.
For the radial quantization, the finite-size-scaling analysis for a cylinder is obtained through the
conformal mapping z′ = �

2π
ln z, where � is a free parameter representing the strip width of the

cylinder [15,16]. For the scaled Möbius coordinate (69), we can rewrite ζ̃ as

ζ̃ = �θ

2π
ln w + C, (71)

with w of Eq. (65) and �θ ≡ 2πNθ . Since C � −1 for θ � 1, this relation can be viewed as a finite-
size scaling for the w coordinate. This suggests that, as �θ increases, the region of the energy scale

exhibiting the conformal-tower spectrum for the scaled Hamiltonian H̃ = L̃0 + ¯̃L0 is expected to
collapse into the infinitely small energy scale above the ground state. The numerical finite-size-scaling
analysis of the free fermion system at the SSD point actually observed the 1/L2 size dependence
of the excitation spectrum [9], instead of the universal 1/L-dependent spectrum of CFT. Moreover,
the analytic calculation with help of SUSY quantum mechanics for the nonrelativistic free fermion
provides the exact 1/L2 dependence of the spectrum [6]. By contrast, the low-energy spectrum of the
unscaled Hamiltonian H = L0 + L̄0 may maintain the usual conformal spectrum, where the scale
of H is magnified by the huge scale factor Nθ .

As was seen above, some properties of the spectrum of the scaled generator L̃ can be understood by
analogy with finite-size scaling. Also, the continuous Virasoro algebra (43) for the scaled generator
L̃ is basically consistent with the dipolar quantization. However, we should mention that there
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remain some difficulties in the SSD limit. �θ in Eq. (71) is not a free parameter but the scale factor
embedded in the Lorentz transformation, and thus ζ̃ has the limit ζ̃ = 2

z−1 for θ → ∞. This function

corresponds to the mapping of u = eζ̃ = exp( 2
z−1) containing the essential singularity at z = 1,

which causes peculiar behaviors in the dipolar quantization [11–13]. Accordingly, the primary field
(55) is unnormalizable at the SSD point, and the Hermitian conjugate (39) is inconsistent with that
defined in Ref. [13]. A significant point of the SSD limit is that the source and sink of the time flow
fuse at z = 1, which never occurs for the case of the usual CFT, where τ = −∞ is assumed to be
isolated in the complex plane. Further investigations are clearly required to understand the SSD and
the continuous Virasoro algebra. We believe that the relation (42) provides a solid footing from which
to address the SSD limit. In addition, it should be noted that a connection to similar quantization
approaches based on the global conformal symmetry [17], such as N-S quantization [18], is also an
interesting problem.
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Appendix A. Expansion coefficients of Ln

The Virasoro generator Ln of the Möbius quantization can be represented by a series of the con-
ventional Virasoro generator Ll of the radial quantization. We assume n > 1 for Eq. (30). Using
t = tanh(θ)(< 1) for simplicity, we have

Ln = −(−)n sinh(2θ)

2tn

∑
l

Ll

∮
τ

dz

2π i

(z − t)n+1

(z − 1/t)n−1 z−l−2

= −(−)n sinh(2θ)

2

∑
l

Cn
l (t)Ll , (A1)

where the expansion coefficient is defined by

Cn
l (t) ≡ tn−l−1

∮
(0,1)

dy

2π i
y−l−2(1 − y)n+1(1 − t2y)−n+1. (A2)

The integration path is the contour surrounding y = 0 and 1 in the complex y plane. The pole in the
contour is located only at y = 0 if n ≥ −1. Using Goursat’s formula, then, we have

Cn
l (t) = tn−l−1 1

(l + 1)!
dl+1

dyl+1
(1 − y)n+1(1 − t2y)−n+1

∣∣∣∣∣
y=0

, (A3)

which is a polynomial of t. For n > 1, moreover, we can represent Cn
l (t) with use of Gauss’s

hypergeometric function:

Cn
l (t) =

{
(−)l+1 (n+1)!

(l+1)!(n−l)!F(n − 1, −l − 1; n − l + 1; t2) tn−l−1 n ≥ l ≥ −1

(−)n+1 (l−2)!
(n−2)!(l−n)!F(−n − 1, l − 1; l − n + 1; t2) tl−n−1 n < l

, (A4)
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which is equivalent to Eq. (A3). If n = 2, the above formula reproduces Eq. (36). For the case of
n < −1, Ln can be attributed to Eq. (A2) with n → −n after changing the variable w = 1/z, as in
Eq. (37).

Appendix B. Useful commutators

For the Virasoro generators L0 and L±1, we have the following commutators:

[L0, (L−1)
n] = n(L−1)

n, (B1)

[L0, eaL−1] = aL−1eaL−1 , (B2)

[L1, (L−1)
n] = n(n − 1)(L−1)

n−1 + 2n(L−1)
n−1L0, (B3)

[L1, eaL−1] = a2L−1eaL−1 + 2aeaL−1L0, (B4)

which are useful for calculations in Sect. 3.
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